Science.gov

Sample records for nucleation centers sintesis

  1. Nature of Y1Ba2Cu3O7 nucleation centers on ceria buffers

    NASA Astrophysics Data System (ADS)

    Solovyov, Vyacheslav F.; Develos-Bagarinao, Katherine; Li, Qiang; Qing, Jie; Zhou, Juan

    2010-01-01

    The purpose of this study is to enhance properties of the second-generation wires by increasing the density of Y1Ba2Cu3O7 (YBCO) nucleation centers on the surface of the ceria buffer. To identify the nature of the nucleation centers, we compare nucleation kinetics and performance of YBCO layers deposited by the metal-organic process on a standard RABiTS tape to YBCO on ceria buffers with well-controlled structure and surface morphology. The structure of the YBCO layer at the early stage of nucleation and growth is determined by high-flux synchrotron x-ray diffraction. It is shown that the best buffers exhibit high YBCO nucleation rates and produce YBCO nuclei with the least cation disorder. The high YBCO nucleation rate is associated with a high density of threading dislocation outcrops. A strategy for buffer optimization is identified.

  2. Dislocation centers for nucleation of α-martensite and pairwise joining for martensite crystals with habits {hh l}

    NASA Astrophysics Data System (ADS)

    Kashchenko, M. P.; Konovalov, S. V.; Yablonskaya, T. N.

    1994-04-01

    We analyze the regular pairwise joinings of α-martensite crystals with habits of the {hHl} type. We show that we can consistently interpret all known joinings by considering 60-degree linear dislocations as nucleation centers for crystals with habits {5tilde 57} and {2tilde 25} and by assuming that the directions of the Burgers vectors of the formed nucleation centers of the joined crystals are specified by the directions of the macroscopic or twinning shears of the original crystal.

  3. Selective deposition of polycrystalline diamond films using photolithography with addition of nanodiamonds as nucleation centers

    NASA Astrophysics Data System (ADS)

    Okhotnikov, V. V.; Linnik, S. A.; Gaidaichuk, A. V.; Shashev, D. V.; Nazarova, G. Yu; Yurchenko, V. I.

    2016-02-01

    A new method of selective deposition of polycrystalline diamond has been developed and studied. The diamond coatings with a complex, predetermined geometry and resolution up to 5 μm were obtained. A high density of polycrystallites in the coating area was reached (up to 32·107 pcs/cm2). The uniformity of the film reached 100%, and the degree of the surface contamination by parasitic crystals did not exceed 2%. The technology was based on the application of the standard photolithography with an addition of nanodiamond suspension into the photoresist that provided the creation of the centers of further nucleation in the areas which require further overgrowth. The films were deposited onto monocrystalline silicon substrates using the method of “hot filaments” in the CVD reactor. The properties of the coating and the impact of the nanodiamond suspension concentration in the photoresist were also studied. The potential use of the given method includes a high resolution, technological efficiency, and low labor costs compared to the standard methods (laser treatment, chemical etching in aggressive environments,).

  4. Microtubule Organization Requires Cell Cycle-dependent Nucleation at Dispersed Cytoplasmic Sites: Polar and Perinuclear Microtubule Organizing Centers in the Plant Pathogen Ustilago maydisV⃞

    PubMed Central

    Straube, Anne; Brill, Marianne; Oakley, Berl R.; Horio, Tetsuya; Steinberg, Gero

    2003-01-01

    Growth of most eukaryotic cells requires directed transport along microtubules (MTs) that are nucleated at nuclear-associated microtubule organizing centers (MTOCs), such as the centrosome and the fungal spindle pole body (SPB). Herein, we show that the pathogenic fungus Ustilago maydis uses different MT nucleation sites to rearrange MTs during the cell cycle. In vivo observation of green fluorescent protein-MTs and MT plus-ends, tagged by a fluorescent EB1 homologue, provided evidence for antipolar MT orientation and dispersed cytoplasmic MT nucleating centers in unbudded cells. On budding γ-tubulin containing MTOCs formed at the bud neck, and MTs reorganized with >85% of all minus-ends being focused toward the growth region. Experimentally induced lateral budding resulted in MTs that curved out of the bud, again supporting the notion that polar growth requires polar MT nucleation. Depletion or overexpression of Tub2, the γ-tubulin from U. maydis, affected MT number in interphase cells. The SPB was inactive in G2 phase but continuously recruited γ-tubulin until it started to nucleate mitotic MTs. Taken together, our data suggest that MT reorganization in U. maydis depends on cell cycle-specific nucleation at dispersed cytoplasmic sites, at a polar MTOC and the SPB. PMID:12589060

  5. Characterizing protein crystal nucleation

    NASA Astrophysics Data System (ADS)

    Akella, Sathish V.

    We developed an experimental microfluidic based technique to measure the nucleation rates and successfully applied the technique to measure nucleation rates of lysozyme crystals. The technique involves counting the number of samples which do not have crystals as a function of time. Under the assumption that nucleation is a Poisson process, the fraction of samples with no crystals decays exponentially with the decay constant proportional to nucleation rate and volume of the sample. Since nucleation is a random and rare event, one needs to perform measurements on large number of samples to obtain good statistics. Microfluidics offers the solution of producing large number of samples at minimal material consumption. Hence, we developed a microfluidic method and measured nucleation rates of lysozyme crystals in supersaturated protein drops, each with volume of ˜ 1 nL. Classical Nucleation Theory (CNT) describes the kinetics of nucleation and predicts the functional form of nucleation rate in terms of the thermodynamic quantities involved, such as supersaturation, temperature, etc. We analyzed the measured nucleation rates in the context of CNT and obtained the activation energy and the kinetic pre-factor characterizing the nucleation process. One conclusion is that heterogeneous nucleation dominates crystallization. We report preliminary studies on selective enhancement of nucleation in one of the crystal polymorprhs of lysozyme (spherulite) using amorphous mesoporous bioactive gel-glass te{naomi06, naomi08}, CaO.P 2O5.SiO2 (known as bio-glass) with 2-10 nm pore-size diameter distribution. The pores act as heterogeneous nucleation centers and claimed to enhance the nucleation rates by molecular confinement. The measured kinetic profiles of crystal fraction of spherulites indicate that the crystallization of spherulites may be proceeding via secondary nucleation pathways.

  6. Determining the activation energies and slip systems for dislocation nucleation in body-centered cubic mo and face-centered cubic Ni single crystals

    SciTech Connect

    Wang, L.; Bei, Hongbin; Li, T.; Gao, Y. F.; George, Easo P; Nieh, T. G.

    2011-01-01

    Nanoindentation tests were performed on single crystals of Mo and Ni. The critical shear stress for the first pop-in was {approx}1/7 of the shear modulus in both crystals. The dependence of pop-in probability on load was understood in terms of a thermally activated dislocation nucleation process. Comparison of the activation energies suggests nucleation of full dislocations in Mo and partial dislocations in Ni. The activation energy analysis also offers information on the specific slip system on which dislocations are nucleated.

  7. Heterogeneous nucleation or homogeneous nucleation?

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.

    2000-06-01

    The generic heterogeneous effect of foreign particles on three dimensional nucleation was examined both theoretically and experimentally. It shows that the nucleation observed under normal conditions includes a sequence of progressive heterogeneous processes, characterized by different interfacial correlation function f(m,x)s. At low supersaturations, nucleation will be controlled by the process with a small interfacial correlation function f(m,x), which results from a strong interaction and good structural match between the foreign bodies and the crystallizing phase. At high supersaturations, nucleation on foreign particles having a weak interaction and poor structural match with the crystallizing phase (f(m,x)→1) will govern the kinetics. This frequently leads to the false identification of homogeneous nucleation. Genuine homogeneous nucleation, which is the up-limit of heterogeneous nucleation, may not be easily achievable under gravity. In order to check these results, the prediction is confronted with nucleation experiments of some organic and inorganic crystals. The results are in excellent agreement with the theory.

  8. Characterization of the cadmium complex of peptide 49-61: a putative nucleation center for cadmium-induced folding in rabbit liver metallothionein IIA.

    PubMed

    Muñoz, A; Laib, F; Petering, D H; Shaw, C F

    1999-08-01

    The synthetic peptide fragment containing residues 49-61 of rabbit liver metallothionein II (MT-II) (Ac-Ile-Cys-Lys-Gly-Ala-Ser-Asp-Lys-Cys-Ser-Cys-Cys-Ala-COOH), which includes the only sequential four cysteines bound to the same metal ion in Cd7MT, forms a stable, monomeric Cd-peptide complex with 1:1 stoichiometry (Cd:peptide) via Cd-thiolate interactions. This represents the first synthesis of a single metal-binding site of MT independent of the domains. The 111Cd NMR chemical shift at 716 ppm indicates that the 111Cd2+ in the metal site is terminally coordinated to four side-chain thiolates of the cysteine residues. The pH of half dissociation for this Cd-peptide derivative, approximately 3.3, demonstrates an affinity similar to that for Cd7MT. Molecular mechanics calculations show that the thermodynamically most stable folding for this isolated Cd2+ center has the same counterclockwise chirality (lambda or S) observed in the native holo-protein. These properties are consistent with its proposed role as a nucleation center for cadmium-induced protein folding. However, the kinetic reactivity of the CdS4 structure toward 5,5'-dithiobis(5-nitrobenzoate) (DTNB) and EDTA is greatly increased compared to the complete cluster (a-domain or holo-protein). The rate law for the reaction with DTNB is rate = (k(uf) + k(1,f) + k(2,f) [DTNB])[peptide], where k(uf) = 0.15 s(-1), k(1,f)= 2.59x10(-3) s(-1), and k(2,f) = 0.88 M(-1) s(-1). The ultrafast step (uf), observable only by stopped-flow measurement, is unprecedented for mammalian (M7MT) and crustacean (M6MT) holo-proteins or the isolated domains. The accommodation of other metal ions by the peptide indicates a rich coordination chemistry, including stoichiometries of M-peptide for Hg2+, Cd2+, and Zn2+, M2-peptide for Hg2+ and Au+, and (Et3PAu)2-peptide. PMID:10555583

  9. Enhancing Nucleation rates using Porous Silica

    NASA Astrophysics Data System (ADS)

    Akella, Sathish; Fraden, Seth

    2013-03-01

    The role of nucleants in promoting protein crystal nucleation is an on-going field of research. Porous silica acts as heterogeneous nucleation centers and enhances nucleation rates. For the protein lysozyme there are multiple polymorphs and we demonstrate that porous silica preferentially increases one of the polymorphs. Preliminary studies are presented in which accurate nucleation rates for the different polymorphs as a function of nucleant concentration are obtained through optical microscopy studies of thousands of crystallization trials in identical water-in-oil emulsion drops produced using microfluidics. NSF-IDBR

  10. Transient nucleation in glasses

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.

    1991-01-01

    Nucleation rates in condensed systems are frequently not at their steady state values. Such time dependent (or transient) nucleation is most clearly observed in devitrification studies of metallic and silicate glasses. The origin of transient nucleation and its role in the formation and stability of desired phases and microstructures are discussed. Numerical models of nucleation in isothermal and nonisothermal situations, based on the coupled differential equations describing cluster evolution within the classical theory, are presented. The importance of transient nucleation in glass formation and crystallization is discussed.

  11. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  12. Nucleation of shear bands in amorphous alloys

    PubMed Central

    Perepezko, John H.; Imhoff, Seth D.; Chen, Ming-Wei; Wang, Jun-Qiang; Gonzalez, Sergio

    2014-01-01

    The initiation and propagation of shear bands is an important mode of localized inhomogeneous deformation that occurs in a wide range of materials. In metallic glasses, shear band development is considered to center on a structural heterogeneity, a shear transformation zone that evolves into a rapidly propagating shear band under a shear stress above a threshold. Deformation by shear bands is a nucleation-controlled process, but the initiation process is unclear. Here we use nanoindentation to probe shear band nucleation during loading by measuring the first pop-in event in the load–depth curve which is demonstrated to be associated with shear band formation. We analyze a large number of independent measurements on four different bulk metallic glasses (BMGs) alloys and reveal the operation of a bimodal distribution of the first pop-in loads that are associated with different shear band nucleation sites that operate at different stress levels below the glass transition temperature, Tg. The nucleation kinetics, the nucleation barriers, and the density for each site type have been determined. The discovery of multiple shear band nucleation sites challenges the current view of nucleation at a single type of site and offers opportunities for controlling the ductility of BMG alloys. PMID:24594599

  13. Diamond nucleation using polyethene

    DOEpatents

    Morell, Gerardo; Makarov, Vladimir; Varshney, Deepak; Weiner, Brad

    2013-07-23

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  14. Diamond Nucleation Using Polyethene

    NASA Technical Reports Server (NTRS)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  15. Nucleation of amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Kashchiev, Dimo; Auer, Stefan

    2010-06-01

    We consider nucleation of amyloid fibrils in the case when the process occurs by the mechanism of direct polymerization of practically fully extended protein segments, i.e., β-strands, into β-sheets. Applying the classical nucleation theory, we derive a general expression for the work to form a nanosized amyloid fibril (protofilament) constituted of successively layered β-sheets. Analysis of this expression reveals that with increasing its size, the fibril transforms from one-dimensional to two-dimensional aggregate in order to preserve the equilibrium shape corresponding to minimal formation work. We determine the size of the fibril nucleus, the fibril nucleation work, and the fibril nucleation rate as explicit functions of the concentration and temperature of the protein solution. The results obtained are applicable to homogeneous nucleation, which occurs when the solution is sufficiently pure and/or strongly supersaturated.

  16. Effect of La{sub 2}O{sub 3}, CoO, Cr{sub 2}O{sub 3} and MoO{sub 3} nucleating agents on crystallization behavior and magnetic properties of ferromagnetic glass-ceramic in the system Fe{sub 2}O{sub 3}{center_dot}CaO{center_dot}ZnO{center_dot}SiO{sub 2}

    SciTech Connect

    Abdel-Hameed, Salwa A.M.; Elwan, Rawhia L.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Crystallization of magnetic glass ceramic with different nucleating agents. Black-Right-Pointing-Pointer The effect of La{sub 2}O{sub 3}, CoO, Cr{sub 2}O{sub 3} and MoO{sub 3} as nucleating agents was studied. Black-Right-Pointing-Pointer XRD for as prepared samples revealed crystallization of pure magnetite. Black-Right-Pointing-Pointer Heat treatment revealed minor calcium silicate, hematite and cristobalite. Black-Right-Pointing-Pointer TEM revealed crystallization of crystallite size in the range 50-100 nm. -- Abstract: Preparation and characterization of ferromagnetic glass ceramic in the system Fe{sub 2}O{sub 3}{center_dot}CaO{center_dot}ZnO{center_dot}SiO{sub 2} with different nucleating agents was studied. The effect of La{sub 2}O{sub 3}, CoO, Cr{sub 2}O{sub 3} and MoO{sub 3} as nucleating agents was investigated. Differential thermal analysis; X-ray diffraction and transmission electron microscope were used to investigate thermal behavior, sequence of crystallization and microstructure of the samples. XRD analysis for as prepared samples revealed the crystallization of single magnetite phase. Heat treatment at 900 Degree-Sign C/2 h revealed the appearance of minor amounts of calcium silicate, hematite and cristobalite beside magnetite. TEM revealed crystallization of crystallite size in the range 50-100 nm. Lattice parameters, cell volume and crystallite size were stimulated from XRD data. Magnetic properties of quenched samples were measured under 20 kG.

  17. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: Ab initio simulations supporting center nucleation

    SciTech Connect

    André, Yamina Lekhal, Kaddour; Hoggan, Philip; Avit, Geoffrey; Réda Ramdani, M.; Monier, Guillaume; Colas, David; Ajib, Rabih; Castelluci, Dominique; Gil, Evelyne; Cadiz, Fabian; Rowe, Alistair; Paget, Daniel; Petit, Elodie; Leroux, Christine; Trassoudaine, Agnès

    2014-05-21

    High aspect ratio, rod-like and single crystal phase GaAs nanowires (NWs) were grown by gold catalyst-assisted hydride vapor phase epitaxy (HVPE). High resolution transmission electron microscopy and micro-Raman spectroscopy revealed polytypism-free zinc blende (ZB) NWs over lengths of several tens of micrometers for a mean diameter of 50 nm. Micro-photoluminescence studies of individual NWs showed linewidths smaller than those reported elsewhere which is consistent with the crystalline quality of the NWs. HVPE makes use of chloride growth precursors GaCl of which high decomposition frequency after adsorption onto the liquid droplet catalysts, favors a direct and rapid introduction of the Ga atoms from the vapor phase into the droplets. High influxes of Ga and As species then yield high axial growth rate of more than 100 μm/h. The diffusion of the Ga atoms in the liquid droplet towards the interface between the liquid and the solid nanowire was investigated by using density functional theory calculations. The diffusion coefficient of Ga atoms was estimated to be 3 × 10{sup −9} m{sup 2}/s. The fast diffusion of Ga in the droplet favors nucleation at the liquid-solid line interface at the center of the NW. This is further evidence, provided by an alternative epitaxial method with respect to metal-organic vapor phase epitaxy and molecular beam epitaxy, of the current assumption which states that this type of nucleation should always lead to the formation of the ZB cubic phase.

  18. Nonequilibrium thermodynamics of nucleation.

    PubMed

    Schweizer, M; Sagis, L M C

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects. PMID:25494727

  19. Nonequilibrium thermodynamics of nucleation

    SciTech Connect

    Schweizer, M.; Sagis, L. M. C.

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  20. Ice nucleation terminology

    NASA Astrophysics Data System (ADS)

    Vali, G.; DeMott, P.; Möhler, O.; Whale, T. F.

    2014-08-01

    Progress in the understanding of ice nucleation is being hampered by the lack of uniformity in how some terms are used in the literature. This even extends to some ambiguity of meanings attached to some terms. Suggestions are put forward here for common use of terms. Some are already well established and clear of ambiguities. Others are less engrained and will need a conscious effort in adoption. Evolution in the range of systems where ice nucleation is being studied enhances the need for a clear nomenclature. The ultimate limit in the clarity of definitions is, of course, the limited degree to which ice nucleation processes are understood.

  1. Nonstationary homogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.

    1974-01-01

    The theory of homogeneous condensation is reviewed and equations describing this process are presented. Numerical computer solutions to transient problems in nucleation (relaxation to steady state) are presented and compared to a prior computation.

  2. Colloids and Nucleation

    NASA Technical Reports Server (NTRS)

    Ackerson, Bruce

    1997-01-01

    The objectives of the work funded under this grant were to develop a microphotographic technique and use it to monitor the nucleation and growth of crystals of hard colloidal spheres. Special attention is given to the possible need for microgravity studies in future experiments. A number of persons have been involved in this work. A masters student, Keith Davis, began the project and developed a sheet illumination apparatus and an image processing system for detection and analysis. His work on a segmentation program for image processing was sufficient for his master's research and has been published. A post doctoral student Bernie Olivier and a graduate student Yueming He, who originally suggested the sheet illumination, were funded by another source but along with Keith made photographic series of several samples (that had been made by Keith Davis). Data extraction has been done by Keith, Bernie, Yueming and two undergraduates employed on the grant. Results are published in Langmuir. These results describe the sheet lighting technique as one which illuminates not only the Bragg scattering crystal, but all the crystals. Thus, accurate crystal counts can be made for nucleation rate measurements. The strange crystal length scale reduction, observed in small angle light scattering (SALS) studies, following the initial nucleation and growth period, has been observed directly. The Bragg scattering (and dark) crystal size decreases in the crossover region. This could be an effect due to gravitational forces or due to over- compression of the crystal during growth. Direct observations indicate a complex morphology for the resulting hard sphere crystals. The crystal edges are fairly sharp but the crystals have a large degree of internal structure. This structure is a result of (unstable) growth and not aggregation. As yet unpublished work compares growth exponents data with data obtained by SALS. The nucleation rate density is determined over a broad volume fraction range

  3. Microtubule nucleation and organization in dendrites.

    PubMed

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W

    2016-07-01

    Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  4. Nucleation of Ice

    NASA Astrophysics Data System (ADS)

    Molinero, Valeria

    2009-03-01

    The freezing of water into ice is a ubiquitous transformation in nature, yet the microscopic mechanism of homogeneous nucleation of ice has not yet been elucidated. One of the reasons is that nucleation happens in time scales that are too fast for an experimental characterization and two slow for a systematic study with atomistic simulations. In this work we use coarse-grained molecular dynamics simulations with the monatomic model of water mW[1] to shed light into the mechanism of homogeneous nucleation of ice and its relationship to the thermodynamics of supercooled water. Cooling of bulk water produces either crystalline ice or low- density amorphous ice (LDA) depending on the quenching rate. We find that ice crystallization occurs faster at temperatures close to the liquid-liquid transition, defined as the point of maximum inflection of the density with respect to the temperature. At the liquid-liquid transition, the time scale of nucleation becomes comparable to the time scale of relaxation within the liquid phase, determining --effectively- the end of the metastable liquid state. Our results imply that no ultraviscous liquid water can exist at temperatures just above the much disputed glass transition of water. We discuss how the scenario is changed when water is in confinement, and the relationship of the mechanism of ice nucleation to that of other liquids that present the same phase behavior, silicon [2] and germanium [3]. [4pt] [1] Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. Journal of Physical Chemistry B (2008). Online at http://pubs.acs.org/cgi- bin/abstract.cgi/jpcbfk/asap/abs/jp805227c.html [0pt] [2] Molinero, V., Sastry, S. & Angell, C. A. Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. Physical Review Letters 97, 075701 (2006).

  5. Surface Bubble Nucleation Stability

    NASA Astrophysics Data System (ADS)

    Seddon, James R. T.; Kooij, E. Stefan; Poelsema, Bene; Zandvliet, Harold J. W.; Lohse, Detlef

    2011-02-01

    Recent research has revealed several different techniques for nanoscopic gas nucleation on submerged surfaces, with findings seemingly in contradiction with each other. In response to this, we have systematically investigated the occurrence of surface nanobubbles on a hydrophobized silicon substrate for various different liquid temperatures and gas concentrations, which we controlled independently. We found that nanobubbles occupy a distinct region of this parameter space, occurring for gas concentrations of approximately 100%-110%. Below the nanobubble region we did not detect any gaseous formations on the substrate, whereas micropancakes (micron wide, nanometer high gaseous domains) were found at higher temperatures and gas concentrations. We moreover find that supersaturation of dissolved gases is not a requirement for nucleation of bubbles.

  6. Bleb Nucleation through Membrane Peeling

    NASA Astrophysics Data System (ADS)

    Alert, Ricard; Casademunt, Jaume

    2016-02-01

    We study the nucleation of blebs, i.e., protrusions arising from a local detachment of the membrane from the cortex of a cell. Based on a simple model of elastic linkers with force-dependent kinetics, we show that bleb nucleation is governed by membrane peeling. By this mechanism, the growth or shrinkage of a detached membrane patch is completely determined by the linker kinetics, regardless of the energetic cost of the detachment. We predict the critical nucleation radius for membrane peeling and the corresponding effective energy barrier. These may be typically smaller than those predicted by classical nucleation theory, implying a much faster nucleation. We also perform simulations of a continuum stochastic model of membrane-cortex adhesion to obtain the statistics of bleb nucleation times as a function of the stress on the membrane. The determinant role of membrane peeling changes our understanding of bleb nucleation and opens new directions in the study of blebs.

  7. Nucleation in Synoptically Forced Cirrostratus

    NASA Technical Reports Server (NTRS)

    Lin, R.-F.; Starr, D. OC.; Reichardt, J.; DeMott, P. J.

    2004-01-01

    Formation and evolution of cirrostratus in response to weak, uniform and constant synoptic forcing is simulated using a one-dimensional numerical model with explicit microphysics, in which the particle size distribution in each grid box is fully resolved. A series of tests of the model response to nucleation modes (homogeneous-freezing-only/heterogeneous nucleation) and heterogeneous nucleation parameters are performed. In the case studied here, nucleation is first activated in the prescribed moist layer. A continuous cloud-top nucleation zone with a depth depending on the vertical humidity gradient and one of the nucleation parameters is developed afterward. For the heterogeneous nucleation cases, intermittent nucleation zones in the mid-upper portion of the cloud form where the relative humidity is on the rise, because existent ice crystals do not uptake excess water vapor efficiently, and ice nuclei (IN) are available. Vertical resolution as fine as 1 m is required for realistic simulation of the homogeneous-freezing-only scenario, while the model resolution requirement is more relaxed in the cases where heterogeneous nucleation dominates. Bulk microphysical and optical properties are evaluated and compared. Ice particle number flux divergence, which is due to the vertical gradient of the gravity-induced particle sedimentation, is constantly and rapidly changing the local ice number concentration, even in the nucleation zone. When the depth of the nucleation zone is shallow, particle number concentration decreases rapidly as ice particles grow and sediment away from the nucleation zone. When the depth of the nucleation zone is large, a region of high ice number concentration can be sustained. The depth of nucleation zone is an important parameter to be considered in parametric treatments of ice cloud generation.

  8. On the Ice Nucleation Spectrum

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  9. Surface Nanobubbles Nucleate Microdroplets

    NASA Astrophysics Data System (ADS)

    Zhang, Xuehua; Lhuissier, Henri; Sun, Chao; Lohse, Detlef

    2014-04-01

    When a hydrophobic solid is in contact with water, surface nanobubbles often form at the interface. They have a lifetime many orders of magnitude longer than expected. Here, we show that they even withstand a temperature increase to temperatures close to the boiling point of bulk water; i.e., they do not nucleate larger bubbles ("superstability"). On the contrary, when the vapor-liquid contact line passes a nanobubble, a liquid film remains around it, which, after pinch-off, results in a microdroplet in which the nanobubbles continue to exist. Finally, the microdroplet evaporates and the nanobubble consequently bursts. Our results support that pinning plays a crucial role for nanobubble stability.

  10. Transient nucleation in condensed systems

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Greer, A. L.; Thompson, C. V.

    1983-01-01

    Using classical nucleation theory we consider transient nucleation occurring in a one-component, condensed system under isothermal conditions. We obtain an exact closed-form expression for the time dependent cluster populations. In addition, a more versatile approach is developed: a numerical simulation technique which models directly the reactions by which clusters are produced. This simulation demonstrates the evolution of cluster populations and nucleation rate in the transient regime. Results from the simulation are verified by comparison with exact analytical solutions for the steady state. Experimental methods for measuring transient nucleation are assessed, and it is demonstrated that the observed behavior depends on the method used. The effect of preexisting cluster distributions is studied. Previous analytical and numerical treatments of transient nucleation are compared to the solutions obtained from the simulation. The simple expressions of Kashchiev are shown to give good descriptions of the nucleation behavior.

  11. Microgravity nucleation and particle coagulation experiments support

    NASA Technical Reports Server (NTRS)

    Lilleleht, L. U.; Ferguson, F. T.; Stephens, J. R.

    1988-01-01

    Researchers at NASA Goddard Space Flight Center have embarked on a program to study the formation and growth of cosmic grains. This includes experiments on the homogeneous nucleation of refractory vapors of materials such as magnesium, lead, tin, and silicon oxides. As part of this program, the Chemical Engineering Department of the University of Virginia has undertaken to develop a math model for these experiments, to assist in the design and construction of the apparatus, and to analyze the data once the experiments have begun. Status Reports 1 and 2 addressed the design of the apparatus and the development of math models for temperature and concentration fields. The bulk of this report discusses the continued refinement of these models, and the assembly and testing of the nucleation chamber along with its ancillary equipment, which began in the spring of 1988.

  12. Nucleation and growth of tin whiskers

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Vianco, Paul T.; Zhang, Bei; Li, James C. M.

    2011-06-01

    Pure tin film of one micron thick was evaporated onto a silicon substrate with chromium and nickel underlayers. The tinned silicon disk was bent by applying a dead load at the center and supported below around the edge to apply biaxial compressive stresses to the tin layer. After 180 C vacuum annealing for 1,2,4,6, and 8 weeks, tin whiskers/hillocks grew. A quantitative method revealed that the overall growth rate decreased with time with a tendency for saturation. A review of the literature showed in general, tin whisker growth has a nucleation period, a growth period and a period of saturation, very similar to recrystallization or phase transformation. In fact we found our data fit Avrami equation very well. This equation shows that the nucleation period was the first week.

  13. High-Precision Nucleation Rate Measurements for Higher Melting Metals

    NASA Astrophysics Data System (ADS)

    Bokeloh, Joachim; Wilde, Gerhard

    2014-08-01

    Nucleation of a crystal in undercooled melts of higher melting face-centered-cubic-metals has often been studied in the past. However, the data available were not of sufficient accuracy and only covered nucleation rates in too small of a range to allow precise conclusions concerning the nature of the underlying process as well as concerning important parameters such as the solid-liquid interface free energy that can in principle be deducted from such analyses. One way to circumvent ambiguities and analyze nucleation kinetics under well-defined conditions experimentally is given by performing statistically significant numbers of repeated single droplet experiments. Application of proper statistics analyses yields nucleation rates that are independent of a specific nucleation model. The first studies that were conducted in accordance with this approach on pure model materials revealed that the approach is valid. The results are comparable to those obtained by classic nucleation theory applied to experimental data, and it was shown that one might need to rethink the common assumption that heterogeneous nucleation is almost always responsible for solidification initiation. The current results also show that often-used models for the solid-liquid interface free energy might lead to overestimated values.

  14. Surface nanobubbles nucleate microdroplets.

    PubMed

    Zhang, Xuehua; Lhuissier, Henri; Sun, Chao; Lohse, Detlef

    2014-04-11

    When a hydrophobic solid is in contact with water, surface nanobubbles often form at the interface. They have a lifetime many orders of magnitude longer than expected. Here, we show that they even withstand a temperature increase to temperatures close to the boiling point of bulk water; i.e., they do not nucleate larger bubbles ("superstability"). On the contrary, when the vapor-liquid contact line passes a nanobubble, a liquid film remains around it, which, after pinch-off, results in a microdroplet in which the nanobubbles continue to exist. Finally, the microdroplet evaporates and the nanobubble consequently bursts. Our results support that pinning plays a crucial role for nanobubble stability. PMID:24765973

  15. On Capillary Rise and Nucleation

    ERIC Educational Resources Information Center

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  16. Preferential Nucleation during Polymorphic Transformations

    PubMed Central

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-01-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and therefore nucleation more probable - with increasing number of special OR’s. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material. PMID:27484579

  17. Preferential Nucleation during Polymorphic Transformations

    NASA Astrophysics Data System (ADS)

    Sharma, H.; Sietsma, J.; Offerman, S. E.

    2016-08-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR’s) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR’s with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller – and therefore nucleation more probable - with increasing number of special OR’s. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material.

  18. Nucleation rate in monotectic alloys

    NASA Astrophysics Data System (ADS)

    Falk, F.

    Cooling a melt of a monotectic system into the miscibility gap results in nucleation of fluid droplets in a fluid matrix prior to solidification. For homogeneous nucleation the temperature dependence of the nucleation rate is calculated. As material parameters the chemical potential of the species involved, the diffusion constant of the fluid, and the surface tension between adjacent phases are important. Since their temperature dependence is not well known from experiments, different theoretical models are used and their influence is discussed. The surface tension turns out to be the most crucial parameter in determining the nucleation rate. For AlIn numerical results are presented. In this system the undercooling with respect to homogeneous nucleation increases from zero at the critical point to 100 K at a composition near the monotectic point.

  19. Phase nucleation in curved space

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo; García, Nicolás; Vitelli, Vincenzo; Lorenzana, José; Daniel, Vega

    Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature (Gómez, L. R. et al. Phase nucleation in curved space. Nat. Commun. 6:6856 doi: 10.1038/ncomms7856 (2015).).

  20. Preferential Nucleation during Polymorphic Transformations.

    PubMed

    Sharma, H; Sietsma, J; Offerman, S E

    2016-01-01

    Polymorphism is the ability of a solid material to exist in more than one phase or crystal structure. Polymorphism may occur in metals, alloys, ceramics, minerals, polymers, and pharmaceutical substances. Unresolved are the conditions for preferential nucleation during polymorphic transformations in which structural relationships or special crystallographic orientation relationships (OR's) form between the nucleus and surrounding matrix grains. We measured in-situ and simultaneously the nucleation rates of grains that have zero, one, two, three and four special OR's with the surrounding parent grains. These experiments show a trend in which the activation energy for nucleation becomes smaller - and therefore nucleation more probable - with increasing number of special OR's. These insights contribute to steering the processing of polymorphic materials with tailored properties, since preferential nucleation affects which crystal structure forms, the average grain size and texture of the material, and thereby - to a large extent - the final properties of the material. PMID:27484579

  1. Twin nucleation and migration in FeCr single crystals

    SciTech Connect

    Patriarca, L.; Abuzaid, Wael; Sehitoglu, Huseyin; Maier, Hans J.; Chumlyakov, Y.

    2013-01-15

    Tension and compression experiments were conducted on body-centered cubic Fe -47.8 at pct. Cr single crystals. The critical resolved shear stress (CRSS) magnitudes for slip nucleation, twin nucleation and twin migration were established. We show that the nucleation of slip occurs at a CRSS of about 88 MPa, while twinning nucleates at a CRSS of about 191 MPa with an associated load drop. Following twin nucleation, twin migration proceeds at a CRSS that is lower than the initiation stress ( Almost-Equal-To 114-153 MPa). The experimental results of the nucleation stresses indicate that the Schmid law holds to a first approximation for the slip and twin nucleation cases, but to a lesser extent for twin migration particularly when considerable slip strains preceded twinning. The CRSSs were determined experimentally using digital image correlation (DIC) in conjunction with electron back scattering diffraction (EBSD). The DIC measurements enabled pinpointing the precise stress on the stress-strain curves where twins or slip were activated. The crystal orientations were obtained using EBSD and used to determine the activated twin and slip systems through trace analysis. - Highlights: Black-Right-Pointing-Pointer Digital image correlation allows to capture slip/twin initiation for bcc FeCr. Black-Right-Pointing-Pointer Crystal orientations from EBSD allow slip/twin system indexing. Black-Right-Pointing-Pointer Nucleation of slip always precedes twinning. Black-Right-Pointing-Pointer Twin growth is sustained with a lower stress than required for nucleation. Black-Right-Pointing-Pointer Twin-slip interactions provide high hardening at the onset of plasticity.

  2. Surface area controlled heterogeneous nucleation

    NASA Astrophysics Data System (ADS)

    Steer, Brian; Gorbunov, Boris; Rowles, Jonathan; Green, David

    2012-02-01

    Heterogeneous nucleation of liquid from a gas phase on nanoparticles has been studied under various saturation ratios and nuclei size. The probability of liquid droplet nucleation, especially at a low degree of deviation from equilibrium, was measured for both atmospheric aerosol particles and engineered nanoparticles Cr2O3. The concept of a critical saturation ratio and the validity of the one-to-one relationship between the nuclei number and the number of droplets were examined. A transient zone between no nucleation and established nucleation termed the surface area controlled nucleation was observed. In this zone, the probability of stable phase formation is determined by the surface area of nuclei. There are two distinctive features of the surface area controlled nucleation: the nucleation probability is much less than 1 and is proportional to the surface area of nuclei. For condensation particle counters (CPCs) counting nanoparticles, these features mean that counts measured are proportional to the surface area of nanoparticles and, therefore, the CPCs counts can be calibrated to measure the surface area.

  3. Climate Impacts of Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  4. Climate Impacts of Ice Nucleation

    SciTech Connect

    Gettelman, A.; Liu, Xiaohong; Barahona, Donifan; Lohmann, U.; Chen, Chih-Chieh

    2012-10-19

    [1] Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (-0.06 Wm-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm-2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 ± 0.10 Wm-2 (1σ uncertainty). Finally, this represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of -1.6 Wm-2.

  5. Nucleation dynamics of water nanodroplets.

    PubMed

    Bhattacharya, Dipanjan; Bosman, Michel; Mokkapati, Venkata R S S; Leong, Fong Yew; Mirsaidov, Utkur

    2014-04-01

    The origin of the condensation of water begins at the nanoscale, a length-scale that is challenging to probe for liquids. In this work we directly image heterogeneous nucleation of water nanodroplets by in situ transmission electron microscopy. Using gold nanoparticles bound to a flat surface as heterogeneous nucleation sites, we observe nucleation and growth of water nanodroplets. The growth of nanodroplet radii follows the power law: R(t)~(t-t 0) β , where β~0.2-0.3. PMID:24667092

  6. Metadynamics studies of crystal nucleation

    PubMed Central

    Giberti, Federico; Salvalaglio, Matteo; Parrinello, Michele

    2015-01-01

    Crystallization processes are characterized by activated events and long timescales. These characteristics prevent standard molecular dynamics techniques from being efficiently used for the direct investigation of processes such as nucleation. This short review provides an overview on the use of metadynamics, a state-of-the-art enhanced sampling technique, for the simulation of phase transitions involving the production of a crystalline solid. In particular the principles of metadynamics are outlined, several order parameters are described that have been or could be used in conjunction with metadynamics to sample nucleation events and then an overview is given of recent metadynamics results in the field of crystal nucleation. PMID:25866662

  7. Dew nucleation and growth

    NASA Astrophysics Data System (ADS)

    Beysens, Daniel

    2006-11-01

    Dew is the condensation of water vapor into liquid droplets on a substrate. It is characterized by an initial heterogeneous nucleation on a substrate and a further growth of droplets. The presence of a substrate that geometrically constrains the growth is the origin of the peculiarities and richness of the phenomenon. A key point is the drop interaction through drop fusion or coalescence, which leads to scaling in the growth and gives universality to the process. As a matter of fact, growth dynamics are only dependent on substrate and drop dimensionality. Coalescence events lead to temporal and spatio-temporal fluctuations in the substrate coverage, drop configuration, etc., which give rise to a very peculiar dynamics. When the substrate is a liquid or a liquid crystal, the drop pattern can exhibit special spatial order, such as crystalline, hexatic phases and fractal contours. Condensation on a solid substrate near its melting point can make the drop jump. The applications of monitoring dew formation are manifold. Examples can be found in medicine (sterilization process), agriculture (green houses) and hydrology (production of drinkable water). To cite this article: D. Beysens, C. R. Physique 7 (2006).

  8. Biomineralization: Ion binding and nucleation

    NASA Astrophysics Data System (ADS)

    Kröger, Roland

    2015-04-01

    The visualization of organic-acid-induced crystal growth by means of liquid-cell transmission electron microscopy can provide key insights into the nucleation of calcium carbonate in an organic matrix.

  9. Bubble nucleation in stout beers

    NASA Astrophysics Data System (ADS)

    Lee, W. T.; McKechnie, J. S.; Devereux, M. G.

    2011-05-01

    Bubble nucleation in weakly supersaturated solutions of carbon dioxide—such as champagne, sparkling wines, and carbonated beers—is well understood. Bubbles grow and detach from nucleation sites: gas pockets trapped within hollow cellulose fibers. This mechanism appears not to be active in stout beers that are supersaturated solutions of nitrogen and carbon dioxide. In their canned forms these beers require additional technology (widgets) to release the bubbles which will form the head of the beer. We extend the mathematical model of bubble nucleation in carbonated liquids to the case of two gases and show that this nucleation mechanism is active in stout beers, though substantially slower than in carbonated beers and confirm this by observation. A rough calculation suggests that despite the slowness of the process, applying a coating of hollow porous fibers to the inside of a can or bottle could be a potential replacement for widgets.

  10. Rest frame of bubble nucleation

    SciTech Connect

    Garriga, Jaume; Kanno, Sugumi; Tanaka, Takahiro E-mail: sugumi@cosmos.phy.tufts.edu

    2013-06-01

    Vacuum bubbles nucleate at rest with a certain critical size and subsequently expand. But what selects the rest frame of nucleation? This question has been recently addressed in [1] in the context of Schwinger pair production in 1+1 dimensions, by using a model detector in order to probe the nucleated pairs. The analysis in [1] showed that, for a constant external electric field, the adiabatic ''in'' vacuum of charged particles is Lorentz invariant, (and in this) case pairs tend to nucleate preferentially at rest with respect to the detector. Here, we sharpen this picture by showing that the typical relative velocity between the frame of nucleation and that of the detector is at most of order Δv ∼ S{sub E}{sup −1/3} << 1. Here, S{sub E} >> 1 is the action of the instanton describing pair creation. The bound Δv coincides with the minimum uncertainty in the velocity of a non-relativistic charged particle embedded in a constant electric field. A velocity of order Δv is reached after a time interval of order Δt ∼ S{sub E}{sup −1/3}r{sub 0} << r{sub 0} past the turning point in the semiclassical trajectory, where r{sub 0} is the size of the instanton. If the interaction takes place in the vicinity of the turning point, the semiclassical description of collision does not apply. Nonetheless, we find that even in this case there is still a strong asymmetry in the momentum transferred from the nucleated particles to the detector, in the direction of expansion after the turning point. We conclude that the correlation between the rest frame of nucleation and that of the detector is exceedingly sharp.

  11. Nanoparticulas basadas en complejos de Fe(II) con transicion de espin: sintesis, caracterizacion y aplicaciones en electronica molecular

    NASA Astrophysics Data System (ADS)

    Monrabal Capilla, Maria

    Esta tesis doctoral esta organizada en 5 capitulos y esta destinada al estudio de sistemas de Fe (II) que presentan el fenomeno de la transicion de espin a escala nanometrica. El capitulo 1 contiene una introduccion general sobre materiales moleculares multifuncionales, destacando aquellos ejemplos mas importantes. Por otro lado, se explicara el fenomeno de la transicion de espin, tratando aspectos conceptuales, los antecedentes mas importantes y la situacion actual. En el capitulo 2 se describen los diferentes procesos existentes para la obtencion de diferentes tipos de nanoparticulas. Ademas, se presenta la sintesis y caracterizacion de nanoparticulas del polimero de coordinacion unidimensional [Fe(Htrz)2(trz)]BF4, obtenidas mediante el metodo de micelas inversas. Estas nanoparticulas, con una estrecha distribucion de tamanos centrada alrededor de los 11 nm, presentan una transicion de espin muy abrupta, con un ancho ciclo de histeresis termica de unos 40K. En el capitulo 3 se describe el proceso de modificacion del tamano de las nanoparticulas descritas en el capitulo anterior, llevado a cabo variando la proporcion de surfactante/H2O en el medio. Ademas, con el objetivo de modificar las propiedades magneticas de las nanoparticulas obtenidas en el capitulo 2, se lleva a cabo la sintesis de nanoparticulas de polimeros de la misma familia del [Fe(Htrz)2(trz)]BF4. En concreto se sintetizaron 3 nuevos tipos de nanoparticulas basadas en el polimero [Fe(Htrz)1-x(NH2trz)x](ClO4)2, siendo x = 0.05, 0.15 y 0.3, en cada caso. Estas nanoparticulas siguen presentando una estrecha distribucion de tamanos y una transicion de espin muy abrupta y con un ancho ciclo de histeresis. Ademas, se observa que este ciclo se desplaza a temperaturas mas proximas a la temperatura ambiente a medida que se aumenta el porcentaje de 4-amino-1, 2, 4- triazol en la muestra. Pero al mismo tiempo se produce una disminucion de la anchura de este ciclo. Por ultimo, en este capitulo se presenta la

  12. Nucleation of polymorphic amyloid fibrils.

    PubMed

    Auer, Stefan

    2015-03-10

    One and the same protein can self-assemble into amyloid fibrils with different morphologies. The phenomenon of fibril polymorphism is relevant biologically because different fibril polymorphs can have different toxicity, but there is no tool for predicting which polymorph forms and under what conditions. Here, we consider the nucleation of polymorphic amyloid fibrils occurring by direct polymerization of monomeric proteins into fibrils. We treat this process within the framework of our newly developed nonstandard nucleation theory, which allows prediction of the concentration dependence of the nucleation rate for different fibril polymorphs. The results highlight that the concentration dependence of the nucleation rate is closely linked with the protein solubility and a threshold monomer concentration below which fibril formation becomes biologically irrelevant. The relation between the nucleation rate, the fibril solubility, the threshold concentration, and the binding energies of the fibril building blocks within fibrils might prove a valuable tool for designing new experiments to control the formation of particular fibril polymorphs. PMID:25762329

  13. Dimple-assisted dewetting: heterogeneous nucleation in undercooled wetting films

    NASA Astrophysics Data System (ADS)

    Blossey, Ralf

    2001-09-01

    Undercooled wetting films near a first-order wetting transition exhibit an unusually long lifetime: the thermal nucleation barrier for formation of a critical hole in a film of thickness F diverges according to exp (c/kBT) where the excess free energy c F with ≥ 2. Localized perturbations of the liquid-vapor interface (dimples) are shown to be a useful tool in reducing in a controlled way: they act as heterogeneous nucleation centers for thermal critical nuclei. For 4He wetting films on weak-binding alkali substrates (Cs, Rb) dimples can be generated either by vortices in a superfluid film or by surface electrons. The theory of the heterogeneous nucleation process initiated by the presence of surface dimples (dimple-assisted dewetting) is developed, accompanied by quantitative predictions for experiment.

  14. Quantification of asymmetric microtubule nucleation at sub-cellular structures

    PubMed Central

    Zhu, Xiaodong; Kaverina, Irina

    2012-01-01

    Cell polarization is important for multiple physiological processes. In polarized cells, microtubules (MTs) are organized into a spatially polarized array. Generally, in non-differentiated cells, it is assumed that MTs are symmetrically nucleated exclusively from centrosome (microtubule organizing center, MTOC) and then reorganized into the asymmetric array. We have recently identified the Golgi complex as an additional MTOC that asymmetrically nucleates MTs toward one side of the cell. Methods used for alternative MTOC identification include microtubule re-growth after complete drug-induced depolymerization and tracking of growing microtubules using fluorescence labeled MT +TIP binding proteins in living cells. These approaches can be used for quantification of MT nucleation sites at diverse sub-cellular structures. PMID:21773933

  15. Theory and Simulation of Nucleation

    NASA Astrophysics Data System (ADS)

    Kuipers, Jan

    2009-09-01

    Nucleation is the process where a stable nucleus spontaneously emerges in a metastable environment. Examples of nucleation abound, for instance the formation of droplets in undercooled gasses and of crystals in undercooled liquids. The process is thermally activated and is key to understanding various subjects in biophysics, polymer physics and chemistry. The physics behind it has long been studied and the simplest version is known as classical nucleation theory. This thesis reveals a serious shortcoming of this classical theory, namely the assumption that nucleation is described by a memoryless stochastic process. A method to test for this so-called Markov property is developed and is applied to the nucleation process in the Ising model. To overcome this shortcoming, a non-Markovian theory for droplet growth is developed. This theory is validated with simulation results of the mass of growing droplets in the Ising model. More interesting quantities, of course, include the time scale and rate at which stable droplets arise. These times are typically very long, so that brute force simulations do not give useful results. Therefore, an efficient Monte Carlo method, called pathway recombination, is developed to measure transition times over large energy barriers. An adapted version of this method is used to determine nucleation rates of Ising models with various dynamics. These rates are then compared to the rates predicted by both the non-Markovian droplet theory and the classical one. Finally, a different activated process is discussed, namely the reversal of the Earth's magnetic field. Various time series of geomagnetic dipole moments are analyzed and theoretical, simulation and experimental results are compared.

  16. Effective Reaction Coordinates in Competitive Nucleation of Gold Nanoclusters

    NASA Astrophysics Data System (ADS)

    Asuquo, Cletus; Bowles, Richard

    2015-03-01

    Many materials exhibit crystal polymorphism such that they can freeze to form a variety of different structures under the same conditions. Which structure is formed, and how, is determined by the nucleation kinetics that involves the creation of a critical embryo for the new phase. In classical nucleation theory, the embryo size is usually used as the sole order parameter to describe the reaction coordinate, but this does not always contain sufficient information to describe the formation of the different phases observed in a competitive nucleation process. We present an extension of the transition path sampling algorithm to the sampling of transition paths in a competitive process, as well as the development of a multiple paths maximum likelihood analysis used to obtain accurate reaction coordinates for the different transitions. The new techniques are used to study competitive nucleation in gold nanoclusters where non-crystalline structures such as icosahedra, decahedra and face-centered cubic crystals can form. The reaction coordinates, and analyses of the nucleation pathways, give new insights to how correlated local structures arrange to form more complex structures on longer length scales. In particular, we show that the formation of the tetrahedral subunits are important We thank NSERC for financial support and Compute Canada for computational resources.

  17. Crystal nucleation in lithium borate glass

    NASA Technical Reports Server (NTRS)

    Smith, Gary L.; Neilson, George F.; Weinberg, Michael C.

    1988-01-01

    Crystal nucleation measurements were made on three lithium borate compositions in the vicinity of Li2O-2Br2O3. All nucleation measurements were performed at 500 C. Certain aspects of the nucleation behavior indicated (tentatively) that it proceeded by a homogeneous mechanism. The steady state nucleation rate was observed to have the largest value when the Li2O concentration was slightly in excess of the diborate composition. The change in nucleation rate with composition is controlled by the variation of viscosity as well as the change in free energy with composition. The variation of nucleation rate is explained qualitatively in these terms.

  18. Automatic apparatus for nucleation investigations

    NASA Astrophysics Data System (ADS)

    Baldwin, Mark; Vonnegut, Bernard

    1982-12-01

    An automated apparatus serves repeatedly to detect and record the repeated formation of the crystalline phase in a single sample of a supercooled liquid. The technique is successfully applied to investigations of the nucleation of ice formation with silver iodide by repeatedly freezing and thawing a small volume of water in a U-shaped capillary tube.

  19. Ice Nucleation in Deep Convection

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  20. Foam nucleation system for fluoropolymers

    SciTech Connect

    Buckmaster, M.D.; Randa, S.K.

    1988-08-16

    A foamable composition is described comprising a melt-processible fluoropolymer containing a nucleating amount of boron nitride and a synergistic amount of at least one inorganic salt that is thermally stable at the fluoropolymer extrusion temperature, and consists of a metal cation and a polyatomic anion.

  1. Ice Nucleation Properties of Oxidized Carbon Nanomaterials.

    PubMed

    Whale, Thomas F; Rosillo-Lopez, Martin; Murray, Benjamin J; Salzmann, Christoph G

    2015-08-01

    Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196

  2. Ice Nucleation Properties of Oxidized Carbon Nanomaterials

    PubMed Central

    2015-01-01

    Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196

  3. Molecular Simulations of Heterogeneous Ice Nucleation. II. Peeling back the Layers

    SciTech Connect

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.; Michaelides, Angelos

    2015-05-14

    Coarse grained molecular dynamics simulations are presented in which the sensitivity of the ice nucleation rate to the hydrophilicity of a graphene nanoflake is investigated. We find that an optimal interaction strength for promoting ice nucleation exists, which coincides with that found previously for a face centered cubic (111) surface. We further investigate the role that the layering of interfacial water plays in heterogeneous ice nucleation and demonstrate that the extent of layering is not a good indicator of ice nucleating ability for all surfaces. Our results suggest that to be an efficient ice nucleating agent, a surface should not bind water too strongly if it is able to accommodate high coverages of water.

  4. Understanding the Chemical Physics of Nucleation

    SciTech Connect

    Kathmann, Shawn M.

    2006-08-01

    Observation and theory have steadily progressed our understanding of nucleation phenomena over the past 280 years. However, even more questions remain concerning the governing processes and mechanisms. The inherent instability and sensitivity of nucleation places a high premium on theoretical accuracy and experimental purity and similarly makes interpretation of both more challenging. The objective of the present paper is to contribute to the understanding of nucleation kinetics and thermodynamics with emphasis on cluster chemical physics within the context of Dynamical Nucleation Theory. Our hope is to share some insights that we've gained over the past several years concerning rate constants, molecular interactions, statistical mechanics and their consequences on nucleation.

  5. Ice nucleation activity of polysaccharides

    NASA Astrophysics Data System (ADS)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  6. Nucleation precursors in protein crystallization

    PubMed Central

    Vekilov, Peter G.; Vorontsova, Maria A.

    2014-01-01

    Protein crystal nucleation is a central problem in biological crystallography and other areas of science, technology and medicine. Recent studies have demonstrated that protein crystal nuclei form within crucial precursors. Here, methods of detection and characterization of the precursors are reviewed: dynamic light scattering, atomic force microscopy and Brownian microscopy. Data for several proteins provided by these methods have demonstrated that the nucleation precursors are clusters consisting of protein-dense liquid, which are metastable with respect to the host protein solution. The clusters are several hundred nanometres in size, the cluster population occupies from 10−7 to 10−3 of the solution volume, and their properties in solutions supersaturated with respect to crystals are similar to those in homogeneous, i.e. undersaturated, solutions. The clusters exist owing to the conformation flexibility of the protein molecules, leading to exposure of hydrophobic surfaces and enhanced intermolecular binding. These results indicate that protein conformational flexibility might be the mechanism behind the metastable mesoscopic clusters and crystal nucleation. Investigations of the cluster properties are still in their infancy. Results on direct imaging of cluster behaviors and characterization of cluster mechanisms with a variety of proteins will soon lead to major breakthroughs in protein biophysics. PMID:24598910

  7. Misfit dislocation nucleation in heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Trushin, Oleg; Ying, See Chen; Granato, Enzo; Ala-Nissila, Tapio

    2001-03-01

    We have studied atomic mechanisms of misfit dislocation nucleation in heteroepitaxy with semiempirical potentials. Many-body mechanisms of stress relaxation are systematically investigated with Lennard-Jones potential in 2D and 3D cases. Energy barriers for dislocation nucleation are estimated using modern methods for saddle point search (Nudged Elastic Band [1], Eigenvector Following [2] and others). Moreover, new simple and effective method for transition paths searching is proposed. Based on the data the critical thickness of film is estimated as a function of film-substrate lattice misfit. Moreover, to make the study more realistic we used EAM [3] potentials in simulations of Pd/Cu and Cu/Pd systems. We show that the dislocations nucleate more easily in compressive than tensile strained films, and in fcc(111) orientation rather than in fcc(100). These findings are in agreement with recent experimental and theoretical works. 1. H. Jonsson, G. Mills and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, ed. by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998). 2. L. J. Munro and D. J. Wales, Phys. Rev. B v59, 3969 (1999), and references therein. 3. S. M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Rev. B v33, 7983 (1986).

  8. Ice nucleation properties of agricultural soil dusts

    NASA Astrophysics Data System (ADS)

    Steinke, Isabelle; Funk, Roger; Busse, Jacqueline; Iturri, Antonela; Kirchen, Silke; Leue, Martin; Möhler, Ottmar; Schwartz, Thomas; Sierau, Berko; Toprak, Emre; Ulrich, Andreas; Hoose, Corinna; Leisner, Thomas

    2015-04-01

    Soil dust particles emitted from agricultural areas contain large amounts of organic material such as fungi, bacteria and plant debris. Being carrier for potentially highly ice-active biological particles, agricultural soil dusts are candidates for being very ice-active as well. In this work, we present ice nucleation experiments conducted in the AIDA cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. Results are presented for the immersion freezing and the deposition nucleation mode: all soil dusts show higher ice nucleation efficiencies than desert dusts, especially at temperatures above 254 K. For one soil dust sample, the effect of heat treatments was investigated. Heat treatments did not affect the ice nucleation efficiency which presumably excludes primary biological particles as the only source of the increased ice nucleation efficiency. Therefore, organo-mineral complexes or organic compounds may contribute substantially to the high ice nucleation activity of agricultural soil dusts.

  9. Nucleation and interfacial adsorption in ternary systems.

    PubMed

    Philippe, T

    2015-03-01

    Nucleation is studied in incompressible ternary fluids by examining the topology of the overall landscape of the energy surface. Minimum free energy paths for nucleation (MFEPs) of a single nucleus in an infinite matrix are computed with the string method in the framework of the continuum theory of nucleation for the regular solution. Properties of the critical nucleus are compared with the predictions of the classical nucleation theory. MFEPs are found to exhibit complex nucleation pathways with non-monotonic variations of compositions in the interfacial region, specifically adsorption of a component. In the symmetric regular solution, the minority component is found to segregate at the interface during nucleation with a concomitant depletion of the nucleus core, resulting in unpredicted partition of the non-selective component. Despite increasing the gradient energy, such inhomogeneity in composition is shown to lower the nucleation barrier. PMID:25747088

  10. Role of nucleation in nanodiamond film growth

    SciTech Connect

    Lifshitz, Y.; Lee, C.H.; Wu, Y.; Zhang, W.J.; Bello, I.; Lee, S.T.

    2006-06-12

    Nanodiamond films were deposited using different microwave plasma chemical vapor deposition schemes following several nucleation pretreatment methods. The nucleation efficiency and the films structure were investigated using scanning and transmission electron microscopy and Raman spectroscopy. C{sub 2} dimer growth (CH{sub 4} and H{sub 2} in 90% Ar) cannot nucleate diamond and works only on existing diamond surfaces. The methyl radical process (up to 20% CH{sub 4} in H{sub 2}) allows some nucleation probability on appropriate substrates. Prolonged bias enhanced nucleation initiates both diamond nucleation and growth. C{sub 2} dimer growth results in pure nanodiamond free of amorphous carbon, while prolonged bias enhanced nucleation forms an amorphous carbon/nanodiamond composite.

  11. Sigmoid kinetics of protein crystal nucleation

    NASA Astrophysics Data System (ADS)

    Nanev, Christo N.; Tonchev, Vesselin D.

    2015-10-01

    A non-linear differential equation expressing the new phase nucleation rate in the different steps of the process (non-stationary and stationary nucleation and in the plateau region) is derived from basic principles of the nucleation theory. It is shown that one and the same sigmoid (logistic) function describes both nucleation scenarios: the one according to the classical theory, and the other according to the modern two-stage mechanism of protein crystal formation. Comparison to experimental data on both insulin crystal nucleation kinetics and on bovine β-lactoglobulin crystallization indicates a good agreement with the sigmoidal prediction. Experimental data for electrochemical nucleation and glass crystallization obey the same sigmoid time dependence, and suggest universality of this nucleation kinetics law.

  12. Communication. Kinetics of scavenging of small, nucleating clusters. First nucleation theorem and sum rules

    DOE PAGESBeta

    Malila, Jussi; McGraw, Robert; Laaksonen, Ari; Lehtinen, Kari E. J.

    2015-01-07

    Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleation theorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleation theorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new particle formation, including absence of subcritical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here we extend the kinetic derivation of the first nucleation theorem to give amore » general framework to include such processes, yielding sum rules connecting the size dependent particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent critical size from a naïve application of the first nucleation theorem that neglects them.« less

  13. Communication. Kinetics of scavenging of small, nucleating clusters. First nucleation theorem and sum rules

    SciTech Connect

    Malila, Jussi; McGraw, Robert; Laaksonen, Ari; Lehtinen, Kari E. J.

    2015-01-07

    Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleation theorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleation theorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new particle formation, including absence of subcritical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here we extend the kinetic derivation of the first nucleation theorem to give a general framework to include such processes, yielding sum rules connecting the size dependent particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent critical size from a naïve application of the first nucleation theorem that neglects them.

  14. Dynamic study of nanodroplet nucleation and growth on self-supported nanothick liquid films.

    PubMed

    Barkay, Z

    2010-12-01

    The dynamics of water condensation on self-supported thin films was studied at the nanoscale using transmitted electrons in an environmental scanning electron microscope. The initial stages of nucleation and growth over nanothick water films have been investigated. Irregularities at the water-film boundaries constituted nucleation sites for asymmetric dropwise and filmwise condensation. Nanodroplet growth was associated with center of mass movement, and the dynamic growth power law dependence was explored for the nanoscale. PMID:21073155

  15. Atomistic theory of amyloid fibril nucleation

    NASA Astrophysics Data System (ADS)

    Cabriolu, Raffaela; Kashchiev, Dimo; Auer, Stefan

    2010-12-01

    We consider the nucleation of amyloid fibrils at the molecular level when the process takes place by a direct polymerization of peptides or protein segments into β-sheets. Employing the atomistic nucleation theory (ANT), we derive a general expression for the work to form a nanosized amyloid fibril (protofilament) composed of successively layered β-sheets. The application of this expression to a recently studied peptide system allows us to determine the size of the fibril nucleus, the fibril nucleation work, and the fibril nucleation rate as functions of the supersaturation of the protein solution. Our analysis illustrates the unique feature of ANT that the size of the fibril nucleus is a constant integer in a given supersaturation range. We obtain the ANT nucleation rate and compare it with the rates determined previously in the scope of the classical nucleation theory (CNT) and the corrected classical nucleation theory (CCNT). We find that while the CNT nucleation rate is orders of magnitude greater than the ANT one, the CCNT and ANT nucleation rates are in very good quantitative agreement. The results obtained are applicable to homogeneous nucleation, which occurs when the protein solution is sufficiently pure and/or strongly supersaturated.

  16. High-resolution transmission electron microscopy investigation of the face-centered cubic/hexagonal close-packed martensite transformation in Co-31.8 wt pct Ni alloy: Part 2. Plate intersections, extended defects, and nucleation mechanisms

    NASA Astrophysics Data System (ADS)

    Bray, D. W.; Howe, J. M.

    1996-11-01

    The face-centered cubic/hexagonal close-packed (fcc/hcp) martensite phase transformation in a Co-31.8 wt pct Ni alloy was studied by high-resolution transmission electron microscopy (HRTEM). The HRTEM was used to study the structure and properties of intersections between martensite plates and other defects observed in the alloy such as stacking fault tetrahedra (SFT) and Z-type defects. The HRTEM was also used to attempt to determine if various proposed mechanisms for the fcc/hcp martensite transformation were operating. There is evidence to suggest that the reflection mechanism proposed by Bollmann and the dipole mechanism proposed by Hirth are active in the fcc/hcp martensitic transformation, although the evidence is not completely certain in either case. Growth of the hcp phase by a four- or six-plane mechanism as proposed by Mahajan et al. is possible in theory but was not observed in this study. Transformation by previously proposed pole mechanisms was also not observed in this study, although evidence for a new type of pole mechanism was found. The formation of SFT along the fcc/hcp martensite interface was observed to occur by the cross-slip of Shockley partial dislocations out of the fcc/hcp interface onto conjugate fcc matrix planes, followed by further cross-slip to form the SFT, as previously observed for grain boundaries in fcc alloys.

  17. Stochastic analysis of nucleation rates

    NASA Astrophysics Data System (ADS)

    Johansson, Jonas

    2016-02-01

    We show that approximating the Becker-Döring equations with a Langevin equation results in multiplicative noise, which in turn leads to a family of possible Fokker-Planck equations according to the Ito-Stratonovich dilemma. Using a simple and general model for the attachment and detachment rates, we find that the Ito choice approximates the nucleation rate best and also coincides with the Fokker-Planck equation resulting from the common way to Taylor expand the original set of rate equations.

  18. Fundamentals of microcrack nucleation mechanics

    NASA Technical Reports Server (NTRS)

    Fu, L. S.; Sheu, Y. C.; Co, C. M.; Zhong, W. F.; Shen, H. D.

    1985-01-01

    A foundation for ultrasonic evaluation of microcrack nucleation mechanics is identified in order to establish a basis for correlations between plane strain fracture toughness and ultrasonic factors through the interaction of elastic waves with material microstructures. Since microcracking is the origin of (brittle) fracture, it is appropriate to consider the role of stress waves in the dynamics of microcracking. Therefore, the following topics are discussed: (1) microstress distributions with typical microstructural defects located in the stress field; (2) elastic wave scattering from various idealized defects; and (3) dynamic effective-properties of media with randomly distributed inhomogeneities.

  19. Stochastic analysis of nucleation rates.

    PubMed

    Johansson, Jonas

    2016-02-01

    We show that approximating the Becker-Döring equations with a Langevin equation results in multiplicative noise, which in turn leads to a family of possible Fokker-Planck equations according to the Ito-Stratonovich dilemma. Using a simple and general model for the attachment and detachment rates, we find that the Ito choice approximates the nucleation rate best and also coincides with the Fokker-Planck equation resulting from the common way to Taylor expand the original set of rate equations. PMID:26986388

  20. Truncated Dual-Cap Nucleation Site Development

    NASA Technical Reports Server (NTRS)

    Matson, Douglas M.; Sander, Paul J.

    2012-01-01

    During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.

  1. Experiments on Nucleation in Different Flow Regimes

    NASA Technical Reports Server (NTRS)

    Bayuzick, Robert J.; Hofmeister, W. H.; Morton, C. M.; Robinson, M. B.

    1998-01-01

    The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys.

  2. Experiments on Nucleation in Different Flow Regimes

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.; Hofmeister, W. H.; Morton, C. M.; Robinson, M. B.

    1999-01-01

    The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys. Early experiments in nucleation kinetics were accomplished by droplet dispersion methods. Dilatometry was used by Turnbull and others, and more recently differential thermal analysis and differential scanning calorimetry have been used for kinetic studies. These techniques have enjoyed success; however, there are difficulties with these experiments. Since materials are dispersed in a medium, the character of the emulsion/metal interface affects the nucleation behavior. Statistics are derived from the large number of particles observed in a single experiment, but dispersions have a finite size distribution which adds to the uncertainty of the kinetic determinations. Even though temperature can be controlled quite well before the onset of nucleation, the release of the latent heat of fusion during nucleation of particles complicates the assumption of isothermality during these experiments. Containerless processing has enabled another approach to the study of nucleation kinetics. With levitation techniques it is possible to undercool one sample to nucleation repeatedly in a controlled manner, such that the statistics of the nucleation process can be derived from multiple experiments on a single sample. The authors have fully developed the analysis of nucleation experiments on single samples following the suggestions of Skripov. The advantage of these experiments is that the samples are directly observable. The nucleation temperature

  3. Nucleation and growth transformation kinetics

    NASA Astrophysics Data System (ADS)

    Erukhimovitch, V.; Baram, J.

    1995-03-01

    As a result of the reassessment of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for the kinetics of nucleation and growth transformations, an integral-equation formulation has been developed instead of the well-known and widely used Avrami equation. The presented formulation considers interfacial and diffusional growths, in one, two, and three dimensions, with both time-dependent and time-invariant nucleation and growth rates. The integral-equation model corrects reported inadequacies of the KJMA theory when applied in numerous experiments and various solid-state transformations. It is shown that in the example cases examined in this paper, crystallization from the amorphous state in melt-spun ribbons, isothermal aging of CuAlZn, pearlitic transition in an eutectoid steel, and crystallization in a PEKK polymer, the thermodynamic and kinetic interpretation and parameters extracted from best fits of the Avrami equations to the experimental data are erroneous. The KJMA formulation is a simplification of the real physical conditions. The main limitation of the new model is that almost all the integral equations representing the kinetics of solid-state transformations have no analytical solutions.

  4. Binary Nucleation of Water and Sodium Chloride

    SciTech Connect

    Nemec, Thomas; Marsik, Frantisek; Palmer, Donald

    2005-01-01

    Nucleation processes in the binary water-sodium chloride system are investigated in the sense of the classical nucleation theory (CNT). The CNT is modified to be able to handle the electrolytic nature of the system and is employed to investigate the acceleration of the nucleation process due to the presence of sodium chloride in the steam. This phenomenon, frequently observed in the Wilson zone of steam turbines, is called early condensation. Therefore, the nucleation rates of the water-sodium chloride mixture are of key importance in the power cycle industry.

  5. The kink-pair nucleation in edge dislocation motion

    NASA Astrophysics Data System (ADS)

    Yu, Song; Wang, Chong-Yu; Yu, Tao

    2009-03-01

    The motion of edge dislocations (EDs) and kinked EDs in body-centered cubic Fe are studied at atom level. We find the kink-pair nucleation mechanism directly from the atom configuration evolution of dislocation, the EDs move primarily by the kink-pair nucleation, and the pre-existing kink does not affect this motion mode. The result is in agreement with the energy calculation. Furthermore, the Peierls stress, dislocation velocity, and phonon-drag coefficient are discussed. There are obviously two motion regions with different stresses. In the low-stress region, the stress exercises a great influence on the dislocation motion, the dislocation velocity increase significantly with the increase of stress. In the high-stress region, however, phonon drag practice a dominant factor on the dislocation motion, the dislocation move with approximately constant speed close to the transverse speed of sound.

  6. Dislocation nucleation in bcc Ta single crystals studied by nanoindentation

    SciTech Connect

    Biener, M M; Biener, J; Hodge, A M; Hamza, A V

    2007-08-08

    The study of dislocation nucleation in closed-packed metals by nanoindentation has recently attracted much interest. Here, we address the peculiarities of the incipient plasticity in body centered cubic (bcc) metals using low index Ta single-crystals as a model system. The combination of nanoindentation with high-resolution atomic force microscopy provides us with experimental atomic-scale information on the process of dislocation nucleation and multiplication. Our results reveal a unique deformation behavior of bcc Ta at the onset of plasticity which is distinctly different from that of closed-packed metals. Most noticeable, we observe only one rather than a sequence of discontinuities in the load-displacement curves. This and other differences are discussed in context of the characteristic plastic deformation behavior of bcc metals.

  7. Assaying microtubule nucleation by the γ-tubulin ring complex.

    PubMed

    Choi, Yuk-Kwan; Qi, Robert Z

    2014-01-01

    Microtubule organization by microtubule-organizing centers such as the centrosome requires γ-tubulin, which exists in the γ-tubulin ring complex (γTuRC) that nucleates microtubules. The γTuRC is a ring-shaped, macromolecular complex whose core components are γ-tubulin and the γ-tubulin complex proteins. Despite the recent identification of additional γTuRC components, the molecular composition and regulatory properties of the complex remain poorly understood. The ability to purify the γTuRC at a large scale for characterization may hold a key to understanding the mechanism by which the γTuRC nucleates microtubules. In this chapter, we describe methods to isolate the γTuRC from human cell cultures and to perform assays on the purified γTuRC. PMID:24630104

  8. Binary nucleation at low temperatures

    NASA Technical Reports Server (NTRS)

    Zahoransky, R. A.; Peters, F.

    1985-01-01

    The onset of homogeneous condensation of binary vapors in the supersaturated state is studied in ethanol/n-propanol and water/ethanol via their unsteady expansion in a shock tube at temperatures below 273 K. Ethanol/n-propanol forms a nearly ideal solution, whereas water/ethanol is an example of a strongly nonideal mixture. Vapor mixtures of various compositions are diluted in dry air at small mole fractions and expanded in the driver section from room temperature. The onset of homogeneous condensation is detected optically and the corresponding thermodynamic state is evaluated. The experimental results are compared with the binary nucleation theory, and the particular problems of theoretical evaluation at low temperatures are discussed.

  9. Atomistic simulations of dislocation nucleation in single crystals and grain boundaries

    NASA Astrophysics Data System (ADS)

    Tschopp, Mark A., Jr.

    The objective of this research is to use atomistic simulations to investigate dislocation nucleation from grain boundaries in face-centered cubic aluminum and copper. This research primarily focuses on asymmetric tilt grain boundaries and has three main components. First, this research uses molecular statics simulations of the structure and energy of these faceted, dissociated grain boundary structures to show that Sigma3 asymmetric boundaries can be decomposed into the structural units of the Sigma3 symmetric tilt grain boundaries, i.e., the coherent and incoherent twin boundaries. Moreover, the energy for all Sigma3 asymmetric boundaries is predicted with only the energies of the Sigma3 symmetric boundaries and the inclination angle. Understanding the structure of these boundaries provides insight into dislocation nucleation from these boundaries. Further work into the structure and energy of other low order Sigma asymmetric boundaries and the spatial distribution of free volume within the grain boundaries also provides insight into dislocation nucleation mechanisms. Second, this research uses molecular dynamics deformation simulations with uniaxial tension applied perpendicular to these boundaries to show that the dislocation nucleation mechanisms in asymmetric boundaries are highly dependent on the faceted, dissociated structure. Grain boundary dislocation sources can act as perfect sources/sinks for dislocations or may violate this premise by increasing the dislocation content of the boundary during nucleation. Furthermore, simulations under uniaxial tension and uniaxial compression show that nucleation of the second partial dislocation in copper exhibits tension-compression asymmetry. Third, this research explores the development of models that incorporate the resolved stress components on the slip system of dislocation nucleation to predict the atomic stress required for dislocation nucleation from single crystals and grain boundaries. Single crystal

  10. Heterogeneous nucleation in hypermonotectic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Köhler, M.; Ratke, L.; Kaban, I.; Hoyer, W.

    2012-01-01

    Simple casting experiments were set up to solve the question, if heterogeneous nucleation of the liquid-liquid decomposition in monotectic systems is possible. Al-Pb alloys with different inoculants were solidified, and the resulting microstructure was analysed by SEM and X-ray microtomography. Pronounced changes in the distribution of the lead precipitations indicate that it is possible to trigger the nucleation.

  11. Simple improvements to classical bubble nucleation models

    NASA Astrophysics Data System (ADS)

    Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3 σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations.

  12. Simple improvements to classical bubble nucleation models.

    PubMed

    Tanaka, Kyoko K; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg

    2015-08-01

    We revisit classical nucleation theory (CNT) for the homogeneous bubble nucleation rate and improve the classical formula using a correct prefactor in the nucleation rate. Most of the previous theoretical studies have used the constant prefactor determined by the bubble growth due to the evaporation process from the bubble surface. However, the growth of bubbles is also regulated by the thermal conduction, the viscosity, and the inertia of liquid motion. These effects can decrease the prefactor significantly, especially when the liquid pressure is much smaller than the equilibrium one. The deviation in the nucleation rate between the improved formula and the CNT can be as large as several orders of magnitude. Our improved, accurate prefactor and recent advances in molecular dynamics simulations and laboratory experiments for argon bubble nucleation enable us to precisely constrain the free energy barrier for bubble nucleation. Assuming the correction to the CNT free energy is of the functional form suggested by Tolman, the precise evaluations of the free energy barriers suggest the Tolman length is ≃0.3σ independently of the temperature for argon bubble nucleation, where σ is the unit length of the Lennard-Jones potential. With this Tolman correction and our prefactor one gets accurate bubble nucleation rate predictions in the parameter range probed by current experiments and molecular dynamics simulations. PMID:26382410

  13. Fatigue crack nucleation in metallic materials

    SciTech Connect

    Peralta, P.; Laird, C.; Ramamurty, U.; Suresh, S.; Campbell, G.H.; King, W.E.; Mitchell, T.E.

    1999-04-01

    The process of fatigue crack nucleation in metallic materials is reviewed placing emphasis in results derived for pure FCC metals with wavy slip behavior. The relationship between Persistent Slip Bands (PSB`s) and crack initiation will be examined for both single crystals and polycrystals, including the conditions for inter- and transgranular crack nucleation and their connection to type of loading, crystallography and slip geometry. The latter has been found to be an important parameter in the nucleation of intergranular cracks in polycrystals subjected to high strain fatigue, whereby primary slip bands with long slip lengths impinging on a grain boundary produce intergranular crack nucleation under the right conditions. Recent results related to intergranular crack nucleation in copper bicrystals and crack nucleation in Cu/Sapphire interfaces indicate that this mechanism controls crack nucleation in those simpler systems as well. Furthermore, it is found that under multiple slip conditions the crack nucleation location is controlled by the presence of local single slip conditions and long slip lengths for a particular Burgers vector that does not have to be in the primary slip system.

  14. Nucleation pressure threshold in acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Miles, Christopher J.; Doering, Charles R.; Kripfgans, Oliver D.

    2016-07-01

    We combine classical nucleation theory with superharmonic focusing to predict necessary pressures to induce nucleation in acoustic droplet vaporization. We show that linear acoustics is a valid approximation to leading order when particle displacements in the sound field are small relative to the radius of the droplet. This is done by perturbation analysis of an axisymmetric compressible inviscid flow about a droplet with small surface perturbations relative to the mean radius subjected to an incoming ultrasonic wave. The necessary nucleation pressure threshold inside the droplet is calculated to be -9.33 ± 0.30 MPa for typical experimental parameters by employing results from classical homogeneous nucleation theory. As a result, we are able to predict if a given incident pressure waveform will induce nucleation.

  15. Nucleation and crystallization behaviors of nano-crystalline lithium–mica glass–ceramic prepared via sol–gel method

    SciTech Connect

    Tohidifar, M.R.; Alizadeh, P.; Riello, P.

    2012-06-15

    Graphical abstract: The effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramic, synthesized by sol–gel technique, were investigated. It was found that MgF{sub 2} crystals act as nuclei centers for the mica crystallization so that a large quantity of mica crystallites was obtained following nucleation process. The crystallization activation energy for both the un-nucleated and nucleated samples was measured as 400.2 and 229.6 kJ mol{sup −1}, respectively. The calculated Avrami exponents demonstrated that the growth mechanism of mica crystallites changes from the needle-like to three-dimensional growth with applying the appropriate nucleation treatment ▪. Highlights: ► Crystallization temperature shifts to 625 from 680 °C following nucleation process. ► Activation energy of crystallization for the nucleated specimen is 229.6 kJ mol{sup −1}. ► Crystallization activation energy for the un-nucleated specimen is 400.2 kJ mol{sup −1}. ► Needle-like growth is predominant growth mechanism for un-nucleated sample. ► Three-dimensional growth is predominant growth mechanism for nucleated sample. -- Abstract: The paper investigates the effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramics, taking the composition LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} (x = 0.5) and 8 mass% MgF{sub 2} synthesized by sol–gel technique. Here, X-ray diffraction, thermal analysis and transmission electron microscopy were used to assess the structural evolutions of as-synthesized nano-crystalline lithium–mica glass–ceramics. It was found that MgF{sub 2} crystals perform as nuclei centers for the mica crystallization hence; a large quantity of mica crystallites obtained following the nucleation process at 400 °C for 12 h. For both the un-nucleated and nucleated samples, the crystallization activation energy was measured as 400.2 and 229.6 kJ mol{sup −1

  16. Molecular dynamics simulations of He bubble nucleation at grain boundaries.

    PubMed

    Zhang, Yongfeng; Millett, Paul C; Tonks, Michael; Zhang, Liangzhe; Biner, Bulent

    2012-08-01

    The nucleation behavior of He bubbles in single-crystal (sc) and nano-grain body-centered-cubic (bcc) Mo is simulated using molecular dynamics (MD) simulations, focusing on the effects of the grain boundary (GB) structure. In sc Mo, the nucleation behavior of He bubbles depends on irradiation conditions. He bubbles nucleate by either clustering of He atoms with pre-existing vacancies or self-interstitial-atom (SIA) punching without initial vacancies. In nano-grain Mo, strong precipitation of He at the GBs is observed, and the density, size and spatial distribution of He bubbles vary with the GB structure. The corresponding He bubble density is higher in nano-grain Mo than that in sc Mo and the average bubble size is smaller. In the GB plane, He bubbles distribute along the dislocation cores for GBs consisting of GB dislocations and randomly for those without distinguishable dislocation structures. The simulation results in nano-grain Mo are in agreement with previous experiments in metal nano-layers, and they are further explained by the effect of excess volume associated with the GBs. PMID:22722319

  17. Molecular dynamics simulations of He bubble nucleation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Zhang, Yongfeng; Millett, Paul C.; Tonks, Michael; Zhang, Liangzhe; Biner, Bulent

    2012-08-01

    The nucleation behavior of He bubbles in single-crystal (sc) and nano-grain body-centered-cubic (bcc) Mo is simulated using molecular dynamics (MD) simulations, focusing on the effects of the grain boundary (GB) structure. In sc Mo, the nucleation behavior of He bubbles depends on irradiation conditions. He bubbles nucleate by either clustering of He atoms with pre-existing vacancies or self-interstitial-atom (SIA) punching without initial vacancies. In nano-grain Mo, strong precipitation of He at the GBs is observed, and the density, size and spatial distribution of He bubbles vary with the GB structure. The corresponding He bubble density is higher in nano-grain Mo than that in sc Mo and the average bubble size is smaller. In the GB plane, He bubbles distribute along the dislocation cores for GBs consisting of GB dislocations and randomly for those without distinguishable dislocation structures. The simulation results in nano-grain Mo are in agreement with previous experiments in metal nano-layers, and they are further explained by the effect of excess volume associated with the GBs.

  18. Experimental Studies in Ice Nucleation

    NASA Astrophysics Data System (ADS)

    Wright, Timothy Peter

    Ice nuclei play a critical role in the formation of precipitation in mixed phase clouds. Modification of IN concentrations can lead to changes in cloud lifetimes and precipitation size. Presented in this study are experimental investigations into ice nuclei in an ongoing effort to reduce the uncertainties that ice nuclei have on cloud processes and climate. This research presents a new version of the cold stage drop freezing assay to investigate the time-dependence of heterogeneous nucleation. The temperature range for the instrument spans from the melting point of water to the homogeneous freezing limit of ˜-38 deg C. Temperature stability for the instrument allowed for experimental operation for up to four days while interrogating the same sample. Up to a one hundred fold increase in the number of analyzed drops was accomplished through an in-house written automated drop freezing detection software package. Combined instrument design improvements allow for the analysis of IN concentrations down to ˜10-8 ice nuclei per picoliter of sample water. A new variant of the multiple-component stochastic model for heterogeneous ice nucleation was used to investigate the time dependence of heterogeneous freezing processes. This was accomplished by analyzing how the changes in the cooling rate can impact the observed nucleation rate. The model employed four material-dependent parameters to accurately capture the observed freezing of water drops containing Arizona Test Dust. The parameters were then used to accurately predict the freezing behavior of the drops in time dependent experiments. The time dependence freezing of a wide range of materials was then investigated. These materials included the minerals montmorillonite and kaolinite, the biological proxy ice nuclei contained within the product Icemax, and flame soot generated from the incomplete combustion of ethylene gas. The time dependence for ice nuclei collected from rainwater samples was also investigated. The

  19. Heterogeneous nucleation of calcium oxalate on native oxide surfaces

    SciTech Connect

    Song, L.; Pattillo, M.J.; Graff, G.L.; Campbell, A.A.; Bunker, B.C.

    1994-12-31

    The aqueous deposition of calcium oxalate onto colloidal oxides has been studied as a model system for understanding heterogeneous nucleation processes of importance in biomimetic synthesis of ceramic thin films. Calcium oxalate nucleation has been monitored by measuring induction times for nucleation using Constant Composition techniques and by measuring nucleation densities on extended oxide surfaces using an atomic force microscope. Results show that the dependence of calcium oxalate nucleation on solution supersaturation fits the functional form predicted by classical nucleation theories. Anionic surfaces appear to promote nucleation better than cationic surfaces, lowering the effective energy barrier to heterogeneous nucleation.

  20. The materials processing research base of the Materials Processing Center

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Bowen, H. K.; Kenney, G. B.

    1980-01-01

    The goals and activities of the center are discussed. The center activities encompass all engineering materials including metals, ceramics, polymers, electronic materials, composites, superconductors, and thin films. Processes include crystallization, solidification, nucleation, and polymer synthesis.

  1. Temperature Gradient Field Theory of Nucleation

    NASA Astrophysics Data System (ADS)

    Das, S.; Ain, W. Q.; Azhari, A.; Prasada Rao, A. K.

    2016-02-01

    According to the proposed theory, ceramic particles present in molten metal, lose heat at a slower rate than the metallic liquid during cooling. Such condition results in the formation of a spherical thermal gradient field (TGF) around each particle. Hence, the interstitials (low temperature) of such TGFs are the regions to reach the nucleation temperature first, owing to low energy barrier than the liquid-particle interface (higher temperature). Analytics also indicate that the nucleation rate is higher at the TGF interstitials, than at the liquid-particle interface. Such TGF network results in simultaneous nucleation throughout the system, resulting in grain refinement.

  2. Experiments on Nucleation in Different Flow Regimes

    NASA Technical Reports Server (NTRS)

    Bayuzick, Robert J.

    1999-01-01

    The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys. Early experiments in nucleation kinetics were accomplished by droplet dispersion methods [1-6]. Dilitometry was used by Turnbull and others, and more recently differential thermal analysis and differential scanning calorimetry have been used for kinetic studies. These techniques have enjoyed success; however, there are difficulties with these experiments. Since materials are dispersed in a medium, the character of the emulsion/metal interface affects the nucleation behavior. Statistics are derived from the large number of particles observed in a single experiment, but dispersions have a finite size distribution which adds to the uncertainty of the kinetic determinations. Even though temperature can be controlled quite well before the onset of nucleation, the release of the latent heat of fusion during nucleation of particles complicates the assumption of isothermality during these experiments. Containerless processing has enabled another approach to the study of nucleation kinetics [7]. With levitation techniques it is possible to undercool one sample to nucleation repeatedly in a controlled manner, such that the statistics of the nucleation process can be derived from multiple experiments on a single sample. The authors have fully developed the analysis of nucleation experiments on single samples following the suggestions of Skripov [8]. The advantage of these experiments is that the samples are directly observable. The nucleation

  3. Viscosity of interfacial water regulates ice nucleation

    SciTech Connect

    Li, Kaiyong; Chen, Jing; Zhang, Qiaolan; Zhang, Yifan; Xu, Shun; Zhou, Xin; Cui, Dapeng; Wang, Jianjun Song, Yanlin

    2014-03-10

    Ice formation on solid surfaces is an important phenomenon in many fields, such as cloud formation and atmospheric icing, and a key factor for applications in preventing freezing. Here, we report temperature-dependent nucleation rates of ice for hydrophilic and hydrophobic surfaces. The results show that hydrophilic surface presents a lower ice nucleation rate. We develop a strategy to extract the thermodynamic parameters, J{sub 0} and Γ, in the context of classical nucleation theory. From the extracted J{sub 0} and Γ, we reveal the dominant role played by interfacial water. The results provide an insight into freezing mechanism on solid surfaces.

  4. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture

    PubMed Central

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-01-01

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029

  5. Particle Formation (Nucleation) in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Määttänen, A.; Vehkamäki, H.; Lauri, A.; Napari, I.; Merikallio, S.; Kauhanen, J.; Savijärvi, H.; Kulmala, M.

    2006-10-01

    We have studied ice particle formation via heterogeneous nucleation in the present atmospheric conditions of Mars for both one-component (water OR carbon dioxide) and two-component (water AND carbon dioxide) cases.

  6. Multicomponent dynamical nucleation theory and sensitivity analysis.

    PubMed

    Kathmann, Shawn M; Schenter, Gregory K; Garrett, Bruce C

    2004-05-15

    Vapor to liquid multicomponent nucleation is a dynamical process governed by a delicate interplay between condensation and evaporation. Since the population of the vapor phase is dominated by monomers at reasonable supersaturations, the formation of clusters is governed by monomer association and dissociation reactions. Although there is no intrinsic barrier in the interaction potential along the minimum energy path for the association process, the formation of a cluster is impeded by a free energy barrier. Dynamical nucleation theory provides a framework in which equilibrium evaporation rate constants can be calculated and the corresponding condensation rate constants determined from detailed balance. The nucleation rate can then be obtained by solving the kinetic equations. The rate constants governing the multistep kinetics of multicomponent nucleation including sensitivity analysis and the potential influence of contaminants will be presented and discussed. PMID:15267849

  7. Zinc Nucleation and Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Michael, B. Patrick; Nuth, J. A., III; Lilleleht, L. U.; Vondrak, Richard R. (Technical Monitor)

    2000-01-01

    We report our experiences with zinc nucleation in a microgravity environment aboard NASA's Reduced Gravity Research Facility. Zinc vapor is produced by a heater in a vacuum chamber containing argon gas. Nucleation is induced by cooling and its onset is easily detected visually by the appearance of a cloud of solid, at least partially crystalline zinc particles. Size distribution of these particles is monitored in situ by photon correlation spectroscopy. Samples of particles are also extracted for later analysis by SEM. The initially rapid increase in particle size is followed by a slower period of growth. We apply Scaled Nucleation Theory to our data and find that the derived critical temperature of zinc, the critical cluster size at nucleation, and the surface tension values are all in reasonably good agreement with their accepted literature values.

  8. Ice nucleation by water-soluble macromolecules

    NASA Astrophysics Data System (ADS)

    Pummer, B. G.; Budke, C.; Augustin-Bauditz, S.; Niedermeier, D.; Felgitsch, L.; Kampf, C. J.; Huber, R. G.; Liedl, K. R.; Loerting, T.; Moschen, T.; Schauperl, M.; Tollinger, M.; Morris, C. E.; Wex, H.; Grothe, H.; Pöschl, U.; Koop, T.; Fröhlich-Nowoisky, J.

    2015-04-01

    Cloud glaciation is critically important for the global radiation budget (albedo) and for initiation of precipitation. But the freezing of pure water droplets requires cooling to temperatures as low as 235 K. Freezing at higher temperatures requires the presence of an ice nucleator, which serves as a template for arranging water molecules in an ice-like manner. It is often assumed that these ice nucleators have to be insoluble particles. We point out that also free macromolecules which are dissolved in water can efficiently induce ice nucleation: the size of such ice nucleating macromolecules (INMs) is in the range of nanometers, corresponding to the size of the critical ice embryo. As the latter is temperature-dependent, we see a correlation between the size of INMs and the ice nucleation temperature as predicted by classical nucleation theory. Different types of INMs have been found in a wide range of biological species and comprise a variety of chemical structures including proteins, saccharides, and lipids. Our investigation of the fungal species Acremonium implicatum, Isaria farinosa, and Mortierella alpina shows that their ice nucleation activity is caused by proteinaceous water-soluble INMs. We combine these new results and literature data on INMs from fungi, bacteria, and pollen with theoretical calculations to develop a chemical interpretation of ice nucleation and water-soluble INMs. This has atmospheric implications since many of these INMs can be released by fragmentation of the carrier cell and subsequently may be distributed independently. Up to now, this process has not been accounted for in atmospheric models.

  9. Fluorescence Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori

    1998-01-01

    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  10. Ice nucleation on carbon surface supports the classical theory for heterogeneous nucleation.

    PubMed

    Cabriolu, Raffaela; Li, Tianshu

    2015-05-01

    The prevalence of heterogeneous nucleation in nature was explained qualitatively by the classical theory for heterogeneous nucleation established over more than 60 years ago, but the quantitative validity and the key conclusions of the theory have remained unconfirmed. Employing the forward flux sampling method and the coarse-grained water model (mW), we explicitly computed the heterogeneous ice nucleation rates in the supercooled water on a graphitic surface at various temperatures. The independently calculated ice nucleation rates were found to fit well according to the classical theory for heterogeneous nucleation. The fitting procedure further yields the estimate of the potency factor, which measures the ratio of the heterogeneous nucleation barrier to the homogeneous nucleation barrier. Remarkably, the estimated potency factor agrees quantitatively with the volumetric ratio of the critical nuclei between the heterogeneous and homogeneous nucleation. Our numerical study thus provides a strong support to the quantitative power of the theory and allows understanding ice nucleation behaviors under the most relevant freezing conditions. PMID:26066178

  11. Initial stage of nucleation-mediated crystallization of a supercooled melt

    NASA Astrophysics Data System (ADS)

    Chernov, A. A.; Pil'nik, A. A.; Islamov, D. R.

    2016-09-01

    The kinetic model of nucleation-mediated crystallization of a supercooled melt is presented in this work. It correctly takes into account the change in supercooling of the initial phase in the process of formation and evolution of a new phase. The model makes it possible to find the characteristic time of the process, time course of the crystal phase volume, solidified material microstructure. The distinctive feature of the model is the use of the "forbidden" zones in the volume where the formation of new nucleation centers is suppressed.

  12. Molecular Ice Nucleation Activity of Birch Pollen

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Bichler, Magdalena; Häusler, Thomas; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation plays a major part in ecosystem and climate. Due to the triggering of ice cloud formation it influences the radiation balance of the earth, but also on the ground it can be found to be important in many processes of nature. So far the process of heterogeneous ice nucleation is not fully understood and many questions remain to be answered. Biological ice nucleation is hereby from great interest, because it shows the highest freezing temperatures. Several bacteria and fungi act as ice nuclei. A famous example is Pseudomonas syringae, a bacterium in commercial use (Snomax®), which increases the freezing from homogeneous freezing temperatures of approx. -40° C (for small volumes as in cloud droplets) to temperatures up to -2° C. In 2001 it was found that birch pollen can trigger ice nucleation (Diehl et al. 2001; Diehl et al. 2002). For a long time it was believed that this is due to macroscopic features of the pollen surface. Recent findings of Bernhard Pummer (2012) show a different picture. The ice nuclei are not attached on the pollen surface directly, but on surface material which can be easily washed off. This shows that not only the surface morphology, but also specific molecules or molecular structures are responsible for the ice nucleation activity of birch pollen. With various analytic methods we work on elucidating the structure of these molecules as well as the mechanism with which they trigger ice nucleation. To solve this we use various instrumental analytic techniques like Nuclear Magnetic Resonance spectroscopy (NMR), Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS), and Gas-phase Electrophoretic Mobility Molecular Analysis (GEMMA). Also standard techniques like various chromatographic separation techniques and solvent extraction are in use. We state here that this feature might be due to the aggregation of small molecules, with agglomerates showing a specific surface structure. Our results

  13. Vapour–to–liquid nucleation: Nucleation theorems for nonisothermal–nonideal case

    SciTech Connect

    Malila, J.; McGraw, R.; Napari, I.; Laaksonen, A.

    2010-08-29

    Homogeneous vapour-to-liquid nucleation, a basic process of aerosol formation, is often considered as a type example of nucleation phenomena, while most treatment of the subject introduce several simplifying assumptions (ideal gas phase, incompressible nucleus, isothermal kinetics, size-independent surface free energy...). During last decades, nucleation theorems have provided new insights into properties of critical nuclei facilitating direct comparison between laboratory experiments and molecular simulations. These theorems are, despite of their generality, often applied in forms where the aforementioned assumptions are made. Here we present forms of nucleation theorems that explicitly take into account these effects and allow direct estimation of their importance. Only assumptions are Arrhenius-type kinetics of nucleation process and exclusion carrier gas molecules from the critical nucleus.

  14. Nucleation of protein fibrillation by nanoparticles

    PubMed Central

    Linse, Sara; Cabaleiro-Lago, Celia; Xue, Wei-Feng; Lynch, Iseult; Lindman, Stina; Thulin, Eva; Radford, Sheena E.; Dawson, Kenneth A.

    2007-01-01

    Nanoparticles present enormous surface areas and are found to enhance the rate of protein fibrillation by decreasing the lag time for nucleation. Protein fibrillation is involved in many human diseases, including Alzheimer's, Creutzfeld-Jacob disease, and dialysis-related amyloidosis. Fibril formation occurs by nucleation-dependent kinetics, wherein formation of a critical nucleus is the key rate-determining step, after which fibrillation proceeds rapidly. We show that nanoparticles (copolymer particles, cerium oxide particles, quantum dots, and carbon nanotubes) enhance the probability of appearance of a critical nucleus for nucleation of protein fibrils from human β2-microglobulin. The observed shorter lag (nucleation) phase depends on the amount and nature of particle surface. There is an exchange of protein between solution and nanoparticle surface, and β2-microglobulin forms multiple layers on the particle surface, providing a locally increased protein concentration promoting oligomer formation. This and the shortened lag phase suggest a mechanism involving surface-assisted nucleation that may increase the risk for toxic cluster and amyloid formation. It also opens the door to new routes for the controlled self-assembly of proteins and peptides into novel nanomaterials. PMID:17485668

  15. Nonlinear Acoustical Assessment of Precipitate Nucleation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2004-01-01

    The purpose of the present work is to show that measurements of the acoustic nonlinearity parameter in heat treatable alloys as a function of heat treatment time can provide quantitative information about the kinetics of precipitate nucleation and growth in such alloys. Generally, information on the kinetics of phase transformations is obtained from time-sequenced electron microscopical examination and differential scanning microcalorimetry. The present nonlinear acoustical assessment of precipitation kinetics is based on the development of a multiparameter analytical model of the effects on the nonlinearity parameter of precipitate nucleation and growth in the alloy system. A nonlinear curve fit of the model equation to the experimental data is then used to extract the kinetic parameters related to the nucleation and growth of the targeted precipitate. The analytical model and curve fit is applied to the assessment of S' precipitation in aluminum alloy 2024 during artificial aging from the T4 to the T6 temper.

  16. Homogeneous crystal nucleation in binary metallic melts

    NASA Technical Reports Server (NTRS)

    Thompson, C. V.; Spaepen, F.

    1983-01-01

    A method for calculating the homogeneous crystal nucleation frequency in binary metallic melts is developed. The free energy of crystallization is derived from regular solution models for the liquid and solid and is used, together with model-based estimates of the interfacial tension, to calculate the nucleation frequency from the classical theory. The method can account for the composition dependence of the maximum undercooling observed in a number of experiments on small droplet dispersions. It can also be used to calculate the driving force for crystal growth and to obtain more precise estimates of the homogeneous crystal nucleation frequency in glass-forming alloys. This method, although approximate, is simple to apply, and requires only knowledge of the phase diagram and a few readily available thermodynamic quantities as input data.

  17. Liquid Nucleation at Superheated Grain Boundaries

    NASA Astrophysics Data System (ADS)

    Frolov, T.; Mishin, Y.

    2011-04-01

    Grain boundaries with relatively low energies can be superheated above the melting temperature and eventually melt by heterogeneous nucleation of liquid droplets. We propose a thermodynamic model of this process based on the sharp-interface approximation with a disjoining potential. The distinct feature of the model is its ability to predict the shape and size of the critical nucleus by using a variational approach. The model reduces to the classical nucleation theory in the limit of large nuclei but is more general and remains valid for small nuclei. Contrary to the classical nucleation theory, the model predicts the existence of a critical temperature of superheating and offers a simple formula for its calculation. The model is tested against molecular dynamic simulations in which liquid nuclei at a superheated boundary were obtained by an adiabatic trapping procedure. The simulation results demonstrate a reassuring consistency with the model.

  18. A parameterization of cloud droplet nucleation

    SciTech Connect

    Ghan, S.J. ); Chuang, C.; Penner, J.E. )

    1993-01-01

    Droplet nucleation is a fundamental cloud process. The number of aerosols activated to form cloud droplets influences not only the number of aerosols scavenged by clouds but also the size of the cloud droplets. Cloud droplet size influences the cloud albedo and the conversion of cloud water to precipitation. Global aerosol models are presently being developed with the intention of coupling with global atmospheric circulation models to evaluate the influence of aerosols and aerosol-cloud interactions on climate. If these and other coupled models are to address issues of aerosol-cloud interactions, the droplet nucleation process must be adequately represented. Here we introduce a droplet nucleation parametrization that offers certain advantages over the popular Twomey (1959) parameterization.

  19. Homogeneous freezing nucleation of stratospheric solution droplets

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Hamill, Patrick

    1991-01-01

    The classical theory of homogeneous nucleation was used to calculate the freezing rate of sulfuric acid solution aerosols under stratospheric conditions. The freezing of stratospheric aerosols would be important for the nucleation of nitric acid trihydrate particles in the Arctic and Antarctic stratospheres. In addition, the rate of heterogeneous chemical reactions on stratospheric aerosols may be very sensitive to their state. The calculations indicate that homogeneous freezing nucleation of pure water ice in the stratospheric solution droplets would occur at temperatures below about 192 K. However, the physical properties of H2SO4 solution at such low temperatures are not well known, and it is possible that sulfuric acid aerosols will freeze out at temperatures ranging from about 180 to 195 K. It is also shown that the temperature at which the aerosols freeze is nearly independent of their size.

  20. In Situ Characterization of Twin Nucleation in Pure Ti Using 3D-XRD

    NASA Astrophysics Data System (ADS)

    Bieler, Thomas R.; Wang, Leyun; Beaudoin, Armand J.; Kenesei, Peter; Lienert, Ulrich

    2014-01-01

    A small tensile specimen of grade 1 commercially pure titanium was deformed to a few percent strain with concurrent synchrotron X-ray diffraction measurements to identify subsurface {102} twin nucleation events. This sample was from the same piece of material in which a prior study showed that twin nucleation stimulated by slip transfer across a grain boundary accounted for many instances of twin nucleation. The sample had a strong c-axis texture of about eight times random aligned with the tensile axis. After 1.5 pct tensile strain, three twin nucleation events were observed in grains where the c-axis was nearly parallel to the tensile direction. Far-field 3-D X-ray diffraction data were analyzed to obtain the positional center of mass, the average lattice strain, and stress tensors in each grain and twin. In one case where the parent grain was mostly surrounded by hard grain orientations, the twin system with the highest resolved shear stress (RSS) among the six {102} twin variants was activated and the stress in the parent grain decreased after twin nucleation. In two other parent grains with a majority of softer neighboring grain orientations, the observed twins did not occur on the twin system with the highest RSS. Their nucleation could be geometrically attributed to slip transfer from neighboring grains with geometrically favorable basal slip systems, and the stress in the parent grain increased after twin nucleation. In all three twin events, the stress in the twin was 10 to 30 pct lower than the stress in the parent grain, indicating load partitioning between the hard-oriented parent grain and the soft-oriented twin.

  1. Nucleation and Dynamics of Golgi-derived Microtubules

    PubMed Central

    Sanders, Anna A. W. M.; Kaverina, Irina

    2015-01-01

    Integrity of the Golgi apparatus requires the microtubule (MT) network. A subset of MTs originates at the Golgi itself, which in this case functions as a MT-organizing center (MTOC). Golgi-derived MTs serve important roles in post-Golgi trafficking, maintenance of Golgi integrity, cell polarity and motility, as well as cell type-specific functions, including neurite outgrowth/branching. Here, we discuss possible models describing the formation and dynamics of Golgi-derived MTs. How Golgi-derived MTs are formed is not fully understood. A widely discussed model implicates that the critical step of the process is recruitment of molecular factors, which drive MT nucleation (γ-tubulin ring complex, or γ-TuRC), to the Golgi membrane via specific scaffolding interactions. Based on recent findings, we propose to introduce an additional level of regulation, whereby MT-binding proteins and/or local tubulin dimer concentration at the Golgi helps to overcome kinetic barriers at the initial nucleation step. According to our model, emerging MTs are subsequently stabilized by Golgi-associated MT-stabilizing proteins. We discuss molecular factors potentially involved in all three steps of MT formation. To preserve proper cell functioning, a balance must be maintained between MT subsets at the centrosome and the Golgi. Recent work has shown that certain centrosomal factors are important in maintaining this balance, suggesting a close connection between regulation of centrosomal and Golgi-derived MTs. Finally, we will discuss potential functions of Golgi-derived MTs based on their nucleation site location within a Golgi stack. PMID:26617483

  2. Cavitation Bubble Nucleation by Energetic Particles

    SciTech Connect

    West, C.D.

    1998-12-01

    In the early sixties, experimental measurements using a bubble chamber confirmed quantitatively the thermal spike theory of bubble nucleation by energetic particles: the energy of the slow, heavy alpha decay recoils used in those experiments matched the calculated bubble nucleation energy to within a few percent. It was a triumph, but was soon to be followed by a puzzle. Within a couple of years, experiments on similar liquids, but well below their normal boiling points, placed under tensile stress showed that the calculated bubble nucleation energy was an order of magnitude less than the recoil energy. Why should the theory work so well in the one case and so badly in the other? How did the liquid, or the recoil particle, "know" the difference between the two experiments? Another mathematical model of the same physical process, introduced in 1967, showed qualitatively why different analyses would be needed for liquids with high and low vapor pressures under positive or negative pressures. But, the quantitative agreement between the calculated nucleation energy and the recoil energy was still poor--the former being smaller by a factor of two to three. In this report, the 1967 analysis is extended and refined: the qualitative understanding of the difference between positive and negative pressure nucleation, "boiling" and "cavitation" respectively, is retained, and agreement between the negative pressure calculated to be needed for nucleation and the energy calculated to be available is much improved. A plot of the calculated negative pressure needed to induce bubble formation against the measured value now has a slope of 1.0, although there is still considerable scatter in the individual points.

  3. High performance computations using dynamical nucleation theory

    NASA Astrophysics Data System (ADS)

    Windus, T. L.; Kathmann, S. M.; Crosby, L. D.

    2008-07-01

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, we describe the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A 'master-slave' solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are described.

  4. Anomaly nucleation constrains SU(2) gauge theories.

    PubMed

    Halverson, James

    2013-12-27

    We argue for the existence of additional constraints on SU(2) gauge theories in four dimensions when realized in ultraviolet completions admitting an analog of D-brane nucleation. In type II string compactifications these constraints are necessary and sufficient for the absence of cubic non-Abelian anomalies in certain nucleated SU(N>2) theories. It is argued that they appear quite broadly in the string landscape. Implications for particle physics are discussed; most realizations of the standard model in this context are inconsistent, unless extra electroweak fermions are added. PMID:24483790

  5. A multigrid method for N-component nucleation.

    PubMed

    van Putten, Dennis S; Glazenborg, Simon P; Hagmeijer, Rob; Venner, Cornelis H

    2011-07-01

    A multigrid algorithm has been developed enabling more efficient solution of the cluster size distribution for N-component nucleation from the Becker-Döring equations. The theoretical derivation is valid for an arbitrary number of condensing components, making the simulation of many-component nucleating systems feasible. A steady state ternary nucleation problem is defined to demonstrate its efficiency. The results are used as a validation for existing nucleation theories. The non-steady state ternary problem provides useful insight into the initial stages of the nucleation process. We observe that for the ideal mixture the main nucleation flux bypasses the saddle point. PMID:21744895

  6. A Nucleator Arms Race: Cellular Control of Actin Assembly

    PubMed Central

    Campellone, Kenneth G.; Welch, Matthew D.

    2010-01-01

    For more than a decade the Arp2/3 complex, a handful of nucleation-promoting factors, and formins were the only molecules known to directly nucleate actin filament formation de novo. However, the past several years have brought a surge in the discovery of mammalian proteins with roles in actin nucleation and dynamics. Newly recognized nucleation-promoting factors, such as WASH, WHAMM, and JMY stimulate Arp2/3 complex activity at distinct cellular locations. Formin nucleators with additional biochemical and cellular activities have also been uncovered. Finally, the Spire, Cordon-bleu, and Leiomodin nucleators have revealed new ways of overcoming the kinetic barriers to actin polymerization. PMID:20237478

  7. Molecular dynamics simulations of He bubble nucleation at grain boundaries

    SciTech Connect

    Yongfeng Zhang; Paul C Millett; Michael Tonks; Liangzhe Zhang; Bulent Biner

    2012-08-01

    The nucleation behavior of He bubbles in nano-grained body-centered-cubic (BCC) Mo is simulated using molecular dynamics (MD) simulations with a bicrystal model, focusing on the effect of grain boundary (GB) structure. Three types of GBs, the (100) twist S29, the ?110? symmetrical tilt (tilt angle of 10.1?), and the (112) twin boundaries, are studied as representatives of random GB, low angle GB with misfit dislocations, and special sigma boundaries. With the same amount of He, more He clusters form in nano-grained Mo with smaller average size compared to that in bulk. The effects of the GB structure originate from the excess volume in GBs. Trapping by excess volume results in reduction in mobility of He atoms, which enhances the nucleation with higher density of bubbles, and impedes the growth of He bubbles by absorption of mobile He atoms. Furthermore, the distribution of excess volume in GBs determines the distribution of He clusters. The effect of GBs becomes less pronounced with increasing vacancy concentration in the matrix.

  8. Forest canopy interactions with nucleation mode particles

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Hornsby, K. E.; Novick, K. A.

    2014-11-01

    Ultrafine particle size distributions through a deciduous forest canopy indicate that nucleation mode particle concentrations decline with depth into the canopy, such that number concentrations at the bottom of the canopy are an average of 16% lower than those at the top. However, growth rates of nucleation mode particles (diameters 6-30 nm) are invariant with height within the canopy, which implies that the semi-volatile gases contributing to their growth are comparatively well-mixed through the canopy. Growth rates of nucleation mode particles during a meteorological drought year (2012) were substantially lower than during a meteorologically normal year with high soil water potential (2013). This may reflect suppression of actual biogenic volatile organic compound (BVOC) emissions by drought and thus a reduction in the production of condensable products during the drought-affected vegetation season. This hypothesis is supported by evidence that growth rates during the normal year exhibit a positive correlation with emissions of BVOC modeled on observed forest composition, leaf area index, temperature and photosynthetically active radiation (PAR), but particle growth rates during the drought-affected vegetation season are not correlated with modeled BVOC emissions. These data thus provide indirect evidence that drought stress in forests may reduce BVOC emissions and limit growth of nucleation mode particles to climate-relevant sizes.

  9. Heterogeneous nucleation of aspartame from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kubota, Noriaki; Kinno, Hiroaki; Shimizu, Kenji

    1990-03-01

    Waiting times, the time from the instant of quenching needed for a first nucleus to appear, were measured at constant supercoolings for primary nucleation of aspartame (α-L-aspartyl-L-phenylalanine methylester) from aqueous solutions, which were sealed into glass ampoules (solution volume = 3.16 cm 3). Since the waiting time became shorter by filtering the solution prior to quenching, the nucleation was concluded to be heterogeneously induced. The measured waiting time consisted of two parts: time needed for the nucleus to grow to a detactable size (growth time) and stochastic time needed for nucleation (true waiting time). The distribution of the true waiting time, is well explained by a stochastic model, in which nucleation is regarded to occur heterogeneously and in a stochastic manner by two kinds of active sites. The active sites are estimated to be located on foreign particles in which such elements as Si, Al and Mg were contained. The amount of each element is very small in the order of magnitude of ppb (mass basis) of the whole solution. The growth time was correlated with the degree of supercooling.

  10. Microgravity nucleation and particle coagulation experiments support

    NASA Technical Reports Server (NTRS)

    Lilleleht, L. U.; Lass, T. J.

    1987-01-01

    A hollow sphere model is developed to predict the range of supersaturation ratio values for refractory metal vapors in a proposed experimental nucleation apparatus. Since the experiments are to be carried out in a microgravity environment, the model neglects the effects of convection and assumes that the only transfer of vapors through an inert gas atmosphere is by conduction and molecular diffusion. A consistent set of physical properties data is assembled for the various candidate metals and inert ambient gases expected to be used in the nucleation experiments. Transient partial pressure profiles are computed for the diffusing refractory species for two possible temperature distributions. The supersaturation ratio values from both candidate temperature profiles are compared with previously obtained experimetnal data on a silver-hydrogen system. The model is used to simulate the diffusion of magnesium vapor through argon and other inert gas atmospheres over ranges of initial and boundary conditions. These results identify different combinations of design and operating parameters which are liekly to produce supersaturation ratio values high enough to induce homogeneous nucleation in the apparatus being designed for the microgravity nucleation experiments.

  11. Microgravity nucleation and particle coagulation experiments support

    NASA Technical Reports Server (NTRS)

    Lilleleht, L. U.; Ferguson, F. T.; Stephens, J. R.

    1992-01-01

    Modifications to the nucleation apparatus suggested by our first microgravity flight campaign are complete. These included a complete 'repackaging' of the equipment into three racks along with an improved vapor spout shutter mechanism and additional thermocouples for gas temperature measurements. The 'repackaged' apparatus was used in two KC-135 campaigns: one during the week of June 3, 1991 consisting of two flights with Mg and two with Zn, and another series consisting of three flights with Zn during the week of September 23, 1991. Our effort then was focused on the analysis of these data, including further development of the mathematical models to generate the values of temperature and supersaturation at the observed points of nucleation. The efforts to apply Hale's Scaled Nucleation Theory to our experimental data have met with only limited success, most likely due to still inadequate temperature field determination. Work on the development of a preliminary particle collector system designed to capture particles from the region of nucleation and condensation, as well as from other parts of the chamber, are discussed.

  12. Center for thin film studies

    NASA Astrophysics Data System (ADS)

    Shannon, Robert P.; Gibson, Ursula J.

    1987-11-01

    This report covers the first year of operation of the URI Thin Film Center (TFC), and describes a diverse array of studies on thin-film materials, substrates, and their processing and analysis. Individual efforts are highlighted in sections on nucleation studies, ion-assisted deposition, Rutherford backscattering spectrometry, Brillouin scattering, a continuum theory of the evolution of structure in thin films, a study of polishing parameters relevant to the preparation of substrates, and the setup of a characterization facility for the Center.

  13. Atmospheric Measurements of Neutral Nucleating Clusters (Invited)

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Eisele, F. L.; Smith, J. N.; Chen, M.; Jiang, J.; Kuang, C.; McMurry, P. H.

    2010-12-01

    Nanoparticles produced by nucleation can subsequently grow to cloud condensation nuclei (CCN) within one or two days and hence affect cloud formation, precipitation, and atmospheric radiation budgets. As an intermediate stage between molecules and nanoparticles, neutral molecular clusters are believed to play an important role in processes that lead to boundary layer nucleation. Therefore, knowledge of chemical composition, concentrations, thermodynamic properties, and evolution of neutral molecular clusters is essential to better elucidate the nucleation mechanism and to reduce the uncertainty in nucleation rates used in global climate models. Here we present laboratory and field measurements from a recently developed chemical ionization mass spectrometer (the Cluster-CIMS) designed to measure atmospheric neutral clusters (Zhao et al., 2010). The sensitivity of the Cluster-CIMS was significantly improved by using a unique conical octopole device in the first vacuum stage for transmitting and focusing ions, which was further confirmed by ion trajectory simulations using SIMION. The ion cluster formation in the atmospheric-pressure inlet was controlled by two processes: neutral ionization and ion-induced clustering (IIC), which can be differentiated from the time independency of the intensity ratio between the cluster and monomer ions. Two methods were employed to separate neutral clusters from the ion-induced clustering. The concentrations and distribution of the neutral nucleating clusters containing up to 4 H2SO4 are estimated from the above methods at three measurement sites in the US (NCAR foothill laboratory, Manitou Forest Observatory, and Atlanta). Typically, the molecular cluster concentrations are well correlated with the concentrations of nanoparticles measured simultaneously during the nucleation event periods. The Cluster-CIMS was employed to measure clusters containing both sulfuric acid and amines in summer 2010 at NCAR foothill laboratory

  14. Nucleation of 360 deg DWs in a wire using a local circular field

    NASA Astrophysics Data System (ADS)

    Kaya, Fikriye Idil; Sarella, Anandakumar; Aidala, Katherine E.

    2015-03-01

    Understanding domain wall (DW) motion in ferromagnetic nanostructures is important to realize proposed magnetic data storage and logic devices. Interest in 360o DWs has increased recently with the recognition that their minimal stray field creates only short range interactions, leading to a potentially higher packing density compared to 180o DWs. Our simulations demonstrate the feasibility of nucleating a 360o DW at a specific location along a wire by applying a local circular field that is centered in close proximity to the wire. We simulate the field strength as if from a current carrying wire, which can be experimentally realized by passing current through the tip of an AFM [ 1 , 2 ]. The successful nucleation of a 360o DW depends on the dimensions of the Py wire, on the strength of the circular field, and on the distance of the center of the field from the wire. Once a 360o DW is nucleated, its position shifts with time. We use a notch to stabilize the location of the 360o DW. We investigate the optimal size and spacing of the notches to allow the greatest packing density with control over the nucleation and annihilation of individual domain walls. Supported by NSF DMR-1207924.

  15. Forest canopy interactions with nucleation mode particles

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Hornsby, K. E.; Novick, K. A.

    2014-07-01

    Forests play a key role in removal of particles from the atmosphere but may also significantly contribute to formation and growth of ultrafine particles. Ultrafine particle size distributions through a deciduous forest canopy indicate substantial capture of nucleation mode particles by the foliage. Concentrations decline with depth into the canopy, such that nucleation mode number concentrations at the bottom of the canopy are an average of 16% lower than those at the top. However, growth rates of nucleation mode particles (diameters 6-30 nm) are invariant with height within the canopy, which implies that the semi-volatile gases contributing to their growth are comparatively well-mixed through the canopy. Growth rates of nucleation mode particles during a meteorological drought year (2012) were substantially lower than during a meteorologically normal year with high soil water potential (2013). This may reflect suppression of actual BVOC emissions by drought and thus reduced production of condensable products (and thus particle growth) during the drought-affected vegetation season. This hypothesis is supported by evidence that growth rates during the normal year exhibit a positive correlation with emissions of biogenic volatile organic compounds (BVOC) modeled based on observed forest composition, leaf area index, temperature and PAR, but particle growth rates during the drought-affected vegetation season are not correlated with modeled BVOC emissions. These data thus provide direct evidence for the importance of canopy capture in atmospheric particle budgets and indirect evidence that drought-stress in forests may reduce BVOC emissions and limit growth of nucleation mode particles to climate-relevant sizes.

  16. Nucleation Pathways For Freezing Of Two Grades Of Zirconium

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Rulison, Aaron; Bayuzick, Robert; Hofmeister, William; Morton, Craig

    1996-01-01

    Report discusses classical nucleation theory of freezing and describes experimental study of nucleation mechanisms that predominate during freezing of spherical specimens of initially molten zirconium levitated electrostatically in vacuum.

  17. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  18. SWAN: NGC 253’s Nucleated Star Bursting Environment

    NASA Astrophysics Data System (ADS)

    Gorski, Mark; Ott, Juergen; Meier, David; Momjian, Emmanuel; Walter, Fabian; Rand, Richard

    2015-08-01

    We present the first results from SWAN: Survey of Water and Ammonia in Nearby galaxies. Nearby galaxies are conveniently located to probe molecular gas properties on scales of 10 to 200 pc, which are appropriate for Giant Molecular Clouds (GMCs). The resolution of the VLA in D and C configurations maps to a few 10’s of parsecs in these galaxies. To advance studies of galaxy evolution it is paramount to understand how processes in the molecular ISM and star formation are linked on these scales. We have observed the metastable transitions of ammonia and the 22GHz water maser line in four nearby galaxies: NGC 253, IC 342, NGC 2146, and NGC 6946. These galaxies were chosen to span an order of magnitude in star formation rate, and a range of galactic ecosystems. We use the ammonia transitions to derive kinetic temperatures, which exposes the heating and cooling balance of the ISM. We then aim to relate these conditions to energetic feedback from star formation indicated by water masers. Currently our analysis is focused on NGC 253. NGC 253 is a barred spiral galaxy with a nucleated starburst of ≈3M⊙ per year. We have observed ammonia transitions (1,1) to (5,5) and the 22GHz water maser line with a resolution of ≈63pc. We have identified nine regions across the nucleated starburst for study. The ammonia (3,3) line appears to be masing in the centermost 200pc. In combination with Large Velocity Gradient models (LVG) we find that the properties of the molecular gas is warm, ranging from 100K to 160K, with molecular hydrogen densities from 2.2e3 cm-3 to 4.8e3 cm-3. We have identified two regions of water maser emission. The first region is a north south extension, about the center of the galaxy, with a major axis of ≈7”(150pc) and a minor axis of ≈3”(90pc), and the second is a nearby region ≈6”(100pc) to the southeast of the galaxy center. By means of these measurements, we gain an understanding of the molecular ISM associated with the nucleated

  19. Nucleation of earthquakes and its implication to precursors

    NASA Astrophysics Data System (ADS)

    Li, Shi-Yu; Teng, Chun-Kai; Lu, Zhen-Ye; Liu, Xiao-Hong; Liu, Qi-Liang; He, Xue-Song

    2000-03-01

    The recent argument about nucleation phase of earthquakes reminds us to completely study the concept of earthquake nucleation. The original meaning of nucleation includes concentration, nucleation and initiation of the eruptive processes. Thus, it is needed to discuss how to exactly translate the word “nucleation” into Chinese in different fields. The basic concept of earthquake nucleation refers to microcrack concentration in rock. It causes local weakening and instability of the rock. The narrow sense of nucleation theory of friction constitutive is significant in friction of fault surfaces, but should not abuse everywhere unconditionally. In terms of thermodynamics, nucleation actually means the variety processes of multiple state parameters of rock. The nucleation is a project that covers multiple courses. In this paper, the studies of damage theory, fracture, earthquake rupture dynamics and constitutive of friction and their implication to earthquake nucleation are remarked. The recently developments are introduced, including the influence of tectonic on the earthquake nucleation process, the method of measuring medium anisotropy, especially shear wave splitting led by concentration and orientation of microcracks, and the experimental study of remote sensing of infrared and microwave radiation related to the nucleation, etc. This paper also discusses the characteristic of large earthquake nucleation, and the implication of above studies to precursors of strong earthquakes.

  20. Nucleation in a Sheared Liquid Binary Mixture.

    NASA Astrophysics Data System (ADS)

    Min, Kyung-Yang

    When a binary liquid mixture of lutidine plus water (LW) is quenched to a temperature T and is exposed to a continuous shear rate S, the result is a steady-state droplet distribution. This steady state can be probed by measuring the unscattered intensity I_{f}, or the scattered intensity I_{s}, as a function of delta T and S. In the experiments described here, S is fixed and delta T is varied in a step-wise fashion. The absence of hysteresis was probed in two separate experiments: First, I_{f} was measured as a function of S for a given delta T. Next, I_{f} was measured as a function of delta T for a given S. In either case, the hysteresis associated with the shear-free nucleation is absent. In addition, a flow-history dependent hysteresis was studied. In the 2-dimensional parameter space consisting of S and delta T, the onset of nucleation uniquely determines a cloud point line. A plot of the cloud point line exhibits two segments of different slopes with a cross-over near the temperature corresponding to the Becker-Doring limit. The classical picture of a free energy barrier was reformulated to explain this cross-over behavior. Next, photon correlation spectroscopy was used to study the dependence of the transient nucleation behavior on the initial states. A unique feature of this study is that this initial state can be conveniently adjusted by varying the shear rate S to which the mixture is initially exposed. The shear is then turned off, and the number density N(t), as well as the mean radius of the growing droplets, is monitored as a function of time. It was possible to measure the droplet density at a very early stage of phase separation where the nucleation rate J was close to zero. The measurement reveals that N(t) depends critically on the initial state of the metastable system. When the shear is large enough to rupture the droplets as small as the critical size, N(t) increases very slowly. Measurements of the nucleation rates vs. the square of the

  1. Ion-induced nucleation in solution: promotion of solute nucleation in charged levitated droplets.

    PubMed

    Draper, Neil D; Bakhoum, Samuel F; Haddrell, Allen E; Agnes, George R

    2007-09-19

    We have investigated the nucleation and growth of sodium chloride in both single quiescent charged droplets and charged droplet populations that were levitated in an electrodynamic levitation trap (EDLT). In both cases, the magnitude of a droplet's net excess charge (ions(DNEC)) influenced NaCl nucleation and growth, albeit in different capacities. We have termed the phenomenon ion-induced nucleation in solution. For single quiescent levitated droplets, an increase in ions(DNEC) resulted in a significant promotion of NaCl nucleation, as determined by the number of crystals observed. For levitated droplet populations, a change in NaCl crystal habit, from regular cubic shapes to dome-shaped dendrites, was observed once a surface charge density threshold of -9 x 10(-4) e.nm(-2) was surpassed. Although promotion of NaCl nucleation was observed for droplet population experiments, this can be attributed in part to the increased rate of solvent evaporation observed for levitated droplet populations having a high net charge. Promotion of nucleation was also observed for two organic acids, 2,4,6-trihydroxyacetophenone monohydrate (THAP) and alpha-cyano-4-hydroxycinnamic acid (CHCA). These results are of direct relevance to processes that occur in both soft-ionization techniques for mass spectrometry and to a variety of industrial processes. To this end, we have demonstrated the use of ion-induced nucleation in solution to form ammonium nitrate particles from levitated droplets to be used in in vitro toxicology studies of ambient particle types. PMID:17718487

  2. Grain nucleation and growth during phase transformations.

    PubMed

    Offerman, S E; van Dijk, N H; Sietsma, J; Grigull, S; Lauridsen, E M; Margulies, L; Poulsen, H F; Rekveldt, M Th; van der Zwaag, S

    2002-11-01

    The mechanical properties of polycrystalline materials are largely determined by the kinetics of the phase transformations during the production process. Progress in x-ray diffraction instrumentation at synchrotron sources has created an opportunity to study the transformation kinetics at the level of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties. PMID:12411699

  3. High performance computations using dynamical nucleation theory

    SciTech Connect

    Windus, Theresa L.; Kathmann, Shawn M.; Crosby, Lonnie D.

    2008-07-14

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities are described. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A "master-slave" solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are also described. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  4. A stochastic simulation of nonisothermal nucleation.

    PubMed

    Barrett, Jonathan C

    2008-04-28

    The results of stochastic simulations of growth and evaporation of small clusters in vapor are reported. Energy dependent growth rates are determined from the monomer-cluster collision rate and decay rates are found from a detailed balance, with the equilibrium size and energy distribution of clusters calculated using the capillarity approximation and the equilibrium vapor pressure. These rates are used in simulations of two-dimensional random walks in size and energy space to determine the fraction of clusters in supersaturated vapor of size (i(min)+1) that reach a size i(max). By assuming that clusters of size i(min) are in equilibrium, this fraction can be related to the nonisothermal nucleation rate. The simulated rates show good agreement with the previously published analytical results. In the absence of an inert carrier gas, the nonisothermal nucleation rates are typically between 1% and 5% of the isothermal rates. PMID:18447471

  5. Buckyball Nucleation of HiPco Tubes

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.

    2012-01-01

    The purpose of this innovation is to enhance nucleation of single-wall nanotubes (SWNTs) in the HiPco process, selectively producing 10,10 tubes, something which until now has not been thought possible. This is accomplished by injecting C60, or a derivative of C60, solubilized in supercritical CO2 together with a transition metal carboneal cocatalyst into the HiPco reactor. This is a variant on the supercritical disclosure. C60 has never been used to nucleate carbon nanotubes in the gas phase. C60 itself may not have adequate solubility in supercritical CO2. However, fluorinated C60, e.g., C60F36, is easy to make cheaply and should have much enhanced solubility.

  6. Onset of runaway nucleation in aerosol reactors

    NASA Technical Reports Server (NTRS)

    Wu, Jin Jwang; Flagan, Richard C.

    1987-01-01

    The onset of homogeneous nucleation of new particles from the products of gas phase chemical reactions was explored using an aerosol reactor in which seed particles of silicon were grown by silane pyrolysis. The transition from seed growth by cluster deposition to catastrophic nucleation was extremely abrupt, with as little as a 17 percent change in the reactant concentration leading to an increase in the concentration of measurable particles of four orders of magnitude. From the structure of the particles grown near this transition, it is apparent that much of the growth occurs by the accumulation of clusters on the growing seed particles. The time scale for cluster diffusion indicates, however, that the clusters responsible for growth must be much smaller than the apparent fine structure of the product particles.

  7. How does surface wettability influence nucleate boiling?

    NASA Astrophysics Data System (ADS)

    Phan, Hai Trieu; Caney, Nadia; Marty, Philippe; Colasson, Stéphane; Gavillet, Jérôme

    2009-05-01

    Although the boiling process has been a major subject of research for several decades, its physics still remain unclear and require further investigation. This study aims at highlighting the effects of surface wettability on pool boiling heat transfer. Nanocoating techniques were used to vary the water contact angle from 20° to 110° by modifying nanoscale surface topography and chemistry. The experimental results obtained disagree with the predictions of the classical models. A new approach of nucleation mechanism is established to clarify the nexus between the surface wettability and the nucleate boiling heat transfer. In this approach, we introduce the concept of macro- and micro-contact angles to explain the observed phenomenon. To cite this article: H.T. Phan et al., C. R. Mecanique 337 (2009).

  8. Displacement barrier heights from experimental nucleation rate data

    NASA Astrophysics Data System (ADS)

    Malila, Jussi; Hyvärinen, Antti-Pekka; Viisanen, Yrjö; Laaksonen, Ari

    2008-11-01

    Nucleation phenomena have a great importance in many areas of science. However, the main theoretical tool to analyse these phenomena, the classical nucleation theory (CNT), has known weaknesses. A decade ago a nucleation theorem based correction to CNT was developed [McGraw, R., Laaksonen, A., 1996. Scaling properties of the critical nucleus in classical and molecular-based theories of vapor-liquid nucleation. Phys. Rev. Lett. 76, 2754-2757]. We have analysed experimental nucleation rate data of two homologous series of molecular fluids in terms of this scaling relation. Our first results suggest possible universal functional form for correction to the temperature dependence of CNT.

  9. Nucleation and Heat Transfer in Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Roth, Eric Warner

    1993-01-01

    With the advent of the new high Tc superconductors as well as the increasing use of cryo-cooled conventional electronics, liquid nitrogen will be one of the preferred cryogens used to cool these materials. Consequently, a more thorough understanding of the heat transfer characteristics of liquid nitrogen is required. In these investigations the transient heating characteristics of liquid nitrogen to states of nucleate and film boiling under different liquid flow conditions are examined. Using a metal hot wire/plate technique, it is verified that there is a premature transition to film boiling in the transient case at power levels as much as 30 percent lower than under steady state nucleate boiling conditions. It is also shown that the premature transition can be reduced or eliminated depending on the flow velocity. The second part of this research analyses the nucleation (boiling) process from a dynamical systems point of view. By observing how the boiling system variables evolve and fluctuate over time, it is hoped that physical insight and predictive information can be gained. One goal is to discover some indicator or signature in the data that anticipates the transition from nucleate boiling to film boiling. Some of the important variables that make up the boiling system are the temperature of the heater and the heat flux through the heater surface into the liquid nitrogen. The result, gained by plotting the system's trajectory in the heat flux-temperature plane, is that on average the system follows a counterclockwise trajectory. A physical model is constructed that explains this behavior. Also, as the applied heater power approaches levels at which the transition to film is known to occur, the area per unit time swept out in the heat flux-temperature plane is seen to reach a maximum. This could be of practical interest as the threshold to film boiling can be anticipated and possibly prevented.

  10. Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth

    NASA Astrophysics Data System (ADS)

    He, Maoshuai; Amara, Hakim; Jiang, Hua; Hassinen, Jukka; Bichara, Christophe; Ras, Robin H. A.; Lehtonen, Juha; Kauppinen, Esko I.; Loiseau, Annick

    2015-11-01

    Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible.Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible. Electronic supplementary information (ESI

  11. Systematic coarse-graining in nucleation theory.

    PubMed

    Schweizer, M; Sagis, L M C

    2015-08-21

    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 - 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys. 139, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space the literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei are additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al. and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and LaViolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters. PMID:26298141

  12. Systematic coarse-graining in nucleation theory

    NASA Astrophysics Data System (ADS)

    Schweizer, M.; Sagis, L. M. C.

    2015-08-01

    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 - 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys. 139, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space the literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei are additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al. and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and LaViolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters.

  13. Kinetic theory of diffusion-limited nucleation.

    PubMed

    Philippe, T; Bonvalet, M; Blavette, D

    2016-05-28

    We examine binary nucleation in the size and composition space {R,c} using the formalism of the multivariable theory [N. V. Alekseechkin, J. Chem. Phys. 124, 124512 (2006)]. We show that the variable c drops out of consideration for very large curvature of the new phase Gibbs energy with composition. Consequently nuclei around the critical size have the critical composition, which is derived from the condition of criticality for the canonical variables and is found not to depend on surface tension. In this case, nucleation kinetics can be investigated in the size space only. Using macroscopic kinetics, we determine the general expression for the condensation rate when growth is limited by bulk diffusion, which accounts for both diffusion and capillarity and exhibits a different dependence with the critical size, as compared with the interface-limited regime. This new expression of the condensation rate for bulk diffusion-limited nucleation is the counterpart of the classical interface-limited result. We then extend our analysis to multicomponent solutions. PMID:27250310

  14. Crystallization of Nucleator Nanofibrils in Polypropylene Melt

    NASA Astrophysics Data System (ADS)

    Lipp, J.; Cohen, Y.; Khalfin, R. L.; Shuster, M.; Terry, A. E.

    2007-03-01

    Self-associating molecules act as nucleating agents in polypropylene (PP) in order to increase the crystallization rate and decrease the crystallite size, by forming a fine network of nanofibrils within the polymer melt. The thermodynamic and kinetic basis for formation of this structure is not clear. Current models usually invoke a spinodal decomposition mechanism, as temperature is lowered into an immiscibility gap. This presentation deals with 1,3:2,4-Di(3,4-dimethylbenzylidene)sorbitol [dMdBS] in PP. The kinetics of structure formation was evaluated using small angle x-ray scattering, including synchrotron measurements. The results indicate a crystallization process by means of a nucleation and growth mechanism, which is controlled by the rate of homogeneous nucleation. The thermodynamic temperature of this process, determined for two different dMdBS concentrations from the temperature dependence of the crystallization half-time, agrees with that obtained by group-contribution calculation of the solubility parameters. dMdBS nanofibril formation has a remarkable effect on PP crystallization in melt-spun fibers. Just 0.4% additive at a moderate spin-draw ratio yields a crystalline morphology comprised of parallel chain-folded lamellae, with the lamellar normal highly aligned along the fiber axis.

  15. Nucleation and particle coagulation experiments in microgravity

    NASA Technical Reports Server (NTRS)

    Nuth, J.

    1987-01-01

    Measurements of the conditions under which carbon, aluminum oxide, and silicon carbide smokes condense and of the morphology and crystal structure of the resulting grains are essential if the nature of the materials ejected into the interstellar medium and the nature of the grains which eventually became part of the proto solar nebular are to be understood. Little information is currently available on the vapor-solid phase transitions of refractory metals and solids. What little experimental data do exist are, however, not in agreement with currently accepted models of the nucleation process for more volatile materials. The major obstacle to performing such experiments in earth-based laboratories is the susceptibility of these systems to convection. Evaporation of refractory materials into a low-pressure environment with a carefully controlled temperature gradient will produce refractory smokes when the critical supersaturation of the system is exceeded. Measurement of the point at which nucleation occurs, via light scattering or extinction, can not only yield nucleation data but also, information on the chemical composition and crystal structure of the condensate. Experimental requirements are presented.

  16. Enhancements of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, W. J.

    2000-01-01

    This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.

  17. The Nucleation and Growth of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    2004-01-01

    Obtaining crystals of suitable size and high quality continues to be a major bottleneck in macromolecular crystallography. Currently, structural genomics efforts are achieving on average about a 10% success rate in going from purified protein to a deposited crystal structure. Growth of crystals in microgravity was proposed as a means of overcoming size and quality problems, which subsequently led to a major NASA effort in microgravity crystal growth, with the agency also funding research into understanding the process. Studies of the macromolecule crystal nucleation and growth process were carried out in a number of labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. Based upon experimental evidence, as well as simple starting assumptions, we have proposed that crystal nucleation occurs by a series of discrete self assembly steps, which 'set' the underlying crystal symmetry. This talk will review the model developed, and its origins, in our laboratory for how crystals nucleate and grow, and will then present, along with preliminary data, how we propose to use this model to improve the success rate for obtaining crystals from a given protein.

  18. Images and properties of individual nucleated particles

    NASA Astrophysics Data System (ADS)

    Németh, Zoltán; Pósfai, Mihály; Nyirő-Kósa, Ilona; Aalto, Pasi; Kulmala, Markku; Salma, Imre

    2015-12-01

    Atmospheric aerosol particles were collected in Budapest, Hungary in April-June onto lacey Formvar substrates by using an electrostatic precipitator during the beginning phase of the particle growth process in ten nucleation and growth events. Median contribution of the nucleated particles - expressed as the concentration of particles with a diameter between 6 and 25 nm to the total particle number concentration - was 55%, and the median electrical mobility diameter of the particles was approximately 20 nm. The sample was investigated using high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy. Major types of individual particles such as soot, sulphate/organic and tar ball particles were identified in the sample. In addition, particles with an optical diameter range of 10-30 nm were also observed. They clearly differed from the other particle types, showed homogeneous contrast in the bright-field TEM images, and evaporated within tens of seconds when exposed to the electron beam. They were interpreted as representatives of freshly nucleated particles.

  19. Kinetic theory of diffusion-limited nucleation

    NASA Astrophysics Data System (ADS)

    Philippe, T.; Bonvalet, M.; Blavette, D.

    2016-05-01

    We examine binary nucleation in the size and composition space {R,c} using the formalism of the multivariable theory [N. V. Alekseechkin, J. Chem. Phys. 124, 124512 (2006)]. We show that the variable c drops out of consideration for very large curvature of the new phase Gibbs energy with composition. Consequently nuclei around the critical size have the critical composition, which is derived from the condition of criticality for the canonical variables and is found not to depend on surface tension. In this case, nucleation kinetics can be investigated in the size space only. Using macroscopic kinetics, we determine the general expression for the condensation rate when growth is limited by bulk diffusion, which accounts for both diffusion and capillarity and exhibits a different dependence with the critical size, as compared with the interface-limited regime. This new expression of the condensation rate for bulk diffusion-limited nucleation is the counterpart of the classical interface-limited result. We then extend our analysis to multicomponent solutions.

  20. Images and properties of individual nucleated particles

    NASA Astrophysics Data System (ADS)

    Németh, Zoltán; Pósfai, Mihály; Nyirő-Kósa, Ilona; Aalto, Pasi; Kulmala, Markku; Salma, Imre

    2015-12-01

    Atmospheric aerosol particles were collected in Budapest, Hungary in April-June onto lacey Formvar substrates by using an electrostatic precipitator during the beginning phase of the particle growth process in ten nucleation and growth events. Median contribution of the nucleated particles - expressed as the concentration of particles with a diameter between 6 and 25 nm to the total particle number concentration - was 55%, and the median electrical mobility diameter of the particles was approximately 20 nm. The sample was investigated using high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy. Major types of individual particles such as soot, sulphate/organic and tar ball particles were identified in the sample. In addition, particles with an optical diameter range of 10-30 nm were also observed. They clearly differed from the other particle types, showed homogeneous contrast in the bright-field TEM images, and evaporated within tens of seconds when exposed to the electron beam. They were interpreted as representatives of freshly nucleated particles.

  1. Nonclassical nucleation and growth of inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Jisoo; Yang, Jiwoong; Kwon, Soon Gu; Hyeon, Taeghwan

    2016-08-01

    The synthesis of nanoparticles with particular compositions and structures can lead to nanoparticles with notable physicochemical properties, thus promoting their use in various applications. In this area of nanoscience, the focus is shifting from size- and shape-uniform single-component nanoparticles to multicomponent nanoparticles with enhanced performance and/or multifunctionality. With the increasing complexity of synthetic reactions, an understanding of the formation mechanisms of the nanoparticles is needed to enable a systematic synthetic approach. This Review highlights mechanistic studies underlying the synthesis of nanoparticles, with an emphasis on nucleation and growth behaviours that are not expected from classical theories. We discuss the structural properties of nanoclusters that are of a size that bridges molecules and solids. We then describe the role of nanoclusters in the prenucleation process as well as in nonclassical nucleation models. The growth of nanoparticles via the assembly and merging of primary particles is also overviewed. Finally, we present the heterogeneous nucleation mechanisms behind the synthesis of multicomponent nanoparticles.

  2. Systematic coarse-graining in nucleation theory

    SciTech Connect

    Schweizer, M.; Sagis, L. M. C.

    2015-08-21

    In this work, we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte Carlo simulations leads to nucleation rate predictions that deviate 3 − 5 orders of magnitude from the recent brute-force molecular dynamics simulations [Diemand et al., J. Chem. Phys. 139, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space the literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei are additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al. and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and LaViolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters.

  3. Ice nucleation of bioaerosols - a resumee

    NASA Astrophysics Data System (ADS)

    Pummer, Bernhard G.; Atanasova, Lea; Bauer, Heidi; Bernardi, Johannes; Chazallon, Bertrand; Druzhinina, Irina S.; Grothe, Hinrich

    2013-04-01

    The role of biological particles for ice nucleation (IN) is still debated. Here, we present a summary of investigation and comparison of different ice nuclei. Apart from the bacterial ice nucleation proteins in Snomax, we further investigated a broad spectrum of pollen and fungal spores in the search for ice nucleation activity. Apart from Snomax, only few samples showed vital IN activity, like Fusarium avenaceum spores and Betula pendula pollen. Chemical characterization accentuated the differences between bacterial and pollen ice nuclei. Exposure to natural stresses, like UV and NOx, led to a significant decrease in IN activity. Furthermore, the releasable fraction of the pollen material, which includes the ice nuclei, was extracted with water and dried up. These residues were investigated with Raman spectroscopy and compared with the spectra of whole pollen grains. Measurements clearly demonstrated that the aqueous fraction contained mainly saccharides, lipids and proteins, but no sporopollenin, which is the bulk material of the outer pollen wall. Fungal spores of ecologically, economically or otherwise relevant species were also investigated. Most species showed no significant IN activity at all. A few species showed a slight increase in freezing temperature, but still significantly below the activity of the most active pollen or mineral dusts. Only Fusarium avenaceum showed strong IN activity. Cultivation of Fusarium and Trichoderma (close relatives of Fusarium) at different temperatures showed changes in total protein expression, but no impact on the IN activity.

  4. Nonequilibrium statistical mechanics of nanotube nucleation

    NASA Astrophysics Data System (ADS)

    Artyukhov, Vasilii I.; Yakobson, Boris I.

    A key problem that advanced carbon nanotube applications face is the difficulty of producing pure single-helicity samples. As the elementary processes of nanotube growth are difficult to observe in situ, theoretical understanding of the process is especially important. Direct molecular dynamics simulations offer limited insight due to computational intractability of space- and time-scales involved. We formulated a theory that explains a class of helicity-selective growth experiments, based on classical nucleation theory and crystal growth kinetics.1 However, a general theory of nanotube growth must also include fast irreversible growth beyond the classical near-equilibrium assumption. Here we construct a coarse-grained model allowing us to rigorously investigate the statistical mechanics of nanotube nucleation and trace how helicity emerges from the global nucleation trajectory ensemble. Importantly, our model can handle the whole range of conditions from perfect reversibility driven by energetics to perfect irreversibility driven by configurational entropy of nanotube caps and edges. Our theory generalizes earlier models in a large advance towards ultimate understanding of helicity-selective synthesis. 1 V.I. Artyukhov, E.S. Penev, and B.I. Yakobson, Nat. Commun. 5, 4892 (2014)

  5. Nucleation and structural growth of cluster crystals.

    PubMed

    Leitold, Christian; Dellago, Christoph

    2016-08-21

    We study the nucleation of crystalline cluster phases in the generalized exponential model with exponent n = 4. Due to the finite value of this pair potential for zero separation, at high densities the system forms cluster crystals with multiply occupied lattice sites. Here, we investigate the microscopic mechanisms that lead to the formation of cluster crystals from a supercooled liquid in the low-temperature region of the phase diagram. Using molecular dynamics and umbrella sampling, we calculate the free energy as a function of the size of the largest crystalline nucleus in the system, and compare our results with predictions from classical nucleation theory. Employing bond-order parameters based on a Voronoi tessellation to distinguish different crystal structures, we analyze the average composition of crystalline nuclei. We find that even for conditions where a multiply occupied fcc crystal is the thermodynamically stable phase, the nucleation into bcc cluster crystals is strongly preferred. Furthermore, we study the particle mobility in the supercooled liquid and in the cluster crystal. In the cluster crystal, the motion of individual particles is captured by a simple reaction-diffusion model introduced previously to model the kinetics of hydrogen bonds. PMID:27544116

  6. Microgravity nucleation and particle coagulation experiments support

    NASA Technical Reports Server (NTRS)

    Lilleleht, L. U.; Ferguson, F. T.; Stephens, J. R.

    1992-01-01

    This project is a part of a program at GSFC to study to formation and growth of cosmic dust grain analogs under terrestrial as well as microgravity conditions. Its primary scientific objective is to study the homogeneous nucleation of refractory metal vapors and a variety of their oxides among others, while the engineering, and perhaps a more immediate objective is to develop a system capable of producing mono-dispersed, homogeneous suspensions of well-characterized refractory particles for various particle interaction experiments aboard the Space Shuttle and Space Station Freedom. Both of these objectives are to be met by a judicious combination of laboratory experiments on the ground and aboard NASA's KC-135 experimental research aircraft. Major effort during the current reporting period was devoted to the evaluation of our very successful first series of microgravity test runs in Feb. 1990. Although the apparatus performed well, it was decided to 'repackage' the equipment for easier installation on the KC-135 and access to various components. It will now consist of three separate racks: one each for the nucleation chamber, the power subsystem, and the electronic packages. The racks were fabricated at the University of Virginia and the assembly of the repackaged units is proceeding well. Preliminary analysis of the video data from the first microgravity flight series was performed and the results appear to display some trends expected from Hale's Scaled Nucleation Theory of 1986. The data acquisition system is currently being refined.

  7. A nanoscale temperature-dependent heterogeneous nucleation theory

    SciTech Connect

    Cao, Y. Y.; Yang, G. W.

    2015-06-14

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale.

  8. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    PubMed Central

    Chen, Xiaorui; Ni, Fengyun; Tian, Xia; Kondrashkina, Elena; Wang, Qinghua; Ma, Jianpeng

    2013-01-01

    SUMMARY Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl), a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization. PMID:23727244

  9. Crystal nucleation in Pd-Si alloys. [in containerless environment

    NASA Technical Reports Server (NTRS)

    Drehman, A. J.; Turnbull, D.

    1982-01-01

    A study of the crystal phase nucleation in undercooled droplets of Pd-Si alloys with composition near the Pd(84.5)Si(15.5) eutectic composition is reported. Molten droplets are released at the top of a drop tube and solidify (to either a crystalline or glassy state) during descent. This provides a containerless (and nearly gravity free) environment so that nucleation due to container walls or vibrations is eliminated. It is found that crystallization, due to homogeneous nucleation, is bypassed in droplets of 1 mm diameter when cooled at 760 K/sec. From this an upper limit of the homogeneous nucleation rate is estimated. Results are compared with a previously published study of nucleation in 0.06 mm to 0.33 mm diameter droplets, which indicated that nucleation results from heterogeneous surface nucleation and that the number of these nuclei is dependent on the atmosphere in the drop tube.

  10. Inorganic Nanoparticle Nucleation on Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Kosteleski, Adrian John

    The introduction of inorganic nanoparticles into organic materials enhances both the mechanical and chemical properties of the material. Metallic nanoparticles, like silver and gold, have been introduced into polymers for use as antimicrobial coatings or dielectric materials, respectively. The challenge in creating these materials currently is the difficulty to homogeneously disperse the particles throughout the polymer matrix. The uneven dispersion of nanoparticles can lead to less than optimal quality and undesired properties. By creating a polymer nanocomposite material with well-controlled size inorganic materials that are evenly dispersed throughout the polymer matrix; we can improve the materials performance and properties. The objective for this research is to use polymer networks for the in situ mineralization of silver and other metallic materials to create intricate inorganic structures. The work performed here studied the ability to nucleate silver nanoparticles using poly (acrylic acid) (PAA) as the templating agent. Ionic silver was chemically reduced by sodium borohydride (NaBH4) in the presence of PAA. The effect of varying reactant concentrations of silver, NaBH 4, and PAA on particle size was studied. Reaction conditions in terms of varying temperature and pH levels of the reaction solution were monitored to observe the effect of silver nanoparticle size, shape, and concentration. By monitoring the UV spectra over time the reaction mechanism of the silver reduction process was determined to be an autocatalytic process: a period of slow, continuous nucleation followed by rapid, autocatalytic growth. The reaction kinetics for this autocatalytic process is also reported. PAA was crosslinked both chemically and physically to 3 biopolymers; ELP, an elastin like peptide, cotton fabrics, and calcium alginate hydrogels. Various compositions of PAA were physically crosslinked with calcium alginate gels to design an antimicrobial hydrogel for use in wound

  11. Molecular theory of vapor phase nucleation

    NASA Astrophysics Data System (ADS)

    Kusaka, Isamu

    1998-06-01

    An attempt has been made to establish the foundation of molecular level theory of vapor phase nucleation. We have focused on evaluating the reversible work of cluster formation and followed two major trends in this direction, namely, statistical mechanical density functional theory and molecular level simulation. We applied density functional theory to heterogeneous nucleation onto an ion. Our prime interest is to predict a sign preference of nucleation rate, which has been experimentally observed yet remained inexplicable in the classical framework. The theory indicates that asymmetry in ion-molecule interaction is directly responsible for the sign preference. The predicted sign dependence decreases as the supersaturation is increased. Our results from density functional theory agree well with the existing experimental observations. Molecular simulation offers an alternative to molecular level approach. A long-standing issue of fundamental importance in cluster simulation is the precise definition of a cluster. Thus far, all attempts of defining a cluster had introduced ad hoc criteria to determine unambiguously whether a given molecule in the system belongs to vapor or to a cluster for any instantaneous configuration of molecules. From a careful examination of the context in which a cluster should be introduced into nucleation theory, we conclude that such a criterion is unnecessary. Then, we present a new approach to cluster simulation which is free of any arbitrariness involved in the definition of a cluster. Instead, it preferentially and automatically generates the physical clusters, defined as the density fluctuations that lead to nucleation, and determines their equilibrium distribution in a single simulation. The latter feature permits one to completely bypass the computationally demanding free energy evaluation that is necessary in a conventional simulation. The method is applied first to water using the SPC/E model. We then turn to H2SO4/H2O binary

  12. Role of Nucleation and Growth in Two-Phase Microstructure Formation

    SciTech Connect

    Jong Ho Shin

    2008-05-01

    oscillatory microstructures that depend on the imposed velocity and the size of the sample. At low thermal gradient to velocity ratio, a steady-state composite microstructure is observed. Two mechanisms of composite microstructure formation were examined: (1) the formation of the peritectic phase in the intercellular region of the primary phase where the solute rejected by the primary phase is absorbed by the peritectic phase. The peritectic phase forms a small distance behind the growing primary phase front. (2) The second mechanism is the coupled growth of the two phases with a macroscopically planar interface, as in the case of eutectic growth. Detailed studies showed that this composite microstructure, although it appears as a eutectic microstructure, did not grow in the coupled manner at the advancing interface in the Sn-cd system. However, a new observation was made when experiments were carried out in thin ampoule of Ta. The peritectic phase nucleated at the wall-interface triple junction and grew along the wall, while the primary phase continued to grow at the center, giving rise to a steady-state couple growth at some specific velocity. The mechanism of coupled growth in this case was shown to be operative due to the presence of a finite contact angle at the wall, and this was demonstrated by including the contact angle effect at the wall in the rod eutectic growth model. The experimental results were summarized to map out the conditions of thermal gradient and velocity on the regimes of composite and oscillatory microstructure formation. The formation of complex time-dependent microstructures was then discussed in terms of the time-dependent dynamics of planar interface growth.

  13. The ice nucleation activity of biological aerosols

    NASA Astrophysics Data System (ADS)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  14. Unusual ``Explosive'' Nucleation and Superdiffusion in Pb/Si(111)-7x7

    NASA Astrophysics Data System (ADS)

    Hershberger, M. T.; Hupalo, M.; Thiel, P. A.; Hattab, H.; Horn von Hoegen, M.; Tringides, M. C.

    The study of the recently found ``explosive'' nucleation on Pb/Si(111) was further investigated to understand the origin of the sharp transition in coverage and the presence of superdiffusive motion. After small stepwise depositions of ~0.03 ML spatial correlations in the growth direction of neighboring islands are observed. The island growth rates are much higher than what is expected in classical nucleation. Islands collect material many times larger than the amount deposited in the surrounding Voronoi areas contrary to classical expectations. Their centers of mass shift by large amounts, ~10nm, again confirming the directionality in their growth and that material must be arriving over mesoscale distances. The island size distributions do not agree with the expected sharply peaked classical distributions since only fully completed islands are observed. Further depositions show additional nucleation of smaller islands and with higher densities thus conforming that when the critical coverage is reached locally the island nucleation is still active. Comparisons will be made between the diffusion length deduced in these experiments and the one extracted from earlier LEEM experiments monitoring the refilling of an initial vacant area. Ames Laboratory is operated by the US-DOE under Contract No. DE-AC02-07CH11358.

  15. Microtubule nucleation remote from centrosomes may explain how asters span large cells.

    PubMed

    Ishihara, Keisuke; Nguyen, Phuong A; Groen, Aaron C; Field, Christine M; Mitchison, Timothy J

    2014-12-16

    A major challenge in cell biology is to understand how nanometer-sized molecules can organize micrometer-sized cells in space and time. One solution in many animal cells is a radial array of microtubules called an aster, which is nucleated by a central organizing center and spans the entire cytoplasm. Frog (here Xenopus laevis) embryos are more than 1 mm in diameter and divide with a defined geometry every 30 min. Like smaller cells, they are organized by asters, which grow, interact, and move to precisely position the cleavage planes. It has been unclear whether asters grow to fill the enormous egg by the same mechanism used in smaller somatic cells, or whether special mechanisms are required. We addressed this question by imaging growing asters in a cell-free system derived from eggs, where asters grew to hundreds of microns in diameter. By tracking marks on the lattice, we found that microtubules could slide outward, but this was not essential for rapid aster growth. Polymer treadmilling did not occur. By measuring the number and positions of microtubule ends over time, we found that most microtubules were nucleated away from the centrosome and that interphase egg cytoplasm supported spontaneous nucleation after a time lag. We propose that aster growth is initiated by centrosomes but that asters grow by propagating a wave of microtubule nucleation stimulated by the presence of preexisting microtubules. PMID:25468969

  16. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity

    SciTech Connect

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.; Michaelides, Angelos

    2015-05-14

    Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material’s surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water exists for promoting ice nucleation.We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  17. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  18. Rate of Homogenous Nucleation of Ice in Supercooled Water.

    PubMed

    Atkinson, James D; Murray, Benjamin J; O'Sullivan, Daniel

    2016-08-25

    The homogeneous freezing of water is of fundamental importance to a number of fields, including that of cloud formation. However, there is considerable scatter in homogeneous nucleation rate coefficients reported in the literature. Using a cold stage droplet system designed to minimize uncertainties in temperature measurements, we examined the freezing of over 1500 pure water droplets with diameters between 4 and 24 μm. Under the assumption that nucleation occurs within the bulk of the droplet, nucleation rate coefficients fall within the spread of literature data and are in good agreement with a subset of more recent measurements. To quantify the relative importance of surface and volume nucleation in our experiments, where droplets are supported by a hydrophobic surface and surrounded by oil, comparison of droplets with different surface area to volume ratios was performed. From our experiments it is shown that in droplets larger than 6 μm diameter (between 234.6 and 236.5 K), nucleation in the interior is more important than nucleation at the surface. At smaller sizes we cannot rule out a significant contribution of surface nucleation, and in order to further constrain surface nucleation, experiments with smaller droplets are necessary. Nevertheless, in our experiments, it is dominantly volume nucleation controlling the observed nucleation rate. PMID:27410458

  19. A review of phosphate mineral nucleation in biology and geobiology.

    PubMed

    Omelon, Sidney; Ariganello, Marianne; Bonucci, Ermanno; Grynpas, Marc; Nanci, Antonio

    2013-10-01

    Relationships between geological phosphorite deposition and biological apatite nucleation have often been overlooked. However, similarities in biological apatite and phosphorite mineralogy suggest that their chemical formation mechanisms may be similar. This review serves to draw parallels between two newly described phosphorite mineralization processes, and proposes a similar novel mechanism for biologically controlled apatite mineral nucleation. This mechanism integrates polyphosphate biochemistry with crystal nucleation theory. Recently, the roles of polyphosphates in the nucleation of marine phosphorites were discovered. Marine bacteria and diatoms have been shown to store and concentrate inorganic phosphate (Pi) as amorphous, polyphosphate granules. Subsequent release of these P reserves into the local marine environment as Pi results in biologically induced phosphorite nucleation. Pi storage and release through an intracellular polyphosphate intermediate may also occur in mineralizing oral bacteria. Polyphosphates may be associated with biologically controlled apatite nucleation within vertebrates and invertebrates. Historically, biological apatite nucleation has been attributed to either a biochemical increase in local Pi concentration or matrix-mediated apatite nucleation control. This review proposes a mechanism that integrates both theories. Intracellular and extracellular amorphous granules, rich in both calcium and phosphorus, have been observed in apatite-biomineralizing vertebrates, protists, and atremate brachiopods. These granules may represent stores of calcium-polyphosphate. Not unlike phosphorite nucleation by bacteria and diatoms, polyphosphate depolymerization to Pi would be controlled by phosphatase activity. Enzymatic polyphosphate depolymerization would increase apatite saturation to the level required for mineral nucleation, while matrix proteins would simultaneously control the progression of new biological apatite formation. PMID:24077874

  20. Effects of shear flow on phase nucleation and crystallization

    NASA Astrophysics Data System (ADS)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  1. Kinetics of hole nucleation in biomembrane rupture

    NASA Astrophysics Data System (ADS)

    Evans, Evan; Smith, Benjamin A.

    2011-09-01

    The core component of a biological membrane is a fluid-lipid bilayer held together by interfacial-hydrophobic and van der Waals interactions, which are balanced for the most part by acyl chain entropy confinement. If biomembranes are subjected to persistent tensions, an unstable (nanoscale) hole will emerge at some time to cause rupture. Because of the large energy required to create a hole, thermal activation appears to be requisite for initiating a hole and the activation energy is expected to depend significantly on mechanical tension. Although models exist for the kinetic process of hole nucleation in tense membranes, studies of membrane survival have failed to cover the ranges of tension and lifetime needed to critically examine nucleation theory. Hence, rupturing giant (~20 μm) membrane vesicles ultra-slowly to ultra-quickly with slow to fast ramps of tension, we demonstrate a method to directly quantify kinetic rates at which unstable holes form in fluid membranes, at the same time providing a range of kinetic rates from <0.01 to >100 s-1. Measuring lifetimes of many hundreds of vesicles, each tensed by precision control of micropipette suction, we have determined the rates of failure for vesicles made from several synthetic phospholipids plus 1:1 mixtures of phospho- and sphingo-lipids with cholesterol, all of which represent prominent constituents of eukaryotic cell membranes. Plotted on a logarithmic scale, the failure rates for vesicles are found to rise dramatically with an increase in tension. Converting the experimental profiles of kinetic rates into changes of activation energy versus tension, we show that the results closely match expressions for thermal activation derived from a combination of meso-scale theory and molecular-scale simulations of hole formation. Moreover, we demonstrate a generic approach to transform analytical fits of activation energies obtained from rupture experiments into energy landscapes characterizing the process of hole

  2. Identification & Characterization of Fungal Ice Nucleation Proteins

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  3. The nucleation mechanism of wire explosion

    NASA Astrophysics Data System (ADS)

    Tkachenko, S. I.; Vorob'ev, V. S.; Malyshenko, S. P.

    2004-02-01

    This study deals with the nucleation mechanism of electric explosion of wires allowing estimation of wire parameters at the start of the explosion for a wide range of experimental conditions. We analyse the dependence of the limit value of the energy deposited during the initial resistive phase of heating of the wire on the parameters of the wire and circuit as well as the size distribution of metal particles formed on electrical explosion of the wire. We discuss the correspondence of these results with previously published experimental data.

  4. Solute Nucleation and Growth in Supercritical Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Smedley, Gregory T.; Wilemski, Gerald; Rawlins, W. Terry; Joshi, Prakash; Oakes, David B.; Durgin, William W.

    1996-01-01

    This research effort is directed toward two primary scientific objectives: (1) to determine the gravitational effect on the measurement of nucleation and growth rates near a critical point and (2) to investigate the nucleation process in supercritical fluids to aid in the evaluation and development of existing theoretical models and practical applications. A nucleation pulse method will be employed for this investigation using a rapid expansion to a supersaturated state that is maintained for approximately 1 ms followed by a rapid recompression to a less supersaturated state that effectively terminates nucleation while permitting growth to continue. Nucleation, which occurs during the initial supersaturated state, is decoupled from growth by producing rapid pressure changes. Thermodynamic analysis, condensation modeling, apparatus design, and optical diagnostic design necessary for the initiation of a theoretical and experimental investigation of naphthalene nucleation from supercritical CO2 have been completed.

  5. Bubble nucleation in an explosive micro-bubble actuator

    NASA Astrophysics Data System (ADS)

    van den Broek, D. M.; Elwenspoek, M.

    2008-06-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm-2. A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters.

  6. Homogeneous Crystal Nucleation: To Fold or Not to Fold?

    NASA Astrophysics Data System (ADS)

    Crist, Buckley

    2007-03-01

    Recent simulations and related theories have addressed interesting aspects of homogeneous nucleation of polymer crystals in very dilute solutions; embryos and very small crystals are composed of folded chains. At the same time there has been renewed activity with experimental studies of homogeneous nucleation in molten polymers, either with dispersed droplets or with microphase-separated block copolymers. Compared to dilute solutions, melts offer enhanced possibilities for nucleation by fringed micelle structures with stems from different chains. Basal or ``end'' surface energy is estimated for unfolded and folded chain nuclei and employed with classical nucleation theory to distinguish between nucleation rates in the two cases. The effect of chain length on the nucleation barrier offers a way to test model predictions.

  7. Effect of solute on the nucleation and propagation of ice.

    PubMed

    Charoenrein, S; Goddard, M; Reid, D S

    1991-01-01

    Using the emulsion technique, we have studied nucleation of ice in aqueous solutions containing silver iodide or Pseudomonas syringae. Using a Differential Scanning Calorimeter (DSC), we determined characteristic temperatures of nucleation, and also rates of nucleation at selected temperatures. The freezing point depression induced by added solute is linearly related to the lowering of both homogeneous and heterogeneous nucleation temperature. Nucleation kinetics depend on a fifth power function of the temperature. Solute is found to affect the parameters of this relationship in different ways, dependent upon the nature of the catalytic site for ice nucleation. We have also studied the effect of composition on the linear propagation velocity (LPV) of ice in undercooled solutions contained in a U-tube. We have determined velocities in a range of concentrations of sugar solution at the same undercooling, and also as a function of undercooling. The role of added polymer has also been investigated. It is affected by the sugar concentration. PMID:1746327

  8. Effect of radiation-induced segregation on void nucleation

    SciTech Connect

    Si-Ahmed, A.; Wolfer, W.G.

    1982-01-01

    The effect of segregation on void nucleation is investigated utilizing previous results for the capture efficiency of coated void. First, it is shown that any segregation, whether or not it leads to actual precipitation, leads to a modification of the bias factors for any sink. Small increases of either the lattice parameters or the elastic moduli result in reduced interstitial bias factors. Second, segregations to void embryos not only changes their capture efficiencies but also the surface energy. The effect of these changes on the void nucleation rate is studied in quantitative terms. When the segregation to voids results in an increase of the local lattice parameters by 0.4% or an increase of the shear modulus by 3%, the ultimate void nucleation rate is reached. Further increases no longer enhance void nucleation. Void nucleation without segregation effects would only be possible if the dislocation bias exceeds 50%. With segregation, void nucleation is not strongly dependent on the dislocation bias.

  9. Note: Heterogeneous ice nucleation on silver-iodide-like surfaces

    NASA Astrophysics Data System (ADS)

    Fraux, Guillaume; Doye, Jonathan P. K.

    2014-12-01

    We attempt to simulate the heterogeneous nucleation of ice at model silver-iodide surfaces and find relatively facile ice nucleation and growth at the Ag+ terminated basal face, but never see nucleation at the I- terminated basal face or the prism and normal faces. Water molecules strongly adsorb onto the Ag+ terminated face to give a well-ordered hexagonal ice-like bilayer that then acts as a template for further ice growth.

  10. Comment on "Simple improvements to classical bubble nucleation models"

    NASA Astrophysics Data System (ADS)

    Schmelzer, Jürn W. P.; Baidakov, Vladimir G.

    2016-08-01

    A critical analysis of several statements concerning experimental studies, molecular dynamics simulations, and the theoretical interpretation of bubble nucleation processes is performed. In particular, it is shown that the Tolman equation does not supply us, in general, with a satisfactory theoretically founded description of the curvature dependence of the surface tension and the dependence of the steady-state nucleation rate of bubbles and droplets on supersaturation in the framework of classical nucleation theory.

  11. Nucleation in models of damage mechanics

    NASA Astrophysics Data System (ADS)

    Gran, J. D.; Rundle, J. B.; Klein, W.; Turcotte, D. L.

    2010-12-01

    A variety of studies have modeled the physics of material deformation and damage as examples of generalized phase transitions, involving either critical phenomena or spinodal nucleation. Here we study two cellular automaton models of damage mechanics which. The first model is a modified slider-block model with failure threshold weakening. A block is considered partially damaged after its first slip, and any subsequent failure of that block will occur at reduced failure threshold. Damage here is defined as the fraction of blocks that have a reduced failure threshold. The threshold weakening parameter is viewed as a scaling field similar to the occupation probability in site percolation. The second model is time-dependent fiber-bundle model, where the time to failure for each element is specified from a Poissonian distribution and the hazard rate is assumed to have a power-law dependence on stress. Damage here is defined to be the fraction of blocks or fibers that have failed. Because there is no healing, catastrophic failure occurs. The transient behavior prior to rupture propagation is studied and scaling laws are obtained. We compare both models to mean-field percolation which has been shown to be representative of spinodal nucleation and to laboratory experiments that display power-law behavior.

  12. Aerosol droplets: Nucleation dynamics and photokinetics

    NASA Astrophysics Data System (ADS)

    Signorell, Ruth

    This talk addresses two fundamental aerosol processes that play a pivotal role in atmospheric processes: The formation dynamics of aerosol particles from neutral gas phase precursors and photochemical reactions in small aerosol droplets induced by ultraviolet and visible light. Nucleation is the rate determining step of aerosol particle formation. The idea behind nucleation is that supersaturation of a gas leads to the formation of a critical cluster, which quickly grows into larger aerosol particles. We discuss an experiment for studying the size and chemical composition of critical clusters at the molecular level. Much of the chemistry happening in planetary atmospheres is driven by sunlight. Photochemical reactions in small aerosol particles play a peculiar role in this context. Sunlight is strongly focused inside these particles which leads to a natural increase in the rates of photochemical reactions in small particles compared with the bulk. This ubiquitous phenomenon has been recognised but so far escaped direct observation and quantification. The development of a new experimental setup has finally made it possible to directly observe this nanofocusing effect in droplet photokinetics. This work was supported by the Swiss National Science Foundation (SNSF) and ETH Zurich.

  13. Nucleation of interfacial nanobubbles via solventless exchange

    NASA Astrophysics Data System (ADS)

    Tan, Beng Hau; Arora, Manish; Ohl, Claus-Dieter

    2014-11-01

    Interfacial nanobubbles are flat spherical caps of gas that attach on wetted hydrophobic surfaces. Nanobubbles are typically nucleated by wetting an atomically smooth surface with a water-solvent exchange. The bubbles appear when water is flushed into the system, but dissolve in ethanol. Although there is abundant evidence to suggest the bubbles are gaseous (for instance with infrared spectroscopy, water-solvent exchanges by themselves cannot rule out the possibility that the structures are organic contaminants rather than gaseous bubbles, e.g.. We report an AFM study of nanobubbles on HOPG using an exchange of saturated water and degassed water. Nanobubbles nucleated by our solventless technique are smaller in radius and height than with the standard solvent exchange technique. The nanobubbles disappear on a second exchange with degassed water. Since the exchange is free of organic solvent, we rule out organic contamination. Moreover, since the exchange affects only the dissolved gas in the liquid, the appearance and disappearance of the bubbles by successive exchange can be conclusively linked to the gas.

  14. Structural motifs of pre-nucleation clusters.

    PubMed

    Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E

    2013-10-01

    Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions. PMID:24116574

  15. Determination of critical nucleation number for a single nucleation amyloid-β aggregation model.

    PubMed

    Ghosh, Preetam; Vaidya, Ashwin; Kumar, Amit; Rangachari, Vijayaraghavan

    2016-03-01

    Aggregates of amyloid-β (Aβ) peptide are known to be the key pathological agents in Alzheimer disease (AD). Aβ aggregates to form large, insoluble fibrils that deposit as senile plaques in AD brains. The process of aggregation is nucleation-dependent in which the formation of a nucleus is the rate-limiting step, and controls the physiochemical fate of the aggregates formed. Therefore, understanding the properties of nucleus and pre-nucleation events will be significant in reducing the existing knowledge-gap in AD pathogenesis. In this report, we have determined the plausible range of critical nucleation number (n(*)), the number of monomers associated within the nucleus for a homogenous aggregation model with single unique nucleation event, by two independent methods: A reduced-order stability analysis and ordinary differential equation based numerical analysis, supported by experimental biophysics. The results establish that the most likely range of n(*) is between 7 and 14 and within, this range, n(*) = 12 closely supports the experimental data. These numbers are in agreement with those previously reported, and importantly, the report establishes a new modeling framework using two independent approaches towards a convergent solution in modeling complex aggregation reactions. Our model also suggests that the formation of large protofibrils is dependent on the nature of n(*), further supporting the idea that pre-nucleation events are significant in controlling the fate of larger aggregates formed. This report has re-opened an old problem with a new perspective and holds promise towards revealing the molecular events in amyloid pathologies in the future. PMID:26774039

  16. First-Principles Studies of Li Nucleation on Graphene.

    PubMed

    Liu, Mingjie; Kutana, Alex; Liu, Yuanyue; Yakobson, Boris I

    2014-04-01

    We study the Li clustering process on graphene and obtain the geometry, nucleation barrier, and electronic structure of the clusters using first-principles calculations. We estimate the concentration-dependent nucleation barrier for Li on graphene. While the nucleation occurs more readily with increasing Li concentration, possibly leading to the dendrite formation and failure of the Li-ion battery, the existence of the barrier delays nucleation and may allow Li storage on graphene. Our electronic structure and charge transfer analyses reveal how the fully ionized Li adatoms transform to metallic Li during the cluster growth on graphene. PMID:26274475

  17. Temperature and strain-rate dependence of surface dislocation nucleation.

    PubMed

    Zhu, Ting; Li, Ju; Samanta, Amit; Leach, Austin; Gall, Ken

    2008-01-18

    Dislocation nucleation is essential to the plastic deformation of small-volume crystalline solids. The free surface may act as an effective source of dislocations to initiate and sustain plastic flow, in conjunction with bulk sources. Here, we develop an atomistic modeling framework to address the probabilistic nature of surface dislocation nucleation. We show the activation volume associated with surface dislocation nucleation is characteristically in the range of 1-10b3, where b is the Burgers vector. Such small activation volume leads to sensitive temperature and strain-rate dependence of the nucleation stress, providing an upper bound to the size-strength relation in nanopillar compression experiments. PMID:18232884

  18. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.

    PubMed

    Parody-Morreale, A; Murphy, K P; Di Cera, E; Fall, R; DeVries, A L; Gill, S J

    1988-06-23

    Certain bacteria promote the formation of ice in super-cooled water by means of ice nucleators which contain a unique protein associated with the cell membrane. Ice nucleators in general are believed to act by mimicking the structure of an ice crystal surface, thus imposing an ice-like arrangement on the water molecules in contact with the nucleating surface and lowering the energy necessary for the initiation of ice formation. Quantitative investigation of the bacterial ice-nucleating process has recently been made possible by the discovery of certain bacteria that shed stable membrane vesicles with ice nucleating activity. The opposite effect, inhibition of ice formation, has been described for a group of glycoproteins found in different fish and insect species. This group of substances, termed antifreeze glycoproteins (AFGPs), promotes the supercooling of water with no appreciable effect on the equilibrium freezing point or melting temperature. Substantial evidence now indicates that AFGPs act by binding to a growing ice crystal and slowing crystal growth. As the ice-nucleating protein surface is believed to have a structure similar to an embryonic ice crystal, AFGPs might be predicted to interact directly with a bacterial ice-nucleating site. We report here that AFGPs from the antarctic fish Dissostichus mawsoni inhibit the ice-nucleating activity of membrane vesicles from the bacterium Erwinia herbicola. The inhibition effect shows saturation at high concentration of AFGP and conforms to a simple binding reaction between the AFGP and the nucleation centre. PMID:3386720

  19. Modeling HIV-1 viral capsid nucleation by dynamical systems.

    PubMed

    Sadre-Marandi, Farrah; Liu, Yuewu; Liu, Jiangguo; Tavener, Simon; Zou, Xiufen

    2015-12-01

    There are two stages generally recognized in the viral capsid assembly: nucleation and elongation. This paper focuses on the nucleation stage and develops mathematical models for HIV-1 viral capsid nucleation based on six-species dynamical systems. The Particle Swarm Optimization (PSO) algorithm is used for parameter fitting to estimate the association and dissociation rates from biological experiment data. Numerical simulations of capsid protein (CA) multimer concentrations demonstrate a good agreement with experimental data. Sensitivity and elasticity analysis of CA multimer concentrations with respect to the association and dissociation rates further reveals the importance of CA trimer-of- dimers in the nucleation stage of viral capsid self- assembly. PMID:26596714

  20. Physiological and ecological significance of biological ice nucleators.

    PubMed Central

    Lundheim, Rolv

    2002-01-01

    When a pure water sample is cooled it can remain in the liquid state at temperatures well below its melting point (0 degrees C). The initiation of the transition from the liquid state to ice is called nucleation. Substances that facilitate this transition so that it takes place at a relatively high sub-zero temperature are called ice nucleators. Many living organisms produce ice nucleators. In some cases, plausible reasons for their production have been suggested. In bacteria, they could induce frost damage to their hosts, giving the bacteria access to nutrients. In freeze-tolerant animals, it has been suggested that ice nucleators help to control the ice formation so that it is tolerable to the animal. Such ice nucleators can be called adaptive ice nucleators. There are, however, also examples of ice nucleators in living organisms where the adaptive value is difficult to understand. These ice nucleators might be structures with functions other than facilitating ice formation. These structures might be called incidental ice nucleators. PMID:12171657

  1. Ice Nucleation properties of Air-Plane Soot Surrogates Using Vibrational Micro-spectroscopy: a preliminary study

    NASA Astrophysics Data System (ADS)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Ismael; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand

    2015-04-01

    Aircraft emissions have been studied extensively since the late 1960s and the interest was mainly driven by their direct and indirect effects on climate and the generation of contrails [1-4]. Emissions of solid-state particles (soots) from engine exhausts due to incomplete fuel combustion are considered to influence ice and liquid water cloud droplet activation [4]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation by promoting ice formation above water homogeneous freezing point. While some experiments focused on ice nucleation on soot particles did not yet reach definitive conclusions, soot are reported to be generally worse ice nuclei than mineral dust, nucleating at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing. However, there are still numerous opened questions on the ice nucleation properties of soot particles [5], most likely due to the lack of information on the abundance, on the physico-chemical properties (structure and chemical compositions) of these aerosols, competition between different ice nucleation modes and dynamical factors that affect ice nucleation. Furthermore, the soot emitted from aircraft may be associated with soluble components like sulphate that can act as heterogeneous ice nuclei and initiate freezing at supersaturation of only 120-130% [6]. Therefore, more detailed studies of aerosol nucleation activity combined with throughout structural and compositional analyzes are needed in order to establish any association between the particles' hygroscopicity and their physico-chemical properties. In the present preliminary work, nucleation activity of air-plane soot particle surrogates is monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a

  2. Nucleation of 3C-SiC associated with threading edge dislocations during chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Abadier, M.; Berechman, R. A.; Neudeck, P. G.; Trunek, A. J.; Skowronski, M.

    2012-05-01

    Transmission electron microscopy and atomic force microscopy were used to study the origin of a preferred nucleation site on the atomically flat 3C-SiC mesas leading to the formation of tetrahedral hillocks. The hillocks exhibit a "wedding cake" structure consisting of concentric triangular terraces with a step height of 0.25 nm corresponding to the thickness of a single Si-C bilayer. KOH etching revealed the presence of a threading dislocation at the center of the hillock. Its Burgers vector was shown to lie in the basal plane with no component along the surface normal. It is argued that the strain fields around a threading edge dislocation make it a preferred nucleation site.

  3. Atomic-Level Mechanisms of Nucleation of Pure Liquid Metals during Rapid Cooling.

    PubMed

    Han, Jiajia; Wang, Cuiping; Liu, Xingjun; Wang, Yi; Liu, Zi-Kui; Jiang, Jianzhong

    2015-12-21

    To obtain a material with the desired performance, the atomic-level mechanisms of nucleation from the liquid to solid phase must be understood. Although this transition has been investigated experimentally and theoretically, its atomic-level mechanisms remain debatable. In this work, the nucleation mechanisms of pure Fe under rapid cooling conditions are investigated. The local atomic packing stability and liquid-to-solid transition-energy pathways of Fe are studied using molecular dynamics simulations and first-principle calculations. The results are expressed as functions of cluster size in units of amorphous clusters (ACs) and body-centered cubic crystalline clusters (BCC-CCs). We found the prototypes of ACs in supercooled liquids and successfully divided these ACs to three categories according to their transition-energy pathways. The information obtained in this study could contribute to our current understanding of the crystallization of metallic melts during rapid cooling. PMID:26502833

  4. Nucleation-induced self-assembly of multiferroic BiFeO3-CoFe2O4 nanocomposites.

    PubMed

    Stratulat, Sergiu M; Lu, Xiaoli; Morelli, Alessio; Hesse, Dietrich; Erfurth, Wilfried; Alexe, Marin

    2013-08-14

    Large areas of perfectly ordered magnetic CoFe2O4 nanopillars embedded in a ferroelectric BiFeO3 matrix were successfully fabricated via a novel nucleation-induced self-assembly process. The nucleation centers of the magnetic pillars are induced before the growth of the composite structure using anodic aluminum oxide (AAO) and lithography-defined gold membranes as hard mask. High structural quality and good functional properties were obtained. Magneto-capacitance data revealed extremely low losses and magneto-electric coupling of about 0.9 μC/cmOe. The present fabrication process might be relevant for inducing ordering in systems based on phase separation, as the nucleation and growth is a rather general feature of these systems. PMID:23902288

  5. A detailed study of ice nucleation by feldspar minerals

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; Wilson, T. W.; Carpenter, M. A.; Harrison, A.; Holden, M. A.; Vergara Temprado, J.; Morris, J.; O'Sullivan, D.

    2015-12-01

    Immersion mode heterogeneous ice nucleation plays a crucial role in controlling the composition of mixed phase clouds, which contain both supercooled liquid water and ice particles. The amount of ice in mixed phase clouds can affect cloud particle size, lifetime and extent and so affects radiative properties and precipitation. Feldspar minerals are probably the most important minerals for ice nucleation in mixed phase clouds because they nucleate ice more efficiently than other components of atmospheric mineral dust (Atkinson et al. 2013). The feldspar class of minerals is complex, containing numerous chemical compositions, several crystal polymorphs and wide variations in microscopic structure. Here we present the results of a study into ice nucleation by a wide range of different feldspars. We found that, in general, alkali feldspars nucleate ice more efficiently than plagioclase feldspars. However, we also found that particular alkali feldspars nucleate ice relatively inefficiently, suggesting that chemical composition is not the only important factor that dictates the ice nucleation efficiency of feldspar minerals. Ice nucleation by feldspar is described well by the singular model and is probably site specific in nature. The alkali feldspars that do not nucleate ice efficiently possess relatively homogenous structure on the micrometre scale suggesting that the important sites for nucleation are related to surface topography. Ice nucleation active site densities for the majority of tested alkali feldspars are similar to those found by Atkinson et al (2013), meaning that the validity of global aerosol modelling conducted in that study is not affected. Additionally, we have found that ice nucleation by feldspars is strongly influenced, both positively and negatively, by the solute content of droplets. Most other nucleants we have tested are unaffected by solutes. This provides insight into the mechanism of ice nucleation by feldspars and could be of importance

  6. Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques

    NASA Astrophysics Data System (ADS)

    Filion, L.; Hermes, M.; Ni, R.; Dijkstra, M.

    2010-12-01

    Over the last number of years several simulation methods have been introduced to study rare events such as nucleation. In this paper we examine the crystal nucleation rate of hard spheres using three such numerical techniques: molecular dynamics, forward flux sampling, and a Bennett-Chandler-type theory where the nucleation barrier is determined using umbrella sampling simulations. The resulting nucleation rates are compared with the experimental rates of Harland and van Megen [Phys. Rev. E 55, 3054 (1997)], Sinn et al. [Prog. Colloid Polym. Sci. 118, 266 (2001)], Schätzel and Ackerson [Phys. Rev. E 48, 3766 (1993)], and the predicted rates for monodisperse and 5% polydisperse hard spheres of Auer and Frenkel [Nature 409, 1020 (2001)]. When the rates are examined in units of the long-time diffusion coefficient, we find agreement between all the theoretically predicted nucleation rates, however, the experimental results display a markedly different behavior for low supersaturation. Additionally, we examined the precritical nuclei arising in the molecular dynamics, forward flux sampling, and umbrella sampling simulations. The structure of the nuclei appears independent of the simulation method, and in all cases, the nuclei contains on average significantly more face-centered-cubic ordered particles than hexagonal-close-packed ordered particles.

  7. Aggregate Geometry in Amyloid Fibril Nucleation

    NASA Astrophysics Data System (ADS)

    Irbäck, Anders; Jónsson, Sigurður Æ.; Linnemann, Niels; Linse, Björn; Wallin, Stefan

    2013-02-01

    We present and study a minimal structure-based model for the self-assembly of peptides into ordered β-sheet-rich fibrils. The peptides are represented by unit-length sticks on a cubic lattice and interact by hydrogen bonding and hydrophobicity forces. Using Monte Carlo simulations with >105 peptides, we show that fibril formation occurs with sigmoidal kinetics in the model. To determine the mechanism of fibril nucleation, we compute the joint distribution in length and width of the aggregates at equilibrium, using an efficient cluster move and flat-histogram techniques. This analysis, based on simulations with 256 peptides in which aggregates form and dissolve reversibly, shows that the main free-energy barriers that a nascent fibril has to overcome are associated with changes in width.

  8. Island nucleation and growth with anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Amar, Jacques G.; Semaan, Mikhael

    2016-06-01

    While most studies of submonolayer island nucleation and growth have been based on the assumption of ordinary monomer diffusion corresponding to diffusion exponent μ =1 , in some cases either subdiffusive (μ <1 ) or superdiffusive (μ >1 ) behavior may occur. Here we present general expressions for the exponents describing the flux dependence of the island and monomer densities as a function of the critical island size i , substrate dimension d , island fractal dimension df, and diffusion exponent μ , where 0 ≤μ ≤2 . Our results are compared with kinetic Monte Carlo simulations for the case of irreversible island growth (i =1 ) with 0 ≤μ ≤2 and d =2 as well as simulation results for d =1 , 3, and 4, and excellent agreement is found.

  9. Microgravity nucleation and particle coagulation experiments support

    NASA Technical Reports Server (NTRS)

    Lilleleht, L. U.; Ferguson, F. T.

    1987-01-01

    A preliminary model for diffusion between concentric hemispheres was adapted to the cylindrical geometry of a microgravity nucleation apparatus, and extended to include the effects of radiation and conduction through the containment walls. Computer programs were developed to calculate first the temperature distribution and then the evolving concentration field using a finite difference formulation of the transient diffusion and radiation processes. The following estimations are made: (1) it takes approximately 35 minutes to establish a steady temperature field; (2) magnesium vapors released into the argon environment at the steady temperature distribution will reach a maximum supersaturation ratio of approximately 10,000 in the 20-second period at a distance of 15 cm from the source of vapors; and (3) approximately 750W electrical power will be required to maintain steady operating temperatures within the chamber.

  10. Regulation of actin nucleation and autophagosome formation.

    PubMed

    Coutts, Amanda S; La Thangue, Nicholas B

    2016-09-01

    Autophagy is a process of self-eating, whereby cytosolic constituents are enclosed by a double-membrane vesicle before delivery to the lysosome for degradation. This is an important process which allows for recycling of nutrients and cellular components and thus plays a critical role in normal cellular homeostasis as well as cell survival during stresses such as starvation or hypoxia. A large number of proteins regulate various stages of autophagy in a complex and still incompletely understood series of events. In this review, we will discuss recent studies which provide a growing body of evidence that actin dynamics and proteins that influence actin nucleation play an important role in the regulation of autophagosome formation and maturation. PMID:27147468

  11. Bubble nucleation of spatial vector fields

    NASA Astrophysics Data System (ADS)

    Masoumi, Ali; Xiao, Xiao; Yang, I.-Sheng

    2013-02-01

    We study domain walls and bubble nucleation in a nonrelativistic vector field theory with different longitudinal and transverse speeds of sound. We describe analytical and numerical methods to calculate the orientation-dependent domain-wall tension σ(θ). We then use this tension to calculate the critical bubble shape and show that the tunneling exponent is modified by a factor of sound speed ratio. This implies a big modification in the tunneling rate. The longitudinally oriented domain wall tends to be the heaviest and sometime suffers an instability. It can spontaneously break into zigzag segments. In this case, the critical bubble develops kinks, and its energy, and therefore the tunneling rate, scales with the sound speeds very differently than what would be expected for a smooth bubble.

  12. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Sumida, John

    2000-01-01

    One of the most powerful and versatile methods for studying molecules in solution is fluorescence. Crystallization typically takes place in a concentrated solution environment, whereas fluorescence typically has an upper concentration limit of approximately 1 x 10(exp -5)M, thus intrinsic fluorescence cannot be employed, but a fluorescent probe must be added to a sub population of the molecules. However the fluorescent species cannot interfere with the self-assembly process. This can be achieved with macromolecules, where fluorescent probes can be covalently attached to a sub population of molecules that are subsequently used to track the system as a whole. We are using fluorescence resonance energy transfer (FRET) to study the initial solution phase self-assembly process of tetragonal lysozyme crystal nucleation, using covalent fluorescent derivatives which crystallize in the characteristic P432121 space group. FRET studies are being carried out between cascade blue (CB-lys, donor, Ex 376 nm, Em 420 nm) and lucifer yellow (LY-lys, acceptor, Ex 425 nm, Em 520 nm) asp101 derivatives. The estimated R0 for this probe pair, the distance where 50% of the donor energy is transferred to the acceptor, is approximately 1.2 nm, compared to 2.2 nm between the side chain carboxyls of adjacent asp101's in the crystalline 43 helix. The short CB-lys lifetime (approximately 5 ns), coupled with the large average distances between the molecules ((sup 3) 50 nm) in solution, ensure that any energy transfer observed is not due to random diffusive interactions. Addition of LY-lys to CB-lys results in the appearance of a second, shorter lifetime (approximately 0.2 ns). Results from these and other ongoing studies will be discussed in conjunction with a model for how tetragonal lysozyme crystals nucleate and grow, and the relevance of that model to microgravity protein crystal growth

  13. Thermokinetics of heterogeneous droplet nucleation on conically textured substrates

    NASA Astrophysics Data System (ADS)

    Singha, Sanat K.; Das, Prasanta K.; Maiti, Biswajit

    2015-11-01

    Within the framework of the classical theory of heterogeneous nucleation, a thermokinetic model is developed for line-tension-associated droplet nucleation on conical textures considering growth or shrinkage of the formed cluster due to both interfacial and peripheral monomer exchange and by considering different geometric configurations. Along with the principle of free energy extremization, Katz kinetic approach has been employed to study the effect of substrate conicity and wettability on the thermokinetics of heterogeneous water droplet nucleation. Not only the peripheral tension is found to have a considerable effect on the free energy barrier but also the substrate hydrophobicity and hydrophilicity are observed to switch over their roles between conical crest and trough for different growth rates of the droplet. Besides, the rate of nucleation increases and further promotes nucleation for negative peripheral tension as it diminishes the free energy barrier appreciably. Moreover, nucleation inhibition can be achievable for positive peripheral tension due to the enhancement of the free energy barrier. Analyzing all possible geometric configurations, the hydrophilic narrower conical cavity is found to be the most preferred nucleation site. These findings suggest a physical insight into the context of surface engineering for the promotion or the suppression of nucleation on real or engineered substrates.

  14. Dynamics of ice nucleation on water repellent surfaces.

    PubMed

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications. PMID:22235939

  15. Origin of secondary nucleation as revealed by isotopic labelling

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Tsukamoto, K.; Horita, J.; Tadaki, T.

    1984-11-01

    Isotopic measurement by mass spectroscopy was for the first time applied to the secondary nucleation products formed in a supersaturated H 2O-alum solution in the presence of a seed crystal containing D 2O. It was shown that fine particles were chipped off from the seed into the solution and act as centres for secondary nucleation.

  16. Crack nucleation in Fe-3% Si in a hydrogen environment

    NASA Technical Reports Server (NTRS)

    Kamdar, M. H.

    1974-01-01

    An investigation has been made of the grain-size and strain-rate dependence of the crack nucleation process in iron-3% silicon polycrystals tested in a low-pressure hydrogen environment. The results are compared with similar observations made in an air environment and are discussed in terms of the role of hydrogen on the process of crack nucleation in iron.

  17. New Understandings for Three-Dimensional Nucleation (I)

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.

    The generic heterogeneous effect of foreign particles on 3D nucleation was examined both theoretically and experimentally. It shows that the nucleation observed under normal conditions includes a sequence of progressive heterogeneous processes, characterized by different interfacial correlation function f(m, x)s. At low supersaturations, nucleation will be controlled by the process with a small interfacial correlation function f(m, x), which results from a strong interaction and good structural match between the foreign bodies and the crystallizing phase. At high supersaturations, nucleation on foreign particles having a weak interaction and poor structural match with the crystallizing phase (f(m, x)-->1) will govern the kinetics. This frequently leads to the false identification of homogeneous nucleation. Genuine homogeneous nucleation, which is the up-limit of heterogeneous nucleation, may not be easily achievable under gravity. In order to check these results, the prediction is confronted with nucleation experiments of some crystals. The results are in excellent agreement with the theory. Apart from this, the implications for epitaxial growth have also been discussed. In order to grow crystals epitaxially, the supersaturation should be kept at a low level, despite a good structural match between the crystal and substrate.

  18. Nucleation process control of undercooled stainless steel by external nucleation seed

    SciTech Connect

    Guo, J.Q.; Tsukamoto, S.; Kimura, T.; Nakae, H.

    1999-10-26

    Competitive phase selection of undercooled melts between equilibrium ferrite and metastable austenite has been investigated as a function of undercooling. Stainless steel type 316 was undercooled up to 250 K using an electromagnetic levitation method. The microstructure showed different morphologies depending on the undercooling due to different solid phase transformation mechanisms. However, metastable austenite was not formed during the solidification for the undercooling up to 250 K due to the favorable nucleation kinetics of ferrite. The control of the phase selection has also been attempted using an external nucleation seed. Undercooled melts were touched by Fe-50 at.% Ni powders in the levitation coil, whose lattice constant is almost the same as that of metastable austenite. The microstructure showed a dramatic change in the solidification mode from equilibrium ferrite to metastable austenite during the first stage of the solidification.

  19. Determination of critical nucleation number for a single nucleation amyloid-β aggregation model

    PubMed Central

    Ghosh, Preetam; Vaidya, Ashwin; Kumar, Amit; Rangachari, Vijayaraghavan

    2016-01-01

    Aggregates of amyloid-β (Aβ) peptide are known to be the key pathological agents in Alzheimer disease (AD). Aβ aggregates to form large, insoluble fibrils that deposit as senile plaques in AD brains. The process of aggregation is nucleation–dependent in which the formation of a nucleus is the rate–limiting step, and controls the physiochemical fate of the aggregates formed. Therefore, understanding the properties of nucleus and pre-nucleation events will be significant in reducing the existing knowledge–gap in AD pathogenesis. In this report, we have determined the plausible range of critical nucleation number (n*), the number of monomers associated within the nucleus for a homogenous aggregation model with single unique nucleation event, by two independent methods: A reduced-order stability analysis and ordinary differential equation based numerical analysis, supported by experimental biophysics. The results establish that the most likely range of n* is between 7 and 14 and within, this range, n* = 12 closely supports the experimental data. These numbers are in agreement with those previously reported, and importantly, the report establishes a new modeling framework using two independent approaches towards a convergent solution in modeling complex aggregation reactions. Our model also suggests that the formation of large protofibrils is dependent on the nature of n*, further supporting the idea that pre-nucleation events are significant in controlling the fate of larger aggregates formed. This report has re-opened an old problem with a new perspective and holds promise towards revealing the molecular events in amyloid pathologies in the future. PMID:26774039

  20. Pseudo-one-dimensional nucleation in dilute polymer solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Lingyun; Schmit, Jeremy D.

    2016-06-01

    Pathogenic protein fibrils have been shown in vitro to have nucleation-dependent kinetics despite the fact that one-dimensional structures do not have the size-dependent surface energy responsible for the lag time in classical theory. We present a theory showing that the conformational entropy of the peptide chains creates a free-energy barrier that is analogous to the translational entropy barrier in higher dimensions. We find that the dynamics of polymer rearrangement make it very unlikely for nucleation to succeed along the lowest free-energy trajectory, meaning that most of the nucleation flux avoids the free-energy saddle point. We use these results to construct a three-dimensional model for amyloid nucleation that accounts for conformational entropy, backbone H bonds, and side-chain interactions to compute nucleation rates as a function of concentration.

  1. Direct observation of amyloid nucleation under nanomechanical stretching

    NASA Astrophysics Data System (ADS)

    Varongchayakul, Nitinun

    Self-assembly of amyloid nanofiber is associated with functional and pathological processes such as in neurodegenerative diseases. Despite intensive studies, stochastic nature of the process has made it difficult to elucidate molecular mechanisms for the key amyloid nucleation. Here, we investigated the amyloid nucleation of silk-elastin-like peptide (SELP) using time-lapse lateral force microscopy (LFM). By repeated scanning a single line on a SELP-coated mica surface, we observed sudden stepwise height increases, corresponds to nucleation of an amyloid fiber. The lateral force profiles followed either a worm-like chain model or an exponential function, suggesting that the atomic force microscopy (AFM) tip stretches a single or multiple SELP molecules along the scanning direction, serves as the template for further self-assembly perpendicular to the scan direction. Such mechanically induced nucleation of amyloid fibrils allows positional and directional control of amyloid assembly in vitro , which we demonstrate by generating single nanofibers at predetermined nucleation sites.

  2. Softening by void nucleation and growth in tension and shear

    NASA Astrophysics Data System (ADS)

    Fleck, N. A.; Hutchinson, J. W.; Tvergaard, V.

    THE EFFECT of void nucleation and growth on overall stress-strain behavior is investigated for solids undergoing plastic straining under axisymmetric and shearing conditions. Contact between the void surface and the nucleating particle is taken into account and is found to be important under shear and under axisymmetric straining when the stress triaxiality is low. The notion of the macroscopic stress drop due to nucleation of a void is defined and computed, both for isolated voids and for voids in periodic arrays. The stress drop for an isolated void in an infinite matrix can be used to predict softening due to void nucleation when the void concentration is dilute. Interaction between voids in shear during nucleation is analysed numerically and softening effects are calculated along with large strain aspects of void deformation during subsequent growth.

  3. Pseudo-one-dimensional nucleation in dilute polymer solutions.

    PubMed

    Zhang, Lingyun; Schmit, Jeremy D

    2016-06-01

    Pathogenic protein fibrils have been shown in vitro to have nucleation-dependent kinetics despite the fact that one-dimensional structures do not have the size-dependent surface energy responsible for the lag time in classical theory. We present a theory showing that the conformational entropy of the peptide chains creates a free-energy barrier that is analogous to the translational entropy barrier in higher dimensions. We find that the dynamics of polymer rearrangement make it very unlikely for nucleation to succeed along the lowest free-energy trajectory, meaning that most of the nucleation flux avoids the free-energy saddle point. We use these results to construct a three-dimensional model for amyloid nucleation that accounts for conformational entropy, backbone H bonds, and side-chain interactions to compute nucleation rates as a function of concentration. PMID:27415194

  4. Nucleation-trap crystallizer for growth of crystals from solutions

    NASA Astrophysics Data System (ADS)

    Karnal, A. K.; Saxena, A.; Ganesamoorthy, S.; Bhaumik, Indranil; Wadhawan, V. K.; Bhat, H. L.; Gupta, P. K.

    2006-12-01

    Stability of the solution against spurious nucleation plays a dominant role in the growth of crystals at high growth rates requiring high levels of supersaturation. If any spurious nucleation does occur during a growth run, it becomes practically impossible to grow a very large crystal. A novel nucleation-trap crystallizer has been developed and used for the growth of crystals from aqueous solution so as to trap any unwanted nuclei and the particles that appear and settle at the bottom of the crystallizer during the growth process. In this crystallizer, any particles and nuclei nucleating during the growth are forced into the nucleation trap (or well) and subsequently by manipulating the temperature of the well; the growth of the nuclei is arrested. DKDP and ammonium acid phthalate crystals were grown in the developed system. X-ray rocking curve measurements on DKDP and ammonium acid phthalate crystals yielded FWHM of 89.1 and 29.71 arcsec, respectively.

  5. Homogeneous nucleation rate measurements in supersaturated water vapor.

    PubMed

    Brus, David; Zdímal, Vladimír; Smolík, Jirí

    2008-11-01

    The rate of homogeneous nucleation in supersaturated vapors of water was studied experimentally using a thermal diffusion cloud chamber. Helium was used as a carrier gas. Our study covers a range of nucleation rates from 3x10(-1) to 3x10(2) cm(-3) s(-1) at four isotherms: 290, 300, 310, and 320 K. The molecular content of critical clusters was estimated from the slopes of experimental data. The measured isothermal dependencies of nucleation rate of water on saturation ratio were compared with the prediction of the classical theory of homogeneous nucleation, the empirical prediction of Wolk et al. [J. Chem. Phys. 117, 10 (2002)], the scaled model of Hale [Phys. Rev. A 33, 4156 (1986)], and the former nucleation onset data. PMID:19045352

  6. Do protein crystals nucleate within dense liquid clusters?

    SciTech Connect

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-06-27

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10{sup −3} of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  7. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  8. Identification of Ice Nucleation Active Sites on Silicate Dust Particles

    NASA Astrophysics Data System (ADS)

    Zolles, Tobias; Burkart, Julia; Häusler, Thomas; Pummer, Bernhard; Hitzenberger, Regina; Grothe, Hinrich

    2015-04-01

    Mineral dusts originating from Earth's crust are known to be important atmospheric ice nuclei. In agreement with earlier studies, feldspar was found as the most active of the tested natural mineral dusts [1-3]. Nevertheless, among those structures K-feldspar showed by far the highest ice nucleation activity. In this study, the reasons for its activity and the difference in the activity of the different feldspars were investigated in closer details. Conclusions are drawn from scanning electron microscopy, X-ray powder diffraction, infrared spectroscopy, and oil-immersion freezing experiments. We give a potential explanation of the increased ice nucleation activity of K-feldspar. The ice nucleating sites are very much dependent on the alkali ion present by altering the water structure and the feldspar surface. The higher activity of K-feldspar can be attributed to the presence of potassium ions on the surface and surface bilayer. The alkali-ions have different hydration shells and thus an influence on the ice nucleation activity of feldspar. Chaotropic behavior of Calcium and Sodium ions are lowering the ice nucleation potential of the other feldspars, while kosmotropic Potassium has a neutral or even positive effect. Furthermore we investigated the influence of milling onto the ice nucleation of quartz particles. The ice nucleation activity can be increased by mechanical milling, by introducing more molecular, nucleation active defects to the particle surface. This effect is larger than expected by plane surface increase. [1] Atkinson et al. The Importance of Feldspar for Ice Nucleation by Mineral Dust in Mixed-Phase Clouds. Nature 2013, 498, 355-358. [2] Yakobi-Hancock et al.. Feldspar Minerals as Efficient Deposition Ice Nuclei. Atmos. Chem. Phys. 2013, 13, 11175-11185. [3] Zolles et al. Identification of Ice Nucleation Active Sites on Feldspar Dust Particles. J. Phys. Chem. A 2015 accepted.

  9. Investigation of Nucleation Bursts During the Pittsburgh Air Quality Study

    NASA Astrophysics Data System (ADS)

    Stanier, C. O.; Khlystov, A. Y.; Wittig, B.; Pandis, S. N.; Zhou, Y.; Bein, K.; Wexler, A. S.; Misra, C.; Sioutas, C.

    2002-12-01

    Homogeneous nucleation is one of the major sources of atmospheric particles on a global scale. Understanding nucleation is important for quantifying its role in shaping the ambient aerosol distribution and its effects on cloud properties and the planetary energy balance. Over 100 days with nucleation events were investigated during a sampling campaign sampling continental aerosols in Pittsburgh, Pennsylvania. Over 90,000 size distributions were collected over 12 months using Scanning Mobility Particle Sizers (SMPS) at three locations, including both urban and rural sites. Particle size distributions were measured down to 3 nm at the main site and to 10 nm at the other sites. The frequency of nucleation events was surprising. Approximately 50% of the study days were characterized by nucleation events. These events appear to occur over a large area and are not directly related to the emissions from the urban area. Some nucleation events occurred near simultaneously at samplers 500 km apart. Theories under investigation for the nucleation mechanism include sulfuric acid-water, sulfuric acid-water-ammonia, and secondary organic nucleation. The chemistry of the freshly nucleated and growing particles was investigated by collecting over 20,000 single particle mass spectra using Laser Ablation Aerosol Mass Spectrometry on particles as small as 20 nm. Results of TDMA and hygroscopic growth measurements of nuclei mode particles will also be presented. A large number of high-frequency gas, particle, and meteorological measurements were taken with collocated instruments. Data will be analyzed to elucidate possible cause-effect relationships and the dataset will be compared to theoretical estimates of nucleation rates for a number of mechanisms.

  10. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    DOE PAGESBeta

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk; Knott, Brandon C.; Beckham, Gregg T.; Yasuoka, Kenji; Wu, David T.; Amadeu K. Sum

    2015-01-06

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less

  11. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    SciTech Connect

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk; Knott, Brandon C.; Beckham, Gregg T.; Yasuoka, Kenji; Wu, David T.; Amadeu K. Sum

    2015-01-06

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP) methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.

  12. AEROSOL NUCLEATION AND GROWTH DURING LAMINAR TUBE FLOW: MAXIMUM SATURATIONS AND NUCLEATION RATES. (R827354C008)

    EPA Science Inventory

    An approximate method of estimating the maximum saturation, the nucleation rate, and the total number nucleated per second during the laminar flow of a hot vapour–gas mixture along a tube with cold walls is described. The basis of the approach is that the temperature an...

  13. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.

    PubMed

    Knopf, Daniel A; Rigg, Yannick J

    2011-02-10

    Homogeneous ice nucleation plays an important role in the formation of cirrus clouds with subsequent effects on the global radiative budget. Here we report on homogeneous ice nucleation temperatures and corresponding nucleation rate coefficients of aqueous droplets serving as surrogates of biomass burning aerosol. Micrometer-sized (NH(4))(2)SO(4)/levoglucosan droplets with mass ratios of 10:1, 1:1, 1:5, and 1:10 and aqueous multicomponent organic droplets with and without (NH(4))(2)SO(4) under typical tropospheric temperatures and relative humidities are investigated experimentally using a droplet conditioning and ice nucleation apparatus coupled to an optical microscope with image analysis. Homogeneous freezing was determined as a function of temperature and water activity, a(w), which was set at droplet preparation conditions. The ice nucleation data indicate that minor addition of (NH(4))(2)SO(4) to the aqueous organic droplets renders the temperature dependency of water activity negligible in contrast to the case of aqueous organic solution droplets. The mean homogeneous ice nucleation rate coefficient derived from 8 different aqueous droplet compositions with average diameters of ∼60 μm for temperatures as low as 195 K and a(w) of 0.82-1 is 2.18 × 10(6) cm(-3) s(-1). The experimentally derived freezing temperatures and homogeneous ice nucleation rate coefficients are in agreement with predictions of the water activity-based homogeneous ice nucleation theory when taking predictive uncertainties into account. However, the presented ice nucleation data indicate that the water activity-based homogeneous ice nucleation theory overpredicts the freezing temperatures by up to 3 K and corresponding ice nucleation rate coefficients by up to ∼2 orders of magnitude. A shift of 0.01 in a(w), which is well within the uncertainty of typical field and laboratory relative humidity measurements, brings experimental and predicted freezing temperatures and homogeneous ice

  14. The nucleation process and the roles of structure and density fluctuations in supercooled liquid Fe

    SciTech Connect

    Li, Rong; Wu, Yongquan Xiao, Junjiang

    2014-01-21

    We observed homogeneous nucleation process of supercooled liquid Fe by molecular dynamics simulations. Using bond-orientational order parameters together with Voronoi polyhedron method, we characterized local structure, calculated the volume of Voronoi polyhedra of atoms and identified the structure and density fluctuations. We monitored the formation of nucleus and analyzed its inner structure. The birth and growth of the pre-nucleus and nucleus are accompanied with aggregating and disaggregating processes in the time scale of femtosecond. Only the initial solid-like clusters (ISLC), ranging from 1 to 7 atoms, pop up directly from liquid. The relation between the logarithm of number of clusters and the cluster size was found to be linear for ISLCs and was observed to be parabolic for all solid-like clusters (SLC) due to aggregating and disaggregating effects. The nucleus and pre-nuclei mainly consist of body centered cubic (BCC) and hexagonal close packed atoms, while the BCC atoms tend to be located at the surface. Medium-range structure fluctuations induce the birth of ISLCs, benefit the aggregation of embryos and remarkably promote the nucleation. But density fluctuations contribute little to nucleation. The lifetime of most icosahedral-like atoms (ICO) is shorter than 0.7 ps. No obvious relationship was found between structure/density fluctuations and the appearance of ICO atoms.

  15. Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies

    PubMed Central

    Hamm, Laura M.; Giuffre, Anthony J.; Han, Nizhou; Tao, Jinhui; Wang, Debin; De Yoreo, James J.; Dove, Patricia M.

    2014-01-01

    The physical basis for how macromolecules regulate the onset of mineral formation in calcifying tissues is not well established. A popular conceptual model assumes the organic matrix provides a stereochemical match during cooperative organization of solute ions. In contrast, another uses simple binding assays to identify good promoters of nucleation. Here, we reconcile these two views and provide a mechanistic explanation for template-directed nucleation by correlating heterogeneous nucleation barriers with crystal–substrate-binding free energies. We first measure the kinetics of calcite nucleation onto model substrates that present different functional group chemistries (carboxyl, thiol, phosphate, and hydroxyl) and conformations (C11 and C16 chain lengths). We find rates are substrate-specific and obey predictions of classical nucleation theory at supersaturations that extend above the solubility of amorphous calcium carbonate. Analysis of the kinetic data shows the thermodynamic barrier to nucleation is reduced by minimizing the interfacial free energy of the system, γ. We then use dynamic force spectroscopy to independently measure calcite–substrate-binding free energies, ΔGb. Moreover, we show that within the classical theory of nucleation, γ and ΔGb should be linearly related. The results bear out this prediction and demonstrate that low-energy barriers to nucleation correlate with strong crystal–substrate binding. This relationship is general to all functional group chemistries and conformations. These findings provide a physical model that reconciles the long-standing concept of templated nucleation through stereochemical matching with the conventional wisdom that good binders are good nucleators. The alternative perspectives become internally consistent when viewed through the lens of crystal–substrate binding. PMID:24434555

  16. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  17. Nucleation and Growth According to Lysozyme

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    How does one take a molecule, strongly asymmetric in both shape and charge distribution, and assemble it into a crystal? We propose a model for the nucleation and crystal growth process for tetragonal lysozyme that may be very germane to other monomeric proteins. The first species formed is postulated to be a dimer. Through repeating associations involving the same intermolecular interactions this becomes the 4(sub 3) helix, that in turn serves as the basic unit for nucleation and crystal growth. High salt attenuates surface charges while promoting hydrophobic interactions. Symmetry facilitates helix self-association. Assembly stability is enhanced when a four helix structure is obtained, with each bound to two neighbors. Only two unique interactions are required. The first are those for helix formation, where the dominant interaction is the intermolecular bridging anion. The second is the anti-parallel side-by-side helix-helix interaction, guided by alternating pairs of symmetry related salt bridges along each side. At this stage all eight unique positions of the P4(sub 3)2(sub 1)2(sub 1) unit cell are filled. From the above, the process is one of a) attenuating the most strongly interacting groups, such that b) the molecules begin to self-associate in defined patterns, so that c) symmetry is obtained, which d) propagates as a growing crystal. Simple and conceptually obvious in hindsight, this tells much about what we are empirically doing when we crystallize macromolecules. By adjusting the solution parameters we are empirically balancing the intermolecular interactions, preferentially attenuating the dominant strong (for lysozyme the charged groups) while strengthening the lesser strong (hydrophobic) interactions. Lysozyme is atypical in the breadth of its crystallization conditions; many proteins only crystallize under narrowly defined conditions, pointing to the criticality of the empirical balancing process. Lack of a singularly defined association pathway

  18. Intragranular ferrite nucleation in medium-carbon vanadium steels

    SciTech Connect

    Ishikawa, Fusao; Takahashi, Toshihiko ); Ochi, Tatsurou . Muroran R D Lab.)

    1994-05-01

    In this study, the mechanism of intragranular ferrite nucleation is investigated. It is found that intragranular ferrite idiomorphs'' nucleate at vanadium nitrides which precipitate at manganese sulfide particles during cooling in the austenite region. It is observed that intragranular ferrite has the Baker-Nutting orientation relationship with vanadium nitride which precipitated at manganese sulfide. According to classical nucleation theory, the proeutectoid ferrite nucleation rate depends on the following factors: (1) the driving free energy for ferrite nucleation, (2) the diffusivity of carbon atoms in austenite, and (3) the increase in the interfacial energy associated with ferrite nucleation. In the Baker-Nutting orientation relationship, the lattice mismatch across the habit planes is likely to be very small. Depleted zones of solute atoms such as vanadium are assumed to be formed in the austenite matrix around precipitates. The effect of the depleted zones on factors (1) and (2) is estimated thermodynamically and it is proved that those effects are negligibly small. Thus, the authors conclude that the most important factor in nucleation kinetics of intragranular ferrite is the formation of precipitates which can develop coherent, low energy interfaces with ferrite.

  19. Bubble nucleation in polymer–CO2 mixtures.

    PubMed

    Xu, Xiaofei; Cristancho, Diego E; Costeux, Stéphane; Wang, Zhen-Gang

    2013-10-28

    We combine density-functional theory with the string method to calculate the minimum free energy path of bubble nucleation in two polymer–CO2 mixture systems, poly(methyl methacrylate) (PMMA)–CO2 and polystyrene (PS)–CO2. Nucleation is initiated by saturating the polymer liquid with high pressure CO2 and subsequently reducing the pressure to ambient condition. Below a critical temperature (Tc), we find that there is a discontinuous drop in the nucleation barrier as a function of increased initial CO2 pressure (P0), as a result of an underlying metastable transition from a CO2-rich-vapor phase to a CO2-rich-liquid phase. The nucleation barrier is generally higher for PS–CO2 than for PMMA–CO2 under the same temperature and pressure conditions, and both higher temperature and higher initial pressure are required to lower the nucleation barrier for PS–CO2 to experimentally relevant ranges. Classical nucleation theory completely fails to capture the structural features of the bubble nucleus and severely underestimates the nucleation barrier. PMID:26029777

  20. A marine biogenic source of atmospheric ice-nucleating particles.

    PubMed

    Wilson, Theodore W; Ladino, Luis A; Alpert, Peter A; Breckels, Mark N; Brooks, Ian M; Browse, Jo; Burrows, Susannah M; Carslaw, Kenneth S; Huffman, J Alex; Judd, Christopher; Kilthau, Wendy P; Mason, Ryan H; McFiggans, Gordon; Miller, Lisa A; Nájera, Juan J; Polishchuk, Elena; Rae, Stuart; Schiller, Corinne L; Si, Meng; Temprado, Jesús Vergara; Whale, Thomas F; Wong, Jenny P S; Wurl, Oliver; Yakobi-Hancock, Jacqueline D; Abbatt, Jonathan P D; Aller, Josephine Y; Bertram, Allan K; Knopf, Daniel A; Murray, Benjamin J

    2015-09-10

    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approximately 0.2 micrometres in size. We find that exudates separated from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice-nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol, in combination with our measurements, suggest that marine organic material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean. PMID:26354482

  1. Nucleation at the Contact Line Observed on Nanotextured Surfaces

    NASA Astrophysics Data System (ADS)

    Kostinski, A. B.; Gurganus, C.; Charnawskas, J. C.; Shaw, R. A.

    2015-12-01

    Surface nucleation, and contact nucleation in particular, are important for many physical processes, including pharmaceutical drug synthesis, metallurgy, and heterogeneous ice nucleation. It has been conjectured that roughness plays a role in surface nucleation, the tendency for freezing to begin preferentially at the liquid-gas interface. Using high speed imaging, we sought evidence for freezing at the contact line on catalyst substrates with imposed characteristic length scales (texture). It is found that nano-scale texture causes a shift in the nucleation of ice in super-cooled water to the three-phase contact line, while micro-scale texture does not. The reduction in the Gibbs barrier for nucleation at the droplet triple line suggests that a line tension, inversely proportional to the surface feature length scale, may be the relevant physical mechanism. A survey of line tension values in literature supports this hypothesis. This work suggests that the physical morphology of a particle, and not just its chemical composition, is important for characterizing a nucleation catalyst.

  2. Do protein crystals nucleate within dense liquid clusters?

    PubMed Central

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10−3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation. PMID:26144225

  3. Heterogeneous nucleation on surfaces of the ellipsoid of rotation

    NASA Astrophysics Data System (ADS)

    Li, Xiang-Ming; Liu, Qing-Hui

    2016-08-01

    This paper focusses on the heterogeneous nucleation on the surface with the non-constant curvature. The formation of a spherical nucleus on the ellipsoid of rotation is considered. Following the classical nucleation theory, the work of formation of a critical nucleus on the ellipsoid of rotation has been given, and the effects of geometry sizes and the material properties of the ellipsoid of rotation on the work of formation of a critical nucleus have been obtained. When the geometry size of the substrate is about value of the critical nucleus radius, there may exist twice nucleation on the ellipsoid of rotation for the case of the smaller value of λ and ϕ < π / 2. As the work of formation of a nucleus has only one extremum (the maximum), the nucleation on the oblate rotational ellipsoid is more easy than on the spherical surface, while nucleation on the prolate ellipsoid of rotation is more difficult than on the spherical surface. Furthermore, if the particles of the ellipsoid are added into the parent phase as nucleation agents or catalysts, for some geometry sizes, they would not have the effects on the heterogeneous nucleation.

  4. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  5. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    PubMed

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  6. SUCCESS Evidence for Cirrus Cloud Ice Nucleation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    During the SUCCESS mission, several measurements were made which should improve our understanding of ice nucleation processes in cirrus clouds. Temperature and water vapor concentration were made with a variety of instruments on the NASA DC-8. These observations should provide accurate upper tropospheric humidities. In particular, we will evaluate what humidities are required for ice nucleation. Preliminary results suggest that substantial supersaturations frequently exist in the upper troposphere. The leading-edge region of wave-clouds (where ice nucleation occurs) was sampled extensively at temperatures near -40 and -60C. These observations should give precise information about conditions required for ice nucleation. In addition, we will relate the observed aerosol composition and size distributions to the ice formation observed to evaluate the role of soot or mineral particles on ice nucleation. As an alternative technique for determining what particles act as ice nuclei, numerous samples of aerosols inside ice crystals were taken. In some cases, large numbers of aerosols were detected in each crystal, indicating that efficient scavenging occurred. Analysis of aerosols in ice crystals when only one particle per crystal was detected should help with the ice nucleation issue. Direct measurements of the ice nucleating activity of ambient aerosols drawn into airborne cloud chambers were also made. Finally, measurements of aerosols and ice crystals in contrails should indicate whether aircraft exhaust soot particles are effective ice nuclei.

  7. The nucleation kinetics of ammonium metavanadate precipitated by ammonium chloride

    NASA Astrophysics Data System (ADS)

    Du, Guangchao; Sun, Zhaohui; Xian, Yong; Jing, Han; Chen, Haijun; Yin, Danfeng

    2016-05-01

    The nucleation kinetics of ammonium metavanadate (NH4VO3) was investigated under conditions of the simulated process for precipitation of NH4VO3 from the vanadium-containing solution. Induction periods for the nucleation of NH4VO3 were experimentally determined as a function of supersaturation at temperatures from 30 to 45 °C. Using the classical nucleation theory, the interfacial tension between NH4VO3 and supersaturated solution, the nucleation rate and critical radius of nucleus for the homogeneous nucleation of NH4VO3 were estimated. With temperature increasing, the calculated interfacial tension gradually decreased from 29.78 mJ/m2 at 30 °C to 23.66 mJ/m2 at 45 °C. The nucleation rate was found to proportionally increase but the critical radius of nucleus exponentially decreased, with increase in supersaturation ratio at a constant temperature. The activation energy for NH4VO3 nucleation was obtained from the relationship between temperature and induction period, ranging from 79.17 kJ/mol at S=25 to 115.50 kJ/mol at S=15. FT-IR and Raman spectrum indicated that the crystals obtained in the precipitation process were NH4VO3.

  8. Crucial role of nonspecific interactions in amyloid nucleation.

    PubMed

    Šarić, Anđela; Chebaro, Yassmine C; Knowles, Tuomas P J; Frenkel, Daan

    2014-12-16

    Protein oligomers have been implicated as toxic agents in a wide range of amyloid-related diseases. However, it has remained unsolved whether the oligomers are a necessary step in the formation of amyloid fibrils or just a dangerous byproduct. Analogously, it has not been resolved if the amyloid nucleation process is a classical one-step nucleation process or a two-step process involving prenucleation clusters. We use coarse-grained computer simulations to study the effect of nonspecific attractions between peptides on the primary nucleation process underlying amyloid fibrillization. We find that, for peptides that do not attract, the classical one-step nucleation mechanism is possible but only at nonphysiologically high peptide concentrations. At low peptide concentrations, which mimic the physiologically relevant regime, attractive interpeptide interactions are essential for fibril formation. Nucleation then inevitably takes place through a two-step mechanism involving prefibrillar oligomers. We show that oligomers not only help peptides meet each other but also, create an environment that facilitates the conversion of monomers into the β-sheet-rich form characteristic of fibrils. Nucleation typically does not proceed through the most prevalent oligomers but through an oligomer size that is only observed in rare fluctuations, which is why such aggregates might be hard to capture experimentally. Finally, we find that the nucleation of amyloid fibrils cannot be described by classical nucleation theory: in the two-step mechanism, the critical nucleus size increases with increases in both concentration and interpeptide interactions, which is in direct contrast with predictions from classical nucleation theory. PMID:25453085

  9. Patterned Growth of Organic Semiconductors: Selective Nucleation of Perylene on Self-Assembled Monolayers.

    PubMed

    Pick, André; Witte, Gregor

    2016-08-16

    Organic semiconductors (OSC) have received a large amount of attention because they afford the fabrication of flexible electronic devices. However, the limited resistance to radiation and etching of such materials does not permit their patterning by photolithography, which has been a driving force for the development of integrated circuits and therefore requires alternative structuring techniques. One approach is based on precoating the substrate with self-assembled monolayers (SAMs) to control the nucleation of subsequently deposited OSC layers, but the underlying mechanism is barely understood. Here, we used alkanethiols with different chemical terminations to prepare SAMs on gold substrates serving as model systems to identify the mechanism of selective nucleation for the case of the OSC perylene. Using atomic force microscopy and fluorescence microscopy, we demonstrate that the chemical functionalization of the SAMs determines the adhesion forces for the OSC that are smallest for CF3-terminated and largest for OH-terminated SAMs, hence yielding distinctly different sticking probabilities upon perylene deposition at room temperature. Microcontact printing and immersion were employed to prepare SAM patterns that enable the selective growth of polycrystalline perylene films. A quite different situation is found upon printing long-chain thiols with low vapor pressure, which leads to the transfer of multilayers and favors the growth of perylene single crystallites. In a more abstract scenario, patterns of silicone oil droplets were printed on a gold substrate, which was previously covered with a repelling fluorinated SAM. Such droplets provide nucleation centers for liquid-mediated growth, often yielding platelet-shaped perylene single crystallites without unwanted perylene nucleation on the remaining surface. PMID:27441921

  10. Laboratory studies of methane nucleation on ethane: Application to Titan's clouds

    NASA Astrophysics Data System (ADS)

    Curtis, D. B.; Toon, OB; Tolbert, M. A.; McKay, C. P.; Khare, B. N.

    2003-05-01

    Titan's unusually thick atmosphere is composed mainly of nitrogen with a few percent methane and several gas phase species. The most abundant of these gas phase species is ethane, thought to be present at amounts of approximately 20 parts per million, while HCN, ethylene, propane, and many other species are also produced. Complex photochemistry in Titan's upper atmosphere produces a solid haze, which is thought to settle towards the surface. As the haze particles settle, it is likely that they become coated with ethane in Titan's lower stratosphere. Near Titan's tropopause, methane is saturated with respect to nucleation and could condense to form clouds. However, reanalysis of the Voyager I and II data suggests that the methane does not condense, but becomes supersaturated up to a saturation ratio of 1.5. In contrast, recent Earth-based observations indicate that methane clouds are indeed present in Titan's atmosphere. In order to elucidate Titan's cloud formation mechanism, we have made laboratory measurements of methane nucleation onto a film of solid ethane at approximately 45 K using a vacuum chamber apparatus. We find that a saturation ratio of S = 1.10 is required for methane to nucleate onto ethane, indicating that cloud formation onto coated haze particles is relatively easy and that large areas of supersaturation are not likely. Ongoing studies will measure the saturation ratio required for methane nucleation onto laboratory-produced model haze particles and films of various hydrocarbons and nitriles. This work was funded by the NASA Astrobiology Institute. DBC was supported by a NASA GSRP Fellowship through NASA Ames Research Center.