Science.gov

Sample records for nuclear verification helping

  1. Nuclear disarmament verification

    SciTech Connect

    DeVolpi, A.

    1993-12-31

    Arms control treaties, unilateral actions, and cooperative activities -- reflecting the defusing of East-West tensions -- are causing nuclear weapons to be disarmed and dismantled worldwide. In order to provide for future reductions and to build confidence in the permanency of this disarmament, verification procedures and technologies would play an important role. This paper outlines arms-control objectives, treaty organization, and actions that could be undertaken. For the purposes of this Workshop on Verification, nuclear disarmament has been divided into five topical subareas: Converting nuclear-weapons production complexes, Eliminating and monitoring nuclear-weapons delivery systems, Disabling and destroying nuclear warheads, Demilitarizing or non-military utilization of special nuclear materials, and Inhibiting nuclear arms in non-nuclear-weapons states. This paper concludes with an overview of potential methods for verification.

  2. Helping nuclear power help us

    SciTech Connect

    Schecker, Jay A

    2009-01-01

    After a prolonged absence, the word 'nuclear' has returned to the lexicon of sustainable domestic energy resources. Due in no small part to its demonstrated reliability, nuclear power is poised to playa greater role in the nation's energy future, producing clean, carbon-neutral electricity and contributing even more to our energy security. To nuclear scientists, the resurgence presents an opportunity to inject new technologies into the industry to maximize the benefits that nuclear energy can provide. 'By developing new options for waste management and exploiting new materials to make key technological advances, we can significantly impact the use of nuclear energy in our future energy mix,' says Chris Stanek, a materials scientist at Los Alamos National Laboratory. Stanek approaches the big technology challenges by thinking way small, all the way down to the atoms. He and his colleagues are using cutting edge atomic-scale simulations to address a difficult aspect of nuclear waste -- predicting its behavior far into the future. Their research is part of a broader, coordinated effort on the part of the Laboratory to use its considerable experimental, theoretical, and computational capabilities to explore advanced materials central to not only waste issues, but to nuclear fuels as well.

  3. Nuclear Data Verification and Standardization

    SciTech Connect

    Karam, Lisa R.; Arif, Muhammad; Thompson, Alan K.

    2011-10-01

    The objective of this interagency program is to provide accurate neutron interaction verification and standardization data for the U.S. Department of Energy Division of Nuclear Physics programs which include astrophysics, radioactive beam studies, and heavy-ion reactions. The measurements made in this program are also useful to other programs that indirectly use the unique properties of the neutron for diagnostic and analytical purposes. These include homeland security, personnel health and safety, nuclear waste disposal, treaty verification, national defense, and nuclear based energy production. The work includes the verification of reference standard cross sections and related neutron data employing the unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; and the preservation of standard reference deposits. An essential element of the program is critical evaluation of neutron interaction data standards including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology.

  4. The monitoring and verification of nuclear weapons

    SciTech Connect

    Garwin, Richard L.

    2014-05-09

    This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

  5. The monitoring and verification of nuclear weapons

    NASA Astrophysics Data System (ADS)

    Garwin, Richard L.

    2014-05-01

    This paper partially reviews and updates the potential for monitoring and verification of nuclear weapons, including verification of their destruction. Cooperative monitoring with templates of the gamma-ray spectrum are an important tool, dependent on the use of information barriers.

  6. Thoughts on Verification of Nuclear Disarmament

    SciTech Connect

    Dunlop, W H

    2007-09-26

    perfect and it was expected that occasionally there might be a verification measurement that was slightly above 150 kt. But the accuracy was much improved over the earlier seismic measurements. In fact some of this improvement was because as part of this verification protocol the US and Soviet Union provided the yields of several past tests to improve seismic calibrations. This actually helped provide a much needed calibration for the seismic measurements. It was also accepted that since nuclear tests were to a large part R&D related, it was also expected that occasionally there might be a test that was slightly above 150 kt, as you could not always predict the yield with high accuracy in advance of the test. While one could hypothesize that the Soviets could do a test at some other location than their test sites, if it were even a small fraction of 150 kt it would clearly be observed and would be a violation of the treaty. So the issue of clandestine tests of significance was easily covered for this particular treaty.

  7. Nuclear test ban verification: Recent Canadian research in forensic seismology

    SciTech Connect

    Chun, K.Y.

    1991-07-01

    Seismology provides the primary means for monitoring nuclear explosions that take place underground. Improved seismographic hardware, Canadian research expertise, and the availability of a vast proving ground (the Canadian land mass which bears close resemblance with other regions of nuclear test ban verification interest), are all helping Canada become an increasingly notable contributor to the highly specialized branch of forensic seismology. The report describes: (1) verification and its rationale; (2) the basic tasks of seismic verification; (3) the physical basis for earthquake/explosion source discrimination and explosion yield determination; (4) the technical problems pertaining to seismic monitoring of underground nuclear tests; (5) the basic problem solving strategy deployed by the forensic seismology research team at the University of Toronoto; and (6) the scientific significance of the team's research.

  8. DESIGN INFORMATION VERIFICATION FOR NUCLEAR SAFEGUARDS

    SciTech Connect

    Robert S. Bean; Richard R. M. Metcalf; Phillip C. Durst

    2009-07-01

    A critical aspect of international safeguards activities performed by the International Atomic Energy Agency (IAEA) is the verification that facility design and construction (including upgrades and modifications) do not create opportunities for nuclear proliferation. These Design Information Verification activities require that IAEA inspectors compare current and past information about the facility to verify the operator’s declaration of proper use. The actual practice of DIV presents challenges to the inspectors due to the large amount of data generated, concerns about sensitive or proprietary data, the overall complexity of the facility, and the effort required to extract just the safeguards relevant information. Planned and anticipated facilities will (especially in the case of reprocessing plants) be ever larger and increasingly complex, thus exacerbating the challenges. This paper reports the results of a workshop held at the Idaho National Laboratory in March 2009, which considered technologies and methods to address these challenges. The use of 3D Laser Range Finding, Outdoor Visualization System, Gamma-LIDAR, and virtual facility modeling, as well as methods to handle the facility data issues (quantity, sensitivity, and accessibility and portability for the inspector) were presented. The workshop attendees drew conclusions about the use of these techniques with respect to successfully employing them in an operating environment, using a Fuel Conditioning Facility walk-through as a baseline for discussion.

  9. A Zero Knowledge Protocol For Nuclear Warhead Verification

    SciTech Connect

    Glaser, Alexander; Goldston, Robert J.

    2014-03-14

    The verification of nuclear warheads for arms control faces a paradox: International inspectors must gain high confidence in the authenticity of submitted items while learning nothing about them. Conventional inspection systems featuring ''information barriers'', designed to hide measurments stored in electronic systems, are at risk of tampering and snooping. Here we show the viability of fundamentally new approach to nuclear warhead verification that incorporates a zero-knowledge protocol, designed such that sensitive information is never measured so does not need to be hidden. We interrogate submitted items with energetic neutrons, making in effect, differential measurements of neutron transmission and emission. Calculations of diversion scenarios show that a high degree of discrimination can be achieved while revealing zero information. Timely demonstration of the viability of such an approach could be critical for the nexxt round of arms-control negotiations, which will likely require verification of individual warheads, rather than whole delivery systems.

  10. Nuclear reaction modeling, verification experiments, and applications

    SciTech Connect

    Dietrich, F.S.

    1995-10-01

    This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.

  11. Physical cryptographic verification of nuclear warheads.

    PubMed

    Kemp, R Scott; Danagoulian, Areg; Macdonald, Ruaridh R; Vavrek, Jayson R

    2016-08-01

    How does one prove a claim about a highly sensitive object such as a nuclear weapon without revealing information about the object? This paradox has challenged nuclear arms control for more than five decades. We present a mechanism in the form of an interactive proof system that can validate the structure and composition of an object, such as a nuclear warhead, to arbitrary precision without revealing either its structure or composition. We introduce a tomographic method that simultaneously resolves both the geometric and isotopic makeup of an object. We also introduce a method of protecting information using a provably secure cryptographic hash that does not rely on electronics or software. These techniques, when combined with a suitable protocol, constitute an interactive proof system that could reject hoax items and clear authentic warheads with excellent sensitivity in reasonably short measurement times. PMID:27432959

  12. Physical cryptographic verification of nuclear warheads

    PubMed Central

    Kemp, R. Scott; Danagoulian, Areg; Macdonald, Ruaridh R.; Vavrek, Jayson R.

    2016-01-01

    How does one prove a claim about a highly sensitive object such as a nuclear weapon without revealing information about the object? This paradox has challenged nuclear arms control for more than five decades. We present a mechanism in the form of an interactive proof system that can validate the structure and composition of an object, such as a nuclear warhead, to arbitrary precision without revealing either its structure or composition. We introduce a tomographic method that simultaneously resolves both the geometric and isotopic makeup of an object. We also introduce a method of protecting information using a provably secure cryptographic hash that does not rely on electronics or software. These techniques, when combined with a suitable protocol, constitute an interactive proof system that could reject hoax items and clear authentic warheads with excellent sensitivity in reasonably short measurement times. PMID:27432959

  13. Methods of Verification, Accountability and Control of Special Nuclear Material

    SciTech Connect

    Stewart, J.E.

    1999-05-03

    This session demonstrates nondestructive assay (NDA) measurement, surveillance and analysis technology required to protect, control and account (MPC and A) for special nuclear materials (SNM) in sealed containers. These measurements, observations and analyses comprise state-of-the art, strengthened, SNM safeguards systems. Staff member specialists, actively involved in research, development, training and implementation worldwide, will present six NDA verification systems and two software tools for integration and analysis of facility MPC and A data.

  14. As-Built Verification Plan Spent Nuclear Fuel Canister Storage Building MCO Handling Machine

    SciTech Connect

    SWENSON, C.E.

    2000-10-19

    This as-built verification plan outlines the methodology and responsibilities that will be implemented during the as-built field verification activity for the Canister Storage Building (CSB) MCO HANDLING MACHINE (MHM). This as-built verification plan covers THE ELECTRICAL PORTION of the CONSTRUCTION PERFORMED BY POWER CITY UNDER CONTRACT TO MOWAT. The as-built verifications will be performed in accordance Administrative Procedure AP 6-012-00, Spent Nuclear Fuel Project As-Built Verification Plan Development Process, revision I. The results of the verification walkdown will be documented in a verification walkdown completion package, approved by the Design Authority (DA), and maintained in the CSB project files.

  15. Mobile Pit verification system design based on passive special nuclear material verification in weapons storage facilities

    SciTech Connect

    Paul, J. N.; Chin, M. R.; Sjoden, G. E.

    2013-07-01

    A mobile 'drive by' passive radiation detection system to be applied in special nuclear materials (SNM) storage facilities for validation and compliance purposes has been designed through the use of computational modeling and new radiation detection methods. This project was the result of work over a 1 year period to create optimal design specifications to include creation of 3D models using both Monte Carlo and deterministic codes to characterize the gamma and neutron leakage out each surface of SNM-bearing canisters. Results were compared and agreement was demonstrated between both models. Container leakages were then used to determine the expected reaction rates using transport theory in the detectors when placed at varying distances from the can. A 'typical' background signature was incorporated to determine the minimum signatures versus the probability of detection to evaluate moving source protocols with collimation. This established the criteria for verification of source presence and time gating at a given vehicle speed. New methods for the passive detection of SNM were employed and shown to give reliable identification of age and material for highly enriched uranium (HEU) and weapons grade plutonium (WGPu). The finalized 'Mobile Pit Verification System' (MPVS) design demonstrated that a 'drive-by' detection system, collimated and operating at nominally 2 mph, is capable of rapidly verifying each and every weapon pit stored in regularly spaced, shelved storage containers, using completely passive gamma and neutron signatures for HEU and WGPu. This system is ready for real evaluation to demonstrate passive total material accountability in storage facilities. (authors)

  16. 75 FR 34439 - Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... of the Secretary Defense Science Board Task Force on Nuclear Treaty Monitoring and Verification... Science Board Task Force on Nuclear Treaty Monitoring and Verification will meet in closed session on July... on August 24-25, 2010. ADDRESSES: Both meetings will be held at Science Applications...

  17. TRANSPARENCY, VERIFICATION AND THE FUTURE OF NUCLEAR NONPROLIFERATION AND ARMS CONTROL

    SciTech Connect

    J. PILAT

    2000-11-01

    In the future, if the nuclear nonproliferation and arms control agendas are to advance, they will likely become increasingly seen as parallel undertakings with the objective of cradle-to-grave controls over nuclear warheads and/or materials. The pursuit of such an agenda was difficult enough at the outset of the nuclear age; it will be more difficult in the future with relatively wide-spread military and civil nuclear programs. This agenda will require both verification and transparency. To address emerging nuclear dangers, we may expect hybrid verification-transparency regimes to be seen as acceptable. Such regimes would have intrusive but much more limited verification provisions than Cold War accords, and have extensive transparency provisions designed in part to augment the verification measures, to fill in the ''gaps'' of the verification regime, and the like.

  18. Supporting the President's Arms Control and Nonproliferation Agenda: Transparency and Verification for Nuclear Arms Reductions

    SciTech Connect

    Doyle, James E; Meek, Elizabeth

    2009-01-01

    The President's arms control and nonproliferation agenda is still evolving and the details of initiatives supporting it remain undefined. This means that DOE, NNSA, NA-20, NA-24 and the national laboratories can help define the agenda, and the policies and the initiatives to support it. This will require effective internal and interagency coordination. The arms control and nonproliferation agenda is broad and includes the path-breaking goal of creating conditions for the elimination of nuclear weapons. Responsibility for various elements of the agenda will be widely scattered across the interagency. Therefore an interagency mapping exercise should be performed to identify the key points of engagement within NNSA and other agencies for creating effective policy coordination mechanisms. These can include informal networks, working groups, coordinating committees, interagency task forces, etc. It will be important for NA-20 and NA-24 to get a seat at the table and a functional role in many of these coordinating bodies. The arms control and nonproliferation agenda comprises both mature and developing policy initiatives. The more mature elements such as CTBT ratification and a follow-on strategic nuclear arms treaty with Russia have defined milestones. However, recent press reports indicate that even the START follow-on strategic arms pact that is planned to be complete by the end of 2009 may take significantly longer and be more expansive in scope. The Russians called for proposals to count non-deployed as well as deployed warheads. Other elements of the agenda such as FMCT, future bilateral nuclear arms reductions following a START follow-on treaty, nuclear posture changes, preparations for an international nuclear security summit, strengthened international safeguards and multilateral verification are in much earlier stages of development. For this reason any survey of arms control capabilities within the USG should be structured to address potential needs across the

  19. Fuzzy-logic-based safety verification framework for nuclear power plants.

    PubMed

    Rastogi, Achint; Gabbar, Hossam A

    2013-06-01

    This article presents a practical implementation of a safety verification framework for nuclear power plants (NPPs) based on fuzzy logic where hazard scenarios are identified in view of safety and control limits in different plant process values. Risk is estimated quantitatively and compared with safety limits in real time so that safety verification can be achieved. Fuzzy logic is used to define safety rules that map hazard condition with required safety protection in view of risk estimate. Case studies are analyzed from NPP to realize the proposed real-time safety verification framework. An automated system is developed to demonstrate the safety limit for different hazard scenarios. PMID:23020592

  20. Verification and Uncertainty Reduction of Amchitka Underground Nuclear Testing Models

    SciTech Connect

    Ahmed Hassan; Jenny Chapman

    2006-02-01

    The modeling of Amchitka underground nuclear tests conducted in 2002 is verified and uncertainty in model input parameters, as well as predictions, has been reduced using newly collected data obtained by the summer 2004 field expedition of CRESP. Newly collected data that pertain to the groundwater model include magnetotelluric (MT) surveys conducted on the island to determine the subsurface salinity and porosity structure of the subsurface, and bathymetric surveys to determine the bathymetric maps of the areas offshore from the Long Shot and Cannikin Sites. Analysis and interpretation of the MT data yielded information on the location of the transition zone, and porosity profiles showing porosity values decaying with depth. These new data sets are used to verify the original model in terms of model parameters, model structure, and model output verification. In addition, by using the new data along with the existing data (chemistry and head data), the uncertainty in model input and output is decreased by conditioning on all the available data. A Markov Chain Monte Carlo (MCMC) approach is adapted for developing new input parameter distributions conditioned on prior knowledge and new data. The MCMC approach is a form of Bayesian conditioning that is constructed in such a way that it produces samples of the model parameters that eventually converge to a stationary posterior distribution. The Bayesian MCMC approach enhances probabilistic assessment. Instead of simply propagating uncertainty forward from input parameters into model predictions (i.e., traditional Monte Carlo approach), MCMC propagates uncertainty backward from data onto parameters, and then forward from parameters into predictions. Comparisons between new data and the original model, and conditioning on all available data using MCMC method, yield the following results and conclusions: (1) Model structure is verified at Long Shot and Cannikin where the high-resolution bathymetric data collected by CRESP

  1. Help

    ERIC Educational Resources Information Center

    Tollefson, Ann

    2009-01-01

    Planning to start or expand a K-8 critical language program? Looking for support in doing so? There "may" be help at the federal level for great ideas and strong programs. While there have been various pools of federal dollars available to support world language programs for a number of years, the federal government's interest in assuring strong…

  2. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    PICKETT, W.W.

    2000-09-22

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

  3. Verification Study of Buoyancy-Driven Turbulent Nuclear Combustion

    SciTech Connect

    2010-01-01

    Buoyancy-driven turbulent nuclear combustion determines the rate of nuclear burning during the deflagration phase (i.e., the ordinary nuclear flame phase) of Type Ia supernovae, and hence the amount of nuclear energy released during this phase. It therefore determines the amount the white dwarf str expands prior to initiation of a detonation wave, and so the amount of radioactive nickel and thus the peak luminosity of the explosion. However, this key physical process is not fully understood. To better understand this process, the Flash Center has conducted an extensive series of large-scale 3D simulations of buoyancy-driven turbulent nuclear combustion for three different physical situations. This movie shows the results for some of these simulations. Credits: Science: Ray Bair, Katherine Riley, Argonne National Laboratory; Anshu Dubey, Don Lamb, Dongwook Lee, University of Chicago; Robert Fisher, University of Massachusetts at Dartmouth and Dean Townsley, University of Alabama

 Visualization: Jonathan Gallagher, University of Chicago; Randy Hudson, John Norris and Michael E. Papka, Argonne National Laboratory/University of Chicago This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy under contract DE-AC02-06CH11357. This research was supported in part by the National Science Foundation through TeraGrid resources provided by the University of Chicago and Argonne National Laboratory.

  4. North Korea's nuclear weapons program:verification priorities and new challenges.

    SciTech Connect

    Moon, Duk-ho

    2003-12-01

    A comprehensive settlement of the North Korean nuclear issue may involve military, economic, political, and diplomatic components, many of which will require verification to ensure reciprocal implementation. This paper sets out potential verification methodologies that might address a wide range of objectives. The inspection requirements set by the International Atomic Energy Agency form the foundation, first as defined at the time of the Agreed Framework in 1994, and now as modified by the events since revelation of the North Korean uranium enrichment program in October 2002. In addition, refreezing the reprocessing facility and 5 MWe reactor, taking possession of possible weapons components and destroying weaponization capabilities add many new verification tasks. The paper also considers several measures for the short-term freezing of the North's nuclear weapon program during the process of negotiations, should that process be protracted. New inspection technologies and monitoring tools are applicable to North Korean facilities and may offer improved approaches over those envisioned just a few years ago. These are noted, and potential bilateral and regional verification regimes are examined.

  5. A nuclear fuel verification system using digital imaging of Cherenkov light

    NASA Astrophysics Data System (ADS)

    Michael Attas, E.; Burton, Gordon R.; Dennis Chen, J.; Young, Gary J.; Hildingsson, Lars; Trepte, Oliver

    1997-02-01

    An UV-sensitive scientific CCD camera has been tested at a power reactor facility to image the faint Cherenkov light from irradiated nuclear fuel. The instrument mates custom optical components (lens, UV-pass filter) to a commercial scientific camera (Astrocam 4100) with a coated frame-transfer CCD chip (EEV 37-10) to produce 12-bit images of 512 × 512 pixels at several frames per second. A 250-mm {f}/{2.6} catadioptric lens has been designed with transmissive optics optimized for this application, incorporating colour correction for viewing through 10 m of water. The filter has an average transmission of 80% from 280 to 320 nm, with visible-light transmission of less than 0.03% from 365 to 780 nm to block artificial lighting in the fuel bay. Measurements were made with this instrument at the Ringhals Nuclear Power Plant, and the CLAB fuel storage facility in Sweden. Both fuel and non-fuel assemblies of boiling-water reactor (BWR) type were studied. Performance is superior to that of the earlier Cherenkov viewing devices (CVDs) based on image intensifier tubes. Increased sensitivity extends the range of the Cherenkov verification technique to fuel with older discharge dates. Increased resolution allows fine details of the fuel to be examined for higher-confidence safeguards verification. Sample digital images are presented, and the advantages to irradiated-fuel verification of image quantitation, storage, transmission, and processing are discussed.

  6. A gamma-ray verification system for special nuclear material

    SciTech Connect

    Lanier, R.G.; Prindle, A.L.; Friensehner, A.V.; Buckley, W.M.

    1994-07-01

    The Safeguards Technology Program at the Lawrence Livermore National Laboratory (LLNL) has developed a gamma-ray screening system for use by the Materials Management Section of the Engineering Sciences Division at LLNL for verifying the presence or absence of special nuclear material (SNM) in a sample. This system facilitates the measurements required under the ``5610`` series of US Department of Energy orders. MMGAM is an intelligent, menu driven software application that runs on a personal computer and requires a precalibrated multi-channel analyzer and HPGe detector. It provides a very quick and easy-to-use means of determining the presence of SNM in a sample. After guiding the operator through a menu driven set-up procedure, the system provides an on-screen GO/NO-GO indication after determining the system calibration status. This system represents advances over earlier used systems in the areas of ease-of use, operator training requirements, and quality assurance. The system records the gamma radiation from a sample using a sequence of measurements involving a background measurement followed immediately by a measurement of the unknown sample. Both spectra are stored and available for analysis or output. In the current application, the presence of {sup 235}U, {sup 238}U, {sup 239}Pu, and {sup 208}Tl isotopes are indicated by extracting, from the stored spectra, four energy ``windows`` preset around gamma-ray lines characteristic of the radioactive decay of these nuclides. The system is easily extendible to more complicated problems.

  7. Development of a test system for verification and validation of nuclear transport simulations

    SciTech Connect

    White, Morgan C; Triplett, Brian S; Anghaie, Samim

    2008-01-01

    Verification and validation of nuclear data is critical to the accuracy of both stochastic and deterministic particle transport codes. In order to effectively test a set of nuclear data, the data must be applied to a wide variety of transport problems. Performing this task in a timely, efficient manner is tedious. The nuclear data team at Los Alamos National laboratory in collaboration with the University of Florida has developed a methodology to automate the process of nuclear data verification and validation (V and V). This automated V and V process can efficiently test a number of data libraries using well defined benchmark experiments, such as those in the International Criticality Safety Benchmark Experiment Project (ICSBEP). The process is implemented through an integrated set of Pyton scripts. Material and geometry data are read from an existing medium or given directly by the user to generate a benchmark experiment template file. The user specifies the choice of benchmark templates, codes, and libraries to form a V and V project. The Python scripts generate input decks for multiple transport codes from the templates, run and monitor individual jobs, and parse the relevant output automatically. The output can then be used to generate reports directly or can be stored into a database for later analysis. This methodology eases the burden on the user by reducing the amount of time and effort required for obtaining and compiling calculation results. The resource savings by using this automated methodology could potentially be an enabling technology for more sophisticated data studies, such as nuclear data uncertainty quantification. Once deployed, this tool will allow the nuclear data community to more thoroughly test data libraries leading to higher fidelity data in the future.

  8. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect

    BAZINET, G.D.

    2000-11-03

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted

  9. Development of a Consensus Standard for Verification and Validation of Nuclear System Thermal-Fluids Software

    SciTech Connect

    Edwin A. Harvego; Richard R. Schultz; Ryan L. Crane

    2011-12-01

    With the resurgence of nuclear power and increased interest in advanced nuclear reactors as an option to supply abundant energy without the associated greenhouse gas emissions of the more conventional fossil fuel energy sources, there is a need to establish internationally recognized standards for the verification and validation (V&V) of software used to calculate the thermal-hydraulic behavior of advanced reactor designs for both normal operation and hypothetical accident conditions. To address this need, ASME (American Society of Mechanical Engineers) Standards and Certification has established the V&V 30 Committee, under the jurisdiction of the V&V Standards Committee, to develop a consensus standard for verification and validation of software used for design and analysis of advanced reactor systems. The initial focus of this committee will be on the V&V of system analysis and computational fluid dynamics (CFD) software for nuclear applications. To limit the scope of the effort, the committee will further limit its focus to software to be used in the licensing of High-Temperature Gas-Cooled Reactors. In this framework, the Standard should conform to Nuclear Regulatory Commission (NRC) and other regulatory practices, procedures and methods for licensing of nuclear power plants as embodied in the United States (U.S.) Code of Federal Regulations and other pertinent documents such as Regulatory Guide 1.203, 'Transient and Accident Analysis Methods' and NUREG-0800, 'NRC Standard Review Plan'. In addition, the Standard should be consistent with applicable sections of ASME NQA-1-2008 'Quality Assurance Requirements for Nuclear Facility Applications (QA)'. This paper describes the general requirements for the proposed V&V 30 Standard, which includes; (a) applicable NRC and other regulatory requirements for defining the operational and accident domain of a nuclear system that must be considered if the system is to be licensed, (b) the corresponding calculation domain of

  10. REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS

    SciTech Connect

    Richard Metcalf; Robert Bean

    2009-10-01

    Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEA’s Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facility’s general character, purpose, capacity, and location; (2) Description of the facility’s layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards

  11. Technology diffusion of a different nature: Applications of nuclear safeguards technology to the chemical weapons verification regime

    SciTech Connect

    Kadner, S.P.; Reisman, A.; Turpen, E.

    1996-10-01

    The following discussion focuses on the issue of arms control implementation from the standpoint of technology and technical assistance. Not only are the procedures and techniques for safeguarding nuclear materials undergoing substantial changes, but the implementation of the Chemical Weapons Convention (CWC) and the Biological Weapons Convention (BWC) will give rise to technical difficulties unprecedented in the implementation of arms control verification. Although these regimes present new challenges, an analysis of the similarities between the nuclear and chemical weapons non-proliferation verification regimes illustrates the overlap in technological solutions. Just as cost-effective and efficient technologies can solve the problems faced by the nuclear safeguards community, these same technologies offer solutions for the CWC safeguards regime. With this in mind, experts at the Organization for the Prohibition of Chemical Weapons (OPCW), who are responsible for verification implementation, need to devise a CWC verification protocol that considers the technology already available. The functional similarity of IAEA and the OPCW, in conjunction with the technical necessities of both verification regimes, should receive attention with respect to the establishment of a technical assistance program. Lastly, the advanced status of the nuclear and chemical regime vis-a-vis the biological non-proliferation regime can inform our approach to implementation of confidence building measures for biological weapons.

  12. A New Approach to Nuclear Warhead Verification Using a Zero-Knowledge Protocol

    SciTech Connect

    Glaser,; Alexander,

    2012-05-16

    Warhead verification systems proposed to date fundamentally rely on the use of information barriers to prevent the release of classified design information. Measurements with information carriers significantly increase the complexity of inspection systems, make their certification and authentication difficult, and may reduce the overall confidence in the verifiability of future arms- control agreements. This talk presents a proof-of-concept of a new approach to nuclear warhead verification that minimizes the role of information barriers from the outset and envisions instead an inspection system that a priori avoids leakage of sensitive information using a so-called zero-knowledge protocol. The proposed inspection system is based on the template-matching approach and relies on active interrogation of a test object with 14-MeV neutrons. The viability of the method is examined with MCNP Monte Carlo neutron transport calculations modeling the experimental setup, an investigation of different diversion scenarios, and an analysis of the simulated data showing that it does not contain information about the properties of the inspected object.

  13. Verification of occupational doses at the first nuclear plant in the former Soviet Union.

    PubMed

    Romanyukha, A A; Regulla, D; Vasilenko, E K; Wieser, A; Drozhko, E G; Lyzlov, A F; Koshurnikova, N A; Shilnikova, N S; Panfilov, A P

    1996-01-01

    Mean annual occupational exposures are reported for radiation workers at the first Russian industrial nuclear facility 'Mayak', South Ural region, for the period 1948-1988. The underlying individual doses originate from the register of the in-plant radiation safety department and are based on local film dosimetry results. Differentiation is made between personnel working at reactor and radiochemical processing plants. Verification of summed film doses is performed by means of ESR dose reconstruction using extracted teeth from selected individuals. Explanations are given for observed discrepancies between the reconstructed individual doses and original integrated film dosimetry results. The research potential of combined dose information from specific tooth enamel and dentine are shown. PMID:9022184

  14. Applications of a Fast Neutron Detector System to Verification of Special Nuclear Materials

    NASA Astrophysics Data System (ADS)

    Mayo, Douglas R.; Byrd, Roger C.; Ensslin, Norbert; Krick, Merlyn S.; Mercer, David J.; Miller, Michael C.; Prettyman, Thomas H.; Russo, Phyllis A.

    1998-04-01

    An array of boron-loaded plastic optically coupled to bismuth germanate scintillators has been developed to detect neutrons for measurement of special nuclear materials. The phoswiched detection system has the advantage of a high neutron detection efficiency and short die-away time. This is achieved by mixing the moderator (plastic) and the detector (^10B) at the molecular level. Simulations indicate that the neutron capture probabilities equal or exceed those of the current thermal neutron multiplicity techniques which have the moderator (polyethylene) and detectors (^3He gas proportional tubes) macroscopically separate. Experiments have been performed to characterize the response of these detectors and validate computer simulations. The fast neutron detection system may be applied to the quantitative assay of plutonium in high (α,n) backgrounds, with emphasis on safeguards and enviromental scenarios. Additional applications of the insturment, in a non-quantative mode, has been tested for possible verification activities involving dismantlement of nuclear weapons. A description of the detector system, simulations and preliminary data will be presented.

  15. Seismic surveillance: Nuclear test ban verification. Technical report, 1 Jan-31 Dec 90

    SciTech Connect

    Husebye, E.S.; Ruud, B.O.

    1991-02-27

    The project is aimed at seismic surveillance as part of on-going efforts for improving nuclear test ban verification capabilities. The problem is complex in the sense that underground explosions are most efficiently monitored by seismic means, but that the distinction between signals emitted by natural earthquakes and explosions remains unclear, at least at local and regional distances. In other words, seismic wave propagation in a heterogeneous Earth may easily mask specific source signatures. Section 2 presents a new scheme for seismic signal detection on the basis of three-component (3C) seismograph recording systems. A dual test statistics are introduced, namely a conventional STA/LTA on a stand alone basis or a combination of STA/LTA and a P-signal polarity measure. In the latter case a relatively low STA/LTA threshold can be used. An added advantage with the polarity estimate is that a corresponding slowness vector estimate is obtained. The detector is operated in three steps; (1) run detector on a suit of bandpass filtered records, (2) compress raw detection log while retaining parameters from the best filter, and (3) group detected and identified phases into event families and estimate epicenter parameters.

  16. Stabilized, hand-held, gamma-ray verification instrument for special nuclear materials

    SciTech Connect

    Fehlau, P.E.; Wiig, G.

    1988-01-01

    For many years, Los Alamos has developed intelligent, hand-held, search instruments for use by non-specialists to search for special nuclear materials (SNM). The instruments sense SNM by detecting its emitted radiation with scintillation detectors monitored by digital alarm circuitry. Now, we have developed a new hand-held instrument that can verify the presence or absence of particular radioisotopes by analyzing gamma-ray spectra. The new instrument is similar to recent, microprocessor-based, search instruments, but has LED detector stabilization, three adjustable regions-of-interest, and additional operating programs for spectrum analysis. We call the new instrument an SNM verification instrument. Its spectrum analysis capability can verify the presence or absence of specific plutonium isotopes in containers or verify the presence of uranium and its enrichment. The instrument retains the search capability, light weight, and low-power requirement of its predecessors. Its ready portability, detector stabilization, and simple operation allow individuals with little technical training to verify the contents of SNM containers. 5 refs., 5 figs.

  17. Technology Foresight and nuclear test verification: a structured and participatory approach

    NASA Astrophysics Data System (ADS)

    Noack, Patrick; Gaya-Piqué, Luis; Haralabus, Georgios; Auer, Matthias; Jain, Amit; Grenard, Patrick

    2013-04-01

    As part of its mandate, the CTBTO's nuclear explosion monitoring programme aims to maintain its sustainability, effectiveness and its long-term relevance to the verification regime. As such, the PTS is conducting a Technology Foresight programme of activities to identify technologies, processes, concepts and ideas that may serve said purpose and become applicable within the next 20 years. Through the Technology Foresight activities (online conferences, interviews, surveys, workshops and other) we have involved the wider science community in the fields of seismology, infrasound, hydroacoustics, radionuclide technology, remote sensing and geophysical techniques. We have assembled a catalogue of over 200 items, which incorporate technologies, processes, concepts and ideas which will have direct future relevance to the IMS (International Monitoring System), IDC (International Data Centre) and OSI (On-Site Inspection) activities within the PTS. In order to render this catalogue as applicable and useful as possible for strategy and planning, we have devised a "taxonomy" based on seven categories, against which each technology is assessed through a peer-review mechanism. These categories are: 1. Focus area of the technology in question: identify whether the technology relates to (one or more of the following) improving our understanding of source and source physics; propagation modelling; data acquisition; data transport; data processing; broad modelling concepts; quality assurance and data storage. 2. Current Development Stage of the technology in question. Based on a scale from one to six, this measure is specific to PTS needs and broadly reflects Technology Readiness Levels (TRLs). 3. Impact of the technology on each of the following capabilities: detection, location, characterization, sustainment and confidence building. 4. Development cost: the anticipated monetary cost of validating a prototype (i.e. Development Stage 3) of the technology in question. 5. Time to

  18. Verification of nuclear data for the Tsukuba plan, a newly developed treatment planning system for boron neutron capture therapy.

    PubMed

    Kumada, Hiroaki; Takada, Kenta; Yamanashi, Koichi; Sakae, Takeji; Matsumura, Akira; Sakurai, Hideyuki

    2015-12-01

    Various verifications were performed to apply JENDL-4.0 as nuclear data for a newly developed treatment planning system with a homogeneous or precise human-like phantom. The nitrogen dose calculated by JENDL-4.0 differed slightly from that calculated by ENDF/B-VII.0. However, the total weighted dose-based dose volume histogram in the boron neutron capture therapy (BNCT) treatment for brain tumors calculated by JENDL-4.0 was in good agreement with the results of the ENDF/B-VII.0 calculation. Therefore, calculation with JENDL-4.0 can be applied to the BNCT dose calculation. PMID:26361835

  19. Development of a Standard for Verification and Validation of Software Used to Calculate Nuclear System Thermal Fluids Behavior

    SciTech Connect

    Richard R. Schultz; Edwin A. Harvego; Ryan L. Crane

    2010-05-01

    With the resurgence of nuclear power and increased interest in advanced nuclear reactors as an option to supply abundant energy without the associated greenhouse gas emissions of the more conventional fossil fuel energy sources, there is a need to establish internationally recognized standards for the verification and validation (V&V) of software used to calculate the thermal-hydraulic behavior of advanced reactor designs for both normal operation and hypothetical accident conditions. To address this need, ASME (American Society of Mechanical Engineers) Standards and Certification has established the V&V 30 Committee, under the responsibility of the V&V Standards Committee, to develop a consensus Standard for verification and validation of software used for design and analysis of advanced reactor systems. The initial focus of this committee will be on the V&V of system analysis and computational fluid dynamics (CFD) software for nuclear applications. To limit the scope of the effort, the committee will further limit its focus to software to be used in the licensing of High-Temperature Gas-Cooled Reactors. In this framework, the standard should conform to Nuclear Regulatory Commission (NRC) practices, procedures and methods for licensing of nuclear power plants as embodied in the United States (U.S.) Code of Federal Regulations and other pertinent documents such as Regulatory Guide 1.203, “Transient and Accident Analysis Methods” and NUREG-0800, “NRC Standard Review Plan”. In addition, the standard should be consistent with applicable sections of ASME Standard NQA-1 (“Quality Assurance Requirements for Nuclear Facility Applications (QA)”). This paper describes the general requirements for the V&V Standard, which includes; (a) the definition of the operational and accident domain of a nuclear system that must be considered if the system is to licensed, (b) the corresponding calculational domain of the software that should encompass the nuclear operational

  20. Implementation of neutron counting techniques at US facilities for IAEA verification of excess materials from nuclear weapons production

    SciTech Connect

    Stewart, J.E.; Krick, M.S.; Langner, D.G.; Reilly, T.D.; Theis, W.; Lemaire, R.J.; Xiao, J.

    1995-08-01

    The U.S. Nonproliferation and Export Control Policy, announced by President Clinton before the United Nations General Assembly on September 27, 1993, commits the U.S. to placing under International Atomic Energy Agency (IAEA) Safeguards excess nuclear materials no longer needed for the U.S. nuclear deterrent. As of July 1, 1995, the IAEA had completed Initial Physical Inventory Verification (IPIV) at two facilities: a storage vault in the Oak Ridge Y-12 plant containing highly enriched uranium (HOW) metal and another storage vault in the Hanford Plutonium Finishing Plant (PFP) containing plutonium oxide and plutonium-bearing residues. Another plutonium- storage vault, located at Rocky Flats, is scheduled for the IPIV in the fall of 1995. Conventional neutron coincidence counting is one of the routinely applied IAEA nondestructive assay (ND) methods for verification of uranium and plutonium. However, at all three facilities mentioned above, neutron ND equipment had to be modified or developed for specific facility needs such as the type and configuration of material placed under safeguards. This document describes those modifications and developments.

  1. Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0

    SciTech Connect

    Greg Weirs; Hyung Lee

    2011-09-01

    V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and

  2. Methodology, verification, and performance of the continuous-energy nuclear data sensitivity capability in MCNP6

    SciTech Connect

    Kiedrowski, B. C.; Brown, F. B.

    2013-07-01

    A continuous-energy sensitivity coefficient capability has been introduced into MCNP6. The methods for generating energy-resolved and energy-integrated sensitivity profiles are discussed. Results from the verification exercises that were performed are given, and these show that MCNP6 compares favorably with analytic solutions, direct density perturbations, and comparisons to TSUNAMI-3D and MONK. Run-time and memory requirements are assessed for typical applications, and these are shown to be reasonable with modern computing resources. (authors)

  3. Statistical verification of neutron-physics programs for calculations in support of nuclear safety

    SciTech Connect

    Tebin, V. V.

    2012-12-15

    An algorithm for statistical verification of the XT26 code contained in the SAPHIRE-2006 code system is described. The results of conservative estimation of the calculation error in the K{sub eff} calculations for different types of benchmark experiments are presented. The results of the statistical analysis of deviations from the experimental values are compared with the corresponding parameters obtained from the set of calculations performed using other codes.

  4. Statistical verification of neutron-physics programs for calculations in support of nuclear safety

    NASA Astrophysics Data System (ADS)

    Tebin, V. V.

    2012-12-01

    An algorithm for statistical verification of the XT26 code contained in the SAPHIRE-2006 code system is described. The results of conservative estimation of the calculation error in the Keff calculations for different types of benchmark experiments are presented. The results of the statistical analysis of deviations from the experimental values are compared with the corresponding parameters obtained from the set of calculations performed using other codes.

  5. Human factors design, verification, and validation for two types of control room upgrades at a nuclear power plant

    SciTech Connect

    Boring, Laurids Ronald

    2014-10-01

    This paper describes the NUREG-0711 based human factors engineering (HFE) phases and associated elements required to support design, verification and validation (V&V), and implementation of a new plant process computer (PPC) and turbine control system (TCS) at a representative nuclear power plant. This paper reviews ways to take a human-system interface (HSI) specification and use it when migrating legacy PPC displays or designing displays with new functionality. These displays undergo iterative usability testing during the design phase and then undergo an integrated system validation (ISV) in a full scope control room training simulator. Following the successful demonstration of operator performance with the systems during the ISV, the new system is implemented at the plant, first in the training simulator and then in the main control room.

  6. Simulated Verification of Fuel Element Inventory in a Small Reactor Core Using the Nuclear Materials Identification System (NMIS)

    SciTech Connect

    Grogan, Brandon R; Mihalczo, John T

    2009-01-01

    The International Panel on Climate Change projects that by 2050 the world energy demand may double. Although the primary focus for new nuclear power plants in industrialized nations is on large plants in the 1000-1600 MWe range, there is an increasing demand for small and medium reactors (SMRs). About half of the innovative SMR concepts are for small (<300 MWe) reactors with a 5-30 year life without on-site refueling. This type of reactor is also known as a battery-type reactor. These reactors are particularly attractive to countries with small power grids and for non-electrical purposes such as heating, hydrogen production, and seawater desalination. Traditionally, this type of reactor has been used in a nautical propulsion role. This type of reactor is designed as a permanently sealed unit to prevent the diversion of the uranium in the core by the user. However, after initial fabrication it will be necessary to verify that the newly fabricated reactor core contains the quantity of uranium that initially entered the fuel fabrication plant. In most instances, traditional inspection techniques can be used to perform this verification, but in certain situations the core design will be considered sensitive. Non-intrusive verification techniques must be utilized in these situations. The Nuclear Materials Identification System (NMIS) with imaging uses active interrogation and a fast time correlation processor to characterize fissile material. The MCNP-PoliMi computer code was used to simulate NMIS measurements of a small, sealed reactor core. Because most battery-type reactor designs are still in the early design phase, a more traditional design based on a Russian icebreaker core was used in the simulations. These simulations show how the radiography capabilities of the NMIS could be used to detect the diversion of fissile material by detecting void areas in the assembled core where fuel elements have been removed.

  7. Plastid DNA sequencing and nuclear SNP genotyping help resolve the puzzle of central American Platanus

    PubMed Central

    De Castro, Olga; Di Maio, Antonietta; Lozada García, José Armando; Piacenti, Danilo; Vázquez-Torres, Mario; De Luca, Paolo

    2013-01-01

    Background and Aims Recent research on the history of Platanus reveals that hybridization phenomena occurred in the central American species. This study has two goals: to help resolve the evolutive puzzle of central American Platanus, and to test the potential of real-time polymerase chain reaction (PCR) for detecting ancient hybridization. Methods Sequencing of a uniparental plastid DNA marker [psbA-trnH(GUG) intergenic spacer] and qualitative and quantitative single nucleotide polymorphism (SNP) genotyping of biparental nuclear ribosomal DNA (nrDNA) markers [LEAFY intron 2 (LFY-i2) and internal transcribed spacer 2 (ITS2)] were used. Key Results Based on the SNP genotyping results, several Platanus accessions show the presence of hybridization/introgression, including some accessions of P. rzedowskii and of P. mexicana var. interior and one of P. mexicana var. mexicana from Oaxaca (= P. oaxacana). Based on haplotype analyses of the psbA-trnH spacer, five haplotypes were detected. The most common of these is present in taxa belonging to P. orientalis, P. racemosa sensu lato, some accessions of P. occidentalis sensu stricto (s.s.) from Texas, P. occidentalis var. palmeri, P. mexicana s.s. and P. rzedowskii. This is highly relevant to genetic relationships with the haplotypes present in P. occidentalis s.s. and P. mexicana var. interior. Conclusions Hybridization and introgression events between lineages ancestral to modern central and eastern North American Platanus species occurred. Plastid haplotypes and qualitative and quantitative SNP genotyping provide information critical for understanding the complex history of Mexican Platanus. Compared with the usual molecular techniques of sub-cloning, sequencing and genotyping, real-time PCR assay is a quick and sensitive technique for analysing complex evolutionary patterns. PMID:23798602

  8. Enhanced global Radionuclide Source Attribution for the Nuclear-Test-Ban Verification by means of the Adjoint Ensemble Dispersion Modeling Technique applied at the IDC/CTBTO.

    NASA Astrophysics Data System (ADS)

    Becker, A.; Wotawa, G.; de Geer, L.

    2006-05-01

    The Provisional Technical Secretariat (PTS) of the CTBTO Preparatory Commission maintains and permanently updates a source-receptor matrix (SRM) describing the global monitoring capability of a highly sensitive 80 stations radionuclide (RN) network in order to verify states signatories' compliance of the comprehensive nuclear-test-ban treaty (CTBT). This is done by means of receptor-oriented Lagrangian particle dispersion modeling (LPDM) to help determine the region from which suspicious radionuclides may originate. In doing so the LPDM FLEXPART5.1 is integrated backward in time based on global analysis wind fields yielding global source-receptor sensitivity (SRS) fields stored in three-hour frequency and at 1º horizontal resolution. A database of these SRS fields substantially helps in improving the interpretation of the RN samples measurements and categorizations because it enables the testing of source-hypothesis's later on in a pure post-processing (SRM inversion) step being feasible on hardware with specifications comparable to currently sold PC's or Notebooks and at any place (decentralized), provided access to the SRS fields is warranted. Within the CTBT environment it is important to quickly achieve decision-makers confidence in the SRM based backtracking products issued by the PTS in the case of the occurrence of treaty relevant radionuclides. Therefore the PTS has set up a highly automated response system together with the Regional Specialized Meteorological Centers of the World Meteorological Organization in the field of dispersion modeling who committed themselves to provide the PTS with the same standard SRS fields as calculated by their systems for CTBT relevant cases. This system was twice utilized in 2005 in order to perform adjoint ensemble dispersion modeling (EDM) and demonstrated the potential of EDM based backtracking to improve the accuracy of the source location related to singular nuclear events thus serving the backward analogue to the

  9. Application of Nuclear Physics Methods in the Verification System for the Comprehensive Nuclear-Test-Ban Treaty

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, K.; Elmgren, K.; Jansson, P.

    2005-04-01

    Elements of the The Comprehensive Nuclear Test-Ban Treaty (CTBT) and its International Monitoring System (IMS) are briefly described. Two different radionuclide detection systems, developed by the Swedish Defence Research Agency (FOI), are treated in more detail.

  10. Use of open source information and commercial satellite imagery for nuclear nonproliferation regime compliance verification by a community of academics

    NASA Astrophysics Data System (ADS)

    Solodov, Alexander

    The proliferation of nuclear weapons is a great threat to world peace and stability. The question of strengthening the nonproliferation regime has been open for a long period of time. In 1997 the International Atomic Energy Agency (IAEA) Board of Governors (BOG) adopted the Additional Safeguards Protocol. The purpose of the protocol is to enhance the IAEA's ability to detect undeclared production of fissile materials in member states. However, the IAEA does not always have sufficient human and financial resources to accomplish this task. Developed here is a concept for making use of human and technical resources available in academia that could be used to enhance the IAEA's mission. The objective of this research was to study the feasibility of an academic community using commercially or publicly available sources of information and products for the purpose of detecting covert facilities and activities intended for the unlawful acquisition of fissile materials or production of nuclear weapons. In this study, the availability and use of commercial satellite imagery systems, commercial computer codes for satellite imagery analysis, Comprehensive Test Ban Treaty (CTBT) verification International Monitoring System (IMS), publicly available information sources such as watchdog groups and press reports, and Customs Services information were explored. A system for integrating these data sources to form conclusions was also developed. The results proved that publicly and commercially available sources of information and data analysis can be a powerful tool in tracking violations in the international nuclear nonproliferation regime and a framework for implementing these tools in academic community was developed. As a result of this study a formation of an International Nonproliferation Monitoring Academic Community (INMAC) is proposed. This would be an independent organization consisting of academics (faculty, staff and students) from both nuclear weapon states (NWS) and

  11. Development and verification of design methods for ducts in a space nuclear shield

    NASA Technical Reports Server (NTRS)

    Cerbone, R. J.; Selph, W. E.; Read, P. A.

    1972-01-01

    A practical method for computing the effectiveness of a space nuclear shield perforated by small tubing and cavities is reported. Performed calculations use solutions for a two dimensional transport code and evaluate perturbations of that solution using last flight estimates and other kernel integration techniques. In general, perturbations are viewed as a change in source strength of scattered radiation and a change in attenuation properties of the region.

  12. Development of an automated platform for the verification, testing, processing and benchmarking of Evaluated Nuclear Data at the NEA Data Bank. Status of the NDEC system

    NASA Astrophysics Data System (ADS)

    Michel-Sendis, F.; Díez, C. J.; Cabellos, O.

    2016-03-01

    Modern nuclear data Quality Assurance (QA) is, in practice, a multistage process that aims at establishing a thorough assessment of the validity of the physical information contained in an evaluated nuclear data file as compared to our best knowledge of available experimental data and theoretical models. It should systematically address the performance of the evaluated file against available pertinent integral experiments, with proper and prior verification that the information encoded in the evaluation is accurately processed and reconstructed for the application conditions. The aim of the NDEC (Nuclear Data Evaluation Cycle) platform currently being developed by the Data Bank is to provide a correct and automated handling of these diverse QA steps in order to facilitate the expert human assessment of evaluated nuclear data files, both by the evaluators and by the end users of nuclear data.

  13. Potential opportunities for nano materials to help enable enhanced nuclear fuel performance

    SciTech Connect

    McClellan, Kenneth J.

    2012-06-06

    This presentation is an overview of the technical challenges for development of nuclear fuels with enhanced performance and accident tolerance. Key specific aspects of improved fuel performance are noted. Examples of existing nanonuclear projects and concepts are presented and areas of potential focus are suggested. The audience for this presentation includes representatives from: DOE-NE, other national laboratories, industry and academia. This audience is a mixture of nanotechnology experts and nuclear energy researchers and managers.

  14. Routine inspection effort required for verification of a nuclear material production cutoff convention

    SciTech Connect

    Dougherty, D.; Fainberg, A.; Sanborn, J.; Allentuck, J.; Sun, C.

    1996-11-01

    On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced after entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.

  15. Indian Point Nuclear Power Station: verification analysis of County Radiological Emergency-Response Plans

    SciTech Connect

    Nagle, J.; Whitfield, R.

    1983-05-01

    This report was developed as a management tool for use by the Federal Emergency Management Agency (FEMA) Region II staff. The analysis summarized in this report was undertaken to verify the extent to which procedures, training programs, and resources set forth in the County Radiological Emergency Response Plans (CRERPs) for Orange, Putnam, and Westchester counties in New York had been realized prior to the March 9, 1983, exercise of the Indian Point Nuclear Power Station near Buchanan, New York. To this end, a telephone survey of county emergency response organizations was conducted between January 19 and February 22, 1983. This report presents the results of responses obtained from this survey of county emergency response organizations.

  16. Monte Carlo verification of point kinetics for safety analysis of nuclear reactors

    SciTech Connect

    Valentine, T.E.; Mihalczo, J.T.

    1995-06-01

    Monte Carlo neutron transport methods can be used to verify the applicability of point kinetics for safety analysis of nuclear reactors. KENO-NR was used to obtain the transfer function of the Advanced Neutron Source reactor and the time delay between the core power production and the external detectors, a parameter of interest to the safety systems design. The good agreement between the Monte Carlo generated transfer function and the point kinetics transfer function validates that the uncommon ANS geometry does not preclude the use of point kinetics in the frequency range that was investigated. Various features of the power spectral densities also demonstrated the applicability of point kinetics. The time delay was obtained from the cross-power spectral density (CPSD) and is {approximately}15 ms. These analyses show that frequency analysis can be used experimentally to investigate the validity of the use of point kinetics models in critical experiments or zero power testing of reactors.

  17. Verification of screening level for decontamination implemented after Fukushima nuclear accident

    PubMed Central

    Ogino, Haruyuki; Ichiji, Takeshi; Hattori, Takatoshi

    2012-01-01

    The screening level for decontamination that has been applied for the surface of the human body and contaminated handled objects after the Fukushima nuclear accident was verified by assessing the doses that arise from external irradiation, ingestion, inhalation and skin contamination. The result shows that the annual effective dose that arises from handled objects contaminated with the screening level for decontamination (i.e. 100 000 counts per minute) is <1 mSv y−1, which can be considered as the intervention exemption level in accordance with the International Commission on Radiological Protection recommendations. Furthermore, the screening level is also found to protect the skin from the incidence of a deterministic effect because the absorbed dose of the skin that arises from direct deposition on the surface of the human body is calculated to be lower than the threshold of the deterministic effect assuming a practical exposure duration. PMID:22228683

  18. Verification of the Cross Immunoreactivity of A60, a Mouse Monoclonal Antibody against Neuronal Nuclear Protein.

    PubMed

    Mao, Shanping; Xiong, Guoxiang; Zhang, Lei; Dong, Huimin; Liu, Baohui; Cohen, Noam A; Cohen, Akiva S

    2016-01-01

    A60, the mouse monoclonal antibody against the neuronal nuclear protein (NeuN), is the most widely used neuronal marker in neuroscience research and neuropathological assays. Previous studies identified fragments of A60-immunoprecipitated protein as Synapsin I (Syn I), suggesting the antibody will demonstrate cross immunoreactivity. However, the likelihood of cross reactivity has never been verified by immunohistochemical techniques. Using our established tissue processing and immunofluorescent staining protocols, we found that A60 consistently labeled mossy fiber terminals in hippocampal area CA3. These A60-positive mossy fiber terminals could also be labeled by Syn I antibody. After treating brain slices with saponin in order to better preserve various membrane and/or vesicular proteins for immunostaining, we observed that A60 could also label additional synapses in various brain areas. Therefore, we used A60 together with a rabbit monoclonal NeuN antibody to confirm the existence of this cross reactivity. We showed that the putative band positive for A60 and Syn I could not be detected by the rabbit anti-NeuN in Western blotting. As efficient as Millipore A60 to recognize neuronal nuclei, the rabbit NeuN antibody demonstrated no labeling of synaptic structures in immunofluorescent staining. The present study successfully verified the cross reactivity present in immunohistochemistry, cautioning that A60 may not be the ideal biomarker to verify neuronal identity due to its cross immunoreactivity. In contrast, the rabbit monoclonal NeuN antibody used in this study may be a better candidate to substitute for A60. PMID:27242450

  19. Verification of the Cross Immunoreactivity of A60, a Mouse Monoclonal Antibody against Neuronal Nuclear Protein

    PubMed Central

    Mao, Shanping; Xiong, Guoxiang; Zhang, Lei; Dong, Huimin; Liu, Baohui; Cohen, Noam A.; Cohen, Akiva S.

    2016-01-01

    A60, the mouse monoclonal antibody against the neuronal nuclear protein (NeuN), is the most widely used neuronal marker in neuroscience research and neuropathological assays. Previous studies identified fragments of A60-immunoprecipitated protein as Synapsin I (Syn I), suggesting the antibody will demonstrate cross immunoreactivity. However, the likelihood of cross reactivity has never been verified by immunohistochemical techniques. Using our established tissue processing and immunofluorescent staining protocols, we found that A60 consistently labeled mossy fiber terminals in hippocampal area CA3. These A60-positive mossy fiber terminals could also be labeled by Syn I antibody. After treating brain slices with saponin in order to better preserve various membrane and/or vesicular proteins for immunostaining, we observed that A60 could also label additional synapses in various brain areas. Therefore, we used A60 together with a rabbit monoclonal NeuN antibody to confirm the existence of this cross reactivity. We showed that the putative band positive for A60 and Syn I could not be detected by the rabbit anti-NeuN in Western blotting. As efficient as Millipore A60 to recognize neuronal nuclei, the rabbit NeuN antibody demonstrated no labeling of synaptic structures in immunofluorescent staining. The present study successfully verified the cross reactivity present in immunohistochemistry, cautioning that A60 may not be the ideal biomarker to verify neuronal identity due to its cross immunoreactivity. In contrast, the rabbit monoclonal NeuN antibody used in this study may be a better candidate to substitute for A60. PMID:27242450

  20. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2010-03-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  1. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2010-02-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  2. Verification and validation benchmarks.

    SciTech Connect

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of

  3. Independent Verification and Validation Of SAPHIRE 8 Software Requirements Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2010-03-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE requirements definition is to assess the activities that results in the specification, documentation, and review of the requirements that the software product must satisfy, including functionality, performance, design constraints, attributes and external interfaces. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production. IV&V reviewed the requirements specified in the NRC Form 189s to verify these requirements were included in SAPHIRE’s Software Verification and Validation Plan (SVVP).

  4. Independent Verification and Validation Of SAPHIRE 8 Software Requirements Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2009-09-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE requirements definition is to assess the activities that results in the specification, documentation, and review of the requirements that the software product must satisfy, including functionality, performance, design constraints, attributes and external interfaces. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production. IV&V reviewed the requirements specified in the NRC Form 189s to verify these requirements were included in SAPHIRE’s Software Verification and Validation Plan (SVVP).

  5. Helping Kids Help

    ERIC Educational Resources Information Center

    Heiss, E. Renee

    2008-01-01

    Educators need to help kids help others so that they can help themselves. Volunteering does not involve competition or grades. This is one area where students don't have to worry about measuring up to the expectations of parents, teachers, and coaches. Students participate in charitable work to add another line to a college transcript or job…

  6. Wind gust warning verification

    NASA Astrophysics Data System (ADS)

    Primo, Cristina

    2016-07-01

    Operational meteorological centres around the world increasingly include warnings as one of their regular forecast products. Warnings are issued to warn the public about extreme weather situations that might occur leading to damages and losses. In forecasting these extreme events, meteorological centres help their potential users in preventing the damage or losses they might suffer. However, verifying these warnings requires specific methods. This is due not only to the fact that they happen rarely, but also because a new temporal dimension is added when defining a warning, namely the time window of the forecasted event. This paper analyses the issues that might appear when dealing with warning verification. It also proposes some new verification approaches that can be applied to wind warnings. These new techniques are later applied to a real life example, the verification of wind gust warnings at the German Meteorological Centre ("Deutscher Wetterdienst"). Finally, the results obtained from the latter are discussed.

  7. Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)

    SciTech Connect

    Nichols, James W., LTC

    2000-09-15

    These proceedings contain papers prepared for the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), held 13-15 September 2000 in New Orleans, Louisiana. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), US Army Space and Missile Defense Command, Defense Special Weapons Agency (DSWA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  8. Nuclear data verification based on Monte Carlo simulations of the LLNL pulsed-sphere benchmark experiments (1979 & 1986) using the Mercury code

    SciTech Connect

    Descalle, M; Pruet, J

    2008-06-09

    Livermore's nuclear data group developed a new verification and validation test suite to ensure the quality of data used in application codes. This is based on models of LLNL's pulsed sphere fusion shielding benchmark experiments. Simulations were done with Mercury, a 3D particle transport Monte Carlo code using continuous-energy cross-section libraries. Results were compared to measurements of neutron leakage spectra generated by 14MeV neutrons in 17 target assemblies (for a blank target assembly, H{sub 2}O, Teflon, C, N{sub 2}, Al, Si, Ti, Fe, Cu, Ta, W, Au, Pb, {sup 232}Th, {sup 235}U, {sup 238}U, and {sup 239}Pu). We also tested the fidelity of simulations for photon production associated with neutron interactions in the different materials. Gamma-ray leakage energy per neutron was obtained from a simple 1D spherical geometry assembly and compared to three codes (TART, COG, MCNP5) and several versions of the Evaluated Nuclear Data File (ENDF) and Evaluated Nuclear Data Libraries (ENDL) cross-section libraries. These tests uncovered a number of errors in photon production cross-sections, and were instrumental to the V&V of different cross-section libraries. Development of the pulsed sphere tests also uncovered the need for new Mercury capabilities. To enable simulations of neutron time-of-flight experiments the nuclear data group implemented an improved treatment of biased angular scattering in MCAPM.

  9. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.

    SciTech Connect

    Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert; McCornack, Marjorie Turner

    2011-01-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

  10. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Carl Wharton; Kent Norris

    2009-12-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  11. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Carl Wharton; Kent Norris

    2010-03-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  12. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Carl Wharton

    2009-10-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  13. Geometric verification

    NASA Technical Reports Server (NTRS)

    Grebowsky, G. J.

    1982-01-01

    Present LANDSAT data formats are reviewed to clarify how the geodetic location and registration capabilities were defined for P-tape products and RBV data. Since there is only one geometric model used in the master data processor, geometric location accuracy of P-tape products depends on the absolute accuracy of the model and registration accuracy is determined by the stability of the model. Due primarily to inaccuracies in data provided by the LANDSAT attitude management system, desired accuracies are obtained only by using ground control points and a correlation process. The verification of system performance with regards to geodetic location requires the capability to determine pixel positions of map points in a P-tape array. Verification of registration performance requires the capability to determine pixel positions of common points (not necessarily map points) in 2 or more P-tape arrays for a given world reference system scene. Techniques for registration verification can be more varied and automated since map data are not required. The verification of LACIE extractions is used as an example.

  14. CTBT integrated verification system evaluation model supplement

    SciTech Connect

    EDENBURN,MICHAEL W.; BUNTING,MARCUS; PAYNE JR.,ARTHUR C.; TROST,LAWRENCE C.

    2000-03-02

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia's Monitoring Systems and Technology Center and has been funded by the U.S. Department of Energy's Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, ''top-level,'' modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM's unique features is that it integrates results from the various CTBT sensor technologies (seismic, in sound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection), location accuracy, and identification capability of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system's performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. The original IVSEM report, CTBT Integrated Verification System Evaluation Model, SAND97-25 18, described version 1.2 of IVSEM. This report describes the changes made to IVSEM version 1.2 and the addition of identification capability estimates that have been incorporated into IVSEM version 2.0.

  15. Environmental Detection of Clandestine Nuclear Weapon Programs

    NASA Astrophysics Data System (ADS)

    Kemp, R. Scott

    2016-06-01

    Environmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.

  16. HTGR analytical methods and design verification

    SciTech Connect

    Neylan, A.J.; Northup, T.E.

    1982-05-01

    Analytical methods for the high-temperature gas-cooled reactor (HTGR) include development, update, verification, documentation, and maintenance of all computer codes for HTGR design and analysis. This paper presents selected nuclear, structural mechanics, seismic, and systems analytical methods related to the HTGR core. This paper also reviews design verification tests in the reactor core, reactor internals, steam generator, and thermal barrier.

  17. Independent Verification and Validation Of SAPHIRE 8 Risk Management Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2009-11-01

    This report provides an evaluation of the risk management. Risk management is intended to ensure a methodology for conducting risk management planning, identification, analysis, responses, and monitoring and control activities associated with the SAPHIRE project work, and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  18. Specification and verification of nuclear-power-plant training-simulator response characteristics. Part II. Conclusions and recommendations

    SciTech Connect

    Haas, P M; Selby, D L; Kerlin, T W; Felkins, L

    1982-05-01

    The nuclear industry should adopt and NRC regulatory and research actions should support the systems approach to training as a structured framework for development and validation of personnel training systems. Potential exists for improving the ability to assess simulator fidelity. Systems Identification Technology offers a potential framework for model validation. Installation of the data collection/recording equipment required by NUREG-0696 could provide a vastly improved source of data for simulator fidelity assessment. The NRC needs to continue its post-TMI actions to involve itself more rigorously and more formally in the entire process of NPP personnel training system development. However, this involvement should be a participative one with industry. The existing similator standards and guidelines should be reorganized to support the use of systems approach to training. The standards should require and support a holistic approach to training system development that recognizes simulators and simulator training as only parts of the complete training program and full-scope, high-fidelity, site-specific simulators as only one useful training device. Some recommendations for adapting the SAT/ISD process to the nuclear industry are: The formation of an NRC/industry planning/coordination group, a program planning study to develop a programmatic plan, development of a user's guide and NRC/industry workshops to establish common terminology and practice, and a pilot study applying the adopted SAT/ISD methodology to an actual nuclear industry training program.

  19. A numerical stress based approach for predicting failure in NBG-18 nuclear graphite components with verification problems

    NASA Astrophysics Data System (ADS)

    Hindley, Michael P.; Mitchell, Mark N.; Erasmus, Christiaan; McMurtry, Ross; Becker, Thorsten H.; Blaine, Deborah C.; Groenwold, Albert A.

    2013-05-01

    This paper presents a methodology that can be used for calculating the probability of failure of graphite core components in a nuclear core design, such as that of the Pebble Bed Modular Reactor. The proposed methodology is shown to calculate the failure of multiple geometries using the parameters obtained from tensile specimen test data. Experimental testing of various geometries is undertaken to verify the results. The analysis of the experimental results and a discussion on the accuracy of the failure prediction methodology are presented. The analysis is done at 50% probability of failure as well as lower probabilities of failure.

  20. Verification and Validation Plan for the Codes LSP and ICARUS (PEGASUS)

    SciTech Connect

    RILEY,MERLE E.; BUSS,RICHARD J.; CAMPBELL,ROBERT B.; HOPKINS,MATTHEW M.; MILLER,PAUL A.; MOATS,ANNE R.; WAMPLER,WILLIAM R.

    2002-02-01

    This report documents the strategies for verification and validation of the codes LSP and ICARUS used for simulating the operation of the neutron tubes used in all modern nuclear weapons. The codes will be used to assist in the design of next generation neutron generators and help resolve manufacturing issues for current and future production of neutron devices. Customers for the software are identified, tube phenomena are identified and ranked, software quality strategies are given, and the validation plan is set forth.

  1. Transmutation Fuel Performance Code Thermal Model Verification

    SciTech Connect

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  2. A REPRINT of a July 1991 Report to Congress, Executive Summary of Verification of Nuclear Warhead Dismantlement and Special Nuclear Material Controls

    SciTech Connect

    Fuller, James L.

    2008-11-20

    With the renewed thinking and debate about deep reductions in nuclear weapons, including recent proposals about eliminating nuclear warheads altogether, republishing the general conclusions of the Robinson Committee Report of 1992 appears useful. The report is sometimes referred to as the 3151 Report, from Section 3151 of the National Defnse Authorization Act for FY1991, from where its requirement originated. This report contains the Executive Summary only and the forwarding letters from the Committee, the President of the United States, the Secretary of Energy, and C Paul Robinson, the head of the Advisory Committee.

  3. ETV - VERIFICATION TESTING (ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM)

    EPA Science Inventory

    Verification testing is a major component of the Environmental Technology Verification (ETV) program. The ETV Program was instituted to verify the performance of innovative technical solutions to problems that threaten human health or the environment and was created to substantia...

  4. Application of cryoprobe 1H nuclear magnetic resonance spectroscopy and multivariate analysis for the verification of corsican honey.

    PubMed

    Donarski, James A; Jones, Stephen A; Charlton, Adrian J

    2008-07-23

    Proton nuclear magnetic resonance spectroscopy ((1)H NMR) and multivariate analysis techniques have been used to classify honey into two groups by geographical origin. Honey from Corsica (Miel de Corse) was used as an example of a protected designation of origin product. Mathematical models were constructed to determine the feasibility of distinguishing between honey from Corsica and that from other geographical locations in Europe, using (1)H NMR spectroscopy. Honey from 10 different regions within five countries was analyzed. (1)H NMR spectra were used as input variables for projection to latent structures (PLS) followed by linear discriminant analysis (LDA) and genetic programming (GP). Models were generated using three methods, PLS-LDA, two-stage GP, and a combination of PLS and GP (PLS-GP). The PLS-GP model used variables selected by PLS for subsequent GP calculations. All models were generated using Venetian blind cross-validation. Overall classification rates for the discrimination of Corsican and non-Corsican honey of 75.8, 94.5, and 96.2% were determined using PLS-LDA, two-stage GP, and PLS-GP, respectively. The variables utilized by PLS-GP were related to their (1)H NMR chemical shifts, and this led to the identification of trigonelline in honey for the first time. PMID:18564849

  5. Swarm Verification

    NASA Technical Reports Server (NTRS)

    Holzmann, Gerard J.; Joshi, Rajeev; Groce, Alex

    2008-01-01

    Reportedly, supercomputer designer Seymour Cray once said that he would sooner use two strong oxen to plow a field than a thousand chickens. Although this is undoubtedly wise when it comes to plowing a field, it is not so clear for other types of tasks. Model checking problems are of the proverbial "search the needle in a haystack" type. Such problems can often be parallelized easily. Alas, none of the usual divide and conquer methods can be used to parallelize the working of a model checker. Given that it has become easier than ever to gain access to large numbers of computers to perform even routine tasks it is becoming more and more attractive to find alternate ways to use these resources to speed up model checking tasks. This paper describes one such method, called swarm verification.

  6. Independent Verification and Validation Of SAPHIRE 8 Software Design and Interface Design Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2010-03-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE software design and interface design is to assess the activities that results in the development, documentation, and review of a software design that meets the requirements defined in the software requirements documentation. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production. IV&V reviewed the requirements specified in the NRC Form 189s to verify these requirements were included in SAPHIRE’s Software Verification and Validation Plan (SVVP) design specification.

  7. Independent Verification and Validation Of SAPHIRE 8 Software Design and Interface Design Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2009-10-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE software design and interface design is to assess the activities that results in the development, documentation, and review of a software design that meets the requirements defined in the software requirements documentation. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production. IV&V reviewed the requirements specified in the NRC Form 189s to verify these requirements were included in SAPHIRE’s Software Verification and Validation Plan (SVVP) design specification.

  8. Generic Verification Protocol for Verification of Online Turbidimeters

    EPA Science Inventory

    This protocol provides generic procedures for implementing a verification test for the performance of online turbidimeters. The verification tests described in this document will be conducted under the Environmental Technology Verification (ETV) Program. Verification tests will...

  9. Monitoring and verification R&D

    SciTech Connect

    Pilat, Joseph F; Budlong - Sylvester, Kory W; Fearey, Bryan L

    2011-01-01

    The 2010 Nuclear Posture Review (NPR) report outlined the Administration's approach to promoting the agenda put forward by President Obama in Prague on April 5, 2009. The NPR calls for a national monitoring and verification R&D program to meet future challenges arising from the Administration's nonproliferation, arms control and disarmament agenda. Verification of a follow-on to New START could have to address warheads and possibly components along with delivery capabilities. Deeper cuts and disarmament would need to address all of these elements along with nuclear weapon testing, nuclear material and weapon production facilities, virtual capabilities from old weapon and existing energy programs and undeclared capabilities. We only know how to address some elements of these challenges today, and the requirements may be more rigorous in the context of deeper cuts as well as disarmament. Moreover, there is a critical need for multiple options to sensitive problems and to address other challenges. There will be other verification challenges in a world of deeper cuts and disarmament, some of which we are already facing. At some point, if the reductions process is progressing, uncertainties about past nuclear materials and weapons production will have to be addressed. IAEA safeguards will need to continue to evolve to meet current and future challenges, and to take advantage of new technologies and approaches. Transparency/verification of nuclear and dual-use exports will also have to be addressed, and there will be a need to make nonproliferation measures more watertight and transparent. In this context, and recognizing we will face all of these challenges even if disarmament is not achieved, this paper will explore possible agreements and arrangements; verification challenges; gaps in monitoring and verification technologies and approaches; and the R&D required to address these gaps and other monitoring and verification challenges.

  10. CTBT Integrated Verification System Evaluation Model

    SciTech Connect

    Edenburn, M.W.; Bunting, M.L.; Payne, A.C. Jr.

    1997-10-01

    Sandia National Laboratories has developed a computer based model called IVSEM (Integrated Verification System Evaluation Model) to estimate the performance of a nuclear detonation monitoring system. The IVSEM project was initiated in June 1994, by Sandia`s Monitoring Systems and Technology Center and has been funded by the US Department of Energy`s Office of Nonproliferation and National Security (DOE/NN). IVSEM is a simple, top-level, modeling tool which estimates the performance of a Comprehensive Nuclear Test Ban Treaty (CTBT) monitoring system and can help explore the impact of various sensor system concepts and technology advancements on CTBT monitoring. One of IVSEM`s unique features is that it integrates results from the various CTBT sensor technologies (seismic, infrasound, radionuclide, and hydroacoustic) and allows the user to investigate synergy among the technologies. Specifically, IVSEM estimates the detection effectiveness (probability of detection) and location accuracy of the integrated system and of each technology subsystem individually. The model attempts to accurately estimate the monitoring system`s performance at medium interfaces (air-land, air-water) and for some evasive testing methods such as seismic decoupling. This report describes version 1.2 of IVSEM.

  11. Verification of VLSI designs

    NASA Technical Reports Server (NTRS)

    Windley, P. J.

    1991-01-01

    In this paper we explore the specification and verification of VLSI designs. The paper focuses on abstract specification and verification of functionality using mathematical logic as opposed to low-level boolean equivalence verification such as that done using BDD's and Model Checking. Specification and verification, sometimes called formal methods, is one tool for increasing computer dependability in the face of an exponentially increasing testing effort.

  12. Neutrino interactions in the nuclear environment

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak

    2013-04-01

    I will discuss two aspects of neutrino-nuclei interactions. First, how the knowledge of nuclear structure gained in electro-nuclear processes can help to improve the accuracies of neutrino interaction cross sections both in quasi-elastic and deep-inelastic kinematics. And secondly the potential of neutrino- nuclear scattering processes to study hadrons in the nuclear medium. One new direction of nuclear medium studies is the verification of the recent theoretical observation that protons are more energetic than neutrons in large A asymmetric nuclei. If the nuclear modification is related to the virtuality of bound nucleon then it follows from the above observation that proton structure modification should increase with nuclear asymmetry at large A. The possibility of selecting the protons from nuclear target gives an important advantage of neutrinos for probing such modifications.

  13. Verification of Adaptive Systems

    SciTech Connect

    Pullum, Laura L; Cui, Xiaohui; Vassev, Emil; Hinchey, Mike; Rouff, Christopher; Buskens, Richard

    2012-01-01

    Adaptive systems are critical for future space and other unmanned and intelligent systems. Verification of these systems is also critical for their use in systems with potential harm to human life or with large financial investments. Due to their nondeterministic nature and extremely large state space, current methods for verification of software systems are not adequate to provide a high level of assurance for them. The combination of stabilization science, high performance computing simulations, compositional verification and traditional verification techniques, plus operational monitors, provides a complete approach to verification and deployment of adaptive systems that has not been used before. This paper gives an overview of this approach.

  14. Independent Verification and Validation Of SAPHIRE 8 Volume 3 Users' Guide Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2010-03-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE 8 Volume 3 Users’ Guide is to assess the user documentation for its completeness, correctness, and consistency with respect to requirements for user interface and for any functionality that can be invoked by the user. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production.

  15. 10 CFR 60.47 - Facility information and verification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Facility information and verification. 60.47 Section 60.47 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Us/iaea Safeguards Agreement § 60.47 Facility information and verification. (a)...

  16. 10 CFR 60.47 - Facility information and verification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Facility information and verification. 60.47 Section 60.47 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Us/iaea Safeguards Agreement § 60.47 Facility information and verification. (a)...

  17. 10 CFR 60.47 - Facility information and verification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Facility information and verification. 60.47 Section 60.47 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Us/iaea Safeguards Agreement § 60.47 Facility information and verification. (a)...

  18. 10 CFR 60.47 - Facility information and verification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Facility information and verification. 60.47 Section 60.47 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Us/iaea Safeguards Agreement § 60.47 Facility information and verification. (a)...

  19. 10 CFR 60.47 - Facility information and verification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Facility information and verification. 60.47 Section 60.47 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Licenses Us/iaea Safeguards Agreement § 60.47 Facility information and verification. (a)...

  20. Helping Children Help Themselves. Revised.

    ERIC Educational Resources Information Center

    Alberta Dept. of Agriculture, Edmonton.

    Youth leaders and parents can use this activity oriented publication to help children six to twelve years of age become more independent by acquiring daily living skills. The publication consists of five units, each of which contains an introduction, learning activities, and lists of resource materials. Age-ability levels are suggested for…

  1. Help Us to Help Ourselves

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2010-01-01

    Local authorities have a strong tradition of supporting communities to help themselves, and this is nowhere better illustrated than in the learning they commission and deliver through the Adult Safeguarded Learning budget. The budget was set up to protect at least a minimum of provision for adult liberal education, family learning and learning for…

  2. Verification of Scientific Simulations via Hypothesis-Driven Comparative and Quantitative Visualization

    SciTech Connect

    Ahrens, James P; Heitmann, Katrin; Petersen, Mark R; Woodring, Jonathan; Williams, Sean; Fasel, Patricia; Ahrens, Christine; Hsu, Chung-Hsing; Geveci, Berk

    2010-11-01

    This article presents a visualization-assisted process that verifies scientific-simulation codes. Code verification is necessary because scientists require accurate predictions to interpret data confidently. This verification process integrates iterative hypothesis verification with comparative, feature, and quantitative visualization. Following this process can help identify differences in cosmological and oceanographic simulations.

  3. Independent Verification and Validation Of SAPHIRE 8 Software Acceptance Test Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect

    Kent Norris

    2010-03-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE 8 Software Acceptance Test Plan is to assess the approach to be taken for intended testing activities. The plan typically identifies the items to be tested, the requirements being tested, the testing to be performed, test schedules, personnel requirements, reporting requirements, evaluation criteria, and any risks requiring contingency planning. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production.

  4. Simulation verification techniques study

    NASA Technical Reports Server (NTRS)

    Schoonmaker, P. B.; Wenglinski, T. H.

    1975-01-01

    Results are summarized of the simulation verification techniques study which consisted of two tasks: to develop techniques for simulator hardware checkout and to develop techniques for simulation performance verification (validation). The hardware verification task involved definition of simulation hardware (hardware units and integrated simulator configurations), survey of current hardware self-test techniques, and definition of hardware and software techniques for checkout of simulator subsystems. The performance verification task included definition of simulation performance parameters (and critical performance parameters), definition of methods for establishing standards of performance (sources of reference data or validation), and definition of methods for validating performance. Both major tasks included definition of verification software and assessment of verification data base impact. An annotated bibliography of all documents generated during this study is provided.

  5. Software verification and testing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    General procedures for software verification and validation are provided as a guide for managers, programmers, and analysts involved in software development. The verification and validation procedures described are based primarily on testing techniques. Testing refers to the execution of all or part of a software system for the purpose of detecting errors. Planning, execution, and analysis of tests are outlined in this document. Code reading and static analysis techniques for software verification are also described.

  6. Verification Challenges at Low Numbers

    SciTech Connect

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  7. Verification technologies, January--February 1990

    SciTech Connect

    Staehle, G.; Stull, S.

    1990-01-01

    The purpose of this article is to summarize some of the work at the Department of Energy (DOE) national laboratories applicable to on-site inspections (OSIs) to assist in the verification of arms-reduction treaties --- nuclear and other armaments. Not included are technologies that would be specifically applicable to treaties placing limitations on nuclear testing or technologies normally characterized as national technical means (NTM).

  8. Game theory and decision support system for use in security reviews of nuclear material tracking and accountancy systems

    SciTech Connect

    Goutal, P.; Werkoff, F.; Le Manchec, K.; Preston, N.; Roche, F.

    1995-12-31

    Tracking and accountancy arrangements help guarantee the security of nuclear materials. Verifications consisting of comparisons between physical identifications or measurements on one hand and material accountancy on the other hand are carried out, in order to detect any unexpected absence of nuclear material. This paper studies two different aspects of the problem of the efficiency of these verifications. First, a decision support system for use in security reviews of nuclear material accountancy systems is presented. Its purpose is firstly to represent a facility and the associated verifications, tracking and accountancy operations and secondly, to calculate the detection delay in the case of an absence of nuclear material. Next, in order to minimize the detection delay for a limited, fixed number of physical identifications, a two-person, zero-sum game with incomplete information is described. The first results obtained from this analysis indicate shorter detection times than those given by games with complete information.

  9. Sandia technology. Volume 13, number 2 Special issue : verification of arms control treaties.

    SciTech Connect

    Not Available

    1989-03-01

    Nuclear deterrence, a cornerstone of US national security policy, has helped prevent global conflict for over 40 years. The DOE and DoD share responsibility for this vital part of national security. The US will continue to rely on nuclear deterrence for the foreseeable future. In the late 1950s, Sandia developed satellite-borne nuclear burst detection systems to support the treaty banning atmospheric nuclear tests. This activity has continued to expand and diversify. When the Non-Proliferation Treaty was ratified in 1970, we began to develop technologies to protect nuclear materials from falling into unauthorized hands. This program grew and now includes systems for monitoring the movement and storage of nuclear materials, detecting tampering, and transmiting sensitive data securely. In the late 1970s, negotiations to further limit underground nuclear testing were being actively pursued. In less than 18 months, we fielded the National Seismic Station, an unattended observatory for in-country monitoring of nuclear tests. In the mid-l980s, arms-control interest shifted to facility monitoring and on-site inspection. Our Technical On-site Inspection Facility is the national test bed for perimeter and portal monitoring technology and the prototype for the inspection portal that was recently installed in the USSR under the Intermediate-Range Nuclear Forces accord. The articles in the special issue of Sundiu Technology describe some of our current contributions to verification technology. This work supports the US policy to seek realistic arms control agreements while maintaining our national security.

  10. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Experimental verification of therapeutic doses for the superficially-placed tumor radiotherapy with heavy ions at HIRFL

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Guo; Li, Qiang; Wu, Qing-Feng; Tao, Jia-Jun; Jin, Xiao-Dong

    2009-02-01

    Up to now, clinical trials of heavy-ion radiotherapy for superficially placed tumors have been carried out for six times and over 60 selected patients have been treated with 80-100 MeV/u carbon ions supplied by the Heavy Ion Research Facility in Lanzhou (HIRFL) at the Institute of Modern Physics, Chinese Academy of Sciences since November, 2006. A passive irradiation system and a dose optimization method for radiotherapy with carbon-ion beams have been developed. Experimental verification of longitudinally therapeutic dose distributions was conducted under the condition of simulating patient treatment in the therapy terminal at HIRFL. The measured depth-dose distributions basically coincide with the expected ones. These results indicate that the irradiation system and the dose optimization method are effective in the ongoing carbon-ion radiotherapy for shallow-seated tumors at HIRFL.

  11. Helping individuals to help themselves.

    PubMed

    Costain, Lyndel; Croker, Helen

    2005-02-01

    Obesity is a serious and increasing health issue. Approximately two-thirds of adults in the UK are now overweight or obese. Recent public health reports firmly reinforce the importance of engaging individuals to look after their health, including their weight. They also spell out the need for individuals to be supported more actively, on many levels, to enable this 'engagement'. Meanwhile, national surveys indicate that approximately two-thirds of adults are concerned about weight control, with one-third actively trying to lose weight. This finding is hardly surprising considering current weight statistics, plus the plethora of popular diets on offer. Weight-loss methods include diet clubs, diet books, exercise, meal replacements, advice from healthcare professionals and following a self-styled diet. Obesity is a multi-factorial problem, and losing weight and, in particular, maintaining weight loss is difficult and often elusive. It is argued that the modern obesogenic or 'toxic' environment has essentially taken body-weight control from an instinctive 'survival' process to one that needs sustained cognitive and skill-based control. The evidence suggests that health professionals can help individuals achieve longer-term weight control by supporting them in making sustainable lifestyle changes using a range of behavioural techniques. These techniques include: assessing readiness to change; self-monitoring; realistic goal setting; dietary change; increased physical activity; stimulus control; cognitive restructuring; relapse management; establishing ongoing support. Consistently working in a client-centred way is also being increasingly advocated and incorporated into practice to help motivate and encourage, rather than hinder, the individual's progress. PMID:15877927

  12. The Role of science in treaty verification

    SciTech Connect

    Gavron, A. I.

    2004-01-01

    Technologically advanced nations are currently applying more science to treaty verification than ever before. Satellites gather a multitude of information relating to proliferation concerns using thermal imaging analysis, nuclear radiation measurements, and optical and radio frequency signals detection. Ground stations gather complementary signals such as seismic events and radioactive emissions. Export controls in many countries attempt to intercept materials and technical means that could be used for nuclear proliferation. Never the less, we have witnessed a plethora of nuclear proliferation episodes, that were undetected (or were belatedly detected) by these technologies - the Indian nuclear tests in 1998, the Libyan nuclear buildup, the Iranian enrichment program and the North Korea nuclear weapons program are some prime examples. In this talk we will discuss some of the technologies used for proliferation detection. In particular, we will note some of the issues relating to nuclear materials control agreements that epitomize political difficulties as they impact the implementation of science and technology.

  13. Regression Verification Using Impact Summaries

    NASA Technical Reports Server (NTRS)

    Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana

    2013-01-01

    Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program

  14. Fuel Retrieval System (FRS) Design Verification

    SciTech Connect

    YANOCHKO, R.M.

    2000-01-27

    This document was prepared as part of an independent review to explain design verification activities already completed, and to define the remaining design verification actions for the Fuel Retrieval System. The Fuel Retrieval Subproject was established as part of the Spent Nuclear Fuel Project (SNF Project) to retrieve and repackage the SNF located in the K Basins. The Fuel Retrieval System (FRS) construction work is complete in the KW Basin, and start-up testing is underway Design modifications and construction planning are also underway for the KE Basin. An independent review of the design verification process as applied to the K Basin projects was initiated in support of preparation for the SNF Project operational readiness review (ORR).

  15. Packaged low-level waste verification system

    SciTech Connect

    Tuite, K.T.; Winberg, M.; Flores, A.Y.; Killian, E.W.; McIsaac, C.V.

    1996-08-01

    Currently, states and low-level radioactive waste (LLW) disposal site operators have no method of independently verifying the radionuclide content of packaged LLW that arrive at disposal sites for disposal. At this time, disposal sites rely on LLW generator shipping manifests and accompanying records to insure that LLW received meets the waste acceptance criteria. An independent verification system would provide a method of checking generator LLW characterization methods and help ensure that LLW disposed of at disposal facilities meets requirements. The Mobile Low-Level Waste Verification System (MLLWVS) provides the equipment, software, and methods to enable the independent verification of LLW shipping records to insure that disposal site waste acceptance criteria are being met. The MLLWVS system was developed under a cost share subcontract between WMG, Inc., and Lockheed Martin Idaho Technologies through the Department of Energy`s National Low-Level Waste Management Program at the Idaho National Engineering Laboratory (INEL).

  16. Voltage verification unit

    DOEpatents

    Martin, Edward J.

    2008-01-15

    A voltage verification unit and method for determining the absence of potentially dangerous potentials within a power supply enclosure without Mode 2 work is disclosed. With this device and method, a qualified worker, following a relatively simple protocol that involves a function test (hot, cold, hot) of the voltage verification unit before Lock Out/Tag Out and, and once the Lock Out/Tag Out is completed, testing or "trying" by simply reading a display on the voltage verification unit can be accomplished without exposure of the operator to the interior of the voltage supply enclosure. According to a preferred embodiment, the voltage verification unit includes test leads to allow diagnostics with other meters, without the necessity of accessing potentially dangerous bus bars or the like.

  17. Verification of RADTRAN

    SciTech Connect

    Kanipe, F.L.; Neuhauser, K.S.

    1995-12-31

    This document presents details of the verification process of the RADTRAN computer code which was established for the calculation of risk estimates for radioactive materials transportation by highway, rail, air, and waterborne modes.

  18. Verification of Autonomous Systems for Space Applications

    NASA Technical Reports Server (NTRS)

    Brat, G.; Denney, E.; Giannakopoulou, D.; Frank, J.; Jonsson, A.

    2006-01-01

    Autonomous software, especially if it is based on model, can play an important role in future space applications. For example, it can help streamline ground operations, or, assist in autonomous rendezvous and docking operations, or even, help recover from problems (e.g., planners can be used to explore the space of recovery actions for a power subsystem and implement a solution without (or with minimal) human intervention). In general, the exploration capabilities of model-based systems give them great flexibility. Unfortunately, it also makes them unpredictable to our human eyes, both in terms of their execution and their verification. The traditional verification techniques are inadequate for these systems since they are mostly based on testing, which implies a very limited exploration of their behavioral space. In our work, we explore how advanced V&V techniques, such as static analysis, model checking, and compositional verification, can be used to gain trust in model-based systems. We also describe how synthesis can be used in the context of system reconfiguration and in the context of verification.

  19. Turbulence Modeling Verification and Validation

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2014-01-01

    Computational fluid dynamics (CFD) software that solves the Reynolds-averaged Navier-Stokes (RANS) equations has been in routine use for more than a quarter of a century. It is currently employed not only for basic research in fluid dynamics, but also for the analysis and design processes in many industries worldwide, including aerospace, automotive, power generation, chemical manufacturing, polymer processing, and petroleum exploration. A key feature of RANS CFD is the turbulence model. Because the RANS equations are unclosed, a model is necessary to describe the effects of the turbulence on the mean flow, through the Reynolds stress terms. The turbulence model is one of the largest sources of uncertainty in RANS CFD, and most models are known to be flawed in one way or another. Alternative methods such as direct numerical simulations (DNS) and large eddy simulations (LES) rely less on modeling and hence include more physics than RANS. In DNS all turbulent scales are resolved, and in LES the large scales are resolved and the effects of the smallest turbulence scales are modeled. However, both DNS and LES are too expensive for most routine industrial usage on today's computers. Hybrid RANS-LES, which blends RANS near walls with LES away from walls, helps to moderate the cost while still retaining some of the scale-resolving capability of LES, but for some applications it can still be too expensive. Even considering its associated uncertainties, RANS turbulence modeling has proved to be very useful for a wide variety of applications. For example, in the aerospace field, many RANS models are considered to be reliable for computing attached flows. However, existing turbulence models are known to be inaccurate for many flows involving separation. Research has been ongoing for decades in an attempt to improve turbulence models for separated and other nonequilibrium flows. When developing or improving turbulence models, both verification and validation are important

  20. 10 CFR 72.79 - Facility information and verification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Facility information and verification. 72.79 Section 72.79 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE...

  1. RISKIND verification and benchmark comparisons

    SciTech Connect

    Biwer, B.M.; Arnish, J.J.; Chen, S.Y.; Kamboj, S.

    1997-08-01

    This report presents verification calculations and benchmark comparisons for RISKIND, a computer code designed to estimate potential radiological consequences and health risks to individuals and the population from exposures associated with the transportation of spent nuclear fuel and other radioactive materials. Spreadsheet calculations were performed to verify the proper operation of the major options and calculational steps in RISKIND. The program is unique in that it combines a variety of well-established models into a comprehensive treatment for assessing risks from the transportation of radioactive materials. Benchmark comparisons with other validated codes that incorporate similar models were also performed. For instance, the external gamma and neutron dose rate curves for a shipping package estimated by RISKIND were compared with those estimated by using the RADTRAN 4 code and NUREG-0170 methodology. Atmospheric dispersion of released material and dose estimates from the GENII and CAP88-PC codes. Verification results have shown the program to be performing its intended function correctly. The benchmark results indicate that the predictions made by RISKIND are within acceptable limits when compared with predictions from similar existing models.

  2. Systems Approach to Arms Control Verification

    SciTech Connect

    Allen, K; Neimeyer, I; Listner, C; Stein, G; Chen, C; Dreicer, M

    2015-05-15

    Using the decades of experience of developing concepts and technologies for verifying bilateral and multilateral arms control agreements, a broad conceptual systems approach is being developed that takes into account varying levels of information and risk. The IAEA has already demonstrated the applicability of a systems approach by implementing safeguards at the State level, with acquisition path analysis as the key element. In order to test whether such an approach could also be implemented for arms control verification, an exercise was conducted in November 2014 at the JRC ITU Ispra. Based on the scenario of a hypothetical treaty between two model nuclear weapons states aimed at capping their nuclear arsenals at existing levels, the goal of this exercise was to explore how to use acquisition path analysis in an arms control context. Our contribution will present the scenario, objectives and results of this exercise, and attempt to define future workshops aimed at further developing verification measures that will deter or detect treaty violations.

  3. Trashing the planet. [How Science can help us deal with environmental problems such as acid rain, depletion of the ozone, and nuclear waste (among other things)

    SciTech Connect

    Ray, D.L.; Guzzo, L.

    1990-01-01

    The authors use a common sense approach to their goals of clarifying environmental issues, separating fact from factoid, unmaking the dooms-crying opponents of all progress, and re-establishing a sense of reason and balance with respect to the environment, modern technology and science. The introductory section is a discussion of man, technology, and the environment. The authors point out the three major problem areas in the interface between science, the media, and the public: anxiety, factoids, and misinterpretation. They also discuss the reality of the economic and technological changes from the good old days. The second section of the book focuses on four major environmental issues: the greenhouse effect; acid rain; pesticides; and chemical toxins (asbestos, PCB, dioxin). In the third section the authors present a broad approach to the nuclear issues facing us: understanding of radiation; nuclear medicine; nuclear power; and nuclear waste. Finally the book concludes with a section of environmentalism and the future. The authors discuss political environmental activism, governmental actions, and global prospective. They also list four common sense approaches for ordinary citizens: pressure on the legislative branch of government; refusal to listen to the just in case argument; keeping a sense of perspective; and realizing that humans have the responsibility to be good stewards while at the same time they cannot live without altering the earth. At the end of the book there is a sizable section of endnotes and referenced citations.

  4. Visual inspection for CTBT verification

    SciTech Connect

    Hawkins, W.; Wohletz, K.

    1997-03-01

    On-site visual inspection will play an essential role in future Comprehensive Test Ban Treaty (CTBT) verification. Although seismic and remote sensing techniques are the best understood and most developed methods for detection of evasive testing of nuclear weapons, visual inspection can greatly augment the certainty and detail of understanding provided by these more traditional methods. Not only can visual inspection offer ``ground truth`` in cases of suspected nuclear testing, but it also can provide accurate source location and testing media properties necessary for detailed analysis of seismic records. For testing in violation of the CTBT, an offending party may attempt to conceal the test, which most likely will be achieved by underground burial. While such concealment may not prevent seismic detection, evidence of test deployment, location, and yield can be disguised. In this light, if a suspicious event is detected by seismic or other remote methods, visual inspection of the event area is necessary to document any evidence that might support a claim of nuclear testing and provide data needed to further interpret seismic records and guide further investigations. However, the methods for visual inspection are not widely known nor appreciated, and experience is presently limited. Visual inspection can be achieved by simple, non-intrusive means, primarily geological in nature, and it is the purpose of this report to describe the considerations, procedures, and equipment required to field such an inspection.

  5. Explaining Verification Conditions

    NASA Technical Reports Server (NTRS)

    Deney, Ewen; Fischer, Bernd

    2006-01-01

    The Hoare approach to program verification relies on the construction and discharge of verification conditions (VCs) but offers no support to trace, analyze, and understand the VCs themselves. We describe a systematic extension of the Hoare rules by labels so that the calculus itself can be used to build up explanations of the VCs. The labels are maintained through the different processing steps and rendered as natural language explanations. The explanations can easily be customized and can capture different aspects of the VCs; here, we focus on their structure and purpose. The approach is fully declarative and the generated explanations are based only on an analysis of the labels rather than directly on the logical meaning of the underlying VCs or their proofs. Keywords: program verification, Hoare calculus, traceability.

  6. TFE verification program

    NASA Astrophysics Data System (ADS)

    1994-01-01

    This is the final semiannual progress report for the Thermionic Fuel Elements (TFE) verification. A decision was made in August 1993 to begin a Close Out Program on October 1, 1993. Final reports summarizing the design analyses and test activities of the TFE Verification Program will be written, stand-alone documents for each task. The objective of the semiannual progress report is to summarize the technical results obtained during the latest reporting period. The information presented herein includes evaluated test data, design evaluations, the results of analyses and the significance of results.

  7. General Environmental Verification Specification

    NASA Technical Reports Server (NTRS)

    Milne, J. Scott, Jr.; Kaufman, Daniel S.

    2003-01-01

    The NASA Goddard Space Flight Center s General Environmental Verification Specification (GEVS) for STS and ELV Payloads, Subsystems, and Components is currently being revised based on lessons learned from GSFC engineering and flight assurance. The GEVS has been used by Goddard flight projects for the past 17 years as a baseline from which to tailor their environmental test programs. A summary of the requirements and updates are presented along with the rationale behind the changes. The major test areas covered by the GEVS include mechanical, thermal, and EMC, as well as more general requirements for planning, tracking of the verification programs.

  8. Requirement Assurance: A Verification Process

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.

    2011-01-01

    Requirement Assurance is an act of requirement verification which assures the stakeholder or customer that a product requirement has produced its "as realized product" and has been verified with conclusive evidence. Product requirement verification answers the question, "did the product meet the stated specification, performance, or design documentation?". In order to ensure the system was built correctly, the practicing system engineer must verify each product requirement using verification methods of inspection, analysis, demonstration, or test. The products of these methods are the "verification artifacts" or "closure artifacts" which are the objective evidence needed to prove the product requirements meet the verification success criteria. Institutional direction is given to the System Engineer in NPR 7123.1A NASA Systems Engineering Processes and Requirements with regards to the requirement verification process. In response, the verification methodology offered in this report meets both the institutional process and requirement verification best practices.

  9. Multi-canister overpack project -- verification and validation, MCNP 4A

    SciTech Connect

    Goldmann, L.H.

    1997-11-10

    This supporting document contains the software verification and validation (V and V) package used for Phase 2 design of the Spent Nuclear Fuel Multi-Canister Overpack. V and V packages for both ANSYS and MCNP are included. Description of Verification Run(s): This software requires that it be compiled specifically for the machine it is to be used on. Therefore to facilitate ease in the verification process the software automatically runs 25 sample problems to ensure proper installation and compilation. Once the runs are completed the software checks for verification by performing a file comparison on the new output file and the old output file. Any differences between any of the files will cause a verification error. Due to the manner in which the verification is completed a verification error does not necessarily indicate a problem. This indicates that a closer look at the output files is needed to determine the cause of the error.

  10. Verification and Validation of Digitally Upgraded Control Rooms

    SciTech Connect

    Boring, Ronald; Lau, Nathan

    2015-09-01

    As nuclear power plants undertake main control room modernization, a challenge is the lack of a clearly defined human factors process to follow. Verification and validation (V&V) as applied in the nuclear power community has tended to involve efforts such as integrated system validation, which comes at the tail end of the design stage. To fill in guidance gaps and create a step-by-step process for control room modernization, we have developed the Guideline for Operational Nuclear Usability and Knowledge Elicitation (GONUKE). This approach builds on best practices in the software industry, which prescribe an iterative user-centered approach featuring multiple cycles of design and evaluation. Nuclear regulatory guidance for control room design emphasizes summative evaluation—which occurs after the design is complete. In the GONUKE approach, evaluation is also performed at the formative stage of design—early in the design cycle using mockups and prototypes for evaluation. The evaluation may involve expert review (e.g., software heuristic evaluation at the formative stage and design verification against human factors standards like NUREG-0700 at the summative stage). The evaluation may also involve user testing (e.g., usability testing at the formative stage and integrated system validation at the summative stage). An additional, often overlooked component of evaluation is knowledge elicitation, which captures operator insights into the system. In this report we outline these evaluation types across design phases that support the overall modernization process. The objective is to provide industry-suitable guidance for steps to be taken in support of the design and evaluation of a new human-machine interface (HMI) in the control room. We suggest the value of early-stage V&V and highlight how this early-stage V&V can help improve the design process for control room modernization. We argue that there is a need to overcome two shortcomings of V&V in current practice

  11. Context Effects in Sentence Verification.

    ERIC Educational Resources Information Center

    Kiger, John I.; Glass, Arnold L.

    1981-01-01

    Three experiments examined what happens to reaction time to verify easy items when they are mixed with difficult items in a verification task. Subjects verification of simple arithmetic equations and sentences took longer when placed in a difficult list. Difficult sentences also slowed the verification of easy arithmetic equations. (Author/RD)

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM

    EPA Science Inventory

    This presentation will be given at the EPA Science Forum 2005 in Washington, DC. The Environmental Technology Verification Program (ETV) was initiated in 1995 to speed implementation of new and innovative commercial-ready environemntal technologies by providing objective, 3rd pa...

  13. Computer Graphics Verification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Video processing creates technical animation sequences using studio quality equipment to realistically represent fluid flow over space shuttle surfaces, helicopter rotors, and turbine blades.Computer systems Co-op, Tim Weatherford, performing computer graphics verification. Part of Co-op brochure.

  14. FPGA Verification Accelerator (FVAX)

    NASA Technical Reports Server (NTRS)

    Oh, Jane; Burke, Gary

    2008-01-01

    Is Verification Acceleration Possible? - Increasing the visibility of the internal nodes of the FPGA results in much faster debug time - Forcing internal signals directly allows a problem condition to be setup very quickly center dot Is this all? - No, this is part of a comprehensive effort to improve the JPL FPGA design and V&V process.

  15. Telescope performance verification

    NASA Astrophysics Data System (ADS)

    Swart, Gerhard P.; Buckley, David A. H.

    2004-09-01

    While Systems Engineering appears to be widely applied on the very large telescopes, it is lacking in the development of many of the medium and small telescopes currently in progress. The latter projects rely heavily on the experience of the project team, verbal requirements and conjecture based on the successes and failures of other telescopes. Furthermore, it is considered an unaffordable luxury to "close-the-loop" by carefully analysing and documenting the requirements and then verifying the telescope's compliance with them. In this paper the authors contend that a Systems Engineering approach is a keystone in the development of any telescope and that verification of the telescope's performance is not only an important management tool but also forms the basis upon which successful telescope operation can be built. The development of the Southern African Large Telescope (SALT) has followed such an approach and is now in the verification phase of its development. Parts of the SALT verification process will be discussed in some detail to illustrate the suitability of this approach, including oversight by the telescope shareholders, recording of requirements and results, design verification and performance testing. Initial test results will be presented where appropriate.

  16. Exomars Mission Verification Approach

    NASA Astrophysics Data System (ADS)

    Cassi, Carlo; Gilardi, Franco; Bethge, Boris

    According to the long-term cooperation plan established by ESA and NASA in June 2009, the ExoMars project now consists of two missions: A first mission will be launched in 2016 under ESA lead, with the objectives to demonstrate the European capability to safely land a surface package on Mars, to perform Mars Atmosphere investigation, and to provide communi-cation capability for present and future ESA/NASA missions. For this mission ESA provides a spacecraft-composite, made up of an "Entry Descent & Landing Demonstrator Module (EDM)" and a Mars Orbiter Module (OM), NASA provides the Launch Vehicle and the scientific in-struments located on the Orbiter for Mars atmosphere characterisation. A second mission with it launch foreseen in 2018 is lead by NASA, who provides spacecraft and launcher, the EDL system, and a rover. ESA contributes the ExoMars Rover Module (RM) to provide surface mobility. It includes a drill system allowing drilling down to 2 meter, collecting samples and to investigate them for signs of past and present life with exobiological experiments, and to investigate the Mars water/geochemical environment, In this scenario Thales Alenia Space Italia as ESA Prime industrial contractor is in charge of the design, manufacturing, integration and verification of the ESA ExoMars modules, i.e.: the Spacecraft Composite (OM + EDM) for the 2016 mission, the RM for the 2018 mission and the Rover Operations Control Centre, which will be located at Altec-Turin (Italy). The verification process of the above products is quite complex and will include some pecu-liarities with limited or no heritage in Europe. Furthermore the verification approach has to be optimised to allow full verification despite significant schedule and budget constraints. The paper presents the verification philosophy tailored for the ExoMars mission in line with the above considerations, starting from the model philosophy, showing the verification activities flow and the sharing of tests

  17. Multibody modeling and verification

    NASA Technical Reports Server (NTRS)

    Wiens, Gloria J.

    1989-01-01

    A summary of a ten week project on flexible multibody modeling, verification and control is presented. Emphasis was on the need for experimental verification. A literature survey was conducted for gathering information on the existence of experimental work related to flexible multibody systems. The first portion of the assigned task encompassed the modeling aspects of flexible multibodies that can undergo large angular displacements. Research in the area of modeling aspects were also surveyed, with special attention given to the component mode approach. Resulting from this is a research plan on various modeling aspects to be investigated over the next year. The relationship between the large angular displacements, boundary conditions, mode selection, and system modes is of particular interest. The other portion of the assigned task was the generation of a test plan for experimental verification of analytical and/or computer analysis techniques used for flexible multibody systems. Based on current and expected frequency ranges of flexible multibody systems to be used in space applications, an initial test article was selected and designed. A preliminary TREETOPS computer analysis was run to ensure frequency content in the low frequency range, 0.1 to 50 Hz. The initial specifications of experimental measurement and instrumentation components were also generated. Resulting from this effort is the initial multi-phase plan for a Ground Test Facility of Flexible Multibody Systems for Modeling Verification and Control. The plan focusses on the Multibody Modeling and Verification (MMV) Laboratory. General requirements of the Unobtrusive Sensor and Effector (USE) and the Robot Enhancement (RE) laboratories were considered during the laboratory development.

  18. Internet-based eligibility verification lowers costs, improves payment timeliness.

    PubMed

    Bingham, A

    2001-02-01

    Verification of claims eligibility traditionally is performed either through telephone communication between the payer's and provider's staff or through an EDI clearinghouse. These forms of verification offer inconsistent quality, often use out-of-date information, cost time and money, and may financially harm payers and providers by leading to delays in payments or claims denied after care has been rendered. Internet-based eligibility verification software reduces the number of rejected claims because it can access current information without using a clearinghouse. The software also allows earlier collection of copayments because these obligations can be identified accurately when care is rendered. By offering Internet-based eligibility verification, payers can help providers achieve financial benefits while gaining such benefits themselves. PMID:11271442

  19. Borate Exchanges of Lemna minor L. as Studied with the Help of the Enriched Stable Isotopes and of a (n,α) Nuclear Reaction 1

    PubMed Central

    Thellier, Michel; Duval, Yves; Demarty, Maurice

    1979-01-01

    Despite the lack of a convenient radioisotope of boron, it is possible to measure unidirectional fluxes of borate between cellular systems and their external medium. It was accomplished by using the two purified stable isotopes (10B and 11B), with 10B specifically detected by a (n,α) nuclear reaction. The method was applied to compartmental analysis of borate with intact plants of Lemna minor L. Four compartments were suggested. Three of them apparently correspond to the three classical ones: free space (including easily dissociable borate monoesters), cytoplasm, and vacuole. The fourth one was interpreted as corresponding to very stable borate diesters in the cell walls. The method allows the determination of the borate capacities of the various compartments and of the borate unidirectional fluxes between the different compartments, at borate flux equilibrium. Other physicochemical data (mono and diester mass action constants, turn over numbers) were evaluated. The results are consistent with what is known of pure substances. PMID:16660714

  20. Conceptual design. Final report: TFE Verification Program

    SciTech Connect

    Not Available

    1994-03-01

    This report documents the TFE Conceptual Design, which provided the design guidance for the TFE Verification program. The primary goals of this design effort were: (1) establish the conceptual design of an in-core thermionic reactor for a 2 Mw(e) space nuclear power system with a 7-year operating lifetime; (2) demonstrate scalability of the above concept over the output power range of 500 kW(e) to 5 MW(e); and (3) define the TFE which is the basis for the 2 MW (e) reactor design. This TFE specification provided the basis for the test program. These primary goals were achieved. The technical approach taking in the conceptual design effort is discussed in Section 2, and the results are discussed in Section 3. The remainder of this introduction draws a perspective on the role that this conceptual design task played in the TFE Verification Program.

  1. The Challenge for Arms Control Verification in the Post-New START World

    SciTech Connect

    Wuest, C R

    2012-05-24

    Nuclear weapon arms control treaty verification is a key aspect of any agreement between signatories to establish that the terms and conditions spelled out in the treaty are being met. Historically, arms control negotiations have focused more on the rules and protocols for reducing the numbers of warheads and delivery systems - sometimes resorting to complex and arcane procedures for counting forces - in an attempt to address perceived or real imbalances in a nation's strategic posture that could lead to instability. Verification procedures are generally defined in arms control treaties and supporting documents and tend to focus on technical means and measures designed to ensure that a country is following the terms of the treaty and that it is not liable to engage in deception or outright cheating in an attempt to circumvent the spirit and the letter of the agreement. As the Obama Administration implements the articles, terms, and conditions of the recently ratified and entered-into-force New START treaty, there are already efforts within and outside of government to move well below the specified New START levels of 1550 warheads, 700 deployed strategic delivery vehicles, and 800 deployed and nondeployed strategic launchers (Inter-Continental Ballistic Missile (ICBM) silos, Submarine-Launched Ballistic Missile (SLBM) tubes on submarines, and bombers). A number of articles and opinion pieces have appeared that advocate for significantly deeper cuts in the U.S. nuclear stockpile, with some suggesting that unilateral reductions on the part of the U.S. would help coax Russia and others to follow our lead. Papers and studies prepared for the U.S. Department of Defense and at the U.S. Air War College have also been published, suggesting that nuclear forces totaling no more than about 300 warheads would be sufficient to meet U.S. national security and deterrence needs. (Davis 2011, Schaub and Forsyth 2010) Recent articles by James M. Acton and others suggest that the

  2. RESRAD-BUILD verification.

    SciTech Connect

    Kamboj, S.; Yu, C.; Biwer, B. M.; Klett, T.

    2002-01-31

    The results generated by the RESRAD-BUILD code (version 3.0) were verified with hand or spreadsheet calculations using equations given in the RESRAD-BUILD manual for different pathways. For verification purposes, different radionuclides--H-3, C-14, Na-22, Al-26, Cl-36, Mn-54, Co-60, Au-195, Ra-226, Ra-228, Th-228, and U-238--were chosen to test all pathways and models. Tritium, Ra-226, and Th-228 were chosen because of the special tritium and radon models in the RESRAD-BUILD code. Other radionuclides were selected to represent a spectrum of radiation types and energies. Verification of the RESRAD-BUILD code was conducted with an initial check of all the input parameters for correctness against their original source documents. Verification of the calculations was performed external to the RESRAD-BUILD code with Microsoft{reg_sign} Excel to verify all the major portions of the code. In some cases, RESRAD-BUILD results were compared with those of external codes, such as MCNP (Monte Carlo N-particle) and RESRAD. The verification was conducted on a step-by-step basis and used different test cases as templates. The following types of calculations were investigated: (1) source injection rate, (2) air concentration in the room, (3) air particulate deposition, (4) radon pathway model, (5) tritium model for volume source, (6) external exposure model, (7) different pathway doses, and (8) time dependence of dose. Some minor errors were identified in version 3.0; these errors have been corrected in later versions of the code. Some possible improvements in the code were also identified.

  3. Robust verification analysis

    NASA Astrophysics Data System (ADS)

    Rider, William; Witkowski, Walt; Kamm, James R.; Wildey, Tim

    2016-02-01

    We introduce a new methodology for inferring the accuracy of computational simulations through the practice of solution verification. We demonstrate this methodology on examples from computational heat transfer, fluid dynamics and radiation transport. Our methodology is suited to both well- and ill-behaved sequences of simulations. Our approach to the analysis of these sequences of simulations incorporates expert judgment into the process directly via a flexible optimization framework, and the application of robust statistics. The expert judgment is systematically applied as constraints to the analysis, and together with the robust statistics guards against over-emphasis on anomalous analysis results. We have named our methodology Robust Verification. Our methodology is based on utilizing multiple constrained optimization problems to solve the verification model in a manner that varies the analysis' underlying assumptions. Constraints applied in the analysis can include expert judgment regarding convergence rates (bounds and expectations) as well as bounding values for physical quantities (e.g., positivity of energy or density). This approach then produces a number of error models, which are then analyzed through robust statistical techniques (median instead of mean statistics). This provides self-contained, data and expert informed error estimation including uncertainties for both the solution itself and order of convergence. Our method produces high quality results for the well-behaved cases relatively consistent with existing practice. The methodology can also produce reliable results for ill-behaved circumstances predicated on appropriate expert judgment. We demonstrate the method and compare the results with standard approaches used for both code and solution verification on well-behaved and ill-behaved simulations.

  4. Natural Analogues - One Way to Help Build Public Confidence in the Predicted Performance of a Mined Geologic Repository for Nuclear Waste

    SciTech Connect

    Stuckless, J. S.

    2002-02-26

    The general public needs to have a way to judge the predicted long-term performance of the potential high-level nuclear waste repository at Yucca Mountain. The applicability and reliability of mathematical models used to make this prediction are neither easily understood nor accepted by the public. Natural analogues can provide the average person with a tool to assess the predicted performance and other scientific conclusions. For example, hydrologists with the Yucca Mountain Project have predicted that most of the water moving through the unsaturated zone at Yucca Mountain, Nevada will move through the host rock and around tunnels. Thus, seepage into tunnels is predicted to be a small percentage of available infiltration. This hypothesis can be tested experimentally and with some quantitative analogues. It can also be tested qualitatively using a variety of analogues such as (1) well-preserved Paleolithic to Neolithic paintings in caves and rock shelters, (2) biological remains preserved in caves and rock shelters, and (3) artifacts and paintings preserved in man-made underground openings. These examples can be found in materials that are generally available to the non-scientific public and can demonstrate the surprising degree of preservation of fragile and easily destroyed materials for very long periods of time within the unsaturated zone.

  5. TFE verification program

    NASA Astrophysics Data System (ADS)

    1990-03-01

    The information presented herein will include evaluated test data, design evaluations, the results of analyses and the significance of results. The program objective is to demonstrate the technology readiness of a Thermionic Fuel Element (TFE) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. The TF Verification Program builds directly on the technology and data base developed in the 1960s and 1970s in an AEC/NASA program, and in the SP-100 program conducted in 1983, 1984 and 1985. In the SP-100 program, the attractive features of thermionic power conversion technology were recognized but concern was expressed over the lack of fast reactor irradiation data. The TFE Verification Program addresses this concern. The general logic and strategy of the program to achieve its objectives is shown. Five prior programs form the basis for the TFE Verification Program: (1) AEC/NASA program of the 1960s and early 1970; (2) SP-100 concept development program; (3) SP-100 thermionic technology program; (4) Thermionic irradiations program in TRIGA in FY-88; and (5) Thermionic Program in 1986 and 1987.

  6. TFE Verification Program

    SciTech Connect

    Not Available

    1990-03-01

    The objective of the semiannual progress report is to summarize the technical results obtained during the latest reporting period. The information presented herein will include evaluated test data, design evaluations, the results of analyses and the significance of results. The program objective is to demonstrate the technology readiness of a TFE suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. The TF Verification Program builds directly on the technology and data base developed in the 1960s and 1970s in an AEC/NASA program, and in the SP-100 program conducted in 1983, 1984 and 1985. In the SP-100 program, the attractive but concern was expressed over the lack of fast reactor irradiation data. The TFE Verification Program addresses this concern. The general logic and strategy of the program to achieve its objectives is shown on Fig. 1-1. Five prior programs form the basis for the TFE Verification Program: (1) AEC/NASA program of the 1960s and early 1970; (2) SP-100 concept development program;(3) SP-100 thermionic technology program; (4) Thermionic irradiations program in TRIGA in FY-86; (5) and Thermionic Technology Program in 1986 and 1987. 18 refs., 64 figs., 43 tabs.

  7. Continuous verification using multimodal biometrics.

    PubMed

    Sim, Terence; Zhang, Sheng; Janakiraman, Rajkumar; Kumar, Sandeep

    2007-04-01

    Conventional verification systems, such as those controlling access to a secure room, do not usually require the user to reauthenticate himself for continued access to the protected resource. This may not be sufficient for high-security environments in which the protected resource needs to be continuously monitored for unauthorized use. In such cases, continuous verification is needed. In this paper, we present the theory, architecture, implementation, and performance of a multimodal biometrics verification system that continuously verifies the presence of a logged-in user. Two modalities are currently used--face and fingerprint--but our theory can be readily extended to include more modalities. We show that continuous verification imposes additional requirements on multimodal fusion when compared to conventional verification systems. We also argue that the usual performance metrics of false accept and false reject rates are insufficient yardsticks for continuous verification and propose new metrics against which we benchmark our system. PMID:17299225

  8. Quantum money with classical verification

    SciTech Connect

    Gavinsky, Dmitry

    2014-12-04

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  9. Quantum money with classical verification

    NASA Astrophysics Data System (ADS)

    Gavinsky, Dmitry

    2014-12-01

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  10. 10 CFR 63.47 - Facility information and verification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Facility information and verification. 63.47 Section 63.47 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Us/iaea Safeguards Agreement § 63.47 Facility information...

  11. 10 CFR 63.47 - Facility information and verification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Facility information and verification. 63.47 Section 63.47 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Us/iaea Safeguards Agreement § 63.47 Facility information...

  12. 10 CFR 63.47 - Facility information and verification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Facility information and verification. 63.47 Section 63.47 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Us/iaea Safeguards Agreement § 63.47 Facility information...

  13. 10 CFR 63.47 - Facility information and verification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Facility information and verification. 63.47 Section 63.47 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Us/iaea Safeguards Agreement § 63.47 Facility information...

  14. 10 CFR 63.47 - Facility information and verification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Facility information and verification. 63.47 Section 63.47 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC REPOSITORY AT YUCCA MOUNTAIN, NEVADA Licenses Us/iaea Safeguards Agreement § 63.47 Facility information...

  15. Nuclear Scans

    MedlinePlus

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  16. Going Online: Helping Technical Communicators Help Translators.

    ERIC Educational Resources Information Center

    Flint, Patricia; Lord van Slyke, Melanie; Starke-Meyerring, Doreen; Thompson, Aimee

    1999-01-01

    Explains why technical communicators should help translators. Offers tips for creating "translation-friendly" documentation. Describes the research and design process used by the authors to create an online tutorial that provides technical communicators at a medical technology company the information they need to help them write and design…

  17. Constitutional and legal implications of arms control verification technologies

    SciTech Connect

    Tanzman, E.A.; Haffenden, R.

    1992-09-01

    United States law can both help and hinder the use of instrumentation as a component of arms control verification in this country. It can foster the general use of sophisticated verification technologies, where such devices are consistent with the value attached to privacy by the Fourth Amendment to the United States Constitution. On the other hand, law can hinder reliance on devices that cross this constitutional line, or where such technology itself threatens health, safety, or environment as such threats are defined in federal statutes. The purpose of this conference paper is to explain some of the lessons that have been learned about the relationship between law and verification technologies in the hope that law can help more than hinder. This paper has three parts. In order to start with a common understanding, part I will briefly describe the hierarchy of treaties, the Constitution, federal statutes, and state and local laws. Part 2 will discuss how the specific constitutional requirement that the government respect the right of privacy in all of its endeavors may affect the use of verification technologies. Part 3 will explain the environmental law constraints on verification technology as exemplified by the system of on-site sampling embodied in the current Rolling Text of the Draft Chemical Weapons Convention.

  18. Verification of excess defense material

    SciTech Connect

    Fearey, B.L.; Pilat, J.F.; Eccleston, G.W.; Nicholas, N.J.; Tape, J.W.

    1997-12-01

    The international community in the post-Cold War period has expressed an interest in the International Atomic Energy Agency (IAEA) using its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring excess materials, which include both classified and unclassified materials. Although the IAEA has suggested the need to address inspections of both types of materials, the most troublesome and potentially difficult problems involve approaches to the inspection of classified materials. The key issue for placing classified nuclear components and materials under IAEA safeguards is the conflict between these traditional IAEA materials accounting procedures and the US classification laws and nonproliferation policy designed to prevent the disclosure of critical weapon-design information. Possible verification approaches to classified excess defense materials could be based on item accountancy, attributes measurements, and containment and surveillance. Such approaches are not wholly new; in fact, they are quite well established for certain unclassified materials. Such concepts may be applicable to classified items, but the precise approaches have yet to be identified, fully tested, or evaluated for technical and political feasibility, or for their possible acceptability in an international inspection regime. Substantial work remains in these areas. This paper examines many of the challenges presented by international inspections of classified materials.

  19. Verification of LHS distributions.

    SciTech Connect

    Swiler, Laura Painton

    2006-04-01

    This document provides verification test results for normal, lognormal, and uniform distributions that are used in Sandia's Latin Hypercube Sampling (LHS) software. The purpose of this testing is to verify that the sample values being generated in LHS are distributed according to the desired distribution types. The testing of distribution correctness is done by examining summary statistics, graphical comparisons using quantile-quantile plots, and format statistical tests such as the Chisquare test, the Kolmogorov-Smirnov test, and the Anderson-Darling test. The overall results from the testing indicate that the generation of normal, lognormal, and uniform distributions in LHS is acceptable.

  20. TFE Verification Program

    SciTech Connect

    Not Available

    1993-05-01

    The objective of the semiannual progress report is to summarize the technical results obtained during the latest reporting period. The information presented herein will include evaluated test data, design evaluations, the results of analyses and the significance of results. The program objective is to demonstrate the technology readiness of a TFE (thermionic fuel element) suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. The TFE Verification Program builds directly on the technology and data base developed in the 1960s and early 1970s in an AEC/NASA program, and in the SP-100 program conducted in 1983, 1984 and 1985. In the SP-100 program, the attractive features of thermionic power conversion technology were recognized but concern was expressed over the lack of fast reactor irradiation data. The TFE Verification Program addresses this concern.

  1. Deductive Verification of Cryptographic Software

    NASA Technical Reports Server (NTRS)

    Almeida, Jose Barcelar; Barbosa, Manuel; Pinto, Jorge Sousa; Vieira, Barbara

    2009-01-01

    We report on the application of an off-the-shelf verification platform to the RC4 stream cipher cryptographic software implementation (as available in the openSSL library), and introduce a deductive verification technique based on self-composition for proving the absence of error propagation.

  2. HDL to verification logic translator

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Windley, P. J.

    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.

  3. Software Verification and Validation Procedure

    SciTech Connect

    Olund, Thomas S.

    2008-09-15

    This Software Verification and Validation procedure provides the action steps for the Tank Waste Information Network System (TWINS) testing process. The primary objective of the testing process is to provide assurance that the software functions as intended, and meets the requirements specified by the client. Verification and validation establish the primary basis for TWINS software product acceptance.

  4. HDL to verification logic translator

    NASA Technical Reports Server (NTRS)

    Gambles, J. W.; Windley, P. J.

    1992-01-01

    The increasingly higher number of transistors possible in VLSI circuits compounds the difficulty in insuring correct designs. As the number of possible test cases required to exhaustively simulate a circuit design explodes, a better method is required to confirm the absence of design faults. Formal verification methods provide a way to prove, using logic, that a circuit structure correctly implements its specification. Before verification is accepted by VLSI design engineers, the stand alone verification tools that are in use in the research community must be integrated with the CAD tools used by the designers. One problem facing the acceptance of formal verification into circuit design methodology is that the structural circuit descriptions used by the designers are not appropriate for verification work and those required for verification lack some of the features needed for design. We offer a solution to this dilemma: an automatic translation from the designers' HDL models into definitions for the higher-ordered logic (HOL) verification system. The translated definitions become the low level basis of circuit verification which in turn increases the designer's confidence in the correctness of higher level behavioral models.

  5. VEG-01: Veggie Hardware Verification Testing

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Newsham, Gary; Hummerick, Mary; Morrow, Robert; Wheeler, Raymond

    2013-01-01

    The Veggie plant/vegetable production system is scheduled to fly on ISS at the end of2013. Since much of the technology associated with Veggie has not been previously tested in microgravity, a hardware validation flight was initiated. This test will allow data to be collected about Veggie hardware functionality on ISS, allow crew interactions to be vetted for future improvements, validate the ability of the hardware to grow and sustain plants, and collect data that will be helpful to future Veggie investigators as they develop their payloads. Additionally, food safety data on the lettuce plants grown will be collected to help support the development of a pathway for the crew to safely consume produce grown on orbit. Significant background research has been performed on the Veggie plant growth system, with early tests focusing on the development of the rooting pillow concept, and the selection of fertilizer, rooting medium and plant species. More recent testing has been conducted to integrate the pillow concept into the Veggie hardware and to ensure that adequate water is provided throughout the growth cycle. Seed sanitation protocols have been established for flight, and hardware sanitation between experiments has been studied. Methods for shipping and storage of rooting pillows and the development of crew procedures and crew training videos for plant activities on-orbit have been established. Science verification testing was conducted and lettuce plants were successfully grown in prototype Veggie hardware, microbial samples were taken, plant were harvested, frozen, stored and later analyzed for microbial growth, nutrients, and A TP levels. An additional verification test, prior to the final payload verification testing, is desired to demonstrate similar growth in the flight hardware and also to test a second set of pillows containing zinnia seeds. Issues with root mat water supply are being resolved, with final testing and flight scheduled for later in 2013.

  6. Freeze verification: time for a fresh approach

    SciTech Connect

    Paine, C.

    1983-01-01

    The administration's claim that some elements of a comprehensive nuclear freeze are unverifiable does not specify the nature of those elements and whether they represent a real threat to national security if we trusted the USSR to comply. The author contends that clandestine development of new weapons will have little strategic effect since both sides already have total destructive power. The risks of noncompliance are largely political and less than the risks of continued arms buildup. Since the USSR would also want the US to be bound by freeze terms, deterrence would come from mutual benefit. Hardliners argue that cheating is easier in a closed society; that our democracy would tend to relax and the USSR would move ahead with its plans for world domination. The author argues that, over time, a freeze would diminish Soviet confidence in its nuclear war fighting capabilities and that adequate verification is possible with monitoring and warning arrangements. (DCK)

  7. Verification of VENTSAR

    SciTech Connect

    Simpkins, A.A.

    1995-01-01

    The VENTSAR code is an upgraded and improved version of the VENTX code, which estimates concentrations on or near a building from a release at a nearby location. The code calculates the concentrations either for a given meteorological exceedance probability or for a given stability and wind speed combination. A single building can be modeled which lies in the path of the plume, or a penthouse can be added to the top of the building. Plume rise may also be considered. Release types can be either chemical or radioactive. Downwind concentrations are determined at user-specified incremental distances. This verification report was prepared to demonstrate that VENTSAR is properly executing all algorithms and transferring data. Hand calculations were also performed to ensure proper application of methodologies.

  8. Online fingerprint verification.

    PubMed

    Upendra, K; Singh, S; Kumar, V; Verma, H K

    2007-01-01

    As organizations search for more secure authentication methods for user access, e-commerce, and other security applications, biometrics is gaining increasing attention. With an increasing emphasis on the emerging automatic personal identification applications, fingerprint based identification is becoming more popular. The most widely used fingerprint representation is the minutiae based representation. The main drawback with this representation is that it does not utilize a significant component of the rich discriminatory information available in the fingerprints. Local ridge structures cannot be completely characterized by minutiae. Also, it is difficult quickly to match two fingerprint images containing different number of unregistered minutiae points. In this study filter bank based representation, which eliminates these weakness, is implemented and the overall performance of the developed system is tested. The results have shown that this system can be used effectively for secure online verification applications. PMID:17365425

  9. Bibliography for Verification and Validation in Computational Simulations

    SciTech Connect

    Oberkampf, W.L.

    1998-10-01

    A bibliography has been compiled dealing with the verification and validation of computational simulations. The references listed in this bibliography are concentrated in the field of computational fluid dynamics (CFD). However, references from the following fields are also included: operations research, heat transfer, solid dynamics, software quality assurance, software accreditation, military systems, and nuclear reactor safety. This bibliography, containing 221 references, is not meant to be comprehensive. It was compiled during the last ten years in response to the author's interest and research in the methodology for verification and validation. The emphasis in the bibliography is in the following areas: philosophy of science underpinnings, development of terminology and methodology, high accuracy solutions for CFD verification, experimental datasets for CFD validation, and the statistical quantification of model validation. This bibliography should provide a starting point for individual researchers in many fields of computational simulation in science and engineering.

  10. Verification and validation of RADMODL Version 1.0

    SciTech Connect

    Kimball, K.D.

    1993-03-01

    RADMODL is a system of linked computer codes designed to calculate the radiation environment following an accident in which nuclear materials are released. The RADMODL code and the corresponding Verification and Validation (V&V) calculations (Appendix A), were developed for Westinghouse Savannah River Company (WSRC) by EGS Corporation (EGS). Each module of RADMODL is an independent code and was verified separately. The full system was validated by comparing the output of the various modules with the corresponding output of a previously verified version of the modules. The results of the verification and validation tests show that RADMODL correctly calculates the transport of radionuclides and radiation doses. As a result of this verification and validation effort, RADMODL Version 1.0 is certified for use in calculating the radiation environment following an accident.

  11. When Teachers Need Help.

    ERIC Educational Resources Information Center

    Fenner, Marilyn; Rothberg, Robert

    1994-01-01

    To help struggling teachers, principals have recourse to the Institute for Professional Development, a program operated by the University of Central Florida. Functioning as a help-line for at-risk teachers, the program offers teaching tips and conducts informal evaluations of teachers seeking help. Teachers gain skills and confidence, and the…

  12. Help! It's Hair Loss!

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Help! It's Hair Loss! KidsHealth > For Kids > Help! It's Hair Loss! Print A A A Text Size ... part above the skin, is dead. (That's why it doesn't hurt to get a haircut!) This ...

  13. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    NASA Astrophysics Data System (ADS)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  14. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false PM balance verifications and weighing... § 1065.390 PM balance verifications and weighing process verification. (a) Scope and frequency. This section describes three verifications. (1) Independent verification of PM balance performance within...

  15. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false PM balance verifications and weighing... § 1065.390 PM balance verifications and weighing process verification. (a) Scope and frequency. This section describes three verifications. (1) Independent verification of PM balance performance within...

  16. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false PM balance verifications and weighing... § 1065.390 PM balance verifications and weighing process verification. (a) Scope and frequency. This section describes three verifications. (1) Independent verification of PM balance performance within...

  17. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false PM balance verifications and weighing... § 1065.390 PM balance verifications and weighing process verification. (a) Scope and frequency. This section describes three verifications. (1) Independent verification of PM balance performance within...

  18. 40 CFR 1065.390 - PM balance verifications and weighing process verification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false PM balance verifications and weighing... § 1065.390 PM balance verifications and weighing process verification. (a) Scope and frequency. This section describes three verifications. (1) Independent verification of PM balance performance within...

  19. Exploring the Possible Use of Information Barriers for future Biological Weapons Verification Regimes

    SciTech Connect

    Luke, S J

    2011-12-20

    This report describes a path forward for implementing information barriers in a future generic biological arms-control verification regime. Information barriers have become a staple of discussion in the area of arms control verification approaches for nuclear weapons and components. Information barriers when used with a measurement system allow for the determination that an item has sensitive characteristics without releasing any of the sensitive information. Over the last 15 years the United States (with the Russian Federation) has led on the development of information barriers in the area of the verification of nuclear weapons and nuclear components. The work of the US and the Russian Federation has prompted other states (e.g., UK and Norway) to consider the merits of information barriers for possible verification regimes. In the context of a biological weapons control verification regime, the dual-use nature of the biotechnology will require protection of sensitive information while allowing for the verification of treaty commitments. A major question that has arisen is whether - in a biological weapons verification regime - the presence or absence of a weapon pathogen can be determined without revealing any information about possible sensitive or proprietary information contained in the genetic materials being declared under a verification regime. This study indicates that a verification regime could be constructed using a small number of pathogens that spans the range of known biological weapons agents. Since the number of possible pathogens is small it is possible and prudent to treat these pathogens as analogies to attributes in a nuclear verification regime. This study has determined that there may be some information that needs to be protected in a biological weapons control verification regime. To protect this information, the study concludes that the Lawrence Livermore Microbial Detection Array may be a suitable technology for the detection of the

  20. TPS verification with UUT simulation

    NASA Astrophysics Data System (ADS)

    Wang, Guohua; Meng, Xiaofeng; Zhao, Ruixian

    2006-11-01

    TPS's (Test Program Set) verification or first article acceptance test commonly depends on fault insertion experiment on UUT (Unit Under Test). However the failure modes injected on UUT is limited and it is almost infeasible when the UUT is in development or in a distributed state. To resolve this problem, a TPS verification method based on UUT interface signal simulation is putting forward. The interoperability between ATS (automatic test system) and UUT simulation platform is very important to realize automatic TPS verification. After analyzing the ATS software architecture, the approach to realize interpretability between ATS software and UUT simulation platform is proposed. And then the UUT simulation platform software architecture is proposed based on the ATS software architecture. The hardware composition and software architecture of the UUT simulation is described in details. The UUT simulation platform has been implemented in avionics equipment TPS development, debug and verification.

  1. Biometric verification with correlation filters.

    PubMed

    Vijaya Kumar, B V K; Savvides, Marios; Xie, Chunyan; Venkataramani, Krithika; Thornton, Jason; Mahalanobis, Abhijit

    2004-01-10

    Using biometrics for subject verification can significantly improve security over that of approaches based on passwords and personal identification numbers, both of which people tend to lose or forget. In biometric verification the system tries to match an input biometric (such as a fingerprint, face image, or iris image) to a stored biometric template. Thus correlation filter techniques are attractive candidates for the matching precision needed in biometric verification. In particular, advanced correlation filters, such as synthetic discriminant function filters, can offer very good matching performance in the presence of variability in these biometric images (e.g., facial expressions, illumination changes, etc.). We investigate the performance of advanced correlation filters for face, fingerprint, and iris biometric verification. PMID:14735958

  2. Biometric verification with correlation filters

    NASA Astrophysics Data System (ADS)

    Vijaya Kumar, B. V. K.; Savvides, Marios; Xie, Chunyan; Venkataramani, Krithika; Thornton, Jason; Mahalanobis, Abhijit

    2004-01-01

    Using biometrics for subject verification can significantly improve security over that of approaches based on passwords and personal identification numbers, both of which people tend to lose or forget. In biometric verification the system tries to match an input biometric (such as a fingerprint, face image, or iris image) to a stored biometric template. Thus correlation filter techniques are attractive candidates for the matching precision needed in biometric verification. In particular, advanced correlation filters, such as synthetic discriminant function filters, can offer very good matching performance in the presence of variability in these biometric images (e.g., facial expressions, illumination changes, etc.). We investigate the performance of advanced correlation filters for face, fingerprint, and iris biometric verification.

  3. Extremely accurate sequential verification of RELAP5-3D

    DOE PAGESBeta

    Mesina, George L.; Aumiller, David L.; Buschman, Francis X.

    2015-11-19

    Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method ofmore » manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.« less

  4. Extremely accurate sequential verification of RELAP5-3D

    SciTech Connect

    Mesina, George L.; Aumiller, David L.; Buschman, Francis X.

    2015-11-19

    Large computer programs like RELAP5-3D solve complex systems of governing, closure and special process equations to model the underlying physics of nuclear power plants. Further, these programs incorporate many other features for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. For RELAP5-3D, verification and validation are restricted to nuclear power plant applications. Verification means ensuring that the program is built right by checking that it meets its design specifications, comparing coding to algorithms and equations and comparing calculations against analytical solutions and method of manufactured solutions. Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. Recently, an automated, highly accurate sequential verification method has been developed for RELAP5-3D. The method also provides to test that no unintended consequences result from code development in the following code capabilities: repeating a timestep advancement, continuing a run from a restart file, multiple cases in a single code execution, and modes of coupled/uncoupled operation. In conclusion, mathematical analyses of the adequacy of the checks used in the comparisons are provided.

  5. Neptunium flow-sheet verification at reprocessing plants

    SciTech Connect

    Rance, P.; Chesnay, B.; Killeen, T.; Murray, M.; Nikkinen, M.; Petoe, A.; Plumb, J.; Saukkonen, H.

    2007-07-01

    Due to their fissile nature, neptunium and americium have at least a theoretical potential application as nuclear explosives and their proliferation potential was considered by the IAEA in studies in the late 1990's. This work was motivated by an increased awareness of the proliferation potential of americium and neptunium and a number of emerging projects in peaceful nuclear programmes which could result in an increase in the available quantities of these minor actinides. The studies culminated in proposals for various voluntary measures including the reporting of international transfers of separated americium and neptunium, declarations concerning the amount of separated neptunium and americium held by states and the application of flow-sheet verification to ensure that facilities capable of separating americium or neptunium are operated in a manner consistent with that declared. This paper discusses the issue of neptunium flowsheet verification in reprocessing plants. The proliferation potential of neptunium is first briefly discussed and then the chemistry of neptunium relevant to reprocessing plants described with a view to indicating a number of issues relevant to the verification of neptunium flow-sheets. Finally, the scope of verification activities is discussed including analysis of process and engineering design information, plant monitoring and sampling and the potential application of containment and surveillance measures. (authors)

  6. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    SciTech Connect

    Klingensmith, A. L.

    2012-03-21

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  7. 77 FR 50723 - Verification, Validation, Reviews, and Audits for Digital Computer Software Used in Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment draft regulatory guide (DG), DG-1267, ``Verification, Validation, Reviews, and Audits for Digital Computer Software used in Safety Systems of Nuclear Power Plants.'' The DG-1210 is proposed Revision 2 of Regulatory Guide (RG) 1.168, dated February 2004. This revision endorses, with clarifications and......

  8. How Nasa's Independent Verification and Validation (IVandV) Program Builds Reliability into a Space Mission Software System (SMSS)

    NASA Technical Reports Server (NTRS)

    Fisher, Marcus S.; Northey, Jeffrey; Stanton, William

    2014-01-01

    The purpose of this presentation is to outline how the NASA Independent Verification and Validation (IVV) Program helps to build reliability into the Space Mission Software Systems (SMSSs) that its customers develop.

  9. Verification and validation of control system software

    SciTech Connect

    Munro, J.K. Jr.; Kisner, R.A. ); Bhadtt, S.C. )

    1991-01-01

    The following guidelines are proposed for verification and validation (V V) of nuclear power plant control system software: (a) use risk management to decide what and how much V V is needed; (b) classify each software application using a scheme that reflects what type and how much V V is needed; (c) maintain a set of reference documents with current information about each application; (d) use Program Inspection as the initial basic verification method; and (e) establish a deficiencies log for each software application. The following additional practices are strongly recommended: (a) use a computer-based configuration management system to track all aspects of development and maintenance; (b) establish reference baselines of the software, associated reference documents, and development tools at regular intervals during development; (c) use object-oriented design and programming to promote greater software reliability and reuse; (d) provide a copy of the software development environment as part of the package of deliverables; and (e) initiate an effort to use formal methods for preparation of Technical Specifications. The paper provides background information and reasons for the guidelines and recommendations. 3 figs., 3 tabs.

  10. SPR Hydrostatic Column Model Verification and Validation.

    SciTech Connect

    Bettin, Giorgia; Lord, David; Rudeen, David Keith

    2015-10-01

    A Hydrostatic Column Model (HCM) was developed to help differentiate between normal "tight" well behavior and small-leak behavior under nitrogen for testing the pressure integrity of crude oil storage wells at the U.S. Strategic Petroleum Reserve. This effort was motivated by steady, yet distinct, pressure behavior of a series of Big Hill caverns that have been placed under nitrogen for extended period of time. This report describes the HCM model, its functional requirements, the model structure and the verification and validation process. Different modes of operation are also described, which illustrate how the software can be used to model extended nitrogen monitoring and Mechanical Integrity Tests by predicting wellhead pressures along with nitrogen interface movements. Model verification has shown that the program runs correctly and it is implemented as intended. The cavern BH101 long term nitrogen test was used to validate the model which showed very good agreement with measured data. This supports the claim that the model is, in fact, capturing the relevant physical phenomena and can be used to make accurate predictions of both wellhead pressure and interface movements.

  11. Verification of I-125 brachytherapy source strength for use in radioactive seed localization procedures.

    PubMed

    Metyko, John; Erwin, William; Landsberger, Sheldon

    2016-06-01

    A general-purpose nuclear medicine dose calibrator was assessed as a potential replacement for a dedicated air-communicating well-type ionization chamber (brachytherapy source strength verification instrument) for (125)I seed source strength verification for radioactive seed localization, where less stringent accuracy tolerances may be acceptable. The accuracy, precision and reproducibility of the dose calibrator were measured and compared to regulatory requirements. The results of this work indicate that a dose calibrator can be used for (125)I seed source strength verification for radioactive seed localization. PMID:27015651

  12. Comments for A Conference on Verification in the 21st Century

    SciTech Connect

    Doyle, James E.

    2012-06-12

    The author offers 5 points for the discussion of Verification and Technology: (1) Experience with the implementation of arms limitation and arms reduction agreements confirms that technology alone has never been relied upon to provide effective verification. (2) The historical practice of verification of arms control treaties between Cold War rivals may constrain the cooperative and innovative use of technology for transparency, veification and confidence building in the future. (3) An area that has been identified by many, including the US State Department and NNSA as being rich for exploration for potential uses of technology for transparency and verification is information and communications technology (ICT). This includes social media, crowd-sourcing, the internet of things, and the concept of societal verification, but there are issues. (4) On the issue of the extent to which verification technologies are keeping pace with the demands of future protocols and agrements I think the more direct question is ''are they effective in supporting the objectives of the treaty or agreement?'' In this regard it is important to acknowledge that there is a verification grand challenge at our doorstep. That is ''how does one verify limitations on nuclear warheads in national stockpiles?'' (5) Finally, while recognizing the daunting political and security challenges of such an approach, multilateral engagement and cooperation at the conceptual and technical levels provides benefits for addressing future verification challenges.

  13. The Help Desk.

    ERIC Educational Resources Information Center

    Klein, Regina; And Others

    1988-01-01

    The first of three articles describes the results of a survey that examined characteristics and responsibilities of help-desk personnel at major database and online services. The second provides guidelines to using such customer services, and the third lists help-desk numbers for online databases and systems. (CLB)

  14. Helping Our Children.

    ERIC Educational Resources Information Center

    Polk, Sophie

    1987-01-01

    Describes the Ikaiyurluki Mikelnguut (Helping Our Children) project in the Yukon Kuskokwim Delta of Alaska where trained natural helpers are helping Yup'ik Eskimo villagers to cope with crisis situations--notably teenage suicide and drug and alcohol abuse. (Author/BB)

  15. Handi Helps, 1984.

    ERIC Educational Resources Information Center

    Handi Helps, 1984

    1984-01-01

    The eight issues of Handi Helps presented in this document focus on specific issues of concern to the disabled, parents, and those working with the disabled. The two-page handi help fact sheets focus on the following topics: child abuse, leukemia, arthritis, Tourette Syndrome, hemophilia, the puppet program "Meet the New Kids on the Block" and dog…

  16. Handi Helps, 1985

    ERIC Educational Resources Information Center

    Handi Helps, 1985

    1985-01-01

    The six issues of Handi Helps presented here focus on specific issues of concern to the disabled, parents, and those working with the disabled. The two-page handi help fact sheets focus on the following topics: child sexual abuse prevention, asthma, scoliosis, the role of the occupational therapist, kidnapping, and muscular dystrophy. Each handi…

  17. Experimental verification of Santilli`s clean, subnuclear, hadronic energy

    SciTech Connect

    Tsagas, N.F.; Mystakidis, A.; Bakos, G.

    1996-02-01

    The structure of the nucleus and its constituents still presents a challenge to both theoretical and experimental physicists. This paper deals mainly with the an experimental attempt for the verification of the new theory for neutron structure and its stimulated decay recently proposed by R.M. Santilli which would imply a new, clean, subnuclear energy. The experiment is carried out by the Laboratory of Nuclear Technology at the University of Thrace, Xanthi, Greece.

  18. Experimental verification of internal dosimetry calculations. Annual progress report

    SciTech Connect

    1980-05-01

    During the past year a dosimetry research program has been established in the School of Nuclear Engineering at the Georgia Institute of Technology. The major objective of this program has been to provide research results upon which a useful internal dosimetry system could be based. The important application of this dosimetry system will be the experimental verification of internal dosimetry calculations such as those published by the MIRD Committee.

  19. Evaluation of verification methods for input-accountability measurements

    SciTech Connect

    Maeck, W. J.

    1980-01-01

    As part of TASTEX related programs two independent methods have been evaluated for the purpose of providing verification of the amount of Pu charged to the head-end of a nuclear fuel processing plant. The first is the Pu/U (gravimetric method), TASTEX Task-L, and the second is the Tracer Method, designated Task-M. Summaries of the basic technology, results of various studies under actual plant conditions, future requirements, are given for each of the Tasks.

  20. Computer Generated Inputs for NMIS Processor Verification

    SciTech Connect

    J. A. Mullens; J. E. Breeding; J. A. McEvers; R. W. Wysor; L. G. Chiang; J. R. Lenarduzzi; J. T. Mihalczo; J. K. Mattingly

    2001-06-29

    Proper operation of the Nuclear Identification Materials System (NMIS) processor can be verified using computer-generated inputs [BIST (Built-In-Self-Test)] at the digital inputs. Preselected sequences of input pulses to all channels with known correlation functions are compared to the output of the processor. These types of verifications have been utilized in NMIS type correlation processors at the Oak Ridge National Laboratory since 1984. The use of this test confirmed a malfunction in a NMIS processor at the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) in 1998. The NMIS processor boards were returned to the U.S. for repair and subsequently used in NMIS passive and active measurements with Pu at VNIIEF in 1999.

  1. Hard and Soft Safety Verifications

    NASA Technical Reports Server (NTRS)

    Wetherholt, Jon; Anderson, Brenda

    2012-01-01

    The purpose of this paper is to examine the differences between and the effects of hard and soft safety verifications. Initially, the terminology should be defined and clarified. A hard safety verification is datum which demonstrates how a safety control is enacted. An example of this is relief valve testing. A soft safety verification is something which is usually described as nice to have but it is not necessary to prove safe operation. An example of a soft verification is the loss of the Solid Rocket Booster (SRB) casings from Shuttle flight, STS-4. When the main parachutes failed, the casings impacted the water and sank. In the nose cap of the SRBs, video cameras recorded the release of the parachutes to determine safe operation and to provide information for potential anomaly resolution. Generally, examination of the casings and nozzles contributed to understanding of the newly developed boosters and their operation. Safety verification of SRB operation was demonstrated by examination for erosion or wear of the casings and nozzle. Loss of the SRBs and associated data did not delay the launch of the next Shuttle flight.

  2. Hooked on Helping

    ERIC Educational Resources Information Center

    Longhurst, James; McCord, Joan

    2014-01-01

    In this article, teens presenting at a symposium on peer-helping programs describe how caring for others fosters personal growth and builds positive group cultures. Their individual thoughts and opinions are expressed.

  3. Help Teens Manage Diabetes

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Help Teens Manage Diabetes Past Issues / Spring 2008 Table of ... diabetes management. Its aim is to improve diabetic teens' coping and communication skills, healthy behaviors, and conflict ...

  4. Helping Friends and Family

    MedlinePlus

    ... take them up on it! When the adjustment process gets stuck back to top There are times ... are some ways to help move the adjustment process along: Speak honestly and frankly about your feelings . ...

  5. Grandparents Can Help

    ERIC Educational Resources Information Center

    Pieper, Elizabeth

    1976-01-01

    Although grandparents may have difficulty in accepting their handicapped grandchild due to such factors as the notion of "bad blood," they can be helpful to parents by drawing from their experience to give new perspectives to complex problems. (SB)

  6. Help With Bipolar Disorders

    MedlinePlus

    ... a Psychiatrist Patients & Families All Topics Help With Bipolar Disorders Curated and updated for the community by APA Topic Information Bipolar disorders are brain disorders that cause changes in a ...

  7. The Power of Helping.

    ERIC Educational Resources Information Center

    The Pioneers

    1999-01-01

    The Pioneers, a group of students in a residential treatment program at Woodland Hills in Duluth, Minnesota, describe how they are changing their lives and community through peer helping and volunteer service. (Author)

  8. Helping Parents Say No.

    ERIC Educational Resources Information Center

    Duel, Debra K.

    1988-01-01

    Provides some activities that are designed to help students understand some of the reasons why parents sometimes refuse to let their children have pets. Includes mathematics and writing lessons, a student checklist, and a set of tips for parents. (TW)

  9. Helping You Age Well

    MedlinePlus

    ... a year. Lungs: Regular aerobic exercise keeps lung capacity up. Smoking leads to chronic obstructive pulmonary disease ... muscle pain, and tendonitis become more common. Stretching, heat, exercise, calcium, and surgery can help. Trauma: Sprains, ...

  10. Structural verification for GAS experiments

    NASA Technical Reports Server (NTRS)

    Peden, Mark Daniel

    1992-01-01

    The purpose of this paper is to assist the Get Away Special (GAS) experimenter in conducting a thorough structural verification of its experiment structural configuration, thus expediting the structural review/approval process and the safety process in general. Material selection for structural subsystems will be covered with an emphasis on fasteners (GSFC fastener integrity requirements) and primary support structures (Stress Corrosion Cracking requirements and National Space Transportation System (NSTS) requirements). Different approaches to structural verifications (tests and analyses) will be outlined especially those stemming from lessons learned on load and fundamental frequency verification. In addition, fracture control will be covered for those payloads that utilize a door assembly or modify the containment provided by the standard GAS Experiment Mounting Plate (EMP). Structural hazard assessment and the preparation of structural hazard reports will be reviewed to form a summation of structural safety issues for inclusion in the safety data package.

  11. Mood and helping.

    PubMed

    Harris, M B; Smith, R J

    1975-11-01

    In order to test (a) whether helping someone puts the helper in a better mood and (b) whether people in a good mood are more likely than controls to help with a task maintaining their positive mood but no more likely to help with a task leading to a negative mood, 80 female undergraduates participated in a study in which they (a) had an interaction with a confederate (C) designed to put them in a good or neutral mood, (b) rated their mood, (c) rated some neutral pictures, and (d) were requested to rate some potentially elating or depressing pictures. Ss who were induced to help C or who were given candy by her rated themselves as feeling nicer than these having a more neutral interaction. Neither their interaction with C, the type of pictures they were ased to rate, nor their self-reported mood, with the exception of happiness, was significantly associated with number of pictures rated or time spent helping. Those rating the depressing pictures became more depressed than those rating the cheerful pictures. It was suggested that the lack of significant findings might be due either to the fact that the effect of a good mood on helping declines over time or to the fact that rating pictures was so enjoyable that it was not considered altruistic. PMID:1206614

  12. Space Telescope performance and verification

    NASA Technical Reports Server (NTRS)

    Wright, W. F.

    1980-01-01

    The verification philosophy for the Space Telescope (ST) has evolved from years of experience with multispacecraft programs modified by the new factors introduced by the Space Transportation System. At the systems level of test, the ST will undergo joint qualification/acceptance tests with environment simulation using Lockheed's large spacecraft test facilities. These tests continue the process of detecting workmanship defects and module interface incompatibilities. The test program culminates in an 'all up' ST environmental test verification program resulting in a 'ready to launch' ST.

  13. Formal verification of mathematical software

    NASA Technical Reports Server (NTRS)

    Sutherland, D.

    1984-01-01

    Methods are investigated for formally specifying and verifying the correctness of mathematical software (software which uses floating point numbers and arithmetic). Previous work in the field was reviewed. A new model of floating point arithmetic called the asymptotic paradigm was developed and formalized. Two different conceptual approaches to program verification, the classical Verification Condition approach and the more recently developed Programming Logic approach, were adapted to use the asymptotic paradigm. These approaches were then used to verify several programs; the programs chosen were simplified versions of actual mathematical software.

  14. AREST-CT V1.0 software verification

    SciTech Connect

    Chen, Y.; Engel, D.W.; McGrail, B.P.; Lessor, K.S.

    1995-07-01

    The Analyzer for Radionuclide Source-Term with Chemical Transport (AREST-CT) is a scientific computer code designed for performance assessments of engineered barrier system (EBS) concepts for the underground storage of nuclear waste, including high-level, intermediate, and low-level wastes. The AREST-CT code has features for analyzing the degradation of and release of radionuclides from the waste form, chemical reactions that depend on time and space, and transport of the waste and other products through the EBS. This document provides a description of the verification testing that has been performed on the initial version of ARESTCT (V1.0). Software verification is the process of confirming that the models and algorithms have been correctly implemented into a computer code. Software verification for V1.0 consisted of testing the individual modules (unit tests) and a test of the fully-coupled model (integration testing). The integration test was done by comparing the results from AREST-CT with the results from the reactive transport code CIRF.A. The test problem consisted of a 1-D analysis of the release, transport, and precipitation of {sup 99}{Tc} in an idealized LLW disposal system. All verification tests showed that AREST-CT works properly and in accordance with design specifications.

  15. A verification system of RMAP protocol controller

    NASA Astrophysics Data System (ADS)

    Khanov, V. Kh; Shakhmatov, A. V.; Chekmarev, S. A.

    2015-01-01

    The functional verification problem of IP blocks of RMAP protocol controller is considered. The application of the verification method using fully- functional models of the processor and the internal bus of a system-on-chip is justified. Principles of construction of a verification system based on the given approach are proposed. The practical results of creating a system of verification of IP block of RMAP protocol controller is presented.

  16. 78 FR 58492 - Generator Verification Reliability Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Energy Regulatory Commission 18 CFR Part 40 Generator Verification Reliability Standards AGENCY: Federal... Organization: MOD-025-2 (Verification and Data Reporting of Generator Real and Reactive Power Capability and Synchronous Condenser Reactive Power Capability), MOD- 026-1 (Verification of Models and Data for...

  17. Working Memory Mechanism in Proportional Quantifier Verification

    ERIC Educational Resources Information Center

    Zajenkowski, Marcin; Szymanik, Jakub; Garraffa, Maria

    2014-01-01

    The paper explores the cognitive mechanisms involved in the verification of sentences with proportional quantifiers (e.g. "More than half of the dots are blue"). The first study shows that the verification of proportional sentences is more demanding than the verification of sentences such as: "There are seven blue and eight yellow…

  18. Proceedings of a conference on nuclear war: The search for solutions

    SciTech Connect

    Perry, T.L.; DeMille, D.

    1985-01-01

    This book presents the proceedings of a conference on the problem of nuclear war. Topics include civil defense; nuclear winter; the psychological consequences of nuclear war, arms control and verification.

  19. Verification Challenges at Low Numbers

    SciTech Connect

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-07-16

    This paper will explore the difficulties of deep reductions by examining the technical verification challenges. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 (Pifer 2010). Further reductions will include stepping stones at 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national lab complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  20. Visual Attention During Sentence Verification.

    ERIC Educational Resources Information Center

    Lucas, Peter A.

    Eye movement data were collected for 28 college students reading 32 sentences with sentence verification questions. The factors observed were target sentence voice (active/passive), probe voice, and correct response (true/false). Pairs of subjects received the same set of stimuli, but with agents and objects in the sentences reversed. As expected,…

  1. Improved method for coliform verification.

    PubMed

    Diehl, J D

    1991-02-01

    Modification of a method for coliform verification presented in Standard Methods for the Examination of Water and Wastewater is described. Modification of the method, which is based on beta-galactosidase production, involves incorporation of a lactose operon inducer in medium upon which presumptive coliform isolates are cultured prior to beta-galactosidase assay. PMID:1901712

  2. Improved method for coliform verification.

    PubMed Central

    Diehl, J D

    1991-01-01

    Modification of a method for coliform verification presented in Standard Methods for the Examination of Water and Wastewater is described. Modification of the method, which is based on beta-galactosidase production, involves incorporation of a lactose operon inducer in medium upon which presumptive coliform isolates are cultured prior to beta-galactosidase assay. PMID:1901712

  3. A scheme for symmetrization verification

    NASA Astrophysics Data System (ADS)

    Sancho, Pedro

    2011-08-01

    We propose a scheme for symmetrization verification in two-particle systems, based on one-particle detection and state determination. In contrast to previous proposals, it does not follow a Hong-Ou-Mandel-type approach. Moreover, the technique can be used to generate superposition states of single particles.

  4. VERIFICATION OF WATER QUALITY MODELS

    EPA Science Inventory

    The basic concepts of water quality models are reviewed and the need to recognize calibration and verification of models with observed data is stressed. Post auditing of models after environmental control procedures are implemented is necessary to determine true model prediction ...

  5. Degree of verification needed to support a comprehensive test ban

    SciTech Connect

    Kidder, R.E.

    1986-08-01

    The military significance of nuclear explosive tests is discussed and illustrated with the aid of the recent (1980 through 1984) US nuclear testing record. It is concluded that nuclear tests with yields that are but a small fraction of a kiloton are militarily significant, particularly for purposes of nuclear weapons research. These could be conducted in fully-decoupled seismically-quiet, reusable cavities, and would be well below the threshold of reliable detection and identification by seismic or other means presently under consideration. For this reason it is concluded that the degree of verification needed to support a CTB is not available at the present time. A Threshold Test Ban with explosive yields limited to five kilotons, as proposed by Defense Secretary Harold Brown, appears to present a much more realistic near-term possibility.

  6. International and national security applications of cryogenic detectors - mostly nuclear safeguards

    SciTech Connect

    Rabin, Michael W

    2009-01-01

    As with science, so with security - in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma ray, neutron, and alpha particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invi sible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  7. National and International Security Applications of Cryogenic Detectors—Mostly Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Rabin, Michael W.

    2009-12-01

    As with science, so with security—in both arenas, the extraordinary sensitivity of cryogenic sensors enables high-confidence detection and high-precision measurement even of the faintest signals. Science applications are more mature, but several national and international security applications have been identified where cryogenic detectors have high potential payoff. International safeguards and nuclear forensics are areas needing new technology and methods to boost speed, sensitivity, precision and accuracy. Successfully applied, improved nuclear materials analysis will help constrain nuclear materials diversion pathways and contribute to treaty verification. Cryogenic microcalorimeter detectors for X-ray, gamma-ray, neutron, and alpha-particle spectrometry are under development with these aims in mind. In each case the unsurpassed energy resolution of microcalorimeters reveals previously invisible spectral features of nuclear materials. Preliminary results of quantitative analysis indicate substantial improvements are still possible, but significant work will be required to fully understand the ultimate performance limits.

  8. HELP: Students Teach Students

    ERIC Educational Resources Information Center

    Rossi, Timothy P.

    1969-01-01

    Examines HELP, a tutorial program in Jersey City, New Jersey, which utilizes high school students as reading teachers for disadvantaged grade school students. The student teachers had only average academic ability and limited training, but results suggested that both students and teachers gained significantly from the experience. (RW)

  9. Ayudele! [Help Him!].

    ERIC Educational Resources Information Center

    Spencer, Maria Gutierrez, Comp.; Almance, Sofia, Comp.

    Written in Spanish and English, the booklet briefly discusses what parents can do to help their child learn at school. The booklet briefly notes the importance of getting enough sleep; eating breakfast; praising the child; developing the five senses; visiting the doctor; having a home and garden; talking, listening, and reading to the child;…

  10. Help Teens Manage Diabetes

    MedlinePlus

    ... Training (CST) as a part of routine diabetes management. Its aim is to improve diabetic teens' coping and communication skills, healthy behaviors, and conflict resolution. The CST training helps diabetic teens to make good decisions when it comes to managing food choices, making ...

  11. What Helps Us Learn?

    ERIC Educational Resources Information Center

    Educational Leadership, 2010

    2010-01-01

    This article presents comments of high school students at the Howard Gardner School in Alexandria, Virginia, who were asked, What should teachers know about students to help them learn? Twelve high school students from the Howard Gardner School in Alexandria, Virginia, describe how their best teachers get to know them and thus were more able to…

  12. Help for Stressed Students

    ERIC Educational Resources Information Center

    Pope, Denise Clarke; Simon, Richard

    2005-01-01

    The authors argue that increased focus and pressure for high academic achievement, particularly among more highly-motivated and successful students, may have serious negative consequences. They present a number of strategies designed to help reduce both causes and consequences associated with academic stress and improve students' mental and…

  13. Stretching: Does It Help?

    ERIC Educational Resources Information Center

    Vardiman, Phillip; Carrand, David; Gallagher, Philip M.

    2010-01-01

    Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…

  14. With a Little Help.

    ERIC Educational Resources Information Center

    Cunningham, Richard

    1997-01-01

    Describes a volunteer tutoring program coordinated by associates of the Exxon Corporation to help middle and high school students with math and science homework. Enumerates the successes of the tutoring program and highlights other outreach activities of the company in Baton Rouge. Stresses that the future of high-technology companies depends on…

  15. College Students Helping America

    ERIC Educational Resources Information Center

    Dote, Lillian; Cramer, Kevin; Dietz, Nathan; Grimm, Robert, Jr.

    2006-01-01

    To identify key trends in college student volunteering and to understand their implications for growing volunteering among college students, the Corporation has produced a new report, titled "College Students Helping America," the most comprehensive national report ever conducted on college student volunteering in the United States. The report…

  16. Helping Your Children Discover.

    ERIC Educational Resources Information Center

    Schroepfer, Dorothy; Yeaton, Charles

    Children discover many things about themselves, about the world around them, and about words and language, before they go to school. This booklet was prepared to guide parents in helping their children make such discoveries in preparation for the demands of learning in school. Activities are suggested for developing children's self-confidence,…

  17. Helpful Juvenile Detention.

    ERIC Educational Resources Information Center

    Roush, David W.

    1999-01-01

    Presents a comprehensive, research-based rationale for rejecting "get-tough," punitive approaches to juvenile detention and implementing "helpful programs" in detention settings instead. Offers a review of the information that explains why and how juvenile detention should be a first step in the treatment of young offenders, rather than simply a…

  18. Helping Adults to Spell.

    ERIC Educational Resources Information Center

    Moorhouse, Catherine

    This book presents a range of strategies for adult literacy tutors and offers a wealth of practical advice on teaching spelling within the context of writing. Chapters 1-3 offer basic information on talking with the student about spelling, finding out how the student spells and helping the student to see himself/herself as a "good" speller, and…

  19. A Helping Hand.

    ERIC Educational Resources Information Center

    Renner, Jason M.

    2000-01-01

    Discusses how designing a hand washing-friendly environment can help to reduce the spread of germs in school restrooms. Use of electronic faucets, surface risk management, traffic flow, and user- friendly hand washing systems that are convenient and maximally hygienic are examined. (GR)

  20. Helping Language Grow.

    ERIC Educational Resources Information Center

    Taylor, Reid

    2002-01-01

    With early diagnosis and intervention, students with language delays can succeed. This paper presents warning signs and recommends seeking expert help, explaining that supporting such children involves such things as reading to them, using simple but grammatically correct sentences, and following their lead. A sidebar notes areas that may be…

  1. Helping Teachers Communicate

    ERIC Educational Resources Information Center

    Kise, Jane; Russell, Beth; Shumate, Carol

    2008-01-01

    Personality type theory describes normal differences in how people are energized, take in information, make decisions, and approach work and life--all key elements in how people teach and learn. Understanding one another's personality type preferences helps teachers share their instructional strategies and classroom information. Type theory…

  2. Self-Help Experiences

    ERIC Educational Resources Information Center

    Woody, Robert H.

    1973-01-01

    The author believes that there is a distinct need for professionals to become competent in providing materials for self-help lay efforts. Colleges and universities must provide for the facilitation of personal growth through self administered procedures by either a clinical approach (in counseling centers) or a didactic one (in classes as, for…

  3. Helping Families Cope.

    ERIC Educational Resources Information Center

    Goodman, Carol R.

    The paper presents observations of families having adult members with learning disabilities and describes a residential program to facilitate the transition to independent living of lower functioning learning disabled young adults. The program, called Independence Center, involves placing participants in apartments with roommates and helping them…

  4. HELPING EDUCATIONALLY DISADVANTAGED CHILDREN.

    ERIC Educational Resources Information Center

    MOORE, JAMES W.

    PROJECT ABLE, IN ITS EFFORT TO AID DISADVANTAGED CHILDREN, WORKED WITH INTERMEDIATE GRADE CHILDREN OF LOW SOCIOECONOMIC BACKGROUND. THE PERSONNEL INVOLVED WERE CLASSROOM TEACHERS, GUIDANCE COUNSELORS, SCHOOL PSYCHOLOGISTS, AND READING TEACHERS. THE CHILDREN WERE HELPED THROUGH SUCH WAYS AS COUNSELING, REMEDIAL READING, ENRICHMENT ACTIVITIES, FIELD…

  5. Helping, Manipulation, and Magic

    ERIC Educational Resources Information Center

    Frey, Louise A.; Edinburg, Golda M.

    1978-01-01

    The thesis of this article is that an understanding of the primitive origins of the helping process in myth, magic, and ritual may prevent social workers from engaging in practices that negate their clients' ability to work out their own solutions to problems. (Author)

  6. Image Hashes as Templates for Verification

    SciTech Connect

    Janik, Tadeusz; Jarman, Kenneth D.; Robinson, Sean M.; Seifert, Allen; McDonald, Benjamin S.; White, Timothy A.

    2012-07-17

    Imaging systems can provide measurements that confidently assess characteristics of nuclear weapons and dismantled weapon components, and such assessment will be needed in future verification for arms control. Yet imaging is often viewed as too intrusive, raising concern about the ability to protect sensitive information. In particular, the prospect of using image-based templates for verifying the presence or absence of a warhead, or of the declared configuration of fissile material in storage, may be rejected out-of-hand as being too vulnerable to violation of information barrier (IB) principles. Development of a rigorous approach for generating and comparing reduced-information templates from images, and assessing the security, sensitivity, and robustness of verification using such templates, are needed to address these concerns. We discuss our efforts to develop such a rigorous approach based on a combination of image-feature extraction and encryption-utilizing hash functions to confirm proffered declarations, providing strong classified data security while maintaining high confidence for verification. The proposed work is focused on developing secure, robust, tamper-sensitive and automatic techniques that may enable the comparison of non-sensitive hashed image data outside an IB. It is rooted in research on so-called perceptual hash functions for image comparison, at the interface of signal/image processing, pattern recognition, cryptography, and information theory. Such perceptual or robust image hashing—which, strictly speaking, is not truly cryptographic hashing—has extensive application in content authentication and information retrieval, database search, and security assurance. Applying and extending the principles of perceptual hashing to imaging for arms control, we propose techniques that are sensitive to altering, forging and tampering of the imaged object yet robust and tolerant to content-preserving image distortions and noise. Ensuring that the

  7. Initial performance of the advanced inventory verification sample system (AVIS)

    SciTech Connect

    Marlow, Johnna B; Swinhoe, Martyn T; Menlove, Howard O; Rael, Carlos D

    2009-01-01

    This paper describes the requirements, design and initial performance of the Advanced Inventory Verification Sample System (AVIS) a non-destructive assay (NDA) system to measure small samples of bulk mixed uranium-plutonium oxide (MOX) materials (powders and pellets). The AVIS design has evolved from previously developed conceptual physics and engineering designs for the Inventory Sample Verification System (INVS), a safeguards system for nondestructive assay of small samples. The AVIS is an integrated gamma-neutron system. Jointly designed by the Nuclear Material Control Center (NMCC) and the Los Alamos National Laboratory (LANL), AVIS is intended to meet a performance specification of a total measurement uncertainty of less than 0.5% in the neutron ({sup 240}Pu{sub effective}) measurement. This will allow the AVIS to replace destructive chemical analysis for many samples, with concomitant cost, exposure and waste generation savings for the facility. Data taken to date confirming the performance of the AVIS is presented.

  8. The Dark Energy Survey Science Verification Shear Catalog

    NASA Astrophysics Data System (ADS)

    Jarvis, Michael; Sheldon, Erin; Zuntz, Joe; Bridle, Sarah; Kacprzak, Tomasz; Dark Energy Survey Collaboration

    2015-04-01

    We present results of the weak lensing analysis of the Dark Energy Survey (DES) science verification data. The science verification (SV) data use the same telescope and camera as the full DES is using, but the data were taken during commissioning time the year prior to the start of the DES. We have undergone a large battery of null tests to look for systematic errors in the shear values. The catalogs pass all tests at the levels required for doing weak lensing science with the SV data. We will show here the results of some of the more interesting tests. We will mention briefly some plans for improvements to the pipeline to help meet the more stringent demands of the full 5-year DES survey.

  9. National Center for Nuclear Security - NCNS

    SciTech Connect

    2014-11-12

    As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.

  10. National Center for Nuclear Security - NCNS

    ScienceCinema

    None

    2015-01-09

    As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.