Science.gov

Sample records for nuclear transcription factor-kappab

  1. Propanil inhibits tumor necrosis factor-alpha production by reducing nuclear levels of the transcription factor nuclear factor-kappab in the macrophage cell line ic-21.

    PubMed

    Frost, L L; Neeley, Y X; Schafer, R; Gibson, L F; Barnett, J B

    2001-05-01

    Tumor necrosis factor-alpha (TNF-alpha) is an essential proinflammatory cytokine whose production is normally stimulated by bacterial cell wall components, such as lipopolysaccharide (LPS), during an infection. Macrophages stimulated with LPS in vitro produce several cytokines, including TNF-alpha. LPS-stimulated primary mouse macrophages produced less TNF-alpha protein and message after treatment with the herbicide propanil (Xie et al., Toxicol. Appl. Pharmacol. 145, 184-191, 1997). Nuclear factor-kappaB (NF-kappaB) tightly regulates TNF-alpha transcription. Therefore, as a step toward understanding the mechanism of the effect of propanil on TNF-alpha transcription, IC-21 cells were transfected with a TNF-alpha promoter-luciferase construct, and the effect of propanil on luciferase activity was measured. Cells transfected with promoter constructs containing a kappaB site showed decreased luciferase activity relative to controls after propanil treatment. These observations implicated NF-kappaB binding as an intracellular target of propanil. Further studies demonstrated a marked reduction in the nuclear levels of the stimulatory p65 subunit of NF-kappaB after propanil treatment, as measured by fluorescence confocal microscopy and Western blot analysis. The p50 subunit of NF-kappaB was not found to be reduced after propanil exposure by Western blot. Electrophoretic mobility gel shift assays showed decreased DNA binding of both p65/p50 heterodimers and p50/p50 homodimers to the kappaB3 site of the TNF-alpha promoter of propanil-treated cells. The marked reduction in nuclear p65/p50 NF-kappaB levels and diminished binding to the TNF-alpha promoter in propanil-treated cells are consistent with reduced TNF-alpha levels induced by LPS. PMID:11312646

  2. Nuclear actin levels as an important transcriptional switch

    PubMed Central

    Huet, Guillaume; Skarp, Kari-Pekka; Vartiainen, Maria K.

    2012-01-01

    Nuclear actin levels have recently been linked to different cellular fates, suggesting that actin could act as a switch between altered transcriptional states. Here we discuss our latest results on the mechanisms by which nuclear actin levels are regulated and their implications to the functional significance of nuclear actin. PMID:22771994

  3. Actin-based modeling of a transcriptionally competent nuclear substructure induced by transcription inhibition

    SciTech Connect

    Wang, I-F.; Chang, H.-Y.; James Shen, C.-K. . E-mail: ckshen@ccvax.sinica.edu.tw

    2006-11-15

    During transcription inactivation, the nuclear bodies in the mammalian cells often undergo reorganization. In particular, the interchromatin granule clusters, or IGCs, become colocalized with RNA polymerase II (RNAP II) upon treatment with transcription inhibitors. This colocalization has also been observed in untreated but transcriptionally inactive cells. We report here that the reorganized IGC domains are unique substructure consisting of outer shells made of SC35, ERK2, SF2/ASF, and actin. The apparently hollow holes of these domains contain clusters of RNAP II, mostly phosphorylated, and the splicing regulator SMN. This class of complexes are also the sites where prominent transcription activities are detected once the inhibitors are removed. Furthermore, actin polymerization is required for reorganization of the IGCs. In connection with this, immunoprecipitation and immunostaining experiments showed that nuclear actin is associated with IGCs and the reorganized IGC domains. The study thus provides further evidence for the existence of an actin-based nuclear skeleton structure in association with the dynamic reorganization processes in the nucleus. Overall, our data suggest that mammalian cells have adapted to utilize the reorganized, uniquely shaped IGC domains as the temporary storage sites of RNAP II transcription machineries in response to certain transient states of transcription inactivation.

  4. Nuclear positional control of HIV transcription in 4D

    PubMed Central

    Dhir, Somdutta; Dieudonné, Mariacarolina

    2010-01-01

    Retroviruses integrate their genome into the chromatin of the host cell and are subject to the same control mechanisms governing transcription in the nucleus. There is increasing evidence that the spatial position of a gene within the nucleus in time affects its activity. Therefore it becomes important to study the chromatin environment in space and time of the HIV-1 provirus, particularly in cells where a tight transcriptional control allows the virus to hide away from antiviral treatment and immune response. We recently showed that the HIV-1 provirus is found at the nuclear periphery of latently infected lymphocytes associated in trans with centromeric heterochromatin. After induction of transcription, this association was lost, although the location of the transcribing provirus remained peripheral. Our results reveal a novel mechanism of transcriptional silencing involved in HIV-1 post-transcriptional latency and open wider perspectives for the general organization of chromatin in the nucleus. PMID:21327098

  5. Regulation of mammalian transcription and splicing by Nuclear RNAi

    PubMed Central

    Kalantari, Roya; Chiang, Cheng-Ming; Corey, David R.

    2016-01-01

    RNA interference (RNAi) is well known as a mechanism for controlling mammalian mRNA translation in the cytoplasm, but what would be the consequences if it also functions in cell nuclei? Although RNAi has also been found in nuclei of plants, yeast, and other organisms, there has been relatively little progress towards understanding the potential involvement of mammalian RNAi factors in nuclear processes including transcription and splicing. This review summarizes evidence for mammalian RNAi factors in cell nuclei and mechanisms that might contribute to the control of gene expression. When RNAi factors bind small RNAs, they form ribonucleoprotein complexes that can be selective for target sequences within different classes of nuclear RNA substrates. The versatility of nuclear RNAi may supply a previously underappreciated layer of regulation to transcription, splicing, and other nuclear processes. PMID:26612865

  6. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    SciTech Connect

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  7. The Basal Transcription Complex Component TAF3 Transduces Changes in Nuclear Phosphoinositides into Transcriptional Output

    PubMed Central

    Stijf-Bultsma, Yvette; Sommer, Lilly; Tauber, Maria; Baalbaki, Mai; Giardoglou, Panagiota; Jones, David R.; Gelato, Kathy A.; van Pelt, Jason; Shah, Zahid; Rahnamoun, Homa; Toma, Clara; Anderson, Karen E.; Hawkins, Philip; Lauberth, Shannon M.; Haramis, Anna-Pavlina G.; Hart, Daniel; Fischle, Wolfgang; Divecha, Nullin

    2015-01-01

    Summary Phosphoinositides (PI) are important signaling molecules in the nucleus that influence gene expression. However, if and how nuclear PI directly affects the transcriptional machinery is not known. We report that the lipid kinase PIP4K2B regulates nuclear PI5P and the expression of myogenic genes during myoblast differentiation. A targeted screen for PI interactors identified the PHD finger of TAF3, a TATA box binding protein-associated factor with important roles in transcription regulation, pluripotency, and differentiation. We show that the PI interaction site is distinct from the known H3K4me3 binding region of TAF3 and that PI binding modulates association of TAF3 with H3K4me3 in vitro and with chromatin in vivo. Analysis of TAF3 mutants indicates that TAF3 transduces PIP4K2B-mediated alterations in PI into changes in specific gene transcription. Our study reveals TAF3 as a direct target of nuclear PI and further illustrates the importance of basal transcription components as signal transducers. PMID:25866244

  8. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output.

    PubMed

    Stijf-Bultsma, Yvette; Sommer, Lilly; Tauber, Maria; Baalbaki, Mai; Giardoglou, Panagiota; Jones, David R; Gelato, Kathy A; van Pelt, Jason; Shah, Zahid; Rahnamoun, Homa; Toma, Clara; Anderson, Karen E; Hawkins, Philip; Lauberth, Shannon M; Haramis, Anna-Pavlina G; Hart, Daniel; Fischle, Wolfgang; Divecha, Nullin

    2015-05-01

    Phosphoinositides (PI) are important signaling molecules in the nucleus that influence gene expression. However, if and how nuclear PI directly affects the transcriptional machinery is not known. We report that the lipid kinase PIP4K2B regulates nuclear PI5P and the expression of myogenic genes during myoblast differentiation. A targeted screen for PI interactors identified the PHD finger of TAF3, a TATA box binding protein-associated factor with important roles in transcription regulation, pluripotency, and differentiation. We show that the PI interaction site is distinct from the known H3K4me3 binding region of TAF3 and that PI binding modulates association of TAF3 with H3K4me3 in vitro and with chromatin in vivo. Analysis of TAF3 mutants indicates that TAF3 transduces PIP4K2B-mediated alterations in PI into changes in specific gene transcription. Our study reveals TAF3 as a direct target of nuclear PI and further illustrates the importance of basal transcription components as signal transducers. PMID:25866244

  9. RNA transcription modulates phase transition-driven nuclear body assembly

    PubMed Central

    Berry, Joel; Weber, Stephanie C.; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P.

    2015-01-01

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid–liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of “extranucleolar droplets” (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  10. RNA transcription modulates phase transition-driven nuclear body assembly.

    PubMed

    Berry, Joel; Weber, Stephanie C; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford P

    2015-09-22

    Nuclear bodies are RNA and protein-rich, membraneless organelles that play important roles in gene regulation. The largest and most well-known nuclear body is the nucleolus, an organelle whose primary function in ribosome biogenesis makes it key for cell growth and size homeostasis. The nucleolus and other nuclear bodies behave like liquid-phase droplets and appear to condense from the nucleoplasm by concentration-dependent phase separation. However, nucleoli actively consume chemical energy, and it is unclear how such nonequilibrium activity might impact classical liquid-liquid phase separation. Here, we combine in vivo and in vitro experiments with theory and simulation to characterize the assembly and disassembly dynamics of nucleoli in early Caenorhabditis elegans embryos. In addition to classical nucleoli that assemble at the transcriptionally active nucleolar organizing regions, we observe dozens of "extranucleolar droplets" (ENDs) that condense in the nucleoplasm in a transcription-independent manner. We show that growth of nucleoli and ENDs is consistent with a first-order phase transition in which late-stage coarsening dynamics are mediated by Brownian coalescence and, to a lesser degree, Ostwald ripening. By manipulating C. elegans cell size, we change nucleolar component concentration and confirm several key model predictions. Our results show that rRNA transcription and other nonequilibrium biological activity can modulate the effective thermodynamic parameters governing nucleolar and END assembly, but do not appear to fundamentally alter the passive phase separation mechanism. PMID:26351690

  11. Nuclear dot antigens may specify transcriptional domains in the nucleus.

    PubMed

    Xie, K; Lambie, E J; Snyder, M

    1993-10-01

    A bank of 892 human autoimmune serum samples was screened by indirect immunofluorescence on human tissue culture HT-29 cells. Seven serum samples that stain 4 to 10 bright dots in cell lines of several different mammals, including humans, monkeys, rats, and pigs, were identified. Immunofluorescence experiments indicate that these antigens, called nuclear dot (ND) antigens, are distinct from splicing complexes, kinetochores, and other known nuclear structures. An ND antigen recognized by these sera was cloned by immunoscreening a human lambda gt11 expression library. Analysis of seven cDNA clones for the ND antigen indicates that several mRNAs exist, perhaps derived through alternative splicing mechanisms. One major form of the message has an open reading frame of 1,440 bp capable of encoding a 53,000-M(r) protein. Treatment of cells with detergent, salt, or RNase A fails to remove the ND antigen from the nucleus. However, incubation with DNase I obliterates ND staining, indicating that the ND protein directly or indirectly associates with nuclear DNA. Fusion of the ND protein to a LexA DNA binding domain activates transcription in Saccharomyces cerevisiae. A 75-amino-acid domain that activates transcription in both yeast and primate cells has been identified. We suggest that ND antigens may participate in the activation of transcription of specific regions of the genome. PMID:8413218

  12. Dynamic Encounters of Genes and Transcripts with the Nuclear Pore.

    PubMed

    Ben-Yishay, Rakefet; Ashkenazy, Asaf J; Shav-Tal, Yaron

    2016-07-01

    Transcribed mRNA molecules must reach the cytoplasm to undergo translation. Technological developments in imaging have placed mRNAs under the spotlight, allowing the quantitative study of the spatial and temporal dynamics of the nucleocytoplasmic mRNA export process. Here, we discuss studies that have used such experimental approaches to demonstrate that gene tethering at the nuclear pore complex (NPC) regulates mRNA expression, and to characterize mRNA dynamics during transport in real time. The paths taken by mRNAs as they move from their sites of transcription and travel through the nucleoplasm, in between chromatin domains, and finally through the NPC, can now be observed in detail. PMID:27185238

  13. Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response

    PubMed Central

    Misra, Jagannath; Kim, Don-Kyu; Choi, Woogyun; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung-Hoon; Kaufman, Randal J.; Choi, Hueng-Sik

    2013-01-01

    Orphan nuclear receptor ERRγ is a member of nuclear receptor superfamily that regulates several important cellular processes including hepatic glucose and alcohol metabolism. However, mechanistic understanding of transcriptional regulation of the ERRγ gene remains to be elucidated. Here, we report that activating transcription factor 6α (ATF6α), an endoplasmic reticulum (ER)-membrane–bound basic leucine zipper (bZip) transcription factor, directly regulates ERRγ gene expression in response to ER stress. ATF6α binds to ATF6α responsive element in the ERRγ promoter. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) is required for this transactivation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding of both ATF6α and PGC1α on the ERRγ promoter. ChIP assay demonstrated histone H3 and H4 acetylation occurs at the ATF6α and PGC1α binding site. Of interest, ERRγ along with PGC1α induce ATF6α gene transcription upon ER stress. ERRγ binds to an ERRγ responsive element in the ATF6α promoter. ChIP assay confirmed that both ERRγ and PGC1α bind to a site in the ATF6α promoter that exhibits histone H3 and H4 acetylation. Overall, for the first time our data show a novel pathway of cross talk between nuclear receptors and ER-membrane–bound transcription factors and suggest a positive feed-forward loop regulates ERRγ and ATF6α gene transcription. PMID:23716639

  14. Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response.

    PubMed

    Misra, Jagannath; Kim, Don-Kyu; Choi, Woogyun; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung-Hoon; Kaufman, Randal J; Choi, Hueng-Sik

    2013-08-01

    Orphan nuclear receptor ERRγ is a member of nuclear receptor superfamily that regulates several important cellular processes including hepatic glucose and alcohol metabolism. However, mechanistic understanding of transcriptional regulation of the ERRγ gene remains to be elucidated. Here, we report that activating transcription factor 6α (ATF6α), an endoplasmic reticulum (ER)-membrane-bound basic leucine zipper (bZip) transcription factor, directly regulates ERRγ gene expression in response to ER stress. ATF6α binds to ATF6α responsive element in the ERRγ promoter. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) is required for this transactivation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding of both ATF6α and PGC1α on the ERRγ promoter. ChIP assay demonstrated histone H3 and H4 acetylation occurs at the ATF6α and PGC1α binding site. Of interest, ERRγ along with PGC1α induce ATF6α gene transcription upon ER stress. ERRγ binds to an ERRγ responsive element in the ATF6α promoter. ChIP assay confirmed that both ERRγ and PGC1α bind to a site in the ATF6α promoter that exhibits histone H3 and H4 acetylation. Overall, for the first time our data show a novel pathway of cross talk between nuclear receptors and ER-membrane-bound transcription factors and suggest a positive feed-forward loop regulates ERRγ and ATF6α gene transcription. PMID:23716639

  15. Nur77 forms novel nuclear structures upon DNA damage that cause transcriptional arrest

    SciTech Connect

    Leseleuc, Louis de; Denis, Francois . E-mail: francois.denis@iaf.inrs.ca

    2006-05-15

    The orphan nuclear receptor Nur77 has been implicated in both growth and apoptosis, and its function and activity can be modulated by cellular redistribution. Green fluorescent protein-tagged Nur77 was used to evaluate the role of Nur77 intracellular redistribution in response to genotoxic stress. Selected DNA damaging agents and transcription inhibition lead to rapid redistribution of Nur77 into nuclear structures distinct from conventional nuclear bodies. These nuclear bodies formed transiently were tightly bound to the nuclear matrix and conditions that lead to their appearance were associated with Nur77 transcriptional inhibition. The formation of Nur77 nuclear bodies might be involved in programmed cell death modulation upon exposure to DNA damaging agents that inhibit transcription by sequestrating this proapoptotic factor in dense nuclear structures.

  16. Multiple Nuclear Localization Signals Mediate Nuclear Localization of the GATA Transcription Factor AreA

    PubMed Central

    Hunter, Cameron C.; Siebert, Kendra S.; Downes, Damien J.; Wong, Koon Ho; Kreutzberger, Sara D.; Fraser, James A.; Clarke, David F.; Hynes, Michael J.; Davis, Meryl A.

    2014-01-01

    The Aspergillus nidulans GATA transcription factor AreA activates transcription of nitrogen metabolic genes in response to nitrogen limitation and is known to accumulate in the nucleus during nitrogen starvation. Sequence analysis of AreA revealed multiple nuclear localization signals (NLSs), five putative classical NLSs conserved in fungal AreA orthologs but not in the Saccharomyces cerevisiae functional orthologs Gln3p and Gat1p, and one putative noncanonical RRX33RXR bipartite NLS within the DNA-binding domain. In order to identify the functional NLSs in AreA, we constructed areA mutants with mutations in individual putative NLSs or combinations of putative NLSs and strains expressing green fluorescent protein (GFP)-AreA NLS fusion genes. Deletion of all five classical NLSs individually or collectively did not affect utilization of nitrogen sources or AreA-dependent gene expression and did not prevent AreA nuclear localization. Mutation of the bipartite NLS conferred the inability to utilize alternative nitrogen sources and abolished AreA-dependent gene expression likely due to effects on DNA binding but did not prevent AreA nuclear localization. Mutation of all six NLSs simultaneously prevented AreA nuclear accumulation. The bipartite NLS alone strongly directed GFP to the nucleus, whereas the classical NLSs collaborated to direct GFP to the nucleus. Therefore, AreA contains multiple conserved NLSs, which show redundancy and together function to mediate nuclear import. The noncanonical bipartite NLS is conserved in GATA factors from Aspergillus, yeast, and mammals, indicating an ancient origin. PMID:24562911

  17. Exosome Cofactors Connect Transcription Termination to RNA Processing by Guiding Terminated Transcripts to the Appropriate Exonuclease within the Nuclear Exosome.

    PubMed

    Kim, Kyumin; Heo, Dong-Hyuk; Kim, Iktae; Suh, Jeong-Yong; Kim, Minkyu

    2016-06-17

    The yeast Nrd1 interacts with the C-terminal domain (CTD) of RNA polymerase II (RNApII) through its CTD-interacting domain (CID) and also associates with the nuclear exosome, thereby acting as both a transcription termination and RNA processing factor. Previously, we found that the Nrd1 CID is required to recruit the nuclear exosome to the Nrd1 complex, but it was not clear which exosome subunits were contacted. Here, we show that two nuclear exosome cofactors, Mpp6 and Trf4, directly and competitively interact with the Nrd1 CID and differentially regulate the association of Nrd1 with two catalytic subunits of the exosome. Importantly, Mpp6 promotes the processing of Nrd1-terminated transcripts preferentially by Dis3, whereas Trf4 leads to Rrp6-dependent processing. This suggests that Mpp6 and Trf4 may play a role in choosing a particular RNA processing route for Nrd1-terminated transcripts within the exosome by guiding the transcripts to the appropriate exonuclease. PMID:27076633

  18. Nuclear Matrix protein SMAR1 represses HIV-1 LTR mediated transcription through chromatin remodeling

    SciTech Connect

    Sreenath, Kadreppa; Pavithra, Lakshminarasimhan; Singh, Sandeep; Sinha, Surajit; Dash, Prasanta K.; Siddappa, Nagadenahalli B.; Ranga, Udaykumar; Mitra, Debashis; Chattopadhyay, Samit

    2010-04-25

    Nuclear Matrix and MARs have been implicated in the transcriptional regulation of host as well as viral genes but their precise role in HIV-1 transcription remains unclear. Here, we show that > 98% of HIV sequences contain consensus MAR element in their promoter. We show that SMAR1 binds to the LTR MAR and reinforces transcriptional silencing by tethering the LTR MAR to nuclear matrix. SMAR1 associated HDAC1-mSin3 corepressor complex is dislodged from the LTR upon cellular activation by PMA/TNFalpha leading to an increase in the acetylation and a reduction in the trimethylation of histones, associated with the recruitment of RNA Polymerase II on the LTR. Overexpression of SMAR1 lead to reduction in LTR mediated transcription, both in a Tat dependent and independent manner, resulting in a decreased virion production. These results demonstrate the role of SMAR1 in regulating viral transcription by alternative compartmentalization of LTR between the nuclear matrix and chromatin.

  19. Nuclear reprogramming: the zygotic transcription program is established through an "erase-and-rebuild" strategy.

    PubMed

    Sun, Feng; Fang, Haiyan; Li, Ruizhen; Gao, Tianlong; Zheng, Junke; Chen, Xuejin; Ying, Wenqin; Sheng, Hui Z

    2007-02-01

    Oocytes display a maternal-specific gene expression profile, which is switched to a zygotic profile when a haploid set of chromatin is passed on to the fertilized egg that develops into an embryo. The mechanism underlying this transcription reprogramming is currently unknown. Here we demonstrate that by the time when transcription is shut down in germinal vesicle oocytes, a range of general transcription factors and transcriptional regulators are dissociated from the chromatin. The global dissociation of chromatin factors (CFs) disrupts physical contacts between the chromatin and CFs and leads to erasure of the maternal transcription program at the functional level. Critical transcription factors and regulators remain separated from chromatin for a prolonged period, and become re-associated with chromatin shortly after pronuclear formation. This is followed temporally by the re-establishment of nuclear functions such as DNA replication and transcription. We propose that the maternal transcription program is erased during oogenesis to generate a relatively naïve chromatin and the zygotic transcription program is rebuilt de novo after fertilization. This process is termed as the "erase-and-rebuild" process, which is used to reset the transcription program, and most likely other nuclear processes as well, from a maternal one to that of the embryo. We further show in the accompanying paper (Gao T, et al., Cell Res 2007; 17: 135-150.) that the same strategy is also employed to reprogram transcriptional profiles in somatic cell nuclear transfer and parthenogenesis, suggesting that this model is universally applicable to all forms of transcriptional reprogramming during early embryogenesis. Displacement of CFs from chromatin also offers an explanation for the phenomenon of transcription silence during the maternal to zygotic transition. PMID:17287829

  20. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire

    PubMed Central

    Senti, Kirsten-André; Jurczak, Daniel; Sachidanandam, Ravi; Brennecke, Julius

    2015-01-01

    PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endonuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the interdependencies between these piRNA biogenesis pathways in developing Drosophila ovaries. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways. PMID:26302790

  1. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire.

    PubMed

    Senti, Kirsten-André; Jurczak, Daniel; Sachidanandam, Ravi; Brennecke, Julius

    2015-08-15

    PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endonuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the interdependencies between these piRNA biogenesis pathways in developing Drosophila ovaries. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways. PMID:26302790

  2. Telomere-surrounding regions are transcription-permissive 3D nuclear compartments in human cells

    SciTech Connect

    Quina, Ana Sofia; Parreira, Leonor . E-mail: lparreir@igc.gulbenkian.pt

    2005-07-01

    Positioning of genes relative to nuclear heterochromatic compartments is thought to help regulate their transcriptional activity. Given that human subtelomeric regions are rich in highly expressed genes, we asked whether human telomeres are related to transcription-permissive nuclear compartments. To address this question, we investigated in the nuclei of normal human lymphocytes the spatial relations of two constitutively expressed genes (ACTB and RARA) and three nuclear transcripts (ACTB, IL2RA and TCRB) to telomeres and centromeres, as a function of gene activity and transcription levels. We observed that genes and gene transcripts locate close to telomere clusters and away from chromocenters upon activation of transcription. These findings, together with the observation that SC35 domains, which are enriched in pre-mRNA processing factors, are in close proximity to telomeres, indicate that telomere-neighboring regions are permissive to gene expression in human cells. Therefore, the associations of telomeres observed in the interphase nucleus might contribute, as opposed to chromocenters, for the establishment of transcription-permissive 3D nuclear compartments.

  3. Nuclear RhoA signaling regulates MRTF-dependent SMC-specific transcription

    PubMed Central

    Staus, Dean P.; Weise-Cross, Laura; Mangum, Kevin D.; Medlin, Matt D.; Mangiante, Lee; Taylor, Joan M.

    2014-01-01

    We have previously shown that RhoA-mediated actin polymerization stimulates smooth muscle cell (SMC)-specific transcription by regulating the nuclear localization of the myocardin-related transcription factors (MRTFs). On the basis of the recent demonstration that nuclear G-actin regulates MRTF nuclear export and observations from our laboratory and others that the RhoA effector, mDia2, shuttles between the nucleus and cytoplasm, we investigated whether nuclear RhoA signaling plays a role in regulating MRTF activity. We identified sequences that control mDia2 nuclear-cytoplasmic shuttling and used mDia2 variants to demonstrate that the ability of mDia2 to fully stimulate MRTF nuclear accumulation and SMC-specific gene transcription was dependent on its localization to the nucleus. To test whether RhoA signaling promotes nuclear actin polymerization, we established a fluorescence recovery after photobleaching (FRAP)-based assay to measure green fluorescent protein-actin diffusion in the nuclear compartment. Nuclear actin FRAP was delayed in cells expressing nuclear-targeted constitutively active mDia1 and mDia2 variants and in cells treated with the polymerization inducer, jasplakinolide. In contrast, FRAP was enhanced in cells expressing a nuclear-targeted variant of mDia that inhibits both mDia1 and mDia2. Treatment of 10T1/2 cells with sphingosine 1-phosphate induced RhoA activity in the nucleus and forced nuclear localization of RhoA or the Rho-specific guanine nucleotide exchange factor (GEF), leukemia-associated RhoGEF, enhanced the ability of these proteins to stimulate MRTF activity. Taken together, these data support the emerging idea that RhoA-dependent nuclear actin polymerization has important effects on transcription and nuclear structure. PMID:24906914

  4. Transcriptional Regulation via Nuclear Receptor Crosstalk Required for the Drosophila Circadian Clock

    PubMed Central

    Jaumouillé, Edouard; Machado Almeida, Pedro; Stähli, Patrick; Koch, Rafael; Nagoshi, Emi

    2015-01-01

    Summary Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks. PMID:26004759

  5. Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock.

    PubMed

    Jaumouillé, Edouard; Machado Almeida, Pedro; Stähli, Patrick; Koch, Rafael; Nagoshi, Emi

    2015-06-01

    Circadian clocks in large part rely on transcriptional feedback loops. At the core of the clock machinery, the transcriptional activators CLOCK/BMAL1 (in mammals) and CLOCK/CYCLE (CLK/CYC) (in Drosophila) drive the expression of the period (per) family genes. The PER-containing complexes inhibit the activity of CLOCK/BMAL1 or CLK/CYC, thereby forming a negative feedback loop [1]. In mammals, the ROR and REV-ERB family nuclear receptors add positive and negative transcriptional regulation to this core negative feedback loop to ensure the generation of robust circadian molecular oscillation [2]. Despite the overall similarities between mammalian and Drosophila clocks, whether comparable mechanisms via nuclear receptors are required for the Drosophila clock remains unknown. We show here that the nuclear receptor E75, the fly homolog of REV-ERB α and REV-ERB β, and the NR2E3 subfamily nuclear receptor UNF are components of the molecular clocks in the Drosophila pacemaker neurons. In vivo assays in conjunction with the in vitro experiments demonstrate that E75 and UNF bind to per regulatory sequences and act together to enhance the CLK/CYC-mediated transcription of the per gene, thereby completing the core transcriptional feedback loop necessary for the free-running clockwork. Our results identify a missing link in the Drosophila clock and highlight the significance of the transcriptional regulation via nuclear receptors in metazoan circadian clocks. PMID:26004759

  6. Bmal1 is a direct transcriptional target of the orphan nuclear receptor, NR2F1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orphan nuclear receptor NR2F1 (also known as COUP-TFI, Chicken Ovalbumin Upstream Promoter Transcription Factor I) is a highly conserved member of the nuclear receptor superfamily. NR2F1 plays a critical role during embryonic development, particularly in the central and peripheral nervous systems a...

  7. Mapping neural circuits with activity-dependent nuclear import of a transcription factor.

    PubMed

    Masuyama, Kaoru; Zhang, Yi; Rao, Yi; Wang, Jing W

    2012-03-01

    Abstract: Nuclear factor of activated T cells (NFAT) is a calcium-responsive transcription factor. We describe here an NFAT-based neural tracing method-CaLexA (calcium-dependent nuclear import of LexA)-for labeling active neurons in behaving animals. In this system, sustained neural activity induces nuclear import of the chimeric transcription factor LexA-VP16-NFAT, which in turn drives green fluorescent protein (GFP) reporter expression only in active neurons. We tested this system in Drosophila and found that volatile sex pheromones excite specific neurons in the olfactory circuit. Furthermore, complex courtship behavior associated with multi-modal sensory inputs activated neurons in the ventral nerve cord. This method harnessing the mechanism of activity-dependent nuclear import of a transcription factor can be used to identify active neurons in specific neuronal population in behaving animals. PMID:22236090

  8. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression

    PubMed Central

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the “status” of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  9. Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression.

    PubMed

    Rajakylä, Eeva Kaisa; Vartiainen, Maria K

    2014-01-01

    Actin cytoskeleton is one of the main targets of Rho GTPases, which act as molecular switches on many signaling pathways. During the past decade, actin has emerged as an important regulator of gene expression. Nuclear actin plays a key role in transcription, chromatin remodeling, and pre-mRNA processing. In addition, the "status" of the actin cytoskeleton is used as a signaling intermediate by at least the MKL1-SRF and Hippo-pathways, which culminate in the transcriptional regulation of cytoskeletal and growth-promoting genes, respectively. Rho GTPases may therefore regulate gene expression by controlling either cytoplasmic or nuclear actin dynamics. Although the regulation of nuclear actin polymerization is still poorly understood, many actin-binding proteins, which are downstream effectors of Rho, are found in the nuclear compartment. In this review, we discuss the possible mechanisms and key proteins that may mediate the transcriptional regulation by Rho GTPases through actin. PMID:24603113

  10. Transcriptional regulation of human small nuclear RNA genes

    PubMed Central

    Jawdekar, Gauri W.; Henry, R. William

    2009-01-01

    The products of human snRNA genes have been frequently described as performing housekeeping functions and their synthesis refractory to regulation. However, recent studies have emphasized that snRNA and other related non-coding RNA molecules control multiple facets of the central dogma, and their regulated expression is critical to cellular homeostasis during normal growth and in response to stress. Human snRNA genes contain compact and yet powerful promoters that are recognized by increasingly well-characterized transcription factors, thus providing a premier model system to study gene regulation. This review summarizes many recent advances deciphering the mechanism by which the transcription of human snRNA and related genes are regulated. PMID:18442490

  11. Direct transcriptional regulation by nuclear microRNAs.

    PubMed

    Salmanidis, Marika; Pillman, Katherine; Goodall, Gregory; Bracken, Cameron

    2014-09-01

    The function of microRNAs is well characterized in the cytoplasm, where they direct an Argonaute-containing complex to target and repress mRNAs. More recently, regulatory roles for microRNAs and Argonaute have also been reported in the nucleus where microRNAs guide Argonaute to target gene promoters and directly regulate transcription in either a positive or a negative manner. Deep sequencing has revealed a high abundance of endogenous microRNAs within the nucleus, and in silico target prediction suggests thousands of potential microRNA:promoter interaction sites. The predicted high frequency of miRNA:promoter interactions is supported by chromatin immunoprecipitation, indicating the microRNA-dependent recruitment of Argonaute to thousands of transcriptional start sites and the subsequent regulation of RNA polymerase-II occupancy and chromatin modifiers. In this review we discuss the evidence for, and mechanisms associated with, direct transcriptional regulation by microRNAs which may represent a significant and largely unexplored aspect of microRNA function. This article is part of a Directed Issue entitled: The non-coding RNA revolution. PMID:24680896

  12. “Co-transcriptionality” - the transcription elongation complex as a nexus for nuclear transactions

    PubMed Central

    Perales, Roberto; Bentley, David

    2009-01-01

    Much of the complex process of RNP biogenesis takes place at the gene, co-transcriptionally. The target for RNA binding and processing factors is therefore not a solitary RNA molecule, but a transcription elongation complex (TEC) comprising the growing nascent RNA and RNA polymerase traversing a chromatin template with associated passenger proteins. RNA maturation factors are not the only nuclear machines whose work is organized co-transcriptionally around the TEC scaffold. In addition DNA repair, covalent chromatin modification, “gene gating” at the nuclear pore, Ig gene hypermutation, and sister chromosome cohesion have all been demonstrated or suggested to involve a co-transcriptional component. From this perspective, TEC’s can be viewed as potent “community organizers” within the nucleus. PMID:19854129

  13. Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import.

    PubMed Central

    Luo, C; Shaw, K T; Raghavan, A; Aramburu, J; Garcia-Cozar, F; Perrino, B A; Hogan, P G; Rao, A

    1996-01-01

    The nuclear import of the nuclear factor of activated T cells (NFAT)-family transcription factors is initiated by the protein phosphatase calcineurin. Here we identify a regulatory region of NFAT1, N terminal to the DNA-binding domain, that controls nuclear import of NFAT1. The regulatory region of NFAT1 binds directly to calcineurin, is a substrate for calcineurin in vitro, and shows regulated subcellular localization identical to that of full-length NFAT1. The corresponding region of NFATc likewise binds calcineurin, suggesting that the efficient activation of NFAT1 and NFATc by calcineurin reflects a specific targeting of the phosphatase to these proteins. The presence in other NFAT-family transcription factors of several sequence motifs from the regulatory region of NFAT1, including its probable nuclear localization sequence, indicates that a conserved protein domain may control nuclear import of all NFAT proteins. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8799126

  14. Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery

    PubMed Central

    Dieudonné, Mariacarolina; Maiuri, Paolo; Biancotto, Chiara; Knezevich, Anna; Kula, Anna; Lusic, Marina; Marcello, Alessandro

    2009-01-01

    Spatial distribution of genes within the nucleus contributes to transcriptional control, allowing optimal gene expression as well as constitutive or regulated gene repression. Human immunodeficiency virus type 1 (HIV-1) integrates into host chromatin to transcribe and replicate its genome. Lymphocytes harbouring a quiescent but inducible provirus are a challenge to viral eradication in infected patients undergoing antiviral therapy. Therefore, our understanding of the contribution of sub-nuclear positioning to viral transcription may also have far-reaching implications in the pathology of the infection. To gain an insight into the conformation of chromatin at the site of HIV-1 integration, we investigated lymphocytes carrying a single latent provirus. In the silenced state, the provirus was consistently found at the nuclear periphery, associated in trans with a pericentromeric region of chromosome 12 in a significant number of quiescent cells. After induction of the transcription, this association was lost, although the location of the transcribing provirus remained peripheral. These results, extended to several other cell clones, unveil a novel mechanism of transcriptional silencing involved in HIV-1 post-transcriptional latency and reinforce the notion that gene transcription may also occur at the nuclear periphery. PMID:19478796

  15. Glucose repression of yeast mitochondrial transcription: kinetics of derepression and role of nuclear genes.

    PubMed Central

    Ulery, T L; Jang, S H; Jaehning, J A

    1994-01-01

    Yeast mitochondrial transcript and gene product abundance has been observed to increase upon release from glucose repression, but the mechanism of regulation of this process has not been determined. We report a kinetic analysis of this phenomenon, which demonstrates that the abundance of all classes of mitochondrial RNA changes slowly relative to changes observed for glucose-repressed nuclear genes. Several cell doublings are required to achieve the 2- to 20-fold-higher steady-state levels observed after a shift to a nonrepressing carbon source. Although we observed that in some yeast strains the mitochondrial DNA copy number also increases upon derepression, this does not seem to play the major role in increased RNA abundance. Instead we found that three- to sevenfold increases in RNA synthesis rates, measured by in vivo pulse-labelling experiments, do correlate with increased transcript abundance. We found that mutations in the SNF1 and REG1 genes, which are known to affect the expression of many nuclear genes subject to glucose repression, affect derepression of mitochondrial transcript abundance. These genes do not appear to regulate mitochondrial transcript levels via regulation of the nuclear genes RPO41 and MTF1, which encode the subunits of the mitochondrial RNA polymerase. We conclude that a nuclear gene-controlled factor(s) in addition to the two RNA polymerase subunits must be involved in glucose repression of mitochondrial transcript abundance. Images PMID:8289797

  16. Isolation of Catharanthus roseus (L.) G. Don Nuclei and Measurement of Rate of Tryptophan decarboxylase Gene Transcription Using Nuclear Run-On Transcription Assay

    PubMed Central

    Kumar, Santosh; Bhatia, Sabhyata

    2015-01-01

    Background An accurate assessment of transcription ‘rate’ is often desired to describe the promoter activity. In plants, isolation of transcriptionally active nuclei and their subsequent use in nuclear run-on assays has been challenging and therefore limit an accurate measurement of gene transcription ‘rate’. Catharanthus roseus has emerged as a model medicinal plant as it exhibits an unsurpassed spectrum of chemodiversity, producing over 130 alkaloids through the terpenoid indole alkaloid (TIA) pathway and therefore serves as a ‘molecular hub’ to understand gene expression profiles. Results The protocols presented here streamline, adapt and optimize the existing methods of nuclear run-on assay for use in C. roseus. Here, we fully describe all the steps to isolate transcriptionally active nuclei from C. roseus leaves and utilize them to perform nuclear run-on transcription assay. Nuclei isolated by this method transcribed at a level consistent with their response to external stimuli, as transcription rate of TDC gene was found to be higher in response to external stimuli i.e. when seedlings were subjected to UV-B light or to methyl jasmonate (MeJA). However, the relative transcript abundance measured parallel through qRT-PCR was found to be inconsistent with the synthesis rate indicating that some post transcriptional events might have a role in transcript stability in response to stimuli. Conclusions Our study provides an optimized, efficient and inexpensive method of isolation of intact nuclei and nuclear ‘run-on’ transcription assay to carry out in-situ measurement of gene transcription rate in Catharanthus roseus. This would be valuable in investigating the transcriptional and post transcriptional response of other TIA pathway genes in C. roseus. Isolated nuclei may also provide a resource that could be used for performing the chip assay as well as serve as the source of nuclear proteins for in-vitro EMSA studies. Moreover, nascent nuclear run

  17. Nuclear actin polymerization from faster growing ends in the initial activation of Hox gene transcription are nuclear speckles involved?

    PubMed

    Naum-Onganía, Gabriela; Díaz, Víctor M; Blasi, Francesco; Rivera-Pomar, Rolando

    2013-01-01

    The HoxB cluster expression is activated by retinoic acid and transcribed in a collinear manner. The DNA-binding Pknox1-Pbx1 complex modulates Hox protein activity. Here, NT2-D1 teratocarcinoma cells -a model of Hox gene expression- were used to show that upon retinoic acid induction, Pknox1 co-localizes with polymeric nuclear actin. We have found that globular actin aggregates, polymeric actin, the elongating RNA polymerase II and THOC match euchromatic regions corresponding to nuclear speckles. Moreover, RNA polymerase II, N-WASP, and transcription/splicing factors p54(nrb) and PSF were validated as Pknox1 interactors by tandem affinity purification. PSF pulled down with THOC and nuclear actin, both of which co-localize in nuclear speckles. Although latrunculin A slightly decreases the general level of HoxB gene expression, inhibition of nuclear actin polymerization by cytochalasin D blocks the expression of HoxB transcripts in a collinear manner. Thus, our results support the hypothesis that nuclear actin polymerization is involved in the activation of HoxB gene expression by means of nuclear speckles. PMID:24406343

  18. Simultaneous live imaging of the transcription and nuclear position of specific genes

    PubMed Central

    Ochiai, Hiroshi; Sugawara, Takeshi; Yamamoto, Takashi

    2015-01-01

    The relationship between genome organization and gene expression has recently been established. However, the relationships between spatial organization, dynamics, and transcriptional regulation of the genome remain unknown. In this study, we developed a live-imaging method for simultaneous measurements of the transcriptional activity and nuclear position of endogenous genes, which we termed the ‘Real-time Observation of Localization and EXpression (ROLEX)’ system. We demonstrated that ROLEX is highly specific and does not affect the expression level of the target gene. ROLEX enabled detection of sub-genome-wide mobility changes that depended on the state of Nanog transactivation in embryonic stem cells. We believe that the ROLEX system will become a powerful tool for exploring the relationship between transcription and nuclear dynamics in living cells. PMID:26092696

  19. Nuclear DISC1 regulates CRE-mediated gene transcription and sleep homeostasis in the fruit fly.

    PubMed

    Sawamura, N; Ando, T; Maruyama, Y; Fujimuro, M; Mochizuki, H; Honjo, K; Shimoda, M; Toda, H; Sawamura-Yamamoto, T; Makuch, L A; Hayashi, A; Ishizuka, K; Cascella, N G; Kamiya, A; Ishida, N; Tomoda, T; Hai, T; Furukubo-Tokunaga, K; Sawa, A

    2008-12-01

    Disrupted-in-schizophrenia-1 (DISC1) is one of major susceptibility factors for a wide range of mental illnesses, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions. DISC1 is located in several subcellular domains, such as the centrosome and the nucleus, and interacts with various proteins, including NudE-like (NUDEL/NDEL1) and activating transcription factor 4 (ATF4)/CREB2. Nevertheless, a role for DISC1 in vivo remains to be elucidated. Therefore, we have generated a Drosophila model for examining normal functions of DISC1 in living organisms. DISC1 transgenic flies with preferential accumulation of exogenous human DISC1 in the nucleus display disturbance in sleep homeostasis, which has been reportedly associated with CREB signaling/CRE-mediated gene transcription. Thus, in mammalian cells, we characterized nuclear DISC1, and identified a subset of nuclear DISC1 that colocalizes with the promyelocytic leukemia (PML) bodies, a nuclear compartment for gene transcription. Furthermore, we identified three functional cis-elements that regulate the nuclear localization of DISC1. We also report that DISC1 interacts with ATF4/CREB2 and a corepressor N-CoR, modulating CRE-mediated gene transcription. PMID:18762802

  20. Dependence of Enhancer-Mediated Transcription of the Immunoglobulin μ Gene on Nuclear Matrix Attachment Regions

    NASA Astrophysics Data System (ADS)

    Forrester, William C.; van Genderen, Courtney; Jenuwein, Thomas; Grosschedl, Rudolf

    1994-08-01

    Transcription of the immunoglobulin μ heavy chain locus is regulated by an intronic enhancer that is flanked on both sides by nuclear matrix attachment regions (MARs). These MARs have now been shown to be essential for transcription of a rearranged μ gene in transgenic B lymphocytes, but they were not required in stably transfected tissue culture cells. Normal rates of transcriptional initiation at a variable region promoter and the formation of an extended deoxyribonuclease I (DNase I)-sensitive chromatin domain were dependent on MARs, although DNase I hypersensitivity at the enhancer was detected in the absence of MARs. Thus, transcriptional activation of the μ gene during normal lymphoid development requires a synergistic collaboration between the enhancer and flanking MARs.

  1. Role of zinc finger structure in nuclear localization of transcription factor Sp1

    SciTech Connect

    Ito, Tatsuo; Azumano, Makiko; Uwatoko, Chisana; Itoh, Kohji Kuwahara, Jun

    2009-02-27

    Transcription factor Sp1 is localized in the nucleus and regulates gene expression. Our previous study demonstrated that the carboxyl terminal region of Sp1 containing 3-zinc finger region as DNA binding domain can also serve as nuclear localization signal (NLS). However, the nuclear transport mechanism of Sp1 has not been well understood. In this study, we performed a gene expression study on mutant Sp1 genes causing a set of amino acid substitutions in zinc finger domains to elucidate nuclear import activity. Nuclear localization of the GFP-fused mutant Sp1 proteins bearing concomitant substitutions in the first and third zinc fingers was highly inhibited. These mutant Sp1 proteins had also lost the binding ability as to the GC box sequence. The results suggest that the overall tertiary structure formed by the three zinc fingers is essential for nuclear localization of Sp1 as well as dispersed basic amino acids within the zinc fingers region.

  2. Nuclear Glycolytic Enzyme Enolase of Toxoplasma gondii Functions as a Transcriptional Regulator

    PubMed Central

    Mouveaux, Thomas; Oria, Gabrielle; Werkmeister, Elisabeth; Slomianny, Christian; Fox, Barbara A.; Bzik, David J.; Tomavo, Stanislas

    2014-01-01

    Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5′ untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii. PMID:25153525

  3. Nuclear glycolytic enzyme enolase of Toxoplasma gondii functions as a transcriptional regulator.

    PubMed

    Mouveaux, Thomas; Oria, Gabrielle; Werkmeister, Elisabeth; Slomianny, Christian; Fox, Barbara A; Bzik, David J; Tomavo, Stanislas

    2014-01-01

    Apicomplexan parasites including Toxoplasma gondii have complex life cycles within different hosts and their infectivity relies on their capacity to regulate gene expression. However, little is known about the nuclear factors that regulate gene expression in these pathogens. Here, we report that T. gondii enolase TgENO2 is targeted to the nucleus of actively replicating parasites, where it specifically binds to nuclear chromatin in vivo. Using a ChIP-Seq technique, we provide evidence for TgENO2 enrichment at the 5' untranslated gene regions containing the putative promoters of 241 nuclear genes. Ectopic expression of HA-tagged TgENO1 or TgENO2 led to changes in transcript levels of numerous gene targets. Targeted disruption of TgENO1 gene results in a decrease in brain cyst burden of chronically infected mice and in changes in transcript levels of several nuclear genes. Complementation of this knockout mutant with ectopic TgENO1-HA fully restored normal transcript levels. Our findings reveal that enolase functions extend beyond glycolytic activity and include a direct role in coordinating gene regulation in T. gondii. PMID:25153525

  4. A strain-dependent diffusivity model to study the nuclear import of mechanobiological transcription factors.

    PubMed

    Nava, Michele M; Fedele, Roberto; Raimondi, Manuela T

    2015-08-01

    Nuclear spreading plays a crucial role in stem cell fate determination. In previous works, we reported evidence of multipotency maintenance of mesenchymal stromal cells cultured on three-dimensional engineered niche substrates fabricated via two-photon laser polymerization (2PP). We correlated multipotency maintenance to a more roundish nuclear morphology of cells cultured in the 2PP-fabricated niches, with respect to those on flat substrates. To interpret these findings, here we present a multiphysics model coupling nuclear strains induced by cell adhesion to diffusive transport across the cell nucleus. We reconstructed the cell nuclear geometry from confocal Z-stack images of 2PP-cultured cells, and we estimated the volume, surface and shape factors. The levels of nuclear spreading significantly varied depending on the cell localization within the niche architecture. We assumed the cell diffusivity as a function of the local volumetric strain. The computational model also indicate that the larger the nuclear deformation (e.g. in spread nuclei), the higher the nuclear flux of small solutes such as transcription factors through the nuclear membrane. Our results point towards nuclear deformation as a primary mechanism by which the stem cell translates its shape into a fate decision, i.e. through a strain-dependent amplification of the diffusive flow of signaling molecules into the nucleus. PMID:26736643

  5. A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program

    PubMed Central

    Sack, Michael N.; Disch, Dennis L.; Rockman, Howard A.; Kelly, Daniel P.

    1997-01-01

    During cardiac hypertrophy, the chief myocardial energy source switches from fatty acid β-oxidation (FAO) to glycolysis—a reversion to fetal metabolism. The expression of genes encoding myocardial FAO enzymes was delineated in a murine ventricular pressure overload preparation to characterize the molecular regulatory events involved in the alteration of energy substrate utilization during cardiac hypertrophy. Expression of genes involved in the thioesterification, mitochondrial import, and β-oxidation of fatty acids was coordinately down-regulated after 7 days of right ventricular (RV) pressure overload. Results of RV pressure overload studies in mice transgenic for the promoter region of the gene encoding human medium-chain acyl-CoA dehydrogenase (MCAD, which catalyzes a rate-limiting step in the FAO cycle) fused to a chloramphenicol acetyltransferase reporter confirmed that repression of MCAD gene expression in the hypertrophied ventricle occurred at the transcriptional level. Electrophoretic mobility-shift assays performed with MCAD promoter fragments and nuclear protein extracts prepared from hypertrophied and control RV identified pressure overload-induced protein/DNA interactions at a regulatory unit shown previously to confer control of MCAD gene transcription during cardiac development. Antibody “supershift” studies demonstrated that members of the Sp (Sp1, Sp3) and nuclear hormone receptor [chicken ovalbumin upstream promoter transcription factor (COUP-TF)/erbA-related protein 3] families interact with the pressure overload-responsive unit. Cardiomyocyte transfection studies confirmed that COUP-TF repressed the transcriptional activity of the MCAD promoter. The DNA binding activities and nuclear expression of Sp1/3 and COUP-TF in normal fetal mouse heart were similar to those in the hypertrophied adult heart. These results identify a transcriptional regulatory mechanism involved in the reinduction of a fetal metabolic program during pressure

  6. Nuclear Pore Proteins Nup153 and Megator Define Transcriptionally Active Regions in the Drosophila Genome

    PubMed Central

    Miura, Kota; Luscombe, Nicholas M.; Akhtar, Asifa

    2010-01-01

    Transcriptional regulation is one of the most important processes for modulating gene expression. Though much of this control is attributed to transcription factors, histones, and associated enzymes, it is increasingly apparent that the spatial organization of chromosomes within the nucleus has a profound effect on transcriptional activity. Studies in yeast indicate that the nuclear pore complex might promote transcription by recruiting chromatin to the nuclear periphery. In higher eukaryotes, however, it is not known whether such regulation has global significance. Here we establish nucleoporins as a major class of global regulators for gene expression in Drosophila melanogaster. Using chromatin-immunoprecipitation combined with microarray hybridisation, we show that Nup153 and Megator (Mtor) bind to 25% of the genome in continuous domains extending 10 kb to 500 kb. These Nucleoporin-Associated Regions (NARs) are dominated by markers for active transcription, including high RNA polymerase II occupancy and histone H4K16 acetylation. RNAi–mediated knock-down of Nup153 alters the expression of ∼5,700 genes, with a pronounced down-regulatory effect within NARs. We find that nucleoporins play a central role in coordinating dosage compensation—an organism-wide process involving the doubling of expression of the male X chromosome. NARs are enriched on the male X chromosome and occupy 75% of this chromosome. Furthermore, Nup153-depletion abolishes the normal function of the male-specific dosage compensation complex. Finally, by extensive 3D imaging, we demonstrate that NARs contribute to gene expression control irrespective of their sub-nuclear localization. Therefore, we suggest that NAR–binding is used for chromosomal organization that enables gene expression control. PMID:20174442

  7. Malondialdehyde inhibits an AMPK-mediated nuclear translocation and repression activity of ALDH2 in transcription

    SciTech Connect

    Choi, Ji-Woong; Kim, Jae-Hwan; Cho, Sung-Chun; Ha, Moon-Kyung; Song, Kye-Yong; Youn, Hong-Duk; Park, Sang Chul

    2011-01-07

    Research highlights: {yields} ALDH2 is an MDA-modified protein in old rat kidney tissues. {yields} AMPK associates with ALDH2 and triggers the nuclear localization of ALDH2. {yields} ALDH2 serves as a general transcriptional repressor by associating with HDACs. {yields} MDA inhibits the AMPK-mediated translocation of ALDH2 and its repression activity. -- Abstract: Aging process results from deleterious damages by reactive oxygen species, in particular, various metabolic aldehydes. Aldehyde dehydrogenase 2 (ALDH2) is one of metabolic enzymes detoxifying various aldehydes under oxidative conditions. AMP-activated protein kinase (AMPK) plays a key role in controlling metabolic process. However, little was known about the relationship of ALDH2 with AMPK under oxidative conditions. Here, we, by using MDA-specific monoclonal antibody, screened the tissues of young and old rats for MDA-modified proteins and identified an ALDH2 as a prominent MDA-modified protein band in the old rat kidney tissue. ALDH2 associates with AMPK and is phosphorylated by AMPK. In addition, AICAR, an activator of AMP-activated protein kinase, induces the nuclear translocation of ALDH2. ALDH2 in nucleus is involved in general transcription repression by association with histone deacetylases. Furthermore, MDA modification inhibited the translocation of ALDH2 and the association with AMPK, and ultimately led to de-repression of transcription in the reporter system analysis. In this study, we have demonstrated that ALDH2 acts as a transcriptional repressor in response to AMPK activation, and MDA modifies ALDH2 and inhibits repressive activity of ALDH2 in general transcription. We thus suggest that increasing amount of MDA during aging process may interrupt the nuclear function of ALDH2, modulated by AMPK.

  8. Serine phosphorylation by SYK is critical for nuclear localization and transcription factor function of Ikaros

    PubMed Central

    Uckun, Fatih M.; Ma, Hong; Zhang, Jian; Ozer, Zahide; Dovat, Sinisa; Mao, Cheney; Ishkhanian, Rita; Goodman, Patricia; Qazi, Sanjive

    2012-01-01

    Ikaros is a zinc finger-containing DNA-binding protein that plays a pivotal role in immune homeostasis through transcriptional regulation of the earliest stages of lymphocyte ontogeny and differentiation. Functional deficiency of Ikaros has been implicated in the pathogenesis of acute lymphoblastic leukemia, the most common form of childhood cancer. Therefore, a stringent regulation of Ikaros activity is considered of paramount importance, but the operative molecular mechanisms responsible for its regulation remain largely unknown. Here we provide multifaceted genetic and biochemical evidence for a previously unknown function of spleen tyrosine kinase (SYK) as a partner and posttranslational regulator of Ikaros. We demonstrate that SYK phoshorylates Ikaros at unique C-terminal serine phosphorylation sites S358 and S361, thereby augmenting its nuclear localization and sequence-specific DNA binding activity. Mechanistically, we establish that SYK-induced Ikaros activation is essential for its nuclear localization and optimal transcription factor function. PMID:23071339

  9. Transcriptional regulation of the human TR2 orphan receptor gene by nuclear factor 1-A

    SciTech Connect

    Lin, Y.-L.; Wang, Y.-H.; Lee, H.-J. . E-mail: hjlee@mail.ndhu.edu.tw

    2006-11-17

    The human testicular receptor 2 (TR2), a member of the nuclear hormone receptor superfamily, has no identified ligand yet. Previous evidence demonstrated that a 63 bp DNA fragment, named the promoter activating cis-element (PACE), has been identified as a positive regulatory region in the 5' promoter region of the human TR2 gene. In the present report, the human nuclear factor 1-A (NF1-A) was identified as a transcriptional activator to recognize the center of the PACE, called the PACE-C. NF1-A could bind to the 18 bp PACE-C region, and enhance about 13- to 17-fold of the luciferase reporter gene activity via the PACE-C in dose-dependent and orientation-independent manners. This transcriptional activation was further confirmed by real-time RT-PCR assay. In conclusion, our results indicated that NF1-A transcription factor plays an important role in the transcriptional activation of the TR2 gene expression via the PACE-C in the minimal promoter region.

  10. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription

    PubMed Central

    Shimi, Takeshi; Pfleghaar, Katrin; Kojima, Shin-ichiro; Pack, Chan-Gi; Solovei, Irina; Goldman, Anne E.; Adam, Stephen A.; Shumaker, Dale K.; Kinjo, Masataka; Cremer, Thomas; Goldman, Robert D.

    2008-01-01

    The nuclear lamins function in the regulation of replication, transcription, and epigenetic modifications of chromatin. However, the mechanisms responsible for these lamin functions are poorly understood. We demonstrate that A- and B-type lamins form separate, but interacting, stable meshworks in the lamina and have different mobilities in the nucleoplasm as determined by fluorescence correlation spectroscopy (FCS). Silencing lamin B1 (LB1) expression dramatically increases the lamina meshwork size and the mobility of nucleoplasmic lamin A (LA). The changes in lamina mesh size are coupled to the formation of LA/C-rich nuclear envelope blebs deficient in LB2. Comparative genomic hybridization (CGH) analyses of microdissected blebs, fluorescence in situ hybridization (FISH), and immunofluorescence localization of modified histones demonstrate that gene-rich euchromatin associates with the LA/C blebs. Enrichment of hyperphosphorylated RNA polymerase II (Pol II) and histone marks for active transcription suggest that blebs are transcriptionally active. However, in vivo labeling of RNA indicates that transcription is decreased, suggesting that the LA/C-rich microenvironment induces promoter proximal stalling of Pol II. We propose that different lamins are organized into separate, but interacting, microdomains and that LB1 is essential for their organization. Our evidence suggests that the organization and regulation of chromatin are influenced by interconnections between these lamin microdomains. PMID:19141474

  11. The nuclear factor SPBP contains different functional domains and stimulates the activity of various transcriptional activators.

    PubMed

    Rekdal, C; Sjøttem, E; Johansen, T

    2000-12-22

    SPBP (stromelysin-1 platelet-derived growth factor-responsive element binding protein) was originally cloned from a cDNA expression library by virtue of its ability to bind to a platelet-derived growth factor-responsive element in the human stromelysin-1 promoter. A 937-amino acid-long protein was deduced from a 3995-nucleotide murine cDNA sequence. By analyses of both human and murine cDNAs, we now show that SPBP is twice as large as originally found. The human SPBP gene contains six exons and is located on chromosome 22q13.1-13.3. Two isoforms differing in their C termini are expressed due to alternative splicing. PCR analyses of multitissue cDNA panels showed that SPBP is expressed in most tissues except for ovary and prostate. Functional mapping revealed that SPBP is a nuclear, multidomain protein containing an N-terminal region with transactivating ability, a novel type of DNA-binding domain containing an AT hook motif, and a bipartite nuclear localization signal as well as a C-terminal zinc finger domain. This type of zinc finger domain is also found in the trithorax family of chromatin-based transcriptional regulator proteins. Using cotransfection experiments, we find that SPBP enhances the transcriptional activity of various transcription factors such as c-Jun, Ets1, Sp1, and Pax6. Hence, SPBP seems to act as a transcriptional coactivator. PMID:10995766

  12. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5' UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  13. tRNAs Promote Nuclear Import of HIV-1 Intracellular Reverse Transcription Complexes

    PubMed Central

    Zaitseva, Lyubov; Myers, Richard; Fassati, Ariberto

    2006-01-01

    Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3′ CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle–arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import. PMID:17020411

  14. Transcription-dependent nuclear localization of DAZAP1 requires an N-terminal signal

    SciTech Connect

    Lin, Yi-Tzu; Wen, Wan-Ching; Yen, Pauline H.

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer DAZAP1 shuttles between the nucleus and the cytoplasm. Black-Right-Pointing-Pointer DAZAP1 accumulates in the cytoplasm when the nuclear transcription is inhibited. Black-Right-Pointing-Pointer DAZAP1's transcription-dependent nuclear localization requires N-terminal N42. Black-Right-Pointing-Pointer SLIRP binds to N42 and may be involved in the process. -- Abstract: Deleted in Azoospermia Associated Protein 1 (DAZAP1) is a ubiquitous hnRNP protein required for normal development and spermatogenesis. It resides predominantly in the nucleus and moves between the nucleus and the cytoplasm via a ZNS shuttling signal at its C-terminus. DAZAP1 accumulates in the cytoplasm when RNA polymerase II activity is inhibited by actinomycin D. Here we report the mapping of a 42-amino acid segment (N42) at the N-terminus of DAZAP1 that is both necessary and sufficient for its transcription-dependent nuclear localization. In addition, using a yeast two-hybrid system, we have identified SLIRP as a N42-binding protein which may regulate DAZAP1 subcellular localization.

  15. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  16. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization.

    PubMed

    Kawai, Yumiko; Garduño, Lakisha; Theodore, Melanie; Yang, Jianqi; Arinze, Ifeanyi J

    2011-03-01

    Activation of Nrf2 by covalent modifications that release it from its inhibitor protein Keap1 has been extensively documented. In contrast, covalent modifications that may regulate its action after its release from Keap1 have received little attention. Here we show that CREB-binding protein induced acetylation of Nrf2, increased binding of Nrf2 to its cognate response element in a target gene promoter, and increased Nrf2-dependent transcription from target gene promoters. Heterologous sirtuin 1 (SIRT1) decreased acetylation of Nrf2 as well as Nrf2-dependent gene transcription, and its effects were overridden by dominant negative SIRT1 (SIRT1-H355A). The SIRT1-selective inhibitors EX-527 and nicotinamide stimulated Nrf2-dependent gene transcription, whereas resveratrol, a putative activator of SIRT1, was inhibitory, mimicking the effect of SIRT1. Mutating lysine to alanine or to arginine at Lys(588) and Lys(591) of Nrf2 resulted in decreased Nrf2-dependent gene transcription and abrogated the transcription-activating effect of CREB-binding protein. Furthermore, SIRT1 had no effect on transcription induced by these mutants, indicating that these sites are acetylation sites. Microscope imaging of GFP-Nrf2 in HepG2 cells as well as immunoblotting for Nrf2 showed that acetylation conditions resulted in increased nuclear localization of Nrf2, whereas deacetylation conditions enhanced its cytoplasmic rather than its nuclear localization. We posit that Nrf2 in the nucleus undergoes acetylation, resulting in binding, with basic-region leucine zipper protein(s), to the antioxidant response element and consequently in gene transcription, whereas deacetylation disengages it from the antioxidant response element, thereby resulting in transcriptional termination and subsequently in its nuclear export. PMID:21196497

  17. Multiple phosphorylation events control chicken ovalbumin upstream promoter transcription factor I orphan nuclear receptor activity.

    PubMed

    Gay, Frédérique; Baráth, Peter; Desbois-Le Péron, Christine; Métivier, Raphaël; Le Guével, Rémy; Birse, Darcy; Salbert, Gilles

    2002-06-01

    Chicken ovalbumin upstream promoter transcription factor I (COUP-TFI) is an orphan member of the nuclear hormone receptor superfamily that comprises key regulators of many biological functions, such as embryonic development, metabolism, homeostasis, and reproduction. Although COUP-TFI can both actively silence gene transcription and antagonize the functions of various other nuclear receptors, the COUP-TFI orphan receptor also acts as a transcriptional activator in certain contexts. Moreover, COUP-TFI has recently been shown to serve as an accessory factor for some ligand-bound nuclear receptors, suggesting that it may modulate, both negatively and positively, a wide range of hormonal responses. In the absence of any identified cognate ligand, the mechanisms involved in the regulation of COUP-TFI activity remain unclear. The elucidation of several putative phosphorylation sites for MAPKs, PKC, and casein kinase II within the sequence of this orphan receptor led us to investigate phosphorylation events regulating the various COUP-TFI functions. After showing that COUP-TFI is phosphorylated in vivo, we provide evidence that in vivo inhibition of either MAPK or PKC signaling pathway leads to a specific and pronounced decrease in COUP-TFI-dependent transcriptional activation of the vitronectin gene promoter. Focusing on the molecular mechanisms underlying the MAPK- and PKC-mediated regulation of COUP-TFI activity, we show that COUP-TFI can be directly targeted by PKC and MAPK. These phosphorylation events differentially modulate COUP-TFI functions: PKC-mediated phosphorylation enhances COUP-TFI affinity for DNA and MAPK-mediated phosphorylation positively regulates the transactivation function of COUP-TFI, possibly through enhancing specific coactivator recruitment. These data provide evidence that COUP-TFI is likely to integrate distinct signaling pathways and raise the possibility that multiple extracellular signals influence biological processes controlled by COUP

  18. O-GlcNAc-glycosylation of {beta}-catenin regulates its nuclear localization and transcriptional activity

    SciTech Connect

    Sayat, Ria; Leber, Brian; Grubac, Vanja; Wiltshire, Lesley; Persad, Sujata

    2008-09-10

    {beta}-catenin plays a role in intracellular adhesion and regulating gene expression. The latter role is associated with its oncogenic properties. Phosphorylation of {beta}-catenin controls its intracellular expression but mechanism/s that regulates the nuclear localization of {beta}-catenin is unknown. We demonstrate that O-GlcNAc glycosylation (O-GlcNAcylation) of {beta}-catenin negatively regulates its levels in the nucleus. We show that normal prostate cells (PNT1A) have significantly higher amounts of O-GlcNAcylated {beta}-catenin compared to prostate cancer (CaP) cells. The total nuclear levels of {beta}-catenin are higher in the CaP cells than PNT1A but only a minimal fraction of the nuclear {beta}-catenin in the CaP cells are O-GlcNAcylated. Increasing the levels of O-GlcNAcylated {beta}-catenin in the CaP cells with PUGNAc (O- (2-acetamido-2-deoxy-D-gluco-pyranosylidene) amino-N-phenylcarbamate) treatment is associated with a progressive decrease in the levels of {beta}-catenin in the nucleus. TOPFlash reporter assay and mRNA expressions of {beta}-catenin's target genes indicate that O-GlcNAcylation of {beta}-catenin results in a decrease in its transcriptional activity. We define a novel modification of {beta}-catenin that regulates its nuclear localization and transcriptional function.

  19. Transcriptional regulation of the phosphoenolpyruvate carboxykinase gene by cooperation between hepatic nuclear factors.

    PubMed Central

    Yanuka-Kashles, O; Cohen, H; Trus, M; Aran, A; Benvenisty, N; Reshef, L

    1994-01-01

    To study the transcriptional regulation of the liver gluconeogenic phenotype, the underdifferentiated mouse Hepa-1c1c7 (Hepa) hepatoma cell line was used. These cells mimicked the fetal liver by appreciably expressing the alpha-fetoprotein and albumin genes but not the phosphoenolpyruvate carboxykinase (PEPCK) gene. Unlike the fetal liver, however, Hepa cells failed to express the early-expressed factors hepatocyte nuclear factor 1 alpha (HNF-1 alpha) and HNF-4 and the late-expressed factor C/EBP alpha, thereby providing a suitable system for examining possible cooperation between these factors in the transcriptional regulation of the PEPCK gene. Transient transfection assays of a chimeric PEPCK-chloramphenicol acetyltransferase construct showed a residual PEPCK promoter activity in the Hepa cell line, which was slightly stimulated by cotransfection with a single transcription factor from either the C/EBP family or HNF-1 alpha but not at all affected by cotransfection of HNF-4. In contrast, cotransfection of the PEPCK construct with members from the C/EBP family plus HNF-1 alpha resulted in a synergistic stimulation of the PEPCK promoter activity. This synergistic effect depended on the presence in the PEPCK promoter region of the HNF-1 recognition sequence and on the presence of two C/EBP recognition sequences. The results demonstrate a requirement for coexistence and cooperation between early and late liver-enriched transcription factors in the transcriptional regulation of the PEPCK gene. In addition, the results suggest redundancy between members of the C/EBP family of transcription factors in the regulation of PEPCK gene expression. Images PMID:7935427

  20. A global comparison between nuclear and cytosolic transcriptomes reveals differential compartmentalization of alternative transcript isoforms

    PubMed Central

    Chen, Liang

    2010-01-01

    Transcriptome analyses have typically disregarded nucleocytoplasmic differences. This approach has ignored some post-transcriptional regulations and their effect on the ultimate protein expression levels. Despite a longstanding interest in the differences between the nuclear and cytosolic transcriptomes, it is only recently that data have become available to study such differences and their associated features on a genome-wide scale. Here, we compared the nuclear and cytosolic transcriptomes of HepG2 and HeLa cells. HepG2 and HeLa cells vary significantly in the differential compartmentalization of their transcript isoforms, indicating that nucleocytoplasmic compartmentalization is a cell-specific characteristic. The differential compartmentalization is manifested at the transcript isoform level instead of the gene level because alternative isoforms of one gene can display different nucleocytoplasmic distributions. The isoforms enriched in the cytosol tend to have more introns and longer introns in their pre-mRNAs. They have more functional RNA folds and unique exons in the 3′ regions. These isoforms are more conserved than the isoforms enriched in the nucleus. Surprisingly, the presence of microRNAs does not have a significant impact on the nucleocytoplasmic distribution of their target isoforms. In contrast, nonsense-mediated decay is significantly more associated with the isoforms enriched in the nucleus than those enriched in the cytosol. PMID:19969546

  1. Nuclear receptor-induced transcription is driven by spatially and timely restricted waves of ROS

    PubMed Central

    Perillo, Bruno; Di Santi, Annalisa; Cernera, Gustavo; Ombra, Maria Neve; Castoria, Gabriella; Migliaccio, Antimo

    2014-01-01

    Gene expression is governed by chromatin mainly through posttranslational modifications at the N-terminal tails of nucleosomal histone proteins. According to the histone code theory, peculiar sets of such modifications (marks) give rise to reproducible final effects on transcription and, very recently, a further level of complexity has been highlighted in binary switches between specific marks at adjacent residues. In particular, disappearance of dimethyl-lysine 9 in histone H3 is faced by phosphorylation of the following serine during activation of gene expression. Demethylation of lysine 9 by the lysine-specific demethylase 1 (LSD1) is a pre-requisite for addition of the phosphoryl mark to serine 10 and an essential step in the transcriptional control by estrogens. It generates a local burst of oxygen reactive species (ROS) that induce oxidation of nearby nucleotides and recruitment of repair enzymes with a consequent formation of single or double stranded nicks on DNA that modify chromatin flexibility in order to allow correct assembly of the transcriptional machinery.   We describe here the molecular mechanism by which members of the family of nuclear receptors prevent the potential damage to DNA during transcription of target genes elicited by the use of ROS to shape chromatin. The mechanism is based on the presence of phosphorylated serine 10 in histone H3 to prevent unbalanced DNA oxidation waves. We also discuss the opportunities raised by the use of voluntary derangement of this servo system to induce selective death in hormone-responsive transformed cells. PMID:25482200

  2. Mammalian Maf1 is a negative regulator of transcription by all three nuclear RNA polymerases.

    PubMed

    Johnson, Sandra S; Zhang, Cheng; Fromm, Jody; Willis, Ian M; Johnson, Deborah L

    2007-05-11

    Most eukaryotic transcriptional regulators act in an RNA polymerase (Pol)-selective manner. Here we show that the human Maf1 protein negatively regulates transcription by all three nuclear Pols. Changes in Maf1 expression affect Pol I- and Pol III-dependent transcription in human glioblastoma lines. These effects are mediated, in part, through the ability of Maf1 to repress transcription of the TATA binding protein, TBP. Maf1 targets an Elk-1-binding site in the TBP promoter, and its occupancy of this region is reciprocal with that of Elk-1. Similarly, Maf1 occupancy of Pol III genes is inversely correlated with that of the initiation factor TFIIIB and Pol III. The phenotypic consequences of reducing Maf1 expression include changes in cell morphology and the accumulation of actin stress fibers, whereas Maf1 overexpression suppresses anchorage-independent growth. Together with the ability of Maf1 to reduce biosynthetic capacity, these findings support the idea that Maf1 regulates the transformation state of cells. PMID:17499043

  3. Phosphatidylinositol 3-kinase/Akt signaling enhances nuclear localization and transcriptional activity of BRCA1

    SciTech Connect

    Hinton, Cimona V.; Fitzgerald, Latricia D.; Thompson, Marilyn E. . E-mail: methompson@mmc.edu

    2007-05-15

    Signaling pathways involved in regulating nuclear-cytoplasmic distribution of BRCA1 have not been previously reported. Here, we provide evidence that heregulin {beta}1-induced activation of the Akt pathway increases the nuclear content of BRCA1. First, treatment of T47D breast cancer cells with heregulin {beta}1 results in a two-fold increase in nuclear BRCA1 as assessed by FACS analysis, immunoblotting and immunofluorescence. This heregulin-induced increase in nuclear BRCA1 is blocked by siRNA-mediated down-regulation of Akt. Second, mutation of threonine 509 in BRCA1, the site of Akt phosphorylation, to an alanine, attenuates the ability of heregulin to induce BRCA1 nuclear accumulation. These data suggest that Akt-catalyzed phosphorylation of BRCA1 is required for the heregulin-regulated nuclear concentration of BRCA1. Because most functions ascribed to BRCA1 occur within the nucleus, we postulated that phosphorylation-dependent nuclear accumulation of BRCA1 would result in enhanced nuclear activity, specifically transcriptional activity, of BRCA1. This postulate is affirmed by our observation that the ability of BRCA1 to transactivate GADD45 promoter constructs was enhanced in T47D cells treated with heregulin {beta}1. Furthermore, the heterologous expression of BRCA1 in HCC1937 human breast cancer cells, which have constitutively active Akt, also induces GADD45 promoter activity, whereas the expression of BRCA1 in which threonine 509 has been mutated to an alanine is able to only minimally induce promoter activity. These findings implicate Akt in upstream events leading to BRCA1 nuclear localization and function.

  4. Phosphatidylinositol 3-kinase/Akt signaling enhances nuclear localization and transcriptional activity of BRCA1

    PubMed Central

    Hinton, Cimona V.; Fitzgerald, Latricia D.; Thompson, Marilyn E.

    2007-01-01

    Signaling pathways involved in regulating nuclear-cytoplasmic distribution of BRCA1 have not been previously reported. Here, we provide evidence that heregulin β1-induced activation of the Akt pathway increases the nuclear content of BRCA1. First, treatment of T47D breast cancer cells with heregulin β1 results in a two-fold increase in nuclear BRCA1 as assessed by FACS analysis, immunoblotting and immunofluorescence. This heregulin-induced increase in nuclear BRCA1 is blocked by siRNA-mediated down-regulation of Akt. Second, mutation of threonine 509 in BRCA1, the site of Akt phosphorylation, to an alanine, attenuates the ability of heregulin to induce BRCA1 nuclear accumulation. These data suggest that Akt-catalyzed phosphorylation of BRCA1 is required for the heregulin-regulated nuclear concentration of BRCA1. Because most functions ascribed to BRCA1 occur within the nucleus, we postulated that phosphorylation-dependent nuclear accumulation of BRCA1 would result in enhanced nuclear activity, specifically transcriptional activity, of BRCA1. This postulate is affirmed by our observation that the ability of BRCA1 to transactivate GADD45 promoter constructs was enhanced in T47D cells treated with heregulin β1. Furthermore, the heterologous expression of BRCA1 in HCC1937 human breast cancer cells, which have constitutively active Akt, also induces GADD45 promoter activity, whereas the expression of BRCA1 in which threonine 509 has been mutated to an alanine is able to only minimally induce promoter activity. These findings implicate Akt in upstream events leading to BRCA1 nuclear localization and function. PMID:17428466

  5. Transcriptional activation by EBV nuclear antigen 1 is essential for the expression of EBV's transforming genes

    PubMed Central

    Altmann, Markus; Pich, Dagmar; Ruiss, Romana; Wang, Jindong; Sugden, Bill; Hammerschmidt, Wolfgang

    2006-01-01

    EBV is a paradigm for human tumor viruses because, although it infects most people benignly, it also can cause a variety of cancers. Both in vivo and in vitro, EBV infects B lymphocytes in G0, induces them to become blasts, and can maintain their proliferation in cell culture or in vivo as tumors. How EBV succeeds in these contrasting cellular environments in expressing its genes that control the host has not been explained. We have genetically dissected the EBV nuclear antigen 1 (EBNA1) gene that is required for replication of the viral genome, to elucidate its possible role in the transcription of viral genes. Strikingly, EBNA1 is essential to drive transcription of EBV's transforming genes after infection of primary B lymphocytes. PMID:16966603

  6. Nuclear speckles are detention centers for transcripts containing expanded CAG repeats.

    PubMed

    Urbanek, Martyna O; Jazurek, Magdalena; Switonski, Pawel M; Figura, Grzegorz; Krzyzosiak, Wlodzimierz J

    2016-09-01

    The human genetic disorders caused by CAG repeat expansions in the translated sequences of various genes are called polyglutamine (polyQ) diseases because of the cellular "toxicity" of the mutant proteins. The contribution of mutant transcripts to the pathogenesis of these diseases is supported by several observations obtained from cellular models of these disorders. Here, we show that the common feature of cell lines modeling polyQ diseases is the formation of nuclear CAG RNA foci. We performed qualitative and quantitative analyses of these foci in numerous cellular models endogenously and exogenously expressing mutant transcripts by fluorescence in situ hybridization (FISH). We compared the CAG RNA foci of polyQ diseases with the CUG foci of myotonic dystrophy type 1 and found substantial differences in their number and morphology. Smaller differences within the polyQ disease group were also revealed and included a positive correlation between the foci number and the CAG repeat length. We show that expanded CAA repeats, also encoding glutamine, did not trigger RNA foci formation and foci formation is independent of the presence of mutant polyglutamine protein. Using FISH combined with immunofluorescence, we demonstrated partial co-localization of CAG repeat foci with MBNL1 alternative splicing factor, which explains the mild deregulation of MBNL1-dependent genes. We also showed that foci reside within nuclear speckles in diverse cell types: fibroblasts, lymphoblasts, iPS cells and neuronal progenitors and remain dependent on integrity of these nuclear structures. PMID:27239700

  7. Cell-free production of transducible transcription factors for nuclear reprogramming.

    PubMed

    Yang, William C; Patel, Kedar G; Lee, Jieun; Ghebremariam, Yohannes T; Wong, H Edward; Cooke, John P; Swartz, James R

    2009-12-15

    Ectopic expression of a defined set of transcription factors chosen from Oct3/4, Sox2, c-Myc, Klf4, Nanog, and Lin28 can directly reprogram somatic cells to pluripotency. These reprogrammed cells are referred to as induced pluripotent stem cells (iPSCs). To date, iPSCs have been successfully generated using lentiviruses, retroviruses, adenoviruses, plasmids, transposons, and recombinant proteins. Nucleic acid-based approaches raise concerns about genomic instability. In contrast, a protein-based approach for iPSC generation can avoid DNA integration concerns as well as provide greater control over the concentration, timing, and sequence of transcription factor stimulation. Researchers recently demonstrated that polyarginine peptide conjugation can deliver recombinant protein reprogramming factor (RF) cargoes into cells and reprogram somatic cells into iPSCs. However, the protein-based approach requires a significant amount of protein for the reprogramming process. Producing fusion RFs in the large amounts required for this approach using traditional heterologous in vivo production methods is difficult and cumbersome since toxicity, product aggregation, and proteolysis by endogenous proteases limit yields. In this work, we show that cell-free protein synthesis (CFPS) is a viable option for producing soluble and functional transducible transcription factors for nuclear reprogramming. We used an E. coli-based CFPS system to express the above set of six human RFs as fusion proteins, each with a nona-arginine (R9) protein transduction domain. Using the flexibility offered by the CFPS platform, we successfully addressed proteolysis and protein solubility problems to produce full-length and soluble R9-RF fusions. We subsequently showed that R9-Oct3/4, R9-Sox2, and R9-Nanog exhibit cognate DNA-binding activities, R9-Nanog translocates across the plasma and nuclear membranes, and R9-Sox2 exerts transcriptional activity on a known downstream gene target. PMID:19718703

  8. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    The following is a review of research accomplished in the first two years of funding for the above mentioned project. The work performed is a molecular characterization of nuclear mutants of Chlamydomonas reinhardtii which are deficient in different stages in the post-transcriptional expression of a single chloroplast encoded polypeptide, the D2 protein of Photosystem II. Our long-term goals are to understand the molecular mechanisms by which nuclear gene products affect the expression of chloroplast genes. Specifically, we which to understand how specific nuclear gene products affect the turnover rate of the D2 encoding mRNA (psbD), how other nuclear encoded factors work to promote the translation of psbD mRNA and/or stabilize the D2 protein, and what the role of the D2 protein itself is in Photosystem II assembly and in the control of expression of other chloroplast genes. This progress report will be organized into four major sections concerning (I) The characterization of nuclear mutants affected in D2 translation/turnover, (II) The study of trans-acting factors which associate with the 5{prime} end of the psbD mRNA, (III) In vitro mutagenesis of the psbD gene, and (IV) Additional studies.

  9. Deacetylase-Independent Function of HDAC3 in Transcription and Metabolism Requires Nuclear Receptor Corepressor

    PubMed Central

    Sun, Zheng; Feng, Dan; Fang, Bin; Mullican, Shannon E.; You, Seo-Hee; Lim, Hee-Woong; Everett, Logan J.; Nabel, Christopher S.; Li, Yun; Selvakumaran, Vignesh; Won, Kyoung-Jae; Lazar, Mitchell A.

    2013-01-01

    Histone deacetylases (HDACs) are believed to regulate gene transcription by catalyzing deacetylation reactions. HDAC3 depletion in mouse liver upregulates lipogenic genes and results in severe hepatosteatosis. Here we show that pharmacologic HDAC inhibition in primary hepatocytes causes histone hyperacetylation but does not upregulate expression of HDAC3 target genes. Meanwhile, deacetylase-dead HDAC3 mutants can rescue hepatosteatosis and repress lipogenic genes expression in HDAC3-depleted mouse liver, demonstrating that histone acetylation is insufficient to activate gene transcription. Mutations abolishing interactions with the nuclear receptor corepressor (NCOR or SMRT) render HDAC3 nonfunctional in vivo. Additionally, liver-specific knockout of NCOR, but not SMRT, causes metabolic and transcriptomal alterations resembling those of mice without hepatic HDAC3, demonstrating that interaction with NCOR is essential for deacetylase-independent function of HDAC3. These findings highlight non-enzymatic roles of a major HDAC in transcriptional regulation in vivo and warrant reconsideration of the mechanism of action of HDAC inhibitors. PMID:24268577

  10. Nuclear Factor 90(NF90) targeted to TAR RNA inhibits transcriptional activation of HIV-1

    PubMed Central

    Agbottah, Emmanuel T; Traviss, Christine; McArdle, James; Karki, Sambhav; St Laurent, Georges C; Kumar, Ajit

    2007-01-01

    Background Examination of host cell-based inhibitors of HIV-1 transcription may be important for attenuating viral replication. We describe properties of a cellular double-stranded RNA binding protein with intrinsic affinity for HIV-1 TAR RNA that interferes with Tat/TAR interaction and inhibits viral gene expression. Results Utilizing TAR affinity fractionation, North-Western blotting, and mobility-shift assays, we show that the C-terminal variant of nuclear factor 90 (NF90ctv) with strong affinity for the TAR RNA, competes with Tat/TAR interaction in vitro. Analysis of the effect of NF90ctv-TAR RNA interaction in vivo showed significant inhibition of Tat-transactivation of HIV-1 LTR in cells expressing NF90ctv, as well as changes in histone H3 lysine-4 and lysine-9 methylation of HIV chromatin that are consistent with the epigenetic changes in transcriptionally repressed gene. Conclusion Structural integrity of the TAR element is crucial in HIV-1 gene expression. Our results show that perturbation Tat/TAR RNA interaction by the dsRNA binding protein is sufficient to inhibit transcriptional activation of HIV-1. PMID:17565699

  11. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    SciTech Connect

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih; Zhao, Bo; Kieff, Elliott; Peng, Chih-Wen

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  12. GABP Transcription Factor (Nuclear Respiratory Factor 2) Is Required for Mitochondrial Biogenesis

    PubMed Central

    Yang, Zhong-Fa; Drumea, Karen; Mott, Stephanie; Wang, Junling

    2014-01-01

    Mitochondria are membrane-bound cytoplasmic organelles that serve as the major source of ATP production in eukaryotic cells. GABP (also known as nuclear respiratory factor 2) is a nuclear E26 transformation-specific transcription factor (ETS) that binds and activates mitochondrial genes that are required for electron transport and oxidative phosphorylation. We conditionally deleted Gabpa, the DNA-binding component of this transcription factor complex, from mouse embryonic fibroblasts (MEFs) to examine the role of Gabp in mitochondrial biogenesis, function, and gene expression. Gabpα loss modestly reduced mitochondrial mass, ATP production, oxygen consumption, and mitochondrial protein synthesis but did not alter mitochondrial morphology, membrane potential, apoptosis, or the expression of several genes that were previously reported to be GABP targets. However, the expression of Tfb1m, a methyltransferase that modifies ribosomal rRNA and is required for mitochondrial protein translation, was markedly reduced in Gabpα-null MEFs. We conclude that Gabp regulates Tfb1m expression and plays an essential, nonredundant role in mitochondrial biogenesis. PMID:24958105

  13. Drosophila dany is essential for transcriptional control and nuclear architecture in spermatocytes.

    PubMed

    Trost, Martina; Blattner, Ariane C; Leo, Stefano; Lehner, Christian F

    2016-07-15

    The terminal differentiation of adult stem cell progeny depends on transcriptional control. A dramatic change in gene expression programs accompanies the transition from proliferating spermatogonia to postmitotic spermatocytes, which prepare for meiosis and subsequent spermiogenesis. More than a thousand spermatocyte-specific genes are transcriptionally activated in early Drosophila spermatocytes. Here we describe the identification and initial characterization of dany, a gene required in spermatocytes for the large-scale change in gene expression. Similar to tMAC and tTAFs, the known major activators of spermatocyte-specific genes, dany has a recent evolutionary origin, but it functions independently. Like dan and danr, its primordial relatives with functions in somatic tissues, dany encodes a nuclear Psq domain protein. Dany associates preferentially with euchromatic genome regions. In dany mutant spermatocytes, activation of spermatocyte-specific genes and silencing of non-spermatocyte-specific genes are severely compromised and the chromatin no longer associates intimately with the nuclear envelope. Therefore, as suggested recently for Dan/Danr, we propose that Dany is essential for the coordination of change in cell type-specific expression programs and large-scale spatial chromatin reorganization. PMID:27436041

  14. A Photo-Degradable Gene Delivery System for Enhanced Nuclear Gene Transcription

    PubMed Central

    Hoyoung, Lee; Yeji, Kim; Patrick G., Schweickert; Stephen F., Konieczny; You-Yeon, Won

    2013-01-01

    There currently exists a significant gap in our understanding of how the detailed chemical characteristics of polycation gene carriers influence their delivery performances in overcoming an important cellular-level transport barrier, i.e., intranuclear gene transcription. In this study, a UV-degradable gene carrier material (ENE4-1) was synthesized by crosslinking low molecular weight branched polyethylenimine (bPEI-2k) molecules using UV-cleavable o-nitrobenzyl urethane (NBU) as the linker molecule. NBU degrades upon exposure to mild UV irradiation. Therefore, this UV-degradable carrier allows us to control the chemical characteristics of the polymer/DNA complex (polyplex) particles at desired locations within the intracellular environment. By using this photolytic DNA carrier, we found that the exact timing of the UV degradation significantly influences the gene transfection efficiencies of ENE4-1/DNA(pGL2) polyplexes in HeLa cells. Interestingly, even if the polyplexes were UV-degraded at different intracellular locations/times, their nuclear entry efficiency was not influenced by the location/timing of UV degradation. The UV treatment did not influence the size or binding strength of the polyplexes. However, we confirmed that the degradation of the carrier molecules impacts the chemical characteristics of the polyplexes (it produces carbamic acid and nitrosobenzyl aldehyde groups on ENE4-1). We believe that these anionic acid groups enhance the interaction of the polyplexes with nuclear transcription proteins and thus the final gene expression levels; this effect was found to occur, even though UV irradiation itself has a general effect of reducing transfection efficiencies. Excess (uncomplexed) ENE4-1 polymers appear to not play any role in the UV-enhanced gene transcription phenomenon. PMID:24172855

  15. Transcription regulation of nuclear receptor PXR: Role of SUMO-1 modification and NDSM in receptor function.

    PubMed

    Priyanka; Kotiya, Deepak; Rana, Manjul; Subbarao, N; Puri, Niti; Tyagi, Rakesh K

    2016-01-15

    Pregnane & Xenobiotic Receptor (PXR) is one of the 48 members of the nuclear receptor superfamily of ligand-modulated transcription factors. PXR plays an important role in metabolism and elimination of diverse noxious endobiotics and xenobiotics. Like in case of some nuclear receptors its function may also be differentially altered, positively or negatively, by various post-translational modifications. In this context, regulation of PXR function by SUMOylation is the subject of present investigation. Here, we report that human PXR is modified by SUMO-1 resulting in its enhanced transcriptional activity. RT-PCR analysis showed that PXR SUMOylation in presence of rifampicin also enhances the endogenous expression levels of key PXR-regulated genes like CYP3A4, CYP2C9, MDR1 and UGT1A1. In addition, mammalian two-hybrid assay exhibited enhanced interaction between PXR and co-activator SRC-1. EMSA results revealed that SUMOylation has no influence on the DNA binding ability of PXR. In silico analysis suggested that PXR protein contains four putative SUMOylation sites, centered at K108, K129, K160 and K170. In addition to this, we identified the presence of NDSM (Negative charge amino acid Dependent SUMOylation Motif) in PXR. Substitution of all its four putative lysine residues along with NDSM abolished the effect of SUMO-1-mediated transactivation function of PXR. Furthermore, we show that interaction between PXR and E2-conjugation enzyme UBCh9, an important step for implementation of SUMOylation event, was reduced in case of NDSM mutant PXRD115A. Overall, our results suggest that SUMOylation at specific sites on PXR protein are involved in enhancement of transcription function of this receptor. PMID:26549688

  16. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    SciTech Connect

    Sun, Zhen; Xiang, Wenqing; Guo, Yajuan; Chen, Zhi; Liu, Wei; Lu, Daru

    2011-06-10

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  17. Nuclear transcription factors: a new approach to enhancing cellular responses to ALA-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Maytin, Edward V.; Anand, Sanjay; Sato, Nobuyuki; Moore, Brian; Mack, Judith; Gasbarre, Christopher; Keevey, Samantha; Ortel, Bernhard; Sinha, Alok; Khachemoune, Amor

    2006-02-01

    Photodynamic therapy (PDT) using aminolevulinic acid (ALA) relies upon the uptake of ALA into cancer cells, where it is converted into a porphyrin intermediate, protoporphyrin IX (PpIX) that is highly photosensitizing. For large or resistant tumors, however, ALA/PDT is often not completely effective due to inadequate PpIX levels. Therefore, new approaches to enhance the intracellular production of PpIX are sought. Here, we describe a general approach to improve intracellular PpIX accumulation via manipulations that increase the expression of an enzyme, coproporphyrinogen oxidase (CPO), that is rate-determining for PpIX production. We show that nuclear hormones that promote terminal differentiation, e.g. vitamin D or androgens, can also increase the accumulation of PpIX and the amount of killing of the target cells upon exposure to light. These hormones bind to intracellular hormone receptors that translocate to the nucleus, where they act as transcription factors to increase the expression of target genes. We have found that several other transcription factors associated with terminal differentiation, including members of the CCAAT enhancer binding (C/EBP) family, and a homeobox protein named Hoxb13, are also capable of enhancing PpIX accumulation. These latter transcription factors appear to interact directly with the CPO gene promoter, resulting in enhanced CPO transcriptional activity. Our data in several different cell systems, including epithelial cells of the skin and prostate cancer cells, indicate that enhancement of CPO expression and PpIX accumulation represents a viable new approach toward improving the efficacy of ALA/PDT.

  18. Co-localization of the amyloid precursor protein and the Notch intracellular domains in nuclear transcription factories

    PubMed Central

    Konietzko, Uwe; Goodger, Zoë V.; Meyer, Michelle; Kohli, Bernhard M.; Bosset, Jérôme; Lahiri, Debomoy K.; Nitsch, Roger M.

    2009-01-01

    The β-amyloid precursor protein (APP) plays a major role in Alzheimer’s disease. The APP intracellular domain (AICD), together with Fe65 and Tip60, localizes to spherical nuclear AFT complexes that might represent sites of transcription. We now show that endogenous AICD is targeted to similar nuclear spots. AFT complexes were closely associated with Cajal and PML bodies but did not localize to nucleoli or splicing speckles. Live imaging revealed that AFT complexes were highly mobile within nuclei. Following pharmacological inhibition of transcription AFT complexes merged into a few large assemblies. We have previously shown that AICD regulates the expression of its own precursor APP. Transfection of APP promoter plasmids as substrates resulted in cytosolic AFT complex formation at the labeled APP promoter plasmids. In addition, identification of chromosomal APP or KAI1 gene loci by fluorescence in situ hybridization showed their close association with nuclear AFT complexes. The transcriptional activator Notch intracellular domain (NICD) localized to the same nuclear spots as occupied by AFT complexes, suggesting that these nuclear compartments correspond to transcription factories. Fe65 and Tip60 also co-localized with APP in the neurites of primary neurons. Pre-assembled AFT complexes may serve to assist fast nuclear signaling upon endoproteolytic APP cleavage. PMID:18403052

  19. Transcriptional activation of the cholesterol 7alpha-hydroxylase gene (CYP7A) by nuclear hormone receptors.

    PubMed

    Crestani, M; Sadeghpour, A; Stroup, D; Galli, G; Chiang, J Y

    1998-11-01

    The gene encoding cholesterol 7alpha-hydroxylase (CYP7A), the rate-limiting enzyme in bile acid synthesis, is transcriptionally regulated by bile acids and hormones. Previously, we have identified two bile acid response elements (BARE) in the promoter of the CYP7A gene. The BARE II is located in nt -149/-118 region and contains three hormone response element (HRE)-like sequences that form two overlapping nuclear receptor binding sites. One is a direct repeat separated by one nucleotide DR1 (-146- TGGACTtAGTTCA-134) and the other is a direct repeat separated by five nucleotides DR5 (-139-AGTTCAaggccGGG TAA-123). Mutagenesis of these HRE sequences resulted in lower transcriptional activity of the CYP7A promoter/reporter genes in transient transfection assay in HepG2 cells. The orphan nuclear receptor, hepatocyte nuclear factor 4 (HNF-4)1, binds to the DR1 sequence as assessed by electrophoretic mobility shift assay, and activates the CYP7A promoter/reporter activity by about 9-fold. Cotransfection of HNF-4 plasmid with another orphan nuclear receptor, chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), synergistically activated the CYP7A transcription by 80-fold. The DR5 binds the RXR/RAR heterodimer. A hepatocyte nuclear factor-3 (HNF-3) binding site (-175-TGTTTGTTCT-166) was identified. HNF-3 was required for both basal transcriptional activity and stimulation of the rat CYP7A promoter activity by retinoic acid. Combinatorial interactions and binding of these transcription factors to BAREs may modulate the promoter activity and also mediate bile acid repression of CYP7A gene transcription. PMID:9799805

  20. Herpes simplex virus type 1 protein IE63 affects the nuclear export of virus intron-containing transcripts.

    PubMed Central

    Phelan, A; Dunlop, J; Clements, J B

    1996-01-01

    Using in situ hybridization labelling methods, we have determined that the herpes simplex virus type 1 immediate-early protein IE63 (ICP27) affects the cellular localization of virus transcripts. Intronless transcripts from the IE63, UL38, and UL44 genes are rapidly exported to and accumulate in the cytoplasm throughout infection, in either the presence or absence of IE63 expression. The intron-containing transcripts from the IE110 and UL15 genes, while initially cytoplasmic, are increasingly retained in the nucleus in distinct clumps as infection proceeds, and the clumps colocalize with the redistributed small nuclear ribonucleoprotein particles. Infections with the IE63 mutant virus 27-lacZ demonstrated that in the absence of IE63 expression, nuclear retention of intron-containing transcripts was lost. The nuclear retention of UL15 transcripts, which demonstrated both nuclear and cytoplasmic label, was not as pronounced as that of the IE110 transcripts, and we propose that this is due to the late expression of UL15. Infections with the mutant virus 110C1, in which both introns of IE110 have been precisely removed (R.D. Everett, J. Gen. Virol. 72:651-659, 1991), demonstrated IE110 transcripts in both the nucleus and the cytoplasm; thus, exon definition sequences which regulate viral RNA transport are present in the IE110 transcript. By in situ hybridization a stable population of polyadenylated RNAs was found to accumulate in the nucleus in spots, most of which were separate from the small nuclear ribonucleoprotein particle clumps. The IE63 protein has an involvement, either direct or indirect, in the regulation of nucleocytoplasmic transport of viral transcripts, a function which contrasts with the recently proposed role of herpes simplex virus type 1 Us11 in promoting the nuclear export of partially spliced or unspliced transcripts (J.-J. Diaz, M. Duc Dodon, N. Schaerer-Uthurraly, D. Simonin, K. Kindbeiter, L. Gazzolo, and J.-J. Madjar, Nature [London] 379

  1. Transcription of Nrdp1 by the androgen receptor is regulated by nuclear filamin A in prostate cancer.

    PubMed

    Savoy, Rosalinda M; Chen, Liqun; Siddiqui, Salma; Melgoza, Frank U; Durbin-Johnson, Blythe; Drake, Christiana; Jathal, Maitreyee K; Bose, Swagata; Steele, Thomas M; Mooso, Benjamin A; D'Abronzo, Leandro S; Fry, William H; Carraway, Kermit L; Mudryj, Maria; Ghosh, Paramita M

    2015-06-01

    Prostate cancer (PCa) progression is regulated by the androgen receptor (AR); however, patients undergoing androgen-deprivation therapy (ADT) for disseminated PCa eventually develop castration-resistant PCa (CRPC). Results of previous studies indicated that AR, a transcription factor, occupies distinct genomic loci in CRPC compared with hormone-naïve PCa; however, the cause of this distinction was unknown. The E3 ubiquitin ligase Nrdp1 is a model AR target modulated by androgens in hormone-naïve PCa but not in CRPC. Using Nrdp1, we investigated how AR switches transcription programs during CRPC progression. The proximal Nrdp1 promoter contains an androgen response element (ARE); we demonstrated AR binding to this ARE in androgen-sensitive PCa. Analysis of hormone-naive human prostatectomy specimens revealed correlation between Nrdp1 and AR expression, supporting AR regulation of NRDP1 levels in androgen-sensitive tissue. However, despite sustained AR levels, AR binding to the Nrdp1 promoter and Nrdp1 expression were suppressed in CRPC. Elucidation of the suppression mechanism demonstrated correlation of NRDP1 levels with nuclear localization of the scaffolding protein filamin A (FLNA) which, as we previously showed, is itself repressed following ADT in many CRPC tumors. Restoration of nuclear FLNA in CRPC stimulated AR binding to Nrdp1 ARE, increased its transcription, and augmented NRDP1 protein expression and responsiveness to ADT, indicating that nuclear FLNA controls AR-mediated androgen-sensitive Nrdp1 transcription. Expression of other AR-regulated genes lost in CRPC was also re-established by nuclear FLNA. Thus, our results indicate that nuclear FLNA promotes androgen-dependent AR-regulated transcription in PCa, while loss of nuclear FLNA in CRPC alters the AR-regulated transcription program. PMID:25759396

  2. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function

    SciTech Connect

    Dement, Gregory A.; Maloney, Scott C.; Reeves, Raymond . E-mail: reevesr@mail.wsu.edu

    2007-01-01

    We have previously demonstrated that HMGA1 proteins translocate from the nucleus to mitochondria and bind to mitochondrial DNA (mtDNA) at the D-loop control region [G.A. Dement, N.R. Treff, N.S. Magnuson, V. Franceschi, R. Reeves, Dynamic mitochondrial localization of nuclear transcription factor HMGA1, Exp. Cell Res. 307 (2005) 388-401.] [11]. To elucidate possible physiological roles for such binding, we employed methods to analyze mtDNA transcription, mitochondrial maintenance, and other organelle functions in transgenic human MCF-7 cells (HA7C) induced to over-express an HA-tagged HMGA1 protein and control (parental) MCF-7 cells. Quantitative real-time (RT) PCR analyses demonstrated that mtDNA levels were reduced approximately 2-fold in HMGA1 over-expressing HA7C cells and flow cytometric analyses further revealed that mitochondrial mass was significantly reduced in these cells. Cellular ATP levels were also reduced in HA7C cells and survival studies showed an increased sensitivity to killing by 2-deoxy-D-glucose, a glycolysis-specific inhibitor. Flow cytometric analyses revealed additional mitochondrial abnormalities in HA7C cells that are consistent with a cancerous phenotype: namely, increased reactive oxygen species (ROS) and increased mitochondrial membrane potential ({delta}{psi}{sub m}). Additional RT-PCR analyses demonstrated that gene transcripts from both the heavy (ND2, COXI, ATP6) and light (ND6) strands of mtDNA were up-regulated approximately 3-fold in HA7C cells. Together, these mitochondrial changes are consistent with many previous reports and reveal several possible mechanisms by which HMGA1 over-expression, a common feature of naturally occurring cancers, may affect tumor progression.

  3. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance

    PubMed Central

    Tsang, Chi Kwan; Liu, Yuan; Thomas, Janice; Zhang, Yanjie; Zheng, X. F. Steven

    2015-01-01

    Summary Superoxide dismutase 1 (Sod1) has been known for nearly half a century for catalysis of superoxide to hydrogen peroxide. Here we report a new Sod1 function in oxidative signaling: in response to elevated endogenous and exogenous reactive oxygen species (ROS), Sod1 rapidly relocates into the nucleus, which is important for maintaining genomic stability. Interestingly, H2O2 is sufficient to promote Sod1 nuclear localization, indicating that it is responding to general ROS rather than Sod1 substrate superoxide. ROS signaling is mediated by Mec1/ATM and its effector Dun1/Cds1 kinase, through Dun1 interaction with Sod1 and regulation of Sod1 by phosphorylation at S60, 99. In the nucleus, Sod1 binds to the promoters and regulates the expression of oxidative resistance and repair genes. Altogether, our study unravels an unorthodox function of Sod1 as a transcription factor and elucidates the regulatory mechanism for its localization. PMID:24647101

  4. Low Ozone Concentrations Stimulate Cytoskeletal Organization, Mitochondrial Activity and Nuclear Transcription

    PubMed Central

    Costanzo, M.; Cisterna, B.; Vella, A.; Cestari, T.; Covi, V.; Tabaracci, G.; Malatesta, M.

    2015-01-01

    Ozone therapy is a modestly invasive procedure based on the regeneration capabilities of low ozone concentrations and used in medicine as an alternative/adjuvant treatment for different diseases. However, the cellular mechanisms accounting for the positive effects of mild ozonization are still largely unexplored. To this aim, in the present study the effects of low ozone concentrations (1 to 20 µg O3/mL O2) on structural and functional cell features have been investigated in vitro by using morphological, morphometrical, cytochemical and immunocytochemical techniques at bright field, fluorescence and transmission electron microscopy. Cells exposed to pure O2 or air served as controls. The results demonstrated that the effects of ozone administration are dependent on gas concentration, and the cytoskeletal organization, mitochondrial activity and nuclear transcription may be differently affected. This suggests that, to ensure effective and permanent metabolic cell activation, ozone treatments should take into account the cytological and cytokinetic features of the different tissues. PMID:26150162

  5. Low ozone concentrations stimulate cytoskeletal organization, mitochondrial activity and nuclear transcription.

    PubMed

    Costanzo, M; Cisterna, B; Vella, A; Cestari, T; Covi, V; Tabaracci, G; Malatesta, M

    2015-01-01

    Ozone therapy is a modestly invasive procedure based on the regeneration capabilities of low ozone concentrations and used in medicine as an alternative/adjuvant treatment for different diseases. However, the cellular mechanisms accounting for the positive effects of mild ozonization are still largely unexplored. To this aim, in the present study the effects of low ozone concentrations (1 to 20 µg O3/mL O2) on structural and functional cell features have been investigated in vitro by using morphological, morphometrical, cytochemical and immunocytochemical techniques at bright field, fluorescence and transmission electron microscopy. Cells exposed to pure O2 or air served as controls. The results demonstrated that the effects of ozoneadministration are dependent on gas concentration, and the cytoskeletal organization, mitochondrial activity and nuclear transcription may be differently affected. This suggests that, to ensure effective and permanent metabolic cell activation, ozone treatments should take into account the cytological and cytokinetic features of the different tissues. PMID:26150162

  6. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription.

    PubMed

    Chambeyron, Séverine; Bickmore, Wendy A

    2004-05-15

    The colinearity of genes in Hox clusters suggests a role for chromosome structure in gene regulation. We reveal programmed changes in chromatin structure and nuclear organization upon induction of Hoxb expression by retinoic acid. There is an early increase in the histone modifications that are marks of active chromatin at both the early expressed gene Hoxb1, and also at Hoxb9 that is not expressed until much later. There is also a visible decondensation of the chromatin between Hoxb1 and Hoxb9 at this early stage. However, a further change in higher-order chromatin structure, looping out of genes from the chromosome territory, occurs in synchrony with the execution of the gene expression program. We suggest that higher-order chromatin structure regulates the expression of the HoxB cluster at several levels. Locus-wide changes in chromatin structure (histone modification and chromatin decondensation) may establish a transcriptionally poised state but are not sufficient for the temporal program of gene expression. The choreographed looping out of decondensed chromatin from chromosome territories may then allow for activation of high levels of transcription from the sequence of genes along the cluster. PMID:15155579

  7. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin.

    PubMed

    Yamazaki, Shota; Yamamoto, Koji; de Lanerolle, Primal; Harata, Masahiko

    2016-04-01

    Actin plays multiple roles both in the cytoplasm and in the nucleus. Cytoplasmic actin, in addition to its structural role in the cytoskeleton, also contributes to the subcellular localization of transcription factors by interacting with them or their partners. The transcriptional cofactor β-catenin, which acts as an intracellular transducer of canonical Wnt signaling, indirectly associates with the cytoplasmic filamentous actin (F-actin). Recently, it has been observed that F-actin is transiently formed within the nucleus in response to serum stimulation and integrin signaling, and also during gene reprogramming. Despite these earlier observations, information about the function of nuclear F-actin is poorly defined. Here, by facilitating the accumulation of nuclear actin artificially, we demonstrate that polymerizing nuclear actin enhanced the nuclear accumulation and transcriptional function of β-catenin. Our results also show that the nuclear F-actin colocalizes with β-catenin and enhances the binding of β-catenin to the downstream target genes of the Wnt/β-catenin signaling pathway, including the genes for the cell cycle regulators c-myc and cyclin D, and the OCT4 gene. Nuclear F-actin itself also associated with these genes. Since Wnt/β-catenin signaling has important roles in cell differentiation and pluripotency, our observations suggest that nuclear F-actin formed during these biological processes is involved in regulating Wnt/β-catenin signaling. PMID:26900020

  8. The Nuclear Matrix Protein, NRP/B, Acts as a Transcriptional Repressor of E2F-mediated Transcriptional Activity

    PubMed Central

    Choi, Jina; Yang, Eun Sung; Cha, Kiweon; Whang, John; Choi, Woo-Jung; Avraham, Shalom; Kim, Tae-Aug

    2014-01-01

    Background: NRP/B, a family member of the BTB/Kelch repeat proteins, is implicated in neuronal and cancer development, as well as the regulation of oxidative stress responses in breast and brain cancer. Our previous studies indicate that the NRP/B-BTB/POZ domain is involved in the dimerization of NRP/B and in a complex formation with the tumor suppressor, retinoblastoma protein. Although much evidence supports the potential role of NRP/B as a tumor suppressor, the molecular mechanisms of NRP/B action on E2F transcription factors have not been elucidated. Methods: Three-dimensional modeling of NRP/B was used to generate point mutations in the BTB/Kelch domains. Tet-on inducible NRP/B expression was established. The NRP/B deficient breast cancer cell line, MDA-MB-231, was generated using lentiviral shNRP/B to evaluate the effect of NRP/B on cell proliferation, invasion and migration. Immunoprecipitation was performed to verify the interaction of NRP/B with E2F and histone deacetylase (HDAC-1), and the expression level of NRP/B protein was analyzed by Western blot analysis. Changes in cell cycle were determined by flow cytometry. Transcriptional activities of E2F transcription factors were measured by chloramphenicol acetyltransferase (CAT) activity. Results: Ectopic overexpression of NRP/B demonstrated that the NRP/B-BTB/POZ domain plays a critical role in E2F-mediated transcriptional activity. Point mutations within the BTB/POZ domain restored E2-promoter activity inhibited by NRP/B. Loss of NRP/B enhanced the proliferation and migration of breast cancer cells. Endogenous NRP/B interacted with E2F and HDAC1. Treatement with an HDAC inhibitor, trichostatin A (TSA), abolished the NRP/B-mediated suppression of E2-promoter activity. Gain or loss of NRP/B in HeLa cells confirmed the transcriptional repressive capability of NRP/B on the E2F target genes, Cyclin E and HsORC (Homo sapiens Origin Recognition Complex). Conclusions: The present study shows that NRP/B acts as a

  9. Preparation and characterization of yeast nuclear extracts for efficient RNA polymerase B (II)-dependent transcription in vitro.

    PubMed Central

    Verdier, J M; Stalder, R; Roberge, M; Amati, B; Sentenac, A; Gasser, S M

    1990-01-01

    We present a reproducible method for the preparation of nuclear extracts from the yeast Saccharomyces cerevisiae that support efficient RNA polymerase B (II)-dependent transcription. Extracts from both a crude nuclear fraction and Percoll-purified nuclei are highly active for site-specific initiation and transcription of a G-free cassette under the Adenovirus major late promoter. At optimal extract concentrations transcription is at least 5 times more efficient with the yeast extracts than with HeLa whole cell extracts. We show that the transcriptional activity is sensitive to alpha-amanitin and to depletion of factor(s) recognizing the TATA-box of the promoter. The in vitro reaction showed maximal activity after 45 min, was very sensitive to Cl-, but was not affected by high concentrations of potassium. We find that the efficiency of in vitro transcription in nuclear extracts is reproducibly high when spheroplasting is performed with a partially purified beta 1,3-glucanase (lyticase). Therefore a simplified method to isolate the lyticase from the supernatant of Oerskovia xanthineolytica is also presented. Images PMID:2263463

  10. Transcription-dependent nucleolar cap localization and possible nuclear function of DExH RNA helicase RHAU

    SciTech Connect

    Iwamoto, Fumiko; Stadler, Michael; Chalupnikova, Katerina; Oakeley, Edward; Nagamine, Yoshikuni

    2008-04-01

    RHAU (RNA helicase associated with AU-rich element) is a DExH protein originally identified as a factor accelerating AU-rich element-mediated mRNA degradation. The discovery that RHAU is predominantly localized in the nucleus, despite mRNA degradation occurring in the cytoplasm, prompted us to consider the nuclear functions of RHAU. In HeLa cells, RHAU was found to be localized throughout the nucleoplasm with some concentrated in nuclear speckles. Transcriptional arrest altered the localization to nucleolar caps, where RHAU is closely localized with RNA helicases p68 and p72, suggesting that RHAU is involved in transcription-related RNA metabolism in the nucleus. To see whether RHAU affects global gene expression transcriptionally or posttranscriptionally, we performed microarray analysis using total RNA from RHAU-depleted HeLa cell lines, measuring both steady-state mRNA levels and mRNA half-lives by actinomycin D chase. There was no change in the half-lives of most transcripts whose steady-state levels were affected by RHAU knockdown, suggesting that these transcripts are subjected to transcriptional regulation. We propose that RHAU has a dual function, being involved in both the synthesis and degradation of mRNA in different subcellular compartments.

  11. Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun.

    PubMed

    Li, L A; Chiang, E F; Chen, J C; Hsu, N C; Chen, Y J; Chung, B C

    1999-09-01

    Normal endocrine development and function require nuclear hormone receptor SF-1 (steroidogenic factor 1). To understand the molecular mechanism of SF-1 action, we have investigated its domain function by mutagenesis and functional analyses. Our mutant studies show that the putative AF2 (activation function 2) helix located at the C-terminal end is indispensable for gene activation. SF-1 does not have an N-terminal AF1 domain. Instead, it contains a unique FP region, composed of the Ftz-F1 box and the proline cluster, after the zinc finger motif. The FP region interacts with transcription factor IIB (TFIIB) in vitro. This interaction requires residues 178-201 of TFIIB, a domain capable of binding several transcription factors. The FP region also mediates physical interaction with c-Jun, and this interaction greatly enhances SF-1 activity. The putative SF-1 ligand, 25-hydroxycholesterol, has no effects on these bindings. In addition, the Ftz-F1 box contains a bipartite nuclear localization signal (NLS). Removing the basic residues at either end of the key nuclear localization sequence NLS2.2 abolishes the nuclear transport. Expression of mutants containing only the FP region or lacking the AF2 domain blocks wild-type SF-1 activity in cells. By contrast, the mutant having a truncated nuclear localization signal lacks this dominant negative effect. These results delineate the importance of the FP and AF2 regions in nuclear localization, protein-protein interaction, and transcriptional activation. PMID:10478848

  12. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells.

    PubMed

    Wada, Takeyoshi; Asahi, Toru; Sawamura, Naoya

    2016-08-26

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. PMID:27329811

  13. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin

    PubMed Central

    Amlie-Wolf, Alexandre; Ryvkin, Paul; Tong, Rui; Dragomir, Isabelle; Suh, EunRan; Xu, Yan; Van Deerlin, Vivianna M.; Gregory, Brian D.; Kwong, Linda K.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Wang, Li-San; Lee, Edward B.

    2015-01-01

    TAR DNA-binding protein 43 (TDP-43) is normally a nuclear RNA-binding protein that exhibits a range of functions including regulation of alternative splicing, RNA trafficking, and RNA stability. However, in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), TDP-43 is abnormally phosphorylated, ubiquitinated, and cleaved, and is mislocalized to the cytoplasm where it forms distinctive aggregates. We previously developed a mouse model expressing human TDP-43 with a mutation in its nuclear localization signal (ΔNLS-hTDP-43) so that the protein preferentially localizes to the cytoplasm. These mice did not exhibit a significant number of cytoplasmic aggregates, but did display dramatic changes in gene expression as measured by microarray, suggesting that cytoplasmic TDP-43 may be associated with a toxic gain-of-function. Here, we analyze new RNA-sequencing data from the ΔNLS-hTDP-43 mouse model, together with published RNA-sequencing data obtained previously from TDP-43 antisense oligonucleotide (ASO) knockdown mice to investigate further the dysregulation of gene expression in the ΔNLS model. This analysis reveals that the transcriptomic effects of the overexpression of the ΔNLS-hTDP-43 transgene are likely due to a gain of cytoplasmic function. Moreover, cytoplasmic TDP-43 expression alters transcripts that regulate chromatin assembly, the nucleolus, lysosomal function, and histone 3’ untranslated region (UTR) processing. These transcriptomic alterations correlate with observed histologic abnormalities in heterochromatin structure and nuclear size in transgenic mouse and human brains. PMID:26510133

  14. Transcriptomic Changes Due to Cytoplasmic TDP-43 Expression Reveal Dysregulation of Histone Transcripts and Nuclear Chromatin.

    PubMed

    Amlie-Wolf, Alexandre; Ryvkin, Paul; Tong, Rui; Dragomir, Isabelle; Suh, EunRan; Xu, Yan; Van Deerlin, Vivianna M; Gregory, Brian D; Kwong, Linda K; Trojanowski, John Q; Lee, Virginia M-Y; Wang, Li-San; Lee, Edward B

    2015-01-01

    TAR DNA-binding protein 43 (TDP-43) is normally a nuclear RNA-binding protein that exhibits a range of functions including regulation of alternative splicing, RNA trafficking, and RNA stability. However, in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), TDP-43 is abnormally phosphorylated, ubiquitinated, and cleaved, and is mislocalized to the cytoplasm where it forms distinctive aggregates. We previously developed a mouse model expressing human TDP-43 with a mutation in its nuclear localization signal (ΔNLS-hTDP-43) so that the protein preferentially localizes to the cytoplasm. These mice did not exhibit a significant number of cytoplasmic aggregates, but did display dramatic changes in gene expression as measured by microarray, suggesting that cytoplasmic TDP-43 may be associated with a toxic gain-of-function. Here, we analyze new RNA-sequencing data from the ΔNLS-hTDP-43 mouse model, together with published RNA-sequencing data obtained previously from TDP-43 antisense oligonucleotide (ASO) knockdown mice to investigate further the dysregulation of gene expression in the ΔNLS model. This analysis reveals that the transcriptomic effects of the overexpression of the ΔNLS-hTDP-43 transgene are likely due to a gain of cytoplasmic function. Moreover, cytoplasmic TDP-43 expression alters transcripts that regulate chromatin assembly, the nucleolus, lysosomal function, and histone 3' untranslated region (UTR) processing. These transcriptomic alterations correlate with observed histologic abnormalities in heterochromatin structure and nuclear size in transgenic mouse and human brains. PMID:26510133

  15. Depression of nuclear transcription and extension of mRNA half-life under anoxia in Artemia franciscana embryos.

    PubMed

    van Breukelen, F; Maier, R; Hand, S C

    2000-04-01

    Transcriptional activity, as assessed by nuclear run-on assays, was constant during 10 h of normoxic development for embryos of the brine shrimp Artemia franciscana. Exposure of embryos to only 4 h of anoxia resulted in a 79.3+/-1 % decrease in levels of in-vivo-initiated transcripts, and transcription was depressed by 88. 2+/-0.7 % compared with normoxic controls after 24 h of anoxia (means +/- s.e.m., N=3). Initiation of transcription was fully restored after 1 h of normoxic recovery. Artificially lowering the intracellular pH of aerobic embryos to the value reflective of anoxia (pH 6.7) showed that acidification alone explained over half the transcriptional arrest. Initiation of transcription was not rescued by application of 80 % carbon monoxide under anoxia, which suggests that heme-based oxygen sensing is not involved in this global arrest. When these transcriptional data are combined with the finding that mRNA levels are unchanged for at least 6 h of anoxia, it is clear that the half-life of mRNA is extended at least 8.5-fold compared with that in aerobic embryos. In contrast to the activation of compensatory mechanisms to cope with anoxia that occurs in mammalian cells, A. franciscana embryos enter a metabolically depressed state in which gene expression and mRNA turnover are cellular costs apparently not compatible with survival and in which extended tolerance supercedes the requirement for continued metabolic function. PMID:10708633

  16. Protein kinase A activation enhances β-catenin transcriptional activity through nuclear localization to PML bodies.

    PubMed

    Zhang, Mei; Mahoney, Emilia; Zuo, Tao; Manchanda, Parmeet K; Davuluri, Ramana V; Kirschner, Lawrence S

    2014-01-01

    The Protein Kinase A (PKA) and Wnt signaling cascades are fundamental pathways involved in cellular development and maintenance. In the osteoblast lineage, these pathways have been demonstrated functionally to be essential for the production of mineralized bone. Evidence for PKA-Wnt crosstalk has been reported both during tumorigenesis and during organogenesis, and the nature of the interaction is thought to rely on tissue and cell context. In this manuscript, we analyzed bone tumors arising from mice with activated PKA caused by mutation of the PKA regulatory subunit Prkar1a. In primary cells from these tumors, we observed relocalization of β-catenin to intranuclear punctuate structures, which were identified as PML bodies. Cellular redistribution of β-catenin could be recapitulated by pharmacologic activation of PKA. Using 3T3-E1 pre-osteoblasts as a model system, we found that PKA phosphorylation sites on β-catenin were required for nuclear re-localization. Further, β-catenin's transport to the nucleus was accompanied by an increase in canonical Wnt-dependent transcription, which also required the PKA sites. PKA-Wnt crosstalk in the cells was bi-directional, including enhanced interactions between β-catenin and the cAMP-responsive element binding protein (CREB) and transcriptional crosstalk between the Wnt and PKA signaling pathways. Increases in canonical Wnt/β-catenin signaling were associated with a decrease in the activity of the non-canonical Wnt/Ror2 pathway, which has been shown to antagonize canonical Wnt signaling. Taken together, this study provides a new understanding of the complex regulation of the subcellular distribution of β-catenin and its differential protein-protein interaction that can be modulated by PKA signaling. PMID:25299576

  17. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers.

    PubMed

    Sahin, K; Orhan, C; Tuzcu, M; Sahin, N; Hayirli, A; Bilgili, S; Kucuk, O

    2016-05-01

    This study was conducted to evaluate the effects of dietary lycopene supplementation on growth performance, antioxidant status, and muscle nuclear transcription factor [Kelch like-ECH-associated protein 1 (Keap1) and (erythroid-derived 2)-like 2 (Nrf2)] expressions in broiler chickens exposed to heat stress (HS). A total of 180 one-day-old male broiler chicks (Ross 308) were assigned randomly to one of 2×3 factorially arranged treatments: two housing temperatures (22°C for 24 h/d; thermoneutral, TN or 34°C for 8 h/d HS) and three dietary lycopene levels (0, 200, or 400 mg/kg). Each treatment consisted of three replicates of 10 birds. Birds were reared to 42 d of age. Heat stress caused reductions in feed intake and weight gain by 12.2 and 20.7% and increased feed efficiency by 10.8% (P<0.0001 for all). Increasing dietary lycopene level improved performance in both environments. Birds reared under the HS environment had lower serum and muscle lycopene concentration (0.34 vs. 0.50 μg/mL and 2.80 vs. 2.13 μg/g), activities of superoxide dismutase (151 vs. 126 U/mL and 131 vs. 155 U/mg protein), glutathione peroxidase (184 vs. 154 U/mL and 1.39 vs. 1.74 U/mg protein), and higher malondialdehyde (MDA) concentration (0.53 vs. 0.83 μg/mL and 0.78 vs. 0.45 μg/ mg protein) than birds reared under the TN environment. Changes in levels of lycopene and MDA and activities of enzymes in serum and muscle varied by the environmental temperature as dietary lycopene level increased. Moreover, increasing dietary lycopene level suppressed muscle Keap1 expression and enhanced muscle Nrf2 expression, which had increased by 150% and decreased by 40%, respectively in response to HS. In conclusion, lycopene supplementation alleviates adverse effects of HS on performance through modulating expressions of stress-related nuclear transcription factors. PMID:26936958

  18. Transcriptional regulation of the hepatocyte growth factor gene by the nuclear receptors chicken ovalbumin upstream promoter transcription factor and estrogen receptor.

    PubMed

    Jiang, J G; Bell, A; Liu, Y; Zarnegar, R

    1997-02-14

    Hepatocyte growth factor (HGF) is a multifunctional cytokine that controls the growth and differentiation of various tissues. Previously, we described the existence of a negative cis-acting regulatory element(s) within the -1- to -0.7-kilobase pair (kb) portion of the 5'-flanking region of the mouse HGF promoter. In the present study, we show that the repressor element is located at position -872 to -860 base pairs and comprises an imperfect estrogen-responsive element 5'-AGGTCAGAAAGACCA-3'. We demonstrate that chicken ovalbumin upstream promoter transcription factor (COUP-TF), a nuclear orphan receptor belonging to the steroid/thyroid hormone receptor superfamily, through binding to this site effectively silences the transcriptional activity of the HGF promoter. We show that estrogen receptor, on the other hand, relieves the repressive action of COUP-TF, resulting in the induction of the HGF promoter. Using mice transgenic for either 2.7 or 0.7 kb of the HGF promoter region linked to the chloramphenicol acetyltransferase reporter gene, we found that injection of estradiol stimulates HGF promoter activity in tissues such as the mammary gland and ovary of mice harboring 2.7 but not 0.7 kb of the mouse HGF promoter region. Potential involvement of the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors in the regulation of HGF gene expression is also discussed. PMID:9020096

  19. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPAR{gamma}

    SciTech Connect

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar; Park, Yun-Yong; Kim, Kyung Tae; Park, Sang Chul; Lee, Young Chul; Kim, Jae Bum Choi, Hueng-Sik

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) {gamma} is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPAR{gamma}. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPAR{gamma} in a dose-dependent manner. DAX-1 directly competed with the PPAR{gamma} coactivator (PGC)-1{alpha} for binding to PPAR{gamma}. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpression downregulates the expression of PPAR{gamma} target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPAR{gamma} and performs a potential function in the regulation of PPAR{gamma}-mediated cellular differentiation.

  20. Arsenic Trioxide Activate Transcription of Heme Oxygenase-1 by Promoting Nuclear Translocation of NFE2L2

    PubMed Central

    Yue, Zhen; Zhong, Lingzhi; Mou, Yan; Wang, Xiaotong; Zhang, Haiying; Wang, Yang; Xia, Jianxin; Li, Ronggui; Wang, Zonggui

    2015-01-01

    In a previous study, we found that induced expression of Heme Oxygenase-1 (HO-1) is responsible for the resistance of human osteosarcoma MG63 cells to the chemotherapeutic agent arsenic trioxide (ATO). The present study was aimed at investigating the molecular mechanisms underlying the induction of HO-1 that occurs after exposure of MG63 cells to ATO. First, using RT-QPCT and Western-blot, we found that ATO strongly induced the expression of heme oxygenase-1 (HO-1) in these human osteosarcoma cells. Then by analyzing HO-1 mRNA of MG63 cells exposed to ATO in the presence and absence of a transcription inhibitor Actinomycin-D (Act-D), we demonstrated that ATO activates HO-1 expression in MG63 cells by regulating the transcription of the gene. Finally, through the analysis of the NFE2L2 protein levels among the total cellular and nuclear proteins by Western-blot and Immunocytochemical staning, we determined that ATO enhanced the nuclear translocation of nuclear factor erythroid 2-like 2 (NFE2L2), also known as Nrf2. From these results we have concluded that transcription activation of HO-1 resulting from the nuclear translocation of NFE2L2 is the underlying molecular mechanism for its high induction, which, in turn, is responsible for the resistance of human osteosarcoma cells to ATO treatment. PMID:26283888

  1. Release of Positive Transcription Elongation Factor b (P-TEFb) from 7SK Small Nuclear Ribonucleoprotein (snRNP) Activates Hexamethylene Bisacetamide-inducible Protein (HEXIM1) Transcription*

    PubMed Central

    Liu, Pingyang; Xiang, Yanhui; Fujinaga, Koh; Bartholomeeusen, Koen; Nilson, Kyle A.; Price, David H.; Peterlin, B. Matija

    2014-01-01

    By phosphorylating negative elongation factors and the C-terminal domain of RNA polymerase II (RNAPII), positive transcription elongation factor b (P-TEFb), which is composed of CycT1 or CycT2 and CDK9, activates eukaryotic transcription elongation. In growing cells, it is found in active and inactive forms. In the former, free P-TEFb is a potent transcriptional coactivator. In the latter, it is inhibited by HEXIM1 or HEXIM2 in the 7SK small nuclear ribonucleoprotein (snRNP), which contains, additionally, 7SK snRNA, methyl phosphate-capping enzyme (MePCE), and La-related protein 7 (LARP7). This P-TEFb equilibrium determines the state of growth and proliferation of the cell. In this study, the release of P-TEFb from the 7SK snRNP led to increased synthesis of HEXIM1 but not HEXIM2 in HeLa cells, and this occurred only from an unannotated, proximal promoter. ChIP with sequencing revealed P-TEFb-sensitive poised RNA polymerase II at this proximal but not the previously annotated distal HEXIM1 promoter. Its immediate upstream sequences were fused to luciferase reporters and were found to be responsive to many P-TEFb-releasing compounds. The superelongation complex subunits AF4/FMR2 family member 4 (AFF4) and elongation factor RNA polymerase II 2 (ELL2) were recruited to this proximal promoter after P-TEFb release and were required for its transcriptional effects. Thus, P-TEFb regulates its own equilibrium in cells, most likely to maintain optimal cellular homeostasis. PMID:24515107

  2. Mitochondrial-Nuclear DNA Interactions Contribute to the Regulation of Nuclear Transcript Levels as Part of the Inter-Organelle Communication System

    PubMed Central

    Rodley, Chris D. M.; Grand, Ralph S.; Gehlen, Lutz R.; Greyling, Gary; Jones, M. Beatrix; O'Sullivan, Justin M.

    2012-01-01

    Nuclear and mitochondrial organelles must maintain a communication system. Loci on the mitochondrial genome were recently reported to interact with nuclear loci. To determine whether this is part of a DNA based communication system we used genome conformation capture to map the global network of DNA-DNA interactions between the mitochondrial and nuclear genomes (Mito-nDNA) in Saccharomyces cerevisiae cells grown under three different metabolic conditions. The interactions that form between mitochondrial and nuclear loci are dependent on the metabolic state of the yeast. Moreover, the frequency of specific mitochondrial - nuclear interactions (i.e. COX1-MSY1 and Q0182-RSM7) showed significant reductions in the absence of mitochondrial encoded reverse transcriptase machinery. Furthermore, these reductions correlated with increases in the transcript levels of the nuclear loci (MSY1 and RSM7). We propose that these interactions represent an inter-organelle DNA mediated communication system and that reverse transcription of mitochondrial RNA plays a role in this process. PMID:22292080

  3. Transcriptional Regulation by Nuclear Corepressors and PGC-1α: Implications for Mitochondrial Quality Control and Insulin Sensitivity

    PubMed Central

    Qi, Zhengtang; Ding, Shuzhe

    2012-01-01

    The peroxisome proliferator-activated receptors (PPARs) and estrogen-related receptor (ERRα) are ligand-activated nuclear receptors that coordinately regulate gene expression. Recent evidence suggests that nuclear corepressors, NCoR, RIP140, and SMRT, repress nuclear receptors-mediated transcriptional activity on specific promoters, and thus regulate insulin sensitivity, adipogenesis, mitochondrial number, and activity in vivo. Moreover, the coactivator PGC-1α that increases mitochondrial biogenesis during exercise and calorie restriction directly regulates autophagy in skeletal muscle and mitophagy in the pathogenesis of Parkinson's disease. In this paper, we discuss the PGC-1α's novel role in mitochondrial quality control and the role of nuclear corepressors in regulating insulin sensitivity and interacting with PGC-1α. PMID:23304112

  4. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products. Progress report, June 1, 1990--June 30, 1992

    SciTech Connect

    Kuchka, M.R.

    1992-08-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5` UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  5. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65

    PubMed Central

    Snow, Wanda M.; Pahlavan, Payam S.; Djordjevic, Jelena; McAllister, Danielle; Platt, Eric E.; Alashmali, Shoug; Bernstein, Michael J.; Suh, Miyoung; Albensi, Benedict C.

    2015-01-01

    Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory. PMID:26635523

  6. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons

    PubMed Central

    Getz, Angela M.; Visser, Frank; Bell, Erin M.; Xu, Fenglian; Flynn, Nichole M.; Zaidi, Wali; Syed, Naweed I.

    2016-01-01

    Synapse formation and plasticity depend on nuclear transcription and site-specific protein targeting, but the molecular mechanisms that coordinate these steps have not been well defined. The MEN1 tumor suppressor gene, which encodes the protein menin, is known to induce synapse formation and plasticity in the CNS. This synaptogenic function has been conserved across evolution, however the underlying molecular mechanisms remain unidentified. Here, using central neurons from the invertebrate Lymnaea stagnalis, we demonstrate that menin coordinates subunit-specific transcriptional regulation and synaptic clustering of nicotinic acetylcholine receptors (nAChR) during neurotrophic factor (NTF)-dependent excitatory synaptogenesis, via two proteolytic fragments generated by calpain cleavage. Whereas menin is largely regarded as a nuclear protein, our data demonstrate a novel cytoplasmic function at central synapses. Furthermore, this study identifies a novel synaptogenic mechanism in which a single gene product coordinates the nuclear transcription and postsynaptic targeting of neurotransmitter receptors through distinct molecular functions of differentially localized proteolytic fragments. PMID:27538741

  7. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons.

    PubMed

    Getz, Angela M; Visser, Frank; Bell, Erin M; Xu, Fenglian; Flynn, Nichole M; Zaidi, Wali; Syed, Naweed I

    2016-01-01

    Synapse formation and plasticity depend on nuclear transcription and site-specific protein targeting, but the molecular mechanisms that coordinate these steps have not been well defined. The MEN1 tumor suppressor gene, which encodes the protein menin, is known to induce synapse formation and plasticity in the CNS. This synaptogenic function has been conserved across evolution, however the underlying molecular mechanisms remain unidentified. Here, using central neurons from the invertebrate Lymnaea stagnalis, we demonstrate that menin coordinates subunit-specific transcriptional regulation and synaptic clustering of nicotinic acetylcholine receptors (nAChR) during neurotrophic factor (NTF)-dependent excitatory synaptogenesis, via two proteolytic fragments generated by calpain cleavage. Whereas menin is largely regarded as a nuclear protein, our data demonstrate a novel cytoplasmic function at central synapses. Furthermore, this study identifies a novel synaptogenic mechanism in which a single gene product coordinates the nuclear transcription and postsynaptic targeting of neurotransmitter receptors through distinct molecular functions of differentially localized proteolytic fragments. PMID:27538741

  8. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    SciTech Connect

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  9. Rrp6: Integrated roles in nuclear RNA metabolism and transcription termination.

    PubMed

    Fox, Melanie J; Mosley, Amber L

    2016-01-01

    The yeast RNA exosome is a eukaryotic ribonuclease complex essential for RNA processing, surveillance, and turnover. It is comprised of a barrel-shaped core and cap as well as a 3'-5' ribonuclease known as Dis3 that contains both endo- and exonuclease domains. A second exonuclease, Rrp6, is added in the nucleus. Dis3 and Rrp6 have both shared and distinct roles in RNA metabolism, and this review will focus primarily on Rrp6 and the roles of the RNA exosome in the nucleus. The functions of the nuclear exosome are modulated by cofactors and interacting partners specific to each type of substrate. Generally, the cofactor TRAMP (Trf4/5-Air2/1-Mtr4 polyadenylation) complex helps unwind unstable RNAs, RNAs requiring processing such as rRNAs, tRNAs, or snRNAs or improperly processed RNAs and direct it toward the exosome. In yeast, Rrp6 interacts with Nrd1, the cap-binding complex, and RNA polymerase II to aid in nascent RNA processing, termination, and polyA tail length regulation. Recent studies have shown that proper termination and processing of short, noncoding RNAs by Rrp6 is particularly important for transcription regulation across the genome and has important implications for regulation of diverse processes at the cellular level. Loss of proper Rrp6 and exosome activity may contribute to various pathologies such as autoimmune disease, neurological disorders, and cancer. WIREs RNA 2016, 7:91-104. doi: 10.1002/wrna.1317 For further resources related to this article, please visit the WIREs website. PMID:26612606

  10. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration.

    PubMed

    Bakay, Marina; Wang, Zuyi; Melcon, Gisela; Schiltz, Louis; Xuan, Jianhua; Zhao, Po; Sartorelli, Vittorio; Seo, Jinwook; Pegoraro, Elena; Angelini, Corrado; Shneiderman, Ben; Escolar, Diana; Chen, Yi-Wen; Winokur, Sara T; Pachman, Lauren M; Fan, Chenguang; Mandler, Raul; Nevo, Yoram; Gordon, Erynn; Zhu, Yitan; Dong, Yibin; Wang, Yue; Hoffman, Eric P

    2006-04-01

    Mutations of lamin A/C (LMNA) cause a wide range of human disorders, including progeria, lipodystrophy, neuropathies and autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD). EDMD is also caused by X-linked recessive loss-of-function mutations of emerin, another component of the inner nuclear lamina that directly interacts with LMNA. One model for disease pathogenesis of LMNA and emerin mutations is cell-specific perturbations of the mRNA transcriptome in terminally differentiated cells. To test this model, we studied 125 human muscle biopsies from 13 diagnostic groups (125 U133A, 125 U133B microarrays), including EDMD patients with LMNA and emerin mutations. A Visual and Statistical Data Analyzer (VISDA) algorithm was used to statistically model cluster hierarchy, resulting in a tree of phenotypic classifications. Validations of the diagnostic tree included permutations of U133A and U133B arrays, and use of two probe set algorithms (MAS5.0 and MBEI). This showed that the two nuclear envelope defects (EDMD LMNA, EDMD emerin) were highly related disorders and were also related to fascioscapulohumeral muscular dystrophy (FSHD). FSHD has recently been hypothesized to involve abnormal interactions of chromatin with the nuclear envelope. To identify disease-specific transcripts for EDMD, we applied a leave-one-out (LOO) cross-validation approach using LMNA patient muscle as a test data set, with reverse transcription-polymerase chain reaction (RT-PCR) validations in both LMNA and emerin patient muscle. A high proportion of top-ranked and validated transcripts were components of the same transcriptional regulatory pathway involving Rb1 and MyoD during muscle regeneration (CRI-1, CREBBP, Nap1L1, ECREBBP/p300), where each was specifically upregulated in EDMD. Using a muscle regeneration time series (27 time points) we develop a transcriptional model for downstream consequences of LMNA and emerin mutations. We propose that key interactions between the nuclear

  11. Nuclear sequestration of COL1A1 mRNA transcript associated with type I osteogenesis imperfecta (OI)

    SciTech Connect

    Primorac, D.; Stover, M.L.; McKinstry, M.B.

    1994-09-01

    Previously we identified an OI type I patient with a splice donor mutation that resulted in intron 26 retention instead of exon skipping and sequestration of normal levels of the mutant transcript in the nuclear compartment. Intron retention was consistent with the exon definition hypothesis for splice site selection since the size of the exon-intron-exon unit was less than 300 bp. Furthermore, the retained intron contained in-frame stop codons which is thought to cause the mutant RNA to remain within the nucleus rather than appearing in the cytoplasm. To test these hypotheses, genomic fragments containing the normal sequence or the donor mutation were cloned into a collagen minigene and expressed in stably tansfected NIH 3T3 cells. None of the modifications to the normal intron altered the level of RNA that accumulated in the cytoplasm, as expected. However none of the modifications to the mutant intron allowed accumulation of normal levels of mRNA in the cytoplasm. Moreover, in contrast to our findings in the patient`s cells only low levels of mutant transcript were found in the nucleus; a fraction of the transcript did appear in the cytoplasm which had spliced the mutant donor site correctly. Nuclear run-on experiments demonstrated equal levels of transcription from each transgene. Expression of another donor mutation known to cause in-frame exon skipping in OI type IV was accurately reproduced in the minigene in transfected 3T3 cells. Our experience suggests that either mechanism can lead to formation of a null allele possibly related to the type of splicing events surrounding the potential stop codons. Understanding the rules governing inactivation of a collagen RNA transcript may be important in designing a strategy to inactivate a dominate negative mutation associated with the more severe forms of OI.

  12. Analysis of the Heat Shock Response in Mouse Liver Reveals Transcriptional Dependence on the Nuclear Receptor Peroxisome Proliferator-Activated Receptor alpha (PPARα)

    EPA Science Inventory

    BACKGROUND: The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by h...

  13. Nuclear pore complex evolution: a trypanosome Mlp analogue functions in chromosomal segregation but lacks transcriptional barrier activity

    PubMed Central

    Holden, Jennifer M.; Koreny, Ludek; Obado, Samson; Ratushny, Alexander V.; Chen, Wei-Ming; Chiang, Jung-Hsien; Kelly, Steven; Chait, Brian T.; Aitchison, John D.; Rout, Michael P.; Field, Mark C.

    2014-01-01

    The nuclear pore complex (NPC) has dual roles in nucleocytoplasmic transport and chromatin organization. In many eukaryotes the coiled-coil Mlp/Tpr proteins of the NPC nuclear basket have specific functions in interactions with chromatin and defining specialized regions of active transcription, whereas Mlp2 associates with the mitotic spindle/NPC in a cell cycle–dependent manner. We previously identified two putative Mlp-related proteins in African trypanosomes, TbNup110 and TbNup92, the latter of which associates with the spindle. We now provide evidence for independent ancestry for TbNup92/TbNup110 and Mlp/Tpr proteins. However, TbNup92 is required for correct chromosome segregation, with knockout cells exhibiting microaneuploidy and lowered fidelity of telomere segregation. Further, TbNup92 is intimately associated with the mitotic spindle and spindle anchor site but apparently has minimal roles in control of gene transcription, indicating that TbNup92 lacks major barrier activity. TbNup92 therefore acts as a functional analogue of Mlp/Tpr proteins, and, together with the lamina analogue NUP-1, represents a cohort of novel proteins operating at the nuclear periphery of trypanosomes, uncovering complex evolutionary trajectories for the NPC and nuclear lamina. PMID:24600046

  14. Phosphatidic Acid Interacts with a MYB Transcription Factor and Regulates Its Nuclear Localization and Function in Arabidopsis[C][W

    PubMed Central

    Yao, Hongyan; Wang, Geliang; Guo, Liang; Wang, Xuemin

    2013-01-01

    Phosphatidic acid (PA) has emerged as a class of cellular mediators involved in various cellular and physiological processes, but little is known about its mechanism of action. Here we show that PA interacts with WEREWOLF (WER), a R2R3 MYB transcription factor involved in root hair formation. The PA-interacting region is confined to the end of the R2 subdomain. The ablation of the PA binding motif has no effect on WER binding to DNA, but abolishes its nuclear localization and its function in regulating epidermal cell fate. Inhibition of PA production by phospholipase Dζ also suppresses WER’s nuclear localization, root hair formation, and elongation. These results suggest a role for PA in promoting protein nuclear localization. PMID:24368785

  15. Nuclear respiratory factor 2 regulates the transcription of AMPA receptor subunit GluA2 (Gria2).

    PubMed

    Priya, Anusha; Johar, Kaid; Nair, Bindu; Wong-Riley, Margaret T T

    2014-12-01

    Neuronal activity is highly dependent on energy metabolism. Nuclear respiratory factor 2 (NRF-2) tightly couples neuronal activity and energy metabolism by transcriptionally co-regulating all 13 subunits of an important energy-generating enzyme, cytochrome c oxidase (COX), as well as critical subunits of excitatory NMDA receptors. AMPA receptors are another major class of excitatory glutamatergic receptors that mediate most of the fast excitatory synaptic transmission in the brain. They are heterotetrameric proteins composed of various combinations of GluA1-4 subunits, with GluA2 being the most common one. We have previously shown that GluA2 (Gria2) is transcriptionally regulated by nuclear respiratory factor 1 (NRF-1) and specificity protein 4 (Sp4), which also regulate all subunits of COX. However, it was not known if NRF-2 also couples neuronal activity and energy metabolism by regulating subunits of the AMPA receptors. By means of multiple approaches, including electrophoretic mobility shift and supershift assays, chromatin immunoprecipitation, promoter mutations, real-time quantitative PCR, and western blot analysis, NRF-2 was found to functionally regulate the expression of Gria2, but not of Gria1, Gria3, or Gria4 genes in neurons. By regulating the GluA2 subunit of the AMPA receptor, NRF-2 couples energy metabolism and neuronal activity at the transcriptional level through a concurrent and parallel mechanism with NRF-1 and Sp4. PMID:25245478

  16. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression.

    PubMed Central

    Ktistaki, E; Talianidis, I

    1997-01-01

    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) strongly inhibit transcriptional activation mediated by nuclear hormone receptors, including hepatocyte nuclear factor 4 (HNF-4). COUP-TFs repress HNF-4-dependent gene expression by competition with HNF-4 for common binding sites found in several regulatory regions. Here we show that promoters, such as the HNF-1 promoter, which are recognized by HNF-4 but not by COUP-TFs are activated by COUP-TFI and COUP-TFII in conjunction with HNF-4 more than 100-fold above basal levels, as opposed to about 8-fold activation by HNF-4 alone. This enhancement was strictly dependent on an intact HNF-4 E domain. In vitro and in vivo evidence suggests that COUP-TFs enhance HNF-4 activity by a mechanism that involves their physical interaction with the amino acid 227 to 271 region of HNF-4. Our results indicate that in certain promoters, COUP-TFs act as auxiliary cofactors for HNF-4, orienting the HNF-4 activation domain in a more efficient configuration to achieve enhanced transcriptional activity. These findings provide new insights into the regulatory functions of COUP-TFs, suggesting their involvement in the initial activation and subsequent high-level expression of hepatic regulators, as well as in the positive and negative modulation of downstream target genes. PMID:9111350

  17. Chicken ovalbumin upstream promoter transcription factors act as auxiliary cofactors for hepatocyte nuclear factor 4 and enhance hepatic gene expression.

    PubMed

    Ktistaki, E; Talianidis, I

    1997-05-01

    Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) strongly inhibit transcriptional activation mediated by nuclear hormone receptors, including hepatocyte nuclear factor 4 (HNF-4). COUP-TFs repress HNF-4-dependent gene expression by competition with HNF-4 for common binding sites found in several regulatory regions. Here we show that promoters, such as the HNF-1 promoter, which are recognized by HNF-4 but not by COUP-TFs are activated by COUP-TFI and COUP-TFII in conjunction with HNF-4 more than 100-fold above basal levels, as opposed to about 8-fold activation by HNF-4 alone. This enhancement was strictly dependent on an intact HNF-4 E domain. In vitro and in vivo evidence suggests that COUP-TFs enhance HNF-4 activity by a mechanism that involves their physical interaction with the amino acid 227 to 271 region of HNF-4. Our results indicate that in certain promoters, COUP-TFs act as auxiliary cofactors for HNF-4, orienting the HNF-4 activation domain in a more efficient configuration to achieve enhanced transcriptional activity. These findings provide new insights into the regulatory functions of COUP-TFs, suggesting their involvement in the initial activation and subsequent high-level expression of hepatic regulators, as well as in the positive and negative modulation of downstream target genes. PMID:9111350

  18. Global analysis of the nuclear processing of transcripts with unspliced U12-type introns by the exosome.

    PubMed

    Niemelä, Elina H; Oghabian, Ali; Staals, Raymond H J; Greco, Dario; Pruijn, Ger J M; Frilander, Mikko J

    2014-06-01

    U12-type introns are a rare class of introns in the genomes of diverse eukaryotes. In the human genome, they number over 700. A subset of these introns has been shown to be spliced at a slower rate compared to the major U2-type introns. This suggests a rate-limiting regulatory function for the minor spliceosome in the processing of transcripts containing U12-type introns. However, both the generality of slower splicing and the subsequent fate of partially processed pre-mRNAs remained unknown. Here, we present a global analysis of the nuclear retention of transcripts containing U12-type introns and provide evidence for the nuclear decay of such transcripts in human cells. Using SOLiD RNA sequencing technology, we find that, in normal cells, U12-type introns are on average 2-fold more retained than the surrounding U2-type introns. Furthermore, we find that knockdown of RRP41 and DIS3 subunits of the exosome stabilizes an overlapping set of U12-type introns. RRP41 knockdown leads to slower decay kinetics of U12-type introns and globally upregulates the retention of U12-type, but not U2-type, introns. Our results indicate that U12-type introns are spliced less efficiently and are targeted by the exosome. These characteristics support their role in the regulation of cellular mRNA levels. PMID:24848017

  19. An in vitro investigation on the cytotoxic and nuclear receptor transcriptional activity of the mycotoxins fumonisin B1 and beauvericin.

    PubMed

    Fernández-Blanco, Celia; Frizzell, Caroline; Shannon, Maeve; Ruiz, Maria-Jose; Connolly, Lisa

    2016-08-22

    Fumonisin B1 (FB1) and beauvericin (BEA) are secondary metabolites of filamentous fungi, which under appropriate temperature and humidity conditions may develop on various foods and feeds. To date few studies have been performed to evaluate the toxicological and endocrine disrupting effects of FB1 and BEA. The present study makes use of various in vitro bioassays including; oestrogen, androgen, progestagen and glucocorticoid reporter gene assays (RGAs) for the study of nuclear receptor transcriptional activity, the thiazolyl blue tetrazolium bromide (MTT) assay to monitor cytotoxicity and high content analysis (HCA) for the detection of pre-lethal toxicity in the RGA and Caco-2 human colon adenocarcinoma cells. At the receptor level, 0.001-10μM BEA or FB1 did not induce any agonist responses in the RGAs. However at non-cytotoxic concentrations, an antagonistic effect was exhibited by FB1 on the androgen nuclear receptor transcriptional activity at 10μM and BEA on the progestagen and glucocorticoid receptors at 1μM. MTT analysis showed no decrease in cell viability at any concentration of FB1, whereas BEA showed a significant decrease in viability at 10μM. HCA analysis confirmed that the reduction in the progestagen receptor transcriptional activity at 1μM BEA was not due to pre-lethal toxicity. In addition, BEA (10μM) induced significant toxicity in both the TM-Luc (progestagen responsive) and Caco-2 cells. PMID:27234500

  20. Nucleolin is important for Epstein-Barr virus nuclear antigen 1-mediated episome binding, maintenance, and transcription.

    PubMed

    Chen, Ya-Lin; Liu, Cheng-Der; Cheng, Chi-Ping; Zhao, Bo; Hsu, Hao-Jen; Shen, Chih-Long; Chiu, Shu-Jun; Kieff, Elliott; Peng, Chih-wen

    2014-01-01

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for EBV episome maintenance, replication, and transcription. These effects are mediated by EBNA1 binding to cognate oriP DNA, which comprise 20 imperfect copies of a 30-bp dyad symmetry enhancer and an origin for DNA replication. To identify cell proteins essential for these EBNA1 functions, EBNA1 associated cell proteins were immune precipitated and analyzed by liquid chromatography-tandem mass spectrometry. Nucleolin (NCL) was identified to be EBNA1 associated. EBNA1's N-terminal 100 aa and NCL's RNA-binding domains were critical for EBNA1/NCL interaction. Lentivirus shRNA-mediated NCL depletion substantially reduced EBNA1 recruitment to oriP DNA, EBNA1-dependent transcription of an EBV oriP luciferase reporter, and EBV genome maintenance in lymphoblastoid cell lines. NCL RNA-binding domain K429 was critical for ATP and EBNA1 binding. NCL overexpression increased EBNA1 binding to oriP and transcription, whereas NCL K429A was deficient. Moreover, NCL silencing impaired lymphoblastoid cell line growth. These experiments reveal a surprisingly critical role for NCL K429 in EBNA1 episome maintenance and transcription, which may be a target for therapeutic intervention. PMID:24344309

  1. Myocyte nuclear factor, a novel winged-helix transcription factor under both developmental and neural regulation in striated myocytes.

    PubMed Central

    Bassel-Duby, R; Hernandez, M D; Yang, Q; Rochelle, J M; Seldin, M F; Williams, R S

    1994-01-01

    A sequence motif (CCAC box) within an upstream enhancer region of the human myoglobin gene is essential for transcriptional activity in both cardiac and skeletal muscle. A cDNA clone, myocyte nuclear factor (MNF), was isolated from a murine expression library on the basis of sequence-specific binding to the myoglobin CCAC box motif and was found to encode a novel member of the winged-helix or HNF-3/fork head family of transcription factors. Probes based on this sequence identify two mRNA species that are upregulated during myocyte differentiation, and antibodies raised against recombinant MNF identify proteins of approximately 90, 68, and 65 kDa whose expression is regulated following differentiation of myogenic cells in culture. In addition, the 90-kDa form of MNF is phosphorylated and is upregulated in intact muscles subjected to chronic motor nerve stimulation, a potent stimulus to myoglobin gene regulation. Amino acid residues 280 to 389 of MNF demonstrate 35 to 89% sequence identity to the winged-helix domain from other known members of this family, but MNF is otherwise divergent. A proline-rich amino-terminal region (residues 1 to 206) of MNF functions as a transcriptional activation domain. These studies provide the first evidence that members of the winged-helix family of transcription factors have a role in myogenic differentiation and in remodeling processes of adult muscles that occur in response to physiological stimuli. Images PMID:8007964

  2. Nuclear Factor 1 and T-Cell Factor/LEF Recognition Elements Regulate Pitx2 Transcription in Pituitary Development▿

    PubMed Central

    Ai, Di; Wang, Jun; Amen, Melanie; Lu, Mei-Fang; Amendt, Brad A.; Martin, James F.

    2007-01-01

    Pitx2, a paired-related homeobox gene that is mutated in Rieger syndrome I, is the earliest known marker of oral ectoderm. Pitx2 was previously shown to be required for tooth, palate, and pituitary development in mice; however, the mechanisms regulating Pitx2 transcription in the oral ectoderm are poorly understood. Here we used an in vivo transgenic approach to investigate the mechanisms regulating Pitx2 transcription. We identified a 7-kb fragment that directs LacZ expression in oral ectoderm and in many of its derivatives. Deletion analysis of transgenic embryos reduced this fragment to a 520-bp region that directed LacZ activity to Rathke's pouch. A comparison of the mouse and human sequences revealed a conserved nuclear factor 1 (NF-1) recognition element near a consensus T-cell factor (TCF)/LEF binding site. The mutation of either site individually abolished LacZ activity in transgenic embryos, identifying Pitx2 as a direct target of Wnt signaling in pituitary development. These findings uncover a requirement for NF-1 and TCF factors in Pitx2 transcriptional regulation in the pituitary and provide insight into the mechanisms controlling region-specific transcription in the oral ectoderm and its derivatives. PMID:17562863

  3. Signal-dependent Regulation of Transcription by Histone Deacetylase 7 Involves Recruitment to Promyelocytic Leukemia Protein Nuclear Bodies

    PubMed Central

    Gao, Chengzhuo; Cheng, Xiwen; Lam, Minh; Liu, Yu; Liu, Qing; Chang, Kun-Sang

    2008-01-01

    Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are dynamic subnuclear compartments that play roles in several cellular processes, including apoptosis, transcriptional regulation, and DNA repair. Histone deacetylase (HDAC) 7 is a potent corepressor that inhibits transcription by myocyte enhancer factor 2 (MEF2) transcription factors. We show here that endogenous HDAC7 and PML interact and partially colocalize in PML NBs. Tumor necrosis factor (TNF)-α treatment recruits HDAC7 to PML NBs and enhances association of HDAC7 with PML in human umbilical vein endothelial cells. Consequently, TNF-α promotes dissociation of HDAC7 from MEF2 transcription factors and the promoters of MEF2 target genes such as matrix metalloproteinase (MMP)-10, leading to accumulation of MMP-10 mRNA. Conversely, knockdown of PML enhances the association between HDAC7 and MEF2 and decreases MMP-10 mRNA accumulation. Accordingly, ectopic expression of PML recruits HDAC7 to PML NBs and leads to activation of MEF2 reporter activity. Notably, small interfering RNA knockdown of PML decreases basal and TNF-α-induced MMP-10 mRNA accumulation. Our results reveal a novel mechanism by which PML sequesters HDAC7 to relieve repression and up-regulate gene expression. PMID:18463162

  4. The Epstein-Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins.

    PubMed

    Coppotelli, Giuseppe; Mughal, Nouman; Callegari, Simone; Sompallae, Ramakrishna; Caja, Laia; Luijsterburg, Martijn S; Dantuma, Nico P; Moustakas, Aristidis; Masucci, Maria G

    2013-03-01

    Viral proteins reprogram their host cells by hijacking regulatory components of protein networks. Here we describe a novel property of the Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA1) that may underlie the capacity of the virus to promote a global remodeling of chromatin architecture and cellular transcription. We found that the expression of EBNA1 in transfected human and mouse cells is associated with decreased prevalence of heterochromatin foci, enhanced accessibility of cellular DNA to micrococcal nuclease digestion and decreased average length of nucleosome repeats, suggesting de-protection of the nucleosome linker regions. This is a direct effect of EBNA1 because targeting the viral protein to heterochromatin promotes large-scale chromatin decondensation with slow kinetics and independent of the recruitment of adenosine triphosphate-dependent chromatin remodelers. The remodeling function is mediated by a bipartite Gly-Arg rich domain of EBNA1 that resembles the AT-hook of High Mobility Group A (HMGA) architectural transcription factors. Similar to HMGAs, EBNA1 is highly mobile in interphase nuclei and promotes the mobility of linker histone H1, which counteracts chromatin condensation and alters the transcription of numerous cellular genes. Thus, by regulating chromatin compaction, EBNA1 may reset cellular transcription during infection and prime the infected cells for malignant transformation. PMID:23358825

  5. Overexpression of the Transcriptional Repressor Complex BCL-6/BCoR Leads to Nuclear Aggregates Distinct from Classical Aggresomes

    PubMed Central

    Buchberger, Elisabeth; El Harchi, Miriam; Payrhuber, Dietmar; Zommer, Anna; Schauer, Dominic; Simonitsch-Klupp, Ingrid; Bilban, Martin; Brostjan, Christine

    2013-01-01

    Nuclear inclusions of aggregated proteins have primarily been characterized for molecules with aberrant poly-glutamine repeats and for mutated or structurally altered proteins. They were termed “nuclear aggresomes” and misfolding was shown to promote association with molecular chaperones and proteasomes. Here, we report that two components of a transcriptional repressor complex (BCL-6 and BCoR) of wildtype amino acid sequence can independently or jointly induce the formation of nuclear aggregates when overexpressed. The observation that the majority of cells rapidly downregulate BCL-6/BCoR levels, supports the notion that expression of these proteins is under tight control. The inclusions occur when BCL-6/BCoR expression exceeds 150-fold of endogenous levels. They preferentially develop in the nucleus by a gradual increase in aggregate size to form large, spheroid structures which are not associated with heat shock proteins or marked by ubiquitin. In contrast, we find the close association of BCL-6/BCoR inclusions with PML bodies and a reduction in aggregation upon the concomitant overexpression of histone deacetylases or heat shock protein 70. In summary, our data offer a perspective on nuclear aggregates distinct from classical “nuclear aggresomes”: Large complexes of spheroid structure can evolve in the nucleus without being marked by the cellular machinery for protein refolding and degradation. However, nuclear proteostasis can be restored by balancing the levels of chaperones. PMID:24146931

  6. Zinc fingers 1, 2, 5 and 6 of transcriptional regulator, PRDM4, are required for its nuclear localisation.

    PubMed

    Tunbak, Hale; Georgiou, Christiana; Guan, Cui; Richardson, William David; Chittka, Alexandra

    2016-05-27

    PRDM4 is a member of the PRDM family of transcriptional regulators which control various aspects of cellular differentiation and proliferation. PRDM proteins exert their biological functions both in the cytosol and the nucleus of cells. All PRDM proteins are characterised by the presence of two distinct structural motifs, the PR/SET domain and the zinc finger (ZF) motifs. We previously observed that deletion of all six zinc fingers found in PRDM4 leads to its accumulation in the cytosol, whereas overexpressed full length PRDM4 is found predominantly in the nucleus. Here, we investigated the requirements for single zinc fingers in the nuclear localisation of PRDM4. We demonstrate that ZF's 1, 2, 5 and 6 contribute to the accumulation of PRDM4 in the nucleus. Their effect is additive as deleting either ZF1-2 or ZF 5-6 redistributes PRDM4 protein from being almost exclusively nuclear to cytosolic and nuclear. We investigated the potential mechanism of nuclear shuttling of PRDM4 via the importin α/β-mediated pathway and find that PRDM4 nuclear targeting is independent of α/β-mediated nuclear import. PMID:27125459

  7. Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation.

    PubMed

    Horita, Henrick; Wysoczynski, Christina L; Walker, Lori A; Moulton, Karen S; Li, Marcella; Ostriker, Allison; Tucker, Rebecca; McKinsey, Timothy A; Churchill, Mair E A; Nemenoff, Raphael A; Weiser-Evans, Mary C M

    2016-01-01

    Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings. PMID:26940659

  8. Heterogeneous nuclear ribonuclear protein U associates with YAP and regulates its co-activation of Bax transcription.

    PubMed

    Howell, Michael; Borchers, Christoph; Milgram, Sharon L

    2004-06-18

    Although initially described as a cytosolic scaffolding protein, YAP (Yes-associated protein of 65 kDa) is known to associate with multiple transcription factors in the nucleus. Using affinity chromatography and mass spectrometry, we show that YAP interacts with heterogeneous nuclear ribonuclear protein U (hnRNP U), an RNA- and DNA-binding protein enriched in the nuclear matrix that also plays a role in the regulation of gene expression. hnRNP U interacts specifically with the proline-rich amino terminus of YAP, a region of YAP that is not found in the related protein TAZ. Although hnRNP U and YAP localize to both the nucleus and the cytoplasm, YAP does not translocate to the nucleus in an hnRNP U-dependent manner. Furthermore, hnRNP U and YAP only interact in the nucleus, suggesting that the association between the two proteins is regulated. Co-expression of hnRNP U attenuates the ability of YAP to increase the activity of a p73-driven Bax-luciferase reporter plasmid. In contrast, hnRNP U has no effect when co-expressed with a truncated YAP protein lacking the hnRNP U-binding site. Because YAP is distinguished from the homologue TAZ by its proline-rich amino terminus, the YAP-hnRNP U interaction may uniquely regulate the nuclear function(s) of YAP. The YAP-hnRNP U interaction provides another mechanism of YAP transcriptional regulation. PMID:15096513

  9. Thyroid transcription factor-1, hepatocyte nuclear factor-3β and surfactant protein A and B in the developing chick lung

    PubMed Central

    ZENG, XIN; YUTZEY, KATHERINE E.; WHITSETT, JEFFREY A.

    1998-01-01

    Expression of surfactant proteins SP-A, SP-B and the transcription factors TTF-1 and HNF-3β was identified by immunohistochemistry in the developing chicken. SP-B, a small hydrophobic peptide critical for lung function and surfactant homeostasis in mammals, was detected in the epithelial cells of parabronchi in embryonic chicken lung from the 15th day of incubation, prior to the onset of the breathing movements and was expressed at high levels in the posthatching chicken lung. SP-A, an abundant surfactant protein involved in innate defence of the mammalian lung, was detected in the chick embryo in subsets of epithelial cells in the mesobronchus, starting from d 15 and was detected in the posthatching chicken lung. The transcription factors hepatocyte nuclear factor 3β (HNF-3β) and thyroid transcription factor-1 (TTF-1), both regulators epithelial cell differentiation and gene expression in mammalian species, were detected at the onset of lung bud formation (d 4 of incubation) and throughout lung development. Abundant nuclear expression was detected in nuclei of respiratory epithelial cells of developing bronchial tubules for both transcription factors. In contrast to the surfactant proteins, expression of both TTF-1 and HNF-3β decreased markedly in posthatching chicken lung. The expression of SP-A and SP-B in chick lung demonstrates the conservation of surfactant proteins in vertebrates. The temporospatial pattern of TTF-1 and HNF-3β overlaps with that of SP-A and SP-B, supporting their potential roles in chick lung development and demonstrating the conservation of regulatory mechanisms contributing to gene expression in respiratory epithelial cells in vertebrates. PMID:9877295

  10. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB.

    PubMed Central

    Yu, Zhiyuan; Zhang, Wenzheng; Kone, Bruce C

    2002-01-01

    Prolific generation of NO by inducible nitric oxide synthase (iNOS) can cause unintended injury to host cells during glomerulonephritis and other inflammatory diseases. While much is known about the mechanisms of iNOS induction, few transcriptional repressors have been found. We explored the role of signal transducers and activators of transcription 3 (STAT3) proteins in interleukin (IL)-1beta- and lipopolysaccharide (LPS)+interferon (IFN)-gamma-mediated iNOS induction in murine mesangial cells. Both stimuli induced rapid phosphorylation of STAT3 and sequence-specific STAT3 DNA-binding activity. Supershift assays with a STAT3 element probe demonstrated that nuclear factor kappaB (NF-kappaB) p65 and p50 complexed with STAT3 in the DNA-protein complex. The direct interaction of STAT3 and NF-kappaB p65 was verified in vivo by co-immunoprecipitation and in vitro by pull-down assays with glutathione S-transferase-NF-kappaB p65 fusion protein and in vitro -translated STAT3alpha. Overexpression of STAT3 dramatically inhibited IL-1beta- or LPS+IFN-gamma-mediated induction of iNOS promoter-luciferase constructs that contained the wild-type iNOS promoter or ones harbouring mutated STAT-binding elements. In tests of indirect inhibitory effects of STAT3, overexpression of STAT3 dramatically inhibited the activity of an NF-kappaB-dependent promoter devoid of STAT-binding elements without affecting NF-kappaB DNA-binding activity. Thus STAT3, via direct interactions with NF-kappaB p65, serves as a dominant-negative inhibitor of NF-kappaB activity to suppress indirectly cytokine induction of the iNOS promoter in mesangial cells. These results provide a new model for the termination of NO production by activated iNOS following exposure to pro-inflammatory stimuli. PMID:12057007

  11. Release of Severe Acute Respiratory Syndrome Coronavirus Nuclear Import Block Enhances Host Transcription in Human Lung Cells

    PubMed Central

    Tilton, Susan C.; Menachery, Vineet D.; Gralinski, Lisa E.; Schäfer, Alexandra; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Chang, Jean; Luna, Maria L.; Long, Casey E.; Shukla, Anil K.; Bankhead, Armand R.; Burkett, Susan E.; Zornetzer, Gregory; Tseng, Chien-Te Kent; Metz, Thomas O.; Pickles, Raymond; McWeeney, Shannon; Smith, Richard D.; Katze, Michael G.; Waters, Katrina M.; Baric, Ralph S.

    2013-01-01

    The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo. PMID:23365422

  12. Dexamethasone inhibits human interleukin 2 but not interleukin 2 receptor gene expression in vitro at the level of nuclear transcription.

    PubMed Central

    Boumpas, D T; Anastassiou, E D; Older, S A; Tsokos, G C; Nelson, D L; Balow, J E

    1991-01-01

    Glucocorticosteroids have an inhibitory effect on the expression of interleukin 2 (IL-2) and interleukin 2 receptor (IL-2R) genes. To determine the mechanisms of this inhibition, human T lymphocytes were stimulated with mitogens in the presence of dexamethasone. Nuclear transcription run-off assays showed that high doses of dexamethasone inhibited the transcription of the IL-2 gene but not that of the IL-2R gene. Post-transcriptionally, high doses of dexamethasone (10(-4) M) were required to inhibit IL-2R mRNA levels by 50%, whereas lower doses (10(-6) M) inhibited by greater than 70% the accumulation of IL-2 mRNA. IL-2 mRNA half-life decreased in the presence of dexamethasone (10(-6) M) by approximately 50%. At the protein product level, dexamethasone inhibited both IL-2 production, as well as cell surface and soluble forms of IL-2R. IL-2R gene expression was inhibited for at least 72 h after exposure of cells to dexamethasone. In the presence of exogenous IL-2, dexamethasone failed to exert a significant effect on the production of IL-2R protein. These data indicate that dexamethasone has a greater effect on the expression of the IL-2 gene than on the IL-2R gene. Dexamethasone both inhibits transcription of the IL-2 gene and decreases the stability of IL-2 mRNA. The effect of dexamethasone on the IL-2R gene is post-transcriptional and may result indirectly from decreased IL-2 production. Images PMID:2022743

  13. 7SK small nuclear RNA directly affects HMGA1 function in transcription regulation

    PubMed Central

    Eilebrecht, Sebastian; Brysbaert, Guillaume; Wegert, Thomas; Urlaub, Henning; Benecke, Bernd-Joachim; Benecke, Arndt

    2011-01-01

    Non-coding (nc) RNAs are increasingly recognized to play important regulatory roles in eukaryotic gene expression. The highly abundant and essential 7SK ncRNA has been shown to negatively regulate RNA Polymerase II transcription by inactivating the positive transcription elongation factor b (P-TEFb) in cellular and Tat-dependent HIV transcription. Here, we identify a more general, P-TEFb-independent role of 7SK RNA in directly affecting the function of the architectural transcription factor and chromatin regulator HMGA1. An important regulatory role of 7SK RNA in HMGA1-dependent cell differentiation and proliferation regulation is uncovered with the identification of over 1500 7SK-responsive HMGA1 target genes. Elevated HMGA1 expression is observed in nearly every type of cancer making the use of a 7SK substructure in the inhibition of HMGA1 activity, as pioneered here, potentially useful in therapy. The 7SK-HMGA1 interaction not only adds an essential facet to the comprehension of transcriptional plasticity at the coupling of initiation and elongation, but also might provide a molecular link between HIV reprogramming of cellular gene expression-associated oncogenesis. PMID:21087998

  14. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products. Progress report, June 1, 1991--May 31, 1992

    SciTech Connect

    Kuchka, M.R.

    1992-05-01

    The following is a review of research accomplished in the first two years of funding for the above mentioned project. The work performed is a molecular characterization of nuclear mutants of Chlamydomonas reinhardtii which are deficient in different stages in the post-transcriptional expression of a single chloroplast encoded polypeptide, the D2 protein of Photosystem II. Our long-term goals are to understand the molecular mechanisms by which nuclear gene products affect the expression of chloroplast genes. Specifically, we which to understand how specific nuclear gene products affect the turnover rate of the D2 encoding mRNA (psbD), how other nuclear encoded factors work to promote the translation of psbD mRNA and/or stabilize the D2 protein, and what the role of the D2 protein itself is in Photosystem II assembly and in the control of expression of other chloroplast genes. This progress report will be organized into four major sections concerning (I) The characterization of nuclear mutants affected in D2 translation/turnover, (II) The study of trans-acting factors which associate with the 5{prime} end of the psbD mRNA, (III) In vitro mutagenesis of the psbD gene, and (IV) Additional studies.

  15. The RNA Helicases AtMTR4 and HEN2 Target Specific Subsets of Nuclear Transcripts for Degradation by the Nuclear Exosome in Arabidopsis thaliana

    PubMed Central

    Lange, Heike; Zuber, Hélène; Sement, François M.; Chicher, Johana; Kuhn, Lauriane; Hammann, Philippe; Brunaud, Véronique; Bérard, Caroline; Bouteiller, Nathalie; Balzergue, Sandrine; Aubourg, Sébastien; Martin-Magniette, Marie-Laure; Vaucheret, Hervé; Gagliardi, Dominique

    2014-01-01

    The RNA exosome is the major 3′-5′ RNA degradation machine of eukaryotic cells and participates in processing, surveillance and turnover of both nuclear and cytoplasmic RNA. In both yeast and human, all nuclear functions of the exosome require the RNA helicase MTR4. We show that the Arabidopsis core exosome can associate with two related RNA helicases, AtMTR4 and HEN2. Reciprocal co-immunoprecipitation shows that each of the RNA helicases co-purifies with the exosome core complex and with distinct sets of specific proteins. While AtMTR4 is a predominantly nucleolar protein, HEN2 is located in the nucleoplasm and appears to be excluded from nucleoli. We have previously shown that the major role of AtMTR4 is the degradation of rRNA precursors and rRNA maturation by-products. Here, we demonstrate that HEN2 is involved in the degradation of a large number of polyadenylated nuclear exosome substrates such as snoRNA and miRNA precursors, incompletely spliced mRNAs, and spurious transcripts produced from pseudogenes and intergenic regions. Only a weak accumulation of these exosome substrate targets is observed in mtr4 mutants, suggesting that MTR4 can contribute, but plays rather a minor role for the degradation of non-ribosomal RNAs and cryptic transcripts in Arabidopsis. Consistently, transgene post-transcriptional gene silencing (PTGS) is marginally affected in mtr4 mutants, but increased in hen2 mutants, suggesting that it is mostly the nucleoplasmic exosome that degrades aberrant transgene RNAs to limit their entry in the PTGS pathway. Interestingly, HEN2 is conserved throughout green algae, mosses and land plants but absent from metazoans and other eukaryotic lineages. Our data indicate that, in contrast to human and yeast, plants have two functionally specialized RNA helicases that assist the exosome in the degradation of specific nucleolar and nucleoplasmic RNA populations, respectively. PMID:25144737

  16. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L.

    PubMed

    Xu, Li; Lin, Zhongyuan; Tao, Qing; Liang, Mingxiang; Zhao, Gengmao; Yin, Xiangzhen; Fu, Ruixin

    2014-01-01

    Members of the plant NUCLEAR FACTOR Y (NF-Y) family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola), each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses. In this study, we demonstrated that multiple members of thirty three BnNF-Ys responded rapidly to salinity, drought, or ABA treatments. Transcripts of five BnNF-YAs, seven BnNF-YBs, and two BnNF-YCs were up-regulated by salinity stress, whereas the expression of thirteen BnNF-YAs, ten BnNF-YBs, and four BnNF-YCs were induced by drought stress. Under NaCl treatments, the expression of one BnNF-YA10 and four NF-YBs (BnNF-YB3, BnNF-YB7, BnNF-YB10, and BnNF-YB14) were greatly increased. Under PEG treatments, the expression levels of four NF-YAs (BnNF-YA9, BnNF-YA10, BnNF-YA11, and BnNF-YA12) and five NF-YBs (BnNF-YB1, BnNF-YB8, BnNF-YB10, BnNF-YB13, and BnNF-YB14) were greatly induced. The expression profiles of 20 of the 27 salinity- or drought-induced BnNF-Ys were also affected by ABA treatment. The expression levels of six NF-YAs (BnNF-YA1, BnNF-YA7, BnNF-YA8, BnNF-YA9, BnNF-YA10, and BnNF-YA12) and seven BnNF-YB members (BnNF-YB2, BnNF-YB3, BnNF-YB7, BnNF-YB10, BnNF-YB11, BnNF-YB13, and BnNF-YB14) and two NF-YC members (BnNF-YC2 and BnNF-YC3) were greatly up-regulated by ABA treatments. Only a few BnNF-Ys were inhibited by the above three treatments. Several NF-Y subfamily members exhibited collinear expression patterns. The promoters of all stress-responsive BnNF-Ys harbored at least two types of stress-related cis-elements, such as ABRE, DRE, MYB, or MYC. The cis-element organization of BnNF-Ys was similar to that of Arabidopsis thaliana, and the promoter regions exhibited higher levels of nucleotide sequence identity with Brassica rapa than with Brassica oleracea. This work represents an entry point for investigating the roles of canola NF-Y proteins during abiotic stress responses and provides insight into

  17. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function

    PubMed Central

    Gallardo-Montejano, Violeta I.; Saxena, Geetu; Kusminski, Christine M.; Yang, Chaofeng; McAfee, John L.; Hahner, Lisa; Hoch, Kathleen; Dubinsky, William; Narkar, Vihang A.; Bickel, Perry E.

    2016-01-01

    Dysfunctional cellular lipid metabolism contributes to common chronic human diseases, including type 2 diabetes, obesity, fatty liver disease and diabetic cardiomyopathy. How cells balance lipid storage and mitochondrial oxidative capacity is poorly understood. Here we identify the lipid droplet protein Perilipin 5 as a catecholamine-triggered interaction partner of PGC-1α. We report that during catecholamine-stimulated lipolysis, Perilipin 5 is phosphorylated by protein kinase A and forms transcriptional complexes with PGC-1α and SIRT1 in the nucleus. Perilipin 5 promotes PGC-1α co-activator function by disinhibiting SIRT1 deacetylase activity. We show by gain-and-loss of function studies in cells that nuclear Perilipin 5 promotes transcription of genes that mediate mitochondrial biogenesis and oxidative function. We propose that Perilipin 5 is an important molecular link that couples the coordinated catecholamine activation of the PKA pathway and of lipid droplet lipolysis with transcriptional regulation to promote efficient fatty acid catabolism and prevent mitochondrial dysfunction. PMID:27554864

  18. Nuclear Perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function.

    PubMed

    Gallardo-Montejano, Violeta I; Saxena, Geetu; Kusminski, Christine M; Yang, Chaofeng; McAfee, John L; Hahner, Lisa; Hoch, Kathleen; Dubinsky, William; Narkar, Vihang A; Bickel, Perry E

    2016-01-01

    Dysfunctional cellular lipid metabolism contributes to common chronic human diseases, including type 2 diabetes, obesity, fatty liver disease and diabetic cardiomyopathy. How cells balance lipid storage and mitochondrial oxidative capacity is poorly understood. Here we identify the lipid droplet protein Perilipin 5 as a catecholamine-triggered interaction partner of PGC-1α. We report that during catecholamine-stimulated lipolysis, Perilipin 5 is phosphorylated by protein kinase A and forms transcriptional complexes with PGC-1α and SIRT1 in the nucleus. Perilipin 5 promotes PGC-1α co-activator function by disinhibiting SIRT1 deacetylase activity. We show by gain-and-loss of function studies in cells that nuclear Perilipin 5 promotes transcription of genes that mediate mitochondrial biogenesis and oxidative function. We propose that Perilipin 5 is an important molecular link that couples the coordinated catecholamine activation of the PKA pathway and of lipid droplet lipolysis with transcriptional regulation to promote efficient fatty acid catabolism and prevent mitochondrial dysfunction. PMID:27554864

  19. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer

    PubMed Central

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  20. Sensitive detection of transcription factors in cell nuclear extracts by using a molecular beacons based amplification strategy.

    PubMed

    Zhang, Kai; Wang, Ke; Zhu, Xue; Xie, Minhao

    2016-03-15

    Monitoring transcription factor (TF) levels provides an important assessment of the state of cell populations. Unfortunately, traditional methods for monitoring TF concentration are generally cumbersome and time-consuming. We developed an ultrasensitive one-pot TF detection method that uses target-molecular beacons-dependent amplification (TMDA) fluorescence strategy to circumvent the aforementioned limitations in TF detection. In this assay, we employed a DNA1/DNA2 duplex as the reporting probe and a stem-loop DNA molecular beacon (MB) as the signaling probe. The integration of protein-DNA1/DNA2 duplex and exonuclease III (Exo III) digestion can convert the detection of transcription factors to the detection of reporter oligonucleotides. The subsequent hybridization of the reporter oligonucleotides with the molecular beacons opens the stem-loop structure. The formation of the DNA complex triggers amplification reaction and the recovery of the fluorescence. This assay exhibits high sensitivity with a detection limit of 2.2 pM and a detection range of 3 orders of magnitude, which is superior to most currently used methods for transcription factor detection. More importantly, this method is suitable for the direct detection of TFs in crude nuclear extracts of cancer cells. PMID:26410390

  1. Epstein–Barr virus nuclear antigen 3A protein regulates CDKN2B transcription via interaction with MIZ-1

    PubMed Central

    Bazot, Quentin; Deschamps, Thibaut; Tafforeau, Lionel; Siouda, Maha; Leblanc, Pascal; Harth-Hertle, Marie L.; Rabourdin-Combe, Chantal; Lotteau, Vincent; Kempkes, Bettina; Tommasino, Massimo; Gruffat, Henri; Manet, Evelyne

    2014-01-01

    The Epstein–Barr virus (EBV) nuclear antigen 3 family of protein is critical for the EBV-induced primary B-cell growth transformation process. Using a yeast two-hybrid screen we identified 22 novel cellular partners of the EBNA3s. Most importantly, among the newly identified partners, five are known to play direct and important roles in transcriptional regulation. Of these, the Myc-interacting zinc finger protein-1 (MIZ-1) is a transcription factor initially characterized as a binding partner of MYC. MIZ-1 activates the transcription of a number of target genes including the cell cycle inhibitor CDKN2B. Focusing on the EBNA3A/MIZ-1 interaction we demonstrate that binding occurs in EBV-infected cells expressing both proteins at endogenous physiological levels and that in the presence of EBNA3A, a significant fraction of MIZ-1 translocates from the cytoplasm to the nucleus. Moreover, we show that a trimeric complex composed of a MIZ-1 recognition DNA element, MIZ-1 and EBNA3A can be formed, and that interaction of MIZ-1 with nucleophosmin (NPM), one of its coactivator, is prevented by EBNA3A. Finally, we show that, in the presence of EBNA3A, expression of the MIZ-1 target gene, CDKN2B, is downregulated and repressive H3K27 marks are established on its promoter region suggesting that EBNA3A directly counteracts the growth inhibitory action of MIZ-1. PMID:25092922

  2. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer.

    PubMed

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  3. Mutations in nuclear genes alter post-transcriptional regulation of mitochondrial genes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nuclear gene products are required for the expression of mitochondrial genes and elaboration of functional mitochondrial protein complexes. To better understand the roles of these nuclear genes, we exploited the mitochondrial encoded S-type of cytoplasmic male sterility (CMS-S) and developed a nove...

  4. microRNA-365-targeted nuclear factor I/B transcriptionally represses cyclin-dependent kinase 6 and 4 to inhibit the progression of cutaneous squamous cell carcinoma.

    PubMed

    Zhou, Liang; Wang, Yinghui; Ou, Chengshan; Lin, Zhixiang; Wang, Jianyu; Liu, Hongxia; Zhou, Meijuan; Ding, Zhenhua

    2015-08-01

    Cyclin-dependent kinases are either post-transcriptionally regulated by interacting with cyclins and cyclin-dependent kinase inhibitors or are transcriptionally regulated by transcription factors, but the latter mechanism has not been extensively investigated. Dysregulated transcription factors resulting from aberrantly expressed microRNAs play critical roles in tumor development and progression. Our previous work identified miR-365 as an oncogenic microRNA that promotes the development of cutaneous squamous cell carcinoma via repression of cyclin-dependent kinase 6, while miR-365 also targets nuclear factor I/B. However, the underlying mechanism(s) of the interaction between nuclear factor I/B and cyclin-dependent kinase 6 are unclear. In this work, we demonstrate that miR-365-regulated nuclear factor I/B transcriptionally inhibits cyclin-dependent kinases 6 and 4 by binding to their promoter regions. In vivo and in vitro experiments demonstrate that the loss of nuclear factor I/B after miR-365 expression or treatment with small interfering RNAs results in the upregulation of cyclin-dependent kinases 6 and 4. This upregulation, in turn, enhances the phosphorylation of retinoblastoma protein and tumor progression. Characterizing this transcriptional repression of cyclin-dependent kinases 6 and 4 by nuclear factor I/B contributes to the understanding of the transcriptional regulation of cyclin-dependent kinases by transcription factors and also facilitates the development of new therapeutic regimens to improve the clinical treatment of cutaneous squamous cell carcinoma. PMID:26072217

  5. The C175R mutation alters nuclear localization and transcriptional activity of the nephronophthisis NPHP7 gene product

    PubMed Central

    Ramachandran, Haribaskar; Yakulov, Toma A; Engel, Christina; Müller, Barbara; Walz, Gerd

    2016-01-01

    Nephronophthisis (NPH) is a rare autosomal ciliopathy, but the leading cause for hereditary end-stage renal disease in children. Most NPH family members form large protein networks, which appear to participate in structural elements of the cilium and/or function to restrict access of molecules to the ciliary compartment. The zinc-finger protein GLIS2/NPHP7 represents an exception as it has been implicated in transcriptional regulation; only two families with GLIS2/NPHP7 mutations and typical NPH manifestations have been identified so far. We describe here that the recently identified GLIS2/NPHP7C175R point mutation abolished the nuclear localization of GLIS2/NPHP7. Forced nuclear import did not rescue the transcriptional defects of GLIS2/NPHP7C175R, indicating additional defects as DNA-binding protein. We further observed that wild type, but not GLIS2/NPHP7C175R, prevented the cyst formation caused by depletion of nphp7 in zebrafish embryos. Taken together, our findings indicate that the C175R mutation affects both localization and function of GLIS2/NPHP7, supporting a role of this mutation in NPH, but questioning the direct involvement of GLIS2/NPHP7 in ciliary functions. PMID:26374130

  6. Analysis of premature termination in c-myc during transcription by RNA polymerase II in a HeLa nuclear extract.

    PubMed Central

    London, L; Keene, R G; Landick, R

    1991-01-01

    Transcriptional regulation of the human c-myc gene, an important aspect of cellular differentiation, occurs in part at the level of transcript elongation. In vivo, transcriptional arrest, due to either pausing or termination, occurs near the junction between the first exon and first intron and varies with the growth state of the cell. We have tested the transcription of c-myc templates in HeLa nuclear extracts. We did not observe significant arrest under standard conditions, but we found that a considerable fraction of transcription complexes stopped at the c-myc TII site (just past the first exon-intron junction) when the KCl concentration was raised to 400 mM during elongation. Transcriptional arrest at TII also was observed at KCl concentrations as low as 130 mM and when potassium acetate or potassium glutamate was substituted for KCl. Under these conditions, arrest occurred at the TII site when transcription was initiated at either the c-myc P2 promoter or the adenovirus 2 major late promoter. Further, the TII sequence itself, in forward but not reverse orientation, was sufficient to stop transcription in a HeLa nuclear extract. By separating the TII RNA from active transcription complexes by using gel filtration, we found that arrest at TII at 400 mM KCl resulted in transcript release and thus true transcriptional termination. The efficiency of termination at TII depended on the growth state of the cells from which the extracts were made, suggesting that some factor or factors control premature termination in c-myc. Images PMID:1715021

  7. Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program.

    PubMed

    Khacho, Mireille; Clark, Alysen; Svoboda, Devon S; Azzi, Joelle; MacLaurin, Jason G; Meghaizel, Cynthia; Sesaki, Hiromi; Lagace, Diane C; Germain, Marc; Harper, Mary-Ellen; Park, David S; Slack, Ruth S

    2016-08-01

    Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming. PMID:27237737

  8. Transcription Factor Hepatocyte Nuclear Factor-1β Regulates Renal Cholesterol Metabolism.

    PubMed

    Aboudehen, Karam; Kim, Min Soo; Mitsche, Matthew; Garland, Kristina; Anderson, Norma; Noureddine, Lama; Pontoglio, Marco; Patel, Vishal; Xie, Yang; DeBose-Boyd, Russell; Igarashi, Peter

    2016-08-01

    HNF-1β is a tissue-specific transcription factor that is expressed in the kidney and other epithelial organs. Humans with mutations in HNF-1β develop kidney cysts, and HNF-1β regulates the transcription of several cystic disease genes. However, the complete spectrum of HNF-1β-regulated genes and pathways is not known. Here, using chromatin immunoprecipitation/next generation sequencing and gene expression profiling, we identified 1545 protein-coding genes that are directly regulated by HNF-1β in murine kidney epithelial cells. Pathway analysis predicted that HNF-1β regulates cholesterol metabolism. Expression of dominant negative mutant HNF-1β or kidney-specific inactivation of HNF-1β decreased the expression of genes that are essential for cholesterol synthesis, including sterol regulatory element binding factor 2 (Srebf2) and 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr). HNF-1β mutant cells also expressed lower levels of cholesterol biosynthetic intermediates and had a lower rate of cholesterol synthesis than control cells. Additionally, depletion of cholesterol in the culture medium mitigated the inhibitory effects of mutant HNF-1β on the proteins encoded by Srebf2 and Hmgcr, and HNF-1β directly controlled the renal epithelial expression of proprotein convertase subtilisin-like kexin type 9, a key regulator of cholesterol uptake. These findings reveal a novel role of HNF-1β in a transcriptional network that regulates intrarenal cholesterol metabolism. PMID:26712526

  9. Src tyrosine kinase signaling antagonizes nuclear localization of FOXO and inhibits its transcription factor activity.

    PubMed

    Bülow, Margret H; Bülow, Torsten R; Hoch, Michael; Pankratz, Michael J; Jünger, Martin A

    2014-01-01

    Biochemical experiments in mammalian cells have linked Src family kinase activity to the insulin signaling pathway. To explore the physiological link between Src and a central insulin pathway effector, we investigated the effect of different Src signaling levels on the Drosophila transcription factor dFOXO in vivo. Ectopic activation of Src42A in the starved larval fatbody was sufficient to drive dFOXO out of the nucleus. When Src signaling levels were lowered by means of loss-of-function mutations or pharmacological inhibition, dFOXO localization was shifted to the nucleus in growing animals, and transcription of the dFOXO target genes d4E-BP and dInR was induced. dFOXO loss-of-function mutations rescued the induction of dFOXO target gene expression and the body size reduction of Src42A mutant larvae, establishing dFOXO as a critical downstream effector of Src signaling. Furthermore, we provide evidence that the regulation of FOXO transcription factors by Src is evolutionarily conserved in mammalian cells. PMID:24513978

  10. Modulation of transcriptional activation and coactivator interaction by a splicing variation in the F domain of nuclear receptor hepatocyte nuclear factor 4alpha1.

    PubMed

    Sladek, F M; Ruse, M D; Nepomuceno, L; Huang, S M; Stallcup, M R

    1999-10-01

    Transcription factors, such as nuclear receptors, often exist in various forms that are generated by highly conserved splicing events. Whereas the functional significance of these splicing variants is often not known, it is known that nuclear receptors activate transcription through interaction with coactivators. The parameters, other than ligands, that might modulate those interactions, however, are not well characterized, nor is the role of splicing variants. In this study, transient transfection, yeast two-hybrid, and GST pulldown assays are used to show not only that nuclear receptor hepatocyte nuclear factor 4 alpha1 (HNF4alpha1, NR2A1) interacts with GRIP1, and other coactivators, in the absence of ligand but also that the uncommonly large F domain in the C terminus of the receptor inhibits that interaction. In vitro, the F domain was found to obscure an AF-2-independent binding site for GRIP1 that did not map to nuclear receptor boxes II or III. The results also show that a natural splicing variant containing a 10-amino-acid insert in the middle of the F domain (HNF4alpha2) abrogates that inhibition in vivo and in vitro. A series of protease digestion assays indicates that there may be structural differences between HNF4alpha1 and HNF4alpha2 in the F domain as well as in the ligand binding domain (LBD). The data also suggest that there is a direct physical contact between the F domain and the LBD of HNF4alpha1 and -alpha2 and that that contact is different in the HNF4alpha1 and HNF4alpha2 isoforms. Finally, we propose a model in which the F domain of HNF4alpha1 acts as a negative regulatory region for transactivation and in which the alpha2 insert ameliorates the negative effect of the F domain. A conserved repressor sequence in the F domains of HNF4alpha1 and -alpha2 suggests that this model may be relevant to other nuclear receptors as well. PMID:10490591

  11. Expression of Nuclear Transcription Factor Kappa B in Locally Advanced Human Cervical Cancer Treated With Definitive Chemoradiation

    SciTech Connect

    Garg, Amit K.; Jhingran, Anuja; Klopp, Ann H.; Aggarwal, Bharat B.; Kunnumakkara, Ajai B.; Broadus, Russell R.; Eifel, Patricia J.; Buchholz, Thomas A.

    2010-12-01

    Purpose: Nuclear factor kappa B (NF-{kappa}B), a transcriptional factor that has been shown to be constitutively active in cervical cancer, is part of an important pathway leading to treatment resistance in many tumor types. The purpose of our study was to determine whether expression of NF-{kappa}B in pretreatment specimens and specimens taken shortly after treatment initiation correlated with outcome in cervical cancer patients treated with definitive chemoradiation. Methods and Materials: Eighteen patients with locally advanced cervical cancer were enrolled in a study in which cervical biopsy specimens were obtained before radiation therapy and 48 h after treatment initiation. Matched biopsy specimens from 16 of these patients were available and evaluated for the nuclear expression of NF-{kappa}B protein by immunohistochemical staining. Results: After a median follow-up of 43 months, there were 9 total treatment failures. Nuclear staining for NF-{kappa}B was positive in 3 of 16 pretreatment biopsy specimens (19%) and 5 of 16 postradiation biopsy specimens (31%). Pretreatment expression of NF-{kappa}B nuclear staining correlated with increased rates of local-regional failure (100% vs. 23%, p = 0.01), distant failure (100% vs. 38%, p = 0.055), disease-specific mortality (100% vs. 31%, p = 0.03), and overall mortality (100% vs. 38%, p = 0.055). Conclusions: Our data suggest that pretreatment nuclear expression of NF-{kappa}B may be associated with a poor outcome for cervical cancer patients treated with chemoradiation. Although these data require validation in a larger group of patients, the results support the continued study of the relationship between NF-{kappa}B and outcome in patients treated for carcinoma of the cervix.

  12. Transcription-Dependent Nuclear-Cytoplasmic Trafficking Is Required for the Function of the von Hippel-Lindau Tumor Suppressor Protein

    PubMed Central

    Lee, Stephen; Neumann, Markus; Stearman, Robert; Stauber, Roland; Pause, Arnim; Pavlakis, George N.; Klausner, Richard D.

    1999-01-01

    Mutation of the von Hippel-Lindau tumor suppressor gene (vhl) causes the von Hippel-Lindau cancer syndrome as well as sporadic renal clear cell carcinoma. To pursue our study of the intracellular localization of VHL protein in relation to its function, we fused VHL to the green fluorescent protein (GFP) to produce the VHL-GFP fusion protein. Like VHL, VHL-GFP binds to elongins B and C and Cullin-2 and regulates target gene product levels, including levels of vascular endothelial growth factor and glucose transporter 1. VHL-GFP localizes predominantly to the cytoplasm, with some detectable nuclear signal. Inhibition of transcription by actinomycin D or 5,6-dichlorobenzimidazole riboside (DRB) causes VHL to be redistributed to the nucleus. A cellular fusion assay was used to demonstrate that inhibition of transcription induces a decrease in the nuclear export rate of VHL. The dependence of transcription for trafficking is lost with a deletion of exon 2, a region with a mutation causing a splice defect in the VHL gene in sporadic renal clear cell carcinoma. Addition of a strong nuclear export signal (NES) derived from the Rev protein results in complete nuclear exclusion and abrogates the redistribution of VHL-GFP-NES into the nucleus upon inhibition of transcription. Leptomycin B, which inhibits NES-mediated nuclear export, reverts the distribution of VHL-GFP-NES to that of VHL-GFP and restores sensitivity to actinomycin D and DRB. Uncoupling of VHL-GFP trafficking to transcription either by an exon 2 deletion or fusion to NES abolishes VHL function. We suggest that VHL function requires not only nuclear or cytoplasmic localization, but also exon 2-mediated transcription-dependent trafficking between these two cellular compartments. PMID:9891082

  13. Nuclear factor of activated T cell (NFAT) transcription proteins regulate genes involved in adipocyte metabolism and lipolysis

    SciTech Connect

    Holowachuk, Eugene W. . E-mail: geneh@telenet.net

    2007-09-21

    NFAT involvement in adipocyte physiological processes was examined by treatment with CsA and/or GSK3{beta} inhibitors (Li{sup +} or TZDZ-8), which prevent or increase NFAT nuclear translocation, respectively. CsA treatment reduced basal and TNF{alpha}-induced rates of lipolysis by 50%. Adipocytes preincubated with Li{sup +} or TZDZ-8 prior to CsA and/or TNF{alpha}, exhibited enhanced basal rates of lipolysis and complete inhibition of CsA-mediated decreased rates of lipolysis. CsA treatment dramatically reduced the mRNA levels of adipocyte-specific genes (aP2, HSL, PPAR{gamma}, ACS and Adn), compared with control or TNF{alpha}-treatment, whereas Li{sup +} pretreatment blocked the inhibitory effects of CsA, and mRNA levels of aP2, HSL, PPAR{gamma}, and ACS were found at or above control levels. NFAT nuclear localization, assessed by EMSA, confirmed that CsA or Li{sup +} treatments inhibited or increased NFAT nuclear translocation, respectively. These results show that NFAT proteins in mature adipocytes participate in the transcriptional control of genes involved in adipocyte metabolism and lipolysis.

  14. Transcription Factor EB Is Selectively Reduced in the Nuclear Fractions of Alzheimer's and Amyotrophic Lateral Sclerosis Brains

    PubMed Central

    Wang, Hongjie

    2016-01-01

    Multiple studies suggest that autophagy is strongly dysregulated in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), as evidenced by accumulation of numerous autophagosomes, lysosomes with discontinuous membranes, and aggregated proteins in the patients' brains. Transcription factor EB (TFEB) was recently discovered to be a master regulator of lysosome biogenesis and autophagy. To examine whether aberrant autophagy in AD and ALS is due to alterations in TFEB expression, we systematically quantified the levels of TFEB in these brains by immunoblotting. Interestingly, cytoplasmic fractions of AD brains showed increased levels of normalized (to tubulin) TFEB only at Braak stage IV (61%, p < 0.01). Most importantly, normalized (to lamin) TFEB levels in the nuclear fractions were consistently reduced starting from Braak stage IV (52%, p < 0.01), stage V (67%, p < 0.01), and stage VI (85%, p < 0.01) when compared to normal control (NC) brains. In the ALS brains also, nuclear TFEB levels were reduced by 62% (p < 0.001). These data suggest that nuclear TFEB is selectively lost in ALS as well as AD brains, in which TFEB reduction was Braak-stage-dependent. Taken together, the observed reductions in TFEB protein levels may be responsible for the widely reported autophagy defects in these disorders. PMID:27433468

  15. Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR

    PubMed Central

    2013-01-01

    Nuclear receptors are integrators of hormonal and nutritional signals, mediating changes to metabolic pathways within the body. Given that modulation of lipid and glucose metabolism has been linked to diseases including type 2 diabetes, obesity and atherosclerosis, a greater understanding of pathways that regulate metabolism in physiology and disease is crucial. The liver X receptors (LXRs) and the farnesoid X receptors (FXRs) are activated by oxysterols and bile acids, respectively. Mounting evidence indicates that these nuclear receptors have essential roles, not only in the regulation of cholesterol and bile acid metabolism but also in the integration of sterol, fatty acid and glucose metabolism. PMID:22414897

  16. Global transcriptional analysis of nuclear reprogramming in the transition from MEFs to iPSCs.

    PubMed

    Dong, Fulu; Song, Zhenwei; Zhang, Jinping; Lu, Youde; Song, Chunlei; Jiang, BaoChun; Zhang, Baole; Cong, Peiqing; Sun, Hongyan; Shi, Fangxiong; Liu, Honglin

    2013-01-01

    Induced pluripotent stem cells (iPSCs) are flourishing in the investigation of cell reprogramming. However, we still know little about the sequential molecular mechanism during somatic cell reprogramming (SCR). Here, we first observed rapid generation of colonies whereas mouse embryonic fibroblasts (MEFs) were induced by OCT4, SOX2, KLF4 (OSK), and vitamin C for 7 days. The colony's global transcriptional profiles were analyzed using Affymetrix microarray. Microarray data confirmed that SCR was a process in which transcriptome got reversed and pluripotent genes expressed de novo. There were many changes, especially substantial growth expression of epigenetic factors, on transcriptome during the transition from Day 7 to iPSCs indicating that this period may provide 'flexibility' genome structure, chromatin remodeling, and epigenetic modifications to rebind to the transcriptional factors. Several biological processes such as viral immune response, apoptosis, cell fate specification, and cell communication were mainly involved before Day 7 whereas cell cycle, DNA methylation, and histone modification were mainly involved after Day 7. Furthermore, it was suggested that p53 signaling contributed to the transition 'hyperdynamic plastic' cell state and assembled cell niche for SCR, and small molecular compounds useful for chromatin remodeling can enhance iPSCs by exciting epigenetic modification rather than the exogenous expression of more TFs vectors. PMID:23231677

  17. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor

    PubMed Central

    Matsuda, Shun; Adachi, Jun; Ihara, Masaru; Tanuma, Nobuhiro; Shima, Hiroshi; Kakizuka, Akira; Ikura, Masae; Ikura, Tsuyoshi; Matsuda, Tomonari

    2016-01-01

    Pyruvate kinase M2 (PKM2) and pyruvate dehydrogenase complex (PDC) regulate production of acetyl-CoA, which functions as an acetyl donor in diverse enzymatic reactions, including histone acetylation. However, the mechanism by which the acetyl-CoA required for histone acetylation is ensured in a gene context-dependent manner is not clear. Here we show that PKM2, the E2 subunit of PDC and histone acetyltransferase p300 constitute a complex on chromatin with arylhydrocarbon receptor (AhR), a transcription factor associated with xenobiotic metabolism. All of these factors are recruited to the enhancer of AhR-target genes, in an AhR-dependent manner. PKM2 contributes to enhancement of transcription of cytochrome P450 1A1 (CYP1A1), an AhR-target gene, acetylation at lysine 9 of histone H3 at the CYP1A1 enhancer. Site-directed mutagenesis of PKM2 indicates that this enhancement of histone acetylation requires the pyruvate kinase activity of the enzyme. Furthermore, we reveal that PDC activity is present in nuclei. Based on these findings, we propose a local acetyl-CoA production system in which PKM2 and PDC locally supply acetyl-CoA to p300 from abundant PEP for histone acetylation at the gene enhancer, and our data suggest that PKM2 sensitizes AhR-mediated detoxification in actively proliferating cells such as cancer and fetal cells. PMID:26405201

  18. Structural and calorimetric studies demonstrate that the hepatocyte nuclear factor 1β (HNF1β) transcription factor is imported into the nucleus via a monopartite NLS sequence.

    PubMed

    Wiedmann, Mareike M; Aibara, Shintaro; Spring, David R; Stewart, Murray; Brenton, James D

    2016-09-01

    The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in ovarian clear cell carcinoma (CCC) and is a potential therapeutic target. To explore potential approaches that block HNF1β transcription we have identified and characterised extensively the nuclear localisation signal (NLS) for HNF1β and its interactions with the nuclear protein import receptor, Importin-α. Pull-down assays demonstrated that the DNA binding domain of HNF1β interacted with a spectrum of Importin-α isoforms and deletion constructs tagged with eGFP confirmed that the HNF1β (229)KKMRRNR(235) sequence was essential for nuclear localisation. We further characterised the interaction between the NLS and Importin-α using complementary biophysical techniques and have determined the 2.4Å resolution crystal structure of the HNF1β NLS peptide bound to Importin-α. The functional, biochemical, and structural characterisation of the nuclear localisation signal present on HNF1β and its interaction with the nuclear import protein Importin-α provide the basis for the development of compounds targeting transcription factor HNF1β via its nuclear import pathway. PMID:27346421

  19. Transcriptional Regulation of CYP2B6 Expression by Hepatocyte Nuclear Factor 3β in Human Liver Cells

    PubMed Central

    Li, Linhao; Li, Daochuan; Heyward, Scott; Wang, Hongbing

    2016-01-01

    CYP2B6 plays an increasingly important role in xenobiotic metabolism and detoxification. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) have been established as predominant regulators for the inductive expression of CYP2B6 gene in human liver. However, there are dramatic interindividual variabilities in CYP2B6 expression that cannot be fully explained by the CAR/PXR-based modulation alone. Here, we show that expression level of CYP2B6 was correlated with that of hepatocyte nuclear factor 3β (HNF3β) in human primary hepatocytes prepared from 35 liver donors. Utilizing recombinant virus-mediated overexpression or knockdown of HNF3β in HepG2 cells, as well as constructs containing serial deletion and site-directed mutation of HNF3β binding motifs in CYP2B6 luciferase reporter assays, we demonstrated that the presence or lack of HNF3β expression markedly correlated with CYP2B6 gene expression and its promoter activity. Novel enhancer modules of HNF3β located upstream of the CYP2B6 gene transcription start site were identified and functionally validated as key elements governing HNF3β-mediated CYP2B6 expression. Chromatin immunoprecipitation assays in human primary hepatocytes and surface plasmon resonance binding affinity experiments confirmed the essential role of these enhancers in the recruitment of HNF3β to the promoter of CYP2B6 gene. Overall, these findings indicate that HNF3β represents a new liver enriched transcription factor that is involved in the transcription of CYP2B6 gene and contributes to the large interindividual variations of CYP2B6 expression in human population. PMID:26930610

  20. PUBLIC HEARING TRANSCRIPT: FEDERAL NON-NUCLEAR ENERGY RESEARCH AND DEVELOPMENT PROGRAM

    EPA Science Inventory

    This document presents the proceedings of three days of public hearings on the Federal Non-nuclear Energy Research and Development Program. The document is presented in three sections: (1) Future Energy Patterns and Levels of Coal Use, (2) Solar Energy and Conservation, and (3) O...

  1. An overview of the CCAAT-box binding factor in filamentous fungi: assembly, nuclear translocation, and transcriptional enhancement.

    PubMed

    Kato, Masashi

    2005-04-01

    Filamentous fungi are frequently used for the production of industrial enzymes, since they produce a variety of enzymes including polysaccharide-degrading enzymes. Among the many filamentous fungi, Aspergillus species, such as A. oryzae and A. niger, are known as strong producers of amylolytic enzymes. We have been studying on the regulatory mechanisms underlying the expression of A. oryzae amylolytic genes. Based on analyses using a hybrid model system of A. nidulans transformed by a gene encoding A. oryzae Taka-amylase A, the major amylase (taaG2), we have found that three factors, CCAAT-box binding protein, CreA, and AmyR, are involved in taaG2 gene expression and regulation. In this review, the focus is on the CCAAT-box binding protein of filamentous fungi. The assembly, nuclear translocation, and transcriptional enhancement mechanisms of the CCAAT-box binding protein are discussed. PMID:15849404

  2. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B.

    PubMed

    Tanaka, Yuka Tsuda; Tanaka, Kiyotaka; Kojima, Hiroyuki; Hamada, Tomoji; Masutani, Teruaki; Tsuboi, Makoto; Akao, Yukihiro

    2013-01-15

    Aging of skin is characterized by skin wrinkling, laxity, and pigmentation induced by several environmental stress factors. Histological changes during the photoaging of skin include hyperproliferation of keratinocytes and melanocytes causing skin wrinkles and pigmentation. Nuclear factor kappa B (NF-κB) is one of the representative transcription factors active in conjunction with inflammation. NF-κB is activated by stimulation such as ultraviolet rays and inflammatory cytokines and induces the expression of various genes such as those of basic fibroblast growth factor (bFGF) and matrix metalloprotease-1 (MMP-1). We screened several plant extracts for their possible inhibitory effect on the transcriptional activity of NF-κB. One of them, an extract from Cynara scolymus L., showed a greatest effect on the suppression of NF-κB transactivation. As a result, we found that cynaropicrin, which is a sesquiterpene lactone, inhibited the NF-κB-mediated transactivation of bFGF and MMP-1. Furthermore, it was confirmed that in an in vivo mouse model cynaropicrin prevented skin photoaging processes leading to the hyperproliferation of keratinocytes and melanocytes. These findings taken together indicate that cynaropicrin is an effective antiphotoaging agent that acts by inhibiting NF-κB-mediated transactivation. PMID:23232059

  3. Nuclear Import of the Parsley bZIP Transcription Factor CPRF2 Is Regulated by Phytochrome Photoreceptors

    PubMed Central

    Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus

    1999-01-01

    In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448

  4. Promoter-specific transactivation of hepatitis B virus transcription by a glutamine- and proline-rich domain of hepatocyte nuclear factor 1.

    PubMed Central

    Raney, A K; Easton, A J; Milich, D R; McLachlan, A

    1991-01-01

    The cloned transcription factor hepatocyte nuclear factor 1 (HNF1) transactivates transcription from the hepatitis B virus (HBV) large surface antigen promoter but does not influence the transcriptional activities of the other three HBV promoters. This indicates that this transcription factor can differentially influence the activities of the HBV promoter. By using a transient-transfection system, the major domain of the HNF1 polypeptide involved in transcriptional activation of the large surface antigen promoter in the human hepatoma cell line HepG2.1 has been mapped to a region that is rich in glutamine and proline residues (9 of 18) and is different from the previously identified regions of this factor responsible for in vitro transcriptional activation of a promoter containing human albumin promoter HNF1 binding sites. The human albumin promoter HNF1 binding site mediates transcriptional activation through the same HNF1 polypeptide domain as the HBV large surface antigen promoter HNF1 binding site in transient-transfection assays with HepG2.1 cells, suggesting that HNF1 may possess multiple transcriptional activation domains. Images PMID:1656070

  5. Hepatic nuclear factor 3 is an accessory factor required for the stimulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids.

    PubMed

    Wang, J C; Strömstedt, P E; O'Brien, R M; Granner, D K

    1996-07-01

    Transcription of the hepatic phosphoenolpyruvate carboxykinase gene is stimulated by glucocorticoids and inhibited by insulin. The glucocorticoid response is mediated by a complex glucocorticoid response unit that consists of two glucocorticoid receptor (GR)-binding sites (GR1 and GR2) and two accessory factor-binding sites (AF1 and AF2). The complete unit is required for the full glucocorticoid response. The dominant insulin effect is mediated in part through an insulin response sequence that is coincident with the AF2 element. Members of the hepatic nuclear factor 3 (HNF3) and CCAAT enhancer binding protein (C/EBP) families bind to the AF2 element; however, there is no correlation between binding of these factors and the ability of the AF2 element to mediate an insulin response. We show here that binding of HNF3 does correlate with the stimulation of the glucocorticoid response by the AF2 element and that C/EBP is apparently not involved in this effect. This requirement for HNF3 is quite specific since the substitution of elements known to enhance the action of the GR in other promoters fails to recapitulate AF2 accessory factor activity. By contrast, an HNF3-binding site from the transthyretin gene is able to substitute for the wild type AF2 sequence and elicit a maximal glucocorticoid response. Based on current and previous observations, the glucocorticoid response unit consists of four DNA elements that bind four different proteins. These are: AF1 (hepatic nuclear factor 4/chicken ovalbumin upstream promoter transcription factor), AF2 (HNF3), GR1 (GR), and GR2 (GR). PMID:8813720

  6. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope

    PubMed Central

    Tsai, Shang-Yi A.; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-fei; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-01-01

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER–mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  7. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease

    PubMed Central

    Powell, Christopher A.; Nicholls, Thomas J.; Minczuk, Michal

    2015-01-01

    The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes. PMID:25806043

  8. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    PubMed

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  9. A pleiotropic element in the medium-chain acyl coenzyme A dehydrogenase gene promoter mediates transcriptional regulation by multiple nuclear receptor transcription factors and defines novel receptor-DNA binding motifs.

    PubMed Central

    Carter, M E; Gulick, T; Moore, D D; Kelly, D P

    1994-01-01

    We previously identified a complex regulatory element in the medium-chain acyl coenzyme A dehydrogenase gene promoter that confers transcriptional regulation by the retinoid receptors RAR and RXR and the orphan nuclear receptor HNF-4. In this study we demonstrate a trans-repressing regulatory function for the orphan receptor COUP-TF at this same nuclear receptor response element (NRRE-1). The transcriptional regulatory properties and receptor binding sequences of each nuclear receptor response element within NRRE-1 are also characterized. NRRE-1 consists of four potential nuclear hormone receptor hexamer binding sites, arranged as [<--1-(n)s-2-->-3-->(n)4<--4], three of which are used in alternative pairwise binding by COUP-TF and HNF-4 homodimers and by RAR-RXR heterodimers, as demonstrated by mobility shift assays and methylation interference analysis. Binding and transactivation studies with mutant NRRE-1 elements confirmed the existence of distinct retinoid, COUP-TF, and HNF-4 response elements that define novel receptor binding motifs: COUP-TF homodimers bound sites 1 and 3 (two hexamer repeat sequences arranged as an everted imperfect repeat separated by 14 bp or ER14), RAR-RXR heterodimers bound sites 1 and 2 (ER8), and HNF-4 homodimers bound sites 2 and 3 (imperfect DR0). Mixing cotransfection experiments demonstrated that the nuclear receptor dimers compete at NRRE-1 to modulate constitutive and ligand-mediated transcriptional activity. These data suggest a mechanism for the transcriptional modulation of genes encoding enzymes involved in cellular metabolism. Images PMID:8007945

  10. Mechanism of a transcriptional cross talk between transforming growth factor-beta-regulated Smad3 and Smad4 proteins and orphan nuclear receptor hepatocyte nuclear factor-4.

    PubMed

    Chou, Wan-Chih; Prokova, Vassiliki; Shiraishi, Keiko; Valcourt, Ulrich; Moustakas, Aristidis; Hadzopoulou-Cladaras, Margarita; Zannis, Vassilis I; Kardassis, Dimitris

    2003-03-01

    We have shown previously that the transforming growth factor-beta (TGFbeta)-regulated Sma-Mad (Smad) protein 3 and Smad4 proteins transactivate the apolipoprotein C-III promoter in hepatic cells via a hormone response element that binds the nuclear receptor hepatocyte nuclear factor 4 (HNF-4). In the present study, we show that Smad3 and Smad4 but not Smad2 physically interact with HNF-4 via their Mad homology 1 domains both in vitro and in vivo. The synergistic transactivation of target promoters by Smads and HNF-4 was shown to depend on the specific promoter context and did not require an intact beta-hairpin/DNA binding domain of the Smads. Using glutathione S-transferase interaction assays, we established that two regions of HNF-4, the N-terminal activation function 1 (AF-1) domain (aa 1-24) and the C-terminal F domain (aa 388-455) can mediate physical Smad3/HNF-4 interactions in vitro. In vivo, Smad3 and Smad4 proteins enhanced the transactivation function of various GAL4-HNF-4 fusion proteins via the AF-1 and the adjacent DNA binding domain, whereas a single tyrosine to alanine substitution in AF-1 abolished coactivation by Smads. The findings suggest that the transcriptional cross talk between the TGFbeta-regulated Smads and HNF-4 is mediated by specific functional domains in the two types of transcription factors. Furthermore, the specificity of this interaction for certain target promoters may play an important role in various hepatocyte functions, which are regulated by TGFbeta and the Smads. PMID:12631740

  11. Decreased expression of hepatocyte nuclear factor 3 alpha during the acute-phase response influences transthyretin gene transcription.

    PubMed Central

    Qian, X; Samadani, U; Porcella, A; Costa, R H

    1995-01-01

    Three distinct hepatocyte nuclear factor 3 (HNF-3) proteins (alpha, beta, and gamma) are known to regulate the transcription of numerous liver-specific genes. The HNF-3 proteins bind to DNA as monomers through a winged-helix motif, which is also utilized by a number of developmental regulators, including the Drosophila homeotic fork head (fkh) protein. We have previously characterized a strong-affinity HNF-3S site in the transthyretin (TTR) promoter region which is essential for expression in human hepatoma (HepG2) cells. In the current study, we identify an activating protein 1 (AP-1) site which partially overlaps the HNF-3S sequence in the TTR promoter. We show that in HepG2 cells the AP-1 sequence confers 12-O-tetradecanoylphorbol-13-acetate inducibility to the TTR promoter and contributes to normal TTR transcriptional activity. We also demonstrate that the HNF-3 proteins and AP-1 bind independently to the TTR AP-1-HNF-3 site, and cotransfection experiments suggest that they do not cooperate to activate an AP-1-HNF-3 reporter construct. In addition, 12-O-tetradecanoylphorbol-13-acetate exposure of HepG2 cells results in a reciprocal decrease in HNF-3 alpha and -3 gamma expression which may facilitate interaction of AP-1 with the TTR AP-1-HNF-3 site. In order to explore the role of HNF-3 in the liver, we have examined expression patterns of TTR and HNF-3 during the acute-phase response and liver regeneration. Partial hepatectomy produced minimal fluctuation in HNF-3 and TTR expression, suggesting that HNF-3 expression is not influenced by proliferative signals induced during liver regeneration. In acute-phase livers, we observed a dramatic reduction in HNF-3 alpha expression which correlates with a decrease in the expression of its target gene, the TTR gene. Furthermore, consistent with previous studies, the acute-phase livers are induced for c-jun but not c-fos expression. We propose that the reduction in TTR gene expression during the acute phase is likely due

  12. Transcription factor nuclear factor erythroid-2 mediates expression of the cytokine interleukin 8, a known predictor of inferior outcome in patients with myeloproliferative neoplasms

    PubMed Central

    Wehrle, Julius; Seeger, Thalia S.; Schwemmers, Sven; Pfeifer, Dietmar; Bulashevska, Alla; Pahl, Heike L.

    2013-01-01

    The transcription factor nuclear factor erythroid-2 is over-expressed in patients with myeloproliferative neoplasms irrespective of the presence of the JAK2V617F mutation. Our transgenic mouse model over-expressing nuclear factor erythroid-2, which recapitulates many features of myeloproliferative neoplasms including transformation to acute myeloid leukemia, clearly implicates this transcription factor in the pathophysiology of myeloproliferative neoplasms. Because the targets mediating nuclear factor erythroid-2 effects are not well characterized, we conducted microarray analysis of CD34+ cells lentivirally transduced to over-express nuclear factor erythroid-2 or to silence this transcription factor via shRNA, in order to identify novel target genes. Here, we report that the cytokine interleukin 8 is a novel target gene. Nuclear factor erythroid-2 directly binds the interleukin 8 promoter in vivo, and these binding sites are required for promoter activity. Serum levels of interleukin 8 are known to be elevated in both polycythemia vera and primary myelofibrosis patients. Recently, increased interleukin 8 levels have been shown to be predictive of inferior survival in primary myelofibrosis patients in multivariate analysis. Therefore, one of the mechanisms by which nuclear factor erythroid-2 contributes to myeloproliferative neoplasm pathology may be increased interleukin 8 expression. PMID:23445878

  13. Trans-repressor activity of nuclear glycosaminoglycans on Fos and Jun/AP-1 oncoprotein-mediated transcription.

    PubMed

    Busch, S J; Martin, G A; Barnhart, R L; Mano, M; Cardin, A D; Jackson, R L

    1992-01-01

    Heparin blocks the phorbol ester-induced progression of nontransformed cells through the G0/G1 phase (Wright, T.C., L.A. Pukac, J.J. Castellot, M.J. Karnovsky, R.A. Levine, H.-Y. Kim-Park, and J. Campisi. 1989. Proc. Natl. Acad. Sci. USA. 86: 3199-3203) or G1 to S phase (Reilly, C. F., M. S. Kindy, K. E. Brown, R. D. Rosenberg, and G. E Sonenshein. 1989. J. Biol. Chem. 264:6990-6995) of the cell cycle. Cell cycle arrest was associated with decreased levels of stage-specific mRNAs suggesting transcriptional regulation of cell growth. In the present report, we show that heparin selectively repressed TPA-inducible AP-1-mediated gene expression. Heparin-induced trans-repression was observed in primary vascular smooth muscle cells, as well as in the transformed HeLa cell line and in nondifferentiated F9 teratocarcinoma cells. Inhibition of AP-1-mediated trans-activation occurred with heparin and pentosan polysulfate but not with chondroitin sulfate A or C. Heparin-binding peptides or heparitinase I addition to nuclear lysates of heparin-treated cells allowed enhanced recovery of endogenous AP-1-specific DNA binding activity. We propose a model in which nuclear glycosaminoglycans play a trans-regulatory role in altering the patterns of inducible gene expression. PMID:1730747

  14. Interaction of Sp1 zinc finger with transport factor in the nuclear localization of transcription factor Sp1

    SciTech Connect

    Ito, Tatsuo; Kitamura, Haruka; Uwatoko, Chisana; Azumano, Makiko; Itoh, Kohji; Kuwahara, Jun

    2010-12-10

    Research highlights: {yields} Sp1 zinc fingers themselves interact with importin {alpha}. {yields} Sp1 zinc finger domains play an essential role as a nuclear localization signal. {yields} Sp1 can be transported into the nucleus in an importin-dependent manner. -- Abstract: Transcription factor Sp1 is localized in the nucleus and regulates the expression of many cellular genes, but the nuclear transport mechanism of Sp1 is not well understood. In this study, we revealed that GST-fused Sp1 protein bound to endogenous importin {alpha} in HeLa cells via the Sp1 zinc finger domains, which comprise the DNA binding domain of Sp1. It was found that the Sp1 zinc finger domains directly interacted with a wide range of importin {alpha} including the armadillo (arm) repeat domain and the C-terminal acidic domain. Furthermore, it turned out that all three zinc fingers of Sp1 are essential for binding to importin {alpha}. Taken together, these results suggest that the Sp1 zinc finger domains play an essential role as a NLS and Sp1 can be transported into the nucleus in an importin-dependent manner even though it possesses no classical NLSs.

  15. Distinct transcriptional responses elicited by unfolded nuclear or cytoplasmic protein in mammalian cells

    PubMed Central

    Miyazaki, Yusuke; Chen, Ling-chun; Chu, Bernard W; Swigut, Tomek; Wandless, Thomas J

    2015-01-01

    Eukaryotic cells possess a variety of signaling pathways that prevent accumulation of unfolded and misfolded proteins. Chief among these is the heat shock response (HSR), which is assumed to respond to unfolded proteins in the cytosol and nucleus alike. In this study, we probe this axiom further using engineered proteins called ‘destabilizing domains’, whose folding state we control with a small molecule. The sudden appearance of unfolded protein in mammalian cells elicits a robust transcriptional response, which is distinct from the HSR and other known pathways that respond to unfolded proteins. The cellular response to unfolded protein is strikingly different in the nucleus and the cytosol, although unfolded protein in either compartment engages the p53 network. This response provides cross-protection during subsequent proteotoxic stress, suggesting that it is a central component of protein quality control networks, and like the HSR, is likely to influence the initiation and progression of human pathologies. DOI: http://dx.doi.org/10.7554/eLife.07687.001 PMID:26314864

  16. The ciliopathy disease protein NPHP9 promotes nuclear delivery and activation of the oncogenic transcriptional regulator TAZ.

    PubMed

    Habbig, Sandra; Bartram, Malte P; Sägmüller, Josef G; Griessmann, Anabel; Franke, Mareike; Müller, Roman-Ulrich; Schwarz, Ricarda; Hoehne, Martin; Bergmann, Carsten; Tessmer, Claudia; Reinhardt, H Christian; Burst, Volker; Benzing, Thomas; Schermer, Bernhard

    2012-12-15

    Nephronophthisis (NPH) is a genetically heterogenous kidney disease and represents the most common genetic cause for end-stage renal disease in children. It is caused by the mutation of genes encoding for the nephrocystin proteins (NPHPs) which localize to primary cilia or centrosomes, classifying this disease as a 'ciliopathy'. Recently, it has been shown that NPHP4 acts as a potent negative regulator of mammalian Hippo signalling by interacting with the Lats protein kinase and controlling the phosphorylation of the oncogenic transcriptional activator TAZ. Here, we demonstrate that NPHP9, another NPH family member, also controls TAZ activity by a distinct mechanism. NPHP9, which is also called NEK8, directly interacted with TAZ and induced nuclear translocation of the TAZ/NPHP9 protein complex. Binding of NPHP9 to TAZ was enhanced in a TAZ mutant that lost its ability to bind 14-3-3, suggesting that 14-3-3 and NPHP9 may compete for TAZ binding, with 14-3-3 favouring cytoplasmic retention and NPHP9 mediating nuclear delivery. Consistently, co-expression of NPHP4, which inhibits TAZ phosphorylation at the 14-3-3 binding site through the inhibition of Lats kinase activity, induced efficient nuclear delivery of the TAZ/NPHP9 protein pair. Consistent with a role for TAZ in controlling proliferation and tumorigenesis, the downregulation of NPHP9 inhibited the TAZ-dependent proliferation of hippo-responsive normal epithelial and also breast cancer cells. As NPHP9 has been shown to be upregulated in breast cancer, these data do not only support a critical role for TAZ/hippo signalling in the pathogenesis of NPH but may also imply a possible role for NPHP9 in TAZ-mediated tumorigenesis. PMID:23026745

  17. Virus-Dependent Phosphorylation of the IRF-3 Transcription Factor Regulates Nuclear Translocation, Transactivation Potential, and Proteasome-Mediated Degradation

    PubMed Central

    Lin, Rongtuan; Heylbroeck, Christophe; Pitha, Paula M.; Hiscott, John

    1998-01-01

    Ser-398 in IRF-3 abrogated its binding to CBP. These results are discussed in terms of a model in which virus-inducible, C-terminal phosphorylation of IRF-3 alters protein conformation to permit nuclear translocation, association with transcriptional partners, and primary activation of IFN- and IFN-responsive genes. PMID:9566918

  18. Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB.

    PubMed

    Benoit, V; de Moraes, E; Dar, N A; Taranchon, E; Bours, V; Hautefeuille, A; Tanière, P; Chariot, A; Scoazec, J-Y; de Moura Gallo, C V; Merville, M-P; Hainaut, P

    2006-09-21

    Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-damaging agent. Pharmacological inhibition of Cox-2 enhanced apoptosis in response to daunomycin, in particular in cells containing active p53. In esophageal cancer, there was a correlation between Cox-2 expression and wild-type TP53 in Barrett's esophagus (BE) and in adenocarcinoma, but not in squamous cell carcinoma (P<0.01). These results suggest that p53 and NF-kappaB cooperate in upregulating Cox-2 expression, promoting cell survival in inflammatory precursor lesions such as BE. PMID:16682957

  19. Inducible nuclear expression of newly synthesized I kappa B alpha negatively regulates DNA-binding and transcriptional activities of NF-kappa B.

    PubMed Central

    Arenzana-Seisdedos, F; Thompson, J; Rodriguez, M S; Bachelerie, F; Thomas, D; Hay, R T

    1995-01-01

    The transcription factor NF-kappa B is exploited by many viruses, including the human immunodeficiency virus, for expression of viral genes, but its primary role appears to be in the rapid induction of cellular genes during immune and inflammatory responses. The inhibitor protein I kappa B alpha maintains NF-kappa B in an inactive form in the cytoplasms of unstimulated cells, but upon cell activation, I kappa B alpha is rapidly degraded, leading to nuclear translocation of free NF-kappa B. However, NF-kappa B-dependent transcription of the I kappa B alpha gene leads to rapid resynthesis of the I kappa B alpha protein and inhibition of NF-kappa B-dependent transcription. Here we demonstrate a new regulatory function of I kappa B alpha exerted on NF-kappa B in the nuclear compartment. Although normally found in the cytoplasm, I kappa B alpha, newly synthesized in response to tumor necrosis factor or interleukin I, is transported to the nucleus. In the nucleus I kappa B alpha associates with the p50 and p65 subunits of NF-kappa B, inhibiting DNA binding of the transcription factor. Furthermore, nuclear expression of I kappa B alpha correlates with transcription termination of transfected NF-kappa B-dependent luciferase genes. Following the appearance of I kappa B alpha in the nuclei of activated cells, a dramatic reduction in the amount of nuclear p50 occurs, suggesting that NF-kappa B-I kappa B alpha complexes are cleared from the nucleus. PMID:7739549

  20. Three non-autonomous signals collaborate for nuclear targeting of CrMYC2, a Catharanthus roseus bHLH transcription factor

    PubMed Central

    2010-01-01

    Background CrMYC2 is an early jasmonate-responsive bHLH transcription factor involved in the regulation of the expression of the genes of the terpenic indole alkaloid biosynthesis pathway in Catharanthus roseus. In this paper, we identified the amino acid domains necessary for the nuclear targeting of CrMYC2. Findings We examined the intracellular localization of whole CrMYC2 and of various deletion mutants, all fused with GFP, using a transient expression assay in onion epidermal cells. Sequence analysis of this protein revealed the presence of four putative basic nuclear localization signals (NLS). Assays showed that none of the predicted NLS is active alone. Further functional dissection of CrMYC2 showed that the nuclear targeting of this transcription factor involves the cooperation of three domains located in the C-terminal region of the protein. The first two domains are located at amino acid residues 454-510 and 510-562 and contain basic classical monopartite NLSs; these regions are referred to as NLS3 (KRPRKR) and NLS4 (EAERQRREK), respectively. The third domain, between residues 617 and 652, is rich in basic amino acids that are well conserved in other phylogenetically related bHLH transcription factors. Our data revealed that these three domains are inactive when isolated but act cooperatively to target CrMYC2 to the nucleus. Conclusions This study identified three amino acid domains that act in cooperation to target the CrMYC2 transcription factor to the nucleus. Further fine structure/function analysis of these amino acid domains will allow the identification of new NLS domains and will allow the investigation of the related molecular mechanisms involved in the nuclear targeting of the CrMYC2 bHLH transcription factor. PMID:21073696

  1. Trafficking of the Transcription Factor Nrf2 to Promyelocytic Leukemia-Nuclear Bodies

    PubMed Central

    Malloy, Melanie Theodore; McIntosh, Deneshia J.; Walters, Treniqka S.; Flores, Andrea; Goodwin, J. Shawn; Arinze, Ifeanyi J.

    2013-01-01

    Ubiquitylation of Nrf2 by the Keap1-Cullin3/RING box1 (Cul3-Rbx1) E3 ubiquitin ligase complex targets Nrf2 for proteasomal degradation in the cytoplasm and is an extensively studied mechanism for regulating the cellular level of Nrf2. Although mechanistic details are lacking, reports abound that Nrf2 can also be degraded in the nucleus. Here, we demonstrate that Nrf2 is a target for sumoylation by both SUMO-1 and SUMO-2. HepG2 cells treated with As2O3, which enhances attachment of SUMO-2/3 to target proteins, increased SUMO-2/3-modification (polysumoylation) of Nrf2. We show that Nrf2 traffics, in part, to promyelocytic leukemia-nuclear bodies (PML-NBs). Cell fractions harboring key components of PML-NBs did not contain biologically active Keap1 but contained modified Nrf2 as well as RING finger protein 4 (RNF4), a poly-SUMO-specific E3 ubiquitin ligase. Overexpression of wild-type RNF4, but not the catalytically inactive mutant, decreased the steady-state levels of Nrf2, measured in the PML-NB-enriched cell fraction. The proteasome inhibitor MG-132 interfered with this decrease, resulting in elevated levels of polysumoylated Nrf2 that was also ubiquitylated. Wild-type RNF4 accelerated the half-life (t½) of Nrf2, measured in PML-NB-enriched cell fractions. These results suggest that RNF4 mediates polyubiquitylation of polysumoylated Nrf2, leading to its subsequent degradation in PML-NBs. Overall, this work identifies Nrf2 as a target for sumoylation and provides a novel mechanism for its degradation in the nucleus, independent of Keap1. PMID:23543742

  2. Genetic disruption of KSHV major latent nuclear antigen LANA enhances viral lytic transcriptional program

    SciTech Connect

    Li Qiuhua; Zhou Fuchun; Ye Fengchun; Gao Shoujiang

    2008-09-30

    Following primary infection, KSHV establishes a lifelong persistent latent infection in the host. The mechanism of KSHV latency is not fully understood. The latent nuclear antigen (LANA or LNA) encoded by ORF73 is one of a few viral genes expressed during KSHV latency, and is consistently detected in all KSHV-related malignancies. LANA is essential for KSHV episome persistence, and regulates the expression of viral lytic genes through epigenetic silencing, and inhibition of the expression and transactivation function of the key KSHV lytic replication initiator RTA (ORF50). In this study, we used a genetic approach to examine the role of LANA in regulating KSHV lytic replication program. Deletion of LANA did not affect the expression of its adjacent genes vCyclin (ORF72) and vFLIP (ORF71). In contrast, the expression levels of viral lytic genes including immediate-early gene RTA, early genes MTA (ORF57), vIL-6 (ORF-K2) and ORF59, and late gene ORF-K8.1 were increased before and after viral lytic induction with 12-O-tetradecanoyl-phorbol-13-acetate and sodium butyrate. This enhanced expression of viral lytic genes was also observed following overexpression of RTA with or without simultaneous chemical induction. Consistent with these results, the LANA mutant cells produced more infectious virions than the wild-type virus cells did. Furthermore, genetic repair of the mutant virus reverted the phenotypes to those of wild-type virus. Together, these results have demonstrated that, in the context of viral genome, LANA contributes to KSHV latency by regulating the expression of RTA and its downstream genes.

  3. Heterogeneous nuclear ribonucleoprotein K and nucleolin as transcriptional activators of the vascular endothelial growth factor promoter through interaction with secondary DNA structures

    PubMed Central

    Uribe, Diana J.; Guo, Kexiao; Shin, Yoon-Joo; Sun, Daekyu

    2011-01-01

    The human vascular endothelial growth factor (VEGF) promoter contains a polypurine/polypyrimidine (pPu/pPy) tract that is known to play a critical role in its transcriptional regulation. This pPu/pPy tract undergoes a conformational transition between B-DNA, single stranded DNA and atypical secondary DNA structures such as G-quadruplexes and i-motifs. We studied the interaction of the cytosine-rich (C-rich) and guanine-rich (G-rich) strands of this tract with transcription factors heterogeneous nuclear ribonucleoprotein (hnRNP) K and nucleolin, respectively, both in vitro and in vivo and their potential role in the transcriptional control of VEGF. Using chromatin immunoprecipitation (ChIP) assay for our in vivo studies and electrophoretic mobility shift assay (EMSA) for our in vitro studies, we demonstrated that both nucleolin and hnRNP K bind selectively to the G- and C-rich sequences, respectively, in the pPu/pPy tract of the VEGF promoter. The small interfering RNA (siRNA)-mediated silencing of either nucleolin or hnRNP K resulted in the down-regulation of basal VEGF gene, suggesting that they act as activators of VEGF transcription. Taken together, the identification of transcription factors that can recognize and bind to atypical DNA structures within the pPu/pPy tract will provide new insight into mechanisms of transcriptional regulation of the VEGF gene. PMID:21466159

  4. Recombinant human ciliary neurotrophic factor reduces weight partly by regulating nuclear respiratory factor 1 and mitochondrial transcription factor A.

    PubMed

    Liu, Qing-Shan; Wang, Qiu-Juan; Du, Guan-Hua; Zhu, Shen-Yin; Gao, Mei; Zhang, Li; Zhu, Jun-Ming; Cao, Jian-Feng

    2007-06-01

    Ciliary neurotrophic factor (CNTF) can lead to weight loss by up-regulating energy metabolism and the expression of UCP-1 in mitochondria. To investigate the up-stream regulators of the expression of UCP-1, recombinant human CNTF (rhCNTF) (0.1, 0.3, 0.9 mg/kg/day s.c.) administered to KK-Ay mice for 30 days resulting in reductions in body weight and perirenal fat mass. In brown adipose tissues, the gene expressions of nuclear respiratory factor (NRF)-1, mitochondrial transcription factor A (TFam) and uncoupling protein (UCP)-1 were found up-regulated by rhCNTF. To the best of our knowledge, these effects represent new insights on the mechanisms of action of weight loss by rhCNTF. In addition, we also found that rhCNTF increased the activity of mitochondrial complex IV. The stimulation of NRF-1, TFam, UCP-1 and the enhanced activity of mitochondrial complex IV may be associated with remedying obesity. The result indicates that rhCNTF can enhance the expressions of NRF-1 and TFam, both of which can up-regulate the expression of UCP-1. PMID:17397829

  5. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment

    NASA Technical Reports Server (NTRS)

    Wise, Kimberly C.; Manna, Sunil K.; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L.; Thomas, Renard L.; Sarkar, Shubhashish; Kulkarni, Anil D.; Pellis, Neil R.; Ramesh, Govindarajan T.

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent.

  6. Activation of nuclear transcription factor-kappaB in mouse brain induced by a simulated microgravity environment.

    PubMed

    Wise, Kimberly C; Manna, Sunil K; Yamauchi, Keiko; Ramesh, Vani; Wilson, Bobby L; Thomas, Renard L; Sarkar, Shubhashish; Kulkarni, Anil D; Pellis, Neil R; Ramesh, Govindarajan T

    2005-01-01

    Microgravity induces inflammatory responses and modulates immune functions that may increase oxidative stress. Exposure to a microgravity environment induces adverse neurological effects; however, there is little research exploring the etiology of these effects resulting from exposure to such an environment. It is also known that spaceflight is associated with increase in oxidative stress; however, this phenomenon has not been reproduced in land-based simulated microgravity models. In this study, an attempt has been made to show the induction of reactive oxygen species (ROS) in mice brain, using ground-based microgravity simulator. Increased ROS was observed in brain stem and frontal cortex with concomitant decrease in glutathione, on exposing mice to simulated microgravity for 7 d. Oxidative stress-induced activation of nuclear factor-kappaB was observed in all the regions of the brain. Moreover, mitogen-activated protein kinase kinase was phosphorylated equally in all regions of the brain exposed to simulated microgravity. These results suggest that exposure of brain to simulated microgravity can induce expression of certain transcription factors, and these have been earlier argued to be oxidative stress dependent. PMID:16029073

  7. Transcription factors nuclear factor I and Sp1 interact with the murine collagen alpha 1 (I) promoter.

    PubMed Central

    Nehls, M C; Rippe, R A; Veloz, L; Brenner, D A

    1991-01-01

    The collagen alpha 1(I) promoter, which is efficiently transcribed in NIH 3T3 fibroblasts, contains four binding sites for trans-acting factors, as demonstrated by DNase I protection assays (D. A. Brenner, R. A. Rippe, and L. Veloz, Nucleic Acids Res. 17:6055-6064, 1989). This study characterizes the DNA-binding proteins that interact with the two proximal footprinted regions, both of which contain a reverse CCAAT box and a G + C-rich 12-bp direct repeat. Analysis by DNase I protection assays, mobility shift assays, competition with specific oligonucleotides, binding with recombinant proteins, and reactions with specific antisera showed that the transcriptional factors nuclear factor I (NF-I) and Sp1 bind to these two footprinted regions. Because of overlapping binding sites, NF-I binding and Sp1 binding appear to be mutually exclusive. Overexpression of NF-I in cotransfection experiments with the alpha 1(I) promoter in NIH 3T3 fibroblasts increased alpha 1(I) expression, while Sp1 overexpression reduced this effect, as well as basal promoter activity. The herpes simplex virus thymidine kinase promoter, which contains independent NF-I- and Sp1-binding sites, was stimulated by both factors. Therefore, expression of the collagen alpha 1(I) gene may depend on the relative activities of NF-I and Sp1. Images PMID:2072909

  8. Isolation of a Novel Family of C2H2 Zinc Finger Proteins Implicated in Transcriptional Repression Mediated by Chicken Ovalbumin Upstream Promoter Transcription Factor (COUP-TF) Orphan Nuclear Receptors*

    PubMed Central

    Avram, Dorina; Fields, Andrew; Top, Karen Pretty On; Nevrivy, Daniel J.; Ishmael, Jane E.; Leid, Mark

    2010-01-01

    Two novel and related C2H2 zinc finger proteins that are highly expressed in the brain, CTIP1 and CTIP2 (COUP TF-interacting proteins 1 and 2, respectively), were isolated and shown to interact with all members of the chicken ovalbumin upstream promoter transcription factor (COUP-TF) subfamily of orphan nuclear receptors. The interaction of CTIP1 with ARP1 was studied in detail, and CTIP1 was found to harbor two independent ARP1 interaction domains, ID1 and ID2, whereas the putative AF-2 of ARP1 was required for interaction with CTIP1. CTIP1, which exhibited a punctate staining pattern within the nucleus of transfected cells, recruited cotransfected ARP1 to these foci and potentiated ARP1-mediated transcriptional repression of a reporter construct. However, transcriptional repression mediated by ARP1 acting through CTIP1 did not appear to involve recruitment of a trichostatin A-sensitive histone deacetylase(s) to the template, suggesting that this repression pathway may be distinct from that utilized by several other nuclear receptors. PMID:10744719

  9. Inhibitors of oxygen sensing prolyl hydroxylases regulate nuclear localization of the transcription factors Smad2 and YAP/TAZ involved in CTGF synthesis.

    PubMed

    Preisser, Felix; Giehl, Klaudia; Rehm, Margot; Goppelt-Struebe, Margarete

    2016-08-01

    Pharmacological inhibition of oxygen sensing prolyl hydroxylase domain enzymes (PHDs) has been shown to preserve renal structure and function in various models of kidney disease. Since transforming growth factor β-1 (TGFβ-1) is one of the major mediators of kidney injury, we investigated if inhibition of PHDs with subsequent stabilization of hypoxia inducible transcription factors (HIF) might interfere with TGFβ-1 signaling with special emphasis on its target gene connective tissue growth factor (CTGF). Overnight incubation of human renal tubular cells, primary cells and cell lines, with the PDH inhibitor DMOG increased Smad3 expression, but barely affected Smad2. Both Smads were translocated into the nucleus upon activation of the cells with TGFβ-1. Interestingly, Smad3 nuclear localization was enhanced upon pretreatment of the cells with DMOG for several hours, whereas nuclear Smad2 was reduced. This differential localization was independent of Smad2/3 phosphorylation. Reduced nuclear Smad2 correlated with impaired CTGF secretion in DMOG-treated cells and transient downregulation of Smad2 interfered with TGFβ-1-induced CTGF synthesis. Furthermore, YAP was confirmed as indispensable transcription factor involved in CTGF synthesis. Nuclear localization of YAP and TAZ was reduced in DMOG-treated cells. Our data thus provide evidence for DMOG-mediated reduction of CTGF expression by regulating the nuclear localization of the transcription factors Smad2, YAP and TAZ. Prolonged inhibition of PHDs was necessary to achieve alterations in cellular localization suggesting an indirect HIF-mediated effect. This mechanism might be extended to other transcription factors and target genes, and may thus represent a novel mechanism of negative regulation of gene expression by PHD inhibition. PMID:27155083

  10. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells.

    PubMed

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT. PMID:26160345

  11. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  12. BZLF1, an Epstein-Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function

    SciTech Connect

    Morrison, Thomas E.; Kenney, Shannon C. . E-mail: shann@med.unc.edu

    2004-10-25

    We have previously demonstrated that the Epstein-Barr virus immediate-early BZLF1 protein interacts with, and is inhibited by, the NF-{kappa}B family member p65. However, the effects of BZLF1 on NF-{kappa}B activity have not been intensively studied. Here we show that BZLF1 inhibits p65-dependent gene expression. BZLF1 inhibited the ability of IL-1, as well as transfected p65, to activate the expression of two different NF-{kappa}B-responsive genes, ICAM-1 and I{kappa}B-{alpha}. BZLF1 also reduced the constitutive level of I{kappa}B-{alpha} protein in HeLa and A549 cells, and increased the amount of nuclear NF-{kappa}B to a similar extent as tumor necrosis factor-alpha (TNF-{alpha}) treatment. In spite of this BZLF1-associated increase in the nuclear form of NF-{kappa}B, BZLF1 did not induce binding of NF-{kappa}B to NF-{kappa}B responsive promoters (as determined by chromatin immunoprecipitation assay) in vivo, although TNF-{alpha} treatment induced NF-{kappa}B binding as expected. Overexpression of p65 dramatically inhibited the lytic replication cycle of EBV in 293-EBV cells, confirming that NF-{kappa}B also inhibits BZLF1 transcriptional function. Our results are consistent with a model in which BZLF1 inhibits the transcriptional function of p65, resulting in decreased transcription of I{kappa}B-{alpha}, decreased expression of I{kappa}B-{alpha} protein, and subsequent translocation of NF-{kappa}B to the nucleus. This nuclear translocation of NF-{kappa}B may promote viral latency by negatively regulating BZLF1 transcriptional activity. In situations where p65 activity is limiting in comparison to BZLF1, the ability of BZLF1 to inhibit p65 transcriptional function may protect the virus from the host immune system during the lytic form of infection.

  13. Transcription of the Tollip gene is elevated in intestinal epithelial cells through impaired O-GlcNAcylation-dependent nuclear translocation of the negative regulator Elf-1

    SciTech Connect

    Sugi, Yutaka; Takahashi, Kyoko; Nakano, Kou; Hosono, Akira; Kaminogawa, Shuichi

    2011-09-09

    Highlights: {yields} Transcriptional activation of the Tollitip gene is higher in IECs than in monocytes. {yields} Nt -194/-186 region acts as a cis-element and is recognized by Elf-1. {yields} Elf-1 suppresses Tollip gene transcription in monocytes but not in IECs. {yields} O-GlcNAc modification is necessary for nuclear translocation of Elf-1. {yields} O-GlcNAcylation-dependent nuclear translocation of Elf-1 is impaired in IECs. -- Abstract: Intestinal epithelial cells (IECs) must be tolerant of the large number of commensal bacteria inhabiting the intestinal tract to avoid excessive inflammatory reactions. Toll-interacting protein (Tollip), a negative regulator of Toll-like receptor signaling, is known to be expressed at high levels in IECs, and to thereby contribute to the hyporesponsiveness of IECs to commensals. In this study, we analyzed the underlying mechanisms for elevated transcription of the Tollip gene in IECs using a human IEC line, Caco-2, and a human monocyte line, THP-1, as a control. Elf-1 was identified as a transcription factor that negatively regulates Tollip gene expression. The transcription factor Elf-1 was localized in the nucleus by O-linked N-acetylglucosamine (O-GlcNAc) modification, whereas the unmodified form was detected only in the cytoplasm. Comparison of Caco-2 and THP-1 cells revealed that O-GlcNAc modification of Elf-1 was significantly lower in IECs than in monocytes. Collectively, the results indicate that insufficient O-GlcNAc modification prevents Elf-1-mediated transcriptional repression and thereby upregulates Tollip gene expression in IECs.

  14. Interaction of Yna1 and Yna2 Is Required for Nuclear Accumulation and Transcriptional Activation of the Nitrate Assimilation Pathway in the Yeast Hansenula polymorpha

    PubMed Central

    Silvestrini, Lucia; Rossi, Beatrice; Gallmetzer, Andreas; Mathieu, Martine; Scazzocchio, Claudio; Berardi, Enrico; Strauss, Joseph

    2015-01-01

    A few yeasts, including Hansenula polymorpha are able to assimilate nitrate and use it as nitrogen source. The genes necessary for nitrate assimilation are organised in this organism as a cluster comprising those encoding nitrate reductase (YNR1), nitrite reductase (YNI1), a high affinity transporter (YNT1), as well as the two pathway specific Zn(II)2Cys2 transcriptional activators (YNA1, YNA2). Yna1p and Yna2p mediate induction of the system and here we show that their functions are interdependent. Yna1p activates YNA2 as well as its own (YNA1) transcription thus forming a nitrate-dependent autoactivation loop. Using a split-YFP approach we demonstrate here that Yna1p and Yna2p form a heterodimer independently of the inducer and despite both Yna1p and Yna2p can occupy the target promoter as mono- or homodimer individually, these proteins are transcriptionally incompetent. Subsequently, the transcription factors target genes containing a conserved DNA motif (termed nitrate-UAS) determined in this work by in vitro and in vivo protein-DNA interaction studies. These events lead to a rearrangement of the chromatin landscape on the target promoters and are associated with the onset of transcription of these target genes. In contrast to other fungi and plants, in which nuclear accumulation of the pathway-specific transcription factors only occur in the presence of nitrate, Yna1p and Yna2p are constitutively nuclear in H. polymorpha. Yna2p is needed for this nuclear accumulation and Yna1p is incapable of strictly positioning in the nucleus without Yna2p. In vivo DNA footprinting and ChIP analyses revealed that the permanently nuclear Yna1p/Yna2p heterodimer only binds to the nitrate-UAS when the inducer is present. The nitrate-dependent up-regulation of one partner protein in the heterodimeric complex is functionally similar to the nitrate-dependent activation of nuclear accumulation in other systems. PMID:26335797

  15. Transcription of the viral genome in cell lines transformed by simian virus 40. I. Mapping of virus-specific nuclear RNAs.

    PubMed Central

    Chumakov, P M

    1980-01-01

    Mapping of virus-specific nuclear transcripts was carried out in three lines of rat cells transformed by SV40. Each of these cell lines contained a single copy of integrated viral DNA with identified regions adjacent to cell DNA (1). The main virus-specific nuclear transcript in all of these cell lines was shown to be complementary to the minus strand of the early region in SV40 genome. Each cell nucleus contained approximately 50 copies of these RNAs. Transcripts complementary to both strands of the late region in viral genome were also detectable in all of these cell lines. Its content varied depending on the cell line and was 20-50-fold less than that of the main virus-specific transcript. All the regions of integrated SV40 genome in isolated nuclei of transformed cells were equally sensitive to pancreatic DNase I treatment suggesting that the whole viral genome served as a template for RNA synthesis in these cell lines. PMID:6243776

  16. The transcription factor-like nuclear regulator (TFNR) contains a novel 55-amino-acid motif repeated nine times and maps closely to SMN1.

    PubMed

    Kelter, A R; Herchenbach, J; Wirth, B

    2000-12-15

    The transcription factor-like nuclear regulator (TFNR) is a novel human gene that maps on 5q13, distal to the duplicated region that includes SMN1, the spinal muscular atrophy (SMA) determining gene. The location of TFNR allowed us to design an evolutionary model of the SMA region. The 9.5-kb TFNR transcript is highly expressed in cerebellum and weakly in all other tissues tested. TFNR encodes a protein of 2254 amino acids (aa) and contains nine repeats of a novel 55-aa motif, of yet unknown function. The coding region is organized in 32 exons. Alternative splicing of exon 15 results in a truncated protein of 796 aa. TFNR comprises a series of polypeptides that range from 55 to 250 kDa. Immunocytological studies showed that the TFNR protein is present exclusively in the nucleus, where it is concentrated in several nuclear structures. Amino acids 155-474 show significant homology to TFC5, a subunit of the yeast transcription factor TFIIIB, suggesting that TFNR is a putative transcription factor. Based on its proximity to SMN1 and its expression pattern, TFNR may be a candidate gene for atypical forms of SMA with cerebral atrophy and axonal neuropathy that have been shown to carry large deletions in the SMA region. PMID:11161782

  17. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome–nucleus association and transcriptional signaling

    PubMed Central

    Meyer, Adam J.; Almendrala, Donna K.; Go, Minjoung M.; Krauss, Sharon Wald

    2011-01-01

    The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2α also have aberrant distributions, but lamin B and LAP2β have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R-deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus–centrosome distances, increased β-catenin signaling, and relocalization of β-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome–nuclear envelope association and the regulation of β-catenin transcriptional co-activator activity that is dependent on β-catenin nuclear export. PMID:21486941

  18. Role of Calcineurin, hnRNPA2 and Akt in Mitochondrial Respiratory Stress-Mediated Transcription Activation of Nuclear Gene Targets

    PubMed Central

    Guha, Manti; Tang, Weigang; Sondheimer, Neal; Avadhani, Narayan G.

    2010-01-01

    Pathophysiological conditions causing mitochondrial dysfunction and altered transmembrane potential (Δψm) initiate a mitochondrial respiratory stress response, also known as mitochondrial retrograde response, in a variety of mammalian cells. An increase in the cytosolic Ca2+ [Ca2+]c as part of this signaling cascade activates Ca2+ responsive phosphatase, Calcineurin (Cn). Activation of IGF1R accompanied by increased glycolysis, invasiveness, and resistance to apoptosis are phenotypic hallmarks of C2C12 rhabdomyoblast cells subjected to this stress. The signaling is associated with activation and increased nuclear translocation of a number of transcription factors including a novel NFκB (cRel: p50) pathway, NFAT, CREB and C/EBPδ. This culminates in the upregulation of a number of nuclear genes including Cathepsin L, RyR1, Glut4 and Akt1. We observed that stress regulated transcription activation of nuclear genes involves a cooperative interplay between NFκB (cRel:p50), C/EBPδ, CREB, NFAT. Our results show that the functional synergy of these factors requires the stress-activated heterogeneous nuclear ribonucleoprotein, hnRNPA2 as a transcriptional co-activator. We report here that mitochondrial stress leads to induced expression and activation of serine threonine kinase Akt1. Interestingly, we observe that Akt1 phosphorylates hnRNPA2 under mitochondrial stress conditions, which is a crucial step for the recruitment of this coactivator to the stress target promoters and culmination in mitochondrial stress-mediated transcription activation of target genes. We propose that mitochondrial stress plays an important role in tumor progression and emergence of invasive phenotypes. PMID:20153290

  19. Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix

    PubMed Central

    Iarovaia, Olga V.; Akopov, Sergey B.; Nikolaev, Lev G.; Sverdlov, Eugene D.; Razin, Sergey V.

    2005-01-01

    The spatial organization of an ∼170 kb region of human chromosome 19, including CD22 and GPR40–GPR43 genes, was studied using in situ hybridization of a set of cosmid and PAC probes with nuclear halos prepared from proliferating and differentiated HL60 cells. The whole region under study was found to be looped out into the nuclear halo in proliferating cells. It is likely that the loop observed was attached to the nuclear matrix via MAR elements present at the flanks of the area under study. Upon dimethyl sulfoxide-induced differentiation of the cells the looped fragment became associated with the nuclear matrix. This change in the spatial organization correlated with the activation of transcription of at least two (CD22 and GPR43) genes present within the loop. The data obtained are discussed in the framework of the hypothesis postulating that the spatial organization of chromosomal DNA is maintained via constitutive (basic) and facultative (transcription-related) interactions of the latter with the nuclear matrix. PMID:16049024

  20. Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix.

    PubMed

    Iarovaia, Olga V; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D; Razin, Sergey V

    2005-01-01

    The spatial organization of an approximately 170 kb region of human chromosome 19, including CD22 and GPR40-GPR43 genes, was studied using in situ hybridization of a set of cosmid and PAC probes with nuclear halos prepared from proliferating and differentiated HL60 cells. The whole region under study was found to be looped out into the nuclear halo in proliferating cells. It is likely that the loop observed was attached to the nuclear matrix via MAR elements present at the flanks of the area under study. Upon dimethyl sulfoxide-induced differentiation of the cells the looped fragment became associated with the nuclear matrix. This change in the spatial organization correlated with the activation of transcription of at least two (CD22 and GPR43) genes present within the loop. The data obtained are discussed in the framework of the hypothesis postulating that the spatial organization of chromosomal DNA is maintained via constitutive (basic) and facultative (transcription-related) interactions of the latter with the nuclear matrix. PMID:16049024

  1. Induction of megakaryocyte differentiation drives nuclear accumulation and transcriptional function of MKL1 via actin polymerization and RhoA activation

    PubMed Central

    Smith, Elenoe C.; Teixeira, Alexandra M.; Chen, Rachel C.; Wang, Lin; Gao, Yuan; Hahn, Katherine L.

    2013-01-01

    How components of the cytoskeleton regulate complex cellular responses is fundamental to understanding cellular function. Megakaryoblast leukemia 1 (MKL1), an activator of serum response factor (SRF) transcriptional activity, promotes muscle, neuron, and megakaryocyte differentiation. In muscle cells, where MKL1 subcellular localization is one mechanism by which cells control SRF activity, MKL1 translocation from the cytoplasm to the nucleus in response to actin polymerization is critical for its function as a transcriptional regulator. MKL1 localization is cell-type specific; it is predominantly cytoplasmic in unstimulated fibroblasts and some muscle cell types and is constitutively nuclear in neuronal cells. In the present study, we report that in megakaryocytes, subcellular localization and regulation of MKL1 is dependent on RhoA activity and actin organization. Induction of megakaryocytic differentiation of human erythroleukemia cells by 12-O-tetradecanoylphorbol-13-acetate and primary megakaryocytes by thrombopoietin promotes MKL1 nuclear localization. This MKL1 localization is blocked by drugs inhibiting RhoA activity or actin polymerization. We also show that nuclear-localized MKL1 activates the transcription of SRF target genes. This report broadens our knowledge of the molecular mechanisms regulating megakaryocyte differentiation. PMID:23243284

  2. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system

    PubMed Central

    Kondratov, Roman V.; Chernov, Mikhail V.; Kondratova, Anna A.; Gorbacheva, Victoria Y.; Gudkov, Andrei V.; Antoch, Marina P.

    2003-01-01

    Mammalian CLOCK and BMAL1 are two members of bHLH-PAS-containing family of transcription factors that represent the positive elements of circadian autoregulatory feedback loop. In the form of a heterodimer, they drive transcription from E-box enhancer elements in the promoters of responsive genes. We have examined abundance, posttranslational modifications, cellular localization of endogenous and ectopically expressed CLOCK and BMAL1 proteins. Nuclear/cytoplasm distribution of CLOCK was found to be under circadian regulation. Analysis of subcellular localization of CLOCK in embryo fibroblasts of mice carrying different germ-line circadian mutations showed that circadian regulation of nuclear accumulation of CLOCK is BMAL1-dependent. Formation of CLOCK/BMAL1 complex following ectopic coexpression of both proteins is followed by their codependent phosphorylation, which is tightly coupled to CLOCK nuclear translocation and degradation. This binding-dependent coregulation is specific for CLOCK/BMAL1 interaction, as no other PAS domain protein that can form a complex with either CLOCK or BMAL1 was able to induce similar effects. Importantly, all posttranslational events described in our study are coupled with active transactivation complex formation, which argues for their significant functional role. Altogether, these results provide evidence for an additional level of circadian system control, which is based on regulation of transcriptional activity or/and availability of CLOCK/BMAL1 complex. PMID:12897057

  3. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    SciTech Connect

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G.

    2013-11-15

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  4. Interaction of Heat Shock Protein Cpn10 with the Cyclin E/Cdk2 Substrate Nuclear Protein Ataxia-Telangiectasia (NPAT) Is Involved in Regulating Histone Transcription*

    PubMed Central

    Ling Zheng, Li; Wang, Fei Ya; Cong, Xiao Xia; Shen, Yue; Rao, Xi Sheng; Huang, Dao Sheng; Fan, Wei; Yi, Peng; Wang, Xin Bao; Zheng, Lei; Zhou, Yi Ting; Luo, Yan

    2015-01-01

    Precise modulation of histone gene transcription is critical for cell cycle progression. As a direct substrate of Cyclin E/CDK2, nuclear protein ataxia-telangiectasia (NPAT) is a crucial factor in regulating histone transcription and cell cycle progression. Here we identified that Cpn10/HSPE, a 10-kDa heat shock protein, is a novel interacting partner of NPAT. A pool of Cpn10 is colocalized with NPAT foci during G1 and S phases in nuclei. Gain- and loss-of-function experiments unraveled an essential role of Cpn10 in histone transcription. A conserved DLFD motif within Cpn10 was critical for targeting NPAT and modulating histone transcription. More importantly, knockdown of Cpn10 disrupted the focus formation of both NPAT and FADD-like interleukin-1β-converting enzyme-associated huge protein without affecting Coilin-positive Cajal bodies. Finally, Cpn10 is important for S phase progression and cell proliferation. Taken together, our finding revealed a novel role of Cpn10 in the spatial regulation of NPAT signaling and disclosed a previously unappreciated link between the heat shock protein and histone transcription regulation. PMID:26429916

  5. Heat shock factor 1 upregulates transcription of Epstein-Barr Virus nuclear antigen 1 by binding to a heat shock element within the BamHI-Q promoter

    SciTech Connect

    Wang, Feng-Wei; Wu, Xian-Rui; Liu, Wen-Ju; Liao, Yi-Ji; Lin, Sheng; Zong, Yong-Sheng; Zeng, Mu-Sheng; Zeng, Yi-Xin; Mai, Shi-Juan; Xie, Dan

    2011-12-20

    Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is essential for maintenance of the episome and establishment of latency. In this study, we observed that heat treatment effectively induced EBNA1 transcription in EBV-transformed B95-8 and human LCL cell lines. Although Cp is considered as the sole promoter used for the expression of EBNA1 transcripts in the lymphoblastoid cell lines, the RT-PCR results showed that the EBNA1 transcripts induced by heat treatment arise from Qp-initiated transcripts. Using bioinformatics, a high affinity and functional heat shock factor 1 (HSF1)-binding element within the - 17/+4 oligonucleotide of the Qp was found, and was determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. Moreover, heat shock and exogenous HSF1 expression induced Qp activity in reporter assays. Further, RNA interference-mediated HSF1 gene silencing attenuated heat-induced EBNA1 expression in B95-8 cells. These results provide evidence that EBNA1 is a new target for the transcription factor HSF1.

  6. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes1[OPEN

    PubMed Central

    Laloum, Tom; Lepage, Agnès; Ariel, Federico; Frances, Lisa; Gamas, Pascal; de Carvalho-Niebel, Fernanda

    2015-01-01

    The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants. PMID:26432878

  7. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans

    PubMed Central

    Ahn, Jeong H.; Rechsteiner, Andreas; Strome, Susan; Kelly, William G.

    2016-01-01

    The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3’ end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139

  8. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans.

    PubMed

    Ahn, Jeong H; Rechsteiner, Andreas; Strome, Susan; Kelly, William G

    2016-08-01

    The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3' end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139

  9. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells

    PubMed Central

    Bach, Anne-Sophie; Derocq, Danielle; Laurent-Matha, Valérie; Montcourrier, Philippe; Salwa Sebti, Salwa; Orsetti, Béatrice; Theillet, Charles; Gongora, Céline; Pattingre, Sophie; Ibing, Eva; Roger, Pascal; Linares, Laetitia K.; Reinheckel, Thomas; Meurice, Guillaume; Kaiser, Frank J.; Gespach, Christian; Liaudet-Coopman, Emmanuelle

    2015-01-01

    The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner. PMID:26183398

  10. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells.

    PubMed

    Bach, Anne-Sophie; Derocq, Danielle; Laurent-Matha, Valérie; Montcourrier, Philippe; Sebti, Salwa; Orsetti, Béatrice; Theillet, Charles; Gongora, Céline; Pattingre, Sophie; Ibing, Eva; Roger, Pascal; Linares, Laetitia K; Reinheckel, Thomas; Meurice, Guillaume; Kaiser, Frank J; Gespach, Christian; Liaudet-Coopman, Emmanuelle

    2015-09-29

    The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner. PMID:26183398

  11. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription

    PubMed Central

    Tuand, Krizia; Stijnen, Pieter; Volders, Karolien; Declercq, Jeroen; Nuytens, Kim; Meulemans, Sandra; Creemers, John

    2016-01-01

    Background Neurobeachin (NBEA) is an autism spectrum disorders (ASD) candidate gene. NBEA deficiency affects regulated secretion, receptor trafficking, synaptic architecture and protein kinase A (PKA)-mediated phosphorylation. NBEA is a large multidomain scaffolding protein. From N- to C-terminus, NBEA has a concanavalin A-like lectin domain flanked by armadillo repeats (ACA), an A-kinase anchoring protein domain that can bind to PKA, a domain of unknown function (DUF1088) and a BEACH domain, preceded by a pleckstrin homology-like domain and followed by WD40 repeats (PBW). Although most of these domains mediate protein-protein interactions, no interaction screen has yet been performed. Methods Yeast two-hybrid screens with the ACA and PBW domain modules of NBEA gave a list of interaction partners, which were analyzed for Gene Ontology (GO) enrichment. Neuro-2a cells were used for confocal microscopy and nuclear extraction analysis. NOTCH-mediated transcription was studied with luciferase reporter assays and qRT-PCR, combined with NBEA knockdown or overexpression. Results Both domain modules showed a GO enrichment for the nucleus. PBW almost exclusively interacted with transcription regulators, while ACA interacted with a number of PKA substrates. NBEA was partially localized in the nucleus of Neuro-2a cells, albeit much less than in the cytoplasm. A nuclear localization signal was found in the DUF1088 domain, which was shown to contribute to the nuclear localization of an EGFP-DPBW fusion protein. Yeast two-hybrid identified the Notch1 intracellular domain as a physical interactor of the PBW domain and a role for NBEA as a negative regulator in Notch-mediated transcription was demonstrated. Conclusion Defining novel interaction partners of conserved NBEA domain modules identified a role for NBEA as transcriptional regulator in the nucleus. The physical interaction of NBEA with NOTCH1 is most relevant for ASD pathogenesis because NOTCH signaling is essential for

  12. {beta}-Catenin can act as a nuclear import receptor for its partner transcription factor, lymphocyte enhancer factor-1 (lef-1)

    SciTech Connect

    Asally, Munehiro; Yoneda, Yoshihiro . E-mail: yyoneda@anat3.med.osaka-u.ac.jp

    2005-08-15

    Nuclear accumulation of {beta}-catenin plays an important role in the Wnt signaling pathway. In the nucleus, {beta}-catenin acts as a transcriptional co-activator for TCF/LEF family of transcription factors. It has been shown that lef-1 contains a typical basic type nuclear localization signal (NLS) and is transported into the nucleus by the conventional import pathway. In this study, we found that a mutant lef-1 lacking the classical NLS accumulated in the nucleus of living cells, when {beta}-catenin was co-expressed. In addition, in a cell-free import assay, lef-1 migrated into the nucleus in the presence of {beta}-catenin alone without any other soluble factors. In contrast, another mutant lef-1 lacking the {beta}-catenin binding domain failed to migrate into the nucleus, even in the presence of {beta}-catenin. These findings indicate that {beta}-catenin alone can mediate the nuclear import of lef-1 through the direct binding. Collectively, we propose that there are two distinct pathways for the nuclear import of lef-1: importin {alpha}/{beta}-mediated and {beta}-catenin-mediated one, which provides a novel paradigm for Wnt signaling pathway.

  13. Nuclear respiratory factor 2 induces the expression of many but not all human proteins acting in mitochondrial DNA transcription and replication.

    PubMed

    Bruni, Francesco; Polosa, Paola Loguercio; Gadaleta, Maria Nicola; Cantatore, Palmiro; Roberti, Marina

    2010-02-01

    In mammals, NRF-2 (nuclear respiratory factor 2), also named GA-binding protein, is an Ets family transcription factor that controls many genes involved in cell cycle progression and protein synthesis as well as in mitochondrial biogenesis. In this paper, we analyzed the role of NRF-2 in the regulation of human genes involved in mitochondrial DNA transcription and replication. By a combination of bioinformatic and biochemical approaches, we found that the factor binds in vitro and in vivo to the proximal promoter region of the genes coding for the transcription termination factor mTERF, the RNA polymerase POLRMT, the B subunit of the DNA polymerase-gamma, the DNA helicase TWINKLE, and the single-stranded DNA-binding protein mtSSB. The role of NRF-2 in modulating the expression of those genes was further established by RNA interference and overexpression strategies. On the contrary, we found that NRF-2 does not control the genes for the subunit A of DNA polymerase-gamma and for the transcription repressor MTERF3; we suggest that these genes are under regulatory mechanisms that do not involve NRF proteins. Since NRFs are known to positively control the expression of transcription-activating proteins, the novelty emerging from our data is that proteins playing antithetical roles in mitochondrial DNA transcription, namely activators and repressors, are under different regulatory pathways. Finally, we developed a more stringent consensus with respect to the general consensus of NRF-2/GA-binding protein when searching for NRF-2 binding sites in the promoter of mitochondrial proteins. PMID:19951946

  14. The relationship between transcript expression levels of nuclear encoded (TFAM, NRF1) and mitochondrial encoded (MT-CO1) genes in single human oocytes during oocyte maturation

    PubMed Central

    Novin, M Ghaffari; Allahveisi, A; Noruzinia, M; Farhadifar, F; Yousefian, E; Fard, A Dehghani; Salimi, M

    2015-01-01

    In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII) stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA), copied in oocytes, is essential for providing adenosine triphosphate (ATP) during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1) and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) in various stages of human oocyte maturation. Nine consenting patients, age 21–35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI) procedures. mRNA levels of mitochondrial-related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR). There was no significant relationship between the relative expression levels in germinal vesicle (GV) stage oocytes (p = 0.62). On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI) and MII (p = 0.03 and p = 0.002). A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation. PMID:26929904

  15. Testicular Nuclear Receptor 4 (TR4) Regulates UV Light-induced Responses via Cockayne Syndrome B Protein-mediated Transcription-coupled DNA Repair*

    PubMed Central

    Liu, Su; Yan, Shian-Jang; Lee, Yi-Fen; Liu, Ning-Chun; Ting, Huei-Ju; Li, Gonghui; Wu, Qiao; Chen, Lu-Min; Chang, Chawnshang

    2011-01-01

    UV irradiation is one of the major external insults to cells and can cause skin aging and cancer. In response to UV light-induced DNA damage, the nucleotide excision repair (NER) pathways are activated to remove DNA lesions. We report here that testicular nuclear receptor 4 (TR4), a member of the nuclear receptor family, modulates DNA repair specifically through the transcription-coupled (TC) NER pathway but not the global genomic NER pathway. The level of Cockayne syndrome B protein (CSB), a member of the TC-NER pathway, is 10-fold reduced in TR4-deficient mouse tissues, and TR4 directly regulates CSB at the transcriptional level. Moreover, restored CSB expression rescues UV hypersensitivity of TR4-deficient cells. Together, these results indicate that TR4 modulates UV sensitivity by promoting the TC-NER DNA repair pathway through transcriptional regulation of CSB. These results may lead to the development of new treatments for UV light-sensitive syndromes, skin cancer, and aging. PMID:21918225

  16. Hepatocyte nuclear factor 3beta is involved in pancreatic beta-cell-specific transcription of the pdx-1 gene.

    PubMed Central

    Wu, K L; Gannon, M; Peshavaria, M; Offield, M F; Henderson, E; Ray, M; Marks, A; Gamer, L W; Wright, C V; Stein, R

    1997-01-01

    The mammalian homeobox gene pdx-1 is expressed in pluripotent precursor cells in the dorsal and ventral pancreatic bud and duodenal endoderm, which will produce the pancreas and the rostral duodenum. In the adult, pdr-1 is expressed principally within insulin-secreting pancreatic islet beta cells and cells of the duodenal epithelium. Our objective in this study was to localize sequences within the mouse pdx-1 gene mediating selective expression within the islet. Studies of transgenic mice in which a genomic fragment of the mouse pdx-1 gene from kb -4.5 to +8.2 was used to drive a beta-galactosidase reporter showed that the control sequences sufficient for appropriate developmental and adult specific expression were contained within this region. Three nuclease-hypersensitive sites, located between bp -2560 and -1880 (site 1), bp -1330 and -800 (site 2), and bp -260 and +180 (site 3), were identified within the 5'-flanking region of the endogenous pdx-1 gene. Pancreatic beta-cell-specific expression was shown to be controlled by sequences within site 1 from an analysis of the expression pattern of various pdr-1-herpes simplex virus thymidine kinase promoter expression constructs in transfected beta-cell and non-beta-cell lines. Furthermore, we also established that this region was important in vivo by demonstrating that expression from a site 1-driven beta-galactosidase reporter construct was directed to islet beta-cells in transgenic mice. The activity of the site 1-driven constructs was reduced substantially in beta-cell lines by mutating a hepatocyte nuclear factor 3 (HNF3)-like site located between nucleotides -2007 and -1996. Gel shift analysis indicated that HNF3beta present in islet beta cells binds to this element. Immunohistochemical studies revealed that HNF3beta was present within the nuclei of almost all islet beta cells and subsets of pancreatic acinar cells. Together, these results suggest that HNF3beta, a key regulator of endodermal cell lineage

  17. Transcription factor (TF)-like nuclear regulator, the 250-kDa form of Homo sapiens TFIIIB", is an essential component of human TFIIIC1 activity.

    PubMed

    Weser, Stephan; Gruber, Christin; Hafner, Heike M; Teichmann, Martin; Roeder, Robert G; Seifart, Klaus H; Meissner, Wolfgang

    2004-06-25

    The general human RNA polymerase III transcription factor (TF) IIIC1 has hitherto been ill defined with respect to the polypeptides required for reconstitution of its activity. Here we identify Homo sapiens TFIIIB" (HsBdp1) as an essential component of hTFIIIC1 and hTFIIIC1-like activities. Several forms of HsBdp1 are described. The 250-kDa form of HsBdp1, also designated the "transcription factor-like nuclear regulator," strictly co-eluted with TFIIIC1 activity over multiple chromatographic purification steps as revealed by Western blot with anti-HsBdp1 antibodies and by MALDI-TOF analysis. In addition, TFIIIC1 activity could be depleted from partially purified fractions with anti-HsBdp1 antibodies but not with control antibodies. Moreover, highly purified recombinant HsBdp1 could replace TFIIIC1 activity in reconstituted transcription of the VAI gene in vitro. Furthermore, smaller proteins of approximately 90-150 kDa that were recognized by anti-HsBdp1 antibodies co-eluted with TFIIIC1-like activity. Finally, cytoplasmic extracts from differentiated mouse F9 fibroblast cells that lacked TFIIIC1 activity could be made competent for transcription of the VA1 gene by the addition of TFIIIC1, TFIIIC1-like, or recombinant HsBdp1. These results suggest that HsBdp1 proteins represent essential components of TFIIIC1 and TFIIIC1-like activities. PMID:15096501

  18. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells.

    PubMed

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. PMID:23948303

  19. Evidence for the Involvement of Xenobiotic-responsive Nuclear Receptors in Transcriptional Effects Upon Perfluoroalkyl Acid Exposure in Diverse Species.

    EPA Science Inventory

    Humans and other species have detectable body burdens of a number of perfluorinated alkyl acids (PFAA) including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). In mouse and rat liver these compounds elicit transcriptional and phenotypic effects similar to pe...

  20. Evidence for the Involvement of Xenobiotic-response Nuclear Receptors in Transcriptional Effects Upon Perfluroroalkyl Acid Exposure in Diverse Species

    EPA Science Inventory

    Humans and ecological species have been found to have detectable body burdens of a number of perfluorinated alkyl acids (PFAA) including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). In mouse and rat liver these compounds elicit transcriptional and phenotyp...

  1. STAT6 Transcription Factor Is a Facilitator of the Nuclear Receptor PPARγ-Regulated Gene Expression in Macrophages and Dendritic Cells

    PubMed Central

    Szanto, Attila; Balint, Balint L.; Nagy, Zsuzsanna S.; Barta, Endre; Dezso, Balazs; Pap, Attila; Szeles, Lajos; Poliska, Szilard; Oros, Melinda; Evans, Ronald M.; Barak, Yaacov; Schwabe, John; Nagy, Laszlo

    2010-01-01

    Summary Peroxisome proliferator-activated receptor γ (PPARγ) is a lipid-activated transcription factor regulating lipid metabolism and inflammatory response in macrophages and dendritic cells (DCs). These immune cells exposed to distinct inflammatory milieu show cell type specification as a result of altered gene expression. We demonstrate here a mechanism how inflammatory molecules modulate PPARγ signaling in distinct subsets of cells. Proinflammatory molecules inhibited whereas interleukin-4 (IL-4) stimulated PPARγ activity in macrophages and DCs. Furthermore, IL-4 signaling augmented PPARγ activity through an interaction between PPARγ and signal transducer and activators of transcription 6 (STAT6) on promoters of PPARγ target genes, including FABP4. Thus, STAT6 acts as a facilitating factor for PPARγ by promoting DNA binding and consequently increasing the number of regulated genes and the magnitude of responses. This interaction, underpinning cell type-specific responses, represents a unique way of controlling nuclear receptor signaling by inflammatory molecules in immune cells. PMID:21093321

  2. Orphan nuclear receptor Errγ induces C-reactive protein gene expression through induction of ER-bound Bzip transmembrane transcription factor CREBH.

    PubMed

    Misra, Jagannath; Chanda, Dipanjan; Kim, Don-Kyu; Cho, Seung-Rye; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung Hoon; Choi, Hueng-Sik

    2014-01-01

    The orphan nuclear receptor estrogen-related receptor-γ (ERRγ) is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER) stress response. cAMP responsive element-binding protein H (CREBH) is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE) in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP), whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP) assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions. PMID:24466039

  3. Orphan Nuclear Receptor Errγ Induces C-Reactive Protein Gene Expression through Induction of ER-Bound Bzip Transmembrane Transcription Factor CREBH

    PubMed Central

    Misra, Jagannath; Chanda, Dipanjan; Kim, Don-Kyu; Cho, Seung-Rye; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung Hoon; Choi, Hueng-Sik

    2014-01-01

    The orphan nuclear receptor estrogen-related receptor-γ (ERRγ) is a constitutively active transcription factor regulating genes involved in several important cellular processes, including hepatic glucose metabolism, alcohol metabolism, and the endoplasmic reticulum (ER) stress response. cAMP responsive element-binding protein H (CREBH) is an ER-bound bZIP family transcription factor that is activated upon ER stress and regulates genes encoding acute-phase proteins whose expression is increased in response to inflammation. Here, we report that ERRγ directly regulates CREBH gene expression in response to ER stress. ERRγ bound to the ERRγ response element (ERRE) in the CREBH promoter. Overexpression of ERRγ by adenovirus significantly increased expression of CREBH as well as C-reactive protein (CRP), whereas either knockdown of ERRγ or inhibition of ERRγ by ERRγ specific inverse agonist, GSK5182, substantially inhibited ER stress-mediated induction of CREBH and CRP. The transcriptional coactivator PGC1α was required for ERRγ mediated induction of the CREBH gene as demonstrated by the chromatin immunoprecipitation (ChIP) assay showing binding of both ERRγ and PGC1α on the CREBH promoter. The ChIP assay also revealed that histone H3 and H4 acetylation occurred at the ERRγ and PGC1α binding site. Moreover, chronic alcoholic hepatosteatosis, as well as the diabetic obese condition significantly increased CRP gene expression, and this increase was significantly attenuated by GSK5182 treatment. We suggest that orphan nuclear receptor ERRγ directly regulates the ER-bound transcription factor CREBH in response to ER stress and other metabolic conditions. PMID:24466039

  4. Poly(ADP-ribose) Polymerase 1 Interacts with Nuclear Respiratory Factor 1 (NRF-1) and Plays a Role in NRF-1 Transcriptional Regulation*S⃞

    PubMed Central

    Hossain, Mohammad B.; Ji, Ping; Anish, Ramakrishnan; Jacobson, Raymond H.; Takada, Shinako

    2009-01-01

    Nuclear respiratory factor 1 (NRF-1) is one of the key transcriptional activators for nuclear-coded genes involved in mitochondrial biogenesis and function as well as for many housekeeping genes. A transcriptional co-activator PGC-1 and its related family member PRC have previously been shown to interact with NRF-1 and co-activate NRF-1. We show here that NRF-1 can also directly interact with poly(ADP-ribose) polymerase 1 (PARP-1) and co-purify the PARP-1·DNA-PK·Ku80·Ku70·topoisomerase IIβ-containing protein complex. Our in vitro binding experiments show that DNA-binding/dimerization domain of NRF-1 and the N-terminal half of PARP-1, which contains two Zinc fingers and the auto-modification domain, are responsible for the interaction, and that this interaction occurs with or without PARP-1 poly(ADP-ribosyl)ation (PARylation). DNA-bound NRF-1 can form a complex with PARP-1, suggesting that NRF-1 can recruit the PARP-1·DNA-PK·Ku80·Ku70·topoisomerase IIβ-containing protein complex to the promoter. PARP-1 can also PARylate the DNA-binding domain of NRF-1 and negatively regulate NRF-1·PARP-1 interaction. Transient transfection and chromatin immunoprecipitation experiments suggest that PARP-1 plays a role during transcriptional activation by NRF-1. Our finding identifies a new aspect of transcriptional regulation used by NRF-1. PMID:19181665

  5. Src Subfamily Kinases Regulate Nuclear Export and Degradation of Transcription Factor Nrf2 to Switch Off Nrf2-mediated Antioxidant Activation of Cytoprotective Gene Expression*

    PubMed Central

    Niture, Suryakant K.; Jain, Abhinav K.; Shelton, Phillip M.; Jaiswal, Anil K.

    2011-01-01

    Nrf2 (NF-E2-related factor 2) is a nuclear transcription factor that in response to chemical and radiation stress regulates coordinated induction of a battery of cytoprotective gene expressions leading to cellular protection. In this study, we investigated the role of Src kinases in the regulation of Nrf2 and downstream signaling. siRNA-mediated inhibition of Fyn, Src, Yes, and Fgr, but not Lyn, in mouse hepatoma Hepa-1 cells, led to nuclear accumulation of Nrf2 and up-regulation of Nrf2 downstream gene expression. Mouse embryonic fibroblasts with combined deficiency of Fyn/Src/Yes/Fgr supported results from siRNA. In addition, steady-state overexpression of Fyn, Src, and Yes phosphorylated Nrf2Tyr568 that triggered nuclear export and degradation of Nrf2 and down-regulation of Nrf2 downstream gene expression. Exposure of cells to antioxidant, oxidant, or UV radiation increased nuclear import of Fyn, Src, and Yes kinases, which phosphorylated Nrf2Tyr568 resulting in nuclear export and degradation of Nrf2. Further analysis revealed that stress-activated GSK3β acted upstream to the Src kinases and phosphorylated the Src kinases, leading to their nuclear localization and Nrf2 phosphorylation. The overexpression of Src kinases in Hepa-1 cells led to decreased Nrf2, increased apoptosis, and decreased cell survival. Mouse embryonic fibroblasts deficient in Src kinases showed nuclear accumulation of Nrf2, induction of Nrf2 and downstream gene expression, reduced apoptosis, and increased cell survival. The studies together demonstrate that Src kinases play a critical role in nuclear export and degradation of Nrf2, thereby providing a negative feedback mechanism to switch off Nrf2 activation and restore normal cellular homeostasis. PMID:21690096

  6. Hepatocyte Nuclear Factor 4α (HNF4α) Is a Transcription Factor of Vertebrate Fatty Acyl Desaturase Gene as Identified in Marine Teleost Siganus canaliculatus

    PubMed Central

    Dong, Yewei; Wang, Shuqi; Chen, Junliang; Zhang, Qinghao; Liu, Yang; You, Cuihong; Monroig, Óscar; Tocher, Douglas R.; Li, Yuanyou

    2016-01-01

    Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understand regulatory mechanisms of transcription of Δ4 Fad, the gene promoter was cloned and characterized in the present study. An upstream sequence of 1859 bp from the initiation codon ATG was cloned as the promoter candidate. On the basis of bioinformatic analysis, several binding sites of transcription factors (TF) including GATA binding protein 2 (GATA-2), CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), nuclear factor Y (NF-Y), hepatocyte nuclear factor 4α (HNF4α) and sterol regulatory element (SRE), were identified in the promoter by site-directed mutation and functional assays. HNF4α and NF-1 were confirmed to interact with the core promoter of Δ4 Fad by gel shift assay and mass spectrometry. Moreover, over-expression of HNF4α increased promoter activity in HEK 293T cells and mRNA level of Δ4 Fad in rabbitfish primary hepatocytes, respectively. The results indicated that HNF4α is a TF of rabbitfish Δ4 Fad. To our knowledge, this is the first report on promoter structure of a Δ4 Fad, and also the first demonstration of HNF4α as a TF of vertebrate Fad gene involved in transcription regulation of LC-PUFA biosynthesis. PMID:27472219

  7. Hepatitis B virus nuclear export elements: RNA stem-loop α and β, key parts of the HBV post-transcriptional regulatory element.

    PubMed

    Lim, Chun Shen; Brown, Chris M

    2016-09-01

    Many viruses contain RNA elements that modulate splicing and/or promote nuclear export of their RNAs. The RNAs of the major human pathogen, hepatitis B virus (HBV) contain a large (~600 bases) composite cis-acting 'post-transcriptional regulatory element' (PRE). This element promotes expression from these naturally intronless transcripts. Indeed, the related woodchuck hepadnavirus PRE (WPRE) is used to enhance expression in gene therapy and other expression vectors. These PRE are likely to act through a combination of mechanisms, including promotion of RNA nuclear export. Functional components of both the HBV PRE and WPRE are 2 conserved RNA cis-acting stem-loop (SL) structures, SLα and SLβ. They are within the coding regions of polymerase (P) gene, and both P and X genes, respectively. Based on previous studies using mutagenesis and/or nuclear magnetic resonance (NMR), here we propose 2 covariance models for SLα and SLβ. The model for the 30-nucleotide SLα contains a G-bulge and a CNGG(U) apical loop of which the first and the fourth loop residues form a CG pair and the fifth loop residue is bulged out, as observed in the NMR structure. The model for the 23-nucleotide SLβ contains a 7-base-pair stem and a 9-nucleotide loop. Comparison of the models with other RNA structural elements, as well as similarity searches of human transcriptome and viral genomes demonstrate that SLα and SLβ are specific to HBV transcripts. However, they are well conserved among the hepadnaviruses of non-human primates, the woodchuck and ground squirrel. PMID:27031749

  8. Polymorphisms at positions -22 and -348 in the promoter of the BAT1 gene affect transcription and the binding of nuclear factors.

    PubMed

    Price, Patricia; Wong, Agnes M-L; Williamson, David; Voon, Dominic; Baltic, Svetlana; Allcock, Richard J N; Boodhoo, Alvin; Christiansen, Frank T

    2004-05-01

    BAT1 (D6S81E, UAP56) lies in the central MHC between TNF and HLA-B, a region containing genes that affect susceptibility to immunopathologic disorders. BAT1 protein may be directly responsible for the genetic association, as antisense studies show it can down-regulate inflammatory cytokines. Here we investigate polymorphisms at positions -22 and -348 relative to the BAT1 transcription start site. DNA samples from healthy donors were used to confirm haplotypic associations with the type 1 diabetes-susceptible 8.1 ancestral haplotype (AH; HLA-A1,B8,BAT1-22*C,BAT1-348*C,DR3 ) and the diabetes-resistant 7.1 AH (HLA-A3,B7,BAT1-22*G,BAT1-348*T,DR15). Alleles carried at BAT1-22 and -348 were in linkage disequilibrium. Electrophoretic mobility shift assays using nuclear proteins from T-cells (Jurkat and HT2), monocytes (THP1, U937) and epithelial cells (HeLa and MDA468) demonstrated DNA : protein complexes binding oligonucleotides spanning positions -22 and -348 on the 7.1 AH only. Competition assays, supershifts and molecular weight determinations suggest the complexes include the transcription factors YY1 (at -348) and Oct1 (at -22). Promoter activity was demonstrated using 520 bp and 336 bp fragments cloned from immediately upstream of the transcription start site and carrying all combinations of -22 and -348 alleles, suggesting an unidentified non-polymorphic sequence within 336 bp of the start site drives transcription. The 520 bp fragment of the BAT1 promoter cloned from the 8.1 AH was slightly less efficient than the equivalent from the 7.1 AH, whilst the reverse was observed with 336 bp fragments. This suggests BAT1 transcription on the 7.1 AH is modified by interactions involving DNA flanking positions -22 and -348. PMID:15028669

  9. Primary oocyte transcriptional activation of aqp1ab by the nuclear progestin receptor determines the pelagic egg phenotype of marine teleosts.

    PubMed

    Zapater, Cinta; Chauvigné, François; Tingaud-Sequeira, Angèle; Finn, Roderick Nigel; Cerdà, Joan

    2013-05-15

    In marine teleosts, the aqp1ab water channel plays a vital role in the development of the pelagic egg phenotype. However, the developmental control of aqp1ab activation during oogenesis remains to be established. Here, we report the isolation of the 5'-flanking region of the teleost gilthead seabream aqp1ab gene, in which we identify conserved cis-regulatory elements for the binding of the nuclear progestin receptor (Pgr) and members of the Sox family of transcription factors. Subcellular localization studies indicated that the Pgr, as well as sox3 and -8b transcripts, are co-expressed in seabream oogonia, whereas in meiosis-arrested primary growth (pre-vitellogenic) oocytes, when aqp1ab mRNA and protein are first synthesized, the Pgr appears to be completely translocated from the ooplasm into the nucleus. By contrast, sox9b is highly expressed in more advanced oocytes, coinciding with a strong depletion of aqp1ab transcripts in the oocyte. Functional characterization of wild-type and mutated aqp1ab promoter constructs, using mammalian cells and Xenopus laevis oocytes, demonstrated that aqp1ab transcription is initiated by the Pgr, which is activated by the progestin 17α,20β-dihydroxy-4-pregnen-3-one (17,20β-P), the natural ligand of the seabream Pgr. In vitro incubation of seabream primary ovarian explants with the follicle-stimulating hormone or 17,20β-P confirmed that progestin-activated Pgr enhanced Aqp1ab synthesis via the aqp1ab promoter. However, transactivation assays in heterologous systems showed that Sox transcription factors can potentially modulate this mechanism. These data uncover the existence of an endocrine pathway involved in the early activation of a water channel necessary for egg formation in marine teleosts. PMID:23499660

  10. Human THAP7 is a chromatin-associated, histone tail-binding protein that represses transcription via recruitment of HDAC3 and nuclear hormone receptor corepressor.

    PubMed

    Macfarlan, Todd; Kutney, Sara; Altman, Brian; Montross, Rebecca; Yu, Jiujiu; Chakravarti, Debabrata

    2005-02-25

    The identities of signal transducer proteins that integrate histone hypoacetylation and transcriptional repression are largely unknown. Here we demonstrate that THAP7, an uncharacterized member of the recently identified THAP (Thanatos-associated protein) family of proteins, is ubiquitously expressed, associates with chromatin, and represses transcription. THAP7 binds preferentially to hypoacetylated (un-, mono-, and diacetylated) histone H4 tails in vitro via its C-terminal 77 amino acids. Deletion of this domain, or treatment of cells with the histone deacetylase inhibitor TSA, which leads to histone hyperacetylation, partially disrupts THAP7/chromatin association in living cells. THAP7 coimmunoprecipitates with histone deacetylase 3 (HDAC3) and the nuclear hormone receptor corepressor (NCoR) and represses transcription as a Gal4 fusion protein. Chromatin immunoprecipitation assays demonstrate that these corepressors are recruited to promoters in a THAP7 dependent manner and promote histone H3 hypoacetylation. The conserved THAP domain is a key determinant for full HDAC3 association in vitro, and both the THAP domain and the histone interaction domain are important for the repressive properties of THAP7. Full repression mediated by THAP7 is also dependent on NCoR expression. We hypothesize that THAP7 is a dual function repressor protein that actively targets deacetylation of histone H3 necessary to establish transcriptional repression and functions as a signal transducer of the repressive mark of hypoacetylated histone H4. This is the first demonstration of the transcriptional regulatory properties of a human THAP domain protein, and a critical identification of a potential transducer of the repressive signal of hypoacetylated histone H4 in higher eukaryotes. PMID:15561719

  11. Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1

    SciTech Connect

    Compagnucci, Claudia; Barresi, Sabina; Petrini, Stefania; Bertini, Enrico; Zanni, Ginevra

    2015-04-03

    Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP), modulating actin–myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells, leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1), the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK. - Highlights: • ROCK regulates nucleocytoplasmic shuttling of HDAC7 via phosphorylation of MYPT1. • Nuclear export of HDAC7 and upregulation of NR4A1 occurs with low ROCK activity. • High levels of ROCK activity due to OPHN1 loss of function downregulate NR4A1.

  12. Alu sequences transcription in X. laevis oocytes: nuclear-cytoplasmic partitioning and evidence for 3' end processing reactions.

    PubMed Central

    Perlino, E; Paonessa, G; Ciliberto, G

    1985-01-01

    A large Alu-family cluster in the 5' flanking region of a human alpha 1-acid glycoprotein gene has been identified and sequenced. Individual members microinjected into X. laevis oocytes are transcribed only when canonical box A and B components of the split pol III promoter are present. Alu transcripts accumulate in the nucleus. An unusually short Alu transcript, able to assume a stable secondary structure, undergoes a 3' end processing reaction similar to the one required for tRNA 3' end maturation. Images PMID:4080545

  13. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells

    SciTech Connect

    Lorenzato, Annalisa; Biolatti, Marta; Delogu, Giuseppe; Capobianco, Giampiero; Farace, Cristiano; Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco; Madeddu, Roberto; Olivero, Martina; Di Renzo, Maria Flavia

    2013-10-15

    The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-α and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

  14. Nuclear Respiratory Factor 1 Controls Myocyte Enhancer Factor 2A Transcription to Provide a Mechanism for Coordinate Expression of Respiratory Chain Subunits*S⃞

    PubMed Central

    Ramachandran, Bindu; Yu, Gengsheng; Gulick, Tod

    2008-01-01

    Nuclear respiratory factors NRF1 and NRF2 regulate the expression of nuclear genes encoding heme biosynthetic enzymes, proteins required for mitochondrial genome transcription and protein import, and numerous respiratory chain subunits. NRFs thereby coordinate the expression of nuclear and mitochondrial genes relevant to mitochondrial biogenesis and respiration. Only two of the nuclear-encoded respiratory chain subunits have evolutionarily conserved tissue-specific forms: the cytochrome c oxidase (COX) subunits VIa and VIIa heart/muscle (H) and ubiquitous (L) isoforms. We used genome comparisons to conclude that the promoter regions of COX6AH and COX7AH lack NRF sites but have conserved myocyte enhancer factor 2 (MEF2) elements. We show that MEF2A mRNA is induced with forced expression of NRF1 and that the MEF2A 5′-regulatory region contains an evolutionarily conserved canonical element that binds endogenous NRF1 in chromatin immunoprecipitation (ChIP) assays. NRF1 regulates MEF2A promoter-reporters according to overexpression, RNA interference underexpression, and promoter element mutation studies. As there are four mammalian MEF2 isotypes, we used an isoform-specific antibody in ChIP to confirm MEF2A binding to the COX6AH promoter. These findings support a role for MEF2A as an intermediary in coordinating respiratory chain subunit expression in heart and muscle through a NRF1 → MEF2A → COXH transcriptional cascade. MEF2A also bound the MEF2A and PPARGC1A promoters in ChIP, placing it within a feedback loop with PGC1α in controlling NRF1 activity. Interruption of this cascade and loop may account for striated muscle mitochondrial defects in mef2a null mice. Our findings also account for the previously described indirect regulation by NRF1 of other MEF2 targets in muscle such as GLUT4. PMID:18222924

  15. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits.

    PubMed

    Ramachandran, Bindu; Yu, Gengsheng; Gulick, Tod

    2008-05-01

    Nuclear respiratory factors NRF1 and NRF2 regulate the expression of nuclear genes encoding heme biosynthetic enzymes, proteins required for mitochondrial genome transcription and protein import, and numerous respiratory chain subunits. NRFs thereby coordinate the expression of nuclear and mitochondrial genes relevant to mitochondrial biogenesis and respiration. Only two of the nuclear-encoded respiratory chain subunits have evolutionarily conserved tissue-specific forms: the cytochrome c oxidase (COX) subunits VIa and VIIa heart/muscle (H) and ubiquitous (L) isoforms. We used genome comparisons to conclude that the promoter regions of COX6A(H) and COX7A(H) lack NRF sites but have conserved myocyte enhancer factor 2 (MEF2) elements. We show that MEF2A mRNA is induced with forced expression of NRF1 and that the MEF2A 5'-regulatory region contains an evolutionarily conserved canonical element that binds endogenous NRF1 in chromatin immunoprecipitation (ChIP) assays. NRF1 regulates MEF2A promoter-reporters according to overexpression, RNA interference underexpression, and promoter element mutation studies. As there are four mammalian MEF2 isotypes, we used an isoform-specific antibody in ChIP to confirm MEF2A binding to the COX6A(H) promoter. These findings support a role for MEF2A as an intermediary in coordinating respiratory chain subunit expression in heart and muscle through a NRF1 --> MEF2A --> COX(H) transcriptional cascade. MEF2A also bound the MEF2A and PPARGC1A promoters in ChIP, placing it within a feedback loop with PGC1alpha in controlling NRF1 activity. Interruption of this cascade and loop may account for striated muscle mitochondrial defects in mef2a null mice. Our findings also account for the previously described indirect regulation by NRF1 of other MEF2 targets in muscle such as GLUT4. PMID:18222924

  16. IL6 Inhibits HBV Transcription by Targeting the Epigenetic Control of the Nuclear cccDNA Minichromosome

    PubMed Central

    Palumbo, Gianna Aurora; Scisciani, Cecilia; Pediconi, Natalia; Lupacchini, Leonardo; Alfalate, Dulce; Guerrieri, Francesca; Calvo, Ludovica; Salerno, Debora; Di Cocco, Silvia; Levrero, Massimo; Belloni, Laura

    2015-01-01

    The HBV covalently closed circular DNA (cccDNA) is organized as a mini-chromosome in the nuclei of infected hepatocytes by histone and non-histone proteins. Transcription from the cccDNA of the RNA replicative intermediate termed pre-genome (pgRNA), is the critical step for genome amplification and ultimately determines the rate of HBV replication. Multiple evidences suggest that cccDNA epigenetic modifications, such as histone modifications and DNA methylation, participate in regulating the transcriptional activity of the HBV cccDNA. Inflammatory cytokines (TNFα, LTβ) and the pleiotropic cytokine interleukin-6 (IL6) inhibit hepatitis B virus (HBV) replication and transcription. Here we show, in HepG2 cells transfected with linear HBV monomers and HBV-infected NTCP-HepG2 cells, that IL6 treatment leads to a reduction of cccDNA-bound histone acetylation paralleled by a rapid decrease in 3.5kb/pgRNA and subgenomic HBV RNAs transcription without affecting cccDNA chromatinization or cccDNA levels. IL6 repressive effect on HBV replication is mediated by a loss of HNF1α and HNF4α binding to the cccDNA and a redistribution of STAT3 binding from the cccDNA to IL6 cellular target genes. PMID:26580974

  17. Adaptive and Specialised Transcriptional Responses to Xenobiotic Stress in Caenorhabditis elegans Are Regulated by Nuclear Hormone Receptors

    PubMed Central

    Jones, Laura M.; Rayson, Samantha J.; Flemming, Anthony J.; Urwin, Peter E.

    2013-01-01

    Characterisation of the pathways by which xenobiotics are metabolised and excreted in both target and non-target organisms is crucial for the rational design of effective and specific novel bioactive molecules. Consequently, we have investigated the induced responses of the model nematode Caenorhabditis elegans to a variety of xenobiotics which represent a range of putative modes of action. The majority of genes that were specifically induced in preliminary microarray analyses encoded enzymes from Phase I and II metabolism, including cytochrome P450s, short chain dehydrogenases, UDP-glucuronosyl transferases and glutathione transferases. Changes in gene expression were confirmed by quantitative PCR and GFP induction in reporter strains driven by promoters for transcription of twelve induced enzymes was investigated. The particular complement of metabolic genes induced was found to be highly contingent on the xenobiotic applied. The known regulators of responses to applied chemicals ahr-1, hif-1, mdt-15 and nhr-8 were not required for any of these inducible responses and skn-1 regulated GFP expression from only two of the promoters. Reporter strains were used in conjunction with systematic RNAi screens to identify transcription factors which drive expression of these genes under xenobiotic exposure. These transcription factors appeared to regulate specific xenobiotic responses and have no reported phenotypes under standard conditions. Focussing on nhr-176 we demonstrate the role of this transcription factor in mediating the resistance to thiabendazole. PMID:23922869

  18. Dissecting nuclear Wingless signalling: recruitment of the transcriptional co-activator Pygopus by a chain of adaptor proteins.

    PubMed

    Städeli, Reto; Basler, Konrad

    2005-11-01

    Members of the Wingless (Wg)/Wnt family of secreted glycoproteins control cell fate during embryonic development and adult homeostasis. Wnt signals regulate the expression of target genes by activating a conserved signal transduction pathway. Upon receptor activation, the signal is transmitted intracellularly by stabilization of Armadillo (Arm)/beta-catenin. Arm/beta-catenin translocates to the nucleus, interacts with DNA-binding factors of the Pangolin (Pan)/TCF/LEF class and activates transcription of target genes in cooperation with the recently identified proteins Legless/BCL9 (Lgs) and Pygopus (Pygo). Here, we analyse the mode of action of Pan, Arm, Lgs, and Pygo in Drosophila cultured cells. We provide evidence that together these four proteins form a 'chain of adaptors' linking the NH2-terminal homology domain (NHD) of Pygo to the DNA-binding domain of Pan. We show that the NHD has potent transcriptional activation capacity, which differs from that of acidic activator domains and depends on a conserved NPF tripeptide. A single point mutation within this NPF motif abolishes the transcriptional activity of the Pygo NHD in vitro and strongly reduces Wg signalling in vivo. Together, our results suggest that the transcriptional output of Wg pathway activity largely relies on a 'chain of adaptors' design to direct the Pygo NHD to Wg target promoters in an Arm-dependent manner. PMID:16169192

  19. Nucleotide sequence and transcriptional analysis of the HindIII P region of a temperature-sensitive mutant of Autographa californica nuclear polyhedrosis virus.

    PubMed

    Carstens, E B; Lu, A

    1990-12-01

    DNA sequence analysis of the HindIII P region of a temperature-sensitive mutant of Autographa californica nuclear polyhedrosis virus confirmed the specific amplification of 1.4 kb of viral DNA from this region of the genome. The sequenced region included an open reading frame, translated in a counterclockwise direction, which would potentially encode a 74K protein. The amplified DNA was contained within this open reading frame, resulting in in-frame amplifications of a domain within the protein. Transcription studies revealed the presence of a ladder of viral RNA species corresponding to a 2.5 kb transcript carrying tandem repeats of about 1.4 kb. This indicated that the duplicated DNA was transcribed in the same orientation as the p10 gene. We predict that transcripts synthesized from the opposite DNA strand also consist of a ladder of related mRNAs which would be translated to produce a family of p74 proteins with multiple internal domains. PMID:2273394

  20. Transcriptional Regulation of the Intestinal Nuclear Bile Acid Farnesoid X Receptor (FXR) by the caudal-related Homeobox 2 (CDX2)*

    PubMed Central

    Modica, Salvatore; Cariello, Marica; Morgano, Annalisa; Gross, Isabelle; Vegliante, Maria Carmela; Murzilli, Stefania; Salvatore, Lorena; Freund, Jean-Noel; Sabbà, Carlo; Moschetta, Antonio

    2014-01-01

    Farnesoid X receptor (FXR, NR1H4) is a bile acid-activated transcription factor that belongs to the nuclear receptor superfamily. It is highly expressed in the enterohepatic system, where it senses bile acid levels to consequently reduce their synthesis while inducing their detoxification. Bile acids are intestinal tumor promoters and their concentrations have to be tightly regulated. Indeed, reduced expression of FXR in the intestine increases colorectal cancer susceptibility in mice, whereas its activation can promote apoptosis in genetically modified cells. Notably, despite the broad knowledge of the FXR enterohepatic transcriptional activity, the molecular mechanisms regulating FXR expression in the intestine are still unknown. Herein, by combining both gain and loss of function approaches and FXR promoter activity studies, we identified caudal-related homeobox 2 (CDX2) transcription factor as a positive regulator of FXR expression in the enterocytes. Our results provide a putative novel tool for modulating FXR expression against bile acid-related colorectal cancer progression. PMID:25138215

  1. The nuclear localization of the Arabidopsis transcription factor TIP is blocked by its interaction with the coat protein of Turnip crinkle virus

    SciTech Connect

    Ren Tao; Qu Feng; Morris, T. Jack . E-mail: jmorris@unlnotes.unl.edu

    2005-01-20

    We have previously reported that TIP, an Arabidopsis protein, interacts with the coat protein (CP) of Turnip crinkle virus (TCV) in yeast cells and that this interaction correlated with the resistance response in the TCV-resistant Arabidopsis ecotype Dijon-17. TIP was also able to activate transcription of reporter genes in yeast cells, suggesting that it is likely a transcription factor. We have now verified the physical interaction between TIP and TCV CP in vitro and showed that CP mutants unable to interact with TIP in yeast cells bind TIP with much lower affinity in vitro. Secondly, we have performed gel shift experiments demonstrating that TIP does not bind to DNA in a sequence-specific manner. The subcellular localization of TIP was also investigated by transiently expressing green fluorescence protein (GFP)-tagged TIP in Nicotiana benthamiana plant cells, which showed that GFP-tagged TIP localizes primarily to nuclei. Significantly, co-expression of TCVCP and GFP-TIP prevented the nuclear localization of TIP. Together, these results suggest that TIP might be a transcription factor involved in regulating the defense response of Arabidopsis to TCV and that its normal role is compromised by interaction with the invading viral CP.

  2. Transcriptional Regulation of X-Box-binding Protein One (XBP1) by Hepatocyte Nuclear Factor 4α (HNF4Α) Is Vital to Beta-cell Function.

    PubMed

    Moore, Benjamin D; Jin, Ramon U; Lo, Heiyong; Jung, Min; Wang, Haiyan; Battle, Michele A; Wollheim, Claes B; Urano, Fumihiko; Mills, Jason C

    2016-03-18

    The transcription factor, X-box-binding protein-1 (XBP1), controls the development and maintenance of the endoplasmic reticulum (ER) in multiple secretory cell lineages. We show here that Hepatocyte Nuclear Factor 4α (HNF4α) directly induces XBP1 expression. Mutations in HNF4α cause Mature-Onset Diabetes of the Young I (MODYI), a subset of diabetes characterized by diminished GSIS. In mouse models, cell lines, and ex vivo islets, using dominant negative and human- disease-allele point mutants or knock-out and knockdown models, we show that disruption of HNF4α caused decreased expression of XBP1 and reduced cellular ER networks. GSIS depends on ER Ca(2+) signaling; we show that diminished XBP1 and/or HNF4α in β-cells led to impaired ER Ca(2+) homeostasis. Restoring XBP1 expression was sufficient to completely rescue GSIS in HNF4α-deficient β-cells. Our findings uncover a transcriptional relationship between HNF4α and Xbp1 with potentially broader implications about MODYI and the importance of transcription factor signaling in the regulation of secretion. PMID:26792861

  3. Exo70 is transcriptionally up-regulated by hepatic nuclear factor 4α and contributes to cell cycle control in hepatoma cells

    PubMed Central

    Zhao, Yujie; Hou, Jihuan; Mi, Panying; Mao, Liyuan; Xu, Liang; Zhang, Youyu; Xiao, Li; Cao, Hanwei; Zhang, Wenqing; Zhang, Bing; Song, Gang; Hu, Tianhui; Zhan, Yan-yan

    2016-01-01

    Exo70, a member of the exocyst complex, is involved in cell exocytosis, migration, invasion and autophagy. However, the expression regulation and function of Exo70 in hepatocellular carcinoma are still poorly understood. In this study, we found Exo70 expression in human hepatoma cells was greatly reduced after knocking down hepatic nuclear factor 4α (HNF4α), the most important and abundant transcription factor in liver. This regulation occurred at the transcriptional level but not post-translational level. HNF4α transactivated Exo70 promoter through directly binding to the HNF4α-response element in this promoter. Cell cycle analysis further revealed that down-regulation of HNF4α and Exo70 was essential to berberine-stimulated G2/M cell cycle arrest in hepatoma cells. Moreover, knocking down either Exo70 or HNF4α induced G2/M phase arrest of hepatoma cells. Exo70 acted downstream of HNF4α to stimulate G2/M transition via increasing Cdc2 expression. Together, our results identify Exo70 as a novel transcriptional target of HNF4α to promote cell cycle progression in hepatoma, thus provide a basis for the development of therapeutic strategies for hepatocellular carcinoma. PMID:26848864

  4. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    PubMed Central

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  5. The restricted promoter activity of the liver transcription factor hepatocyte nuclear factor 3 beta involves a cell-specific factor and positive autoactivation.

    PubMed Central

    Pani, L; Quian, X B; Clevidence, D; Costa, R H

    1992-01-01

    The transcription factor hepatocyte nuclear factor 3 (HNF-3) is involved in the coordinate expression of several liver genes. HNF-3 DNA binding activity is composed of three different liver proteins which recognize the same DNA site. The HNF-3 proteins (designated alpha, beta, and gamma) possess homology in the DNA binding domain and in several additional regions. To understand the cell-type-specific expression of HNF-3 beta, we have defined the regulatory sequences that elicit hepatoma-specific expression. Promoter activity requires -134 bp of HNF-3 beta proximal sequences and binds four nuclear proteins, including two ubiquitous factors. One of these promoter sites interacts with a novel cell-specific factor, LF-H3 beta, whose binding activity correlates with the HNF-3 beta tissue expression pattern. Furthermore, there is a binding site for the HNF-3 protein within its own promoter, suggesting that an autoactivation mechanism is involved in the establishment of HNF-3 beta expression. We propose that both the LF-H3 beta and HNF-3 sites play an important role in the cell-type-specific expression of the HNF-3 beta transcription factor. Images PMID:1732730

  6. Death-domain associated protein-6 (DAXX) mediated apoptosis in hantavirus infection is counter-balanced by activation of interferon-stimulated nuclear transcription factors

    SciTech Connect

    Khaiboullina, Svetlana F.; Morzunov, Sergey P.; Boichuk, Sergei V.; Palotás, András; Jeor, Stephen St.; Lombardi, Vincent C.; Rizvanov, Albert A.

    2013-09-01

    Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirus triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.

  7. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis.

    PubMed

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-02-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  8. Post-transcriptional regulation of cyclins D1, D3 and G1 and proliferation of human cancer cells depend on IMP-3 nuclear localization.

    PubMed

    Rivera Vargas, T; Boudoukha, S; Simon, A; Souidi, M; Cuvellier, S; Pinna, G; Polesskaya, A

    2014-05-29

    RNA-binding proteins of the IMP family (insulin-like growth factor 2 (IGF2) mRNA-binding proteins 1-3) are important post-transcriptional regulators of gene expression. Multiple studies have linked high expression of IMP proteins, and especially of IMP-3, to an unfavorable prognosis in numerous types of cancer. The specific importance of IMP-3 for cancer transformation remains poorly understood. We here show that all three IMPs can directly bind the mRNAs of cyclins D1, D3 and G1 (CCND1, D3 and G1) in vivo and in vitro, and yet only IMP-3 regulates the expression of these cyclins in a significant manner in six human cancer cell lines of different origins. In the absence of IMP-3, the levels of CCND1, D3 and G1 proteins fall dramatically, and the cells accumulate in the G1 phase of the cell cycle, leading to almost complete proliferation arrest. Our results show that, compared with IMP-1 and IMP-2, IMP-3 is enriched in the nucleus, where it binds the transcripts of CCND1, D3 and G1. The nuclear localization of IMP-3 depends on its protein partner HNRNPM and is indispensable for the post-transcriptional regulation of expression of the cyclins. Cytoplasmic retention of IMP-3 and HNRNPM in human cancer cells leads to significant drop in proliferation. In conclusion, a nuclear IMP-3-HNRNPM complex is important for the efficient synthesis of CCND1, D3 and G1 and for the proliferation of human cancer cells. PMID:23812426

  9. Down-regulation of the zinc-finger homeobox protein TSHZ2 releases GLI1 from the nuclear repressor complex to restore its transcriptional activity during mammary tumorigenesis

    PubMed Central

    Riku, Miho; Inaguma, Shingo; Ito, Hideaki; Tsunoda, Takumi; Ikeda, Hiroshi; Kasai, Kenji

    2016-01-01

    Although breast cancer is one of the most common malignancies, the molecular mechanisms underlying its development and progression are not fully understood. To identify key molecules involved, we screened publicly available microarray datasets for genes differentially expressed between breast cancers and normal mammary glands. We found that three of the genes predicted in this analysis were differentially expressed among human mammary tissues and cell lines. Of these genes, we focused on the role of the zinc-finger homeobox protein TSHZ2, which is down-regulated in breast cancer cells. We found that TSHZ2 is a nuclear protein harboring a bipartite nuclear localization signal, and we confirmed its function as a C-terminal binding protein (CtBP)-dependent transcriptional repressor. Through comprehensive screening, we identified TSHZ2-suppressing genes such as AEBP1 and CXCR4, which are conversely up-regulated by GLI1, the downstream transcription factor of Hedgehog signaling. We found that GLI1 forms a ternary complex with CtBP2 in the presence of TSHZ2 and that the transcriptional activity of GLI1 is suppressed by TSHZ2 in a CtBP-dependent manner. Indeed, knockdown of TSHZ2 increases the expression of AEBP1 and CXCR4 in TSHZ2-expressing immortalized mammary duct epithelium. Concordantly, immunohistochemical staining of mammary glands revealed that normal duct cells expresses GLI1 in the nucleus along with TSHZ2 and CtBP2, whereas invasive ductal carcinoma cells, which does not express TSHZ2, show the increase in the expression of AEBP1 and CXCR4 and in the cytoplasmic localization of GLI1. Thus, we propose that down-regulation of TSHZ2 is crucial for mammary tumorigenesis via the activation of GLI1. PMID:26744317

  10. Expression of U1 small nuclear ribonucleoprotein 70K antisense transcript using APETALA3 promoter suppresses the development of sepals and petals.

    PubMed

    Golovkin, Maxim; Reddy, Anireddy S N

    2003-08-01

    U1 small nuclear ribonucleoprotein (snRNP)-70K (U1-70K), a U1 snRNP-specific protein, is involved in the early stages of spliceosome formation. In non-plant systems, it is involved in constitutive and alternative splicing. It has been shown that U1snRNP is dispensable for in vitro splicing of some animal pre-mRNAs, and inactivation of U1-70K in yeast (Saccharomyces cerevisiae) is not lethal. As in yeast and humans (Homo sapiens), plant U1-70K is coded by a single gene. In this study, we blocked the expression of Arabidopsis U1-70K in petals and stamens by expressing U1-70K antisense transcript using the AP3 (APETALA3) promoter specific to these floral organs. Flowers of transgenic Arabidopsis plants expressing U1-70K antisense transcript showed partially developed stamens and petals that are arrested at different stages of development. In some transgenic lines, flowers have rudimentary petals and stamens and are male sterile. The severity of the phenotype is correlated with the level of the antisense transcript. Molecular analysis of transgenic plants has confirmed that the observed phenotype is not due to disruption of whorl-specific homeotic genes, AP3 or PISTILLATA, responsible for petal and stamen development. The AP3 transcript was not detected in transgenic flowers with severe phenotype. Flowers of Arabidopsis plants transformed with a reporter gene driven by the same promoter showed no abnormalities. These results show that U1-70K is necessary for the development of sepals and petals and is an essential gene in plants. PMID:12913145

  11. In vitro transcription of a Drosophila U1 small nuclear RNA gene requires TATA box-binding protein and two proximal cis-acting elements with stringent spacing requirements.

    PubMed Central

    Zamrod, Z; Tyree, C M; Song, Y; Stumph, W E

    1993-01-01

    Transcription of a Drosophila U1 small nuclear RNA gene was functionally analyzed in cell extracts derived from 0- to 12-h embryos. Two promoter elements essential for efficient initiation of transcription in vitro by RNA polymerase II were identified. The first, termed PSEA, is located between positions -41 and -61 relative to the transcription start site, is crucial for promoter activity, and is the dominant element for specifying the transcription initiation site. PSEA thus appears to be functionally homologous to the proximal sequence element of vertebrate small nuclear RNA genes. The second element, termed PSEB, is located at positions -25 to -32 and is required for an efficient level of transcription initiation because mutation of PSEB, or alteration of the spacing between PSEA and PSEB, severely reduced transcriptional activity relative to that of the wild-type promoter. Although the PSEB sequence does not have any obvious sequence similarity to a TATA box, conversion of PSEB to the canonical TATA sequence dramatically increased the efficiency of the U1 promoter and simultaneously relieved the requirement for the upstream PSEA. Despite these effects, introduction of the TATA sequence into the U1 promoter had no effect on the choice of start site or on the RNA polymerase II specificity of the promoter. Finally, evidence is presented that the TATA box-binding protein is required for transcription from the wild-type U1 promoter as well as from the TATA-containing U1 promoter. Images PMID:8355718

  12. EBV Nuclear Antigen 3C Mediates Regulation of E2F6 to Inhibit E2F1 Transcription and Promote Cell Proliferation

    PubMed Central

    Sun, Zhiguo; Jha, Hem Chandra; Saha, Abhik; Robertson, Erle S.

    2016-01-01

    Epstein–Barr virus (EBV) is considered a ubiquitous herpesvirus with the ability to cause latent infection in humans worldwide. EBV-association is evidently linked to different types of human malignancies, mainly of epithelial and lymphoid origin. Of interest is the EBV nuclear antigen 3C (EBNA3C) which is critical for EBV-mediated immortalization. Recently, EBNA3C was shown to bind the E2F1 transcription regulator. The E2F transcription factors have crucial roles in various cellular functions, including cell cycle, DNA replication, DNA repair, cell mitosis, and cell fate. Specifically, E2F6, one of the unique E2F family members, is known to be a pRb-independent transcription repressor of E2F-target genes. In our current study, we explore the role of EBNA3C in regulating E2F6 activities. We observed that EBNA3C plays an important role in inducing E2F6 expression in LCLs. Our study also shows that EBNA3C physically interacts with E2F6 at its amino and carboxy terminal domains and they form a protein complex in human cells. In addition, EBNA3C stabilizes the E2F6 protein and is co-localized in the nucleus. We also demonstrated that both EBNA3C and E2F6 contribute to reduction in E2F1 transcriptional activity. Moreover, E2F1 forms a protein complex with EBNA3C and E2F6, and EBNA3C competes with E2F1 for E2F6 binding. E2F6 is also recruited by EBNA3C to the E2F1 promoter, which is critical for EBNA3C-mediated cell proliferation. These results demonstrate a critical role for E2F family members in EBV-induced malignancies, and provide new insights for targeting E2F transcription factors in EBV-associated cancers as potential therapeutic intervention strategies. PMID:27548379

  13. EBV Nuclear Antigen 3C Mediates Regulation of E2F6 to Inhibit E2F1 Transcription and Promote Cell Proliferation.

    PubMed

    Pei, Yonggang; Banerjee, Shuvomoy; Sun, Zhiguo; Jha, Hem Chandra; Saha, Abhik; Robertson, Erle S

    2016-08-01

    Epstein-Barr virus (EBV) is considered a ubiquitous herpesvirus with the ability to cause latent infection in humans worldwide. EBV-association is evidently linked to different types of human malignancies, mainly of epithelial and lymphoid origin. Of interest is the EBV nuclear antigen 3C (EBNA3C) which is critical for EBV-mediated immortalization. Recently, EBNA3C was shown to bind the E2F1 transcription regulator. The E2F transcription factors have crucial roles in various cellular functions, including cell cycle, DNA replication, DNA repair, cell mitosis, and cell fate. Specifically, E2F6, one of the unique E2F family members, is known to be a pRb-independent transcription repressor of E2F-target genes. In our current study, we explore the role of EBNA3C in regulating E2F6 activities. We observed that EBNA3C plays an important role in inducing E2F6 expression in LCLs. Our study also shows that EBNA3C physically interacts with E2F6 at its amino and carboxy terminal domains and they form a protein complex in human cells. In addition, EBNA3C stabilizes the E2F6 protein and is co-localized in the nucleus. We also demonstrated that both EBNA3C and E2F6 contribute to reduction in E2F1 transcriptional activity. Moreover, E2F1 forms a protein complex with EBNA3C and E2F6, and EBNA3C competes with E2F1 for E2F6 binding. E2F6 is also recruited by EBNA3C to the E2F1 promoter, which is critical for EBNA3C-mediated cell proliferation. These results demonstrate a critical role for E2F family members in EBV-induced malignancies, and provide new insights for targeting E2F transcription factors in EBV-associated cancers as potential therapeutic intervention strategies. PMID:27548379

  14. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.

    PubMed Central

    Semenza, G L; Wang, G L

    1992-01-01

    We have identified a 50-nucleotide enhancer from the human erythropoietin gene 3'-flanking sequence which can mediate a sevenfold transcriptional induction in response to hypoxia when cloned 3' to a simian virus 40 promoter-chloramphenicol acetyltransferase reporter gene and transiently expressed in Hep3B cells. Nucleotides (nt) 1 to 33 of this sequence mediate sevenfold induction of reporter gene expression when present in two tandem copies compared with threefold induction when present in a single copy, suggesting that nt 34 to 50 bind a factor which amplifies the induction signal. DNase I footprinting demonstrated binding of a constitutive nuclear factor to nt 26 to 48. Mutagenesis studies revealed that nt 4 to 12 and 19 to 23 are essential for induction, as substitutions at either site eliminated hypoxia-induced expression. Electrophoretic mobility shift assays identified a nuclear factor which bound to a probe spanning nt 1 to 18 but not to a probe containing a mutation which eliminated enhancer function. Factor binding was induced by hypoxia, and its induction was sensitive to cycloheximide treatment. We have thus defined a functionally tripartite, 50-nt hypoxia-inducible enhancer which binds several nuclear factors, one of which is induced by hypoxia via de novo protein synthesis. Images PMID:1448077

  15. Ciliary Entry of the Hedgehog Transcriptional Activator Gli2 Is Mediated by the Nuclear Import Machinery but Differs from Nuclear Transport in Being Imp-α/β1-Independent.

    PubMed

    Torrado, Belén; Graña, Martín; Badano, José L; Irigoín, Florencia

    2016-01-01

    Gli2 is the primary transcriptional activator of Hedgehog signalling in mammals. Upon stimulation of the pathway, Gli2 moves into the cilium before reaching the nucleus. However, the mechanisms underlying its entry into the cilium are not completely understood. Since several similarities have been reported between nuclear and ciliary import, we investigated if the nuclear import machinery participates in Gli2 ciliary entry. Here we show that while two conserved classical nuclear localization signals mediate Gli2 nuclear localization via importin (Imp)-α/β1, these sequences are not required for Gli2 ciliary import. However, blocking Imp-mediated transport through overexpression of GTP-locked Ran reduced the percentage of Gli2 positive cilia, an effect that was not explained by increased CRM1-dependent export of Gli2 from the cilium. We explored the participation of Imp-β2 in Gli2 ciliary traffic and observed that this transporter is involved in moving Gli2 into the cilium, as has been described for other ciliary proteins. In addition, our data indicate that Imp-β2 might also collaborate in Gli2 nuclear entry. How does Imp-β2 determine the final destination of a protein that can localize to two distinct subcellular compartments remains an open question. Therefore, our data shows that the nuclear-cytoplasmic shuttling machinery plays a critical role mediating the subcellular distribution of Gli2 and the activation of the pathway, but distinct importins likely play a differential role mediating its ciliary and nuclear translocation. PMID:27579771

  16. Plant transcription factors.

    PubMed

    Meshi, T; Iwabuchi, M

    1995-12-01

    Transcriptional regulation of gene expression relies on the recognition of promoter elements by transcription factors. In the past several years, a considerable number of (putative) transcription factors have been identified in plants. Some genes coding for these factors were isolated by south-western screening with oligonucleotides as a probe or by homology-based screening, and others were initially isolated by genetic means and subsequently identified as the genes for transcription factors. These transcription factors often form families of structurally related proteins with similar DNA-binding specificities and in addition, they are sometimes involved in related phenomena. Some groups of factors homo- and/or heterodimerize to increase the length and variability of the target sequences. Transcriptional activators, in general, comprise a modular activation domain. The activities of the transcription factors are controlled by post-translational modification, like phosphorylation and glycosylation, as well as at the levels of nuclear transport, oligomerization, etc. In this review, we will summarize the current knowledge of plant transcription factors to help understand the mechanistic aspects of the transcriptional regulation of genes. PMID:8589926

  17. Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

    PubMed

    Lepsch, Lucilia B; Munhoz, Carolina D; Kawamoto, Elisa M; Yshii, Lidia M; Lima, Larissa S; Curi-Boaventura, Maria F; Salgado, Thais M L; Curi, Rui; Planeta, Cleopatra S; Scavone, Cristoforo

    2009-01-01

    Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-kappaB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-kappaB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-kappaB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-kappaB activation. Inhibition of NF-kappaB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-kappaB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells. PMID:19183502

  18. Differential Interactions of Specific Nuclear Factor I Isoforms with the Glucocorticoid Receptor and STAT5 in the Cooperative Regulation of WAP Gene Transcription

    PubMed Central

    Mukhopadhyay, Sudit S.; Wyszomierski, Shannon L.; Gronostajski, Richard M.; Rosen, Jeffrey M.

    2001-01-01

    The distal region (−830 to −720 bp) of the rat whey acidic protein (WAP) gene contains a composite response element (CoRE), which has been demonstrated previously to confer mammary gland-specific and hormonally regulated WAP gene expression. Point mutations in the binding sites for specific transcription factors present within this CoRE have demonstrated the importance of both nuclear factor I (NFI) and STAT5 as well as cooperative interactions with the glucocorticoid receptor (GR) in the regulation of WAP gene expression in the mammary gland of transgenic mice. This study reports the characterization of NFI gene expression during mammary gland development and the identification and cloning of specific NFI isoforms (NFI-A4, NFI-B2, and NFI-X1) from the mouse mammary gland during lactation. Some but not all of these NFI isoforms synergistically activate WAP gene transcription in cooperation with GR and STAT5, as determined using transient cotransfection assays in JEG-3 cells. On both the WAP CoRE and the mouse mammary tumor virus long terminal repeat promoter, the NFI-B isoform preferentially activated gene transcription in cooperation with STAT5A and GR. In contrast, the NFI-A isoform suppressed GR and STAT cooperativity at the WAP CoRE. Finally, unlike their interaction with the NFI consensus binding site in the adenovirus promoter, the DNA-binding specificities of the three NFI isoforms to the palindromic NFI site in the WAP CoRE were not identical, which may partially explain the failure of the NFI-A isoform to cooperate with GR and STAT5A. PMID:11564870

  19. The first intron of the 4F2 heavy-chain gene contains a transcriptional enhancer element that binds multiple nuclear proteins

    SciTech Connect

    Karpinski, B.A.; Yang, L.H.; Cacheris, P.; Morle, G.D.; Leiden, J.M.

    1989-06-01

    The authors utilized the human 4F2 heavy-chain (4F2HC) gene as a model system to study the regulation of inducible gene expression during normal human T-cell activation. Previous studies have demonstrated that 4F2HC gene expression is induced during normal T-cell activation and that the activity of the gene is regulated, at least in part, by the interaction of a constitutively active 5'-flanking housekeeping promoter and a phorbol ester-responsive transcriptional attenuator element located in the exon 1-intron 1 region of the gene. They now report that 4F2HC intron 1 contains a transcriptional enhancer element which is active on a number of heterologous promoters in a variety of murine and human cells. This enhancer element has been mapped to a 187-base-pair RsaI-AluI fragment from 4F2HC intron 1. DNase I footprinting and gel mobility shift analyses demonstrated that this fragment contains two nuclear protein-binding sites (NF-4FA and NF-4FB) which flank a consensus binding site for the inducible AP-1 transcription factor. Deletion analysis showed that the NF-4FA, NF-4FB, and AP-1 sequences are each necessary for full enhancer activity. Murine 4F2HC intron 1 displayed enhancer activity similar to that of its human counterpart. Comparison of the sequences of human and murine 4F2HC intron 1s demonstrated that the NF-4FA, NF-4FB, and AP-1 sequence motifs have been highly conserved during mammalian evolution.

  20. Suppressor of fused (Sufu) represses Gli1 transcription and nuclear accumulation, inhibits glioma cell proliferation, invasion and vasculogenic mimicry, improving glioma chemo-sensitivity and prognosis.

    PubMed

    Liu, Xing; Wang, Xiaofeng; Du, Wenzhong; Chen, Lingchao; Wang, Guangzhi; Cui, Yuqiong; Liu, Yang; Dou, Zhijin; Wang, Hongjun; Zhang, Ping; Chang, Liang; Yi, Liye; Cai, Jinquan; Jiang, Chuanlu

    2014-11-30

    Glioblastoma are highly aggressive brain tumors with poor prognosis. While various dysregulation of signaling pathways in gliomas have been described, the identification of biomarkers and therapy targets remains an important task for novel diagnostic and therapeutic approaches. Here we described that the Suppressor of fused (also known as Sufu) is significantly down-regulated in high-grade gliomas, correlating with a poor prognosis. We demonstrated that ectopic expression of Sufu inhibited cell proliferation, invasion and vasculogenic mimicry. In addition, overexpression of Sufu reduced Gli reporter gene transcription activity and prevented Gli1 nuclear accumulation, whereas knockdown of Sufu reversed these effects. Furthermore, overexpressed Sufu sensitized glioblastoma to Temozolomide and Cyclopamine. Thus, Sufu is potential tumor suppressor and therapeutic target in glioblastoma. PMID:25373737

  1. Early termination of heterogeneous nuclear RNA transcripts in mammalian cells: accentuation by 5,6-dichloro 1-beta-D-ribofuranosylbenzimidazole.

    PubMed Central

    Tamm, I; Kikuchi, T

    1979-01-01

    Labeling of RNA in isolated HeLa cell nuclei in vitro reveals an abundance of short RNA chains made by RNA polymerase II. These short chains were initiated prior to isolation of the nuclei. The short abundant chains are increased in amount in nuclei isolated from cells treated with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). Kinetic evidence indicates that the bulk of the putative heterogeneous nuclear RNA (hnRNA) precursor molecules that are terminated early in vivo are terminated approximately 100-300 nucleotides from sites of initiation. DRB increases the frequency of early termination, but there is a fraction of hnRNA precursor molecules whose elongation is not affected by DRB. Heparin is useful in studies of hnRNA transcription in isolated nuclei because it enhances chain elongation. Images PMID:293679

  2. PCBs alter gene expression of nuclear transcription factors and other heart-specific genes in cultures of primary cardiomyocytes: possible implications for cardiotoxicity.

    PubMed

    Borlak, J; Thum, T

    2002-12-01

    1. Polychlorinated biphenyls (PCBs) are well-known environmental pollutants that bioaccumulate mainly in the fatty tissue of animals and humans. Although contamination occurs primarily via the food chain, waste combustion leads to airborne PCBs. From epidemiological studies, there is substantial evidence that cardiovascular disease is linked to air pollution, but little is known about the underlying molecular events. 2. We investigated the effects of Aroclor 1254, a complex mixture of >80 PCB isomers and congeners, on the expression of nuclear transcription factors (GATA-4, Nkx-2.5, MEF-2c, OCT-1) and of downstream target genes (atrial and brain natriuretic peptide, alpha- and beta-myosin heavy chain, alpha-cardiac and alpha-skeletal actin), which play an important role in cardiac biology. 3. We treated cultures of primary cardiomyocytes of adult rats with Aroclor 1254 (10.0 micro M) and found significant induction of the transcription factor genes GATA-4 and MEF-2c and of genes regulated by these factors, i.e. atrial natriuretic peptide, brain-type natriuretic peptide, alpha- and beta-myosin heavy chain, and skeletal alpha actin. 4. We have shown PCBs to modulate expression of genes coding for programmes of cellular differentiation and stress (e.g. atrial natriuretic peptide, brain-type natriuretic peptide) and these alterations may be important in the increase of cardiovascular disease in polluted areas. PMID:12593764

  3. The Chromatin Regulator DMAP1 Modulates Activity of the Nuclear Factor κB (NF-κB) Transcription Factor Relish in the Drosophila Innate Immune Response*

    PubMed Central

    Goto, Akira; Fukuyama, Hidehiro; Imler, Jean-Luc; Hoffmann, Jules A.

    2014-01-01

    The host defense of the model organism Drosophila is under the control of two major signaling cascades controlling transcription factors of the NF-κB family, the Toll and the immune deficiency (IMD) pathways. The latter shares extensive similarities with the mammalian TNF-R pathway and was initially discovered for its role in anti-Gram-negative bacterial reactions. A previous interactome study from this laboratory reported that an unexpectedly large number of proteins are binding to the canonical components of the IMD pathway. Here, we focus on DNA methyltransferase-associated protein 1 (DMAP1), which this study identified as an interactant of Relish, a Drosophila transcription factor reminiscent of the mammalian p105 NF-κB protein. We show that silencing of DMAP1 expression both in S2 cells and in flies results in a significant reduction of Escherichia coli-induced expression of antimicrobial peptides. Epistatic analysis indicates that DMAP1 acts in parallel or downstream of Relish. Co-immunoprecipitation experiments further reveal that, in addition to Relish, DMAP1 also interacts with Akirin and the Brahma-associated protein 55 kDa (BAP55). Taken together, these results reveal that DMAP1 is a novel nuclear modulator of the IMD pathway, possibly acting at the level of chromatin remodeling. PMID:24947515

  4. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29.

    PubMed

    Barth, Olaf; Vogt, Sebastian; Uhlemann, Ria; Zschiesche, Wiebke; Humbeck, Klaus

    2009-01-01

    HIPP26 from Arabidopsis thaliana belongs to a novel class of plant proteins, characterized by a heavy metal associated domain and an additional isoprenylation motif. It is induced during cold, salt and drought stress. The nuclear localization of HIPP26, predicted by a NLS motif, could be confirmed in onion epidermal cells overexpressing GFP-HIPP26. Experiments with modified HIPP26 indicate that the isoprenylation plays a role in the spatial distribution in the nucleus. Using promoter-GUS constructs, a tissue specific expression pattern of HIPP26 could be shown, with high expression in the vascular tissue. By a yeast-two-hybrid approach a strong interaction of HIPP26 with the zinc finger homeodomain transcription factor ATHB29, which is known to play a role in dehydration stress response could be detected. This was confirmed by GST pull-down assays. When using a modified HIPP26 lacking the two central cysteines of the heavy metal associated domain, ATHB29 was not bound in the GST pull-down assay, indicating that this structure is necessary for the interaction. Further yeast-two-hybrid analyses testing interaction of different members of the HIPP family with related zinc finger transcription factors revealed a specific interaction of ATHB29 with several HIPP proteins. A functional relationship between HIPP26 and ATHB29 is also indicated by experiments with mutants of HIPP26 showing altered expression levels of such genes known to be regulated by ATHB29. PMID:18974936

  5. The chromatin regulator DMAP1 modulates activity of the nuclear factor B (NF-B) transcription factor Relish in the Drosophila innate immune response.

    PubMed

    Goto, Akira; Fukuyama, Hidehiro; Imler, Jean-Luc; Hoffmann, Jules A

    2014-07-25

    The host defense of the model organism Drosophila is under the control of two major signaling cascades controlling transcription factors of the NF-B family, the Toll and the immune deficiency (IMD) pathways. The latter shares extensive similarities with the mammalian TNF-R pathway and was initially discovered for its role in anti-Gram-negative bacterial reactions. A previous interactome study from this laboratory reported that an unexpectedly large number of proteins are binding to the canonical components of the IMD pathway. Here, we focus on DNA methyltransferase-associated protein 1 (DMAP1), which this study identified as an interactant of Relish, a Drosophila transcription factor reminiscent of the mammalian p105 NF-B protein. We show that silencing of DMAP1 expression both in S2 cells and in flies results in a significant reduction of Escherichia coli-induced expression of antimicrobial peptides. Epistatic analysis indicates that DMAP1 acts in parallel or downstream of Relish. Co-immunoprecipitation experiments further reveal that, in addition to Relish, DMAP1 also interacts with Akirin and the Brahma-associated protein 55 kDa (BAP55). Taken together, these results reveal that DMAP1 is a novel nuclear modulator of the IMD pathway, possibly acting at the level of chromatin remodeling. PMID:24947515

  6. Inhibition of nuclear factor κB transcription activity drives a synergistic effect of cisplatin and oridonin on HepG2 human hepatocellular carcinoma cells.

    PubMed

    Dong, Xinjun; Liu, Feiyan; Li, Mianli

    2016-04-01

    Activation of nuclear factor κB (NF-κB) by cisplatin and other chemotherapeutics is responsible, at least in part, for the development of drug resistance in the treatment of hepatocellular carcinoma. Therefore, a combination of chemotherapeutics with NF-κB inhibitors could overcome resistance of cancer cells. Oridonin is a diterpenoid isolated from Rabdosia rubescens that can block the NF-κB signaling cascades. In this study, we investigated the synergistic effect of oridonin and cisplatin on human hepatocellular carcinoma HepG2 cells. Cell apoptosis and mitochondrial membrane potential loss were examined using Hoechst 33258 and rhodamine-123 staining, followed by flow cytometry, respectively. The expression of apoptosis-related proteins and NF-κB subunits was detected by real-time PCR and western blot. The activity of caspase 3 and 9 was measured using the Caspase Activity Kit. Electrophoretic mobility shift assay and the enzyme-linked immunosorbent assay-based kit were used to assess the DNA-binding activity of NF-κB. We found a synergistic antitumor effect between cisplatin and oridonin on HepG2 cells both in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induces apoptosis and regulates the expression and activity of several key apoptosis-related proteins. Furthermore, the combination treatment not only downregulates nuclear translocation of p50 and p65, but more significantly, decreases the transcription activity of all NF-κB subunits to a greater degree than either agent alone. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of transcription activity of NF-κB and the resulting increased apoptosis. PMID:26704389

  7. Deficiency in the nuclear-related factor erythroid 2 transcription factor (Nrf1) leads to genetic instability.

    PubMed

    Oh, Diane H; Rigas, Diamanda; Cho, Ara; Chan, Jefferson Y

    2012-11-01

    Nuclear factor erythroid-derived 2-related factor 1 (Nrf1) regulates cellular stress response genes, and has also been suggested to play a role in other cellular processes. We previously demonstrated that hepatocyte-specific deletion of Nrf1 in mice resulted in spontaneous apoptosis, inflammation, and development of liver tumors. Here, we showed that both fibroblasts derived from Nrf1 null mouse embryos and fibroblasts expressing a conditional Nrf1 allele showed increased micronuclei and formation of abnormal nuclei. Lentiviral shRNA-mediated knockdown of Nrf1 in SAOS-2 cells also resulted in increased micronuclei, abnormal mitosis and multi-nucleated cells. Metaphase analyses showed increased aneuploidy in Nrf1(-/-) embryonic fibroblasts. Nuclear defects in Nrf1-deficient cells were associated with decreased expression of various genes encoding kinetochore and mitotic checkpoint proteins. Our findings suggest that Nrf1 may play a role in maintaining genomic integrity, and that Nrf1 dysregulation may induce tumorigenesis. PMID:22971132

  8. Keap1 silencing boosts lipopolysaccharide-induced transcription of interleukin 6 via activation of nuclear factor κB in macrophages

    SciTech Connect

    Lv, Peng; Xue, Peng; Dong, Jian; Peng, Hui; Clewell, Rebecca; Wang, Aiping; Wang, Yue; Peng, Shuangqing; Qu, Weidong; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-11-01

    Interleukin-6 (IL6) is a multifunctional cytokine that regulates immune and inflammatory responses. Multiple transcription factors, including nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), regulate IL6 transcription. Kelch-like ECH-associated protein 1 (Keap1) is a substrate adaptor protein for the Cullin 3-dependent E3 ubiquitin ligase complex, which regulates the degradation of many proteins, including Nrf2 and IκB kinase β (IKKβ). Here, we found that stable knockdown of Keap1 (Keap1-KD) in RAW 264.7 (RAW) mouse macrophages and human monocyte THP-1 cells significantly increased expression of Il6, and Nrf2-target genes, under basal and lipopolysaccharide (LPS, 0.001–0.1 μg/ml)-challenged conditions. However, Nrf2 activation alone, by tert-butylhydroquinone treatment of RAW cells, did not increase expression of Il6. Compared to cells transduced with scrambled non-target negative control shRNA, Keap1-KD RAW cells showed enhanced protein levels of IKKβ and increased expression and phosphorylation of NF-κB p65 under non-stressed and LPS-treated conditions. Because the expression of Il6 in Keap1-KD RAW cells was significantly attenuated by silencing of Ikkβ, but not Nrf2, it appears that stabilized IKKβ is responsible for the enhanced transactivation of Il6 in Keap1-KD cells. This study demonstrated that silencing of Keap1 in macrophages boosts LPS-induced transcription of Il6 via NF-κB activation. Given the importance of IL6 in the inflammatory response, the Keap1–IKKβ–NF-κB pathway may be a novel target for treatment and prevention of inflammation and associated disorders. - Highlights: • Knockdown of Keap1 increases expression of Il6 in macrophages. • Silencing of Keap1 results in protein accumulation of IKKβ and NF-κB p65. • Induction of Il6 resulting from Keap1 silencing is attributed to NF-κB activation.

  9. Constitutive activation of Epstein-Barr virus (EBV) nuclear antigen 1 gene transcription by IRF1 and IRF2 during restricted EBV latency.

    PubMed Central

    Schaefer, B C; Paulson, E; Strominger, J L; Speck, S H

    1997-01-01

    The Epstein-Barr virus (EBV) EBNA1 gene promoter active in the type I program of restricted viral latency was recently identified and shown to reside in the viral BamHI Q fragment. This promoter, Qp, is active in a wide variety of cell lines and has an architecture reminiscent of eukaryotic housekeeping gene promoters (B. C. Schaefer, J. L. Strominger, and S. H. Speck, Proc. Natl. Acad. Sci. USA 92:10565-10569, 1995; B. C. Schaefer, J. L. Strominger, and S. H. Speck, Mol. Cell. Biol. 17:364-377, 1997). Here we demonstrate by deletion analysis that the important cis-acting elements regulating Qp are clustered in a relatively small region (ca. 80 bp) surrounding the site of transcription initiation. Immediately upstream of the site of initiation is a region which is protected from DNase I digestion by crude nuclear extracts. Electrophoretic mobility shift analyses (EMSA) employing probes spanning this region demonstrated the presence of two major protein complexes. Deletion analysis of Qp demonstrated that at least one of these complexes plays an important role in Qp activity. Evidence that interferon response factor 2 (IRF2) is a major constituent of the most prominent EMSA complex and that IRF1 may be a minor component of this complex is presented. Transfections into IRF1-/-, IRF2-/-, and IRF1,2-/- fibroblasts demonstrated that absence of both IRF1 and IRF2 reduced Qp activity to approximately the same extent as mutation of the IRF-binding site in Qp, strongly implicating IRF2, and perhaps IRF1, in the regulation of Qp activity. Notably, transcription from Qp was not inducible by either alpha or gamma interferon in EBV-negative B cells but rather was shown to be constitutively activated by IRF1 and IRF2. This observation suggests that IRF1 and IRF2 have a previously unrecognized role as constitutive activators of specific genes. Additionally, data presented indicate that a protein complex containing the nonhistone architectural protein HMG-I(Y) binds to the region

  10. Identification of cis-acting sequences responsible for phorbol ester induction of human serum amyloid A gene expression via a nuclear factor kB-like transcription factor

    SciTech Connect

    Edbrooke, M.R.; Cheshire, J.K.; Woo, P.; Burt, B.W.

    1989-05-01

    The authors have analyzed the 5'-flanking region of one of the genes coding for the human acute-phase protein, serum amyloid A (SAA). They found that SAA mRNA could be increased fivefold in transfected cells by treatment with phorbol 12-myristate 13-acetate (PMA). To analyze this observation further, they placed a 265-base-pair 5' SAA fragment upstream of the reporter chloramphenicol acetyltransferase (CAT) gene and transfected this construct into HeLa cells. PMA treatment of these transient transfectants resulted in increased CAT expression. Nuclear proteins from PMA-treated HeLa cells bound to this DNA fragment, and methylation interference analysis showed that the binding was specific to the sequence GGGACTTTCC (between -82 and -91), a sequence previously described by others as the binding site for the nuclear factor NF/kappa/B. In a cotransfection competition experiment, they could abolish PMA-induced CAT activity by using cloned human immunodeficiency virus long-terminal-repeat DNA containing the NF/kappa/B-binding sequence. The same long-terminal-repeat DNA containing mutant NF/kappa/B-binding sequences did not affect CAT expression, which suggested that binding by an NF/kappa/B-like factor is required for increased SAA transcription.

  11. A quasi-lentiviral green fluorescent protein reporter exhibits nuclear export features of late human immunodeficiency virus type 1 transcripts

    SciTech Connect

    Graf, Marcus; Ludwig, Christine; Kehlenbeck, Sylvia; Jungert, Kerstin; Wagner, Ralf . E-mail: ralf.wagner@klinik.uni-regensburg.de

    2006-09-01

    We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to the cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays.

  12. Heterogeneous nuclear ribonucleoprotein H Blocks MST2-Dependent Apoptosis in Cancer Cells via Regulation of A-Raf transcription

    PubMed Central

    Rauch, Jens; O'Neill, Eric; Mack, Brigitte; Matthias, Christoph; Munz, Markus; Kolch, Walter; Gires, Olivier

    2010-01-01

    Summary A-Raf belongs to the family of oncogenic Raf kinases that are involved in mitogenic signalling by activating the MEK-ERK pathway. Low kinase activity of A-Raf towards MEK suggested that A-Raf might have alternative functions. We show that A-Raf prevents cancer cell apoptosis contingent on the expression of the hnRNP H splice factor, which is required for the correct transcription and expression of A-Raf. A-Raf prevented apoptosis by sequestering and inactivating the pro-apoptotic MST2 kinase. Knock-down of hnRNP H or A-Raf resulted in MST2-dependent apoptosis, while enforced expression of either one partially counteracted apoptosis induced by etoposide. In vivo expression studies in colon specimens corroborated the over-expression of hnRNP H in malignant tissues and its correlation with A-Raf levels. In summary, we present a novel route that is usurped by tumor cells to escape naturally imposed apoptotic signals. PMID:20145135

  13. Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells

    PubMed Central

    Wires, Emily S.; Alvarez, David; Dobrowolski, Curtis; Wang, Yun; Morales, Marisela; Karn, Jonathan; Harvey, Brandon K.

    2012-01-01

    Human immunodeficiency virus (HIV) primarily infects glial cells in the central nervous system (CNS). Recent evidence suggests that HIV-infected individuals who abuse drugs such as methamphetamine (METH) have higher viral loads and experience more severe neurological complications than HIV-infected individuals who do not abuse drugs. The aim of this study was to determine the effect of METH on HIV expression from the HIV long terminal repeats (LTR) promoter and on an HIV integrated provirus in microglial cells, the primary host cells for HIV in the CNS. Primary human microglial cells immortalized with SV40 T-antigen (CHME-5 cells) were co-transfected with an HIV LTR reporter and the HIV Tat gene, a key regulator of viral replication and gene expression, and exposed to METH. Our results demonstrate that METH treatment induced LTR activation, an effect potentiated in the presence of Tat. We also found that METH increased the nuclear translocation of the nuclear factor kappa B (NF-κB), a key cellular transcriptional regulator of the LTR promoter, and the activity of an NF-κB-specific reporter plasmid in CHME-5 cells. The presence of a dominant-negative regulator of NF-κB blocked METH-related activation of the HIV LTR. Furthermore, treatment of HIV-latently infected CHME-5 (CHME-5/HIV) cells with METH induced HIV expression in a dose-dependent manner, and nuclear translocation of the p65 subunit of NF-κB. These results suggest that METH can stimulate HIV gene expression in microglia cells through activation of the NF-κB signaling pathway. This mechanism may outline the initial biochemical events leading to the observed increased neurodegeneration in HIV-positive individuals who use METH. PMID:22618514

  14. Activation of AP-1 and nuclear factor-kappaB transcription factors is involved in hydrogen peroxide-induced apoptotic cell death of oligodendrocytes.

    PubMed

    Vollgraf, U; Wegner, M; Richter-Landsberg, C

    1999-12-01

    H2O2-induced onset and execution of programmed cell death in mature rat brain oligodendrocytes in culture is accompanied by the induction and nuclear translocation of the transcription factors AP-1 and nuclear factor-kappaB (NF-kappaB), both of which have been discussed as regulators of cell death and survival. Supershift analysis of nuclear extracts indicated that the AP-1 complex consists of c-Jun, c-Fos, JunD, and possibly JunB proteins, and that the NF-kappaB complex contains p50, p65, and c-Rel proteins. The first signs of DNA fragmentation were seen already during the first hour after the treatment. DNA fragmentation could be prevented by the antioxidants pyrrolidine dithiocarbamate and vitamin E, by the nuclease inhibitor aurintricarboxylic acid, and by preincubation with the iron chelator deferoxamine (DFO). Additionally, DFO protected oligodendrocytes from H2O2-induced cytotoxic effects as assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and suppressed the formation of free radicals. DFO alone led to a slight increase and in combination with H2O2 synergistically induced DNA-binding activities of AP-1 and NF-kappaB in oligodendrocytes. Our data suggest that although low levels of H2O2 directly activate AP-1 and NF-kappaB and might contribute to signal transduction pathways promoting cell survival, the formation and action of hydroxyl radicals promote cell death mechanisms that can be attenuated by the iron chelator DFO. PMID:10582611

  15. Epstein-Barr virus nuclear antigen 3C targets p53 and modulates its transcriptional and apoptotic activities

    SciTech Connect

    Yi Fuming; Saha, Abhik; Murakami, Masanao; Kumar, Pankaj; Knight, Jason S.; Cai Qiliang; Choudhuri, Tathagata; Robertson, Erle S.

    2009-06-05

    The p53 tumor suppressor gene is one of the most commonly mutated genes in human cancers and the corresponding encoded protein induces apoptosis or cell-cycle arrest at the G1/S checkpoint in response to DNA damage. To date, previous studies have shown that antigens encoded by human tumor viruses such as SV40 large T antigen, adenovirus E1A and HPV E6 interact with p53 and disrupt its functional activity. In a similar fashion, we now show that EBNA3C, one of the EBV latent antigens essential for the B-cell immortalization in vitro, interacts directly with p53. Additionally, we mapped the interaction of EBNA3C with p53 to the C-terminal DNA-binding and the tetramerization domain of p53, and the region of EBNA3C responsible for binding to p53 was mapped to the N-terminal domain of EBNA3C (residues 130-190), previously shown to interact with a number of important cell-cycle components, specifically SCF{sup Skp2}, cyclin A, and cMyc. Furthermore, we demonstrate that EBNA3C substantially represses the transcriptional activity of p53 in luciferase based reporter assays, and rescues apoptosis induced by ectopic p53 expression in SAOS-2 (p53{sup -/-}) cells. Interestingly, we also show that the DNA-binding ability of p53 is diminished in the presence of EBNA3C. Thus, the interaction between the p53 and EBNA3C provides new insights into the mechanism(s) by which the EBNA3C oncoprotein can alter cellular gene expression in EBV associated human cancers.

  16. Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors.

    PubMed

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obesity is a major risk factor for chronic diseases such as diabetes, cardiovascular diseases, and hypertension. Many modern people have a tendency to overeat owing to stress and loosening of self-control. Moreover, energy expenditure varies greatly among individuals. Scientific reduction of obesity is important under these circumstances. Furthermore, recent research on molecular levels has clarified the differentiation of adipocytes, the level of subsequent fat accumulation, and the secretion of the biologically active adipokines by adipocytes. Adipose tissues and obesity have become the most important target for the prevention and treatment of many chronic diseases. We have identified various food-derived compounds modulating nuclear receptors, especially peroxisome proliferators-activated receptor(PPAR), in the regulation of energy metabolism and obesity. In this review, we discuss the PPARs that are most important in obesity and energy metabolism. PMID:26598824

  17. Identification of the Flavonoid Luteolin as a Repressor of the Transcription Factor Hepatocyte Nuclear Factor 4α.

    PubMed

    Li, Juan; Inoue, Jun; Choi, Jung-Min; Nakamura, Shugo; Yan, Zhen; Fushinobu, Shinya; Kamada, Haruhiko; Kato, Hisanori; Hashidume, Tsutomu; Shimizu, Makoto; Sato, Ryuichiro

    2015-09-25

    Hepatocyte nuclear factor 4α (HNF4α) is a nuclear receptor that regulates the expression of genes involved in the secretion of apolipoprotein B (apoB)-containing lipoproteins and in glucose metabolism. In the present study, we identified a naturally occurring flavonoid, luteolin, as a repressor of HNF4α by screening for effectors of the human microsomal triglyceride transfer protein (MTP) promoter. Luciferase reporter gene assays revealed that the activity of the MTP gene promoter was suppressed by luteolin and that the mutation of HNF4α-binding element abolished luteolin responsiveness. Luteolin treatment caused a significant decrease in the mRNA levels of HNF4α target genes in HepG2 cells and inhibited apoB-containing lipoprotein secretion in HepG2 and differentiated Caco2 cells. The interaction between luteolin and HNF4α was demonstrated using absorption spectrum analysis and luteolin-immobilized beads. Luteolin did not affect the DNA binding of HNF4α to the promoter region of its target genes but suppressed the acetylation level of histone H3 in the promoter region of certain HNF4α target genes. Short term treatment of mice with luteolin significantly suppressed the expression of HNF4α target genes in the liver. In addition, long term treatment of mice with luteolin significantly suppressed their diet-induced obesity and improved their serum glucose and lipid parameters. Importantly, long term luteolin treatment lowered serum VLDL and LDL cholesterol and serum apoB protein levels, which was not accompanied by fat accumulation in the liver. These results suggest that the flavonoid luteolin ameliorates an atherogenic lipid profile in vivo that is likely to be mediated through the inactivation of HNF4α. PMID:26272613

  18. Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor α (PPARα)

    PubMed Central

    2010-01-01

    Background The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS) through activation by HS factor-1 (HSF1). We hypothesized that there are interactions on a genetic level between PPARα and the HS response mediated by HSF1. Results Wild-type and PPARα-null mice were exposed to HS, the PPARα agonist WY-14,643 (WY), or both; gene and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling identified a number of Hsp family members that were altered similarly in both mouse strains. However, most of the targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be regulated by HS in a PPARα-dependent manner. HS also down-regulated a large set of mitochondrial genes specifically in PPARα-null mice that are known targets of PPARγ co-activator-1 (PGC-1) family members. Pretreatment of PPARα-null mice with WY increased expression of PGC-1β and target genes and prevented the down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are regulated independently of both PPARα and HSF1, a number require both factors for HS responsiveness. Conclusions These findings demonstrate that the PPARα genotype has a dramatic effect on the transcriptional targets of HS and support an expanded role for PPARα in the regulation of proteome maintenance genes after exposure to diverse forms of environmental stress including HS. PMID:20059764

  19. Transcriptional Regulation of CYP3A4/2B6/2C9 Mediated via Nuclear Receptor PXR by Helicid and Its Metabolites

    PubMed Central

    Chen, Qun; Xie, Hai-tang; Li, Yan; Wang, Guo; Xu, Zhe; Pu, Zhi-chen; Hu, Hua

    2015-01-01

    Objective. This study aims at establishing and validating an in vitro system to screen drug inducers of CYPs mediated via hPXR, as well as studying transcriptional regulation of CYPs mediated via hPXR by helicid and its two metabolites. Methods. Cloning the nuclear receptor hPXR and the promoters of CYP3A4, CYP2B6, CYP2C9, and inserting the trans-element to the upstream of firefly luciferase reporter gene of the pGL4.17 vectors, then cotransfecting the report vectors and hPXR expression plasmid to HepG2 cell line. After 24 hours, the transfected cells were treated with helicid (0.004, 0.04, and 0.4 μmol/L) and its metabolite I and metabolite II (0.0004, 0.004, and 0.04 μmol/L) for 48 h, while rifampin (10 μmol/L) was included as the positive control and 0.1% DMSO as the negative control group. Cells were lysized and luciferase activity was determined using a dual luciferase reporter assay kit. Results. Helicid and its metabolites did not significantly increase promoter activities of CYP3A4, CYP2B6, and CYP2C9 in HepG2 cells transfected with PXR expression plasmid (P > 0.05). Conclusion. PXR-expressed CYP3A4, CYP2B6, and CYP2C9 dual luciferase reporter gene platforms were successfully established, and helicid and its metabolites I, II do not significantly induce the transcription of CYP3A4, CYP2B6, and CYP2C9. PMID:25977700

  20. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1.

    PubMed Central

    vom Baur, E; Zechel, C; Heery, D; Heine, M J; Garnier, J M; Vivat, V; Le Douarin, B; Gronemeyer, H; Chambon, P; Losson, R

    1996-01-01

    Using a yeast two-hybrid system we report the isolation of a novel mouse protein, mSUG1, that interacts with retinoic acid receptor alpha (RAR alpha) both in yeast cells and in vitro in a ligand- and AF-2 activating domain (AF-2 AD)-dependent manner and show that it is a structural and functional homologue of the essential yeast protein SUG1. mSUG1 also efficiently interacts with other nuclear receptors, including oestrogen (ER), thyroid hormone (TR), Vitamin D3 (VDR) and retinoid X (RXR) receptors. By comparing the interaction properties of these receptors with mSUG1 and TIF1, we demonstrate that: (i) RXR alpha efficiently interacts with TIF1, but not with mSUG1, whereas TR alpha interacts much more efficiently with mSUG1 than with TIF1, and RAR alpha, VDR and ER efficiently interact with mSUG1 and TIF1; (ii) the amphipathic alpha-helix core of the AF-2 AD is differentially involved in interactions of RAR alpha with mSUG1 and TIF1; (iii) the AF-2 AD cores of RAR alpha and ER are similarly involved in their interaction with TIF1, but not with mSUG1. Thus, the interaction interfaces between the different receptors and either mSUG1 or TIF1 may vary depending on the nature of the receptor and the putative mediator of its AF-2 function. We discuss the possibility that mSUG1 and TIF1 may mediate the transcriptional activity of the AF-2 of nuclear receptors through different mechanisms. Images PMID:8598193

  1. Green tea component EGCG, insulin and IGF-1 promote nuclear efflux of atrophy-associated transcription factor Foxo1 in skeletal muscle fibers.

    PubMed

    Wimmer, Robert J; Russell, Sarah J; Schneider, Martin F

    2015-12-01

    Prevention and slowing of skeletal muscle atrophy with nutritional approaches offers the potential to provide far-reaching improvements in the quality of life for our increasingly aging population. Here we show that polyphenol flavonoid epigallocatechin 3-gallate (EGCG), found in the popular beverage green tea (Camellia sinensis), demonstrates similar effects to the endogenous hormones insulin-like growth factor 1 (IGF-1) and insulin in the ability to suppress action of the atrophy-promoting transcription factor Foxo1 through a net translocation of Foxo1 out of the nucleus as monitored by nucleo-cytoplasmic movement of Foxo1-green fluorescent protein (GFP) in live skeletal muscle fibers. Foxo1-GFP nuclear efflux is rapid in IGF-1 or insulin, but delayed by an additional 30 min for EGCG. Once activated, kinetic analysis with a simple mathematical model shows EGCG, IGF-1 and insulin all produce similar apparent rate constants for Foxo1-GFP unidirectional nuclear influx and efflux. Interestingly, EGCG appears to have its effect at least partially via parallel signaling pathways that are independent of IGF-1's (and insulin's) downstream PI3K/Akt/Foxo1 signaling axis. Using the live fiber model system, we also determine the dose-response curve for both IGF-1 and insulin on Foxo1 nucleo-cytoplasmic distribution. The continued understanding of the activation mechanisms of EGCG could allow for nutritional promotion of green tea's antiatrophy skeletal muscle benefits and have implications in the development of a clinically significant parallel pathway for new drugs to target muscle wasting and the reduced insulin receptor sensitivity which causes type II diabetes mellitus. PMID:26344776

  2. Berberis vulgaris root extract alleviates the adverse effects of heat stress via modulating hepatic nuclear transcription factors in quails.

    PubMed

    Sahin, Kazim; Orhan, Cemal; Tuzcu, Mehmet; Borawska, Maria H; Jabłonski, Jakub; Guler, Osman; Sahin, Nurhan; Hayirli, Armagan

    2013-08-01

    To evaluate the action mode of Berberis vulgaris root extract in the alleviation of oxidative stress, female Japanese quails (n 180, aged 5 weeks) were reared, either at 22°C for 24 h/d (thermoneutral, TN) or 34°C for 8 h/d (heat stress, HS), and fed one of three diets: diets containing 0, 100 or 200 mg of B. vulgaris root extract per kg for 12 weeks. Exposure to HS depressed feed intake by 8·5% and egg production by 12·1%, increased hepatic malondialdehyde (MDA) level by 98·0% and decreased hepatic superoxide dismutase, catalase and glutathione peroxidase activities by 23·5, 35·4 and 55·7%, respectively (P<0·001 for all). There were also aggravations in expressions of hepatic NF-κB and heat-shock protein 70 (HSP70) by 42 and 43%, respectively and suppressions in expressions of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and haeme-oxygenase 1 (HO-1) by 57 and 61%, respectively, in heat-stressed quails (P<0·001 for all). As supplemental B. vulgaris extract increased, there were linear increases in performance parameters, activities of antioxidant enzymes and hepatic Nrf2 and HO-1 expressions (P<0·001 for all) and linear decreases in hepatic MDA level and NF-κB and HSP70 expressions at a greater extent in quails reared under TN condition and those reared under HS condition. In conclusion, dietary supplementation of B. vulgaris root extract to quails reduces the detrimental effects of oxidative stress and lipid peroxidation resulting from HS via activating the host defence system at the cellular level. PMID:23312115

  3. The CCAAT-box binding transcription factor, Nuclear Factor-Y (NF-Y) regulates transcription of human aldo-keto reductase 1C1 (AKR1C1) gene

    PubMed Central

    Pallai, Rajash; Simpkins, Henry; Chen, Jianli; Parekh, Hemant K.

    2010-01-01

    Dihydrodiol dehydrogenases are a family of aldo-keto reductases (AKR1Cs) involved in the metabolism of steroid hormones and xenobiotics. Herein, we have cloned and characterized the proximal promoter region of the human AKR1C1 gene. The 5’ flanking proximal promoter region of the AKR1C1 gene consists of a TATA box and an inverted CCAAT binding site. Deletion analysis of the 5’-flanking, ~3.0 kb region of the human AKR1C1 gene identified the region between −128 to −88 as the minimal proximal promoter essential for basal transcription of AKR1C1 in human ovarian (2008 & 2008/C13*), lung (H23 & A549) and liver carcinoma (HepG2) cells. Site-directed mutagenesis studies indicated that the transcription factor binding sites for NF-Y/CEBP were involved in controlling the basal transcription of AKR1C1 in all the cancer cells studied. Electrophoretic mobility shift (EMSAs) and gel supershift assays demonstrated that the transcription factor NF-Y preferentially binds to the inverted CCAAT box at −109ATTGG−105 of the AKR1C1 gene. Chromatin immunoprecipitation (ChIP) analysis confirmed the in vivo association between NF-Y and human AKR1C1 gene promoter in human ovarian, lung and liver carcinoma cells. Ectopic expression of NF-Y’s increased the AKR1C1 gene transcription, whereas expression of a dominant-negative NF-YA or suppression of NF-YA decreased the AKR1C1 gene transcription. A 2-fold increase in AKR1C1 transcription was observed specifically in cisplatin-treated 2008 cells that was CCAAT box-dependent. These results indicate that the NF-Y regulates the basal transcription of AKR1C1 in human ovarian, lung and liver carcinoma cells and the cisplatin-induced transcription in human ovarian carcinoma cells. PMID:20338228

  4. The nuclear-encoded sigma factor SIG4 directly activates transcription of chloroplast psbA and ycf17 genes in the unicellular red alga Cyanidioschyzon merolae.

    PubMed

    Fujii, Gaku; Imamura, Sousuke; Era, Atsuko; Miyagishima, Shin-ya; Hanaoka, Mitsumasa; Tanaka, Kan

    2015-05-01

    The plant organelle chloroplast originated from the endosymbiosis of a cyanobacterial-like photosynthetic bacterium, and still retains its own genome derived from this ancestor. We have been focusing on a unicellular red alga, Cyanidioschyzon merolae, as a model photosynthetic eukaryote. In this study, we analyzed the transcriptional specificity of SIG4, which is one of four nuclear-encoded chloroplast RNA polymerase sigma factors in this alga. Accumulation of the SIG4 protein was observed in response to nitrogen depletion or high light conditions. By comparing the chloroplast transcriptomes under nitrogen depletion and SIG4-overexpressing conditions, we identified several candidate genes as SIG4 targets. Together with the results of chromatin immunoprecipitation analysis, the promoters of the psbA (encoding the D1 protein of the photosystem II reaction center) and ycf17 (encoding a protein of the early light-inducible protein family) genes were shown to be direct activation targets. The phycobilisome (PBS) CpcB protein was decreased by SIG4 overexpression, which suggests the negative involvement of SIG4 in PBS accumulation. PMID:25883111

  5. 2-Methoxystypandrone inhibits signal transducer and activator of transcription 3 and nuclear factor-κB signaling by inhibiting Janus kinase 2 and IκB kinase.

    PubMed

    Kuang, Shan; Qi, Chunting; Liu, Jiawei; Sun, Xiaoxiao; Zhang, Qing; Sima, Zhenhua; Liu, Jingli; Li, Wuguo; Yu, Qiang

    2014-04-01

    Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) or the nuclear factor-κB (NF-κB) pathway occurs frequently in cancer cells and contributes to oncogenesis. The activation of Janus kinase 2 (JAK2) and IκB kinase (IKK) are key events in STAT3 and NF-κB signaling, respectively. We have identified 2-methoxystypandrone (2-MS) from a traditional Chinese medicinal herb Polygonum cuspidatum as a novel dual inhibitor of JAK2 and IKK. 2-MS inhibits both interleukin-6-induced and constitutively-activated STAT3, as well as tumor necrosis factor-α-induced NF-κB activation. 2-MS specifically inhibits JAK and IKKβ kinase activities but has little effect on activities of other kinases tested. The inhibitory effects of 2-MS on STAT3 and NF-κB signaling can be eliminated by DTT or glutathione and can last for 4 h after a pulse treatment. Furthermore, 2-MS inhibits growth and induces death of tumor cells, particularly those with constitutively-activated STAT3 or NF-κB signaling. We propose that the natural compound 2-MS, as a potent dual inhibitor of STAT3 and NF-κB pathways, is a promising anticancer drug candidate. PMID:24450414

  6. Glycogen synthase kinase 3 regulates expression of nuclear factor-erythroid-2 related transcription factor-1 (Nrf1) and inhibits pro-survival function of Nrf1

    SciTech Connect

    Biswas, Madhurima; Kwong, Erick K.; Park, Eujean; Nagra, Parminder; Chan, Jefferson Y.

    2013-08-01

    Nuclear factor E2-related factor-1 (Nrf1) is a basic leucine zipper transcription factor that is known to regulate antioxidant and cytoprotective gene expression. It was recently shown that Nrf1 is regulated by SCF–Fbw7 ubiquitin ligase. However our knowledge of upstream signals that targets Nrf1 for degradation by the UPS is not known. We report here that Nrf1 expression is negatively regulated by glycogen synthase kinase 3 (GSK3) in Fbw7-dependent manner. We show that GSK3 interacts with Nrf1 and phosphorylates the Cdc4 phosphodegron domain (CPD) in Nrf1. Mutation of serine residue in the CPD of Nrf1 to alanine (S350A), blocks Nrf1 from phosphorylation by GSK3, and stabilizes Nrf1. Knockdown of Nrf1 and expression of a constitutively active form of GSK3 results in increased apoptosis in neuronal cells in response to ER stress, while expression of the GSK3 phosphorylation resistant S350A–Nrf1 attenuates apoptotic cell death. Together these data suggest that GSK3 regulates Nrf1 expression and cell survival function in response to stress activation. Highlights: • The effect of GSK3 on Nrf1 expression was examined. • GSK3 destabilizes Nrf1 protein via Fbw7 ubiquitin ligase. • GSK3 binds and phosphorylates Nrf1. • Protection from stress-induced apoptosis by Nrf1 is inhibited by GSK3.

  7. Effect of fluoride on calcium ion concentration and expression of nuclear transcription factor kappa-B ρ65 in rat hippocampus.

    PubMed

    Zhang, Jing; Zhu, Wen-Jing; Xu, Xiao-Hong; Zhang, Zi-Gui

    2011-07-01

    The study investigated the neurotoxicity of drinking water fluorosis in rat hippocampus. Just weaning male Sprague-Dawley (SD) rats were given 15, 30, 60 mg/L NaF solution and tap water for 9 months. The calcium ion concentration ([Ca(2+)]) in synaptosomes was measured by double wavelength fluorescence spectrophotometer and the expression level of nuclear transcription factor kappa-B ρ65 (NF-κB ρ65) in hippocampal CA3 region was measured by immunohistochemistry. The results showed that [Ca(2+)] significantly increased (F = 33.218, P < 0.01) in moderate fluoride group compared with the control group, and the expression level of NF-κB ρ65 in CA3 region presented an increasing trend as fluoride concentration increased. These results indicate that increase of synaptosomes [Ca(2+)] and NF-κB ρ65 expression level may be the molecular basis of central nervous system damage caused by chronic fluoride intoxication. NF-κB ρ65 in CA3 region is probably a target molecule for fluorosis. PMID:20304620

  8. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors.

    PubMed

    Zhang, Xian; Li, Yinghua; Zhang, Yang; Song, Jincheng; Wang, Qimin; Zheng, Luping; Liu, Dan

    2013-01-01

    Epithelial-mesenchymal transition (EMT) is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE), an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1). We found that ELE (40 µg/ml ) blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1), potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer. PMID:23516540

  9. Celastrol regulates multiple nuclear transcription factors belonging to HSP90's clients in a dose- and cell type-dependent way

    PubMed Central

    Zhang, Denghai; Xu, Limin; Cao, Fanfan; Wei, Tingxuan; Yang, Chunxin; Uzan, Georges

    2010-01-01

    Celastrol, a novel HSP90 inhibitor, has recently attracted much attention due to its potential in multiple applications, such as anti-inflammation use, degenerative neuron disease relief, and tumor management. At present, the studies in celastrol's effects on HSP90's clients have focused on the kinase sub-population, while another key sub-population, nuclear transcription factors (TFs), is not being well-explored. In this study, we observe the effects of celastrol on 18 TFs (belonging to HSP90 clients) in three human cell lines: MCF-7 (breast cancer), HepG2 (hepatoma), and THP-1 (monocytic leukemia). The results show that at least half of the detectable TFs were affected by celastrol, though the effect patterns varied with cell type and dosage. Bi-directional regulations of some TFs were identified, a phenomenon not yet seen with other HSP90 inhibitors. Celastrol's capability to affect multiple TFs was consistent with its altering HSP90/TFs interactions and disrupting HSP90/Hop interaction, in addition to the reported damaging HSP90/Cdc37 interaction. This work confirms, for the first time, that celastrol has broad effects on TFs belonging to HSP90's clients, casts new light on understanding these reported actions, and suggests new possible applications for celastrol, such as diabetes management. Electronic supplementary material The online version of this article (doi:10.1007/s12192-010-0202-1) contains supplementary material, which is available to authorized users. PMID:20480272

  10. Regulation of Nuclear Translocation of the Myb1 Transcription Factor by TvCyclophilin 1 in the Protozoan Parasite Trichomonas vaginalis*

    PubMed Central

    Hsu, Hong-Ming; Chu, Chien-Hsin; Wang, Ya-Ting; Lee, Yu; Wei, Shu-Yi; Liu, Hsing-Wei; Ong, Shiou-Jeng; Chen, Chinpan; Tai, Jung-Hsiang

    2014-01-01

    In Trichomonas vaginalis, a Myb1 protein was previously demonstrated to repress transcription of an iron-inducible ap65-1 gene. In this study, a human cyclophilin A homologue, TvCyclophilin 1 (TvCyP1), was identified as a Myb1-binding protein using a bacterial two-hybrid library screening system. The recombinant TvCyP1 exhibited typical peptidyl-prolyl isomerase activity with kcat/Km of ∼7.1 μm−1 s−1. In a pulldown assay, the His-tagged Myb1 interacted with a GST-TvCyP1 fusion protein, which had an enzymatic proficiency half that of recombinant TvCyP1. Both the enzymatic proficiency of GST-TvCyP1 and its binding to His-Myb1 were eliminated by mutation of Arg63 in the catalytic motif or inhibited by cyclosporin A. TvCyP1 was primarily localized to the hydrogenosomes by immunofluorescence assay, but it was also co-purified with Myb1 in certain vesicle fractions from differential and gradient centrifugations. Transgenic cells overexpressing HA-TvCyP1 had a higher level of nuclear Myb1 but a much lower level of Myb1 associated with the vesicles than control and those overexpressing HA-TvCyP1(R63A). Myb1 was detected at a much higher level in the HA-TvCyP1 protein complex than in the HA-TvCyP1(R63A) protein complex immunoprecipitated from P15 and P100, but not S100, fractions of postnuclear lysates. A TvCyP1-binding motif, 105YGPKWNK111, was identified in Myb1 in which Gly106 and Pro107 were essential for its binding to TvCyP1. Mutation of Gly106 and Pro107, respectively, in HA-Myb1 resulted in cytoplasmic retention and elevated nuclear translocation of the overexpressed protein. These results suggest that TvCyP1 may induce the release of Myb1 that is restrained to certain cytoplasmic vesicles prior to its nuclear translocation. PMID:24831011

  11. Mitotic bookmarking by transcription factors

    PubMed Central

    2013-01-01

    Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed “mitotic bookmarking.” Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors. PMID:23547918

  12. Berry Phenolic Compounds Increase Expression of Hepatocyte Nuclear Factor-1α (HNF-1α) in Caco-2 and Normal Colon Cells Due to High Affinities with Transcription and Dimerization Domains of HNF-1α

    PubMed Central

    Real Hernandez, Luis M.; Fan, Junfeng; Johnson, Michelle H.; Gonzalez de Mejia, Elvira

    2015-01-01

    Hepatocyte nuclear factor-1α (HNF-1α) is found in the kidneys, spleen, thymus, testis, skin, and throughout the digestive organs. It has been found to promote the transcription of various proteins involved in the management of type II diabetes, including dipeptidyl peptidase-IV (DPP-IV). Phenolic compounds from berries and citrus fruits are known to inhibit DPP-IV, but have not been tested for their interactions with wild-type HNF-1α. By studying the interactions of compounds from berries and citrus fruits have with HNF-1α, pre-transcriptional mechanisms that inhibit the expression of proteins such as DPP-IV may be elucidated. In this study, the interactions of berry phenolic compounds and citrus flavonoids with the dimerization and transcriptional domains of HNF-1α were characterized using the molecular docking program AutoDock Vina. The anthocyanin delphinidin-3-O-arabinoside had the highest binding affinity for the dimerization domain as a homodimer (-7.2 kcal/mol) and transcription domain (-8.3 kcal/mol) of HNF-1α. Anthocyanins and anthocyanidins had relatively higher affinities than resveratrol and citrus flavonoids for both, the transcription domain and the dimerization domain as a homodimer. The flavonoid flavone had the highest affinity for a single unit of the dimerization domain (-6.5 kcal/mol). Nuclear expression of HNF-1α was measured in Caco-2 and human normal colon cells treated with blueberry and blackberry anthocyanin extracts. All extracts tested increased significantly (P < 0.05) the nuclear expression of HNF-1α in Caco-2 cells by 85.2 to 260% compared to a control. The extracts tested increased significantly (P < 0.02) the nuclear expression of HNF-1α in normal colon cells by 48.6 to 243%. It was confirmed that delphinidin-3-O-glucoside increased by 3-fold nuclear HNF-1α expression in Caco-2 cells (P < 0.05). Anthocyanins significantly increased nuclear HNF-1α expression, suggesting that these compounds might regulate the genes HNF-1

  13. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway.

    PubMed

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A

    2013-09-15

    . Consistent with the downregulation of AMPK expression, immunoblotting procedures confirmed upregulation of p70S6K and increased phosphorylation of mTOR in Sox2-overexpressing CSC-like cell populations. Using an in vitro model of the de novo generation of CSC-like states through the nuclear reprogramming of an established breast cancer cell line, we reveal that the transcriptional suppression of mTOR repressors is an intrinsic process occurring during the acquisition of CSC-like properties by differentiated populations of luminal-like breast cancer cells. This approach may provide a new path for obtaining information about preventing the appearance of CSCs through the modulation of the AMPK/mTOR pathway. PMID:23974095

  14. Post-transcriptional control of nuclear-encoded cytochrome oxidase subunits in Trypanosoma brucei: evidence for genome-wide conservation of life-cycle stage-specific regulatory elements

    PubMed Central

    Mayho, Matthew; Fenn, Katelyn; Craddy, Paul; Crosthwaite, Susan; Matthews, Keith

    2006-01-01

    Trypanosomes represent an excellent model for the post-transcriptional regulation of gene expression because their genome is organized into polycistronic transcription units. However, few signals governing developmental stage-specific expression have been identified, with there being no compelling evidence for widespread conservation of regulatory motifs. As a tool to search for common regulatory sequences we have used the nuclear-encoded components of the cytochrome oxidase (COX) complex of the trypanosome respiratory chain. Components of this complex represent a form of post-transcriptional operon because trypanosome mitochondrial activity is unusual in being developmentally programmed. By genome analysis we identified the genes for seven components of the COX complex. Each mRNA exhibits bloodstream stage-specific instability, which is not mediated by the RNA silencing pathway but which is alleviated by cycloheximide. Reporter assays have identified regulatory regions within the 3′-untranslated regions of three COX mRNAs operating principally at the translational level, but also via mRNA stability. Interrogation of the mapped regions via oligonucleotide frequency scoring provides evidence for genome-wide conservation of regulatory sequences among a large cohort of procyclic-enriched transcripts. Analysis of the co-regulated subunits of a stage-specific enzyme is therefore a novel approach to uncover cryptic regulatory sequences controlling gene expression at the post-transcriptional level. PMID:17012283

  15. A nuclear factor for interleukin-6 expression (NF-IL6) and the glucocorticoid receptor synergistically activate transcription of the rat alpha 1-acid glycoprotein gene via direct protein-protein interaction.

    PubMed Central

    Nishio, Y; Isshiki, H; Kishimoto, T; Akira, S

    1993-01-01

    The acute-phase reaction is accompanied by an increase in a variety of serum proteins, named acute-phase proteins. The synthesis of these proteins is synergistically controlled by glucocorticoids and inflammatory cytokines such as interleukin-1 (IL-1), IL-6, and tumor necrosis factor alpha. Recently, we have cloned nuclear factor-IL-6 (NF-IL6), a transcription factor that activates the IL-6 gene, and have demonstrated its involvement in the expression of acute-phase-protein genes. We report here an analysis of the molecular mechanisms by which inflammatory cytokines and glucocorticoid act synergistically to activate expression of the rat alpha 1-acid glycoprotein (AGP) gene. We found that NF-IL6 and ligand-activated rat glucocorticoid receptor acted synergistically to transactivate the AGP gene and that maximal transcriptional activation of the AGP gene required expression of both intact NF-IL6 and rat glucocorticoid receptor. Surprisingly, however, transcriptional synergism was still observed even when one of the two factors lacked either its DNA-binding or transcriptional-activation function. We present evidence for a direct protein-protein interaction between these two distinct transcription factors and propose that this may be responsible for the synergistic activation of the rat AGP gene. Images PMID:8441418

  16. Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring.

    PubMed

    Petropoulos, Sophie; Matthews, Stephen G; Szyf, Moshe

    2014-02-01

    Synthetic glucocorticoids (sGCs) are commonly prescribed for the management of inflammatory and endocrine disorders. However, nothing is known regarding the effects of sGC on adult germline methylome and whether these effects can be transmitted to the next generation. We hypothesized that administration of sGC to adult male mice alters DNA methylation in mature sperm and modifies the transcription and methylation of steroid receptors in male F1 offspring. Adult C57BL/6 males (n = 10/group) were injected on five consecutive days with 1 mg/kg sGC (i.e., dexamethasone) or vehicle and euthanized 35 or 60 days after initial treatment or bred with control females (60 days postinitial treatment; n = 5/group). A significant increase in global non-CpG methylation was observed in F0 sperm 60 days following sGC treatment. In the hippocampus and kidney of Postnatal Day 50 (PND50) and PND240 male offspring derived from fathers exposed to sGC, significant differences in mineralocorticoid receptor (Nr3c2; Mr), estrogen alpha receptor (Nr3a1; Ers1), and glucocorticoid receptor (Nr3c1; Gr) expression were observed. Furthermore, significant demethylation in regulatory regions of Mr, Gr, and Esr1 was observed in the PND50 kidney derived from fathers exposed to sGC. This is the first demonstration that paternal pharmacological exposure to sGC can alter the expression and DNA methylation of nuclear steroid receptors in brain and somatic tissues of offspring. These findings provide proof of principle that adult male exposure to sGC can affect DNA methylation and gene expression in offspring, indicating the possibility that adult experiences that evoke increases in endogenous glucocorticoid (i.e., stress) might have similar effects. PMID:24451982

  17. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2.

    PubMed

    Anto, Ruby John; Mukhopadhyay, Asok; Shishodia, Shishir; Gairola, C Gary; Aggarwal, Bharat B

    2002-09-01

    Cigarette smoke (CS) contains several carcinogens known to initiate and promote tumorigenesis and metastasis. Because various genes that mediate carcinogenesis and tumorigenesis are regulated by nuclear factor-kappaB (NF-kappaB), we postulated that the effects of CS must be mediated through activation of this transcription factor. Therefore, in the present report we investigated whether cigarette smoke condensate (CSC) activates NF-kappaB, and whether the pathway employed for activation is similar to that of TNF, one of the potent activators of NF-kappaB. Our results show that the treatment of human histiocytic lymphoma U-937 cells with CSC activated NF-kappaB in a dose- and time-dependent manner. The kinetics of NF-kappaB activation by CSC was comparable with that of TNF. CSC-induced NF-kappaB activation was not cell type-specific, as it also activated NF-kappaB in T cells (Jurkat), lung cells (H1299), and head and neck squamous cell lines (1483 and 14B). Activation of NF-kappaB by CSC correlated with time-dependent degradation of IkappaB(alpha), an inhibitor of NF-kappaB. Further studies revealed that CSC induced phosphorylation of the serine residue at position 32 in IkappaB(alpha). In vitro immunocomplex kinase assays showed that CSC activated IkappaB(alpha) kinase (IKK). The suppression of CSC-activated NF-kappaB-dependent reporter gene expression by dominant negative form of IkappaB(alpha), TRAF2, NIK and IKK suggests a similarity to the TNF-induced pathway for NF-kappaB. CSC also induced the expression of cyclooxygenase-2, an NF-kappaB regulated gene product. Overall, our results indicate that through phosphorylation and degradation of IkappaB(alpha), CSC can activate NF-kappaB in a wide a variety of cells, and this may play a role in CS-induced carcinogenesis. PMID:12189195

  18. Protein–energy malnutrition increases activation of the transcription factor, nuclear factor κB, in the gerbil hippocampus following global ischemia☆

    PubMed Central

    Ji, Liang; Nazarali, Adil J.; Paterson, Phyllis G.

    2013-01-01

    Protein–energy malnutrition (PEM) exacerbates functional impairment caused by brain ischemia. This is correlated with reactive gliosis, which suggests an increased inflammatory response. The objective of the current study was to investigate if PEM increases hippocampal activation of nuclear factor κB (NFκB), a transcription factor that amplifies the inflammatory response involved in ischemic brain injury. Mongolian gerbils (11–12 weeks old) were randomly assigned to control diet (12.5% protein) or protein-deficient diet (2%) for 4 weeks. The 2% protein group had a 15% decrease in voluntary food intake (P<.001; unpaired t test), resulting in PEM. Body weight after 4 weeks was 20% lower in the PEM group (P<.001). Gerbils were then exposed to sham surgery or global ischemia induced by 5-min bilateral common carotid artery occlusion. PEM independently increased hippocampal NFκB activation detected by electrophoretic mobility shift assay at 6 h after surgery (P=.014; 2-factor ANOVA). Ischemia did not significantly affect NFκB activation nor was there interaction between diet and ischemia. Serum glucose and cortisol concentrations at 6 h postischemia were unaltered by diet or ischemia. A second experiment using gerbils of the same age and feeding paradigm demonstrated that PEM also increases hippocampal NFκB activation in the absence of surgery. These findings suggest that PEM, which exists in 16% of elderly patients at admission for stroke, may worsen outcome by increasing activation of NFκB. Since PEM increased NFκB activation independent of ischemia or surgery, the data also have implications for the inflammatory response of the many individuals affected globally by PEM. PMID:18430555

  19. Hepatocyte nuclear factor-6 stimulates transcription of the alpha-fetoprotein gene and synergizes with the retinoic-acid-receptor-related orphan receptor alpha-4.

    PubMed Central

    Nacer-Cherif, Habib; Bois-Joyeux, Brigitte; Rousseau, Guy G; Lemaigre, Frédéric P; Danan, Jean-Louis

    2003-01-01

    The rat alpha-fetoprotein ( afp ) gene is controlled by three enhancers whose function depends on their interaction with liver-enriched transcription factors. The afp enhancer III, located at -6 kb, is composed of three regions that act in synergy. Two of these regions, called s1 and s2, contain a putative binding site for hepatocyte nuclear factor-6 (HNF-6). This factor is the prototype of the ONECUT family of cut-homoeodomain proteins and is a known regulator of liver gene expression in adults and during development. We show here that the two splicing isoforms of HNF-6 bind to a site in the s1 region and in the s2 region. The core sequence of the s1 site corresponds to none of the known HNF-6 binding sites. Nevertheless, the binding properties of the s1 site are identical with those of the s2 site and of previously characterized HNF-6 binding sequences. The HNF-6 consensus should therefore be rewritten as DRRTCVATND. Binding of HNF-6 to the s1 and s2 sites requires both the cut and the homoeo domains, is co-operative and induces DNA bending. HNF-6 strongly stimulates the activity of the afp enhancer III in transient transfection experiments. This effect requires the stereo-specific alignment of the two HNF-6 sites. Moreover, HNF-6 stimulates the enhancer in synergy with the retinoic-acid-receptor-related orphan receptor alpha (RORalpha), which binds to a neighbouring site in the s1 region. Thus expression of the afp gene requires functional interactions between HNF-6 molecules and between HNF-6 and RORalpha. PMID:12379144

  20. Transcriptional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRgamma.

    PubMed

    Song, Guisheng; Wang, Li

    2008-10-01

    MicroRNAs (miRNAs, miRs) are genomically encoded small approximately 22 nt RNA molecules that have been shown to mediate translational repression of target mRNAs involved in cellular proliferation, differentiation and death. Despite intensive studies on their physiological and pathological functions, the molecular mechanism of how miRNA gene transcription is regulated remains largely unknown. Microarray profiling revealed 21 miRNAs clustered on chromosome 12, including miR-433 and miR-127, that were co-upregulated in small heterodimer partner (SHP, NR0B2) SHP knockouts (SHP(-/-)) liver. Gene cloning revealed that the 3'-coding region of pri-miR-433 served as the promoter region of pri-miR-127. Estrogen related receptor (ERRgamma, NR3B3) robustly activated miR-433 and miR-127 promoter reporters through ERRE, which was transrepressed by SHP. The strong elevation of miR-433 and miR-127 in Hepa-1 cells correlated with the down-regulation of SHP and up-regulation of ERRgamma. Ectopic expression of ERRgamma induced miR-433 and miR-127 expression, which was repressed by SHP coexpression. In contrast, knockdown ERRgamma decreased miR-433 and miR-127 expression. In addition, the ERRgamma agonist GSK4716 induced miR-433 and miR-127 expression both in vitro and in vivo, respectively. In summary, the coupled miR-433 and miR-127 genes were transcribed from independent promoters regulated by nuclear receptors ERRgamma/SHP in a compact space by using overlapping genomic regions. PMID:18776219

  1. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-{kappa}B in human aortic smooth muscle cells

    SciTech Connect

    Manea, Adrian; Tanase, Laurentia I.; Raicu, Monica; Simionescu, Maya

    2010-06-11

    Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-{kappa}B (NF-{kappa}B) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-{kappa}B signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-{alpha} (TNF{alpha}), a potent inducer of both Nox and NF-{kappa}B, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-{kappa}B pathway reduced significantly the TNF{alpha}-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-{kappa}B elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-{kappa}B significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-{kappa}B proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-{kappa}B is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-{kappa}B and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.

  2. The Transcription Factor Bach2 Is Phosphorylated at Multiple Sites in Murine B Cells but a Single Site Prevents Its Nuclear Localization.

    PubMed

    Ando, Ryo; Shima, Hiroki; Tamahara, Toru; Sato, Yoshihiro; Watanabe-Matsui, Miki; Kato, Hiroki; Sax, Nicolas; Motohashi, Hozumi; Taguchi, Keiko; Yamamoto, Masayuki; Nio, Masaki; Maeda, Tatsuya; Ochiai, Kyoko; Muto, Akihiko; Igarashi, Kazuhiko

    2016-01-22

    The transcription factor Bach2 regulates the immune system at multiple points, including class switch recombination (CSR) in activated B cells and the function of T cells in part by restricting their terminal differentiation. However, the regulation of Bach2 expression and its activity in the immune cells are still unclear. Here, we demonstrated that Bach2 mRNA expression decreased in Pten-deficient primary B cells. Bach2 was phosphorylated in primary B cells, which was increased upon the activation of the B cell receptor by an anti-immunoglobulin M (IgM) antibody or CD40 ligand. Using specific inhibitors of kinases, the phosphorylation of Bach2 in activated B cells was shown to depend on the phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway. The complex of mTOR and Raptor phosphorylated Bach2 in vitro. We identified multiple new phosphorylation sites of Bach2 by mass spectrometry analysis of epitope-tagged Bach2 expressed in the mature B cell line BAL17. Among the sites identified, serine 535 (Ser-535) was critical for the regulation of Bach2 because a single mutation of Ser-535 abolished cytoplasmic accumulation of Bach2, promoting its nuclear accumulation in pre-B cells, whereas Ser-509 played an auxiliary role. Bach2 repressor activity was enhanced by the Ser-535 mutation in B cells. These results suggest that the PI3K-Akt-mTOR pathway inhibits Bach2 by both repressing its expression and inducing its phosphorylation in B cells. PMID:26620562

  3. Vaccinia virus transcription.

    PubMed

    Broyles, Steven S

    2003-09-01

    Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts. PMID:12917449

  4. Glucocorticoids facilitate the transcription from the human cytomegalovirus major immediate early promoter in glucocorticoid receptor- and nuclear factor-I-like protein-dependent manner

    SciTech Connect

    Inoue-Toyoda, Maki; Kato, Kohsuke; Nagata, Kyosuke; Yoshikawa, Hiroyuki

    2015-02-27

    Human cytomegalovirus (HCMV) is a common and usually asymptomatic virus agent in healthy individuals. Initiation of HCMV productive infection depends on expression of the major immediate early (MIE) genes. The transcription of HCMV MIE genes is regulated by a diverse set of transcription factors. It was previously reported that productive HCMV infection is triggered probably by elevation of the plasma hydroxycorticoid level. However, it is poorly understood whether the transcription of MIE genes is directly regulated by glucocorticoid. Here, we found that the dexamethasone (DEX), a synthetic glucocorticoid, facilitates the transcription of HCMV MIE genes through the MIE promoter and enhancer in a glucocorticoid receptor (GR)-dependent manner. By competitive EMSA and reporter assays, we revealed that an NF-I like protein is involved in DEX-mediated transcriptional activation of the MIE promoter. Thus, this study supports a notion that the increased level of hydroxycorticoid in the third trimester of pregnancy reactivates HCMV virus production from the latent state. - Highlights: • DEX facilitates the transcription from the HCMV MIE promoter. • GR is involved in DEX-dependent transcription from the HCMV MIE promoter. • A 17 bp repeat is responsible for the HCMV MIE promoter activation by DEX. • An NF-I-like protein is involved in the HCMV MIE promoter activation by DEX.

  5. Human sat III and Drosophila hsrω transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells

    PubMed Central

    Jolly, Caroline; Lakhotia, Subhash C.

    2006-01-01

    Exposure of cells to stressful conditions elicits a highly conserved defense mechanism termed the heat shock response, resulting in the production of specialized proteins which protect the cells against the deleterious effects of stress. The heat shock response involves not only a widespread inhibition of the ongoing transcription and activation of heat shock genes, but also important changes in post-transcriptional processing. In particular, a blockade in splicing and other post-transcriptional processing has been described following stress in different organisms, together with an altered spatial distribution of the proteins involved in these activities. However, the specific mechanisms that regulate these activities under conditions of stress are little understood. Non-coding RNA molecules are increasingly known to be involved in the regulation of various activities in the cell, ranging from chromatin structure to splicing and RNA degradation. In this review, we consider two non-coding RNAs, the hsrω transcripts in Drosophila and the sat III transcripts in human cells, that seem to be involved in the dynamics of RNA-processing factors in normal and/or stressed cells, and thus provide new paradigms for understanding transcriptional and post-transcriptional regulations in normal and stressed cells. PMID:17020918

  6. Coupling of energy metabolism and synaptic transmission at the transcriptional level: Role of nuclear respiratory factor 1 in regulating both cytochrome c oxidase and NMDA glutamate receptor subunit genes

    PubMed Central

    Dhar, Shilpa S.; Wong-Riley, Margaret T. T.

    2009-01-01

    Neuronal activity and energy metabolism are tightly coupled processes. Regions high in neuronal activity, especially of the glutamatergic type, have high levels of cytochrome c oxidase (COX). Perturbations in neuronal activity affect the expressions of COX and glutamatergic N-methyl-D-aspartate receptor subunit 1 (NR1). The present study sought to test our hypothesis that the coupling extends to the transcriptional level, whereby NR1 and possibly other NR subunits and COX are co-regulated by the same transcription factor, nuclear respiratory factor 1 (NRF-1), which regulates all COX subunit genes. By means of multiple approaches, including in silico analysis, electrophoretic mobility shift and supershift assays, in vivo chromatin immunoprecipitation, promoter mutations, and real-time quantitative PCR, NRF-1 was found to functionally bind to the promoters of Grin 1 (NR1), Grin 2b (NR2b) and COX subunit genes, but not of Grin2a and Grin3a genes. These transcripts were up-regulated by KCl and down-regulated by TTX in cultured primary neurons. However, silencing of NRF-1 with small interference RNA blocked the up-regulation of Grin1, Grin2b, and COX induced by KCl, and over-expression of NRF-1 rescued these transcripts that were suppressed by TTX. NRF-1 binding sites on Grin1 and Grin2b genes are also highly conserved among mice, rats, and humans. Thus, NRF-1 is an essential transcription factor critical in the co-regulation of NR1, NR2b, and COX, and coupling exists at the transcriptional level to ensure coordinated expressions of proteins important for synaptic transmission and energy metabolism. PMID:19144849

  7. Activated nuclear transcription factor {kappa}B in patients with myocarditis and dilated cardiomyopathy-relation to inflammation and cardiac function

    SciTech Connect

    Alter, Peter . E-mail: palter@med.uni-marburg.de; Rupp, Heinz; Maisch, Bernhard

    2006-01-06

    Objectives and background: Myocarditis is caused by various agents and autoimmune processes. It is unknown whether viral genome persistence represents inactive remnants of previous infections or whether it is attributed to ongoing adverse processes. The latter also applies to the course of autoimmune myocarditis. One principal candidate for an adverse remodeling is nuclear factor-{kappa}B (NF{kappa}B). Methods: A total of 93 patients with suspected myocarditis/cardiomyopathy was examined. Hemodynamics were assessed by echocardiography as well as right and left heart catheterization. Endomyocardial biopsies were taken from the left ventricle. Biopsies were examined by immunohistochemistry and PCR for viral genomes. Selective immunostaining of activated NF{kappa}B was performed. Results: NF{kappa}B was increased in patients with myocarditis when compared with controls (11.1 {+-} 7.1% vs. 5.0 {+-} 5.3%, P < 0.005) whereas dilated cardiomyopathy showed no significant increase. Patients with myocarditis and preserved left ventricular function exhibited increased activated NF{kappa}B when compared with reduced function (r {sup 2} = 0.72, P < 0.001). In parallel, inverse correlation of NF{kappa}B and left ventricular enddiasstolic volume was found (r {sup 2} = 0.43, P < 0.02). Increased activated NF{kappa}B was found in adenovirus persistence when compared with controls (P = 0.001). Only a trend of increased NF{kappa}B activation was seen in cytomegalovirus persistence. Parvovirus B19 persistence did not affect NF{kappa}B activation. Conclusions: Increased activation of NF{kappa}B is related to inflammatory processes in myocarditis. Since activated NF{kappa}B correlates with left ventricular function, it could be assumed that NF{kappa}B activation occurs at early stages of inflammation. Potentially, NF{kappa}B could inhibit loss of cardiomyocytes by apoptosis and protect from cardiac dilation. Since NF{kappa}B is a crucial key transcription factor of inflammation, its

  8. Differential activation of nuclear transcription factor kappaB, gene expression, and proteins by amifostine's free thiol in human microvascular endothelial and glioma cells.

    PubMed

    Grdina, David J; Murley, Jeffrey S; Kataoka, Yasushi; Calvin, Douglas P

    2002-01-01

    The effects of WR1065 (SH), the free thiol form of amifostine, on nuclear transcription factor kappaB (NFkappaB) activation, manganese superoxide dismutase (MnSOD) gene expression, and secretion of human vascular endothelial cell growth factor (hVEGF), basic fibroblast growth factor (bFGF), tumor necrosis factor-alpha (TNF-alpha), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), E-selectin, P-selectin, and interleukins IL-1alpha, IL-6, and IL-8 were investigated and compared in human microvascular endothelial (HMEC) and human glioma cells. WR1065 was evaluated at 2 concentrations, 4 mmol/L, ie, its most effective cytoprotective dose, and 40 micromol/L, a noncytoprotective but highly effective dose capable of preventing radiation and chemotherapeutic drug-induced mutations in exposed cells. A 30-minute exposure of HMEC and glioma cell lines U87 and U251 to WR1065 at either of the concentrations resulted in a marked activation of NFkappaB as determined by a gel shift assay, with the maximum effect observed between 30 minutes and 1 hour after treatment. Using a supershift assay, WR1065 exposure was observed to affect only the p50-p65 heterodimer, and not the homodimers or heterodimers containing p52 or c-Rel subunits of NFkappaB. WR1065 was also found to enhance MnSOD gene expression in both HMEC and glioma cells. Gene expression was enhanced 1.8-fold over control levels in HMEC over a period ranging from 12 to 24 hours after the time of maximum activation of NFkappaB. In contrast, MnSOD gene expression in U87 cells rose 3.5 times above control levels over this same period. WR1065 had no effect on the levels of adhesion molecules, cytokines, and growth factors secreted by cells exposed for up to 24 hours as measured by enzyme-linked immunosorbent assay. PMID:11917294

  9. Transcriptional coupling of synaptic transmission and energy metabolism: Role of nuclear respiratory factor 1 in co-regulating neuronal nitric oxide synthase and cytochrome c oxidase genes in neurons

    PubMed Central

    Dhar, Shilpa S.; Liang, Huan Ling; Wong-Riley, Margaret T. T.

    2009-01-01

    SUMMARY Neuronal activity is highly dependent on energy metabolism; yet, the two processes have traditionally been regarded as independently regulated at the transcriptional level. Recently, we found that the same transcription factor, nuclear respiratory factor 1 (NRF-1) co-regulates an important energy-generating enzyme, cytochrome c oxidase, as well as critical subunits of glutamatergic receptors. The present study tests our hypothesis that the co-regulation extends to the next level of glutamatergic synapses, namely, neuronal nitric oxide synthase, which generates nitric oxide as a downstream signaling molecule. Using in silico analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, promoter mutations, and NRF-1 silencing, we documented that NRF-1 functionally bound to Nos1, but not Nos2 (inducible) and Nos3 (endothelial) gene promoters. Both COX and Nos1 transcripts were up-regulated by depolarizing KCl treatment and down-regulated by TTX-mediated impulse blockade in neurons. However, NRF-1 silencing blocked the up-regulation of both Nos1 and COX induced by KCl depolarization, and over-expression of NRF-1 rescued both Nos1 and COX transcripts downregulated by TTX. These findings are consistent with our hypothesis that synaptic neuronal transmission and energy metabolism are tightly coupled at the molecular level. PMID:19615412

  10. Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation

    PubMed Central

    Li, Jasmine; Hardy, Kristine; Phetsouphanh, Chan; Tu, Wen Juan; Sutcliffe, Elissa L.; McCuaig, Robert; Sutton, Christopher R.; Zafar, Anjum; Munier, C. Mee Ling; Zaunders, John J.; Xu, Yin; Theodoratos, Angelo; Tan, Abel; Lim, Pek Siew; Knaute, Tobias; Masch, Antonia; Zerweck, Johannes; Brezar, Vedran; Milburn, Peter J.; Dunn, Jenny; Casarotto, Marco G.; Turner, Stephen J.; Seddiki, Nabila; Kelleher, Anthony D.

    2016-01-01

    ABSTRACT Memory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4+ T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation. Flanked by permissive histone modifications, these PKC-enriched regions are significantly enriched with NF-κB motifs in ex vivo bulk and vaccinia-responsive human memory CD4+ T cells. Within the nucleus, PKC-θ catalytic activity maintains the Ser536 phosphorylation on the p65 subunit of NF-κB (also known as RelA) and can directly influence chromatin accessibility at transcriptional memory genes by regulating H2B deposition through Ser32 phosphorylation. Furthermore, using a cytoplasm-restricted PKC-θ mutant, we highlight that chromatin-anchored PKC-θ integrates activating signals at the chromatin template to elicit transcriptional memory responses in human memory T cells. PMID:27149922

  11. Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation.

    PubMed

    Li, Jasmine; Hardy, Kristine; Phetsouphanh, Chan; Tu, Wen Juan; Sutcliffe, Elissa L; McCuaig, Robert; Sutton, Christopher R; Zafar, Anjum; Munier, C Mee Ling; Zaunders, John J; Xu, Yin; Theodoratos, Angelo; Tan, Abel; Lim, Pek Siew; Knaute, Tobias; Masch, Antonia; Zerweck, Johannes; Brezar, Vedran; Milburn, Peter J; Dunn, Jenny; Casarotto, Marco G; Turner, Stephen J; Seddiki, Nabila; Kelleher, Anthony D; Rao, Sudha

    2016-06-15

    Memory T cells are characterized by their rapid transcriptional programs upon re-stimulation. This transcriptional memory response is facilitated by permissive chromatin, but exactly how the permissive epigenetic landscape in memory T cells integrates incoming stimulatory signals remains poorly understood. By genome-wide ChIP-sequencing ex vivo human CD4(+) T cells, here, we show that the signaling enzyme, protein kinase C theta (PKC-θ) directly relays stimulatory signals to chromatin by binding to transcriptional-memory-responsive genes to induce transcriptional activation. Flanked by permissive histone modifications, these PKC-enriched regions are significantly enriched with NF-κB motifs in ex vivo bulk and vaccinia-responsive human memory CD4(+) T cells. Within the nucleus, PKC-θ catalytic activity maintains the Ser536 phosphorylation on the p65 subunit of NF-κB (also known as RelA) and can directly influence chromatin accessibility at transcriptional memory genes by regulating H2B deposition through Ser32 phosphorylation. Furthermore, using a cytoplasm-restricted PKC-θ mutant, we highlight that chromatin-anchored PKC-θ integrates activating signals at the chromatin template to elicit transcriptional memory responses in human memory T cells. PMID:27149922

  12. Nuclear hormone receptor corepressor promotes esophageal cancer cell invasion by transcriptional repression of interferon-γ–inducible protein 10 in a casein kinase 2–dependent manner

    PubMed Central

    Yoo, Jung-Yoon; Choi, Hyo-Kyoung; Choi, Kyung-Chul; Park, Soo-Yeon; Ota, Ichiro; Yook, Jong In; Lee, Yoo-Hyun; Kim, Kunhong; Yoon, Ho-Geun

    2012-01-01

    Aberrant expression of casein kinase 2 (CK2) is associated with tumor progression; however, the molecular mechanism by which CK2 modulates tumorigenesis is incompletely understood. In this paper, we show that CK2α phosphorylates the C-terminal domain of the nuclear receptor corepressor (NCoR) at Ser-2436 to stabilize the NCoR against the ubiquitin-dependent proteasomal degradation pathway. Importantly, NCoR promoted the invasion of esophageal cancer cells in a CK2-dependent manner. By using cyclic DNA microarray analysis, we identified CXCL10/IP-10 as a novel CK2α-NCoR cascade–regulated gene. The depletion of both NCoR and HDAC3 commonly derepressed IP-10 transcription, demonstrating the functional engagement of the NCoR-HDAC3 axis in IP-10 transcriptional repression. Furthermore, chromatin immunoprecipitation assays showed that c-Jun recruits NCoR-HDAC3 corepressor complexes to the (AP1 site of IP-10, leading to histone hypoacetylation and IP-10 down-regulation. Collectively these data suggest that the CK2α-NCoR cascade selectively represses the transcription of IP-10 and promotes oncogenic signaling in human esophageal cancer cells. PMID:22675025

  13. Glycogen synthase kinase (GSK) 3β phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells.

    PubMed

    Sarshad, Aishe A; Corcoran, Martin; Al-Muzzaini, Bader; Borgonovo-Brandter, Laura; Von Euler, Anne; Lamont, Douglas; Visa, Neus; Percipalle, Piergiorgio

    2014-06-01

    Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3β phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3β selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3β-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3β directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3β-mediated phosphorylation of NM1 is required for pol I transcription activation. PMID:24901984

  14. Transcription of Epstein-Barr virus-encoded nuclear antigen 1 promoter Qp is repressed by transforming growth factor-beta via Smad4 binding element in human BL cells.

    PubMed

    Liang, C L; Tsai, C N; Chung, P J; Chen, J L; Sun, C M; Chen, R H; Hong, J H; Chang, Y S

    2000-11-10

    In Epstein-Barr virus (EBV)-infected BL cells, the oncogenic EBV-encoded nuclear antigen 1 (EBNA 1) gene is directed from the latent promoter Qp. Yeast one-hybrid screen analysis using the -50 to -37 sequence of Qp as the bait was carried out to identify transcriptional factors that may control Qp activity. Results showed that Smad4 binds the -50 to -37 sequence of Qp, indicating that this promoter is potentially regulated by TGF-beta. The association of Smad4 with Qp was further confirmed by supershift of EMSA complexes using Smad4-specific antibody. The transfection of a Qp reporter construct in two EBV(+) BL cell lines, Rael and WW2, showed that Qp activity is repressed in response to the TGF-beta treatment. This repression involves the interaction of a Smad3/Smad4 complex and the transcriptional repressor TGIF, as determined by cotransfection assay and coimmunoprecipitation analysis. Results suggest that TGF-beta may transcriptionally repress Qp through the Smad4-binding site in human BL cells. PMID:11062049

  15. The ß-importin KAP8 (Pse1/Kap121) is required for nuclear import of the cellulase transcriptional regulator XYR1, asexual sporulation and stress resistance in Trichoderma reesei

    PubMed Central

    Ghassemi, Sara; Lichius, Alexander; Bidard, Fréderique; Lemoine, Sophie; Rossignol, Marie-Noëlle; Herold, Silvia; Seidl-Seiboth, Verena; Seiboth, Bernhard; Espeso, Eduardo A; Margeot, Antoine; Kubicek, Christian P

    2015-01-01

    The ascomycete Trichoderma reesei is an industrial producer of cellulolytic and hemicellulolytic enzymes, and serves as a prime model for their genetic regulation. Most of its (hemi-)cellulolytic enzymes are obligatorily dependent on the transcriptional activator XYR1. Here, we investigated the nucleo-cytoplasmic shuttling mechanism that transports XYR1 across the nuclear pore complex. We identified 14 karyopherins in T. reesei, of which eight were predicted to be involved in nuclear import, and produced single gene-deletion mutants of all. We found KAP8, an ortholog of Aspergillus nidulans KapI, and Saccharomyces cerevisiae Kap121/Pse1, to be essential for nuclear recruitment of GFP-XYR1 and cellulase gene expression. Transformation with the native gene rescued this effect. Transcriptomic analyses of Δkap8 revealed that under cellulase-inducing conditions 42 CAZymes, including all cellulases and hemicellulases known to be under XYR1 control, were significantly down-regulated. Δkap8 strains were capable of forming fertile fruiting bodies but exhibited strongly reduced conidiation both in light and darkness, and showed enhanced sensitivity towards abiotic stress, including high osmotic pressure, low pH and high temperature. Together, these data underscore the significance of nuclear import of XYR1 in cellulase and hemicellulase gene regulation in T. reesei, and identify KAP8 as the major karyopherin required for this process. PMID:25626518

  16. Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling.

    PubMed

    Tran, Kalvin Q; Tin, Antony S; Firestone, Gary L

    2014-03-01

    Relatively little is known about the antiproliferative effects of artemisinin, a naturally occurring antimalarial compound from Artemisia annua, or sweet wormwood, in human endometrial cancer cells. Artemisinin induced a G1 cell cycle arrest in cultured human Ishikawa endometrial cancer cells and downregulated cyclin-dependent kinase-2 (CDK2) and CDK4 transcript and protein levels. Analysis of CDK4 promoter-luciferase reporter constructs showed that the artemisinin ablation of CDK4 gene expression was accounted for by the loss of CDK4 promoter activity. Chromatin immunoprecipitation demonstrated that artemisinin inhibited nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) subunit p65 and p50 interactions with the endogenous Ishikawa cell CDK4 promoter. Coimmunoprecipitation revealed that artemisinin disrupts endogenous p65 and p50 nuclear translocation through increased protein-protein interactions with IκB-α, an NF-κB inhibitor, and disrupts its interaction with the CDK4 promoter, leading to a loss of CDK4 gene expression. Artemisinin treatment stimulated the cellular levels of IκB-α protein without altering the level of IκB-α transcripts. Finally, expression of exogenous p65 resulted in the accumulation of this NF-κB subunit in the nucleus of artemisinin-treated and artemisinin-untreated cells, reversed the artemisinin downregulation of CDK4 protein expression and promoter activity, and prevented the artemisinin-induced G1 cell cycle arrest. Taken together, our results demonstrate that a key event in the artemisinin antiproliferative effects in endometrial cancer cells is the transcriptional downregulation of CDK4 expression by disruption of NF-κB interactions with the CDK4 promoter. PMID:24296733

  17. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line

    PubMed Central

    Li, Xiaoming; Xu, Min; Wang, Fei; Ji, Yong; DavidsoN, W. Sean; Li, Zongfang; Tso, Patrick

    2015-01-01

    We have previously shown that the nuclear receptor, NR1D1, is a cofactor in ApoA-IV-mediated downregulation of gluconeogenesis. Nuclear receptor, NR4A1, is involved in the transcriptional regulation of various genes involved in inflammation, apoptosis, and glucose metabolism. We investigated whether NR4A1 influences the effect of ApoA-IV on hepatic glucose metabolism. Our in situ proximity ligation assays and coimmunoprecipitation experiments indicated that ApoA-IV colocalized with NR4A1 in human liver (HepG2) and kidney (HEK-293) cell lines. The chromatin immunoprecipitation experiments and luciferase reporter assays indicated that the ApoA-IV and NR4A1 colocalized at the RORα response element of the human G6Pase promoter, reducing its transcriptional activity. Our RNA interference experiments showed that knocking down the expression of NR4A1 in primary mouse hepatocytes treated with ApoA-IV increased the expression of NR1D1, G6Pase, and PEPCK, and that knocking down NR1D1 expression increased the level of NR4A1. We also found that ApoA-IV induced the expression of endogenous NR4A1 in both cultured primary mouse hepatocytes and in the mouse liver, and decreased glucose production in primary mouse hepatocytes. Our findings showed that ApoA-IV colocalizes with NR4A1, which suppresses G6Pase and PEPCK gene expression at the transcriptional level, reducing hepatic glucose output and lowering blood glucose. The ApoA-IV-induced increase in NR4A1 expression in hepatocytes mediates further repression of gluconeogenesis. Our findings suggest that NR1D1 and NR4A1 serve similar or complementary functions in the ApoA-IV-mediated regulation of gluconeogenesis. PMID:26556724

  18. Oxygen-evoked changes in transcriptional activity of the 5'-flanking region of the human amiloride-sensitive sodium channel (alphaENaC) gene: role of nuclear factor kappaB.

    PubMed Central

    Baines, Deborah L; Janes, Mandy; Newman, David J; Best, Oliver G

    2002-01-01

    Expression of the alpha-subunit of the amiloride-sensitive sodium channel (alphaENaC) is regulated by a number of factors in the lung, including oxygen partial pressure (PO2). As transcriptional activation is a mechanism for raising cellular mRNA levels, we investigated the effect of physiological changes in PO2 on the activity of the redox-sensitive transcription factor nuclear factor kappaB (NF-kappaB) and transcriptional activity of 5'-flanking regions of the human alphaENaC gene using luciferase reporter-gene vectors transiently transfected into human adult alveolar carcinoma A549 cells. By Western blotting we confirmed the presence of NF-kappaB p65 but not p50 in these cells. Transiently increasing PO2 from 23 to 42 mmHg for 24 h evoked a significant increase in NF-kappaB DNA-binding activity and transactivation of a NF-kappaB-driven luciferase construct (pGLNF-kappaBpro), which was blocked by the NF-kappaB activation inhibitor sulphasalazine (5 mM). Transcriptional activity of alphaENaC-luciferase constructs containing 5'-flanking sequences (including the NF-kappaB consensus) were increased by raising PO2 from 23 to 142 mmHg if they contained transcriptional initiation sites (TIS) for exons 1A and 1B (pGL3E2.2) or the 3' TIS of exon 1B alone (pGL3E0.8). Sulphasalazine had no significant effect on the activity of these constructs, suggesting that the PO2-evoked rise in activity was not a direct consequence of NF-kappaB activation. Conversely, the relative luciferase activity of a construct that lacked the 3' TIS, a 3' intron and splice site but still retained the 5' TIS and NF-kappaB consensus sequence was suppressed significantly by raising PO2. This effect was reversed by sulphasalazine, suggesting that activation of NF-kappaB mediated PO2-evoked suppression of transcription from the exon 1A TIS of alphaENaC. PMID:12023897

  19. Nitrogen Starvation and TorC1 Inhibition Differentially Affect Nuclear Localization of the Gln3 and Gat1 Transcription Factors Through the Rare Glutamine tRNACUG in Saccharomyces cerevisiae

    PubMed Central

    Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.

    2015-01-01

    A leucine, leucyl-tRNA synthetase–dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors

  20. Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.

    PubMed

    Tate, Jennifer J; Rai, Rajendra; Cooper, Terrance G

    2015-02-01

    A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This

  1. Co-operative interactions between NFAT (nuclear factor of activated T cells) c1 and the zinc finger transcription factors Sp1/Sp3 and Egr-1 regulate MT1-MMP (membrane type 1 matrix metalloproteinase) transcription by glomerular mesangial cells.

    PubMed Central

    Alfonso-Jaume, Maria Alejandra; Mahimkar, Rajeev; Lovett, David H

    2004-01-01

    The transition of normally quiescent glomerular MCs (mesangial cells) to a highly proliferative phenotype with characteristics of myofibroblasts is a process commonly observed in inflammatory diseases affecting the renal glomerulus, the ultimate result of which is glomerulosclerosis. Generation of proteolytically active MMP (matrix metalloproteinase)-2 by the membrane-associated membrane type 1 (MT1)-MMP is responsible for the transition of mesangial cells to the myofibroblast phenotype [Turck, Pollock, Lee, Marti and Lovett (1996) J. Biol. Chem. 271, 15074-15083]. In the present study, we show that the expression of MT1-MMP within the context of MCs is mediated by three discrete cis -acting elements: a proximal non-canonical Sp1 site that preferentially binds Sp1; an overlapping Sp1/Egr-1-binding site that preferentially binds Egr-1; and a more distal binding site for the NFAT (nuclear factor of activated T cells) that binds the NFAT c1 isoform present in MC nuclear extracts. Transfection with an NFAT c1 expression plasmid, or activation of calcineurin with a calcium ionophore, yielded major increases in NFAT c1 nuclear DNA-binding activity, MT1-MMP transcription and protein synthesis, which were additive with the lower levels of transactivation provided by the proximal Sp1 and the overlapping Sp1/Egr-1 sites. Specific binding of NFAT c1 to the MT1-MMP promoter was confirmed by chromatin immunoprecipitation studies, while MT1-MMP expression was suppressed by treatment with the calcineurin inhibitor, cyclosporin A. These studies are the first demonstration that a specific NFAT isoform enhances transcription of an MMP (MT1-MMP) that plays a major role in the proteolytic events that are a dominant feature of acute glomerular inflammation. Suppression of MT1-MMP by commonly used calcineurin inhibitors may play a role in the development of renal fibrosis following renal transplantation. PMID:14979875

  2. mRNA quality control goes transcriptional

    PubMed Central

    Kilchert, Cornelia; Vasiljeva, Lidia

    2013-01-01

    Eukaryotic mRNAs are extensively processed to generate functional transcripts, which are 5′ capped, spliced and 3′ polyadenylated. Accumulation of unprocessed (aberrant) mRNAs can be deleterious for the cell, hence processing fidelity is closely monitored by QC (quality control) mechanisms that identify erroneous transcripts and initiate their selective removal. Nucleases including Xrn2/Rat1 and the nuclear exosome have been shown to play an important role in the turnover of aberrant mRNAs. Recently, with the growing appreciation that mRNA processing occurs concomitantly with polII (RNA polymerase II) transcription, it has become evident that QC acts at the transcriptional level in addition to degrading aberrant RNAs. In the present review, we discuss mechanisms that allow cells to co-transcriptionally initiate the removal of RNAs as well as down-regulate transcription of transcripts where processing repeatedly fails. PMID:24256272

  3. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    PubMed Central

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-01-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells. PMID:12133007

  4. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line.

    PubMed

    Takahashi, Shigeru; Matsuura, Naomi; Kurokawa, Takako; Takahashi, Yuji; Miura, Takashi

    2002-11-01

    We reported previously that the 5'-flanking region (nucleotides -1976 to -1655) of the human haem oxygenase-1 ( hHO-1 ) gene enhances hHO-1 promoter activity in human hepatoma HepG2 cells, but not in HeLa cells [Takahashi, Takahashi, Ito, Nagano, Shibahara and Miura (1999) Biochim. Biophys. Acta 1447, 231-235]. To define more precisely the regulatory elements involved, in the present study we have functionally dissected this region and localized the enhancer to a 50 bp fragment (-1793 to -1744). Site-direct mutagenesis analysis revealed that two regions were responsible for this enhancer activity, i.e. a hepatocyte nuclear factor-4 (HNF-4) homologous region and a GC box motif homologous region. Mutation in either region alone moderately decreased enhancer activity. However, mutations in both regions reduced promoter activity to the basal level. Electrophoretic mobility-shift assays demonstrated that the P5-2 fragment (-1793 to -1744) interacted with at least two nuclear factors, i.e. HNF-4 and Sp1/Sp3. Co-transfection experiments using Drosophila SL2 cells revealed that HNF-4 and Sp1/Sp3 synergistically stimulated the enhancer activity of the P5-2 fragment. These results indicate that co-operation of HNF-4 with Sp1 or Sp3 leads to the activation of hHO-1 gene expression in hepatoma cells. PMID:12133007

  5. The RelA/cRel nuclear factor-κB (NF-κB) dimer, crucial for inflammation resolution, mediates the transcription of the key enzyme in melatonin synthesis in RAW 264.7 macrophages.

    PubMed

    Muxel, Sandra Marcia; Laranjeira-Silva, Maria Fernanda; Carvalho-Sousa, Claudia Emanuelle; Floeter-Winter, Lucile Maria; Markus, Regina P

    2016-05-01

    Lipopolysaccharide (LPS) modulates the transcription of the gene that codifies the enzyme arylalkylamine-N-acetyltransferase (AA-NAT) through nuclear translocation of the transcription factor nuclear factor-κ-light-chain-enhancer of activated B cells (NF-κB). AA-NAT converts serotonin to N-acetylserotonin, the ultimate precursor of melatonin. Activation of kappa B elements (aa-nat-κB), localized in the promoter (nat-κB1 and nat-κB2), leads to Aa-nat transcription in RAW 264.7 macrophages. Competitive electrophoretic mobility shift assay (EMSA) with oligonucleotide probes corresponding to each of the two elements, as well as a NF-κB consensus corresponding probe, revealed different specificities for each κB element. In addition, activator protein-1 (AP-1) as well as signal transducers and activator of transcription-1 and 3 (STAT-1; STAT-3) competed with NF-κB for binding to nat-κB1, while only STAT-3 competed with NF-κB for binding to nat-κB2. According to co-immunoprecipitation (ChiP) assays, these two sites are able to distinguish NF-κB subunits. The sequence nat-κB1 bound dimers containing p52, RelA, and cRel, while nat-κB2 bound preferentially p50, p52, and RelA, and did not bind cRel. The expression of RelA and cRel is essential for the induction of Aa-nat expression and melatonin synthesis. Considering that the expression of cRel is induced by the earlier expressed p50/RelA, the differential effects of NF-κB dimers may be intimately associated with the temporal regulation of inflammatory responses, with the resolution phase being associated with paracrine and autocrine melatonin effects. Such data suggest that the proven effects of exogenous melatonin in the resolution phase of inflammation are paralleled by the effects of locally synthesized melatonin in immune cells. PMID:26887983

  6. Ethanol extract of Zhongtian hawthorn lowers serum cholesterol in mice by inhibiting transcription of 3-hydroxy-3-methylglutaryl-CoA reductase via nuclear factor-kappa B signal pathway.

    PubMed

    Hu, Hai-Jie; Luo, Xue-Gang; Dong, Qing-Qing; Mu, Ai; Shi, Guo-Long; Wang, Qiu-Tong; Chen, Xiao-Ying; Zhou, Hao; Zhang, Tong-Cun; Pan, Li-Wen

    2016-03-01

    Hawthorn is a berry-like fruit from the species of Crataegus. In China, it has another more famous name, Shan-Zha, which has been used to improve digestion as a traditional Chinese medicine or food for thousands of years. Moreover, during the last decades, hawthorn has received more attention because of its potential to treat cardiovascular diseases. However, currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included as Shan-Zha in the Chinese Pharmacopoeia. In this study, our results showed that the ethanol extract of Zhongtian hawthorn, a novel grafted cultivar of C. cuneata (wild Shan-Zha), could markedly reduce body weight and levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, and liver cholesterol of hyperlipidemia mice. It could suppress the stimulation effect of high-fat diet on the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and p65, and counteract the downregulation of CYP7A1 and LDLR. In addition, the results of luciferase reporter assay and Western blot showed that the transcriptional activity of HMGCR promoter was inhibited by Zhongtian hawthorn ethanol extract in a dose-dependent manner, while overexpression of p65 could reverse this transcriptional repression effect. These results suggested that Zhongtian hawthorn could provide health benefits by counteracting the high-fat diet-induced hypercholesteolemic and hyperlipidemic effects in vivo, and the mechanism underlying this event was mainly dependent on the suppressive effect of Zhongtian hawthorn ethanol extract on the transcription of HMGCR via nuclear factor-kappa B (NF-κB) signal pathway. Therefore, this novel cultivar of hawthorn cultivar which has much bigger fruits, early bearing, high yield, cold resistance, and drought resistance, might be considered as a good alternative to Shan-Zha and has great value in the food and medicine industry. In addition, to our best knowledge, this is also the first report that the

  7. Nuclear APC.

    PubMed

    Neufeld, Kristi L

    2009-01-01

    Mutational inactivation of the tumor suppressor gene APC (Adenomatous polyposis coli) is thought to be an initiating step in the progression of the vast majority ofcolorectal cancers. Attempts to understand APC function have revealed more than a dozen binding partners as well as several subcellular localizations including at cell-cell junctions, associated with microtubules at the leading edge of migrating cells, at the apical membrane, in the cytoplasm and in the nucleus. The present chapter focuses on APC localization and functions in the nucleus. APC contains two classical nuclear localization signals, with a third domain that can enhance nuclear import. Along with two sets of nuclear export signals, the nuclear localization signals enable the large APC protein to shuttle between the nucleus and cytoplasm. Nuclear APC can oppose beta-catenin-mediated transcription. This down-regulation of nuclear beta-catenin activity by APC most likely involves nuclear sequestration of beta-catenin from the transcription complex as well as interaction of APC with transcription corepressor CtBP. Additional nuclear binding partners for APC include transcription factor activator protein AP-2alpha, nuclear export factor Crm1, protein tyrosine phosphatase PTP-BL and perhaps DNA itself. Interaction of APC with polymerase beta and PCNA, suggests a role for APC in DNA repair. The observation that increases in the cytoplasmic distribution of APC correlate with colon cancer progression suggests that disruption of these nuclear functions of APC plays an important role in cancer progression. APC prevalence in the cytoplasm of quiescent cells points to a potential function for nuclear APC in control of cell proliferation. Clear definition of APC's nuclear function(s) will expand the possibilities for early colorectal cancer diagnostics and therapeutics targeted to APC. PMID:19928349

  8. Your Radiologist Explains Nuclear Medicine

    MedlinePlus Videos and Cool Tools

    ... by: Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  9. Expression of Transcription Factors and Nuclear Receptors in Mixed Germ Cell-Sex Cord Stromal Tumor and Related Tumors of the Gonads.

    PubMed

    Roth, Lawrence M; Cheng, Liang

    2015-11-01

    In this study, we compare the expression of OCT4, SALL4, and TSPYL1 in mixed germ cell-sex cord stromal tumor (MGC-SCST) of either gonad to that of normal adult testis, classic and spermatocytic seminoma, intratubular germ cell neoplasia, unclassified, gonadoblastoma, and dysgerminoma to determine the entity or entities that most closely resemble MGC-SCST by immunohistochemistry of germ cells. The most useful transcription factor was OCT4. In addition, to its already described value in distinguishing germinoma and embryonal carcinoma from yolk sac tumor and in differentiating classic from spermatocytic seminoma, we found that OCT4 is useful in confirming or ruling out potential malignancy in MGC-SCST of either gonad. Expression of OCT4 in most ovarian MGC-SCSTs resembles that of dysgerminoma, whereas most testicular examples resemble that of spermatocytic seminoma and normal adult testis. Thus, most MGC-SCSTs of the ovary are potentially malignant, and corresponding tumors of the testis are mostly benign; however, exceptions likely can be detected by the use of OCT4, potentially leading to more appropriate clinical management in some cases. SALL4 is an underutilized transcription factor that is useful in distinguishing testicular MGC-SCST from sex cord stromal tumor, unclassified in those neoplasms where the germ cells are sparse or unevenly distributed. Compared with other transcription factors studied, TSPY and its congener TSPYL1 have little value in the assessment of germ cell tumors because of their relatively wide range of expression in normal adult testis and in germ cell tumors. PMID:26107563

  10. Analysis of trans-silencing interactions using transcriptional silencers of varying strength and targets with and without flanking nuclear matrix attachment regions.

    PubMed

    Ascenzi, Robert; Ulker, Bekir; Todd, Joselyn J; Sowinski, Dolores A; Schimeneck, Carolyn R; Allen, George C; Weissinger, Arthur K; Thompson, William F

    2003-06-01

    We investigated the effect of the Rb7 matrix attachment region (MAR) on trans-silencing in tobacco plants, comparing the effects of three transgene silencer loci on ten target loci. Two of the silencer loci, C40 and C190, contain complex and rearranged transgene arrays consisting of 35S:GUS or NOS:NPTII containing plasmids. The third silencer locus, V271, was previously characterized as a complex locus containing rearranged 35S:RiN sequences. Each of these silencers can reduce 35S promoter-driven expression at other loci, albeit with varying efficiencies. The presence of MARs at a target locus does not prevent trans-silencing by the V271 silencer. However, four of seven MAR-containing loci were at least partially resistant to silencing by the C40 and C190 loci. One MAR locus was unaffected by C40, our weakest silencer, and three were silenced only when the silencer locus was maternally inherited. Silencing is progressive in the F1 and F2 generations; two days after germination there is little or no difference between seedlings derived from crosses to silencing or control lines, but seedlings containing silencer loci slowly lose expression during subsequent development. These observations are compatible with the hypothesis that a product of the silencer locus must accumulate before unlinked loci can be affected. However, our silencer loci are themselves silenced for GUS transcription, and coding region homology is not required for their effects on target loci. Our results are consistent with a model in which transcriptional silencing is triggered by transcription of sequences during the early stages of embryo or seedling development. PMID:12779119

  11. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean

    PubMed Central

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na+ and K+, and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  12. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean.

    PubMed

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na(+) and K(+), and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  13. Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for the Involvement of Nuclear Receptors PPARα and CAR

    EPA Science Inventory

    A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects linked to liver cancer through the nuclear recep...

  14. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress.

    PubMed Central

    Sarge, K D; Murphy, S P; Morimoto, R I

    1993-01-01

    The existence of multiple heat shock factor (HSF) genes in higher eukaryotes has promoted questions regarding the functions of these HSF family members, especially with respect to the stress response. To address these questions, we have used polyclonal antisera raised against mouse HSF1 and HSF2 to examine the biochemical, physical, and functional properties of these two factors in unstressed and heat-shocked mouse and human cells. We have identified HSF1 as the mediator of stress-induced heat shock gene transcription. HSF1 displays stress-induced DNA-binding activity, oligomerization, and nuclear localization, while HSF2 does not. Also, HSF1 undergoes phosphorylation in cells exposed to heat or cadmium sulfate but not in cells treated with the amino acid analog L-azetidine-2-carboxylic acid, indicating that phosphorylation of HSF1 is not essential for its activation. Interestingly, HSF1 and HSF2 overexpressed in transfected 3T3 cells both display constitutive DNA-binding activity, oligomerization, and transcriptional activity. These results demonstrate that HSF1 can be activated in the absence of physiological stress and also provide support for a model of regulation of HSF1 and HSF2 activity by a titratable negative regulatory factor. Images PMID:8441385

  15. JACALIN-LECTIN LIKE1 Regulates the Nuclear Accumulation of GLYCINE-RICH RNA-BINDING PROTEIN7, Influencing the RNA Processing of FLOWERING LOCUS C Antisense Transcripts and Flowering Time in Arabidopsis1[OPEN

    PubMed Central

    Xiao, Jun; Li, Chunhua; Xu, Shujuan; Xing, Lijing; Xu, Yunyuan; Chong, Kang

    2015-01-01

    Lectins selectively recognize sugars or glycans for defense in living cells, but less is known about their roles in the development process and the functional network with other factors. Here, we show that Arabidopsis (Arabidopsis thaliana) JACALIN-LECTIN LIKE1 (AtJAC1) functions in flowering time control. Loss of function of AtJAC1 leads to precocious flowering, whereas overexpression of AtJAC1 causes delayed flowering. AtJAC1 influences flowering through regulation of the key flowering repressor gene FLOWERING LOCUS C (FLC). Genetic analysis revealed that AtJAC1’s function is mostly dependent on GLYCINE-RICH RNA-BINDING PROTEIN7 (GRP7), an upstream regulator of FLC. Biochemical and cell biological data indicated that AtJAC1 interacted physically with GRP7 specifically in the cytoplasm. AtJAC1 influences the nucleocytoplasmic distribution of GRP7, with predominant nuclear localization of GRP7 when AtJAC1 function is lost but retention of GRP7 in the cytoplasm when AtJAC1 is overexpressed. A temporal inducible assay suggested that AtJAC1’s regulation of flowering could be compromised by the nuclear accumulation of GRP7. In addition, GRP7 binds to the antisense precursor messenger RNA of FLC through a conserved RNA motif. Loss of GRP7 function leads to the elevation of total FLC antisense transcripts and reduced proximal-distal polyadenylation ratio, as well as histone methylation changes in the FLC gene body region and increased total functional sense FLC transcript. Attenuating the direct binding of GRP7 with competing artificial RNAs leads to changes of FLC antisense precursor messenger RNA processing and flowering transition. Taken together, our study indicates that AtJAC1 coordinates with GRP7 in shaping plant development through the regulation of RNA processing in Arabidopsis. PMID:26392261

  16. Omeprazole induces NAD(P)H quinone oxidoreductase 1 via aryl hydrocarbon receptor-independent mechanisms: Role of the transcription factor nuclear factor erythroid 2-related factor 2.

    PubMed

    Zhang, Shaojie; Patel, Ananddeep; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-11-13

    Activation of the aryl hydrocarbon receptor (AhR) transcriptionally induces phase I (cytochrome P450 (CYP) 1A1) and phase II (NAD(P)H quinone oxidoreductase 1 (NQO1) detoxifying enzymes. The effects of the classical and nonclassical AhR ligands on phase I and II enzymes are well studied in human hepatocytes. Additionally, we observed that the proton pump inhibitor, omeprazole (OM), transcriptionally induces CYP1A1 in the human adenocarcinoma cell line, H441 cells via AhR. Whether OM activates AhR and induces the phase II enzyme, NAD(P)H quinone oxidoreductase 1 (NQO1), in fetal primary human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce NQO1 in HPMEC via the AhR. The concentrations of OM used in our experiments did not result in cytotoxicity. OM activated AhR as evident by increased CYP1A1 mRNA expression. However, contrary to our hypothesis, OM increased NQO1 mRNA and protein via an AhR-independent mechanism as AhR knockdown failed to abrogate OM-mediated increase in NQO1 expression. Interestingly, OM activated Nrf2 as evident by increased phosphoNrf2 (S40) expression in OM-treated compared to vehicle-treated cells. Furthermore, Nrf2 knockdown abrogated OM-mediated increase in NQO1 expression. In conclusion, we provide evidence that OM induces NQO1 via AhR-independent, but Nrf2-dependent mechanisms. PMID:26441083

  17. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms.

    PubMed Central

    Klenova, E M; Nicolas, R H; Paterson, H F; Carne, A F; Heath, C M; Goodwin, G H; Neiman, P E; Lobanenkov, V V

    1993-01-01

    A novel sequence-specific DNA-binding protein, CTCF, which interacts with the chicken c-myc gene promoter, has been identified and partially characterized (V. V. Lobanenkov, R. H. Nicolas, V. V. Adler, H. Paterson, E. M. Klenova, A. V. Polotskaja, and G. H. Goodwin, Oncogene 5:1743-1753, 1990). In order to test directly whether binding of CTCF to one specific DNA region of the c-myc promoter is important for chicken c-myc transcription, we have determined which nucleotides within this GC-rich region are responsible for recognition of overlapping sites by CTCF and Sp1-like proteins. Using missing-contact analysis of all four nucleotides in both DNA strands and homogeneous CTCF protein purified by sequence-specific chromatography, we have identified three sets of nucleotides which contact either CTCF or two Sp1-like proteins binding within the same DNA region. Specific mutations of 3 of 15 purines required for CTCF binding were designed to eliminate binding of CTCF without altering the binding of other proteins. Electrophoretic mobility shift assay of nuclear extracts showed that the mutant DNA sequence did not bind CTCF but did bind two Sp1-like proteins. When introduced into a 3.3-kbp-long 5'-flanking noncoding c-myc sequence fused to a reporter CAT gene, the same mutation of the CTCF binding site resulted in 10- and 3-fold reductions, respectively, of transcription in two different (erythroid and myeloid) stably transfected chicken cell lines. Isolation and analysis of the CTCF cDNA encoding an 82-kDa form of CTCF protein shows that DNA-binding domain of CTCF is composed of 11 Zn fingers: 10 are of C2H2 class, and 1 is of C2HC class. CTCF was found to be abundant and conserved in cells of vertebrate species. We detected six major nuclear forms of CTCF protein differentially expressed in different chicken cell lines and tissues. We conclude that isoforms of 11-Zn-finger factor CTCF which are present in chicken hematopoietic HD3 and BM2 cells can act as a positive

  18. The nuclear retention of transcription factor FOXO3a correlates with a DNA damage response and increased glutamine synthetase expression by astrocytes suggesting a neuroprotective role in the ageing brain

    PubMed Central

    Fluteau, Adeline; Ince, Paul G.; Minett, Thais; Matthews, Fiona E.; Brayne, Carol; Garwood, Claire J.; Ratcliffe, Laura E.; Morgan, Sarah; Heath, Paul R.; Shaw, Pamela J.; Wharton, Stephen B.; Simpson, Julie E.

    2015-01-01

    The accumulation of reactive oxygen species leading to oxidative damage and cell death plays an important role in a number of neurodegenerative disorders. FOXO3a, the main isoform of FOXO transcription factors, mediates the cellular response to oxidative stress by regulating the expression of genes involved in DNA repair and glutamine metabolism, including glutamine synthetase (GS). Immunohistochemical investigation of the population-based neuropathology cohort of the Medical Research Council’s Cognitive Function and Ageing Study (MRC CFAS) demonstrates that nuclear retention of FOXO3a significantly correlates with a DNA damage response and with GS expression by astrocytes. Furthermore, we show that GS expression correlates with increasing Alzheimer-type pathology in this ageing cohort. Our findings suggest that in response to oxidative stress, the nuclear retention of FOXO3a in astrocytes upregulates expression of GS as a neuroprotective mechanism. However, the activity of GS may be compromised by increasing levels of oxidative stress in the ageing brain resulting in dysfunctional enzyme activity, neuronal excitotoxic damage and cognitive impairment. PMID:26455863

  19. Functional dissection of latency-associated nuclear antigen 1 of Kaposi's sarcoma-associated herpesvirus involved in latent DNA replication and transcription of terminal repeats of the viral genome.

    PubMed

    Lim, Chunghun; Sohn, Hekwang; Lee, Daeyoup; Gwack, Yousang; Choe, Joonho

    2002-10-01

    Latency-associated nuclear antigen 1 (LANA1) of Kaposi's sarcoma-associated herpesvirus (KSHV) is implicated in the maintenance of the viral genome during latent infection. LANA1 colocalizes with KSHV episomes on the host chromosome and mediates their maintenance by attaching these viral structures to host chromosomes. Data from long-term selection of drug resistance in cells conferred by plasmids containing the terminal repeat (TR) sequence of KSHV revealed that KSHV TRs and LANA1 act as cis and trans elements of viral latent replication, respectively. In this study, we further characterized the cis- and trans-acting elements of KSHV latent replication by using a transient replication assay with a methylation-sensitive restriction enzyme, DpnI. Transient reporter and replication assays disclosed that the orientation and basal transcriptional activity of TR constructs did not significantly affect the efficiency of replication. However, at least two TR units were necessary for efficient replication. The N-terminal 90 amino acids comprising the chromosome-binding domain of LANA1 were required for the mediation of LANA1 C-terminal DNA-binding and dimerization domains to support the transient replication of KSHV TRs. LANA1 interacted with components of the origin recognition complexes (ORCs), similar to Epstein-Barr virus nuclear antigen 1. Our data suggest that LANA1 recruits ORCs to KSHV TRs for latent replication of the viral genome. PMID:12239308

  20. Bortezomib induces nuclear translocation of IκBα resulting in gene-specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL.

    PubMed

    Juvekar, Ashish; Manna, Subrata; Ramaswami, Sitharam; Chang, Tzu-Pei; Vu, Hai-Yen; Ghosh, Chandra C; Celiker, Mahmut Y; Vancurova, Ivana

    2011-02-01

    Cutaneous T-cell lymphoma (CTCL) is characterized by constitutive activation of nuclear factor κB (NF-κB), which plays a crucial role in the survival of CTCL cells and their resistance to apoptosis. NF-κB activity in CTCL is inhibited by the proteasome inhibitor bortezomib; however, the mechanisms remained unknown. In this study, we investigated mechanisms by which bortezomib suppresses NF-κB activity in CTCL Hut-78 cells. We demonstrate that bortezomib and MG132 suppress NF-κB activity in Hut-78 cells by a novel mechanism that consists of inducing nuclear translocation and accumulation of IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha), which then associates with NF-κB p65 and p50 in the nucleus and inhibits NF-κB DNA binding activity. Surprisingly, however, while expression of NF-κB-dependent antiapoptotic genes cIAP1 and cIAP2 is inhibited by bortezomib, expression of Bcl-2 is not suppressed. Chromatin immunoprecipitation indicated that cIAP1 and cIAP2 promoters are occupied by NF-κB p65/50 heterodimers, whereas Bcl-2 promoter is occupied predominantly by p50/50 homodimers. Collectively, our data reveal a novel mechanism of bortezomib function in CTCL and suggest that the inhibition of NF-κB-dependent gene expression by bortezomib is gene specific and depends on the subunit composition of NF-κB dimers recruited to NF-κB-responsive promoters. PMID:21224428

  1. The ORF012 Gene of Marek's Disease Virus Type 1 Produces a Spliced Transcript and Encodes a Novel Nuclear Phosphoprotein Essential for Virus Growth

    PubMed Central

    Schippers, Timo; Jarosinski, Keith

    2014-01-01

    ABSTRACT Marek's disease virus (MDV), an alphaherpesvirus, is the causative agent of a lethal disease in chickens characterized by generalized nerve inflammation and rapid lymphoma development. The extensive colinearity of the MDV genome with those of related herpesviruses has eased functional characterization of many MDV genes. However, MDV carries a number of unique open reading frames (ORFs) that have not yet been investigated regarding their coding potentials and the functions of their products. Among these unique ORFs are two putative ORFs, ORF011 and ORF012, which are found at the extreme left end of the MDV unique long region. Using reverse transcriptase PCR, we showed that ORF011 and ORF012 are not individual genes but form a single gene through mRNA splicing of a small intron, resulting in the novel ORF012. We generated an ORF012-null virus using an infectious clone of MDV strain RB-1B. The deletion virus had a marked growth defect in vitro and could not be passaged in cultured cells, suggesting an essential role for the ORF012 product in virus replication. Further studies revealed that protein 012 (p012) localized to the nucleus in transfected and infected cells, and we identified by site-directed mutagenesis and green fluorescent protein (GFP) reporter fusion assays a nuclear localization signal (NLS) that was mapped to a 23-amino-acid sequence at the protein's C terminus. Nuclear export was blocked using leptomycin B, suggesting a potential role for p012 as a nuclear/cytoplasmic shuttling protein. Finally, p012 is phosphorylated at multiple residues, a modification that could possibly regulate its subcellular distribution. IMPORTANCE Marek's disease virus (MDV) causes a devastating oncogenic disease in chickens with high morbidity and mortality. The costs for disease prevention reach several billion dollars annually. The functional investigation of MDV genes is necessary to understand its complex replication cycle, which eventually could help us to

  2. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    PubMed

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders. PMID:26841864

  3. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    PubMed

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities. PMID:20839630

  4. The DNA-binding domain of two bZIP transcription factors, the Epstein-Barr virus switch gene product EB1 and Jun, is a bipartite nuclear targeting sequence.

    PubMed Central

    Mikaélian, I; Drouet, E; Marechal, V; Denoyel, G; Nicolas, J C; Sergeant, A

    1993-01-01

    The Epstein-Barr virus BZLF1 gene product EB1 (also called ZEBRA and Zta), is a transcription factor belonging to the bZIP (basic domain leucine zipper) family of nuclear proteins. Translocation to the nucleus of EB1 (J. Becker, U. Leser, M. Marschall, A. Langford, W. Jilg, H. Gelderblom, P. Reichart, and H. Wolf, Proc. Natl. Acad. Sci. USA 88:8332-8336, 1991) and of two other bZIP proteins, c-Jun and c-Fos (P. Roux, J.-M. Blanchard, A. Fernandez, N. Lamb, P. Jeanteur, and M. Piechaczyk, Cell 63:341-351, 1990), has been shown to be subject to regulation. We show here that for both EB1 and Jun the nuclear targeting signals (NTS) in the proteins' primary sequences are two clusters of positively charged amino acids. These clusters, called BRA and BRB, are necessary and sufficient to direct beta-galactosidase to the nuclear compartment and act as a bipartite NTS. They are conserved among all the bZIP proteins, and although they are not identical, they probably share the same function. Site-directed mutagenesis studies made on these basic clusters suggest that they also act as a bipartite NTS in the EB1 protein. Our results also demonstrate that in EB1 and Jun, these bipartite NTS are superimposed with bipartite DNA-binding domains, since BRA and BRB are required in vitro for direct and specific contact between these proteins and their DNA-binding sites. Images PMID:8380464

  5. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes

    PubMed Central

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Background: Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. Objective: In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Materials and Methods: Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11–7082. Results: Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11–7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Conclusions: Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. SUMMARY Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits

  6. Transcriptional regulation of the rat type IIA phospholipase A2 gene by cAMP and interleukin-1beta in vascular smooth muscle cells: interplay of the CCAAT/enhancer binding protein (C/EBP), nuclear factor-kappaB and Ets transcription factors.

    PubMed Central

    Antonio, Valérie; Brouillet, Arthur; Janvier, Brigitte; Monne, Claire; Bereziat, Gilbert; Andreani, Marise; Raymondjean, Michel

    2002-01-01

    The abundant secretion of type IIA secreted phospholipase A(2) (sPLA(2)) is a major feature of the inflammatory process of atherosclerosis. sPLA(2) is crucial for the development of inflammation, as it catalyses the production of lipid mediators and induces the proliferation of smooth muscle cells. We have analysed the activation of sPLA(2) transcription by cAMP and interleukin-1beta (IL-1beta), and shown that the 500 bp region upstream of the transcription start site of the rat sPLA(2) gene is implicated in activation by synergistically acting cAMP and IL-1beta. We transiently transfected and stimulated rat smooth muscle cells in primary culture and measured the promoter activities of serial and site-directed deletion mutants of sPLA(2)-luciferase constructs. A distal region, between -488 and -157 bp, bearing a CAAT/enhancer binding protein (C/EBP)-responsive element (-242 to -223) was sufficient for cAMP/protein kinase A-mediated sPLA(2) promoter activation. We find evidence for the first time that activation of the sPLA(2) promoter by IL-1beta requires activation of an Ets-responsive element in the -184 to -180 region of the distal promoter via the Ras pathway and a nuclear factor-kappaB site at positions -141 to -131 of the proximal promoter. We also used electrophoretic mobility shift assays to identify five binding sites for the Sp1 factor; a specific inhibitor of Sp1, mithramycin A, showed that this factor is crucial for the basal activity of the sPLA(2) promoter. PMID:12188923

  7. Bisphenol A increases aP2 expression in 3T3L1 by enhancing the transcriptional activity of nuclear receptors at the promoter

    PubMed Central

    Atlas, Ella; Pope, Louise; Wade, Mike G; Kawata, Alice; Boudreau, Adele; Boucher, Jonathan G

    2014-01-01

    Environmental pollutants, such as bisphenol A (BPA), have the potential to affect the differentiation processes and the biology of the adipose tissue. The 3T3-L1 model is one of the murine cell models used extensively for the investigation of the molecular events that govern the differentiation of adipocytes from a committed preadipocyte to a mature, lipid laden adipocyte. Most of the studies investigating the effects of BPA on preadipocyte differentiation have investigated the effects of this chemical in the presence of an optimal differentiation cocktail containing high concentrations of the synthetic glucocorticoid dexamethasone, conditions that result in 90% to 100% of differentiated adipocytes. Our studies employed the 3T3-L1 cell model in the absence of exogenous glucocorticoids. We show that BPA is able to increase the differentiation of the 3T3-L1 cells under these conditions. Furthermore, the effect of BPA was observed in the absence of the synthetic glucocorticoid (dexamethasone), a hormone known to be required for the differentiation of the 3T3-L1 cells. In addition, BPA upregulated the mRNA expression and protein levels of the terminal marker of adipogenesis the fatty acid binding protein (aP2) in these cells. Interestingly, the known modulators of adipogenesis such as the peroxisome proliferator-activated receptor (PPAR) γ or CCAAT enhancer binding protein (C/EBP) α were not elevated at the mRNA or protein level in response to BPA. Furthermore, BPA upregulated the expression levels of the marker of adipogenesis aP2, through an effect on the transcriptional activity of C/EBPδ and the glucocorticoid receptor (GR) at its promoter. PMID:25068083

  8. Vaccination inhibits TLR2 transcription via suppression of GR nuclear translocation and binding to TLR2 promoter in porcine lung infected with Mycoplasma hyopneumoniae.

    PubMed

    Sun, Zhiyuan; Liu, Maojun; Zou, Huafeng; Li, Xian; Shao, Guoqing; Zhao, Ruqian

    2013-12-27

    Toll-like receptors (TLRs) and glucocorticoid receptor (GR) act respectively as effectors of innate immune and stress responses. The crosstalk between them is critical for the maintenance of homeostasis during the immune response. Vaccination is known to boost adaptive immunity, yet it remains elusive whether vaccination may affect GR/TLR interactions following infection. Duroc×Meishan crossbred piglets were allocated to three groups. The control group (CC) received neither vaccination nor infection; the non-vaccinated infection group (NI) was artificially infected intratracheally with Mycoplasma hyopneumoniae (M. hyopneumoniae); while the vaccinated, infected group (VI) was vaccinated intramuscularly with inactivated M. hyopneumoniae one month before infection. The clinical signs and macroscopic lung lesions were significantly reduced by vaccination. However, vaccination did not affect the concentration of M. hyopneumoniae DNA in the lung. Serum cortisol was significantly decreased in both NI and VI pigs (P<0.01), but only VI pigs demonstrated significantly diminished nuclear GR content. TLRs 1-10 were all expressed in lung, among which TLR2 was the most abundant and was significantly up-regulated (P<0.05) in NI pigs, but not in VI pigs. Accordingly, GR binding to the GR response element on TLR2 promoter was significantly increased (P<0.05) in NI pigs, but not in VI pigs. These results suggest that the inhibition of GR nuclear translocation and binding to the TLR2 promoter, which results in diminished TLR2 expression, is associated with the protective effect of vaccination on M. hyopneumoniae-induced lung lesions in the pig. PMID:24035265

  9. Transcriptional regulators TRIM28, SETDB1, and TP53 are aberrantly expressed in porcine embryos produced by in vitro fertilization in comparison to in vivo- and somatic-cell nuclear transfer-derived embryos.

    PubMed

    Hamm, Jennifer; Tessanne, Kim; Murphy, Clifton N; Prather, Randall S

    2014-06-01

    In vitro embryo production is important for research in animal reproduction, embryo transfer, transgenics, and cloning. Yet, in vitro-fertilized (IVF) embryos are generally developmentally delayed and are inferior to in vivo-derived (IVV) embryos; this discrepancy is likely a result of aberrant gene expression. Transcription of three genes implicated to be important in normal preimplantation embryo development, TRIM28, SETDB1, and TP53, was determined by quanitative PCR in IVF, somatic-cell nuclear transfer (SCNT), parthenogenetic, and IVV porcine oocytes and embryos. There was no difference in TRIM28 or SETDB1 abundance between oocytes matured in vitro versus in vivo (P > 0.05), whereas TP53 levels were higher in in vitro-matured oocytes. TRIM28 increased from metaphase-II oocytes to the 4-cell and blastocyst stages in IVF embryos, whereas IVV embryos showed a reduction in TRIM28 abundance from maturation throughout development. The relative abundance of TP53 increased by the blastocyst stage in all treatment groups, but was higher in IVF embryos compared to IVV and SCNT embryos. In contrast, SETDB1 transcript levels decreased from the 2-cell to blastocyst stage in all treatments. For each gene analyzed, SCNT embryos of both hard-to-clone and easy-to-clone cell lines were more comparable to IVV than IVF embryos. Knockdown of TRIM28 also had no effect on blastocyst development or expression of SETDB1 or TP53. Thus, TRIM28, SETDB1, and TP53 are dynamically expressed in porcine oocytes and embryos. Furthermore, TRIM28 and TP53 abundances in IVV and SCNT embryos are similar, but different from quantities in IVF embryos. PMID:24659575

  10. Transcriptional regulators TRIM28, SETDB1, and TP53 are aberrantly expressed in porcine embryos produced by in vitro fertilization in comparison to in vivo- and somatic-cell nuclear transfer-derived embryos

    PubMed Central

    Hamm, Jennifer; Tessanne, Kim; Murphy, Clifton N; Prather, Randall S

    2014-01-01

    In vitro embryo production is important for research in animal reproduction, embryo transfer, transgenics, and cloning. Yet, in vitro-fertilized (IVF) embryos are generally developmentally delayed and are inferior to in vivo-derived (IVV) embryos; this discrepancy is likely a result of aberrant gene expression. Transcription of three genes implicated to be important in normal preimplantation embryo development, TRIM28, SETDB1, and TP53, was determined by quanitative PCR in IVF, somatic-cell nuclear transfer (SCNT), parthenogenetic, and IVV porcine oocytes and embryos. There was no difference in TRIM28 or SETDB1 abundance between oocytes matured in vitro versus in vivo (P > 0.05), whereas TP53 levels were higher in in vitro-matured oocytes. TRIM28 increased from metaphase-II oocytes to the 4-cell and blastocyst stages in IVF embryos, whereas IVV embryos showed a reduction in TRIM28 abundance from maturation throughout development. The relative abundance of TP53 increased by the blastocyst stage in all treatment groups, but was higher in IVF embryos compared to IVV and SCNT embryos. In contrast, SETDB1 transcript levels decreased from the 2-cell to blastocyst stage in all treatments. For each gene analyzed, SCNT embryos of both hard-to-clone and easy-to-clone cell lines were more comparable to IVV than IVF embryos. Knockdown of TRIM28 also had no effect on blastocyst development or expression of SETDB1 or TP53. Thus, TRIM28, SETDB1, and TP53 are dynamically expressed in porcine oocytes and embryos. Furthermore, TRIM28 and TP53 abundances in IVV and SCNT embryos are similar, but different from quantities in IVF embryos. Mol. Reprod. Dev. 81: 552–556, 2014. © 2014 The Authors. Published by Wiley Periodicals, Inc. PMID:24659575

  11. Activation of transcription factor IL-6 (NF-IL-6) and nuclear factor-kappaB (NF-kappaB) by lipid ozonation products is crucial to interleukin-8 gene expression in human airway epithelial cells.

    PubMed

    Kafoury, Ramzi M; Hernandez, Jazmir M; Lasky, Joseph A; Toscano, William A; Friedman, Mitchell

    2007-04-01

    Ozone (O(3)) is a major component of smog and an inhaled toxicant to the lung. O(3) rapidly reacts with the airway epithelial cell membrane phospholipids to generate lipid ozonation products (LOP). 1-Hydroxy-1-hydroperoxynonane (HHP-C9) is an important LOP, produced from the ozonation of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine. This LOP, at a biologically relevant concentration (100 microM), increases the activity of phospholipase C, nuclear factors-kappaB (NF-kappaB), and interleukin-6 (NF-IL-6) and the expression of the inflammatory gene, interleukin-8 (IL-8) in a cultured human bronchial epithelial cell line (BEAS-2B). The signaling pathways of ozone and its biologically-active products are as yet undefined. In the present study, we report that the HHP LOP, HHP-C9 (100 microM x 4 h), activated the expression of IL-8 (218 +/- 26% increase over control, n = 4, P < 0.01) through an apparent interaction between the two transcription factors, NF-kappaB and NF-IL-6. Transfection studies using luciferase reporter assays demonstrated that HHP-C9 induced a significant increase in NF-kappaB-DNA binding activity (37 +/- 7% increase over control, n = 6, P < 0.05). Inhibition of NF-kappaB showed a statistically significant but modest decrease in IL-8 release, which suggested a role for another transcription factor, NF-IL-6. Exposure of BEAS-2B cells to HHP-C9 induced a significant increase in the DNA binding activity of NF-IL-6 (45 +/- 11% increase over control, n = 6, P < 0.05). The results of the present study indicate that NF-IL-6 interacts with NF-kappaB in regulating the expression of IL-8 in cultured human airway epithelial cells exposed to LOP, the biological products of ozone in the lung. PMID:17366569

  12. Tumour necrosis factor-alpha and interferon-gamma synergistically activate the RANTES promoter through nuclear factor kappaB and interferon regulatory factor 1 (IRF-1) transcription factors.

    PubMed

    Lee, A H; Hong, J H; Seo, Y S

    2000-08-15

    Inflammatory cytokines such as tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) synergistically activate expression of the RANTES (regulated upon activation, normal T-cell expressed and secreted) gene, which plays a crucial role in the chemoattraction of leukocytes during the inflammatory response. To understand at the molecular level the mechanism by which the two cytokines activate RANTES gene expression, we determined the requirement of cis-acting elements in the RANTES promoter and trans-acting factors. The murine RANTES promoter contained one putative interferon regulatory factor, IRF, and three putative nuclear factor kappaB (NF-kappaB) binding sites. Specific destruction of the IRF binding site and one of the three NF-kappaB binding sites abolished the inducibility of promoter activity by IFN-gamma and TNF-alpha, respectively. In contrast, mutation of the other two putative NF-kappaB binding sites did not affect RANTES promoter activity significantly. In addition, the RANTES promoter was stimulated by co-transfection of plasmids that expressed either p65, an NF-kappaB family protein, or the IRF-1 transcription factor. RANTES promoters with mutations in the NF-kappaB or IRF binding sites were not stimulated by p65 or IRF-1 expression, respectively. In electrophoretic mobility-shift and immunologic assays, we showed that IRF-1 was induced after cells were treated with IFN-gamma and that NF-kappaB was activated by TNF-alpha treatment. These results demonstrate that both NF-kappaB and IRF-1 transcription factors mediate the induction of RANTES expression via their cognate cis-acting elements when cells are stimulated by TNF-alpha and IFN-gamma. PMID:10926836

  13. Boosting transcription by transcription: enhancer-associated transcripts.

    PubMed

    Darrow, Emily M; Chadwick, Brian P

    2013-12-01

    Enhancers are traditionally viewed as DNA sequences located some distance from a promoter that act in cis and in an orientation-independent fashion to increase utilization of specific promoters and thereby regulate gene expression. Much progress has been made over the last decade toward understanding how these distant elements interact with target promoters, but how transcription is enhanced remains an object of active inquiry. Recent reports convey the prevalence and diversity of enhancer transcription and transcripts and support both as key factors with mechanistically distinct, but not mutually exclusive roles in enhancer function. Decoupling the causes and effects of transcription on the local chromatin landscape and understanding the role of enhancer transcripts in the context of long-range interactions are challenges that require additional attention. In this review, we focus on the possible functions of enhancer transcription by highlighting several recent enhancer RNA papers and, within the context of other enhancer studies, speculate on the role of enhancer transcription in regulating differential gene expression. PMID:24178450

  14. Cell Fate Determination by Transcription Factors.

    PubMed

    Gurdon, John B

    2016-01-01

    Transcription factors fulfill a key role in the formation and maintenance of different cell-types during development. It is known that transcription factors largely dissociate from chromosomes during mitosis. We found, previously, that mitosis is also a time when somatic nuclei can be far more easily reprogrammed after nuclear transfer than the nuclei of interphase cells. We refer to this as a mitotic advantage. Here, the rate of exchange of a transcription factor on its designated DNA-binding site is discussed. It is proposed that the Xenopus oocyte could serve as an experimental system in which the duration of binding site occupancy could be usefully analyzed. In particular, the Xenopus oocyte has several characteristics which make it possible to determine accurately the concentration and duration of transcription factor binding. It is proposed that the concentration and time are the key variables which govern the action of transcription factors when they activate genes needed for cell lineage determination. PMID:26970633

  15. Early exposure of interferon-γ inhibits signal transducer and activator of transcription-6 signalling and nuclear factor κB activation in a short-term monocyte-derived dendritic cell culture promoting ‘FAST’ regulatory dendritic cells

    PubMed Central

    Rojas-Canales, D; Krishnan, R; Jessup, C F; Coates, P T

    2012-01-01

    Interferon (IFN)-γ is a cytokine with immunomodulatory properties, which has been shown previously to enhance the generation of tolerogenic dendritic cells (DC) when administered early ex vivo in 7-day monocyte-derived DC culture. To generate tolerogenic DC rapidly within 48 h, human monocytes were cultured for 24 h with interleukin (IL)-4 and granulocyte–macrophage colony-stimulating factor (GM-CSF) in the presence (IFN-γ-DC) or absence of IFN-γ (500 U/ml) (UT-DC). DC were matured for 24 h with TNF-α and prostaglandin E2 (PGE2). DC phenotype, signal transducer and activator of transcription-6 (STAT-6) phosphorylation and promotion of CD4+CD25+CD127neg/lowforkhead box P3 (FoxP3)hi T cells were analysed by flow cytometry. DC nuclear factor (NF)-κB transcription factor reticuloendotheliosis viral oncogene homologue B (RELB) and IL-12p70 protein expression were also determined. Phenotypically, IFN-γ-DC displayed reduced DC maturation marker CD83 by 62% and co-stimulation molecules CD80 (26%) and CD86 (8%). IFN-γ treatment of monocytes inhibited intracellular STAT6, RELB nuclear translocation and IL-12p70 production. IFN-γ-DC increased the proportion of CD4+CD25+CD127neg/lowfoxp3hi T cells compared to UT-DC from 12 to 23%. IFN-γ-DC primed T cells inhibited antigen-specific, autologous naive T cell proliferation by 70% at a 1:1 naive T cells to IFN-γ-DC primed T cell ratio in suppression assays. In addition, we examined the reported paradoxical proinflammatory effects of IFN-γ and confirmed in this system that late IFN-γ exposure does not inhibit DC maturation marker expression. Early IFN-γ exposure is critical in promoting the generation of regulatory DC. Early IFN-γ modulated DC generated in 48 h are maturation arrested and promote the generation of antigen-specific regulatory T cells, which may be clinically applicable as a novel cellular therapy for allograft rejection. PMID:22288588

  16. Mutations in the nuclear localization sequence of the Aristaless related homeobox; sequestration of mutant ARX with IPO13 disrupts normal subcellular distribution of the transcription factor and retards cell division

    PubMed Central

    2010-01-01

    Background Aristaless related homeobox (ARX) is a paired-type homeobox gene. ARX function is frequently affected by naturally occurring mutations. Nonsense mutations, polyalanine tract expansions and missense mutations in ARX cause a range of intellectual disability and epilepsy phenotypes with or without additional features including hand dystonia, lissencephaly, autism or dysarthria. Severe malformation phenotypes, such as X-linked lissencephaly with ambiguous genitalia (XLAG), are frequently observed in individuals with protein truncating or missense mutations clustered in the highly conserved paired-type homeodomain. Results We have identified two novel point mutations in the R379 residue of the ARX homeodomain; c.1135C>A, p.R379S in a patient with infantile spasms and intellectual disability and c.1136G>T, p.R379L in a patient with XLAG. We investigated these and other missense mutations (R332P, R332H, R332C, T333N: associated with XLAG and Proud syndrome) predicted to affect the nuclear localisation sequences (NLS) flanking either end of the ARX homeodomain. The NLS regions are required for correct nuclear import facilitated by Importin 13 (IPO13). We demonstrate that missense mutations in either the N- or C-terminal NLS regions of the homeodomain cause significant disruption to nuclear localisation of the ARX protein in vitro. Surprisingly, none of these mutations abolished the binding of ARX to IPO13. This was confirmed by co-immunoprecipitation and immmuno fluorescence studies. Instead, tagged and endogenous IPO13 remained bound to the mutant ARX proteins, even in the RanGTP rich nuclear environment. We also identify the microtubule protein TUBA1A as a novel interacting protein for ARX and show cells expressing mutant ARX protein accumulate in mitosis, indicating normal cell division may be disrupted. Conclusions We show that the most likely, common pathogenic mechanism of the missense mutations in NLS regions of the ARX homeodomain is inadequate

  17. Promoter-associated small double-stranded RNA interacts with heterogeneous nuclear ribonucleoprotein A2/B1 to induce transcriptional activation.

    PubMed

    Hu, Jia; Chen, Zhong; Xia, Ding; Wu, Jia; Xu, Hua; Ye, Zhang-Qun

    2012-11-01

    Several recent reports have demonstrated that small activating dsRNA [double-stranded RNA; saRNA (small activating dsRNA)] complementary to promoter regions can up-regulate gene expression in mammalian cells, a phenomenon termed RNAa (RNA activation). However, the mechanism of RNAa remains obscure with regard to what is the target molecule for promoter-targeted saRNA and what are the proteins involved in this process. p21Waf1/Cip1 (p21) [CDKN1A (cyclin-dependent kinase inhibitor 1A)], an important tumour suppressor gene, is among the genes that can be activated by RNAa in tumour cells. In the present study, we provide direct evidence that p21 promoter-targeted saRNA interact with its intended target on the p21 promoter to activate p21 expression. This process is associated with recruitment of RNA polymerase II and AGO2 (argonaute 2) protein to the saRNA-target site. Additionally, we found that several hnRNPs (heterogeneous nuclear ribonucleoproteins) (A1, A2/B1 and C1/C2) are associated with saRNA. Further studies show that hnRNPA2/B1 interacts with the saRNA in vivo and in vitro and is required for RNAa activity. These findings indicate that RNAa results from specific targeting of promoters and reveals additional mechanistic details of RNAa. PMID:23035981

  18. Interaction of hepatocyte nuclear factors in transcriptional regulation of tissue specific hormonal expression of human multidrug resistance-associated protein 2 (abcc2)

    SciTech Connect

    Qadri, Ishtiaq Hu, L.-J.; Iwahashi, Mieko; Al-Zuabi, Subhi; Quattrochi, Linda C.; Simon, Francis R.

    2009-02-01

    Multidrug resistance-associated protein 2 (MRP2) (ABCC2) is an ATP-binding cassette membrane protein located primarily on apical surface of hepatocytes that mediates transport of conjugated xenobiotics and endogenous compounds into bile. MRP2 is highly expressed in hepatocytes, and at lower levels in small intestines, stomach and kidney. Previous reports have characterized mammalian MRP2 promoters, but none have established the molecular mechanism(s) involved in liver enriched expression. This study aims to investigate the mechanism of hepatic MRP2 regulation. A 2130 bp of MRP2 promoter was cloned from PAC-1 clone P108G1-7, to identify putative liver specific/hormone responsive functional DNA binding sites. Using deletion analysis, site specific mutagenesis and co-transfection studies, liver specific expression was determined. MRP2 promoter-LUC constructs were highly expressed in liver cell lines compared to non-liver cells. The region extending from - 3 to+ 458 bp of MRP2 promoter starting from AUG contained the potential binding sites for CAAATT box enhancer binding protein (C/EBP), hepatocytes nuclear factor 1, 3 and 4 (HNF1, HNF3, and HNF4. Only HNF1 and HNF4 co-transfection with MRP2 luciferase increased expression. Site specific mutational analysis of HNF1 binding site indicated an important role for HNF1{alpha}. HNF4{alpha} induction of MRP2 was independent of HNF1 binding site. C/EBP, HNF3, and HNF6 inhibited HNF1{alpha} while HNF4{alpha} induced MRP2 luciferase expression and glucocorticoids stimulated MRP2 expression. This study emphasizes the complex regulation of MRP2 with HNF1{alpha} and HNF4{alpha} playing a central role. The coordinated regulation of xenobiotic transporters and oxidative conjugation may determine the adaptive responses to cellular detoxification processes.

  19. Trafficking of the transcription factor Nrf2 to promyelocytic leukemia-nuclear bodies: implications for degradation of NRF2 in the nucleus.

    PubMed

    Malloy, Melanie Theodore; McIntosh, Deneshia J; Walters, Treniqka S; Flores, Andrea; Goodwin, J Shawn; Arinze, Ifeanyi J

    2013-05-17

    Ubiquitylation of Nrf2 by the Keap1-Cullin3/RING box1 (Cul3-Rbx1) E3 ubiquitin ligase complex targets Nrf2 for proteasomal degradation in the cytoplasm and is an extensively studied mechanism for regulating the cellular level of Nrf2. Although mechanistic details are lacking, reports abound that Nrf2 can also be degraded in the nucleus. Here, we demonstrate that Nrf2 is a target for sumoylation by both SUMO-1 and SUMO-2. HepG2 cells treated with As2O3, which enhances attachment of SUMO-2/3 to target proteins, increased SUMO-2/3-modification (polysumoylation) of Nrf2. We show that Nrf2 traffics, in part, to promyelocytic leukemia-nuclear bodies (PML-NBs). Cell fractions harboring key components of PML-NBs did not contain biologically active Keap1 but contained modified Nrf2 as well as RING finger protein 4 (RNF4), a poly-SUMO-specific E3 ubiquitin ligase. Overexpression of wild-type RNF4, but not the catalytically inactive mutant, decreased the steady-state levels of Nrf2, measured in the PML-NB-enriched cell fraction. The proteasome inhibitor MG-132 interfered with this decrease, resulting in elevated levels of polysumoylated Nrf2 that was also ubiquitylated. Wild-type RNF4 accelerated the half-life (t½) of Nrf2, measured in PML-NB-enriched cell fractions. These results suggest that RNF4 mediates polyubiquitylation of polysumoylated Nrf2, leading to its subsequent degradation in PML-NBs. Overall, this work identifies Nrf2 as a target for sumoylation and provides a novel mechanism for its degradation in the nucleus, independent of Keap1. PMID:23543742

  20. Inhibition of Nuclear Transcription Factor-κB and Activation of Peroxisome Proliferator-Activated Receptors in HepG2 Cells by Cucurbitane-Type Triterpene Glycosides from Momordica charantia

    PubMed Central

    Nhiem, Nguyen Xuan; Yen, Pham Hai; Ngan, Nguyen Thi Thanh; Quang, Tran Hong; Kiem, Phan Van; Minh, Chau Van; Tai, Bui Huu; Cuong, Nguyen Xuan; Song, Seok Bean

    2012-01-01

    Abstract Momordica charantia: is used to treat various diseases, including inflammatory conditions. Previous reports indicated that the extract of this plant inhibits activation of nuclear transcription factor-κB (NF-κB) but activates peroxisome proliferator-activated receptor (PPAR). Additionally, cucurbitane-type triterpene glycosides are the main bioactive components of the fruit of M. charantia. Therefore, we investigated the anti-inflammatory activity of 17 cucurbitane-type triterpene glycosides (1–17) isolated from this plant. Their inhibition of NF-κB and activation of PPAR activities in HepG2 cells were measured using luciferase reporter and PPAR subtype transactivation assays. Compounds 6 and 8 were found to inhibit NF-κB activation stimulated by tumor necrosis factor-α (TNFα) in a dose-dependent manner. With 50% inhibition concentration (IC50) values of 0.4 μM, compounds 6 and 8 were more potent inhibitors than the positive control, sulfasalazine (IC50=0.9 μM). Compounds 4, 6, and 8 also inhibited TNFα-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA. However, only compound 13 significantly increased PPARγ transactivation. PMID:22248180

  1. Requirement of nuclear localization and transcriptional activity of p53 for its targeting to the yolk syncytial layer (YSL) nuclei in zebrafish embryo and its use for apoptosis assay

    SciTech Connect

    Chen, G.-D.; Chou, C.-M.; Hwang, S.-P.L.; Wang, F.-F.; Chen, Y.-C.; Hung, C.-C.; Chen, Jeou-Yuan . E-mail: bmchen@ibms.sinica.edu.tw; Huang, C.-J. . E-mail: cjibc@gate.sinica.edu.tw

    2006-05-26

    We expressed zebrafish p53 protein fused to GFP by a neuron-specific HuC promoter in zebrafish embryos. Instead of displaying neuronal expression patterns, p53-GFP was targeted to zebrafish YSL nuclei. This YSL targeting is p53 sequence-specific because GFP fusion proteins of p63 and p73 displayed neuronal-specific patterns. To dissect the underlying mechanisms, various constructs encoding a series of p53 mutant proteins under the control of different promoters were generated. Our results showed that expression of p53, in early zebrafish embryo, is preferentially targeted to the nuclei of YSL, which is mediated by importin. Similarly, this targeting is abrogated when p53 nuclear localization signal is disrupted. In addition, the transcriptional activity of p53 is required for this targeting. We further showed that fusion of pro-apoptotic BAD protein to p53-GFP led to apoptosis of YSL cells, and subsequent imperfect microtubule formation and abnormal blastomere movements.

  2. The Expression of Nuclear Transcription Factor Kappa B (NF-κB) in the Case of Critically Ill Polytrauma Patients with Sepsis and Its Interactions with microRNAs.

    PubMed

    Papurica, Marius; Rogobete, Alexandru Florin; Sandesc, Dorel; Cradigati, Carmen Alina; Sarandan, Mirela; Crisan, Dan Ciprian; Horhat, Florin George; Boruga, Ovidiu; Dumache, Raluca; Nilima, Kundnani Rajpal; Nitu, Razvan; Stanca, Horia; Bedreag, Ovidiu Horea

    2016-08-01

    Critical polytrauma patients present a series of pathophysiological disturbances, biochemical and molecular dysfunction, which comprise to be the major cause of intensive care unit admission. In regard to molecular damage, there exists a series of factors, which all together contribute to the aggravation of the clinical status leading to increased mortality rate in these patients. One of the most important biochemical factors involved is the nuclear transcription factor B (NF-κB). Impaired NF-κB functioning is reflected on the clinical status of the patient through increased production of pro-inflammatory molecule, leading to multiple organ dysfunction syndrome. In addition to this, through microRNAs interactions, various pathophysiological as well as biochemical disturbances are produced, which altogether further reduce the patient's survival rate. In this paper, we would like to present the modifications seen in the expression of NF-κB in critically polytraumatized patients with sepsis. In additions to this, we would like to discuss the correlation between the microRNAs and its further implications in clinical status of these patients. PMID:27003424

  3. Transcription in archaea

    NASA Technical Reports Server (NTRS)

    Kyrpides, N. C.; Ouzounis, C. A.; Woese, C. R. (Principal Investigator)

    1999-01-01

    Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.

  4. Nuclear Speckles

    PubMed Central

    Spector, David L.; Lamond, Angus I.

    2011-01-01

    Nuclear speckles, also known as interchromatin granule clusters, are nuclear domains enriched in pre-mRNA splicing factors, located in the interchromatin regions of the nucleoplasm of mammalian cells. When observed by immunofluorescence microscopy, they usually appear as 20–50 irregularly shaped structures that vary in size. Speckles are dynamic structures, and their constituents can exchange continuously with the nucleoplasm and other nuclear locations, including active transcription sites. Studies on the composition, structure, and dynamics of speckles have provided an important paradigm for understanding the functional organization of the nucleus and the dynamics of the gene expression machinery. PMID:20926517

  5. Targeting Transcription Factors in Cancer

    PubMed Central

    Bhagwat, Anand S.; Vakoc, Christopher R.

    2015-01-01

    Transcription factors (TFs) are commonly deregulated in the pathogenesis of human cancer and are a major class of cancer cell dependencies. Consequently, targeting of TFs can be highly effective in treating particular malignancies, as highlighted by the clinical efficacy of agents that target nuclear hormone receptors. In this review we discuss recent advances in our understanding of TFs as drug targets in oncology, with an emphasis on the emerging chemical approaches to modulate TF function. The remarkable diversity and potency of TFs as drivers of cell transformation justifies a continued pursuit of TFs as therapeutic targets for drug discovery. PMID:26645049

  6. Mammalian transcription factor A is a core component of the mitochondrial transcription machinery.

    PubMed

    Shi, Yonghong; Dierckx, Anke; Wanrooij, Paulina H; Wanrooij, Sjoerd; Larsson, Nils-Göran; Wilhelmsson, L Marcus; Falkenberg, Maria; Gustafsson, Claes M

    2012-10-01

    Transcription factor A (TFAM) functions as a DNA packaging factor in mammalian mitochondria. TFAM also binds sequence-specifically to sites immediately upstream of mitochondrial promoters, but there are conflicting data regarding its role as a core component of the mitochondrial transcription machinery. We here demonstrate that TFAM is required for transcription in mitochondrial extracts as well as in a reconstituted in vitro transcription system. The absolute requirement of TFAM can be relaxed by conditions that allow DNA breathing, i.e., low salt concentrations or negatively supercoiled DNA templates. The situation is thus very similar to that described in nuclear RNA polymerase II-dependent transcription, in which the free energy of supercoiling can circumvent the need for a subset of basal transcription factors at specific promoters. In agreement with these observations, we demonstrate that TFAM has the capacity to induce negative supercoils in DNA, and, using the recently developed nucleobase analog FRET-pair tC(O)-tC(nitro), we find that TFAM distorts significantly the DNA structure. Our findings differ from recent observations reporting that TFAM is not a core component of the mitochondrial transcription machinery. Instead, our findings support a model in which TFAM is absolutely required to recruit the transcription machinery during initiation of transcription. PMID:23012404

  7. Activating transcription factor 2 in mesenchymal tumors.

    PubMed

    Endo, Makoto; Su, Le; Nielsen, Torsten O

    2014-02-01

    Activating transcription factor 2 (ATF2) is a member of activator protein 1 superfamily, which can heterodimerize with other transcription factors regulating cell differentiation and survival. ATF2 assembles into a complex with the synovial sarcoma translocation, chromosome 18 (SS18)-synovial sarcoma, X breakpoint (SSX) fusion oncoprotein, and the transducin-like enhancer of split 1 (TLE1) corepressor, driving oncogenesis in synovial sarcoma. The fusion oncoproteins in many other translocation-associated sarcomas incorporate transcription factors from the ATF/cAMP response element binding or E26 families, which potentially form heterodimers with ATF2 to regulate transcription. ATF2 may therefore play an important role in the oncogenesis of many mesenchymal tumors, but as yet, little is known about its protein expression in patient specimens. Herein we perform immunohistochemical analyses using a validated specific antibody for ATF2 expression and intracellular localization on a cohort of 594 malignant and 207 benign mesenchymal tumors representing 47 diagnostic entities. Melanoma served as a positive control for nuclear and cytoplasmic staining. High nuclear ATF2 expression was mainly observed in translocation-associated and/or spindle cell sarcomas including synovial sarcoma, desmoplastic small round cell tumor, endometrial stromal sarcoma, gastrointestinal stromal tumor, malignant peripheral nerve sheath tumor, and solitary fibrous tumor. Cytoplasmic ATF2 expression was less frequently seen than nuclear expression in malignant mesenchymal tumors. Benign mesenchymal tumors mostly showed much lower nuclear and cytoplasmic ATF2 expression. PMID:24289970

  8. Regulation of Transcription by Long Noncoding RNAs

    PubMed Central

    Bonasio, Roberto; Shiekhattar, Ramin

    2014-01-01

    Over the past decade there has been a greater understanding of genomic complexity in eukaryotes ushered in by the immense technological advances in high-throughput sequencing of DNA and its corresponding RNA transcripts. This has resulted in the realization that beyond protein-coding genes, there are a large number of transcripts that do not encode for proteins and, therefore, may perform their function through RNA sequences and/or through secondary and tertiary structural determinants. This review is focused on the latest findings on a class of noncoding RNAs that are relatively large (>200 nucleotides), display nuclear localization, and use different strategies to regulate transcription. These are exciting times for discovering the biological scope and the mechanism of action for these RNA molecules, which have roles in dosage compensation, imprinting, enhancer function, and transcriptional regulation, with a great impact on development and disease. PMID:25251851

  9. Nuclear Neighborhoods and Gene Expression

    PubMed Central

    Zhao, Rui; Bodnar, Megan S.; Spector, David L.

    2009-01-01

    Summary The eukaryotic nucleus is a highly compartmentalized and dynamic environment. Chromosome territories are arranged non-randomly within the nucleus and numerous studies have indicated that a gene’s position in the nucleus can impact its transcriptional activity. Here, we focus on recent advances in our understanding of the influence of specific nuclear neighborhoods on gene expression or repression. Nuclear neighborhoods associated with transcriptional repression include the inner nuclear membrane/nuclear lamina and peri-nucleolar chromatin, whereas neighborhoods surrounding the nuclear pore complex, PML nuclear bodies, and nuclear speckles seem to be transcriptionally permissive. While nuclear position appears to play an important role in gene expression, it is likely to be only one piece of a flexible puzzle that incorporates numerous parameters. We are still at a very early, yet exciting stage in our journey toward deciphering the mechanism(s) that govern the permissiveness of gene expression/repression within different nuclear neighborhoods. PMID:19339170

  10. Transcriptional Mechanisms of Drug Addiction

    PubMed Central

    2012-01-01

    Regulation of gene expression is considered a plausible mechanism of drug addiction given the stability of behavioral abnormalities that define an addicted state. Numerous transcription factors, proteins that bind to regulatory regions of specific genes and thereby control levels of their expression, have been implicated in the addiction process over the past decade or two. Here we review the growing evidence for the role played by several prominent transcription factors, including a Fos family protein (ΔFosB), cAMP response element binding protein (CREB), and nuclear factor kappa B (NFκB), among several others, in drug addiction. As will be seen, each factor displays very different regulation by drugs of abuse within the brain's reward circuitry, and in turn mediates distinct aspects of the addiction phenotype. Current efforts are geared toward understanding the range of target genes through which these transcription factors produce their functional effects and the underlying molecular mechanisms involved. This work promises to reveal fundamentally new insight into the molecular basis of addiction, which will contribute to improved diagnostic tests and therapeutics for addictive disorders. PMID:23430970

  11. Transcription Regulation in Archaea.

    PubMed

    Gehring, Alexandra M; Walker, Julie E; Santangelo, Thomas J

    2016-07-15

    The known diversity of metabolic strategies and physiological adaptations of archaeal species to extreme environments is extraordinary. Accurate and responsive mechanisms to ensure that gene expression patterns match the needs of the cell necessitate regulatory strategies that control the activities and output of the archaeal transcription apparatus. Archaea are reliant on a single RNA polymerase for all transcription, and many of the known regulatory mechanisms employed for archaeal transcription mimic strategies also employed for eukaryotic and bacterial species. Novel mechanisms of transcription regulation have become apparent by increasingly sophisticated in vivo and in vitro investigations of archaeal species. This review emphasizes recent progress in understanding archaeal transcription regulatory mechanisms and highlights insights gained from studies of the influence of archaeal chromatin on transcription. PMID:27137495

  12. Negative regulation of mitochondrial transcription by mitochondrial topoisomerase I

    PubMed Central

    Sobek, Stefan; Dalla Rosa, Ilaria; Pommier, Yves; Bornholz, Beatrice; Kalfalah, Faiza; Zhang, Hongliang; Wiesner, Rudolf J.; von Kleist-Retzow, Jürgen-Christoph; Hillebrand, Frank; Schaal, Heiner; Mielke, Christian; Christensen, Morten O.; Boege, Fritz

    2013-01-01

    Mitochondrial topoisomerase I is a genetically distinct mitochondria-dedicated enzyme with a crucial but so far unknown role in the homeostasis of mitochondrial DNA metabolism. Here, we present data suggesting a negative regulatory function in mitochondrial transcription or transcript stability. Deficiency or depletion of mitochondrial topoisomerase I increased mitochondrial transcripts, whereas overexpression lowered mitochondrial transcripts, depleted respiratory complexes I, III and IV, decreased cell respiration and raised superoxide levels. Acute depletion of mitochondrial topoisomerase I triggered neither a nuclear mito-biogenic stress response nor compensatory topoisomerase IIβ upregulation, suggesting the concomitant increase in mitochondrial transcripts was due to release of a local inhibitory effect. Mitochondrial topoisomerase I was co-immunoprecipitated with mitochondrial RNA polymerase. It selectively accumulated and rapidly exchanged at a subset of nucleoids distinguished by the presence of newly synthesized RNA and/or mitochondrial RNA polymerase. The inactive Y559F-mutant behaved similarly without affecting mitochondrial transcripts. In conclusion, mitochondrial topoisomerase I dampens mitochondrial transcription and thereby alters respiratory capacity. The mechanism involves selective association of the active enzyme with transcriptionally active nucleoids and a direct interaction with mitochondrial RNA polymerase. The inhibitory role of topoisomerase I in mitochondrial transcription is strikingly different from the stimulatory role of topoisomerase I in nuclear transcription. PMID:23982517

  13. WRKY transcription factors

    PubMed Central

    Bakshi, Madhunita; Oelmüller, Ralf

    2014-01-01

    WRKY transcription factors are one of the largest families of transcriptional regulators found exclusively in plants. They have diverse biological functions in plant disease resistance, abiotic stress responses, nutrient deprivation, senescence, seed and trichome development, embryogenesis, as well as additional developmental and hormone-controlled processes. WRKYs can act as transcriptional activators or repressors, in various homo- and heterodimer combinations. Here we review recent progress on the function of WRKY transcription factors in Arabidopsis and other plant species such as rice, potato, and parsley, with a special focus on abiotic, developmental, and hormone-regulated processes. PMID:24492469

  14. Transcriptional activators in yeast

    PubMed Central

    2006-01-01

    Eukaryotic transcription activation domains (ADs) are not well defined on the proteome scale. We systematicallly tested ∼6000 yeast proteins for transcriptional activity using a yeast one-hybrid system and identified 451 transcriptional activators. We then determined their transcription activation strength using fusions to the Gal4 DNA-binding domain and a His3 reporter gene which contained a promoter with a Gal4-binding site. Among the 132 strongest activators 32 are known transcription factors while another 35 have no known function. Although zinc fingers, helix–loop–helix domains and several other domains are highly overrepresented among the activators, only few contain characterized ADs. We also found some striking correlations: the stronger the activation activity, the more acidic, glutamine-rich, proline-rich or asparagine-rich the activators were. About 29% of the activators have been found previously to specifically interact with the transcription machinery, while 10% are known to be components of transcription regulatory complexes. Based on their transcriptional activity, localization and interaction patterns, at least six previously uncharacterized proteins are suggested to be bona fide transcriptional regulators (namely YFL049W, YJR070C, YDR520C, YGL066W/Sgf73, YKR064W and YCR082W/Ahc2). PMID:16464826

  15. Transcriptional Control of the TNF Gene

    PubMed Central

    Falvo, James V.; Tsytsykova, Alla V.; Goldfeld, Anne E.

    2016-01-01

    The cytokine TNF is a critical mediator of immune and inflammatory responses. The TNF gene is an immediate early gene, rapidly transcribed in a variety of cell types following exposure to a broad range of pathogens and signals of inflammation and stress. Regulation of TNF gene expression at the transcriptional level is cell type- and stimulus-specific, involving the recruitment of distinct sets of transcription factors to a compact and modular promoter region. In this review, we describe our current understanding of the mechanisms through which TNF transcription is specifically activated by a variety of extracellular stimuli in multiple cell types, including T cells, B cells, macrophages, mast cells, dendritic cells, and fibroblasts. We discuss the role of nuclear factor of activated T cells and other transcription factors and coactivators in enhanceosome formation, as well as the contradictory evidence for a role for nuclear factor κB as a classical activator of the TNF gene. We describe the impact of evolutionarily conserved cis-regulatory DNA motifs in the TNF locus upon TNF gene transcription, in contrast to the neutral effect of single nucleotide polymorphisms. We also assess the regulatory role of chromatin organization, epigenetic modifications, and long-range chromosomal interactions at the TNF locus. PMID:20173386

  16. Divergent RNA transcription

    PubMed Central

    Naughton, Catherine; Corless, Samuel; Gilbert, Nick

    2013-01-01

    New approaches using biotinylated-psoralen as a probe for investigating DNA structure have revealed new insights into the relationship between DNA supercoiling, transcription and chromatin compaction. We explore a hypothesis that divergent RNA transcription generates negative supercoiling at promoters facilitating initiation complex formation and subsequent promoter clearance. PMID:23863199

  17. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts

    PubMed Central

    Turowski, Tomasz W.; Leśniewska, Ewa; Delan-Forino, Clementine; Sayou, Camille; Boguta, Magdalena; Tollervey, David

    2016-01-01

    RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5′ peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential “housekeeping” roles. Many tRNA genes were found to generate long, 3′-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3′-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5′-exonuclease Rat1. PMID:27206856

  18. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts.

    PubMed

    Turowski, Tomasz W; Leśniewska, Ewa; Delan-Forino, Clementine; Sayou, Camille; Boguta, Magdalena; Tollervey, David

    2016-07-01

    RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5' peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential "housekeeping" roles. Many tRNA genes were found to generate long, 3'-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3'-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5'-exonuclease Rat1. PMID:27206856

  19. The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT/3 and other cytokine-inducible nuclear proteins.

    PubMed Central

    Schumann, R R; Kirschning, C J; Unbehaun, A; Aberle, H P; Knope, H P; Lamping, N; Ulevitch, R J; Herrmann, F

    1996-01-01

    Acute-phase reactants (APRs) are proteins synthesized in the liver following induction by interleukin-1 (IL-1), IL-6, and glucocorticoids, involving transcriptional gene activation. Lipopolysaccharide-binding protein (LBP) is a recently identified hepatic secretory protein potentially involved in the pathogenesis of sepsis, capable of binding the bacterial cell wall product endotoxin and directing it to its cellular receptor, CD14. In order to examine the transcriptional induction mechanisms by which the LBP gene is activated, we have investigated the regulation of expression of its mRNA in vitro and in vivo as well as the organization of 5' upstream regulatory DNA sequences. We show that induction of LBP expression is transcriptionally regulated and is dependent on stimulation with IL-1beta, IL-6, and dexamethasone. By definition, LBP thus has to be viewed as a class 1 acute-phase protein and represents the first APR identified which is capable of detecting pathogenic bacteria. Furthermore, cloning of the LBP promoter revealed the presence of regulatory elements, including the common APR promoter motif APRE/STAT-3 (acute-phase response element/signal transducer and activator of transcription 3). Luciferase reporter gene assays utilizing LBP promoter truncation and point mutation variants indicated that transcriptional activation of the LBP gene required a functional APRE/STAT-3 binding site downstream of the transcription start site, as well as an AP-1 and a C/EBP (CCAAT enhancer-binding protein) binding site. Gel retardation and supershift assays confirmed that upon cytokine stimulation APRF/STAT-3 binds to its recognition site, leading to strong activation of the LBP gene. Unraveling of the mechanism of transcriptional activation of the LBP gene, involving three known transcription factors, may contribute to our understanding of the acute-phase response and the pathophysiology of sepsis and septic shock. PMID:8668165

  20. Nuclear Sphingolipid Metabolism

    PubMed Central

    Lucki, Natasha C.; Sewer, Marion B.

    2014-01-01

    Nuclear lipid metabolism is implicated in various processes, including transcription, splicing, and DNA repair. Sphingolipids play roles in numerous cellular functions, and an emerging body of literature has identified roles for these lipid mediators in distinct nuclear processes. Different sphingolipid species are localized in various subnuclear domains, including chromatin, the nuclear matrix, and the nuclear envelope, where sphingolipids exert specific regulatory and structural functions. Sphingomyelin, the most abundant nuclear sphingolipid, plays both structural and regulatory roles in chromatin assembly and dynamics in addition to being an integral component of the nuclear matrix. Sphingosine-1-phosphate modulates histone acetylation, sphingosine is a ligand for steroidogenic factor 1, and nuclear accumulation of ceramide has been implicated in apoptosis. Finally, nuclear membrane–associated ganglioside GM1 plays a pivotal role in Ca2+ homeostasis. This review highlights research on the factors that control nuclear sphingolipid metabolism and summarizes the roles of these lipids in various nuclear processes. PMID:21888508

  1. Coupling pre-mRNA processing to transcription on the RNA factory assembly line

    PubMed Central

    Lee, Kuo-Ming; Tarn, Woan-Yuh

    2013-01-01

    It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression. PMID:23392244

  2. ASTP Onboard Voice Transcription

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The transcription is presented of the Apollo-Soyuz Test Project voice communications as recorded on the command module data storage equipment. Data from this recorder are telemetered (dumped) to Space Tracking and Data Network sites for retransmission to the Johnson Space Center. The transcript is divided into three columns -- time, speaker, and text. The Greenwich mean time column consists of three two-digit numbers representing hours, minutes, and seconds (e.g., 22 34 14) for the Julian dates shown at the top of the page on which a new day begins. The speaker column indicates the source of a transmission; the text column contains the verbatim transcript of the communications.

  3. Characterization of transcriptional regulatory domains of ankyrin repeat cofactor-1

    SciTech Connect

    Zhang, Aihua; Li, Chia-Wei; Chen, J. Don . E-mail: chenjd@umdnj.edu

    2007-07-13

    The ankyrin repeats cofactor-1 (ANCO-1) was recently identified as a p160 coactivator-interacting protein that may inhibit transcriptional activity of nuclear receptors. Here, we have characterized the transcriptional regulatory domains of ANCO-1. Two intrinsic repression domains (RD) were identified: an N-terminal RD1 at residues 318-611 and a C-terminal RD2 at 2369-2663. ANCO-1 also contains an activation domain (AD) capable of stimulating transcription in both mammalian and yeast cells. The minimal AD was delimited to a 70-amino acid region at residues 2076-2145. Overall, full-length ANCO-1 exhibited transcriptional repressor activity, suggesting that RD domains may suppress the AD activity. We further demonstrated that ANCO-1 silencing by siRNA enhanced progesterone receptor-mediated transcription. Together, these results indicate that the transcriptional potential of ANCO-1 may be modulated by a combination of repression and activation signals.

  4. A position-dependent transcription-activating domain in TFIIIA.

    PubMed

    Mao, X; Darby, M K

    1993-12-01

    Transcription of the Xenopus 5S RNA gene by RNA polymerase III requires the gene-specific factor TFIIIA. To identify domains within TFIIIA that are essential for transcriptional activation, we have expressed C-terminal deletion, substitution, and insertion mutants of TFIIIA in bacteria as fusions with maltose-binding protein (MBP). The MBP-TFIIIA fusion protein specifically binds to the 5S RNA gene internal control region and complements transcription in a TFIIIA-depleted oocyte nuclear extract. Random, cassette-mediated mutagenesis of the carboxyl region of TFIIIA, which is not required for promoter binding, has defined a 14-amino-acid region that is critical for transcriptional activation. In contrast to activators of RNA polymerase II, the activity of the TFIIIA activation domain is strikingly sensitive to its position relative to the DNA-binding domain. When the eight amino acids that separate the transcription-activating domain from the last zinc finger are deleted, transcriptional activity is lost. Surprisingly, diverse amino acids can replace these eight amino acids with restoration of full transcriptional activity, suggesting that the length and not the sequence of this region is important. Insertion of amino acids between the zinc finger region and the transcription-activating domain causes a reduction in transcription proportional to the number of amino acids introduced. We propose that to function, the transcription-activating domain of TFIIIA must be correctly positioned at a minimum distance from the DNA-binding domain. PMID:8246967

  5. NF-Y activates mouse tryptophan hydroxylase transcription.

    PubMed

    Reed, G E; Kirchner, J E; Carr, L G

    1995-06-01

    Tryptophan hydroxylase catalyses the rate-limiting step in the biosynthesis of serotonin, a neurotransmitter which has been implicated in the etiologies of clinically important psychiatric illnesses. Tryptophan hydroxylase is expressed in a tissue-specific manner, but little is known about its transcriptional regulation. By analysing transcriptional activities of a set 5'-deletion constructs of promoter-reporter plasmids in P815-HTR mastocytoma cells, we found that transcription was activated by sequences between nucleotides -343 and -21. DNase I footprint analysis, using nuclear protein extracts from P815-HTR cells, revealed a protein-DNA interaction between nucleotides -77 and -46. A double stranded oligonucleotide, representing this binding site, specifically bound nuclear protein in a gel shift assay. Methylation interference analysis of this complex revealed that nuclear protein interacted with an inverted GGCCAAT element, which is a high-affinity binding motif for the transcription factor NF-Y (also known as CP1 or CBF). An NF-Y specific antibody abolished protein binding in a gel shift assay. Mutagenesis of specific base pairs abolished protein binding in vitro, and mutagenesis of the same base pairs in a reporter gene construct resulted in a 65% decrease in transcriptional activity. Our results suggest that the transcription factor NF-Y binds to a GGCCAAT motif in the tph proximal promoter and activates transcription. PMID:7552299

  6. Transcriptional Control of Terminal Nephron Differentiation

    PubMed Central

    El-Dahr, Samir S.; Aboudehen, Karam; Saifudeen, Zubaida

    2008-01-01

    Terminal differentiation of epithelial cells into more specialized cell types is a critical step of organogenesis. Throughout the process of terminal differentiation, epithelial progenitors acquire or up-regulate expression of renal function genes and cease to proliferate, while expression of embryonic genes is repressed. This exquisite coordination of gene expression is accomplished by signaling networks and transcription factors which couple the external environment with the new functional demands of the cell. While there has been much progress in understanding the early steps involved in renal epithelial cell differentiation, a major gap remains in our knowledge of the factors that control the steps of terminal differentiation. A number of signaling molecules and transcription factors have been recently implicated in determining segmental nephron identity and functional differentiation. While some of these factors (the p53 gene family, HNF1β) promote the terminal epithelial differentiation fate, others (Notch, Brn-1, IRX, KLF4 and Foxi1) tend to regulate differentiation of specific nephron segments and individual cell types. This article summarizes current knowledge related to these transcription factors and discusses how diverse cellular signals are integrated to generate a transcriptional output during the process of terminal differentiation. Since these transcriptional processes are accompanied by profound changes in nuclear chromatin structure involving the genes responsible for creating and maintaining the differentiated cell phenotype, future studies should focus on identifying the nature of these epigenetic events and factors, how they are regulated temporally and spatially, and the chromatin environment they eventually reside in. PMID:18287399

  7. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  8. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  9. In vivo delivery of transcription factors with multifunctional oligonucleotides

    NASA Astrophysics Data System (ADS)

    Lee, Kunwoo; Rafi, Mohammad; Wang, Xiaojian; Aran, Kiana; Feng, Xuli; Lo Sterzo, Carlo; Tang, Richard; Lingampalli, Nithya; Kim, Hyun Jin; Murthy, Niren

    2015-07-01

    Therapeutics based on transcription factors have the potential to revolutionize medicine but have had limited clinical success as a consequence of delivery problems. The delivery of transcription factors is challenging because it requires the development of a delivery vehicle that can complex transcription factors, target cells and stimulate endosomal disruption, with minimal toxicity. Here, we present a multifunctional oligonucleotide, termed DARTs (DNA assembled recombinant transcription factors), which can deliver transcription factors with high efficiency in vivo. DARTs are composed of an oligonucleotide that contains a transcription-factor-binding sequence and hydrophobic membrane-disruptive chains that are masked by acid-cleavable galactose residues. DARTs have a unique molecular architecture, which allows them to bind transcription factors, trigger endocytosis in hepatocytes, and stimulate endosomal disruption. The DARTs have enhanced uptake in hepatocytes as a result of their galactose residues and can disrupt endosomes efficiently with minimal toxicity, because unmasking of their hydrophobic domains selectively occurs in the acidic environment of the endosome. We show that DARTs can deliver the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) to the liver, catalyse the transcription of Nrf2 downstream genes, and rescue mice from acetaminophen-induced liver injury.

  10. Oxytocin-Stimulated NFAT Transcriptional Activation in Human Myometrial Cells

    PubMed Central

    McArdle, Craig A.; López Bernal, Andrés

    2012-01-01

    Oxytocin (OXT) is a peptide hormone that binds the OXT receptor on myometrial cells, initiating an intracellular signaling cascade, resulting in accumulation of intracellular calcium and smooth muscle contraction. In other systems, an elevation of intracellular Ca2+ stimulates nuclear translocation of the transcription factor, nuclear factor of activated T cells (NFAT), which is transcriptionally active in arterial and ileal smooth muscle. Here we have investigated the role of NFAT in the mechanism of action of OXT. Human myometrial cells expressed all five NFAT isoforms (NFATC1–C4 and -5). Myometrial cells were transduced with a recombinant adenovirus expressing a NFATC1-EFP reporter, and a semi-automated imaging system was used to monitor effects of OXT on reporter localization in live cells. OXT induced a concentration-dependent nuclear translocation of NFATC1-EFP in a reversible manner, which was inhibited by OXT antagonists and calcineurin inhibitors. Pulsatile stimulation with OXT caused intermittent, pulse-frequency-dependent, nuclear translocation of NFATC1-EFP, which was more efficient than sustained stimulation. OXT induced nuclear translocation of endogenous NFAT that was transcriptionally active, because OXT stimulated activity of a NFAT-response element-luciferase reporter and induced calcineurin-NFAT dependent expression of RGS2, RCAN1, and PTGS2 (COX2) mRNA. Furthermore, OXT-dependent transcription was dependent on protein neosynthesis; cycloheximide abolished RGS2 transcription but augmented RCAN1 and COX2 transcriptional readouts. This study identifies a novel signaling mechanism within the myometrium, whereby calcineurin-NFAT signaling mediates OXT-induced transcriptional activity. Furthermore, we show NFATC1-EFP is responsive to pulses of OXT, a mechanism by which myometrial cells could decode OXT pulse frequency. PMID:22902539

  11. Transcriptional Regulation of Pattern-Triggered Immunity in Plants.

    PubMed

    Li, Bo; Meng, Xiangzong; Shan, Libo; He, Ping

    2016-05-11

    Perception of microbe-associated molecular patterns (MAMPs) by cell-surface-resident pattern recognition receptors (PRRs) induces rapid, robust, and selective transcriptional reprogramming, which is central for launching effective pattern-triggered immunity (PTI) in plants. Signal relay from PRR complexes to the nuclear transcriptional machinery via intracellular kinase cascades rapidly activates primary immune response genes. The coordinated action of gene-specific transcription factors and the general transcriptional machinery contribute to the selectivity of immune gene activation. In addition, PRR complexes and signaling components are often transcriptionally upregulated upon MAMP perception to ensure the robustness and sustainability of PTI outputs. In this review, we discuss recent advances in deciphering the signaling pathways and regulatory mechanisms that coordinately lead to timely and accurate MAMP-induced gene expression in plants. PMID:27173932

  12. The Role of Notch Receptors in Transcriptional Regulation

    PubMed Central

    WANG, HONGFANG; ZANG, CHONGZHI; LIU, X. SHIRLEY; ASTER, JON C.

    2015-01-01

    Notch signaling has pleiotropic context-specific functions that have essential roles in many processes, including embryonic development and maintenance and homeostasis of adult tissues. Aberrant Notch signaling (both hyper- and hypoactive) is implicated in a number of human developmental disorders and many cancers. Notch receptor signaling is mediated by tightly regulated proteolytic cleavages that lead to the assembly of a nuclear Notch transcription complex, which drives the expression of downstream target genes and thereby executes Notch’s functions. Thus, understanding regulation of gene expression by Notch is central to deciphering how Notch carries out its many activities. Here, we summarize the recent findings pertaining to the complex interplay between the Notch transcriptional complex and interacting factors involved in transcriptional regulation, including co-activators, cooperating transcription factors, and chromatin regulators, and discuss emerging data pertaining to the role of Notch-regulated noncoding RNAs in transcription. PMID:25418913

  13. Nuclear actin and myosins in adenovirus infection.

    PubMed

    Fuchsova, Beata; Serebryannyy, Leonid A; de Lanerolle, Primal

    2015-11-01

    Adenovirus serotypes have been shown to cause drastic changes in nuclear organization, including the transcription machinery, during infection. This ability of adenovirus to subvert transcription in the host cell facilitates viral replication. Because nuclear actin and nuclear myosin I, myosin V and myosin VI have been implicated as direct regulators of transcription and important factors in the replication of other viruses, we sought to determine how nuclear actin and myosins are involved in adenovirus infection. We first confirmed reorganization of the host's transcription machinery to viral replication centers. We found that nuclear actin also reorganizes to sites of transcription through the intermediate but not the advanced late phase of viral infection. Furthermore, nuclear myosin I localized with nuclear actin and sites of transcription in viral replication centers. Intriguingly, nuclear myosins V and VI, which also reorganized to viral replication centers, exhibited different localization patterns, suggesting specialized roles for these nuclear myosins. Finally, we assessed the role of actin in adenovirus infection and found both cytoplasmic and nuclear actin likely play roles in adenovirus infection and replication. Together our data suggest the involvement of actin and multiple myosins in the nuclear replication and late viral gene expression of adenovirus. PMID:26226218

  14. Mapping Yeast Transcriptional Networks

    PubMed Central

    Hughes, Timothy R.; de Boer, Carl G.

    2013-01-01

    The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms. PMID:24018767

  15. Automatic Music Transcription

    NASA Astrophysics Data System (ADS)

    Klapuri, Anssi; Virtanen, Tuomas

    Written musical notation describes music in a symbolic form that is suitable for performing a piece using the available musical instruments. Traditionally, musical notation indicates the pitch, target instrument, timing, and duration of each sound to be played. The aim of music transcription either by humans or by a machine is to infer these musical parameters, given only the acoustic recording of a performance.

  16. Selective Activation of Transcription by a Novel CCAAT Binding Factor

    NASA Astrophysics Data System (ADS)

    Maity, Sankar N.; Golumbek, Paul T.; Karsenty, Gerard; de Crombrugghe, Benoit

    1988-07-01

    A novel CCAAT binding factor (CBF) composed of two different subunits has been extensively purified from rat liver. Both subunits are needed for specific binding to DNA. Addition of this purified protein to nuclear extracts of NIH 3T3 fibroblasts stimulates transcription from several promoters including the α 2(I) collagen, the α 1(I) collagen, the Rous sarcoma virus long terminal repeat (RSV-LTR), and the adenovirus major late promoter. Point mutations in the CCAAT motif that show either no binding or a decreased binding of CBF likewise abolish or reduce activation of transcription by CBF. Activation of transcription requires, therefore, the specific binding of CBF to its recognition sites.

  17. Abscisic acid represses the transcription of chloroplast genes*

    PubMed Central

    Yamburenko, Maria V.; Zubo, Yan O.; Börner, Thomas

    2013-01-01

    Numerous studies have shown effects of abscisic acid (ABA) on nuclear genes encoding chloroplast-localized proteins. ABA effects on the transcription of chloroplast genes, however, have not been investigated yet thoroughly. This work, therefore, studied the effects of ABA (75 μM) on transcription and steady-state levels of transcripts in chloroplasts of basal and apical segments of primary leaves of barley (Hordeum vulgare L.). Basal segments consist of young cells with developing chloroplasts, while apical segments contain the oldest cells with mature chloroplasts. Exogenous ABA reduced the chlorophyll content and caused changes of the endogenous concentrations not only of ABA but also of cytokinins to different extents in the basal and apical segments. It repressed transcription by the chloroplast phage-type and bacteria-type RNA polymerases and lowered transcript levels of most investigated chloroplast genes drastically. ABA did not repress the transcription of psbD and a few other genes and even increased psbD mRNA levels under certain conditions. The ABA effects on chloroplast transcription were more pronounced in basal vs. apical leaf segments and enhanced by light. Simultaneous application of cytokinin (22 μM 6-benzyladenine) minimized the ABA effects on chloroplast gene expression. These data demonstrate that ABA affects the expression of chloroplast genes differentially and points to a role of ABA in the regulation and coordination of the activities of nuclear and chloroplast genes coding for proteins with functions in photosynthesis. PMID:24078671

  18. Evolution of a transcriptional regulator from a transmembrane nucleoporin.

    PubMed

    Franks, Tobias M; Benner, Chris; Narvaiza, Iñigo; Marchetto, Maria C N; Young, Janet M; Malik, Harmit S; Gage, Fred H; Hetzer, Martin W

    2016-05-15

    Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo-cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for "soluble Pom121") that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components. PMID:27198230

  19. Evolution of a transcriptional regulator from a transmembrane nucleoporin

    PubMed Central

    Franks, Tobias M.; Benner, Chris; Narvaiza, Iñigo; Marchetto, Maria C.N.; Young, Janet M.; Malik, Harmit S.; Gage, Fred H.; Hetzer, Martin W.

    2016-01-01

    Nuclear pore complexes (NPCs) emerged as nuclear transport channels in eukaryotic cells ∼1.5 billion years ago. While the primary role of NPCs is to regulate nucleo–cytoplasmic transport, recent research suggests that certain NPC proteins have additionally acquired the role of affecting gene expression at the nuclear periphery and in the nucleoplasm in metazoans. Here we identify a widely expressed variant of the transmembrane nucleoporin (Nup) Pom121 (named sPom121, for “soluble Pom121”) that arose by genomic rearrangement before the divergence of hominoids. sPom121 lacks the nuclear membrane-anchoring domain and thus does not localize to the NPC. Instead, sPom121 colocalizes and interacts with nucleoplasmic Nup98, a previously identified transcriptional regulator, at gene promoters to control transcription of its target genes in human cells. Interestingly, sPom121 transcripts appear independently in several mammalian species, suggesting convergent innovation of Nup-mediated transcription regulation during mammalian evolution. Our findings implicate alternate transcription initiation as a mechanism to increase the functional diversity of NPC components. PMID:27198230

  20. Transcriptional control of cardiac fibroblast plasticity.

    PubMed

    Lighthouse, Janet K; Small, Eric M

    2016-02-01

    Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling". PMID:26721596

  1. Polyphenol Compound as a Transcription Factor Inhibitor.

    PubMed

    Park, Seyeon

    2015-11-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  2. Polyphenol Compound as a Transcription Factor Inhibitor

    PubMed Central

    Park, Seyeon

    2015-01-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  3. HIV-1 transcription and latency: an update

    PubMed Central

    2013-01-01

    Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs. PMID:23803414

  4. Mediator and TREX-2: Emerging links between transcription initiation and mRNA export

    PubMed Central

    Schubert, Tobias; Köhler, Alwin

    2016-01-01

    ABSTRACT Nuclear pore proteins interact dynamically with chromatin to regulate gene activities. A key question is how nucleoporin interactions mechanistically alter a gene's intranuclear position and transcriptional output. We reported recently on a direct interaction between the nuclear pore-associated TREX-2 complex and promoter-bound Mediator. This highlights how nuclear-pore associated adaptors gain regulatory access to the core transcription machinery. In this Extra View, we discuss an additional implication that arises from our work and the recent literature: how promoter elements may regulate mRNA metabolism beyond transcription initiation. PMID:27028218

  5. A critical role for topoisomerase IIb and DNA double strand breaks in transcription.

    PubMed

    Calderwood, Stuart K

    2016-05-26

    Recent studies have indicated a novel role for topoisomerase IIb in transcription. Transcription of heat shock genes, serum-induced immediate early genes and nuclear receptor-activated genes, each required DNA double strands generated by topoisomerase IIb. Such strand breaks seemed both necessary and sufficient for transcriptional activation. In addition, such transcription was associated with initiation of the DNA damage response pathways, including the activation of the enzymes: ataxia-telangiectasia mutated (ATM), DNA-dependent protein kinase and poly (ADP ribose) polymerase 1. DNA damage response signaling was involved both in transcription and in repair of DNA breaks generated by topoisomerase IIb. PMID:27100743

  6. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors

    SciTech Connect

    Lim, Kihong; Chang, Hyo-Ihl

    2009-03-13

    The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.

  7. Intrinsic disorder in transcription factors†

    PubMed Central

    Liu, Jiangang; Perumal, Narayanan B.; Oldfield, Christopher J.; Su, Eric W.; Uversky, Vladimir N.; Dunker, A. Keith

    2008-01-01

    Intrinsic disorder (ID) is highly abundant in eukaryotes, which reflect the greater need for disorder-associated signaling and transcriptional regulation in nucleated cells. Although several well-characterized examples of intrinsically disordered proteins in transcriptional regulation have been reported, no systematic analysis has been reported so far. To test for a general prevalence of intrinsic disorder in transcriptional regulation, we used the Predictor Of Natural Disorder Regions (PONDR) to analyze the abundance of intrinsic disorder in three transcription factor datasets and two control sets. This analysis revealed that from 94.13% to 82.63% of transcription factors posses extended regions of intrinsic disorder, relative to 54.51% and 18.64% of the proteins in two control datasets, which indicates the significant prevalence of intrinsic disorder in transcription factors. This propensity of transcription factors for intrinsic disorder was confirmed by cumulative distribution function analysis and charge-hydropathy plots. The amino acid composition analysis showed that all three transcription factor datasets were substantially depleted in order-promoting residues, and significantly enriched in disorder-promoting residues. Our analysis of the distribution of disorder within the transcription factor datasets revealed that: (a) The AT-hooks and basic regions of transcription factor DNA-binding domains are highly disordered; (b) The degree of disorder in transcription factor activation regions is much higher than that in DNA-binding domains; (c) The degree of disorder is significantly higher in eukaryotic transcription factors than in prokaryotic transcription factors; (d) The level of α-MoRFs (molecular recognition feature) prediction is much higher in transcription factors. Overall, our data reflected the fact that the eukaryotes with well-developed gene transcription machinery require transcription factor flexibility to be more efficient. PMID:16734424

  8. Pleiotropic effects of gold(I) mixed-ligand complexes of 9-deazahypoxanthine on transcriptional activity of receptors for steroid hormones, nuclear receptors and xenoreceptors in human hepatocytes and cell lines.

    PubMed

    Kubešová, Kateřina; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-10-01

    Development of metal-based compounds is an important research avenue in anti-cancer and anti-inflammatory drug discovery. Here we examined the effects of three gold (I) mixed-ligand complexes with the general formula [Au(Ln)(PPh3)] (1, 2, 3) involving triphenylphosphine (PPh3) and a deprotonated form of O-substituted derivatives of 9-deazahypoxanthine (Ln) on the transcriptional activity of aryl hydrocarbon receptor (AhR), androgen receptor (AR), glucocorticoid receptor (GR), thyroid receptor (TR), pregnane X receptor (PXR) and vitamin D receptor (VDR), employing gene reporter assays. In addition, we measured mRNA (RT-PCR) and protein (western blot) expression of target genes for those receptors, including drug-metabolizing P450s, in primary human hepatocytes and cancer cell lines LS180 and HepG2. The tested compounds displayed anti-glucocorticoid effects, as revealed by inhibition of dexamethasone-inducible transcriptional activity of GR and down-regulation of tyrosine aminotransferase. All the compounds slightly and dose-dependently activated PXR and AhR, and moderately induced CYP3A4 and CYP1A1/2 genes in human hepatocytes and LS180 cells. The complexes antagonized basal and ligand-activated AR and VDR, indicating inverse agonist behaviour. Both basal and thyroid hormone-inducible transcriptional activity of TR was dose-dependently increased by all tested compounds. In contrast, the expression of SPOT14 mRNA was decreased by tested compounds in human hepatocytes and HepG2 cells. In conclusion, if intended for human pharmacotherapy, the potential of the complexes 1-3 to influence studied receptors should be taken in account. PMID:27318977

  9. Immunofluorescent localization of actin in relation to transcription sites in mouse pronuclei.

    PubMed

    Nguyen, E; Besombes, D; Debey, P

    1998-07-01

    Previous biochemical and morphological studies have shown the presence of actin in the nucleus of different cell types where its role remains unclear. In this work, through fluorescence microscopy we studied the localization of actin in the nuclei of early mouse embryos with particular attention to its possible involvement in the onset of transcription occurring at the late one-cell stage. Fluorescent labelling of embryo sections showed that nuclear actin in abundant, in a non-filamentous state, in the whole nucleoplasm excluding the nucleolar precursor bodies. Immunofluorescence on permeabilized embryos revealed that insoluble nuclear actin accumulates in a few large aggregates in transcriptionally inert early one-cell embryos and progressively redistributes into many small aggregates in transcriptionally active late one-cell embryos. Interestingly, these actin aggregates clearly colocalize with transcription sites. Treatment of late one-cell embryos with cytochalasin D induces the formation of actin bundles network in the nucleoplasm but has no apparent effect on the transcriptional activity. In addition, the inhibition of transcription by alpha-amanitin does not modify the nuclear actin distribution. Hence, there does not appear to be a direct causal relationship between transcriptional activity and nuclear actin organization at the one-cell stage although nuclear actin aggregates appear associated with transcription sites. PMID:9621302

  10. Mechanotransduction and nuclear function.

    PubMed

    Graham, David M; Burridge, Keith

    2016-06-01

    Many signaling pathways converge on the nucleus to regulate crucial nuclear events such as transcription, DNA replication and cell cycle progression. Although the vast majority of research in this area has focused on signals generated in response to hormones or other soluble factors, the nucleus also responds to mechanical forces. During the past decade or so, much has been learned about how mechanical force can affect transcription, as well as the growth and differentiation of cells. Much has also been learned about how force is transmitted via the cytoskeleton to the nucleus and then across the nuclear envelope to the nuclear lamina and chromatin. In this brief review, we focus on some of the key proteins that transmit mechanical signals across the nuclear envelope. PMID:27018929

  11. Transcriptional silencing of long noncoding RNA GNG12-AS1 uncouples its transcriptional and product-related functions

    PubMed Central

    Stojic, Lovorka; Niemczyk, Malwina; Orjalo, Arturo; Ito, Yoko; Ruijter, Anna Elisabeth Maria; Uribe-Lewis, Santiago; Joseph, Nimesh; Weston, Stephen; Menon, Suraj; Odom, Duncan T.; Rinn, John; Gergely, Fanni; Murrell, Adele

    2016-01-01

    Long noncoding RNAs (lncRNAs) regulate gene expression via their RNA product or through transcriptional interference, yet a strategy to differentiate these two processes is lacking. To address this, we used multiple small interfering RNAs (siRNAs) to silence GNG12-AS1, a nuclear lncRNA transcribed in an antisense orientation to the tumour-suppressor DIRAS3. Here we show that while most siRNAs silence GNG12-AS1 post-transcriptionally, siRNA complementary to exon 1 of GNG12-AS1 suppresses its transcription by recruiting Argonaute 2 and inhibiting RNA polymerase II binding. Transcriptional, but not post-transcriptional, silencing of GNG12-AS1 causes concomitant upregulation of DIRAS3, indicating a function in transcriptional interference. This change in DIRAS3 expression is sufficient to impair cell cycle progression. In addition, the reduction in GNG12-AS1 transcripts alters MET signalling and cell migration, but these are independent of DIRAS3. Thus, differential siRNA targeting of a lncRNA allows dissection of the functions related to the process and products of its transcription. PMID:26832224

  12. Epigenetic hereditary transcription profiles II, aging revisited

    PubMed Central

    Simons, Johannes WIM

    2007-01-01

    Background Previously, we have shown that deviations from the average transcription profile of a group of functionally related genes can be epigenetically transmitted to daughter cells, thereby implicating nuclear programming as the cause. As a first step in further characterizing this phenomenon it was necessary to determine to what extent such deviations occur in non-tumorigenic tissues derived from normal individuals. To this end, a microarray database derived from 90 human donors aged between 22 to 87 years was used to study deviations from the average transcription profile of the proteasome genes. Results Increase in donor age was found to correlate with a decrease in deviations from the general transcription profile with this decline being gender-specific. The age-related index declined at a faster rate for males although it started from a higher level. Additionally, transcription profiles from similar tissues were more alike than those from different tissues, indicating that deviations arise during differentiation. Conclusion These findings suggest that aging and differentiation are related to epigenetic changes that alter the transcription profile of proteasomal genes. Since alterations in the structure and function of the proteasome are unlikely, such changes appear to occur without concomitant change in gene function. These findings, if confirmed, may have a significant impact on our understanding of the aging process. Open peer review This article was reviewed by Nathan Bowen (nominated by I. King Jordan), Timothy E. Reddy (nominated by Charles DeLisi) and by Martijn Huynen. For the full reviews, please go to the Reviewers'comments section. PMID:18163906

  13. Transcriptional regulation of the human biglycan gene.

    PubMed

    Ungefroren, H; Krull, N B

    1996-06-28

    The small leucine-rich proteoglycan biglycan is involved in several physiological and pathophysiological processes through the ability of its core protein to interact with other extracellular matrix molecules and transforming growth factor-beta (TGF-beta). To learn more about the regulation of biglycan core protein expression, we have cloned and sequenced 1218 base pairs from the 5'-flanking region of the human biglycan gene, demonstrated functional promoter activity, and investigated the molecular mechanisms through which various agents modulate its transcriptional activity. Sequencing revealed the presence of several cis-acting elements including multiple AP-2 sites and interleukin-6 response elements, a NF-kappaB site, a TGF-beta negative element, and an E-box. The TATA and CAAT box-lacking promoter possesses many features of a growth-related gene, e.g. a GC-rich immediate 5' region, many Sp1 sites, and the use of multiple transcriptional start sites. Transient transfections of the tumor cell lines MG-63, SK-UT-1, and T47D with various biglycan 5'-flanking region-luciferase reporter gene constructs showed that the proximal 78 base pairs are sufficient for full promoter activity. Several agents among them interleukin-6, and tumor necrosis factor-alpha. were capable of altering biglycan promoter activity. However, in MG-63 cells, TGF-beta1 failed to increase either activity of the biglycan promoter constructs or specific transcription from the endogenous biglycan gene. Since TGF-beta1 also did not alter the stability of cytoplasmic biglycan mRNA as determined from Northern analysis after inhibition of transcription with 5,6-dichloro-1beta-D-ribofuranosylbenzimidazole, an as yet unidentified nuclear post-transcriptional mechanism was considered responsible for the TGF-beta effect in this cell type. These results might help to elucidate the molecular pathways leading to pathological alterations of biglycan expression observed in atherosclerosis, glomerulonephritis

  14. Cell cycle-dependent regulation of RNA polymerase II basal transcription activity.

    PubMed Central

    Yonaha, M; Chibazakura, T; Kitajima, S; Yasukochi, Y

    1995-01-01

    Regulation of transcription by RNA polymerase II (pol II) in eukaryotic cells requires both basal and regulatory transcription factors. In this report we have investigated in vitro pol II basal transcription activity during the cell cycle by using nuclear extracts from synchronized HeLa cells. It is shown that pol II basal transcription activity is low in the S and G2 phases and high in early G1 phase and TFIID is the rate limiting component of pol II basal transcription activity during the cell cycle. Further analyses reveal that TFIID exists as a less active form in the S and G2 phases and nuclear extracts from S and G2 phase cells contain a heat-sensitive repressor(s) of TATA box binding protein (TBP). These results suggest that pol II basal transcription activity is regulated by a qualitative change in the TFIID complex, which could involve repression of TBP, during the cell cycle. Images PMID:7479063

  15. Steroid receptor coupling becomes nuclear.

    PubMed

    Galigniana, Mario D

    2012-06-22

    In this issue of Chemistry & Biology, Grossman et al. report a study on aldosterone-dependent nuclear translocation of the mineralocorticoid receptor (MR). They analyze the dependency of MR retrotransport, DNA-binding, and transcriptional activity on Hsp90 and demonstrate that MR dimerization is a nuclear event. PMID:22726677

  16. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains

    PubMed Central

    Guo, Xiaoxian; Li, Hongye; Gu, Zhenglong

    2016-01-01

    Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC) was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations. PMID:27077367

  17. A Novel POK Family Transcription Factor, ZBTB5, Represses Transcription of p21CIP1 Gene*

    PubMed Central

    Koh, Dong-In; Choi, Won-Il; Jeon, Bu-Nam; Lee, Choong-Eun; Yun, Chae-Ok; Hur, Man-Wook

    2009-01-01

    Transcriptional repression through chromatin remodeling and histone deacetylation has been postulated as a driving force for tumorigenesis. We isolated and characterized a novel POZ domain Krüppel-like zinc finger transcription repressor, ZBTB5 (zinc finger and BTB domain-containing 5). Serial analysis of gene expression (SAGE) analysis showed that ZBTB5 expression is higher in retinoblastoma and muscle cancer tissues. Immunocytochemistry showed that ZBTB5 was localized to the nucleus, particularly nuclear speckles. ZBTB5 directly repressed transcription of cell cycle arrest gene p21 by binding to the proximal GC-box 5/6 elements and the two distal p53-responsive elements (bp −2323 ∼ −2299; bp −1416 ∼ −1392). Chromatin immunoprecipitation assays showed that ZBTB5 and p53 competed with each other in occupying the p53 binding elements. ZBTB5 interacted with co-repressor-histone deacetylase complexes such as BCoR (BCL-6-interacting corepressor), NCoR (nuclear receptor corepressor), and SMRT (silencing mediator for retinoid and thyroid receptors) via its POZ domain. These interactions resulted in deacetylation of histones Ac-H3 and Ac-H4 at the proximal promoter, which is important in the transcriptional repression of p21. MTT (3-(4,5-di meth yl thi azol-2-yl)-2,5-diphenyltetrazolium bromide) assays and fluorescent-activated cell sorter analysis revealed that ZBTB5 stimulated both cell proliferation and cell cycle progression, significantly increasing the number of cells in S-phase. Overall, our data suggest that ZBTB5 is a potent transcription repressor of cell cycle arrest gene p21 and a potential proto-oncogene stimulating cell proliferation. PMID:19491398

  18. Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains.

    PubMed

    Sun, Xuepeng; Wang, Zhe; Guo, Xiaoxian; Li, Hongye; Gu, Zhenglong

    2016-01-01

    Evolution of gene regulation has been proposed to play an important role in environmental adaptation. Exploring mechanisms underlying coordinated evolutionary changes at various levels of gene regulation could shed new light on how organism adapt in nature. In this study, we focused on regulatory differences between a laboratory Saccharomyces cerevisiae strain BY4742 and a pathogenic S. cerevisiae strain, YJM789. The two strains diverge in many features, including growth rate, morphology, high temperature tolerance, and pathogenicity. Our RNA-Seq and ribosomal footprint profiling data showed that gene expression differences are pervasive, and genes functioning in mitochondria are mostly divergent between the two strains at both transcriptional and translational levels. Combining functional genomics data from other yeast strains, we further demonstrated that significant divergence of expression for genes functioning in the electron transport chain (ETC) was likely caused by differential expression of a transcriptional factor, HAP4, and that post-transcriptional regulation mediated by an RNA-binding protein, PUF3, likely led to expression divergence for genes involved in mitochondrial translation. We also explored mito-nuclear interactions via mitochondrial DNA replacement between strains. Although the two mitochondrial genomes harbor substantial sequence divergence, neither growth nor gene expression were affected by mitochondrial DNA replacement in both fermentative and respiratory growth media, indicating compatible mitochondrial and nuclear genomes between these two strains in the tested conditions. Collectively, we used mitochondrial functions as an example to demonstrate for the first time that evolution at both transcriptional and post-transcriptional levels could lead to coordinated regulatory changes underlying strain specific functional variations. PMID:27077367

  19. Single Molecule Transcription Elongation

    PubMed Central

    Galburt, Eric A.; Grill, Stephan W.; Bustamante, Carlos

    2009-01-01

    Single molecule optical trapping assays have now been applied to a great number of macromolecular systems including DNA, RNA, cargo motors, restriction enzymes, DNA helicases, chromosome remodelers, DNA polymerases and both viral and bacterial RNA polymerases. The advantages of the technique are the ability to observe dynamic, unsynchronized molecular processes, to determine the distributions of experimental quantities and to apply force to the system while monitoring the response over time. Here, we describe the application of these powerful techniques to study the dynamics of transcription elongation by RNA polymerase II from Saccharomyces cerevisiae. PMID:19426807

  20. Tfb6, a previously unidentified subunit of the general transcription factor TFIIH, facilitates dissociation of Ssl2 helicase after transcription initiation.

    PubMed

    Murakami, Kenji; Gibbons, Brian J; Davis, Ralph E; Nagai, Shigeki; Liu, Xin; Robinson, Philip J J; Wu, Tinghe; Kaplan, Craig D; Kornberg, Roger D

    2012-03-27

    General transcription factor TFIIH, previously described as a 10-subunit complex, is essential for transcription and DNA repair. An eleventh subunit now identified, termed Tfb6, exhibits 45% sequence similarity to human nuclear mRNA export factor 5. Tfb6 dissociates from TFIIH as a heterodimer with the Ssl2 subunit, a DNA helicase that drives promoter melting for the initiation of transcription. Tfb6 does not, however, dissociate Ssl2 from TFIIH in the context of a fully assembled transcription preinitiation complex. Our findings suggest a dynamic state of Ssl2, allowing its engagement in multiple cellular processes. PMID:22411836

  1. Integrator complex and transcription regulation: Recent findings and pathophysiology.

    PubMed

    Rienzo, Monica; Casamassimi, Amelia

    2016-10-01

    In the last decade, a novel molecular complex has been added to the RNA polymerase II-mediated transcription machinery as one of the major components. This multiprotein complex, named Integrator, plays a pivotal role in the regulation of most RNA Polymerase II-dependent genes. This complex consists of at least 14 different subunits. However, studies investigating its structure and composition are still lacking. Although it was originally discovered as a complex implicated in the 3'-end formation of noncoding small nuclear RNAs, recent studies indicate additional roles for Integrator in transcription regulation, for example during transcription pause-release and elongation of polymerase, in the biogenesis of transcripts derived from enhancers, as well as in DNA and RNA metabolism for some of its components. Noteworthy, several subunits have been emerging to play roles during development and differentiation; more importantly, their alterations are likely to be involved in several human pathologies, including cancer and lung diseases. PMID:27427483

  2. Structural insights into transcription initiation by RNA polymerase II

    PubMed Central

    Grünberg, Sebastian; Hahn, Steven

    2013-01-01

    Transcriptional regulation is one of the most important steps in control of cell identity, growth, differentiation and development. Many signaling pathways controlling these processes ultimately target the core transcription machinery that, for protein coding genes, consists of RNA polymerase II (Pol II) and the general transcription factors (GTFs). New studies on the structure and mechanism of the core assembly and how it interfaces with promoter DNA and coactivator complexes have given tremendous insight into early steps in the initiation process, genome-wide binding, and mechanisms conserved for all nuclear and archaeal Pols. Here we review recent developments in dissecting the architecture of the Pol II core machinery with a focus on early and regulated steps in transcription initiation. PMID:24120742

  3. Transcription is regulated by NusA:NusG interaction

    PubMed Central

    Strauß, Martin; Vitiello, Christal; Schweimer, Kristian; Gottesman, Max; Rösch, Paul; Knauer, Stefan H.

    2016-01-01

    NusA and NusG are major regulators of bacterial transcription elongation, which act either in concert or antagonistically. Both bind to RNA polymerase (RNAP), regulating pausing as well as intrinsic and Rho-dependent termination. Here, we demonstrate by nuclear magnetic resonance spectroscopy that the Escherichia coli NusG amino-terminal domain forms a complex with the acidic repeat domain 2 (AR2) of NusA. The interaction surface of either transcription factor overlaps with the respective binding site for RNAP. We show that NusA-AR2 is able to remove NusG from RNAP. Our in vivo and in vitro results suggest that interaction between NusA and NusG could play various regulatory roles during transcription, including recruitment of NusG to RNAP, resynchronization of transcription:translation coupling, and modulation of termination efficiency. PMID:27174929

  4. Transcription is regulated by NusA:NusG interaction.

    PubMed

    Strauß, Martin; Vitiello, Christal; Schweimer, Kristian; Gottesman, Max; Rösch, Paul; Knauer, Stefan H

    2016-07-01

    NusA and NusG are major regulators of bacterial transcription elongation, which act either in concert or antagonistically. Both bind to RNA polymerase (RNAP), regulating pausing as well as intrinsic and Rho-dependent termination. Here, we demonstrate by nuclear magnetic resonance spectroscopy that the Escherichia coli NusG amino-terminal domain forms a complex with the acidic repeat domain 2 (AR2) of NusA. The interaction surface of either transcription factor overlaps with the respective binding site for RNAP. We show that NusA-AR2 is able to remove NusG from RNAP. Our in vivo and in vitro results suggest that interaction between NusA and NusG could play various regulatory roles during transcription, including recruitment of NusG to RNAP, resynchronization of transcription:translation coupling, and modulation of termination efficiency. PMID:27174929

  5. Two control regions for eukaryotic tRNA gene transcription.

    PubMed Central

    DeFranco, D; Schmidt, O; Söll, D

    1980-01-01

    Two Drosophila tRNALys genes with identical coding sequences were shown to transcribe with very different efficiences in nuclear extracts from Xenopus oocytes. The use of recombinant plasmids in which the 5'-flanking sequences of these genes were either "switched" or replaced by defined pBR322 sequences revealed two control regions for tRNA gene transcription. An internal control region comprising the mature tRNA coding sequence (and possibly its 3'-flanking sequences) is sufficient for transcription initiation, and an external control region comprising the 5'-flanking sequences represses this transcription. All transcripts have short leader sequences. Altered precursor tRNAs transcribed from truncated tRNALys genes (missing a single base pair in the acceptor stem) are not processed well in vitro. Images PMID:6774336

  6. 7SK-BAF axis controls pervasive transcription at enhancers

    PubMed Central

    Flynn, Ryan A.; Do, Brian T.; Rubin, Adam J.; Calo, Eliezer; Lee, Byron; Kuchelmeister, Hannes; Rale, Michael; Chu, Ci; Kool, Eric T.; Wysocka, Joanna; Khavari, Paul A.

    2016-01-01

    RNA functions at enhancers remain mysterious. Here we show that the 7SK small nuclear RNA (snRNA) inhibits enhancer transcription by modulating nucleosome position. 7SK occupies enhancers and super enhancers genome-wide in mouse and human cells, and 7SK is required to limit eRNA initiation and synthesis in a manner distinct from promoter pausing. Clustered elements at super enhancers uniquely require 7SK to prevent convergent transcription and DNA damage signaling. 7SK physically interacts with the BAF chromatin remodeling complex, recruit BAF to enhancers, and inhibits enhancer transcription by modulating chromatin structure. In turn, 7SK occupancy at enhancers coincides with Brd4 and is exquisitely sensitive to the bromodomain inhibitor JQ1. Thus, 7SK employs distinct mechanisms to counteract diverse consequences of pervasive transcription that distinguish super enhancers, enhancers, and promoters. PMID:26878240

  7. p62/Sequestosome-1, Autophagy-related Gene 8, and Autophagy in Drosophila Are Regulated by Nuclear Factor Erythroid 2-related Factor 2 (NRF2), Independent of Transcription Factor TFEB*

    PubMed Central

    Jain, Ashish; Rusten, Tor Erik; Katheder, Nadja; Elvenes, Julianne; Bruun, Jack-Ansgar; Sjøttem, Eva; Lamark, Trond; Johansen, Terje

    2015-01-01

    The selective autophagy receptor p62/sequestosome 1 (SQSTM1) interacts directly with LC3 and is involved in oxidative stress signaling in two ways in mammals. First, p62 is transcriptionally induced upon oxidative stress by the NF-E2-related factor 2 (NRF2) by direct binding to an antioxidant response element in the p62 promoter. Second, p62 accumulation, occurring when autophagy is impaired, leads to increased p62 binding to the NRF2 inhibitor KEAP1, resulting in reduced proteasomal turnover of NRF2. This gives chronic oxidative stress signaling through a feed forward loop. Here, we show that the Drosophila p62/SQSTM1 orthologue, Ref(2)P, interacts directly with DmAtg8a via an LC3-interacting region motif, supporting a role for Ref(2)P in selective autophagy. The ref(2)P promoter also contains a functional antioxidant response element that is directly bound by the NRF2 orthologue, CncC, which can induce ref(2)P expression along with the oxidative stress-associated gene gstD1. However, distinct from the situation in mammals, Ref(2)P does not interact directly with DmKeap1 via a KEAP1-interacting region motif; nor does ectopically expressed Ref(2)P or autophagy deficiency activate the oxidative stress response. Instead, DmAtg8a interacts directly with DmKeap1, and DmKeap1 is removed upon programmed autophagy in Drosophila gut cells. Strikingly, CncC induced increased Atg8a levels and autophagy independent of TFEB/MitF in fat body and larval gut tissues. Thus, these results extend the intimate relationship between oxidative stress-sensing NRF2/CncC transcription factors and autophagy and suggest that NRF2/CncC may regulate autophagic activity in other organisms too. PMID:25931115

  8. Improving Mode of Action Analysis Using Transcript Profiling in Nullizygous Mouse Models

    EPA Science Inventory

    A number of nuclear receptors (NR) mediate transcriptional, hepatocyte growth and carcinogenic effects in the rodent liver after chemical exposure. These receptors include the constitutive activated/androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator...

  9. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    PubMed

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  10. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells

    PubMed Central

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-01-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces. PMID:21985363

  11. The orphan receptor hepatic nuclear factor 4 functions as a transcriptional activator for tissue-specific and hypoxia-specific erythropoietin gene expression and is antagonized by EAR3/COUP-TF1.

    PubMed Central

    Galson, D L; Tsuchiya, T; Tendler, D S; Huang, L E; Ren, Y; Ogura, T; Bunn, H F

    1995-01-01

    The erythropoietin (Epo) gene is regulated by hypoxia-inducible cis-acting elements in the promoter and in a 3' enhancer, both of which contain consensus hexanucleotide hormone receptor response elements which are important for function. A group of 11 orphan nuclear receptors, transcribed and translated in vitro, were screened by the electrophoretic mobility shift assay. Of these, hepatic nuclear factor 4 (HNF-4), TR2-11, ROR alpha 1, and EAR3/COUP-TF1 bound specifically to the response elements in the Epo promoter and enhancer and, except for ROR alpha 1, formed DNA-protein complexes that had mobilities similar to those observed in nuclear extracts of the Epo-producing cell line Hep3B. Moreover, both anti-HNF-4 and anti-COUP antibodies were able to supershift complexes in Hep3B nuclear extracts. Like Epo, HNF-4 is expressed in kidney, liver, and Hep3B cells but not in HeLa cells. Transfection of a plasmid expressing HNF-4 into HeLa cells enabled an eightfold increase in the hypoxic induction of a luciferase reporter construct which contains the minimal Epo enhancer and Epo promoter, provided that the nuclear hormone receptor consensus DNA elements in both the promoter and the enhancer were intact. The augmentation by HNF-4 in HeLa cells could be abrogated by cotransfection with HNF-4 delta C, which retains the DNA binding domain of HNF-4 but lacks the C-terminal activation domain. Moreover, the hypoxia-induced expression of the endogenous Epo gene was significantly inhibited in Hep3B cells stably transfected with HNF-4 delta C. On the other hand, cotransfection of EAR3/COUP-TF1 and the Epo reporter either with HNF-4 into HeLa cells or alone into Hep3B cells suppressed the hypoxia induction of the Epo reporter. These electrophoretic mobility shift assay and functional experiments indicate that HNF-4 plays a critical positive role in the tissue-specific and hypoxia-inducible expression of the Epo gene, whereas the COUP family has a negative modulatory role. PMID

  12. Nur transcription factors in stress and addiction

    PubMed Central

    Campos-Melo, Danae; Galleguillos, Danny; Sánchez, Natalia; Gysling, Katia; Andrés, María E.

    2013-01-01

    The Nur transcription factors Nur77 (NGFI-B, NR4A1), Nurr1 (NR4A2), and Nor-1 (NR4A3) are a sub-family of orphan members of the nuclear receptor superfamily. These transcription factors are products of immediate early genes, whose expression is rapidly and transiently induced in the central nervous system by several types of stimuli. Nur factors are present throughout the hypothalamus-pituitary-adrenal (HPA) axis where are prominently induced in response to stress. Drugs of abuse and stress also induce the expression of Nur factors in nuclei of the motivation/reward circuit of the brain, indicating their participation in the process of drug addiction and in non-hypothalamic responses to stress. Repeated use of addictive drugs and chronic stress induce long-lasting dysregulation of the brain motivation/reward circuit due to reprogramming of gene expression and enduring alterations in neuronal function. Here, we review the data supporting that Nur transcription factors are key players in the molecular basis of the dysregulation of neuronal circuits involved in chronic stress and addiction. PMID:24348325

  13. Nongenic, bidirectional transcription precedes and may promote developmental DNA deletion in Tetrahymena thermophila

    PubMed Central

    Chalker, Douglas L.; Yao, Meng-Chao

    2001-01-01

    A large number of DNA segments are excised from the chromosomes of the somatic nucleus during development of Tetrahymena thermophila. How these germline-limited sequences are recognized and excised is still poorly understood. We have found that many of these noncoding DNAs are transcribed during nuclear development. Transcription of the germline-limited M element occurs from both DNA strands and results in heterogeneous transcripts of < 200 b to > 1 kb. Transcripts are most abundant when developing micro- and macronuclei begin their differentiation. Transcription is normally restricted to unrearranged DNA of micronuclei and/or developing nuclei, but germline-limited DNAs can induce their own transcription when placed into somatic macronuclei. Brief actinomycin D treatment of conjugating cells blocked M-element excision, providing evidence that transcription is important for efficient DNA rearrangement. We propose that transcription targets these germline-limited sequences for elimination by altering chromatin to ensure their accessibility to the excision machinery. PMID:11358871

  14. Imaging Transcription in Living Cells

    PubMed Central

    Darzacq, Xavier; Yao, Jie; Larson, Daniel R.; Causse, Sebastien Z.; Bosanac, Lana; de Turris, Valeria; Ruda, Vera M.; Lionnet, Timothee; Zenklusen, Daniel; Guglielmi, Benjamin; Tjian, Robert; Singer, Robert H.

    2011-01-01

    The advent of new technologies for the imaging of living cells has made it possible to determine the properties of transcription, the kinetics of polymerase movement, the association of transcription factors, and the progression of the polymerase on the gene. We report here the current state of the field and the progress necessary to achieve a more complete understanding of the various steps in transcription. Our Consortium is dedicated to developing and implementing the technology to further this understanding. PMID:19416065

  15. Nuclear export modulates the cytoplasmic Sir2 homologue Hst2

    PubMed Central

    Wilson, Jeanne M; Le, Viet Q; Zimmerman, Collin; Marmorstein, Ronen; Pillus, Lorraine

    2006-01-01

    Modulating transcription factors is crucial to executing sophisticated gene expression programs. The silent information regulator 2 (Sir2) family of NAD-dependent protein deacetylases influences transcription by targeting proteins such as histones, p53 and forkhead-box family transcription factors. Although apparently cytoplasmic, both mammalian SIRT2 and its yeast orthologue Hst2 have been implicated in transcriptional regulation. Here, we show that Hst2 moves between the nucleus and cytoplasm, but is largely cytoplasmic owing to efficient nuclear export. This nuclear exclusion is mediated by the exportin chromosomal region maintenance 1 (Crm1) and a putative leucine-rich nuclear export sequence in Hst2, which overlaps a unique autoregulatory helix. Disruption of Hst2 export shows that nuclear exclusion inhibits the activity of Hst2 as a transcriptional repressor. Our identification of putative nuclear export sequences in numerous vertebrate SIRT2 proteins shows that active nuclear export can be a conserved mechanism for regulating Sir2 homologues. PMID:17110954

  16. Transcriptional Regulation: a Genomic Overview

    PubMed Central

    Riechmann, José Luis

    2002-01-01

    The availability of the Arabidopsis thaliana genome sequence allows a comprehensive analysis of transcriptional regulation in plants using novel genomic approaches and methodologies. Such a genomic view of transcription first necessitates the compilation of lists of elements. Transcription factors are the most numerous of the different types of proteins involved in transcription in eukaryotes, and the Arabidopsis genome codes for more than 1,500 of them, or approximately 6% of its total number of genes. A genome-wide comparison of transcription factors across the three eukaryotic kingdoms reveals the evolutionary generation of diversity in the components of the regulatory machinery of transcription. However, as illustrated by Arabidopsis, transcription in plants follows similar basic principles and logic to those in animals and fungi. A global view and understanding of transcription at a cellular and organismal level requires the characterization of the Arabidopsis transcriptome and promoterome, as well as of the interactome, the localizome, and the phenome of the proteins involved in transcription. PMID:22303220

  17. Deregulated transcription factors in leukemia.

    PubMed

    Shima, Yutaka; Kitabayashi, Issay

    2011-08-01

    Specific chromosomal translocations and other mutations associated with acute myeloblastic leukemia (AML) often involve transcription factors and transcriptional coactivators. Such target genes include AML1, C/EBPα, RARα, MOZ, p300/CBP, and MLL, all of which are important in the regulation of hematopoiesis. The resultant fusion or mutant proteins deregulate the transcription of the affected genes and disrupt their essential role in hematopoiesis, causing differentiation block and abnormal proliferation and/or survival. This review focuses on such transcription factors and coactivators, and describes their roles in leukemogenesis and hematopoiesis. PMID:21823042

  18. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex

    SciTech Connect

    Surapureddi, Sailesh; Viswakarma, Navin; Yu Songtao; Guo Dongsheng; Rao, M. Sambasiva; Reddy, Janardan K. . E-mail: jkreddy@northwestern.edu

    2006-05-05

    Ciprofibrate, a potent peroxisome proliferator, induces pleiotropic responses in liver by activating peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}), a nuclear receptor. Transcriptional regulation by liganded nuclear receptors involves the participation of coregulators that form multiprotein complexes possibly to achieve cell and gene specific transcription. SDS-PAGE and matrix-assisted laser desorption/ionization reflection time-of-flight mass spectrometric analyses of ciprofibrate-binding proteins from liver nuclear extracts obtained using ciprofibrate-Sepharose affinity matrix resulted in the identification of a new high molecular weight nuclear receptor coactivator, which we designated PRIC320. The full-length human cDNA encoding this protein has an open-reading frame that codes for a 320 kDa protein containing 2882 amino acids. PRIC320 contains five LXXLL signature motifs that mediate interaction with nuclear receptors. PRIC320 binds avidly to nuclear receptors PPAR{alpha}, CAR, ER{alpha}, and RXR, but only minimally with PPAR{gamma}. PRIC320 also interacts with transcription cofactors CBP, PRIP, and PBP. Immunoprecipitation-immunoblotting as well as cellular localization studies confirmed the interaction between PPAR{alpha} and PRIC320. PRIC320 acts as a transcription coactivator by stimulating PPAR{alpha}-mediated transcription. We conclude that ciprofibrate, a PPAR{alpha} ligand, binds a multiprotein complex and PRIC320 cloned from this complex functions as a nuclear receptor coactivator.

  19. Mechanosensitive mechanisms in transcriptional regulation

    PubMed Central

    Mammoto, Akiko; Mammoto, Tadanori; Ingber, Donald E.

    2012-01-01

    Summary Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine. PMID:22797927

  20. Structural basis of transcription activation.

    PubMed

    Feng, Yu; Zhang, Yu; Ebright, Richard H

    2016-06-10

    Class II transcription activators function by binding to a DNA site overlapping a core promoter and stimulating isomerization of an initial RNA polymerase (RNAP)-promoter closed complex into a catalytically competent RNAP-promoter open complex. Here, we report a 4.4 angstrom crystal structure of an intact bacterial class II transcription activation complex. The structure comprises Thermus thermophilus transcription activator protein TTHB099 (TAP) [homolog of Escherichia coli catabolite activator protein (CAP)], T. thermophilus RNAP σ(A) holoenzyme, a class II TAP-dependent promoter, and a ribotetranucleotide primer. The structure reveals the interactions between RNAP holoenzyme and DNA responsible for transcription initiation and reveals the interactions between TAP and RNAP holoenzyme responsible for transcription activation. The structure indicates that TAP stimulates isomerization through simple, adhesive, stabilizing protein-protein interactions with RNAP holoenzyme. PMID:27284196

  1. mRNA transcription in nuclei isolated from Saccharomyces cerevisiae.

    PubMed Central

    Jerome, J F; Jaehning, J A

    1986-01-01

    We developed an improved method for the isolation of transcriptionally active nuclei from Saccharomyces cerevisiae, which allows analysis of specific transcripts. When incubated with alpha-32P-labeled ribonucleoside triphosphates in vitro, nuclei isolated from haploid or diploid cells transcribed rRNA, tRNA, and mRNAs in a strand-specific manner, as shown by slot blot hybridization of the in vitro synthesized RNA to cloned genes encoding 5.8S, 18S and 28S rRNAs, tRNATyr, and GAL7, URA3, TY1 and HIS3 mRNAs. A yeast strain containing a high-copy-number plasmid which overproduced GAL7 mRNA was initially used to facilitate detection of a discrete message. We optimized conditions for the transcription of genes expressed by each of the three yeast nuclear RNA polymerases. Under optimal conditions, labeled transcripts could be detected from single-copy genes normally expressed at low levels in the cells (HIS3 and URA3). We determined that the alpha-amanitin sensitivity of transcript synthesis in the isolated nuclei paralleled the sensitivity of the corresponding purified RNA polymerases; in particular, mRNA synthesis was 50% sensitive to 1 microgram of alpha-amanitin per ml, establishing transcription of mRNA by RNA polymerase II. Images PMID:3537708

  2. Role of transcription factors in peripheral nerve regeneration.

    PubMed

    Patodia, Smriti; Raivich, Gennadij

    2012-01-01

    Following axotomy, the activation of multiple intracellular signaling cascades causes the expression of a cocktail of regeneration-associated transcription factors which interact with each other to determine the fate of the injured neurons. The nerve injury response is channeled through manifold and parallel pathways, integrating diverse inputs, and controlling a complex transcriptional output. Transcription factors form a vital link in the chain of regeneration, converting injury-induced stress signals into downstream protein expression via gene regulation. They can regulate the intrinsic ability of axons to grow, by controlling expression of whole cassettes of gene targets. In this review, we have investigated the functional roles of a number of different transcription factors - c-Jun, activating transcription factor 3, cAMP response element binding protein, signal transducer, and activator of transcription-3, CCAAT/enhancer binding proteins β and δ, Oct-6, Sox11, p53, nuclear factor kappa-light-chain-enhancer of activated B cell, and ELK3 - in peripheral nerve regeneration. Studies involving use of conditional mutants, microarrays, promoter region mapping, and different injury paradigms, have enabled us to understand their distinct as well as overlapping roles in achieving anatomical and functional regeneration after peripheral nerve injury. PMID:22363260

  3. Mitochondrial transcription termination factor 1 directs polar replication fork pausing

    PubMed Central

    Shi, Yonghong; Posse, Viktor; Zhu, Xuefeng; Hyvärinen, Anne K.; Jacobs, Howard T.; Falkenberg, Maria; Gustafsson, Claes M.

    2016-01-01

    During replication of nuclear ribosomal DNA (rDNA), clashes with the transcription apparatus can cause replication fork collapse and genomic instability. To avoid this problem, a replication fork barrier protein is situated downstream of rDNA, there preventing replication in the direction opposite rDNA transcription. A potential candidate for a similar function in mitochondria is the mitochondrial transcription termination factor 1 (MTERF1, also denoted mTERF), which binds to a sequence just downstream of the ribosomal transcription unit. Previous studies have shown that MTERF1 prevents antisense transcription over the ribosomal RNA genes, a process which we here show to be independent of the transcription elongation factor TEFM. Importantly, we now demonstrate that MTERF1 arrests mitochondrial DNA (mtDNA) replication with distinct polarity. The effect is explained by the ability of MTERF1 to act as a directional contrahelicase, blocking mtDNA unwinding by the mitochondrial helicase TWINKLE. This conclusion is also supported by in vivo evidence that MTERF1 stimulates TWINKLE pausing. We conclude that MTERF1 can direct polar replication fork arrest in mammalian mitochondria. PMID:27112570

  4. Transcriptional regulation of drought response: a tortuous network of transcriptional factors

    PubMed Central

    Singh, Dhriti; Laxmi, Ashverya

    2015-01-01

    Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought-responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other. PMID:26579147

  5. Targeting transcription factors by small compounds-Current strategies and future implications.

    PubMed

    Hagenbuchner, Judith; Ausserlechner, Michael J

    2016-05-01

    Transcription factors are central regulators of gene expression and critically steer development, differentiation and death. Except for ligand-activated nuclear receptors, direct modulation of transcription factor function by small molecules is still widely regarded as "impossible". This "un-druggability" of non-ligand transcription factors is due to the fact that the interacting surface between transcription factor and DNA is huge and subject to significant changes during DNA-binding. Besides some "success studies" with compounds that directly interfere with DNA binding, drug targeting approaches mostly address protein-protein interfaces with essential co-factors, transcription factor dimerization partners, chaperone proteins or proteins that regulate subcellular shuttling. An alternative strategy represent DNA-intercalating, alkylating or DNA-groove-binding compounds that either block transcription factor-binding or change the 3D-conformation of the consensus DNA-strand. Recently, much interest has been focused on chromatin reader proteins that steer the recruitment and activity of transcription factors to a gene transcription start site. Several small compounds demonstrate that these epigenetic reader proteins are exciting new drug targets for inhibiting lineage-specific transcription in cancer therapy. In this research update we will discuss recent advances in targeting transcription factors with small compounds, the challenges that are related to the complex function and regulation of these proteins and also the possible future directions and applications of transcription factor drug targeting. PMID:26686579

  6. Tor Signaling Regulates Transcription of Amino Acid Permeases through a GATA Transcription Factor Gaf1 in Fission Yeast

    PubMed Central

    Liu, Qingbin; Qi, Yao; Manabe, Ri-ichiroh; Furuyashiki, Tomoyuki

    2015-01-01

    In the fission yeast, two Tor isoforms, Tor1 and Tor2, oppositely regulate gene expression of amino acid permeases. To elucidate the transcriptional machinery for these regulations, here we have employed the cap analysis of gene expression (CAGE), a method of analyzing expression profiles and identifying transcriptional start sites (TSSs). The loss of Tor1 decreased, and Tor2 inhibition by its temperature sensitive mutation increased, mRNA expression of isp5+, per1+, put4+ and SPBPB2B2.01. In contrast, the loss of Tor1 increased, and Tor2 inhibition decreased, the expression of cat1+. These changes were confirmed by semi-quantitative RT-PCR. These opposite effects by the loss of Tor1 and Tor2 inhibition appeared to occur evenly across multiple TSSs for the respective genes. The motif discovery analysis based on the CAGE results identified the GATA motifs as a potential cis-regulatory element for Tor-mediated regulation. In the luciferase reporter assay, the loss of Tor1 reduced, and Tor2 inhibition and nitrogen depletion increased, the activity of isp5+ promoter as well as that of a GATAAG reporter. One of the GATAAG motifs in isp5+ promoter was critical for its transcriptional activity, and a GATA transcription factor Gaf1 was critical for the activities of isp5+ promoter and the GATAAG reporter. Furthermore, Tor2 inhibition and nitrogen depletion induced nuclear localization of Gaf1 from the cytosol and its dephosphorylation. These results suggest that Tor2 inhibition, which is known to be induced by nitrogen depletion, promotes nuclear localization of Gaf1, thereby inducing isp5+ transcription through Gaf1 binding to the GATAAG motif in its promoter. Since Gaf1 was also critical for transcription of per1+ and put4+, Tor-Gaf1 signaling may coordinate transcription of multiple amino acid permeases according to nutrient availability. PMID:26689777

  7. RNA polymerase and the regulation of transcription

    SciTech Connect

    Reznikoff, W.S.; Gross, C.A.; Burgess, R.R.; Record, M.T.; Dahlberg, J.E.; Wickens, M.P.

    1987-01-01

    This book consists of eight sections, each containing several papers. The section titles are: RNA Polymerases; Transcription Initiation - Bacterial; Regulation of Bacterial Transcription Initiation; Stable RNA Synthesis in Eukaryotes: Chromatin Structure; Promoters; Enhancers; and the Global Control of Eukaryotic Transcription; Specific Eukaryotic Transcription Factors; Termination of Transcription; and Short Communications.

  8. Selective autophagic receptor p62 regulates the abundance of transcriptional coregulator ARIP4 during nutrient starvation

    PubMed Central

    Tsuchiya, Megumi; Isogai, Shin; Taniguchi, Hiroaki; Tochio, Hidehito; Shirakawa, Masahiro; Morohashi, Ken-ichirou; Hiraoka, Yasushi; Haraguchi, Tokuko; Ogawa, Hidesato

    2015-01-01

    Transcriptional coregulators contribute to several processes involving nuclear receptor transcriptional regulation. The transcriptional coregulator androgen receptor-interacting protein 4 (ARIP4) interacts with nuclear receptors and regulates their transcriptional activity. In this study, we identified p62 as a major interacting protein partner for ARIP4 in the nucleus. Nuclear magnetic resonance analysis demonstrated that ARIP4 interacts directly with the ubiquitin-associated (UBA) domain of p62. ARIP4 and ubiquitin both bind to similar amino acid residues within UBA domains; therefore, these proteins may possess a similar surface structure at their UBA-binding interfaces. We also found that p62 is required for the regulation of ARIP4 protein levels under nutrient starvation conditions. We propose that p62 is a novel binding partner for ARIP4, and that its binding regulates the cellular protein level of ARIP4 under conditions of metabolic stress. PMID:26412716

  9. Dietary and nutritional manipulation of the nuclear transcription factors peroxisome proliferator-activated receptor and sterol regulatory element-binding proteins as a tool for reversing the primary diseases of premature death and delaying aging.

    PubMed

    Kurtak, Karen A

    2014-04-01

    Evolution over 2.1 billion years has equipped us with a biochemical pathway that has the power to literally reverse the primary disease etiologies that have become the leading causes of death and aging in the developed world. Activation of the peroxisome proliferator-activated receptor (PPAR) pathway arrests inflammatory signaling throughout the body, reverses damage to tissues, reverses insulin resistance, and can even dissolve beta-amyloid plaque in the brain. It has played a critical role in the evolution of the metazoans and the successful migration of humans to all corners of the Earth. For two decades, various pharmaceuticals have been designed to activate the PPAR pathway but have consistently fallen short of expectations. There is nothing wrong with these drugs. The problem has been the standard "healthy" diet creating mixed signals that render the drugs ineffective. This article explores the ongoing dance between the two primary nuclear receptors that mediate gene regulation of fatty acids. It discusses their interaction with sirtuins and telomerase, optimization of their obligate heterodimers, and why manipulation of dietary and nutritional factors, like the ketogenic diet, is the most effective means of activation. These are effective tools that we can start implementing now to slow, and in some cases reverse, the diseases of aging. PMID:24713058

  10. Transcription of Trypanosoma brucei maxicircles

    SciTech Connect

    Michelotti, E.F.; Hajduk, S.L.

    1987-05-01

    Trypanosoma brucei is a protozoan parasite which developmentally regulates mitochondrial activity. In the mammal T. brucei produces ATP entirely by glycolysis while cytochrome mediated respiration resumes in the life-stage in the midgut of the insect vector. Using quantitative S1 nuclease protection assays two types of regulation of the steady state levels of the mitochondrial transcripts were found. Transcription of cytochrome b, cytochrome oxidase, and the rRNA genes is repressed in early bloodstream developmental stages, undergoes dramatic activation in later bloodstream stages, and finally a lesser activation in the insect developmental stage. Transcription of NADH dehydrogenase genes, however, is unregulated. Mitochondrial transcripts with a 5' triphosphate terminus, representing the site of transcription initiation, were capped using guanylyl transferase. The in vitro capped RNA hybridized to only one of eight mitochondrial restriction fragments on a Southern blot, however, hybridization of Southern blots with RNA from ..cap alpha..-/sup 32/P-UTP pulsed mitochondria labelled all restriction fragments equally. These results suggest that each DNA strand has a single promoter which directs the transcription of a full-length RNA which is subsequently processed. Different mitochondrial genes, despite being expressed on the same precursor RNA molecule, are independently regulated by both transcription initiation and RNA processing.

  11. AthaMap, integrating transcriptional and post-transcriptional data

    PubMed Central

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403 173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  12. AthaMap, integrating transcriptional and post-transcriptional data.

    PubMed

    Bülow, Lorenz; Engelmann, Stefan; Schindler, Martin; Hehl, Reinhard

    2009-01-01

    The AthaMap database generates a map of predicted transcription factor binding sites (TFBS) for the whole Arabidopsis thaliana genome. AthaMap has now been extended to include data on post-transcriptional regulation. A total of 403,173 genomic positions of small RNAs have been mapped in the A. thaliana genome. These identify 5772 putative post-transcriptionally regulated target genes. AthaMap tools have been modified to improve the identification of common TFBS in co-regulated genes by subtracting post-transcriptionally regulated genes from such analyses. Furthermore, AthaMap was updated to the TAIR7 genome annotation, a graphic display of gene analysis results was implemented, and the TFBS data content was increased. AthaMap is freely available at http://www.athamap.de/. PMID:18842622

  13. Post-Transcriptional Control of Chloroplast Gene Expression

    PubMed Central

    del Campo, Eva M.

    2009-01-01

    Chloroplasts contain their own genome, organized as operons, which are generally transcribed as polycistronic transcriptional units. These primary transcripts are processed into smaller RNAs, which are further modified to produce functional RNAs. The RNA processing mechanisms remain largely unknown and represent an important step in the control of chloroplast gene expression. Such mechanisms include RNA cleavage of pre-existing RNAs, RNA stabilization, intron splicing, and RNA editing. Recently, several nuclear-encoded proteins that participate in diverse plastid RNA processing events have been characterised. Many of them seem to belong to the pentatricopeptide repeat (PPR) protein family that is implicated in many crucial functions including organelle biogenesis and plant development. This review will provide an overview of current knowledge of the post-transcriptional processing in chloroplasts. PMID:19838333

  14. Nuclear Medicine

    MedlinePlus

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...