Science.gov

Sample records for nucleic acid isolation

  1. Method for isolating nucleic acids

    SciTech Connect

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  2. Nucleic acid isolation process

    DOEpatents

    Longmire, Jonathan L.; Lewis, Annette K.; Hildebrand, Carl E.

    1990-01-01

    A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduce the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without affect on the protocol.

  3. Nucleic acid isolation

    DOEpatents

    Longmire, J.L.; Lewis, A.K.; Hildebrand, C.E.

    1988-01-21

    A method is provided for isolating DNA from eukaryotic cell and flow sorted chromosomes. When DNA is removed from chromosome and cell structure, detergent and proteolytic digestion products remain with the DNA. These products can be removed with organic extraction, but the process steps associated with organic extraction reduces the size of DNA fragments available for experimental use. The present process removes the waste products by dialyzing a solution containing the DNA against a solution containing polyethylene glycol (PEG). The waste products dialyze into the PEG leaving isolated DNA. The remaining DNA has been prepared with fragments containing more than 160 kb. The isolated DNA has been used in conventional protocols without effect on the protocol.

  4. Method for nucleic acid isolation using supercritical fluids

    DOEpatents

    Nivens, D.E.; Applegate, B.M.

    1999-07-13

    A method is disclosed for detecting the presence of a microorganism in an environmental sample involves contacting the sample with a supercritical fluid to isolate nucleic acid from the microorganism, then detecting the presence of a particular sequence within the isolated nucleic acid. The nucleic acid may optionally be subjected to further purification. 4 figs.

  5. Method for nucleic acid isolation using supercritical fluids

    DOEpatents

    Nivens, David E. (11912 Kingsgate Rd., Knoxville, TN 37911); Applegate, Bruce M. (3700 Sutherland Ave. #Q2, Knoxville, TN 37911)

    1999-01-01

    A method for detecting the presence of a microorganism in an environmental sample involves contacting the sample with a supercritical fluid to isolate nucleic acid from the microorganism, then detecting the presence of a particular sequence within the isolated nucleic acid. The nucleic acid may optionally be subjected to further purification.

  6. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  7. Silicon Dioxide Thin Film Mediated Single Cell Nucleic Acid Isolation

    PubMed Central

    Bogdanov, Evgeny; Dominova, Irina; Shusharina, Natalia; Botman, Stepan; Kasymov, Vitaliy; Patrushev, Maksim

    2013-01-01

    A limited amount of DNA extracted from single cells, and the development of single cell diagnostics make it necessary to create a new highly effective method for the single cells nucleic acids isolation. In this paper, we propose the DNA isolation method from biomaterials with limited DNA quantity in sample, and from samples with degradable DNA based on the use of solid-phase adsorbent silicon dioxide nanofilm deposited on the inner surface of PCR tube. PMID:23874571

  8. Isolated nucleic acids encoding antipathogenic polypeptides and uses thereof

    DOEpatents

    Altier, Daniel J.; Crane, Virginia C.; Ellanskaya, Irina; Ellanskaya, Natalia; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K.; Schepers, Eric J.; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-04-20

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from fungal fermentation broths. Nucleic acids that encode the antipathogenic polypeptides are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.

  9. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N. (San Ramon, CA); Straume, Tore (Tracy, CA); Bogen, Kenneth T. (Walnut Creek, CA)

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  10. Scalable Isolation of Mammalian Mitochondria for Nucleic Acid and Nucleoid Analysis.

    PubMed

    Lee, Ken-Wing; Bogenhagen, Daniel F

    2016-01-01

    Isolation of mitochondria from cultured cells and animal tissues for analysis of nucleic acids and bona fide mitochondrial nucleic acid binding proteins and enzymes is complicated by contamination with cellular nucleic acids and their adherent proteins. Protocols presented here allow for quick isolation of mitochondria from a small number of cells and for preparation of highly purified mitochondria from a larger number of cells using nuclease treatment and high salt washing of mitochondria to reduce contamination. We further describe a method for the isolation of mitochondrial DNA-protein complexes known as nucleoids from these highly purified mitochondria using a combination of glycerol gradient sedimentation followed by isopycnic centrifugation in a non-ionic iodixanol gradient. PMID:26530675

  11. Microfluidic devices for nucleic acid (NA) isolation, isothermal NA amplification, and real-time detection.

    PubMed

    Mauk, Michael G; Liu, Changchun; Sadik, Mohamed; Bau, Haim H

    2015-01-01

    Molecular (nucleic acid)-based diagnostics tests have many advantages over immunoassays, particularly with regard to sensitivity and specificity. Most on-site diagnostic tests, however, are immunoassay-based because conventional nucleic acid-based tests (NATs) require extensive sample processing, trained operators, and specialized equipment. To make NATs more convenient, especially for point-of-care diagnostics and on-site testing, a simple plastic microfluidic cassette ("chip") has been developed for nucleic acid-based testing of blood, other clinical specimens, food, water, and environmental samples. The chip combines nucleic acid isolation by solid-phase extraction; isothermal enzymatic amplification such as LAMP (Loop-mediated AMPlification), NASBA (Nucleic Acid Sequence Based Amplification), and RPA (Recombinase Polymerase Amplification); and real-time optical detection of DNA or RNA analytes. The microfluidic cassette incorporates an embedded nucleic acid binding membrane in the amplification reaction chamber. Target nucleic acids extracted from a lysate are captured on the membrane and amplified at a constant incubation temperature. The amplification product, labeled with a fluorophore reporter, is excited with a LED light source and monitored in situ in real time with a photodiode or a CCD detector (such as available in a smartphone). For blood analysis, a companion filtration device that separates plasma from whole blood to provide cell-free samples for virus and bacterial lysis and nucleic acid testing in the microfluidic chip has also been developed. For HIV virus detection in blood, the microfluidic NAT chip achieves a sensitivity and specificity that are nearly comparable to conventional benchtop protocols using spin columns and thermal cyclers. PMID:25626529

  12. A comparison of nucleic acid content in Balantidium coli trophozoites from different isolates.

    PubMed

    Skotarczak, B; Zieliński, R

    1997-01-01

    Cytophotometric assays were performed on Balantidium coli trophozoites isolated from 30 pigs affected by acute balantidiasis (Group I) and from 30 pigs with symptom-free balantidiasis (Group II). Trophozoites from cultures obtained from Group I and II pig isolates were assayed for comparison. Comparative cytophotometric studies on nucleic acids of B. coli trophozoites isolated from acute and symptomless balantidiasis-affected pigs as well as from in vitro cultured trophozoites showed differences which could have resulted from differences between populations in the trophozoans under investigation. PMID:9643168

  13. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids.

    PubMed

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R; Malamud, Daniel; Corstjens, Paul L A M; Bau, Haim H

    2010-08-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid-based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids. PMID:20401537

  14. Nucleic Acid Isolation and Enrichment on a Microchip

    PubMed Central

    Kim, Jinho; Hilton, John P.; Yang, Kyung A.; Pei, Renjun; Stojanovic, Milan; Lin, Qiao

    2014-01-01

    This paper presents a microchip that isolates and enriches target-binding single-stranded DNA (ssDNA) from a randomized DNA mixture using a combination of solid-phase extraction and electrophoresis. Strands of ssDNA in a randomized mixture are captured via specific binding onto target-functionalized microbeads in a microchamber. The strands are further separated from impurities and enriched on-chip via electrophoresis. The microchip consists of two microchambers that are connected by a channel filled with agarose gel. In the isolation chamber, beads functionalized with human immunoglobulin E (IgE) are retained by a weir structure. An integrated heater elevates the temperature in the chamber to elute desired ssDNA from the beads, and electrophoretic transport of the DNA through the gel to the second chamber is accomplished by applying an electric potential difference between the two chambers. Experimental results show that ssDNA expressing binding affinity to IgE was captured and enriched from a sample of ssDNA with random sequences, demonstrating the potential of the microchip to enhance the sensitivity of ssDNA detection methods in dilute and complex biological samples. PMID:24729660

  15. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Waunakee, WI); Lyamichev, Victor I. (Madison, WI); Brow; Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  16. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  17. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor L. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  18. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  19. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  20. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids

    PubMed Central

    Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L. A. M.

    2010-01-01

    A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid—based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids. PMID:20401537

  1. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  2. Adsorption and isolation of nucleic acids on cellulose magnetic beads using a three-dimensional printed microfluidic chip.

    PubMed

    Zhang, Lei; Deraney, Rachel N; Tripathi, Anubhav

    2015-11-01

    While advances in genomics have enabled sensitive and highly parallel detection of nucleic acid targets, the isolation and extraction of the nucleic acids remain a critical bottleneck in the workflow. We present here a simple 3D printed microfluidic chip that allows for the vortex and centrifugation free extraction of nucleic acids. This novel microfluidic chip utilizes the presence of a water and oil interface to filter out the lysate contaminants. The pure nucleic acids, while bound on cellulose particles, are magnetically moved across the oil layer. We demonstrated efficient and rapid extraction of spiked Human Papillomavirus (HPV) 18 plasmids in specimen transport medium, in under 15 min. An overall extraction efficiency of 61% is observed across a range of HPV plasmid concentrations (5??10(1) to 5??10(6) copies/100??l). The magnetic, interfacial, and viscous drag forces inside the microgeometries of the chip are modeled. We have also developed a kinetics model for the adsorption of nucleic acids on cellulose functionalized superparamagnetic beads. We also clarify here the role of carrier nucleic acids in the adsorption and isolation of nucleic acids. Based on the various mechanistic insights detailed here, customized microfluidic devices can be designed to meet the range of current and emerging point of care diagnostics needs. PMID:26734116

  3. Simple, rapid method for direct isolation of nucleic acids from aquatic environments.

    PubMed

    Somerville, C C; Knight, I T; Straube, W L; Colwell, R R

    1989-03-01

    Direct isolation of nucleic acids from the environment may be useful in several respects, including the estimation of total biomass, detection of specific organisms and genes, estimations of species diversity, and cloning applications. We have developed a method that facilitates the concentration of microorganisms from aquatic samples and the extraction of their nucleic acids. Natural water samples of 350 to greater than 1,000 ml are concentrated on a single cylindrical filter membrane (type SVGS01015; Millipore Corp., Bedford, Mass.), and cell lysis and proteolysis are carried out within the filter housing. Crude, high-molecular-weight nucleic acid solutions are then drawn off the filter. These solutions can be immediately analyzed, concentrated, or purified, depending on the intended application. The method is simple, rapid, and economical and provides high-molecular-weight chromosomal DNA, plasmid DNA, and speciated RNAs which comigrate with 5S, 16S, and 23S rRNAs. The methods presented here should prove useful in studying both the ecology and the phylogeny of microbes that resist classical culture methods. PMID:2467621

  4. Simple, rapid method for direct isolation of nucleic acids from aquatic environments.

    PubMed Central

    Somerville, C C; Knight, I T; Straube, W L; Colwell, R R

    1989-01-01

    Direct isolation of nucleic acids from the environment may be useful in several respects, including the estimation of total biomass, detection of specific organisms and genes, estimations of species diversity, and cloning applications. We have developed a method that facilitates the concentration of microorganisms from aquatic samples and the extraction of their nucleic acids. Natural water samples of 350 to greater than 1,000 ml are concentrated on a single cylindrical filter membrane (type SVGS01015; Millipore Corp., Bedford, Mass.), and cell lysis and proteolysis are carried out within the filter housing. Crude, high-molecular-weight nucleic acid solutions are then drawn off the filter. These solutions can be immediately analyzed, concentrated, or purified, depending on the intended application. The method is simple, rapid, and economical and provides high-molecular-weight chromosomal DNA, plasmid DNA, and speciated RNAs which comigrate with 5S, 16S, and 23S rRNAs. The methods presented here should prove useful in studying both the ecology and the phylogeny of microbes that resist classical culture methods. Images PMID:2467621

  5. Microfluidic platform for isolating nucleic acid targets using sequence specific hybridization

    PubMed Central

    Wang, Jingjing; Morabito, Kenneth; Tang, Jay X.; Tripathi, Anubhav

    2013-01-01

    The separation of target nucleic acid sequences from biological samples has emerged as a significant process in today's diagnostics and detection strategies. In addition to the possible clinical applications, the fundamental understanding of target and sequence specific hybridization on surface modified magnetic beads is of high value. In this paper, we describe a novel microfluidic platform that utilizes a mobile magnetic field in static microfluidic channels, where single stranded DNA (ssDNA) molecules are isolated via nucleic acid hybridization. We first established efficient isolation of biotinylated capture probe (BP) using streptavidin-coated magnetic beads. Subsequently, we investigated the hybridization of target ssDNA with BP bound to beads and explained these hybridization kinetics using a dual-species kinetic model. The number of hybridized target ssDNA molecules was determined to be about 6.5 times less than that of BP on the bead surface, due to steric hindrance effects. The hybridization of target ssDNA with non-complementary BP bound to bead was also examined, and non-specific hybridization was found to be insignificant. Finally, we demonstrated highly efficient capture and isolation of target ssDNA in the presence of non-target ssDNA, where as low as 1% target ssDNA can be detected from mixture. The microfluidic method described in this paper is significantly relevant and is broadly applicable, especially towards point-of-care biological diagnostic platforms that require binding and separation of known target biomolecules, such as RNA, ssDNA, or protein. PMID:24404041

  6. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1997-04-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided. 7 figs.

  7. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N. (San Ramon, CA); Straume, Tore (Tracy, CA); Bogen, Kenneth T. (Walnut Creek, CA)

    1997-01-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided.

  8. Nucleic Acids for Computation

    NASA Astrophysics Data System (ADS)

    MacDonald, Joanne; Stojanovic, Milan N.

    Nucleic acids have many features that are ideal for molecular computation. Using nucleic acids, we have constructed a full set of molecular logic gates, with modular stem-loop-controlled deoxyribozymes as switches and single-stranded oligonucleotides as inputs and outputs. These gates have been combined to form basic computational circuits, including a half- and a full-adder, and can also be assembled into automata to perform complex computational tasks such as game playing. Our most advanced automaton to-date integrates more than 100 nucleic acid logic gates to play a complete game of tic-tac-toe encompassing 76 possible game plays. Inputs and outputs can also be coupled with upstream and downstream components, such as aptamers, sensors, secondary gate activation, and small-molecule release, indicating the potential for nucleic acid computation in the engineering of autonomous therapeutic and diagnostic molecular devices.

  9. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination. PMID:26227050

  10. Calorimetry of Nucleic Acids.

    PubMed

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-01-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (Cp ex ) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of Cp ex versus T, one can derive the following information: the transition enthalpy (?H), entropy (?S), free energy (?G), and heat capacity (?Cp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (?H), the equilibrium association constant (K), and thus the free energy of association (?G). Once ?H and ?G are known, ?S can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ?Cp for the association reaction from the temperature dependence of ?H. 2015 by John Wiley & Sons, Inc. PMID:26623974

  11. Automated nucleic acids isolation using paramagnetic microparticles coupled with electrochemical detection.

    PubMed

    Huska, Dalibor; Hubalek, Jaromir; Adam, Vojtech; Vajtr, David; Horna, Ales; Trnkova, Libuse; Havel, Ladislav; Kizek, Rene

    2009-07-15

    Easy, efficient and low demanding separation of mRNA from biological material is needed to study gene expression and to use in chip technologies. It is common knowledge that each mRNA molecule contains sequence of 25 adenines. This feature can be used for binding mRNA on the surface of the particles coated by thymine chains. The present work reports on suggesting and optimizing of mRNA separation and detection from biological material via paramagnetic microparticles coupled with electrochemical detection. Primarily we optimized cyclic and square wave voltammetric conditions to detect poly(A), which was used as standard to mimic behaviour of mRNA. Under the optimized square wave voltammetric conditions (frequency 280 Hz, accumulation time 200 s, supporting electrolyte and its temperature: acetate buffer 4.6 and 35 degrees C) we estimated detection limit down to 1 ng of poly(A) per ml. To enhance effectiveness and repeatability of isolation of nucleic acid automated approach for rinsing and hybridizing was proposed. We optimized the whole procedure and experimental conditions. Using automated way of isolation and under optimized conditions the yield of poly(A) (isolated concentration of poly(A)/given concentration of poly(A)*100) was approximately 75%. The suggested and optimized method for poly(A) isolation and detection was utilized for the analysis of brain tissues of patients with traumatic brain injury. The total amount of isolated mRNA varied from 40 to 760 g of mRNA per g of brain tissue. The isolation of mRNA from six samples per run was not longer than 2.5h. Moreover, we applied the optimized procedure on fully automated pipetting instrument to isolate mRNA. The instrument was successfully tested on the analysis of extracts from roots of maize plants treated with cadmium(II) ions. PMID:19559897

  12. Rotary-based platform with disposable fluidic modules for automated isolation of nucleic acids.

    PubMed

    Mamaev, Dmitry; Shaskolskiy, Boris; Dementieva, Ekaterina; Khodakov, Dmitry; Yurasov, Dmitry; Yurasov, Roman; Zimenkov, Danila; Mikhailovich, Vladimir; Zasedatelev, Alexander; Gryadunov, Dmitry

    2015-02-01

    We describe the development and evaluation of a rotary-based platform with multiple disposable fluidic modules for simultaneous automatic nucleic acid (NA) isolation from up to 24 biological samples. The procedure is performed inside insulated individual disposable modules, which minimizes both the risk of infection of personnel and laboratory cross-contamination. Each module is a segment of a circular cylinder containing a leak-proof inlet port for sample input, reservoirs with lyophilized chemicals and solvents, fluidic channels, stoppers, valves, a waste reservoir and an outlet port equipped with the standard micro test tube for NA collection. The entire platform, apart from the rotor that accommodates 24 modules, consists of functional elements that provide spinning of the rotor, reagent mixing, pressure delivery, and heating of reaction mixtures. The transfer of the reaction mixtures inside the modules is performed either with rotation of the rotor or with excessive air pressure applied to the module's reservoirs. The entire process takes less than 40 min, starting from the sample loading to the recovery of the purified NA, and it allows NA isolation both from bacterial cells and viral particles. The feasibility and reproducibility of the developed platform was demonstrated by the NA isolation from suspensions of Bacillus thuringiensis and Mycobacterium tuberculosis cells within a concentration range of 10(8) to 10(2) cells/ml. Isolation of NAs from blood plasma samples with varying concentration of hepatitis B and C viruses from 10(7) to 10(2) particles/ml were also successful. The purity and integrity of the extracted NAs were both reliable for performing quantitative PCR. PMID:25653066

  13. Method and Apparatus for Automated Isolation of Nucleic Acids from Small Cell Samples

    NASA Technical Reports Server (NTRS)

    Sundaram, Shivshankar; Prabhakarpandian, Balabhaskar; Pant, Kapil; Wang, Yi

    2014-01-01

    RNA isolation is a ubiquitous need, driven by current emphasis on microarrays and miniaturization. With commercial systems requiring 100,000 to 1,000,000 cells for successful isolation, there is a growing need for a small-footprint, easy-to-use device that can harvest nucleic acids from much smaller cell samples (1,000 to 10,000 cells). The process of extraction of RNA from cell cultures is a complex, multi-step one, and requires timed, asynchronous operations with multiple reagents/buffers. An added complexity is the fragility of RNA (subject to degradation) and its reactivity to surface. A novel, microfluidics-based, integrated cartridge has been developed that can fully automate the complex process of RNA isolation (lyse, capture, and elute RNA) from small cell culture samples. On-cartridge cell lysis is achieved using either reagents or high-strength electric fields made possible by the miniaturized format. Traditionally, silica-based, porous-membrane formats have been used for RNA capture, requiring slow perfusion for effective capture. In this design, high efficiency capture/elution are achieved using a microsphere-based "microfluidized" format. Electrokinetic phenomena are harnessed to actively mix microspheres with the cell lysate and capture/elution buffer, providing important advantages in extraction efficiency, processing time, and operational flexibility. Successful RNA isolation was demonstrated using both suspension (HL-60) and adherent (BHK-21) cells. Novel features associated with this development are twofold. First, novel designs that execute needed processes with improved speed and efficiency were developed. These primarily encompass electric-field-driven lysis of cells. The configurations include electrode-containing constructs, or an "electrode-less" chip design, which is easy to fabricate and mitigates fouling at the electrode surface; and the "fluidized" extraction format based on electrokinetically assisted mixing and contacting of microbeads in a shape-optimized chamber. A secondary proprietary feature is in the particular layout integrating these components to perform the desired operation of RNA isolation. Apart from a novel functional capability, advantages of the innovation include reduced or eliminated use of toxic reagents, and operator-independent extraction of RNA.

  14. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  15. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  16. Invasive cleavage of nucleic acids

    SciTech Connect

    Prudent, J.R.; Hall, J.G.; Lyamichev, V.I.; Brow, M.A.D.; Dahlberg, J.E.

    1999-11-16

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations.

  17. Invasive cleavage of nucleic acids

    DOEpatents

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  18. Immunomodulatory spherical nucleic acids.

    PubMed

    Radovic-Moreno, Aleksandar F; Chernyak, Natalia; Mader, Christopher C; Nallagatla, Subbarao; Kang, Richard S; Hao, Liangliang; Walker, David A; Halo, Tiffany L; Merkel, Timothy J; Rische, Clayton H; Anantatmula, Sagar; Burkhart, Merideth; Mirkin, Chad A; Gryaznov, Sergei M

    2015-03-31

    Immunomodulatory nucleic acids have extraordinary promise for treating disease, yet clinical progress has been limited by a lack of tools to safely increase activity in patients. Immunomodulatory nucleic acids act by agonizing or antagonizing endosomal toll-like receptors (TLR3, TLR7/8, and TLR9), proteins involved in innate immune signaling. Immunomodulatory spherical nucleic acids (SNAs) that stimulate (immunostimulatory, IS-SNA) or regulate (immunoregulatory, IR-SNA) immunity by engaging TLRs have been designed, synthesized, and characterized. Compared with free oligonucleotides, IS-SNAs exhibit up to 80-fold increases in potency, 700-fold higher antibody titers, 400-fold higher cellular responses to a model antigen, and improved treatment of mice with lymphomas. IR-SNAs exhibit up to eightfold increases in potency and 30% greater reduction in fibrosis score in mice with nonalcoholic steatohepatitis (NASH). Given the clinical potential of SNAs due to their potency, defined chemical nature, and good tolerability, SNAs are attractive new modalities for developing immunotherapies. PMID:25775582

  19. Chip-based sequencing nucleic acids

    SciTech Connect

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  20. Functional nucleic acid probes and uses thereof

    DOEpatents

    Nilsen-Hamilton, Marit

    2006-10-03

    The present invention provides functional nucleic acid probes, and methods of using functional nucleic acid probes, for binding a target to carry out a desired function. The probes have at least one functional nucleic acid, at least one regulating nucleic acid, and at least one attenuator. The functional nucleic acid is maintained in an inactive state by the attenuator and activated by the regulating nucleic acid only in the presence of a regulating nucleic acid target. In its activated state the functional nucleic acid can bind to its target to carry out a desired function, such as generating a signal, cleaving a nucleic acid, or catalyzing a reaction.

  1. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L. (Boston, MA); Yaar, Ron (Brookline, MA); Szafranski, Przemyslaw (Boston, MA); Cantor, Charles R. (Boston, MA)

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  2. Nucleic acid detection methods

    DOEpatents

    Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

  3. Nucleic acid based molecular devices.

    PubMed

    Krishnan, Yamuna; Simmel, Friedrich C

    2011-03-28

    In biology, nucleic acids are carriers of molecular information: DNA's base sequence stores and imparts genetic instructions, while RNA's sequence plays the role of a messenger and a regulator of gene expression. As biopolymers, nucleic acids also have exciting physicochemical properties, which can be rationally influenced by the base sequence in myriad ways. Consequently, in recent years nucleic acids have also become important building blocks for bottom-up nanotechnology: as molecules for the self-assembly of molecular nanostructures and also as a material for building machinelike nanodevices. In this Review we will cover the most important developments in this growing field of nucleic acid nanodevices. We also provide an overview of the biochemical and biophysical background of this field and the major "historical" influences that shaped its development. Particular emphasis is laid on DNA molecular motors, molecular robotics, molecular information processing, and applications of nucleic acid nanodevices in biology. PMID:21432950

  4. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce (Pullman, WA); Burke, Charles Cullen (Moscow, ID)

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  5. A Simpler Nucleic Acid

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie

    2000-01-01

    It has been supposed that for a nucleic acid analog to pair with RNA it must, like RNA, have a backbone with at least a sixatom repeat; a shorter backbone presumably would not stretch far enough to bind RNA properly. The Eschenmoser group has shown, however, that this first impression is incorrect.As they report in their new paper, Eschenmoser and co-workers ( I ) have now synthesized a substantial number of these polymers, which are called (L)-a-threofuranosyl oligonucleotides or TNAs. They are composed of bases linked to a threose sugar-phosphate backbone, with phosphodiester bonds connecting the nucleotides. The investigators discovered that pairs of complementary TNAs do indeed form stable Watson-Crick double helices and, perhaps more importantly, that TNAs form stable double helices with complementary RNAs and DNAs.

  6. Nucleic acid arrays and methods of synthesis

    DOEpatents

    Sabanayagam, Chandran R. (Allston, MA); Sano, Takeshi (Needham, MA); Misasi, John (Syracuse, NY); Hatch, Anson (Seattle, WA); Cantor, Charles (Del Mar, CA)

    2001-01-01

    The present invention generally relates to high density nucleic acid arrays and methods of synthesizing nucleic acid sequences on a solid surface. Specifically, the present invention contemplates the use of stabilized nucleic acid primer sequences immobilized on solid surfaces, and circular nucleic acid sequence templates combined with the use of isothermal rolling circle amplification to thereby increase nucleic acid sequence concentrations in a sample or on an array of nucleic acid sequences.

  7. Direct Isolation of Purines and Pyrimidines from Nucleic Acids Using Sublimation

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel P.; Schubert, Michael; Bada, Jeffrey L.

    2003-01-01

    A sublimation technique was developed to isolate purines and pyrimidines directly from lambda-deoxyribonucleic acid (lambda-DNA) and Escherichia coli cells. The sublimation of adenine, cytosine, guanine, and thymine from lambda-DNA was tested under reduced pressure (approx. 0.5 Torr) at temperatures of >150 C. With the exception of guanine, approximately 60 -75% of each base was sublimed directly from the lambda-DNA and recovered on a coldfinger of the sublimation apparatus after heating to 450 C. Several nucleobases including adenine, cytosine, thymine, and uracil were also recovered from E. coli bacteria after heating the cells to the same temperature, although some thermal decomposition of the bases also occurred. These results demonstrate the feasibility of using sublimation to isolate purines and pyrimidines from native E. coli DNA and RNA without any chemical treatment of the cells.

  8. Identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2005-02-08

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  9. Isothermal Amplification of Nucleic Acids.

    PubMed

    Zhao, Yongxi; Chen, Feng; Li, Qian; Wang, Lihua; Fan, Chunhai

    2015-11-25

    Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed. PMID:26551336

  10. [Circulating nucleic acids and infertility].

    PubMed

    Scalici, E; Mullet, T; Ferrires Hoa, A; Gala, A; Loup, V; Anahory, T; Belloc, S; Hamamah, S

    2015-09-01

    Circulating nucleic acids (cell-free DNA and microRNAs) have for particularity to be easily detectable in the biological fluids of the body. Therefore, they constitute biomarkers of interest in female and male infertility care. Indeed, in female, they can be used to detect ovarian reserve disorders (polycystic ovary syndrome and low functional ovarian reserve) as well as to assess follicular microenvironment quality. Moreover, in men, their expression levels can vary in case of spermatogenesis abnormalities. Finally, circulating nucleic acids have also the ability to predict successfully the quality of in vitro embryo development. Their multiple contributions during assisted reproductive technology (ART) make of them biomarkers of interest, for the development of new diagnostic and/or prognostic tests, applied to our specialty. Circulating nucleic acids would so offer the possibility of personalized medical care for infertile couples in ART. PMID:26298813

  11. Anions in Nucleic Acid Crystallography.

    PubMed

    D'Ascenzo, Luigi; Auffinger, Pascal

    2016-01-01

    Nucleic acid crystallization buffers contain a large variety of chemicals fitting specific needs. Among them, anions are often solely considered for pH-regulating purposes and as cationic co-salts while their ability to directly bind to nucleic acid structures is rarely taken into account. Here we review current knowledge related to the use of anions in crystallization buffers along with data on their biological prevalence. Chloride ions are frequently identified in crystal structures but display low cytosolic concentrations. Hence, they are thought to be distant from nucleic acid structures in the cell. Sulfate ions are also frequently identified in crystal structures but their localization in the cell remains elusive. Nevertheless, the characterization of the binding properties of these ions is essential for better interpreting the solvent structure in crystals and consequently, avoiding mislabeling of electron densities. Furthermore, understanding the binding properties of these anions should help to get clues related to their potential effects in crowded cellular environments. PMID:26227054

  12. High speed nucleic acid sequencing

    DOEpatents

    Korlach, Jonas (Ithaca, NY); Webb, Watt W. (Ithaca, NY); Levene, Michael (Ithaca, NY); Turner, Stephen (Ithaca, NY); Craighead, Harold G. (Ithaca, NY); Foquet, Mathieu (Ithaca, NY)

    2011-05-17

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid. Each type of labeled nucleotide comprises an acceptor fluorophore attached to a phosphate portion of the nucleotide such that the fluorophore is removed upon incorporation into a growing strand. Fluorescent signal is emitted via fluorescent resonance energy transfer between the donor fluorophore and the acceptor fluorophore as each nucleotide is incorporated into the growing strand. The sequence is deduced by identifying which base is being incorporated into the growing strand.

  13. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M. (Brookline, MA)

    2002-01-01

    A method of producing a plurality of a nucleic acid array, comprising, in order, the steps of amplifying in situ nucleic acid molecules of a first randomly-patterned, immobilized nucleic acid array comprising a heterogeneous pool of nucleic acid molecules affixed to a support, transferring at least a subset of the nucleic acid molecules produced by such amplifying to a second support, and affixing the subset so transferred to the second support to form a second randomly-patterned, immobilized nucleic acid array, wherein the nucleic acid molecules of the second array occupy positions that correspond to those of the nucleic acid molecules from which they were amplified on the first array, so that the first array serves as a template to produce a plurality, is disclosed.

  14. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-06-06

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  15. Method for sequencing nucleic acid molecules

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2006-05-30

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  16. Nucleic acid delivery with microbubbles and ultrasound

    PubMed Central

    Rychak, Joshua J.; Klibanov, Alexander L.

    2014-01-01

    Nucleic acid-based therapy is a growing field of drug delivery research. Although ultrasound has been suggested to enhance transfection decades ago, it took a combination of ultrasound with nucleic acid carrier systems (microbubbles, liposomes, polyplexes, viral carriers) to achieve reasonable nucleic acid delivery efficacy. Microbubbles serve as foci for local deposition of ultrasound energy near the target cell, and greatly enhance sonoporation. Major advantage of this approach is in the minimal transfection in the non-insonated non-target tissues. Microbubbles can be simply co-administered with the nucleic acid carrier or can be modified to carry nucleic acid themselves. Liposomes with embedded gas or gas precursor particles can also be used to carry nucleic acid, release and deliver it by the ultrasound trigger. Successful testing in a wide variety of animal models (myocardium, solid tumors, skeletal muscle, pancreas) proves the potential usefulness of this technique for nucleic acid drug delivery. PMID:24486388

  17. Nucleic acid delivery with microbubbles and ultrasound.

    PubMed

    Rychak, Joshua J; Klibanov, Alexander L

    2014-06-01

    Nucleic acid-based therapy is a growing field of drug delivery research. Although ultrasound has been suggested to enhance transfection decades ago, it took a combination of ultrasound with nucleic acid carrier systems (microbubbles, liposomes, polyplexes, and viral carriers) to achieve reasonable nucleic acid delivery efficacy. Microbubbles serve as foci for local deposition of ultrasound energy near the target cell, and greatly enhance sonoporation. The major advantage of this approach is in the minimal transfection in the non-insonated non-target tissues. Microbubbles can be simply co-administered with the nucleic acid carrier or can be modified to carry nucleic acid themselves. Liposomes with embedded gas or gas precursor particles can also be used to carry nucleic acid, release and deliver it by the ultrasound trigger. Successful testing in a wide variety of animal models (myocardium, solid tumors, skeletal muscle, and pancreas) proves the potential usefulness of this technique for nucleic acid drug delivery. PMID:24486388

  18. Pairing of isolated nucleic-acid bases in the absence of the DNA backbone

    NASA Astrophysics Data System (ADS)

    Nir, Eyal; Kleinermanns, Karl; de Vries, Mattanjah S.

    2000-12-01

    The two intertwined strands of DNA are held together through base pairing-the formation of hydrogen bonds between bases located opposite each other on the two strands. DNA replication and transcription involve the breaking and re-forming of these hydrogen bonds, but it is difficult to probe these processes directly. For example, conventional DNA spectroscopy is dominated by solvent interactions, crystal modes and collective modes of the DNA backbone; gas-phase studies, in contrast, can in principle measure interactions between individual molecules in the absence of external effects, but require the vaporization of the interacting species without thermal degradation. Here we report the generation of gas-phase complexes comprising paired bases, and the spectroscopic characterization of the hydrogen bonding in isolated guanine-cytosine (G-C) and guanine-guanine (G-G) base pairs. We find that the gas-phase G-C base pair adopts a single configuration, which may be Watson-Crick, whereas G-G exists in two different configurations, and we see evidence for proton transfer in the G-C pair, an important step in radiation-induced DNA damage pathways. Interactions between different bases and between bases and water molecules can also be characterized by our approach, providing stringent tests for high-level ab initio computations that aim to elucidate the fundamental aspects of nucleotide interactions.

  19. Nucleic acids, compositions and uses thereof

    DOEpatents

    Preston, III, James F. (Micanopy, FL); Chow, Virginia (Gainesville, FL); Nong, Guang (Gainesville, FL); Rice, John D. (Gainesville, FL); St. John, Franz J. (Baltimore, MD)

    2012-02-21

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  20. Nucleic acid compositions and the encoding proteins

    SciTech Connect

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  1. CHTN :: Nucleic Acid Isolation

    Cancer.gov

    Skip to Main Content CHTN Home | Admin Login Connect with the CHTN About Us What is the CHTN? Why use the CHTN? CHTN Divisions History of the CHTN Biospecimens We Provide Biospecimen Collection & Type Biospecimen Processing, Preservation & Shipping Quality

  2. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.

    1996-10-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.

  3. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1996-01-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  4. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1999-10-12

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  5. Amyloid-Associated Nucleic Acid Hybridisation

    PubMed Central

    Braun, Sebastian; Humphreys, Christine; Fraser, Elizabeth; Brancale, Andrea; Bochtler, Matthias; Dale, Trevor C.

    2011-01-01

    Nucleic acids promote amyloid formation in diseases including Alzheimer's and Creutzfeldt-Jakob disease. However, it remains unclear whether the close interactions between amyloid and nucleic acid allow nucleic acid secondary structure to play a role in modulating amyloid structure and function. Here we have used a simplified system of short basic peptides with alternating hydrophobic and hydrophilic amino acid residues to study nucleic acid - amyloid interactions. Employing biophysical techniques including X-ray fibre diffraction, circular dichroism spectroscopy and electron microscopy we show that the polymerized charges of nucleic acids concentrate and enhance the formation of amyloid from short basic peptides, many of which would not otherwise form fibres. In turn, the amyloid component binds nucleic acids and promotes their hybridisation at concentrations below their solution Kd, as shown by time-resolved FRET studies. The self-reinforcing interactions between peptides and nucleic acids lead to the formation of amyloid nucleic acid (ANA) fibres whose properties are distinct from their component polymers. In addition to their importance in disease and potential in engineering, ANA fibres formed from prebiotically-produced peptides and nucleic acids may have played a role in early evolution, constituting the first entities subject to Darwinian evolution. PMID:21625537

  6. Double stranded nucleic acid biochips

    DOEpatents

    Chernov, Boris; Golova, Julia

    2006-05-23

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  7. Nucleic Acid Packaging in Viruses

    PubMed Central

    Speir, Jeffrey A.; Johnson, John E.

    2011-01-01

    We review recent literature describing protein nucleic acid interactions and nucleic acid organization in viruses. The nature of the viral genome determines its overall organization and its interactions with the capsid protein. Genomes composed of single strand (ss) RNA and DNA are highly flexible and, in some cases, adapt to the symmetry of the particle-forming protein to show repeated, sequence independent, nucleoprotein interactions. Genomes composed of double stranded (ds) DNA do not interact strongly with the container due to their intrinsic stiffness, but form well-organized layers in virions. Assembly of virions with ssDNA and ssRNA genomes usually occurs through a cooperative condensation of the protein and genome, while dsDNA viruses usually pump the genome into a preformed capsid with a strong, virally encoded, molecular motor complex. We present data that suggests the packing density of ss genomes and ds genomes are comparable, but the latter exhibit far higher pressures due to their stiffness. PMID:22277169

  8. Electronic Detection of Nucleic Acids

    PubMed Central

    Umek, Robert M.; Lin, Sharon W.; Vielmetter, Jost; Terbrueggen, Robert H.; Irvine, Bruce; Yu, C. J.; Kayyem, Jon Faiz; Yowanto, Handy; Blackburn, Gary F.; Farkas, Daniel H.; Chen, Yin-Peng

    2001-01-01

    A novel platform for the electronic detection of nucleic acids on microarrays is introduced and shown to perform well as a selective detection system for applications in molecular diagnostics. A gold electrode in a printed circuit board is coated with a self-assembled monolayer (SAM) containing DNA capture probes. Unlabeled nucleic acid targets are immobilized on the surface of the SAM through sequence-specific hybridization with the DNA capture probe. A separate signaling probe, containing ferrocene-modified nucleotides and complementary to the target in the region adjoining the capture probe binding site, is held in close proximity to the SAM in a sandwich complex. The SAM allows electron transfer between the immobilized ferrocenes and the gold, while insulating the electrode from soluble redox species, including unbound signaling probes. Here, we demonstrate sequence-specific detection of amplicons after simple dilution of the reaction product into hybridization buffer. In addition, single nucleotide polymorphism discrimination is shown. A genotyping chip for the C282Y single nucleotide polymorphism associated with hereditary hemochromatosis is used to confirm the genotype of six patients DNA. In addition, a gene expression-monitoring chip is described that surveys five genes that are differentially regulated in the cellular apoptosis response. Finally, custom modification of individual electrodes through sequence-specific hybridization demonstrates the potential of this system for infectious disease diagnostics. The versatility of the electronic detection platform makes it suitable for multiple applications in diagnostics and pharmacogenetics. PMID:11333303

  9. Extraction of nucleic acids from bone.

    PubMed

    Hughes, Alun; Stewart, Tracy L; Mann, Val

    2012-01-01

    Here, we present methods for extracting DNA and RNA from samples of whole bone tissue and culture bone cells and describe methods quantitative and qualitative measurement of the extracted nucleic acids. These protocols described provide high-quality nucleic acids suitable for downstream applications such as quantitative PCR and microarrays. PMID:22130934

  10. Nucleic acids as therapeutic agents.

    PubMed

    Alvarez-Salas, Luis M

    2008-01-01

    Therapeutic nucleic acids (TNAs) and its precursors are applied to treat several pathologies and infections. TNA-based therapy has different rationales and mechanisms and can be classified into three main groups: 1) Therapeutic nucleotides and nucleosides; 2) Therapeutic oligonucleotides; and 3) Therapeutic polynucleotides. This review will focus in those TNAs that have reached clinical trials with anticancer and antiviral protocols, the two most common applications of TNAs. Although therapeutic nucleotides and nucleosides that interfere with nucleic acid metabolism and DNA polymerization have been successfully used as anticancer and antiviral drugs, they often produce toxic secondary effects related to dosage and continuous use. The use of oligonucleotides such as ribozyme and antisense oligodeoxynucleotides (AS-ODNs) showed promise as therapeutic moieties but faced several issues such as nuclease sensitivity, off-target effects and efficient delivery. Nevertheless, immunostimulatory oligodeoxynucleotides and AS-ODNs represent the most successful group of therapeutic oligonucleotides in the clinic. A newer group of therapeutic oligonucleotides, the aptamers, is rapidly advancing towards early detection and treatment alternatives the have reached the commercial interest. Despite the very high in vitro efficiency of small interfering RNAs (siRNAs) they present issues with intracellular target accessibility, specificity and delivery. DNA vaccines showed great promise, but they resulted in very poor responses in the clinic and further development is uncertain. Despite their many issues, the exquisite specificity and versatility of therapeutic oligonucleotides attracts a great deal of research and resources that will certainly convert them in the TNA of choice for treating cancer and viral diseases in the near future. PMID:18991725

  11. Virion nucleic acid of Ebola virus.

    PubMed Central

    Regnery, R L; Johnson, K M; Kiley, M P

    1980-01-01

    The virion nucleic acid of Ebola virus consists of a single-stranded RNA with a molecular weight of approximately 4.0 x 10(6). The virion RNA did not bind to oligodeoxythymidylic acid-cellulose under conditions known to bind RNAs rich in polyadenylic acid and was not infectious under conditions which yielded infectious RNA from Sindbis virus, suggesting that Ebola virus virion nucleic acid is a negative-stranded RNA. PMID:7431486

  12. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  13. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    SciTech Connect

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  14. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2010-06-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  15. Sequence Comparison and Phylogeny of Nucleotide Sequence of Coat Protein and Nucleic Acid Binding Protein of a Distinct Isolate of Shallot virus X from India.

    PubMed

    Majumder, S; Baranwal, V K

    2011-06-01

    Shallot virus X (ShVX), a type species in the genus Allexivirus of the family Alfaflexiviridae has been associated with shallot plants in India and other shallot growing countries like Russia, Germany, Netherland, and New Zealand. Coat protein (CP) and nucleic acid binding protein (NB) region of the virus was obtained by reverse transcriptase polymerase chain reaction from scales leaves of shallot bulbs. The partial cDNA contained two open reading frames encoding proteins of molecular weights of 28.66 and 14.18 kDa belonging to Flexi_CP super-family and viral NB super-family, respectively. The percent identity and phylogenetic analysis of amino acid sequences of CP and NB region of the virus associated with shallot indicated that it was a distinct isolate of ShVX. PMID:23637504

  16. Dendrimers as Nanovectors for Nucleic Acid Delivery

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoxuan; Wang, Qi; Peng, Ling

    2013-09-01

    Nucleic acid based gene therapy holds great promise in the treatment of various diseases. However, the success of both DNA- and siRNAbased gene therapies depends critically on safe and efficient nucleic acid delivery systems. Owing to their well-defined structure and multivalent cooperativity, dendrimers have attracted particular attention as ideal nanocarriers for nucleic acid delivery. The present chapter highlights the current status of dendrimers as non-viral nanovectors for both DNA and siRNA delivery, focusing on the different dendrimers investigated for their delivery efficiency with respect to structural alterations in the view to developing safe and efficient nanovectors for gene therapy application.

  17. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-03-24

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. 14 figs.

  18. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration.

  19. Nucleic acids, proteins, and chirality

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Profy, A. T.; Walstrum, S. A.; Needels, M. C.; Bulack, S. C.; Lo, K. M.

    1984-01-01

    The present investigation is concerned with experimental results related, in one case, to the chirality of nucleotides, and, in another case, to the possibility of a link between the chirality of nucleic acids, and that of peptides. It has been found that aminoacylation of the 'internal' hydroxyl group of a dinucleoside monophosphate can occur stereoselectively. However, this reaction has not yet been made a part of a working peptide synthesis scheme. The formation and cleavage of oligonucleotides is considered. In the event of the formation of a helical complex between the oligonucleotide and the polymer, 1-prime,5-prime-bonds in the oligomer are found to become more resistant towards cleavage. The conditions required for peptide bond formation are examined, taking into account the known structures of RNA and possible mechanisms for prebiotic peptide bond formation. The possibility is considered that the 2-prime,5-prime-internucleotide linkage could have played an important part in the early days of biological peptide synthesis.

  20. Replica amplification of nucleic acid arrays

    DOEpatents

    Church, George M. (Brookline, MA); Mitra, Robi D. (Chestnut Hill, MA)

    2010-08-31

    Disclosed are improved methods of making and using immobilized arrays of nucleic acids, particularly methods for producing replicas of such arrays. Included are methods for producing high density arrays of nucleic acids and replicas of such arrays, as well as methods for preserving the resolution of arrays through rounds of replication. Also included are methods which take advantage of the availability of replicas of arrays for increased sensitivity in detection of sequences on arrays. Improved methods of sequencing nucleic acids immobilized on arrays utilizing single copies of arrays and methods taking further advantage of the availability of replicas of arrays are disclosed. The improvements lead to higher fidelity and longer read lengths of sequences immobilized on arrays. Methods are also disclosed which improve the efficiency of multiplex PCR using arrays of immobilized nucleic acids.

  1. NMR studies of nucleic acid dynamics

    PubMed Central

    Al-Hashimi, Hashim M.

    2014-01-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner. PMID:24149218

  2. Methods for analyzing nucleic acid sequences

    DOEpatents

    Korlach, Jonas (Ithaca, NY); Webb, Watt W. (Ithaca, NY); Levene, Michael (Ithaca, NY); Turner, Stephen (Ithaca, NY); Craighead, Harold G. (Ithaca, NY); Foquet, Mathieu (Ithaca, NY)

    2011-05-17

    The present invention is directed to a method of sequencing a target nucleic acid. The method provides a complex comprising a polymerase enzyme, a target nucleic acid molecule, and a primer, wherein the complex is immobilized on a support Fluorescent label is attached to a terminal phosphate group of the nucleotide or nucleotide analog. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The time duration of the signal from labeled nucleotides or nucleotide analogs that become incorporated is distinguished from freely diffusing labels by a longer retention in the observation volume for the nucleotides or nucleotide analogs that become incorporated than for the freely diffusing labels.

  3. Amplification of trace amounts of nucleic acids

    DOEpatents

    Church, George M. (Brookline, MA); Zhang, Kun (Brighton, MA)

    2008-06-17

    Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).

  4. In vitro evolution of nucleic acids

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1994-01-01

    The author reviews recent published reports of in vitro selection and evolution of nucleic acids. These nucleic acids will bind to a target ligand or catalyze a specific chemical reaction. The terms aptamers and systematic evolution of ligands by exponential enrichment (SELEX) are explained. The review focuses on protein binders, small molecule binders, and ribozymes obtained by directed evolution. The reference list identifies articles of special or outstanding interest.

  5. Analysis of nucleic acids by FTICR MS.

    PubMed

    Hofstadler, Steven A; Sannes-Lowery, Kristin A; Hannis, James C

    2005-01-01

    Fourier transform ion cyclotron resonance (FTICR) mass spectrometry represents a unique platform with which to study nucleic acids and non-covalent complexes containing nucleic acids moieties. In particular, systems in which very high mass measurement accuracy is required, very complex mixtures are to be analyzed, or very limited amounts of sample are available may be uniquely suited to interrogation by FTICR mass spectrometry. Although the FTICR platform is now broadly deployed as an integral component of many high-end proteomics-based research efforts, momentum is still building for the application of the platform towards nucleic acid-based analyses. In this work, we review fundamental aspects of nucleic acid analysis by FTICR, focusing primarily on the analysis of DNA oligonucleotides but also describing applications related to the characterization of RNA constructs. The goal of this review article is to give the reader a sense of the breadth and scope of the status quo of FTICR analysis of nucleic acids and to summarize a few recently published reports in which researchers have exploited the performance attributes of FTICR to characterize nucleic acids in support of basic and applied research disciplines including genotyping, drug discovery, and forensic analyses. PMID:15389854

  6. Universal nucleic acids sample preparation method for cells, spores and their mixture

    DOEpatents

    Bavykin, Sergei (Darien, IL)

    2011-01-18

    The present invention relates to a method for extracting nucleic acids from biological samples. More specifically the invention relates to a universal method for extracting nucleic acids from unidentified biological samples. An advantage of the presently invented method is its ability to effectively and efficiently extract nucleic acids from a variety of different cell types including but not limited to prokaryotic or eukaryotic cells and/or recalcitrant organisms (i.e. spores). Unlike prior art methods which are focused on extracting nucleic acids from vegetative cell or spores, the present invention effectively extracts nucleic acids from spores, multiple cell types or mixtures thereof using a single method. Important that the invented method has demonstrated an ability to extract nucleic acids from spores and vegetative bacterial cells with similar levels effectiveness. The invented method employs a multi-step protocol which erodes the cell structure of the biological sample, isolates, labels, fragments nucleic acids and purifies labeled samples from the excess of dye.

  7. Probe kit for identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A. (Palo Alto, CA); Lipshutz, Robert J. (Palo Alto, CA); Huang, Xiaohua (Mt. View, CA)

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  8. Hybridization and sequencing of nucleic acids using base pair mismatches

    DOEpatents

    Fodor, Stephen P. A. (Palo Alto, CA); Lipshutz, Robert J. (Palo Alto, CA); Huang, Xiaohua (Mt. View, CA)

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  9. Method of Identifying a Base in a Nucleic Acid

    DOEpatents

    Fodor, Stephen P. A. (Palo Alto, CA); Lipshutz, Robert J. (Palo Alto, CA); Huang, Xiaohua (Mt. View, CA)

    1999-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  10. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  11. Microbial Nucleic Acid Sensing in Oral and Systemic Diseases.

    PubMed

    Crump, K E; Sahingur, S E

    2016-01-01

    One challenge in studying chronic infectious and inflammatory disorders is understanding how host pattern recognition receptors (PRRs), specifically toll-like receptors (TLRs), sense and respond to pathogen- or damage-associated molecular patterns, their communication with each other and different components of the immune system, and their role in propagating inflammatory stages of disease. The discovery of innate immune activation through nucleic acid recognition by intracellular PRRs such as endosomal TLRs (TLR3, TLR7, TLR8, and TLR9) and cytoplasmic proteins (absent in melanoma 2 and DNA-dependent activator of interferon regulatory factor) opened a new paradigm: Nucleic acid sensing is now implicated in multiple immune and inflammatory conditions (e.g., atherosclerosis, cancer), viral (e.g., human papillomavirus, herpes virus) and bacterial (e.g., Helicobacter pylori, pneumonia) diseases, and autoimmune disorders (e.g., systemic lupus erythematosus, rheumatoid arthritis). Clinical investigations reveal the overexpression of specific nucleic acid sensors in diseased tissues. In vivo animal models show enhanced disease progression associated with receptor activation. The involvement of nucleic acid sensors in various systemic conditions is further supported by studies reporting receptor knockout mice being either protected from or prone to disease. TLR9-mediated inflammation is also implicated in periodontal diseases. Considering that persistent inflammation in the oral cavity is associated with systemic diseases and that oral microbial DNA is isolated at distal sites, nucleic acid sensing may potentially be a link between oral and systemic diseases. In this review, we discuss recent advances in how intracellular PRRs respond to microbial nucleic acids and emerging views on the role of nucleic acid sensors in various systemic diseases. We also highlight new information on the role of intracellular PRRs in the pathogenesis of oral diseases including periodontitis and oral cavity cancer, which might offer future possibilities for disease prevention and therapy. PMID:26438211

  12. Nucleic Acid Aptamers: an Emerging Frontier in Cancer Therapy

    PubMed Central

    Zhu, Guizhi; Ye, Mao; Donovan, Michael J.; Song, Erqun; Zhao, Zilong

    2013-01-01

    The last two decades have witnessed the development and application of nucleic acid aptamers in a variety of fields, including target analysis, disease therapy, and molecular and cellular engineering. The efficient and widely applicable aptamer selection, reproducible chemical synthesis and modification, generally impressive target binding selectivity and affinity, relatively rapid tissue penetration, low immunogenicity, and rapid systemic clearance make aptamers ideal recognition elements for use as therapeutics or for in vivo delivery of therapeutics. In this feature article, we discuss the development and biomedical application of nucleic acid aptamers, with emphasis on cancer cell aptamer isolation, targeted cancer therapy, oncology biomarker identification and drug discovery. PMID:22951893

  13. Innate immune receptors for nucleic acids.

    PubMed

    Stutz, Andrea; Bertheloot, Damien; Latz, Eicke

    2011-01-01

    The innate immune system has evolved to detect microbes and sterile tissue damage with the help of a series of signaling receptors. One key strategy is to detect infectious microbes or host cell damage by recognizing nucleic acids that are modified or appear in compartment normally devoid of nucleic acids. Here, we describe two methods that allow studying the molecular interaction between various nucleic acid recognizing signaling receptors with their ligands. A ligand pull-down assay can be used to show a known interaction between a ligand and its receptor or the method can be utilized as a discovery approach to identify an unknown receptor to a given ligand. An AlphaScreen experiment can be set up to assess the ligand binding affinity to a given receptor. PMID:21701967

  14. Novel Biochip Platform for Nucleic Acid Analysis

    PubMed Central

    Pernagallo, Salvatore; Ventimiglia, Giorgio; Cavalluzzo, Claudia; Alessi, Enrico; Ilyine, Hugh; Bradley, Mark; Diaz-Mochon, Juan J.

    2012-01-01

    This manuscript describes the use of a novel biochip platform for the rapid analysis/identification of nucleic acids, including DNA and microRNAs, with very high specificity. This approach combines a unique dynamic chemistry approach for nucleic acid testing and analysis developed by DestiNA Genomics with the STMicroelectronics In-Check platform, which comprises two microfluidic optimized and independent PCR reaction chambers, and a sequential microarray area for nucleic acid capture and identification by fluorescence. With its compact bench-top footprint requiring only a single technician to operate, the biochip system promises to transform and expand routine clinical diagnostic testing and screening for genetic diseases, cancers, drug toxicology and heart disease, as well as employment in the emerging companion diagnostics market. PMID:22969389

  15. Sodium and Potassium Interactions with Nucleic Acids.

    PubMed

    Auffinger, Pascal; D'Ascenzo, Luigi; Ennifar, Eric

    2016-01-01

    Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples. PMID:26860302

  16. Detection of nucleic acid sequences by invader-directed cleavage

    DOEpatents

    Brow, Mary Ann D. (Madison, WI); Hall, Jeff Steven Grotelueschen (Madison, WI); Lyamichev, Victor (Madison, WI); Olive, David Michael (Madison, WI); Prudent, James Robert (Madison, WI)

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  17. Nucleic acid recovery from complex environmental samples.

    PubMed

    Purdy, Kevin J

    2005-01-01

    Effective extraction of nucleic acid from environmental samples is an essential starting point in the molecular analysis of microbial communities in the environment. However, there are many different extraction methods in the literature and deciding which one is best suited to a particular sample is very difficult. This article details the important steps and choices in deciding how to extract nucleic acids from environmental samples and gives specific details of one method that has proven very successful at extracting DNA and RNA from a range of different samples. PMID:16260297

  18. Imaging Functional Nucleic Acid Delivery to Skin.

    PubMed

    Kaspar, Roger L; Hickerson, Robyn P; González-González, Emilio; Flores, Manuel A; Speaker, Tycho P; Rogers, Faye A; Milstone, Leonard M; Contag, Christopher H

    2016-01-01

    Monogenic skin diseases arise from well-defined single gene mutations, and in some cases a single point mutation. As the target cells are superficial, these diseases are ideally suited for treatment by nucleic acid-based therapies as well as monitoring through a variety of noninvasive imaging technologies. Despite the accessibility of the skin, there remain formidable barriers for functional delivery of nucleic acids to the target cells within the dermis and epidermis. These barriers include the stratum corneum and the layered structure of the skin, as well as more locally, the cellular, endosomal and nuclear membranes. A wide range of technologies for traversing these barriers has been described and moderate success has been reported for several approaches. The lessons learned from these studies include the need for combinations of approaches to facilitate nucleic acid delivery across these skin barriers and then functional delivery across the cellular and nuclear membranes for expression (e.g., reporter genes, DNA oligonucleotides or shRNA) or into the cytoplasm for regulation (e.g., siRNA, miRNA, antisense oligos). The tools for topical delivery that have been evaluated include chemical, physical and electrical methods, and the development and testing of each of these approaches has been greatly enabled by imaging tools. These techniques allow delivery and real time monitoring of reporter genes, therapeutic nucleic acids and also triplex nucleic acids for gene editing. Optical imaging is comprised of a number of modalities based on properties of light-tissue interaction (e.g., scattering, autofluorescence, and reflectance), the interaction of light with specific molecules (e.g., absorbtion, fluorescence), or enzymatic reactions that produce light (bioluminescence). Optical imaging technologies operate over a range of scales from macroscopic to microscopic and if necessary, nanoscopic, and thus can be used to assess nucleic acid delivery to organs, regions, cells and even subcellular structures. Here we describe the animal models, reporter genes, imaging approaches and general strategies for delivery of nucleic acids to cells in the skin for local expression (e.g., plasmid DNA) or gene silencing (e.g., siRNA) with the intent of developing nucleic acid-based therapies to treat diseases of the skin. PMID:26530911

  19. New Real-Time PCR Assay Using Locked Nucleic Acid Probes To Assess Prevalence of ParC Mutations in Fluoroquinolone-Susceptible Streptococcus pneumoniae Isolates from France

    PubMed Central

    Decousser, Jean-Winoc; Methlouthi, Imen; Pina, Patrick; Collignon, Anne; Allouch, Pierre

    2006-01-01

    A real-time PCR assay with locked nucleic acid probes was developed to screen mutations at codons 79 and 83 of the Streptococcus pneumoniae parC gene. Only silent mutations were detected among 236 French invasive fluoroquinolone-susceptible strains. This test could be useful for some high-risk patients or in national surveys. PMID:16569894

  20. Advances in nucleic acid-based detection methods.

    PubMed Central

    Wolcott, M J

    1992-01-01

    Laboratory techniques based on nucleic acid methods have increased in popularity over the last decade with clinical microbiologists and other laboratory scientists who are concerned with the diagnosis of infectious agents. This increase in popularity is a result primarily of advances made in nucleic acid amplification and detection techniques. Polymerase chain reaction, the original nucleic acid amplification technique, changed the way many people viewed and used nucleic acid techniques in clinical settings. After the potential of polymerase chain reaction became apparent, other methods of nucleic acid amplification and detection were developed. These alternative nucleic acid amplification methods may become serious contenders for application to routine laboratory analyses. This review presents some background information on nucleic acid analyses that might be used in clinical and anatomical laboratories and describes some recent advances in the amplification and detection of nucleic acids. PMID:1423216

  1. Method for identifying and quantifying nucleic acid sequence aberrations

    DOEpatents

    Lucas, Joe N. (San Ramon, CA); Straume, Tore (Tracy, CA); Bogen, Kenneth T. (Walnut Creek, CA)

    1998-01-01

    A method for detecting nucleic acid sequence aberrations by detecting nucleic acid sequences having both a first and a second nucleic acid sequence type, the presence of the first and second sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. The method uses a first hybridization probe which includes a nucleic acid sequence that is complementary to a first sequence type and a first complexing agent capable of attaching to a second complexing agent and a second hybridization probe which includes a nucleic acid sequence that selectively hybridizes to the second nucleic acid sequence type over the first sequence type and includes a detectable marker for detecting the second hybridization probe.

  2. PCR-Based Rapid Identification System Using Bridged Nucleic Acids for Detection of Clarithromycin-Resistant Mycobacterium avium-M. intracellulare Complex Isolates.

    PubMed

    Hirama, Takashi; Shiono, Ayako; Egashira, Hiroshi; Kishi, Etsuko; Hagiwara, Koichi; Nakamura, Hidetoshi; Kanazawa, Minoru; Nagata, Makoto

    2016-03-01

    The nontuberculous mycobacteria (NTM) cause miscellaneous disorders in humans, especially in the lungs, which present with a variety of radiological features. To date, knowledge of the pathogenic role of the Mycobacterium avium-intracellulare complex (MAC) in the human lung and the definitive criteria for initiating multidrug therapy are still lacking. However, there is little doubt that clarithromycin is the most efficacious drug among the various treatment regimens for lung NTM. In this study, with the use of a bridged nucleic acid (BNA) probe a detection system based on a real-time PCR (BNA-PCR) for the identification of the point mutations at position 2058 or 2059 in domain V of the 23S rRNA gene responsible for clarithromycin resistance was developed and has been assessed using MAC isolates from clinical samples. Out of 199 respiratory specimens, the drug susceptibility test demonstrated 12 strains resistant to clarithromycin, while the BNA-PCR showed 8 strains carrying the point mutation at position 2058 or 2059 of the 23S rRNA gene. This system revealed that there were mycobacterial strains resistant to clarithromycin which do not carry previously identified resistance genes. This paper documents a novel system for detecting clarithromycin-resistant strains and demonstrates that although these mutations are tacitly assumed to account for >90% of the reported resistant mutants, there is a significant fraction of resistant mutants that do not harbor these mutations. Therefore, unknown mechanisms affecting clarithromycin resistance remain to be elucidated. PMID:26739154

  3. Ultramicrochemical determination of nucleic acids in individual cells using the Zeiss UMSP-I microspectrophotometer. Application to isolated rat hepatocytes of different ploidy classes.

    PubMed

    Roozemond, R C

    1976-11-01

    Edstrm's method for the ultramicrochemical determination of RNA and DNA in individual cells was modified for the measurement of extinction in u.v. light with the aid of the Zeiss scanning microspectrophotometer UMSP-I. With this new procedure, nucleic acids down to about 3 pg RNA or about 4 pg DNA can be measured with a very high accuracy. The method was applied to enzymatically isolated rat liver parenchymal cells. A mean DNA content of 6.52 pg was found for diploid cells. The DNA content of mononuclear cells of different ploidy levels and of binuclear cells showed a close proportionality with the nuclear ploidy and the number of nuclei per cell. The RNA content of mononuclear diploid cells amounted to 33.4 pg, yielding an RNA/DNA ratio of 5.12. The RNA/DNA ratio was similar for binuclear and mononuclear cells of the same ploidy level but decreased considerable with increasing nuclear ploidy. PMID:993053

  4. Performance Evaluation of Manual and Automated (MagNA Pure) Nucleic Acid Isolation in HPV Detection and Genotyping Using Roche Linear Array HPV Test

    PubMed Central

    Chranioti, Aikaterini; Aga, Evangelia; Margari, Niki; Kottaridi, Christine; Pappas, Asimakis; Panayiotides, Ioannis; Karakitsos, Petros

    2011-01-01

    Nucleic acids of human papillomavirus (HPV) isolated by manual extraction method (AmpliLute) and automated MagNA pure system were compared and evaluated with cytohistological findings in 253 women. The concordance level between AmpliLute and MagNA was very good 93.3% (κ = 0.864, P < .0001). Overall HPVpositivity detected by AmpliLute was 57.3% (30.4% as single and 27% as multiple infections) in contrast to MagNA 54.5% (32% and 23%, resp.). Discrepant results observed in 25 cases: 11 MagNA(−)/AmpliLute(+), 10 of which had positive histology; 5 MagNA(+)/AmpliLute(−) with negative histology; 8 MagNA(+)/AmpliLute(+): in 7 of which AmpliLute detected extra HPV genotypes and 1 MagNA(invalid)/AmpliLute(+) with positive histology. Both methods performed well when compared against cytological (area under curve (AUC) of AmpliLute 0.712 versus 0.672 of MagNA) and histological diagnoses (AUC of AmpliLute 0.935 versus 0.877 of MagNA), with AmpliLute showing a slightly predominance over MagNA. However, higher sensitivities, specificities, and positive/negative predictive values were obtained by AmpliLute. PMID:21785558

  5. Performance evaluation of manual and automated (MagNA pure) nucleic acid isolation in HPV detection and genotyping using Roche Linear Array HPV Test.

    PubMed

    Chranioti, Aikaterini; Aga, Evangelia; Margari, Niki; Kottaridi, Christine; Pappas, Asimakis; Panayiotides, Ioannis; Karakitsos, Petros

    2011-01-01

    Nucleic acids of human papillomavirus (HPV) isolated by manual extraction method (AmpliLute) and automated MagNA pure system were compared and evaluated with cytohistological findings in 253 women. The concordance level between AmpliLute and MagNA was very good 93.3% (κ = 0.864, P < .0001). Overall HPVpositivity detected by AmpliLute was 57.3% (30.4% as single and 27% as multiple infections) in contrast to MagNA 54.5% (32% and 23%, resp.). Discrepant results observed in 25 cases: 11 MagNA(-)/AmpliLute(+), 10 of which had positive histology; 5 MagNA(+)/AmpliLute(-) with negative histology; 8 MagNA(+)/AmpliLute(+): in 7 of which AmpliLute detected extra HPV genotypes and 1 MagNA(invalid)/AmpliLute(+) with positive histology. Both methods performed well when compared against cytological (area under curve (AUC) of AmpliLute 0.712 versus 0.672 of MagNA) and histological diagnoses (AUC of AmpliLute 0.935 versus 0.877 of MagNA), with AmpliLute showing a slightly predominance over MagNA. However, higher sensitivities, specificities, and positive/negative predictive values were obtained by AmpliLute. PMID:21785558

  6. Nucleic acid-coupled colorimetric analyte detectors

    DOEpatents

    Charych, Deborah H. (Albany, CA); Jonas, Ulrich (Mainz, DE)

    2001-01-01

    The present invention relates to methods and compositions for the direct detection of analytes and membrane conformational changes through the detection of color changes in biopolymeric materials. In particular, the present invention provide for the direct colorimetric detection of analytes using nucleic acid ligands at surfaces of polydiacetylene liposomes and related molecular layer systems.

  7. Non-instrumented nucleic acid amplification assay

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Domingo, Gonzalo; Gerlach, Jay; Tang, Dennis; Harvey, Darrel; Talwar, Nick; Fichtenholz, Alex; van Lew, Bill; LaBarre, Paul

    2008-02-01

    We have developed components of a diagnostic disposable platform that has the dual purpose of providing molecular diagnostics at the point of care (POC) as well as stabilizing specimens for further analysis via a centralized surveillance system. This diagnostic is targeted for use in low-resource settings by minimally trained health workers. The disposable device does not require any additional instrumentation and will be almost as rapid and simple to use as a lateral flow strip test - yet will offer the sensitivity and specificity of nucleic acid amplification tests (NAATs). The low-cost integrated device is composed of three functional components: (1) a sample-processing subunit that generates clean and stabilized DNA from raw samples containing nucleic acids, (2) a NA amplification subunit, and (3) visual amplicon detection sub-unit. The device integrates chemical exothermic heating, temperature stabilization using phase-change materials, and isothermal nucleic acid amplification. The aim of developing this system is to provide pathogen detection with NAAT-level sensitivity in low-resource settings where there is no access to instrumentation. If a disease occurs, patients would be tested with the disposable in the field. A nucleic acid sample would be preserved within the spent disposable which could be sent to a central laboratory facility for further analysis if needed.

  8. Limitations in the Use of Fluorescein Diacetate/Propidium Iodide (FDA/PI) and Cell Permeable Nucleic Acid Stains for Viability Measurements of Isolated Islets of Langerhans.

    PubMed

    Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K

    2008-03-01

    BACKGROUND: A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO(R)13, SYTO(R)24 and SYBR(R)14 as possible alternatives to FDA. RESULTS: We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO(R)13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. CONCLUSIONS: From a review of the literature and from our observations on the impact of reagent handling and various staining and imaging parameters used to visually evaluate islets, consistent interpretation of islet cell membrane integrity and viability is dependent upon a number of factors. We discuss the utility and limitations of these reagents in evaluating islet cell membrane integrity and viability. PMID:20814586

  9. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Enterovirus nucleic acid assay. 866.3225 Section... nucleic acid assay. (a) Identification. An enterovirus nucleic acid assay is a device that consists of primers, probes, enzymes, and controls for the amplification and detection of enterovirus ribonucleic...

  10. In vitro selection of functional nucleic acids

    NASA Technical Reports Server (NTRS)

    Wilson, D. S.; Szostak, J. W.

    1999-01-01

    In vitro selection allows rare functional RNA or DNA molecules to be isolated from pools of over 10(15) different sequences. This approach has been used to identify RNA and DNA ligands for numerous small molecules, and recent three-dimensional structure solutions have revealed the basis for ligand recognition in several cases. By selecting high-affinity and -specificity nucleic acid ligands for proteins, promising new therapeutic and diagnostic reagents have been identified. Selection experiments have also been carried out to identify ribozymes that catalyze a variety of chemical transformations, including RNA cleavage, ligation, and synthesis, as well as alkylation and acyl-transfer reactions and N-glycosidic and peptide bond formation. The existence of such RNA enzymes supports the notion that ribozymes could have directed a primitive metabolism before the evolution of protein synthesis. New in vitro protein selection techniques should allow for a direct comparison of the frequency of ligand binding and catalytic structures in pools of random sequence polynucleotides versus polypeptides.

  11. Development of a rapid total nucleic acid extraction method for the isolation of hepatitis A virus from fresh produce.

    PubMed

    Hida, Kaoru; Kulka, Michael; Papafragkou, Efstathia

    2013-02-15

    Recently, there have been increasing reports of foodborne illnesses associated with the consumption of fresh produce. Among these, hepatitis A virus (HAV) remains epidemiologically important and has been continually implicated in several outbreaks. We describe a rapid method (<8h) for the isolation and subsequent detection with real-time quantitative PCR (RT-qPCR) of the HAV HM-175 cytopathic strain seeded onto baby spinach and sliced tomatoes using a total RNA extraction method, utilizing a high concentration (4M) guanidine thiocyanate buffer. Consistent detection of HAV genome from both produce items was achieved at an inoculation level of 3×10³ PFU/25 g of food, with less consistent detection achieved at 3×10² PFU/25g. Initial studies revealed that a final precipitation of recovered RNA with potassium acetate to reduce carryover of polysaccharides and the addition of polyvinylpyrrolidone to remove polyphenolics in spinach were essential. For tomatoes, virus isolation was achieved with the incorporation of either an elution step with a high pH Tris-glycine-beef extract (TGBE) buffer or with an enzymatic digestion with pectinase. We also describe the development of a protocol for the detection of HAV from tomatoes utilizing a Luminex® microbead-based suspension array. The results correlated well with the RT-qPCR assay suggesting the feasibility of the Bioplex® as a detection platform for viruses isolated from foods. PMID:23334093

  12. Nucleic acid analysis using terminal-phosphate-labeled nucleotides

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-04-22

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  13. Diagnostic applications of nucleic acid circuits.

    PubMed

    Jung, Cheulhee; Ellington, Andrew D

    2014-06-17

    CONSPECTUS: While the field of DNA computing and molecular programming was engendered in large measure as a curiosity-driven exercise, it has taken on increasing importance for analytical applications. This is in large measure because of the modularity of DNA circuitry, which can serve as a programmable intermediate between inputs and outputs. These qualities may make nucleic acid circuits useful for making decisions relevant to diagnostic applications. This is especially true given that nucleic acid circuits can potentially directly interact with and be triggered by diagnostic nucleic acids and other analytes. Chemists are, by and large, unaware of many of these advances, and this Account provides a means of touching on what might seem to be an arcane field. We begin by explaining nucleic acid amplification reactions that can lead to signal amplification, such as catalytic hairpin assembly (CHA) and the hybridization chain reaction (HCR). In these circuits, a single-stranded input acts on kinetically trapped substrates via exposed toeholds and strand exchange reactions, refolding the substrates and allowing them to interact with one another. As multiple duplexes (CHA) or concatemers of increasing length (HCR) are generated, there are opportunities to couple these outputs to different analytical modalities, including transduction to fluorescent, electrochemical, and colorimetric signals. Because both amplification and transduction are at their root dependent on the programmability of Waston-Crick base pairing, nucleic acid circuits can be much more readily tuned and adapted to new applications than can many other biomolecular amplifiers. As an example, robust methods for real-time monitoring of isothermal amplification reactions have been developed recently. Beyond amplification, nucleic acid circuits can include logic gates and thresholding components that allow them to be used for analysis and decision making. Scalable and complex DNA circuits (seesaw gates) capable of carrying out operations such as taking square roots or implementing neural networks capable of learning have now been constructed. Into the future, we can expect that molecular circuitry will be designed to make decisions on the fly that reconfigure diagnostic devices or lead to new treatment options. PMID:24828239

  14. Spectrofluorimetric study of the binding of codeine to nucleic acids

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Huang, Wei; Su, Liang; Dong, Zijia; Zhang, Shuai

    2009-06-01

    The characteristics of the interaction between codeine (CD) and nucleic acids were studied by ultraviolet-visible spectra and fluorescent spectra. It shows that there is a powerful ability in nucleic acids to quench the fluorescence intensity of codeine. The fluorescence quenching data were analyzed according to Stern-Volmer equation and Frster's nonradiative energy transfer mechanism. Thus the binding constant and the thermodynamic parameters between codeine and nucleic acids were obtained. The results show that codeine interacts with nucleic acids in a mode of groove binding and -OCH 3 of the codeine molecular combines with the groove of nucleic acids through hydrogen bond or van der Waals force.

  15. Human jagged polypeptide, encoding nucleic acids and methods of use

    DOEpatents

    Li, Linheng; Hood, Leroy

    2000-01-01

    The present invention provides an isolated polypeptide exhibiting substantially the same amino acid sequence as JAGGED, or an active fragment thereof, provided that the polypeptide does not have the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:6. The invention further provides an isolated nucleic acid molecule containing a nucleotide sequence encoding substantially the same amino acid sequence as JAGGED, or an active fragment thereof, provided that the nucleotide sequence does not encode the amino acid sequence of SEQ ID NO:5 or SEQ ID NO:6. Also provided herein is a method of inhibiting differentiation of hematopoietic progenitor cells by contacting the progenitor cells with an isolated JAGGED polypeptide, or active fragment thereof. The invention additionally provides a method of diagnosing Alagille Syndrome in an individual. The method consists of detecting an Alagille Syndrome disease-associated mutation linked to a JAGGED locus.

  16. Nucleic acids encoding antifungal polypeptides and uses thereof

    DOEpatents

    Altier, Daniel J.; Ellanskaya, I. A.; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-11-02

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include an amino acid sequence, and variants and fragments thereof, for an antipathogenic polypeptide that was isolated from a fungal fermentation broth. Nucleic acid molecules that encode the antipathogenic polypeptides of the invention, and antipathogenic domains thereof, are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.

  17. Detection of nucleic acids by multiple sequential invasive cleavages

    SciTech Connect

    Hall, J.G.; Lyamichev, V.I.; Mast, A.L.; Brow, M.A.D.

    1999-11-30

    The present invention relates to methods for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  18. Detection of nucleic acids by multiple sequential invasive cleavages

    DOEpatents

    Hall, Jeff G; Lyamichev, Victor I; Mast, Andrea L; Brow, Mary Ann D

    2012-10-16

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  19. Detection of nucleic acids by multiple sequential invasive cleavages

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann D.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  20. Detection of nucleic acids by multiple sequential invasive cleavages 02

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann D.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of human cytomegalovirus nucleic acid in a sample.

  1. Nucleic acid detection systems for enteroviruses.

    PubMed Central

    Rotbart, H A

    1991-01-01

    The enteroviruses comprise nearly 70 human pathogens responsible for a wide array of diseases including poliomyelitis, meningitis, myocarditis, and neonatal sepsis. Current diagnostic tests for the enteroviruses are limited in their use by the slow growth, or failure to grow, of certain serotypes in culture, the antigenic diversity among the serotypes, and the low titer of virus in certain clinical specimens. Within the past 6 years, applications of molecular cloning techniques, in vitro transcription vectors, automated nucleic acid synthesis, and the polymerase chain reaction have resulted in significant progress toward nucleic acid-based detection systems for the enteroviruses that take advantage of conserved genomic sequences across many, if not all, serotypes. Similar approaches to the study of enteroviral pathogenesis have already produced dramatic advances in our understanding of how these important viruses cause their diverse clinical spectra. PMID:1649002

  2. Nucleic acids and molecular biology. Vol. 1

    SciTech Connect

    Not Available

    1987-01-01

    Nucleic Acids and Molecular Biology provides reviews which are state-of-the-art and up-to-the-minute on topics of current interest in molecular biology. The scope extends from structural chemistry of nucleic acids to the functional aspects, including transcription and the control of gene expression. The first volume reflects the editors' research interests, in that it contains a significant proportion of papers devoted to the structure and chemistry of nucleic acids, especially DNA, B-DNA (Dickerson, Patel), Z-DNA (Nordheim, Jovin), bent DNA (Diekmann) and cruciforms (Lilley) are discussed, in addition to DNA-drug complexes and mismatched DNA and its repair. Crystallogrpahy, NMR and other biophysical methods are represented. Nucleic acid-protein interactions are considered in papers devoted to recA and initiation of transcription. In addition, papers devoted to enhance elements, DNA topoisomerases and anti-sense RNA are included. Contents: Drugs and Minor Groove Binding in B-DNA: Netropsin and Hoechst 33258. The Molecular Structure of Base Pair Mismatches. Interactions Between Antitumor Drugs and DNA. Conformation of DNA Base Pair Mismatches in Solution. Energetics of the B-Z DNA Transition. Z-DNA: Exploring the Biological Signficance. The Extrusion of Cruciform Structures in Supercoiled DNA. Kinetics and Mechanisms. DNA Curvature. Fidelity of DNA Synthesis. RecA Protein and Its Interaction with DNA. Initiation of Prokaryotic Transcription - Kinetic and Structural Approaches. Yeast DNA Toposiomerases and Their Structural Genes. Antisense RNA. Cell-Type Specificity of Transcription: The Immunoglobulin Heavy Chain Enhancer as a Model System.

  3. Optimizing the specificity of nucleic acid hybridization

    PubMed Central

    Zhang, David Yu; Chen, Sherry Xi; Yin, Peng

    2014-01-01

    The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed toehold exchange probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 C to 37 C, from 1 mM Mg2+ to 47 mM Mg2+, and with nucleic acid concentrations from 1 nM to 5 ?M. Experiments with RNA also showed effective single-base change discrimination. PMID:22354435

  4. [Circulating nucleic acids and in vitro fertilization].

    PubMed

    Scalici, E; Traver, S; Mullet, T; Ferrires, A; Monforte, M; Vintejoux, E; Hamamah, S

    2014-10-01

    During the last years, the use of circulating nucleic acids (microRNAs and cell-free DNA) as diagnostic and/or prognostic tools in cancerology was widely documented. Likewise, in obstetrics and gynecology, the development of non-invasive prenatal testing based on the assessment of these biomarkers confirmed their growing interest in this speciality. In human reproduction, several studies were interested in the microRNAs, small non-coding RNA sequences, present in the ovarian follicle and their implication in folliculogenesis. Some of these microRNAs, as well as the vesicles which transport them, are easily detectable in the bloodstream and could be used as reliable biomarkers of interest in infertility care. Cell-free DNA level varies according to physiopathology and reflect the proportion of apoptotic and/or necrotic events occurring in the body. As a result, its quantification could give an additional help to the practitioners for ovarian functional status evaluation. Furthermore, these circulating nucleic acids could also constitute new predictive biomarkers of oocyte and/or embryo quality and represent a promising perspective for the prevention of in vitro fertilization implantation failures. In conclusion, these circulating nucleic acids open the way to the development of new diagnostic and/or prognostic innovative tests in order to improve in vitro fertilization outcomes. PMID:25155829

  5. Carbohydrate Polymers for Nonviral Nucleic Acid Delivery

    PubMed Central

    Sizovs, Antons; McLendon, Patrick M.; Srinivasachari, Sathya

    2014-01-01

    Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102

  6. Method for analyzing nucleic acids by means of a substrate having a microchannel structure containing immobilized nucleic acid probes

    DOEpatents

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-01-01

    A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.

  7. Method for analyzing nucleic acids by means of a substrate having a microchannel structure containing immobilized nucleic acid probes

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.

    2003-12-09

    A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.

  8. Diversity of the 47-kD HtrA nucleic acid and translated amino acid sequences from 17 recent human isolates of Orientia.

    PubMed

    Jiang, Ju; Paris, Daniel H; Blacksell, Stuart D; Aukkanit, Nuntipa; Newton, Paul N; Phetsouvanh, Rattanaphone; Izzard, Leonard; Stenos, John; Graves, Stephen R; Day, Nicholas P J; Richards, Allen L

    2013-06-01

    Orientia tsutsugamushi, the etiologic agent of potentially fatal scrub typhus, is characterized by a high antigenic diversity, which complicates the development of a broadly protective vaccine. Efficacy studies in murine and nonhuman primate models demonstrated the DNA vaccine candidate pKarp47, based upon the O. tsutsugamushi Karp 47-kD HtrA protein gene, to be a successful immunoprophylactic against scrub typhus. To characterize 47-kD HtrA protein diversity among human isolates of Orientia, we sequenced the full open reading frame (ORF) of the 47-kD HtrA gene and analyzed the translated amino acid sequences of 17 patient isolates from Thailand (n=13), Laos (n=2), Australia (n=1), and the United Arab Emirates (UAE) (n=1) and 9 reference strains: Karp (New Guinea), Kato (Japan), Ikeda (Japan), Gilliam (Burma), Boryong (Korea), TA763, TH1811 and TH1817 (Thailand), and MAK243 (China). The percentage identity (similarity) of translated amino acid sequences between 16 new isolates and 9 reference strains of O. tsutsugamushi ranged from 96.4% to 100% (97.4% to 100%). However, inclusion of the recently identified Orientia chuto sp. nov. reduced identity (similarity) values to 82.2% to 83.3% (90.4% to 91.4%). These results demonstrate the diversity of Orientia 47-kD HtrA among isolates encountered by humans and therefore provide support for the necessity of developing a broadly protective scrub typhus vaccine that takes this diversity into account. PMID:23590326

  9. Diversity of the 47-kD HtrA Nucleic Acid and Translated Amino Acid Sequences from 17 Recent Human Isolates of Orientia

    PubMed Central

    Jiang, Ju; Paris, Daniel H.; Blacksell, Stuart D.; Aukkanit, Nuntipa; Newton, Paul N.; Phetsouvanh, Rattanaphone; Izzard, Leonard; Stenos, John; Graves, Stephen R.; Day, Nicholas P.J.

    2013-01-01

    Abstract Orientia tsutsugamushi, the etiologic agent of potentially fatal scrub typhus, is characterized by a high antigenic diversity, which complicates the development of a broadly protective vaccine. Efficacy studies in murine and nonhuman primate models demonstrated the DNA vaccine candidate pKarp47, based upon the O. tsutsugamushi Karp 47-kD HtrA protein gene, to be a successful immunoprophylactic against scrub typhus. To characterize 47-kD HtrA protein diversity among human isolates of Orientia, we sequenced the full open reading frame (ORF) of the 47-kD HtrA gene and analyzed the translated amino acid sequences of 17 patient isolates from Thailand (n=13), Laos (n=2), Australia (n=1), and the United Arab Emirates (UAE) (n=1) and 9 reference strains: Karp (New Guinea), Kato (Japan), Ikeda (Japan), Gilliam (Burma), Boryong (Korea), TA763, TH1811 and TH1817 (Thailand), and MAK243 (China). The percentage identity (similarity) of translated amino acid sequences between 16 new isolates and 9 reference strains of O. tsutsugamushi ranged from 96.4% to 100% (97.4% to 100%). However, inclusion of the recently identified Orientia chuto sp. nov. reduced identity (similarity) values to 82.2% to 83.3% (90.4% to 91.4%). These results demonstrate the diversity of Orientia 47-kD HtrA among isolates encountered by humans and therefore provide support for the necessity of developing a broadly protective scrub typhus vaccine that takes this diversity into account. PMID:23590326

  10. Nucleic Acid Database: a Repository of Three-Dimensional Information about Nucleic Acids

    DOE Data Explorer

    Berman, H. M.; Olson, W. K.; Beveridge, D. L.; Westbrook, J.; Gelbin, A.; Demeny, T.; Hsieh, S. H.; Srinivasan, A. R.; Schneider, B.

    The Nucleic Acid Database (NDB) provides 3-D structural information about nucleic acids.  It is a relational database designed to facilitate the easy search for nucleic acid structures using any of the stored primary or derived structural features. Reports can then be created describing any properties of the selected structures and structures may be viewed in several different formats, including the mmCIF format, the NDB Atlas format, the NDB coordinate format, or the PDB coordinate format. Browsing structure images created directly from coordinates in the repository can also be done. More than 7000 structures have been released as of May 2014. This website also includes a number of specialized tools and interfaces. The NDB Project is funded by the National Institutes of Health and has been funded by the National Science Foundation and the Department of Energy in the past.

  11. Nucleic Acid Database: a Repository of Three-Dimensional Information about Nucleic Acids

    DOE Data Explorer

    Berman, H. M.; Olson, W. K.; Beveridge, D. L.; Westbrook, J.; Gelbin, A.; Demeny, T.; Hsieh, S. H.; Srinivasan, A. R.; Schneider, B.

    The Nucleic Acid Database (NDB) provides 3-D structural information about nucleic acids. It is a relational database designed to facilitate the easy search for nucleic acid structures using any of the stored primary or derived structural features. Reports can then be created describing any properties of the selected structures and structures may be viewed in several different formats, including the mmCIF format, the NDB Atlas format, the NDB coordinate format, or the PDB coordinate format. Browsing structure images created directly from coordinates in the repository can also be done. More than 7000 structures have been released as of May 2014. This website also includes a number of specialized tools and interfaces. The NDB Project is funded by the National Institutes of Health and has been funded by the National Science Foundation and the Department of Energy in the past.

  12. Antibiotics from basidiomycetes. XVII. The effect of marasmic acid on nucleic acid metabolism.

    PubMed

    Kupka, J; Anke, T; Mizumoto, K; Giannetti, B M; Steglich, W

    1983-02-01

    From submerged cultures of Lachnella villosa, Lachnella sp. 541, and Peniophora laeta we isolated marasmic acid (1), a metabolite first described from surface cultures of Marasmius conigenus. The sesquiterpenoid exhibits potent antimicrobial and cytotoxic properties. In cells of the ascitic form of Ehrlich carcinoma RNA and DNA syntheses are preferentially inhibited. Marasmic acid inhibits RNA synthesis in isolated nuclei, but does not interfere with the transport of nucleoside precursors into the cells. RNA polymerase II and capping enzyme (mRNA guanylyltransferase), two enzymes of nucleic acid metabolism, are markedly affected after preincubation with marasmic acid. We assume that marasmic acid acts on nucleic acid syntheses by direct inhibition of some of the enzymes involved. This mode of action would also explain its mutagenic properties. The preparation and testing of two derivatives, 2 and 3, revealed that the alpha,beta-unsaturated aldehyde is essential for the antimicrobial and cytotoxic activity of marasmic acid. PMID:6300012

  13. Helicase-dependent amplification of nucleic acids.

    PubMed

    Cao, Yun; Kim, Hyun-Jin; Li, Ying; Kong, Huimin; Lemieux, Bertrand

    2013-01-01

    Helicase-dependent amplification (HDA) is a novel method for the isothermal in vitro amplification of nucleic acids. The HDA reaction selectively amplifies a target sequence by extension of two oligonucleotide primers. Unlike the polymerase chain reaction (PCR), HDA uses a helicase enzyme to separate the deoxyribonucleic acid (DNA) strands, rather than heat denaturation. This allows DNA amplification without the need for thermal cycling. The helicase used in HDA is a helicase super family II protein obtained from a thermophilic organism, Thermoanaerobacter tengcongensis (TteUvrD). This thermostable helicase is capable of unwinding blunt-end nucleic acid substrates at elevated temperatures (60° to 65°C). The HDA reaction can also be coupled with reverse transcription for ribonucleic acid (RNA) amplification. The products of this reaction can be detected during the reaction using fluorescent probes when incubations are conducted in a fluorimeter. Alternatively, products can be detected after amplification using a disposable amplicon containment device that contains an embedded lateral flow strip. PMID:24510297

  14. Lipid and polymeric carrier-mediated nucleic acid delivery

    PubMed Central

    Zhu, Lin; Mahato, Ram I

    2010-01-01

    Importance of the field Nucleic acids such as plasmid DNA, antisense oligonucleotide, and RNA interference (RNAi) molecules, have a great potential to be used as therapeutics for the treatment of various genetic and acquired diseases. To design a successful nucleic acid delivery system, the pharmacological effect of nucleic acids, the physiological condition of the subjects or sites, and the physicochemical properties of nucleic acid and carriers have to be thoroughly examined. Areas covered in this review The commonly used lipids, polymers and corresponding delivery systems are reviewed in terms of their characteristics, applications, advantages and limitations. What the reader will gain This article aims to provide an overview of biological barriers and strategies to overcome these barriers by properly designing effective synthetic carriers for nucleic acid delivery. Take home message A thorough understanding of biological barriers and the structureactivity relationship of lipid and polymeric carriers is the key for effective nucleic acid therapy. PMID:20836625

  15. Nucleic acid drugs in the clinic.

    PubMed

    Opalinska, Joanna

    2007-03-01

    As a number of diseases are caused, or accompanied, by abnormal gene expression an understandable temptation to modulate the expression of the abnormal gene's mRNA or protein to restore proper functioning of the cellular machinery has arisen. In addition, as many traditional therapeutic interventions are accompanied by serious side effects (because the cell killing they cause is not specific to the tumors they are intended to treat) there is a natural desire to design drugs with a very targeted mode of action so as to minimize these side effects. The motivation for developing tumor-specific therapies has now become so strong and so pervasive that we are now truly entering an era of targeted therapeutics. One of the major breakthroughs in the field of targeted therapies, and an example that many are hoping to duplicate, has been the development and successful introduction into the clinic of the first small-molecule inhibitor of the bcr-abl tyrosine kinase -imatinib. Indeed, the spectacular success of imatinib has rapidly led to the development of second-generation inhibitors, which are now either approved themselves or are in advanced clinical trials. Monoclonal antibodies have also found their way to the bedside and are being used widely to treat malignant and non-malignant diseases. In the present treatment climate, dominated as it is by small-molecule drugs and antibodies, one could wonder whether alternative approaches, such as RNA or gene-targeted nucleic acid-based drugs, are still needed. For reasons discussed in the body of this review, many colleagues believe that there is still a place for nucleic acid-based therapeutics. Here, the reason for believing that this is true is reviewed in the context of nucleic acid drug development and the early clinical experience with these new medicines. PMID:23484644

  16. SnapShot: Nucleic acid immune sensors, part 2.

    PubMed

    Hornung, Veit

    2014-12-18

    The innate immune system has evolved sensors that can detect specific molecular fingerprints of non-self RNA or DNA. At the same time, some receptors respond to nucleic acids of both exogenous and endogenous origin, yet they are spatially segregated from endogenous nucleic acids. This SnapShot schematizes families and individual members of nucleic acid sensors with a focus on their ligands and the signaling pathways they employ. PMID:25526315

  17. Nucleic acid probes in diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Oberry, Phillip A.

    1991-01-01

    The need for improved diagnostic procedures is outlined and variations in probe technology are briefly reviewed. A discussion of the application of probe technology to the diagnosis of disease in animals and humans is presented. A comparison of probe versus nonprobe diagnostics and isotopic versus nonisotopic probes is made and the current state of sequence amplification is described. The current market status of nucleic acid probes is reviewed with respect to their diagnostic application in human and veterinary medicine. Representative product examples are described and information on probes being developed that offer promise as future products is discussed.

  18. Nucleic acid amplification using modular branched primers

    DOEpatents

    Ulanovsky, Levy (Westmont, IL)

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  19. CRC handbook of chromatography: Nucleic acids and related compounds

    SciTech Connect

    Krstulovic, A.M.

    1987-01-01

    This book's contents include: Structure Elucidation of Nucleic Acid Components; Fundamentals of HPLC; Analysis of Nucleic Acids and Oligonucleotides; Extraction of Nucleic Acids from Tissues; Gel Filtration Chromatography of RNAs and DNS Fragments; Separation of tRNAs and Oligonucleotides by Mixed Mode Chromatography; Anion-Exchange and Reversed-Phase HPLC of Synthetic Oligonucleotides; Nucleic Acid Components in Biological Fluids; RPLC Separation of RNA and DNA Hydrolysates; Nucleotides in Tissue Extracts; and Determination of Adenine Nucleotides and Creatine Phosphate in Various Mammalian Tissues.

  20. EGVII endoglucanase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2015-04-14

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  1. EGVII endoglucanase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2013-07-16

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  2. EGVII endoglucanase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2014-02-25

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  3. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2012-02-14

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  4. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2010-10-05

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  5. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2010-10-12

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  6. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2008-11-11

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  7. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2008-04-01

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  8. EGVII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2009-05-05

    The present invention provides an endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  9. EGVII endoglucanase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-16

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.

  10. EGVI endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-06-06

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl6, and the corresponding EGVI amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVI, recombinant EGVI proteins and methods for producing the same.

  11. EGVIII endoglucanase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-23

    The present invention provides a novel endoglucanase nucleic acid sequence, designated egl8, and the corresponding EGVIII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVIII, recombinant EGVIII proteins and methods for producing the same.

  12. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    PubMed Central

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846

  13. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.

    PubMed

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php.Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php. PMID:26896846

  14. Characterization and cloning of Pneumocystis carinii nucleic acid.

    PubMed

    Worley, M A; Ivey, M H; Graves, D C

    1989-01-01

    Large numbers of Pneumocystis carinii (2 X 10(10) nuclei) were isolated and separated from the lungs of immunosuppressed rats by an enzymatic (collagenase, hyaluronidase and DNase) digestion procedure. The nucleic acid isolated from this P. carinii-enriched preparation was characterized by melting point analysis and RNA-sizing gels. The GC content of P. carinii DNA was approximately 33% while the rat DNA was 41.4%. In addition, RNA isolated from the P. carinii-enriched preparation showed unique ribosomal RNA bands of 3.4 kb and 1.8 kb as compared with uninfected rat lung ribosomal RNA which banded at 4.8 and 1.9 kb. Following isolation and fragmentation by sonication, the P. carinii DNA fragments were inserted into the vector, lambda gt-11. The resultant library contained 1.1 X 10(5) phage, of which 40-45% hybridized to P. carinii DNA but not to rat DNA. PMID:2523483

  15. The nucleic acid-sensing inflammasomes.

    PubMed

    Xiao, Tsan Sam

    2015-05-01

    Inflammasomes are oligomeric signaling complexes that promote caspase activation and maturation of proinflammatory cytokines. Structural and biophysical studies have shed light on the mechanisms of nucleic acid recognition and signaling complex assembly involving the AIM2 (absent in myeloma 2) and IFI16 (?-interferon-inducible protein 16) inflammasomes. However, our understanding of the mechanisms of the NLRP3 (nucleotide-binding oligomerization-like receptor family, pyrin domain-containing protein 3) activation, either by nucleic acids or by other reported stimuli, has remained elusive. Exciting recent progress on the filament formation by the ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) pyrin domain and the IFI16-double stranded DNA complex has established that the formation of higher order polymers is one of the general mechanisms for signaling platform assembly in innate immune system. The paradigm-changing discovery of the extracellular function of the NLRP3-ASC inflammasome has opened the door for therapeutic targeting the inflammasome filament formation for various clinical conditions. Future characterization of the canonical and non-canonical inflammasome complexes will undoubtedly reveal more surprises on their structure and function and enrich our understanding of the molecular mechanisms of ligand recognition, activation, and regulation. PMID:25879287

  16. The nucleic acid-sensing inflammasomes

    PubMed Central

    Xiao, Tsan Sam

    2015-01-01

    Summary Inflammasomes are oligomeric signaling complexes that promote caspase activation and maturation of proinflammatory cytokines. Structural and biophysical studies have shed light on the mechanisms of nucleic acid recognition and signaling complex assembly involving the AIM2 (absent in myeloma 2) and IFI16 (?-interferon-inducible protein 16) inflammasomes. However, our understanding of the mechanisms of the NLRP3 (nucleotide-binding oligomerization-like receptor family, pyrin domain-containing protein 3) activation, either by nucleic acids or by other reported stimuli, has remained elusive. Exciting recent progress on the filament formation by the ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) pyrin domain and the IFI16double stranded DNA complex has established that the formation of higher order polymers is one of the general mechanisms for signaling platform assembly in innate immune system. The paradigm-changing discovery of the extracellular function of the NLRP3ASC inflammasome has opened the door for therapeutic targeting the inflammasome filament formation for various clinical conditions. Future characterization of the canonical and non-canonical inflammasome complexes will undoubtedly reveal more surprises on their structure and function and enrich our understanding of the molecular mechanisms of ligand recognition, activation, and regulation. PMID:25879287

  17. Cancer immunotherapy via nucleic acid aptamers.

    PubMed

    Khedri, Mostafa; Rafatpanah, Houshang; Abnous, Khalil; Ramezani, Pouria; Ramezani, Mohammad

    2015-12-01

    Over the past decade, immune therapy has become a standard treatment for a variety of cancers. Monoclonal antibodies, immune adjuvants and vaccines against oncogenic viruses are now well-established cancer therapies. Immune modulation is a principal element of supportive care for many high-dose chemotherapy regimens. Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected around two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment). Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Targeting immunomodulatory ligands in the progressive tumor lesions of the patients would be prophylactic or therapeutic and may reduce drug-associated toxicities. A new class of inhibitory and agonistic ligands composed of short oligonucleotide (ODN) aptamers was developed recently that exhibited bioactivities comparable or superior to that of antibodies. This paper addressed progress in cancer immunotherapy with nucleic acid aptamers and highlighted recent developments either in immune system targeting or in immunotherapy methods involved aptamers. We discussed aptamer limitations when used as therapeutic agents for cancer treatment and suggested ways to overcome those limitations. PMID:26603636

  18. The 'helix clamp' in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases.

    PubMed Central

    Hermann, T; Meier, T; Gtte, M; Heumann, H

    1994-01-01

    Amino acid sequences homologous to 259KLVGKL (X)16KLLR284 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) are conserved in several nucleotide polymerizing enzymes. This amino acid motif has been identified in the crystal structure model as an element of the enzyme's nucleic acid binding apparatus. It is part of the helix-turn-helix structure, alpha H-turn-alpha I, within the 'thumb' region of HIV-1 RT. The motif grasps the complexed nucleic acid at one side. Molecular modeling studies on HIV-1 RT in complex with a nucleic acid fragment suggest that the motif has binding function in the p66 subunit as well as in the p51 subunit, acting as a kind of 'helix clamp'. Given its wide distribution within the nucleic acid polymerases, the helix clamp motif is assumed to be a structure of general significance for nucleic acid binding. Images PMID:7527138

  19. Assembly of barcode-like nucleic acid nanostructures.

    PubMed

    Wang, Pengfei; Tian, Cheng; Li, Xiang; Mao, Chengde

    2014-10-15

    Barcode-like (BC) nanopatterns from programmed self-assembly of nucleic acids (DNA and RNA) are reported. BC nanostructures are generated by the introduction of open spaces at selected sites to an otherwise closely packed, plain, rectangle nucleic acid nanostructure. This strategy is applied to nanostructures assembled from both origami approach and single stranded tile approach. PMID:24978689

  20. Detecting Microbial Nucleic Acids within Nematode Bodies: A Photo Essay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a taxa-specific, fluorescence in situ hybridization (FISH) technique to localize microbial nucleic acids within nematode bodies. This technique involves hybridization of a nucleic acid probe to target microbial sequences. Hybridization is detected microscopically, as the probes have f...

  1. Nucleic acids encoding metal uptake transporters and their uses

    DOEpatents

    Schroeder, Julian I.; Antosiewicz, Danuta M.; Schachtman, Daniel P.; Clemens, Stephan

    1999-01-01

    The invention provides LCT1 nucleic acids which encode metal ion uptake transporters. The invention also provides methods of modulating heavy metal and alkali metal uptake in plants. The methods involve producing transgenic plants comprising a recombinant expression cassette containing an LCT1 nucleic acid linked to a plant promoter.

  2. Nucleic Acid Amplification Testing in Suspected Child Sexual Abuse

    ERIC Educational Resources Information Center

    Esernio-Jenssen, Debra; Barnes, Marilyn

    2011-01-01

    The American Academy of Pediatrics recommends that site-specific cultures be obtained, when indicated, for sexually victimized children. Nucleic acid amplification testing is a highly sensitive and specific methodology for identifying sexually transmitted infections. Nucleic acid amplification tests are also less invasive than culture, and this

  3. Nucleic acid based fluorescent sensor for mercury detection

    DOEpatents

    Lu, Yi; Liu, Juewen

    2013-02-05

    A nucleic acid enzyme comprises an oligonucleotide containing thymine bases. The nucleic acid enzyme is dependent on both Hg.sup.2+and a second ion as cofactors, to produce a product from a substrate. The substrate comprises a ribonucleotide, a deoxyribonucleotide, or both.

  4. Nucleic Acid Amplification Testing in Suspected Child Sexual Abuse

    ERIC Educational Resources Information Center

    Esernio-Jenssen, Debra; Barnes, Marilyn

    2011-01-01

    The American Academy of Pediatrics recommends that site-specific cultures be obtained, when indicated, for sexually victimized children. Nucleic acid amplification testing is a highly sensitive and specific methodology for identifying sexually transmitted infections. Nucleic acid amplification tests are also less invasive than culture, and this…

  5. Innate immune sensing of nucleic acids from mycobacteria.

    PubMed

    Yamashiro, Lvia Harumi; Oliveira, Srgio Costa; Bfica, Andr

    2014-12-01

    Endosomal and cytosolic receptors engage recognition of mycobacterial-derived nucleic acids (MyNAs). In contrast, virulent mycobacteria may utilize nucleic acid recognition pathways to escape the host immune system. This short review will summarize the mechanisms by which MyNAs are sensed and how they influence host protective responses. PMID:25284681

  6. Solid phase sequencing of double-stranded nucleic acids

    DOEpatents

    Fu, Dong-Jing (Waltham, MA); Cantor, Charles R. (Boston, MA); Koster, Hubert (Concord, MA); Smith, Cassandra L. (Boston, MA)

    2002-01-01

    This invention relates to methods for detecting and sequencing of target double-stranded nucleic acid sequences, to nucleic acid probes and arrays of probes useful in these methods, and to kits and systems which contain these probes. Useful methods involve hybridizing the nucleic acids or nucleic acids which represent complementary or homologous sequences of the target to an array of nucleic acid probes. These probe comprise a single-stranded portion, an optional double-stranded portion and a variable sequence within the single-stranded portion. The molecular weights of the hybridized nucleic acids of the set can be determined by mass spectroscopy, and the sequence of the target determined from the molecular weights of the fragments. Nucleic acids whose sequences can be determined include nucleic acids in biological samples such as patient biopsies and environmental samples. Probes may be fixed to a solid support such as a hybridization chip to facilitate automated determination of molecular weights and identification of the target sequence.

  7. Altered nucleic acid partitioning during phenol extraction or silica adsorption by guanidinium and potassium salts.

    PubMed

    Xu, Lei; Lv, Jun; Ling, Liefeng; Wang, Peng; Song, Ping; Su, Ruirui; Zhu, Guoping

    2011-12-15

    Nucleic acids were found to partition into the phenol phase during phenol extraction in the presence of guanidinium at certain concentrations under acidic conditions. The guanidinium-concentration-dependent nucleic acid partitioning patterns were analogous to those of the nucleic acid adsorption/partitioning onto silica mediated by guanidinium, which implied that phenol and silica interact with nucleic acids through similar mechanisms. A competition effect was observed in which the nucleic acids that had partitioned into the phenol phase or onto the silica solid phase could be recovered to the aqueous phases by potassium in a molecular weight-salt concentration-dependent manner (the higher molecular weight nucleic acids needed higher concentrations of potassium to be recovered, and vice versa). Methods were developed based on these findings to isolate total RNA from Escherichia coli. By controlling the concentrations of guanidinium and potassium salts used before phenol extraction or silica adsorption, we can selectively recover total RNA but not the high molecular weight genomic DNA in the aqueous phases. Genomic DNA-free total RNA obtained by our methods is suitable for RT-PCR or other purposes. The methods can also be adapted to isolate small RNAs or RNA in certain molecular weight ranges by changing the salt concentrations used. PMID:21925480

  8. Innate immune sensing and signaling of cytosolic nucleic acids.

    PubMed

    Wu, Jiaxi; Chen, Zhijian J

    2014-01-01

    The innate immune system utilizes pattern-recognition receptors (PRRs) to detect the invasion of pathogens and initiate host antimicrobial responses such as the production of type I interferons and proinflammatory cytokines. Nucleic acids, which are essential genetic information carriers for all living organisms including viral, bacterial, and eukaryotic pathogens, are major structures detected by the innate immune system. However, inappropriate detection of self nucleic acids can result in autoimmune diseases. PRRs that recognize nucleic acids in cells include several endosomal members of the Toll-like receptor family and several cytosolic sensors for DNA and RNA. Here, we review the recent advances in understanding the mechanism of nucleic acid sensing and signaling in the cytosol of mammalian cells as well as the emerging role of cytosolic nucleic acids in autoimmunity. PMID:24655297

  9. Intracellular detection of viral nucleic acids.

    PubMed

    Sparrer, Konstantin M J; Gack, Michaela U

    2015-08-01

    Successful clearance of a microbial infection depends on the concerted action of both the innate and adaptive arms of the immune system. Accurate recognition of an invading pathogen is the first and most crucial step in eliciting effective antimicrobial defense mechanisms. In recent years, remarkable progress has been made towards understanding the molecular details of how the innate immune system recognizes microbial signatures, commonly called pathogen-associated molecular patterns (PAMPs). For viral pathogens, nucleic acids-both viral genomes and viral replication products-represent a major class of PAMPs that trigger antiviral host responses via activation of germline-encoded innate immune receptors. Here we summarize recent advances in intracellular innate sensing mechanisms of viral RNA and DNA. PMID:25795286

  10. Characteristics of Cell-Penetrating Peptide/Nucleic Acid Nanoparticles.

    PubMed

    Margus, Helerin; Arukuusk, Piret; Langel, lo; Pooga, Margus

    2016-01-01

    Nucleic acids are highly promising candidates for the treatment of various genetic diseases. However, due to the large size and negative charge, nucleic acids are not efficiently taken up by cells, and thus, their clinical potential remains limited so far. Therefore, various delivery vehicles have been designed to assist the cellular uptake of nucleic acids. Among these, cell-penetrating peptides (CPPs) have gained increasing popularity as efficient and nontoxic delivery vectors. CPPs can be coupled to nucleic acids either by covalent or noncovalent association. Noncovalent coupling, which is based on the formation of nanoparticle-like nanocomplexes (NP), has received much attention in recent years, and the number of studies employing the strategy is explosively increasing due to the high therapeutic potential. However, the properties of CPP/nucleic acid NPs have not been characterized in sufficient detail yet. We performed a comprehensive analysis of the size and morphology of nucleic acid nanoparticles with novel transfection peptides, PepFects (PFs) and NickFects (NFs), using negative staining transmission electron microscopy (TEM). In addition, we examined whether the attachment of fluorescence or (nano)gold label to nucleic acid affects the nanocomplex formation or its morphology. We demonstrated that transportan-10-based new generation CPPs from PF and NF families condense nucleic acids to NPs of homogeneous size and shape. The size and shape of assembled nanoparticles depend on the type of the complexed nucleic acid and the sequence of the used peptide, whereas the label on the nucleic acid does not influence the gross characteristics of formed NPs. PMID:26561739

  11. Quantitative thermodynamic predication of interactions between nucleic acid and non-nucleic acid species using Microsoft excel.

    PubMed

    Zou, Jiaqi; Li, Na

    2013-09-01

    Proper design of nucleic acid sequences is crucial for many applications. We have previously established a thermodynamics-based quantitative model to help design aptamer-based nucleic acid probes by predicting equilibrium concentrations of all interacting species. To facilitate customization of this thermodynamic model for different applications, here we present a generic and easy-to-use platform to implement the algorithm of the model with Microsoft() Excel formulas and VBA (Visual Basic for Applications) macros. Two Excel spreadsheets have been developed: one for the applications involving only nucleic acid species, the other for the applications involving both nucleic acid and non-nucleic acid species. The spreadsheets take the nucleic acid sequences and the initial concentrations of all species as input, guide the user to retrieve the necessary thermodynamic constants, and finally calculate equilibrium concentrations for all species in various bound and unbound conformations. The validity of both spreadsheets has been verified by comparing the modeling results with the experimental results on nucleic acid sequences reported in the literature. This Excel-based platform described here will allow biomedical researchers to rationalize the sequence design of nucleic acid probes using the thermodynamics-based modeling even without relevant theoretical and computational skills. PMID:23849929

  12. Fluorescent complexes of nucleic acids/8-hydroxyquinoline/lanthanum(III) and the fluorometry of nucleic acids

    SciTech Connect

    Cheng Zhi Huang; Ke An Li; Shen Yang Tong

    1996-07-01

    The ternary fluorescent complexes of nucleic acids/8-hydroxyquinoline/lanthanum (III) were studied. Nucleic acids in the study involve natured and thermally denatured calf thymus DNA, fish sperm DNA and yeast RNA. In the range of PH 8.0-8.4 (controlled by NH{sub 3}-NH{sub 4}Cl buffer) ternary fluorescent complexes are formed which emit at 485.0 nm for calf thymus DNA and at 480.0 nm for fish sperm DNA when excited at 265.0 nm. Based on the fluorescence reactions sensitive fluorometric methods for nucleic acids were proposed. Using optimal conditions, the calibration curves were linear in the range of 0.4 --3.6 {mu}g{sup .}ml{sup -1} for calf thymus DNA, 0.4 -- 4.0 {mu}g{sup .}ml{sup -1} for fish sperm DNA and 0.4 --4.0{mu}g{sup .}ml{sup -1} for yeast RNA, respectively. Five synthetic samples were determined with satisfaction.

  13. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials

    PubMed Central

    Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey

    2014-01-01

    In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057

  14. Computational Approaches to Nucleic Acid Origami.

    PubMed

    Jabbari, Hosna; Aminpour, Maral; Montemagno, Carlo

    2015-10-12

    Recent advances in experimental DNA origami have dramatically expanded the horizon of DNA nanotechnology. Complex 3D suprastructures have been designed and developed using DNA origami with applications in biomaterial science, nanomedicine, nanorobotics, and molecular computation. Ribonucleic acid (RNA) origami has recently been realized as a new approach. Similar to DNA, RNA molecules can be designed to form complex 3D structures through complementary base pairings. RNA origami structures are, however, more compact and more thermodynamically stable due to RNA's non-canonical base pairing and tertiary interactions. With all these advantages, the development of RNA origami lags behind DNA origami by a large gap. Furthermore, although computational methods have proven to be effective in designing DNA and RNA origami structures and in their evaluation, advances in computational nucleic acid origami is even more limited. In this paper, we review major milestones in experimental and computational DNA and RNA origami and present current challenges in these fields. We believe collaboration between experimental nanotechnologists and computer scientists are critical for advancing these new research paradigms. PMID:26348196

  15. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2006-07-04

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  16. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2002-01-01

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  17. Innate immune sensing of nucleic acids from pathogens.

    PubMed

    Oliveira, Sergio C

    2014-12-01

    The innate immune system is important as the first line of defense to sense invading pathogens. Nucleic acids represent critical pathogen signatures that trigger a host proinflammatory immune response. Much progress has been made in understanding how DNA and RNA trigger host defense countermeasures, however, several aspects of how cytosolic nucleic acids are sensed remain unclear. This special issue reviews how the host innate immune system senses nucleic acids from Brucella abortus, Mycobacterium sp and Legionella pneumophila, viral DNA, the role of STING in DNA sensing and inflammatory diseases and the mechanism of viral RNA recognition by the small interfering RNA pathway in Drosophila melanogaster. PMID:25449751

  18. Electrical and Electrochemical Monitoring of Nucleic Acid Amplification

    PubMed Central

    Goda, Tatsuro; Tabata, Miyuki; Miyahara, Yuji

    2015-01-01

    Nucleic acid amplification is a gold standard technique for analyzing a tiny amount of nucleotides in molecular biology, clinical diagnostics, food safety, and environmental testing. Electrical and electrochemical monitoring of the amplification process draws attention over conventional optical methods because of the amenability toward point-of-care applications as there is a growing demand for nucleic acid sensing in situations outside the laboratory. A number of electrical and electrochemical techniques coupled with various amplification methods including isothermal amplification have been reported in the last 10 years. In this review, we highlight recent developments in the electrical and electrochemical monitoring of nucleic acid amplification. PMID:25798440

  19. Nucleic acid detection system and method for detecting influenza

    SciTech Connect

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  20. Continuously tunable nucleic acid hybridization probes.

    PubMed

    Wu, Lucia R; Wang, Juexiao Sherry; Fang, John Z; R Evans, Emily; Pinto, Alessandro; Pekker, Irena; Boykin, Richard; Ngouenet, Celine; Webster, Philippa J; Beechem, Joseph; Zhang, David Yu

    2015-12-01

    In silico-designed nucleic acid probes and primers often do not achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. We present a novel, on-the-fly method of tuning probe affinity and selectivity by adjusting the stoichiometry of auxiliary species, which allows for independent and decoupled adjustment of the hybridization yield for different probes in multiplexed assays. Using this method, we achieved near-continuous tuning of probe effective free energy. To demonstrate our approach, we enforced uniform capture efficiency of 31 DNA molecules (GC content, 0-100%), maximized the signal difference for 11 pairs of single-nucleotide variants and performed tunable hybrid capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples. PMID:26480474

  1. Selenium Derivatization of Nucleic Acids for Crystallography

    SciTech Connect

    Jiang,J.; Sheng, J.; Carrasco, N.; Huang, Z.

    2007-01-01

    The high-resolution structure of the DNA (5'-GTGTACA-C-3') with the selenium derivatization at the 2'-position of T2 was determined via MAD and SAD phasing. The selenium-derivatized structure (1.28 {angstrom} resolution) with the 2'-Se modification in the minor groove is isomorphorous to the native structure (2.0 {angstrom}). To directly compare with the conventional bromine derivatization, we incorporated bromine into the 5-postion of T4, determined the bromine-derivatized DNA structure at 1.5 {angstrom} resolution, and found that the local backbone torsion angles and solvent hydration patterns were altered in the structure with the Br incorporation in the major groove. Furthermore, while the native and Br-derivatized DNAs needed over a week to form reasonable-size crystals, we observed that the Se-derivatized DNAs grew crystals overnight with high-diffraction quality, suggesting that the Se derivatization facilitated the crystal formation. In addition, the Se-derivatized DNA sequences crystallized under a broader range of buffer conditions, and generally had a faster crystal growth rate. Our experimental results indicate that the selenium derivatization of DNAs may facilitate the determination of nucleic acid X-ray crystal structures in phasing and high-quality crystal growth. In addition, our results suggest that the Se derivatization can be an alternative to the conventional Br derivatization.

  2. Paradigms for computational nucleic acid design

    PubMed Central

    Dirks, Robert M.; Lin, Milo; Winfree, Erik; Pierce, Niles A.

    2004-01-01

    The design of DNA and RNA sequences is critical for many endeavors, from DNA nanotechnology, to PCR-based applications, to DNA hybridization arrays. Results in the literature rely on a wide variety of design criteria adapted to the particular requirements of each application. Using an extensively studied thermodynamic model, we perform a detailed study of several criteria for designing sequences intended to adopt a target secondary structure. We conclude that superior design methods should explicitly implement both a positive design paradigm (optimize affinity for the target structure) and a negative design paradigm (optimize specificity for the target structure). The commonly used approaches of sequence symmetry minimization and minimum free-energy satisfaction primarily implement negative design and can be strengthened by introducing a positive design component. Surprisingly, our findings hold for a wide range of secondary structures and are robust to modest perturbation of the thermodynamic parameters used for evaluating sequence quality, suggesting the feasibility and ongoing utility of a unified approach to nucleic acid design as parameter sets are refined further. Finally, we observe that designing for thermodynamic stability does not determine folding kinetics, emphasizing the opportunity for extending design criteria to target kinetic features of the energy landscape. PMID:14990744

  3. Vibrational stark effect probes for nucleic acids.

    PubMed

    Silverman, Lisa N; Pitzer, Michael E; Ankomah, Peter O; Boxer, Steven G; Fenlon, Edward E

    2007-10-11

    The vibrational Stark effect (VSE) has proven to be an effective method for the study of electric fields in proteins via the use of infrared probes. To explore the use of VSE in nucleic acids, we investigated the Stark spectroscopy of nine structurally diverse nucleosides. These nucleosides contained nitrile or azide probes in positions that correspond to both the major and minor grooves of DNA. The nitrile probes showed better characteristics and exhibited absorption frequencies over a broad range; that is, from 2253 cm-1 for 2'-O-cyanoethyl ribonucleosides 8 and 9 to 2102 cm(-1) for a 13C-labeled 5-thiocyanatomethyl-2'-deoxyuridine 3c. The largest Stark tuning rate observed was |Deltamu| = 1.1 cm(-1)/(MV/cm) for both 5-cyano-2'-deoxyuridine 1 and N2-nitrile-2'-deoxyguanosine 7. The latter is a particularly attractive probe because of its high extinction coefficient (epsilon = 412 M-1cm-1) and ease of incorporation into oligomers. PMID:17877390

  4. Coordination polymer nanobelts for nucleic acid detection.

    PubMed

    Luo, Yonglan; Liao, Fang; Lu, Wenbo; Chang, Guohui; Sun, Xuping

    2011-05-13

    Herein, coordination polymer nanobelts (CPNBs) were prepared rapidly and on a large scale, by directly mixing aqueous AgNO(3) solution and an ethanol solution of 4, 4'-bipyridine at room temperature. The application of such CPNBs as a fluorescent sensing platform for nucleic acid detection was further explored. CPNB is a π-rich structure, the strong π-π stacking interactions between unpaired DNA bases and CPNB leads to adsorption of fluorescently labeled single-stranded DNA (ssDNA) accompanied by 66% fluorescence quenching. However, the presence of target ssDNA will hybridize with the probe. The resultant helix cannot be adsorbed by CPNB due to its rigid conformation and the absence of unpaired DNA bases. Thus, a significant fluorescence enhancement, 73% fluorescence recovery, was observed in DNA detection as long as the target exists. The present system has excellent sensitivity; a substantial fluorescence enhancement was observed when the concentration of the target was as low as 5 nM. It also exhibits outstanding discrimination ability down to a single-base mismatch. PMID:21430328

  5. Electrochemical Molecular Analysis Without Nucleic Acid Amplification

    PubMed Central

    Gau, Vincent; Ma, Shu-Ching; Wang, Hua; Tsukuda, Joni; Kibler, John; Haake, David A.

    2006-01-01

    Electrochemical biosensors have revolutionized glucose monitoring but have not yet fulfilled their promise of a low cost, direct detection replacement for genetic amplification tests such as PCR [K. Kerman, M. Kobayashi, E. Tamiya, Recent trends in electro-chemical DNA biosensor technology, Meas. Sci. Technol. 15 (2004) R1-R11; A. Chaubey, B.D. Malhotra, Mediated biosensors. Biosens. Bioelectron. 17 (6-7) (2002) 441-456]. It has been anticipated that the integration of nanoscale chemical structures such as self-assembled monolayers with electrochemical biosensors would increase sensitivity by decreasing inherent system noise. We have designed a novel biosensing approach incorporating such integration and achieved rapid, ultra-low concentration sensitivities without target amplification. Raw samples are mixed with lysis buffer to allow hybridization of nucleic acid targets with anchor and signal probes before immobilizing a signaling enzyme proximate to the biosensor surface. A bias potential is subsequently applied and the secondary byproduct of a cyclic peroxidase reaction measured. Further studies have demonstrated the application of our approach in protein, clinical chemistry, and ionic assays. PMID:16213156

  6. Dioxaphosphorinane-Constrained Nucleic Acid Dinucleotides as Tools for Structural Tuning of Nucleic Acids

    PubMed Central

    Catana, Dan-Andrei; Renard, Brice-Loïc; Maturano, Marie; Payrastre, Corinne; Tarrat, Nathalie; Escudier, Jean-Marc

    2012-01-01

    We describe a rational approach devoted to modulate the sugar-phosphate backbone geometry of nucleic acids. Constraints were generated by connecting one oxygen of the phosphate group to a carbon of the sugar moiety. The so-called dioxaphosphorinane rings were introduced at key positions along the sugar-phosphate backbone allowing the control of the six-torsion angles α to ζ defining the polymer structure. The syntheses of all the members of the D-CNA family are described, and we emphasize the effect on secondary structure stabilization of a couple of diastereoisomers of α,β-D-CNA exhibiting wether B-type canonical values or not. PMID:23150809

  7. Flexibility of nucleic acids: From DNA to RNA

    NASA Astrophysics Data System (ADS)

    Lei, Bao; Xi, Zhang; Lei, Jin; Zhi-Jie, Tan

    2016-01-01

    The structural flexibility of nucleic acids plays a key role in many fundamental life processes, such as gene replication and expression, DNA-protein recognition, and gene regulation. To obtain a thorough understanding of nucleic acid flexibility, extensive studies have been performed using various experimental methods and theoretical models. In this review, we will introduce the progress that has been made in understanding the flexibility of nucleic acids including DNAs and RNAs, and will emphasize the experimental findings and the effects of salt, temperature, and sequence. Finally, we will discuss the major unanswered questions in understanding the flexibility of nucleic acids. Project supported by the National Basic Research Program of China (Grant No. 2011CB933600), the National Natural Science Foundation of China (Grant Nos. 11175132, 11575128, and 11374234), and the Program for New Century Excellent Talents, China (Grant No. NCET 08-0408).

  8. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  9. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Berti, Lorenzo; Burley, Glenn A.

    2008-02-01

    Since the advent of practical methods for achieving DNA metallization, the use of nucleic acids as templates for the synthesis of inorganic nanoparticles (NPs) has become an active area of study. It is now widely recognized that nucleic acids have the ability to control the growth and morphology of inorganic NPs. These biopolymers are particularly appealing as templating agents as their ease of synthesis in conjunction with the possibility of screening nucleotide composition, sequence and length, provides the means to modulate the physico-chemical properties of the resulting NPs. Several synthetic procedures leading to NPs with interesting photophysical properties as well as studies aimed at rationalizing the mechanism of nucleic acid-templated NP synthesis are now being reported. This progress article will outline the current understanding of the nucleic acid-templated process and provides an up to date reference in this nascent field.

  10. Metal complex derivatives of peptide nucleic acids (PNA).

    PubMed

    Krmer, Roland; Mokhir, Andriy

    2012-01-01

    Peptide nucleic acid (PNA) is a non-cyclic pseudopeptide-nucleic acid structural mimic with promising applications within diagnostics and drug discovery. This review focuses on metal complex derivatives of PNA. Metal ions and their complexes display unique physical and chemical properties and offer the opportunity to introduce new labels and probes for bioanalytical and diagnostic applications of PNA, but also to modulate or to introduce new (for example catalytic) functions and biological activities. PMID:22210345

  11. Changes of nucleic acids of wheat seedlings under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Sytnyk, K. M.; Musatenko, L. I.

    1983-01-01

    The effects of space flight on the growth of wheat seedlings and their nucleic acid content were studied. It was shown that both space and ground seedlings have almost the same appearance, dry weight and nucleic acid content in the root, coleoptile and leaves. The only difference found is in the RNA and DNA content, which is twice as much in the ground seedling apices as in the space-grown seedlings.

  12. Oligonucleoside alkyl or arylphosphonate derivatives capable of crosslinking with or cleaving nucleic acids

    DOEpatents

    Miller, P.S.; Ts'o, P.O.P.

    1999-06-15

    A composition for inactivating a target nucleic acid which comprises an oligonucleoside alkyl or arylphosphonate analogue which is complementary to the sequence of the target nucleic acid is provided. It includes a functional group which reacts with the target nucleic acid to render the target nucleic acid inactive or nonfunctional. 16 figs.

  13. Oligonucleoside alkyl or arylphosphonate derivatives capable of crosslinking with or cleaving nucleic acids

    DOEpatents

    Miller, Paul S. (Baltimore, MD); Ts'o, Paul O.P. (Lutherville, MD)

    1999-06-15

    A composition for inactivating a target nucleic acid which comprises an oligonucleoside alkyl or arylphosphonate analogue which is complementary to the sequence of the target nucleic acid and includes a functional group which reacts with the target nucleic acid to render the target nucleic acid inactive or nonfunctional.

  14. Nucleic acid in-situ hybridization detection of infectious agents

    NASA Astrophysics Data System (ADS)

    Thompson, Curtis T.

    2000-04-01

    Limitations of traditional culture methods and newer polymerase chain reaction (PCR)-based methods for detection and speciation of infectious agents demonstrate the need for more rapid and better diagnostics. Nucleic acid hybridization is a detection technology that has gained wide acceptance in cancer and prenatal cytogenetics. Using a modification of the nucleic acid hybridization technique known as fluorescence in-situ hybridization, infectious agents can be detected in a variety of specimens with high sensitivity and specificity. The specimens derive from all types of human and animal sources including body fluids, tissue aspirates and biopsy material. Nucleic acid hybridization can be performed in less than one hour. The result can be interpreted either using traditional fluorescence microscopy or automated platforms such as micro arrays. This paper demonstrates proof of concept for nucleic acid hybridization detection of different infectious agents. Interpretation within a cytologic and histologic context is possible with fluorescence microscopic analysis, thereby providing confirmatory evidence of hybridization. With careful probe selection, nucleic acid hybridization promises to be a highly sensitive and specific practical diagnostic alternative to culture, traditional staining methods, immunohistochemistry and complicated nucleic acid amplification tests.

  15. Sensors of Infection: Viral Nucleic Acid PRRs in Fish.

    PubMed

    Poynter, Sarah; Lisser, Graeme; Monjo, Andrea; DeWitte-Orr, Stephanie

    2015-01-01

    Viruses produce nucleic acids during their replication, either during genomic replication or transcription. These nucleic acids are present in the cytoplasm or endosome of an infected cell, or in the extracellular space to be sensed by neighboring cells during lytic infections. Cells have mechanisms of sensing virus-generated nucleic acids; these nucleic acids act as flags to the cell, indicating an infection requiring defense mechanisms. The viral nucleic acids are called pathogen-associated molecular patterns (PAMPs) and the sensors that bind them are called pattern recognition receptors (PRRs). This review article focuses on the most recent findings regarding nucleic acids PRRs in fish, including: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), cytoplasmic DNA sensors (CDSs) and class A scavenger receptors (SR-As). It also discusses what is currently known of the downstream signaling molecules for each PRR family and the resulting antiviral response, either type I interferons (IFNs) or pro-inflammatory cytokine production. The review highlights what is known but also defines what still requires elucidation in this economically important animal. Understanding innate immune systems to virus infections will aid in the development of better antiviral therapies and vaccines for the future. PMID:26184332

  16. Bioanalytical applications of isothermal nucleic acid amplification techniques.

    PubMed

    Deng, Huimin; Gao, Zhiqiang

    2015-01-01

    The most popular in vitro nucleic acid amplification techniques like polymerase chain reaction (PCR) including real-time PCR are costly and require thermocycling, rendering them unsuitable for uses at point-of-care. Highly efficient in vitro nucleic acid amplification techniques using simple, portable and low-cost instruments are crucial in disease diagnosis, mutation detection and biodefense. Toward this goal, isothermal amplification techniques that represent a group of attractive in vitro nucleic acid amplification techniques for bioanalysis have been developed. Unlike PCR where polymerases are easily deactivated by thermally labile constituents in a sample, some of the isothermal nucleic acid amplification techniques, such as helicase-dependent amplification and nucleic acid sequence-based amplification, enable the detection of bioanalytes with much simplified protocols and with minimal sample preparations since the entire amplification processes are performed isothermally. This review focuses on the isothermal nucleic acid amplification techniques and their applications in bioanalytical chemistry. Starting off from their amplification mechanisms and significant properties, the adoption of isothermal amplification techniques in bioanalytical chemistry and their future perspectives are discussed. Representative examples illustrating the performance and advantages of each isothermal amplification technique are discussed along with some discussion on the advantages and disadvantages of each technique. PMID:25467448

  17. Sensors of Infection: Viral Nucleic Acid PRRs in Fish

    PubMed Central

    Poynter, Sarah; Lisser, Graeme; Monjo, Andrea; DeWitte-Orr, Stephanie

    2015-01-01

    Viruses produce nucleic acids during their replication, either during genomic replication or transcription. These nucleic acids are present in the cytoplasm or endosome of an infected cell, or in the extracellular space to be sensed by neighboring cells during lytic infections. Cells have mechanisms of sensing virus-generated nucleic acids; these nucleic acids act as flags to the cell, indicating an infection requiring defense mechanisms. The viral nucleic acids are called pathogen-associated molecular patterns (PAMPs) and the sensors that bind them are called pattern recognition receptors (PRRs). This review article focuses on the most recent findings regarding nucleic acids PRRs in fish, including: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), cytoplasmic DNA sensors (CDSs) and class A scavenger receptors (SR-As). It also discusses what is currently known of the downstream signaling molecules for each PRR family and the resulting antiviral response, either type I interferons (IFNs) or pro-inflammatory cytokine production. The review highlights what is known but also defines what still requires elucidation in this economically important animal. Understanding innate immune systems to virus infections will aid in the development of better antiviral therapies and vaccines for the future. PMID:26184332

  18. Digital PCR analysis of circulating nucleic acids.

    PubMed

    Hudecova, Irena

    2015-10-01

    Detection of plasma circulating nucleic acids (CNAs) requires the use of extremely sensitive and precise methods. The commonly used quantitative real-time polymerase chain reaction (PCR) poses certain technical limitations in relation to the precise measurement of CNAs whereas the costs of massively parallel sequencing are still relatively high. Digital PCR (dPCR) now represents an affordable and powerful single molecule counting strategy to detect minute amounts of genetic material with performance surpassing many quantitative methods. Microfluidic (chip) and emulsion (droplet)-based technologies have already been integrated into platforms offering hundreds to millions of nanoliter- or even picoliter-scale reaction partitions. The compelling observations reported in the field of cancer research, prenatal testing, transplantation medicine and virology support translation of this technology into routine use. Extremely sensitive plasma detection of rare mutations originating from tumor or placental cells among a large background of homologous sequences facilitates unraveling of the early stages of cancer or the detection of fetal mutations. Digital measurement of quantitative changes in plasma CNAs associated with cancer or graft rejection provides valuable information on the monitoring of disease burden or the recipient's immune response and subsequent therapy treatment. Furthermore, careful quantitative assessment of the viral load offers great value for effective monitoring of antiviral therapy for immunosuppressed or transplant patients. The present review describes the inherent features of dPCR that make it exceptionally robust in precise and sensitive quantification of CNAs. Moreover, I provide an insight into the types of potential clinical applications that have been developed by researchers to date. PMID:25828047

  19. Hybridization-based affinity partitioning of nucleic acids using PEG-coupled oligonucleotides.

    PubMed Central

    Jschke, A; Frste, J P; Erdmann, V A; Cech, D

    1994-01-01

    Polyethylene glycol (PEG)-coupled oligonucleotides are partitioned in an aqueous two-phase system PEG/dextran. The affinity of the oligonucleotide for the PEG-rich phase increases proportionally to the length of the coupled PEG polymer. After hybridization, the PEG-coupled oligonucleotide is able to force a complementary nucleic acid strand into the PEG-rich phase. This property can be used for the sequence-specific isolation of nucleic acids through hybridization-based affinity partitioning. The dependence of the partition coefficient in this system on various parameters is described. The application of this principle to multistage chromatographic separations is demonstrated. PMID:8208613

  20. High Molecular Weight Phosphorus Compound in Nucleic Acid Extracts of the Slime Mold Physarum polycephalum

    PubMed Central

    Sauer, H. W.; Babcock, K. L.; Rusch, H. P.

    1969-01-01

    Orthophosphate labeled with 32P was added to the growth medium of the plasmodia of Physarum polycephalum. The nucleic acid extracts of such plasmodia contained 32P that was not removed by nuclease, protease, or amylase. This labeled material was shown to be separable from nucleic acids, could be eluted from a methylated albumin-kieselguhr column at 0.5 m NaCl, was of high molecular weight, and had several characteristics in common with polyphosphate. A fraction of this polyphosphate-like material was also found in extracts of isolated nuclei. PMID:5392534

  1. Characterization of the nucleic acid-binding activities of the isolated amino-terminal head domain of the intermediate filament protein vimentin reveals its close relationship to the DNA-binding regions of some prokaryotic single-stranded DNA-binding proteins.

    PubMed

    Traub, P; Mothes, E; Shoeman, R; Kühn, S; Scherbarth, A

    1992-11-01

    In order to demonstrate that the nucleic acid-binding activities of vimentin are dictated by its Arg-rich N-terminal head domain, this was cut off at position Lys96 with lysine-specific endoproteinase and analysed for its capacity to associate with a variety of synthetic and naturally occurring nucleic acids. The isolated polypeptide (vim NT) showed a preference for single-stranded (ss) polynucleotides, particularly for ssDNAs of high G-content. A comparison of the sequence and predicted secondary structure of vim NT with that of two prokaryotic ssDNA-binding proteins, G5P and G32P of bacteriophages fd and T4, respectively, revealed that the nucleic acid-binding region of all three polypeptides is almost entirely in the beta-conformation and characterized by a very similar distribution of aromatic amino acid residues. A partial sequence of vim NT can be folded into the same beta-loop structure as the DNA-binding wing of G5P of bacteriophage fd and related viruses. As in the case of G5P, nitration of the Tyr residues with tetranitromethane was blocked by single-stranded nucleic acids. This and spectroscopic data indicate intercalation of the Tyr aromatic ring systems between the bases of the nucleic acids and thus the contribution of a stacking component to the binding reaction. The binding was accompanied by significant changes in the ultraviolet absorption spectra of both vim NT and single-stranded nucleic acids. Upon mixing of vim NT with nucleic acids, massive precipitation of the reactants occurred, followed by the quick rearrangement of the aggregates with the formation of specific and soluble association products. Even at very high ionic strengths, at which no electrostatic reaction should be expected, a distinct fraction of vim NT incorporated naturally occurring ssRNAs and ssDNAs into fast sedimenting complexes, suggesting co-operative interaction of the polypeptide with the nucleic acids. In electron microscopy, the complexes obtained from 28 S rRNA appeared as networks of extended nucleic acid strands densely covered with vim NT, in contrast to the compact random coils of uncomplexed RNA. The networks produced from fd DNA were heterogeneous in appearance and their nucleoprotein strands in rare cases were very similar to the rod-like structures of G5P-fd DNA complexes. PMID:1447793

  2. Recent Progress in Nucleic Acid Aptamer-Based Biosensors and Bioassays

    PubMed Central

    Mok, Wendy; Li, Yingfu

    2008-01-01

    As the key constituents of the genetic code, the importance of nucleic acids to life has long been appreciated. Despite being composed of only four structurally similar nucleotides, single-stranded nucleic acids, as in single-stranded DNAs and RNAs, can fold into distinct three-dimensional shapes due to specific intramolecular interactions and carry out functions beyond serving as templates for protein synthesis. These functional nucleic acids (FNAs) can catalyze chemical reactions, regulate gene expression, and recognize target molecules. Aptamers, whose name is derived from the Latin word aptus meaning to fit, are oligonucleotides that can bind their target ligands with high affinity and specificity. Since aptamers exist in nature but can also be artificially isolated from pools of random nucleic acids through a process called in vitro selection, they can potentially bind a diverse array of compounds. In this review, we will discuss the research that is being done to develop aptamers against various biomolecules, the progress in engineering biosensors by coupling aptamers to signal transducers, and the prospect of employing these sensors for a range of chemical and biological applications. Advances in aptamer technology emphasizes that nucleic acids are not only the fundamental molecules of life, they can also serve as research tools to enhance our understanding of life. The possibility of using aptamer-based tools in drug discovery and the identification of infectious agents can ultimately augment our quality of life.

  3. Broad-spectrum and virus-specific nucleic acid-based antivirals against influenza.

    TOXLINE Toxicology Bibliographic Information

    Wong JP; Christopher ME; Salazar AM; Sun LQ; Viswanathan S; Wang M; Saravolac EG; Cairns MJ

    2010-01-01

    Rapid increase in drug-resistant influenza virus isolates, and pandemic threat posed by highly pathogenic avian influenza A and swine flu viruses provide clear and compelling reasons for fast tracking development of novel antiviral drugs. Nucleic acid-based drugs represent a promising class of novel antiviral agents that can be designed to target various seasonal, pandemic and avian influenza viruses. Nucleic acids can be designed to elicit broad-spectrum antiviral responses in the host, by suppressing viral gene expression, or by inducing cleavage or degradation of viral RNA. Immunomodulating nucleic acids, such as double stranded RNA and CpG oligonucleotides, can be potent anti-influenza agents that work by eliciting protective innate and adaptive immunity in the host. By activating the toll-like receptor signaling pathways, these drugs can activate the host's antiviral and inflammatory defenses to combat influenza viruses. Antisense oligonucleotides, small interfering RNAs (siRNA), and nanoRNAs represent sequence specific gene-silencing approaches that could be deployed to suppress or inhibit viral protein gene expression. Lastly, catalytic nucleic acids such as DNAzymes and/or ribozymes can suppress viral replication by repeatedly cleaving viral mRNAs and template RNAs. In summary, nucleic acid-based antiviral agents are versatile, diverse and could complement existing antiviral drugs in combating influenza.

  4. Broad-spectrum and virus-specific nucleic acid-based antivirals against influenza.

    PubMed

    Wong, Jonathan P; Christopher, Mary E; Salazar, Andres M; Sun, Lun-Quan; Viswanathan, Satya; Wang, Ming; Saravolac, Edward G; Cairns, Murray J

    2010-01-01

    Rapid increase in drug-resistant influenza virus isolates, and pandemic threat posed by highly pathogenic avian influenza A and swine flu viruses provide clear and compelling reasons for fast tracking development of novel antiviral drugs. Nucleic acid-based drugs represent a promising class of novel antiviral agents that can be designed to target various seasonal, pandemic and avian influenza viruses. Nucleic acids can be designed to elicit broad-spectrum antiviral responses in the host, by suppressing viral gene expression, or by inducing cleavage or degradation of viral RNA. Immunomodulating nucleic acids, such as double stranded RNA and CpG oligonucleotides, can be potent anti-influenza agents that work by eliciting protective innate and adaptive immunity in the host. By activating the toll-like receptor signaling pathways, these drugs can activate the host's antiviral and inflammatory defenses to combat influenza viruses. Antisense oligonucleotides, small interfering RNAs (siRNA), and nanoRNAs represent sequence specific gene-silencing approaches that could be deployed to suppress or inhibit viral protein gene expression. Lastly, catalytic nucleic acids such as DNAzymes and/or ribozymes can suppress viral replication by repeatedly cleaving viral mRNAs and template RNAs. In summary, nucleic acid-based antiviral agents are versatile, diverse and could complement existing antiviral drugs in combating influenza. PMID:20036985

  5. Thermodynamics of nucleic acid "shape readout" by an aminosugar.

    PubMed

    Xi, Hongjuan; Davis, Erik; Ranjan, Nihar; Xue, Liang; Hyde-Volpe, David; Arya, Dev P

    2011-10-25

    Recognition of nucleic acids is important for our understanding of nucleic acid structure as well as for our understanding of nucleic acid-protein interactions. In addition to the direct readout mechanisms of nucleic acids such as H-bonding, shape recognition of nucleic acids is being increasingly recognized as playing an equally important role in DNA recognition. Competition dialysis, UV, flourescent intercalator displacement (FID), computational docking, and calorimetry studies were conducted to study the interaction of neomycin with a variety of nucleic acid conformations (shapes). At pH 5.5, the results suggest the following. (1) Neomycin binds three RNA structures [16S A site rRNA, poly(rA)poly(rA), and poly(rA)poly(rU)] with high affinities (K(a) ~ 10(7) M(-1)). (2) The binding of neomycin to A-form GC-rich oligomer d(A(2)G(15)C(15)T(2))(2) has an affinity comparable to those of RNA structures. (3) The binding of neomycin to DNARNA hybrids shows a 3-fold variance that can be attributed to their structural differences [for poly(dA)poly(rU), K(a) = 9.4 10(6) M(-1), and for poly(rA)poly(dT), K(a) = 3.1 10(6) M(-1)]. (4) The interaction of neomycin with DNA triplex poly(dA)2poly(dT) yields a binding affinity (K(a)) of 2.4 10(5) M(-1). (5) Poly(dA-dT)(2) shows the lowest association constant for all nucleic acids studied (K(a) < 10(5)). (6) Neomycin binds to G-quadruplexes with K(a) values of ~10(4)-10(5) M(-1). (7) Computational studies show that the decrease in major groove width in the B to A transition correlates with increasing neomycin affinity. Neomycin's affinity for various nucleic acid structures can be ranked as follows: RNAs and GC-rich d(A(2)G(15)C(15)T(2))(2) structures > poly(dA)poly(rU) > poly(rA)poly(dT) > TA-T triplex, G-quadruplex, B-form AT-rich, or GC-rich DNA sequences. The results illustrate the first example of a small molecule-based "shape readout" of different nucleic acid conformations. PMID:21863895

  6. Nucleic acid-based nanoengineering: novel structures for biomedical applications

    PubMed Central

    Li, Hanying; LaBean, Thomas H.; Leong, Kam W.

    2011-01-01

    Nanoengineering exploits the interactions of materials at the nanometre scale to create functional nanostructures. It relies on the precise organization of nanomaterials to achieve unique functionality. There are no interactions more elegant than those governing nucleic acids via Watson–Crick base-pairing rules. The infinite combinations of DNA/RNA base pairs and their remarkable molecular recognition capability can give rise to interesting nanostructures that are only limited by our imagination. Over the past years, creative assembly of nucleic acids has fashioned a plethora of two-dimensional and three-dimensional nanostructures with precisely controlled size, shape and spatial functionalization. These nanostructures have been precisely patterned with molecules, proteins and gold nanoparticles for the observation of chemical reactions at the single molecule level, activation of enzymatic cascade and novel modality of photonic detection, respectively. Recently, they have also been engineered to encapsulate and release bioactive agents in a stimulus-responsive manner for therapeutic applications. The future of nucleic acid-based nanoengineering is bright and exciting. In this review, we will discuss the strategies to control the assembly of nucleic acids and highlight the recent efforts to build functional nucleic acid nanodevices for nanomedicine. PMID:23050076

  7. Nucleic Acid Modifications in Regulation of Gene Expression.

    PubMed

    Chen, Kai; Zhao, Boxuan Simen; He, Chuan

    2016-01-21

    Nucleic acids carry a wide range of different chemical modifications. In contrast to previous views that these modifications are static and only play fine-tuning functions, recent research advances paint a much more dynamic picture. Nucleic acids carry diverse modifications and employ these chemical marks to exert essential or critical influences in a variety of cellular processes in eukaryotic organisms. This review covers several nucleic acid modifications that play important regulatory roles in biological systems, especially in regulation of gene expression: 5-methylcytosine (5mC) and its oxidative derivatives, and N(6)-methyladenine (6mA) in DNA; N(6)-methyladenosine (m(6)A), pseudouridine (?), and 5-methylcytidine (m(5)C) in mRNA and long non-coding RNA. Modifications in other non-coding RNAs, such as tRNA, miRNA, and snRNA, are also briefly summarized. We provide brief historical perspective of the field, and highlight recent progress in identifying diverse nucleic acid modifications and exploring their functions in different organisms. Overall, we believe that work in this field will yield additional layers of both chemical and biological complexity as we continue to uncover functional consequences of known nucleic acid modifications and discover new ones. PMID:26933737

  8. Structural Requirements for the Procoagulant Activity of Nucleic Acids

    PubMed Central

    Gansler, Julia; Jaax, Miriam; Leiting, Silke; Appel, Bettina; Greinacher, Andreas; Fischer, Silvia; Preissner, Klaus T.

    2012-01-01

    Nucleic acids, especially extracellular RNA, are exposed following tissue- or vessel damage and have previously been shown to activate the intrinsic blood coagulation pathway in vitro and in vivo. Yet, no information on structural requirements for the procoagulant activity of nucleic acids is available. A comparison of linear and hairpin-forming RNA- and DNA-oligomers revealed that all tested oligomers forming a stable hairpin structure were protected from degradation in human plasma. In contrast to linear nucleic acids, hairpin forming compounds demonstrated highest procoagulant activities based on the analysis of clotting time in human plasma and in a prekallikrein activation assay. Moreover, the procoagulant activities of the DNA-oligomers correlated well with their binding affinity to high molecular weight kininogen, whereas the binding affinity of all tested oligomers to prekallikrein was low. Furthermore, four DNA-aptamers directed against thrombin, activated protein C, vascular endothelial growth factor and nucleolin as well as the naturally occurring small nucleolar RNA U6snRNA were identified as effective cofactors for prekallikrein auto-activation. Together, we conclude that hairpin-forming nucleic acids are most effective in promoting procoagulant activities, largely mediated by their specific binding to kininogen. Thus, in vivo application of therapeutic nucleic acids like aptamers might have undesired prothrombotic or proinflammatory side effects. PMID:23226277

  9. Structural requirements for the procoagulant activity of nucleic acids.

    PubMed

    Gansler, Julia; Jaax, Miriam; Leiting, Silke; Appel, Bettina; Greinacher, Andreas; Fischer, Silvia; Preissner, Klaus T

    2012-01-01

    Nucleic acids, especially extracellular RNA, are exposed following tissue- or vessel damage and have previously been shown to activate the intrinsic blood coagulation pathway in vitro and in vivo. Yet, no information on structural requirements for the procoagulant activity of nucleic acids is available. A comparison of linear and hairpin-forming RNA- and DNA-oligomers revealed that all tested oligomers forming a stable hairpin structure were protected from degradation in human plasma. In contrast to linear nucleic acids, hairpin forming compounds demonstrated highest procoagulant activities based on the analysis of clotting time in human plasma and in a prekallikrein activation assay. Moreover, the procoagulant activities of the DNA-oligomers correlated well with their binding affinity to high molecular weight kininogen, whereas the binding affinity of all tested oligomers to prekallikrein was low. Furthermore, four DNA-aptamers directed against thrombin, activated protein C, vascular endothelial growth factor and nucleolin as well as the naturally occurring small nucleolar RNA U6snRNA were identified as effective cofactors for prekallikrein auto-activation. Together, we conclude that hairpin-forming nucleic acids are most effective in promoting procoagulant activities, largely mediated by their specific binding to kininogen. Thus, in vivo application of therapeutic nucleic acids like aptamers might have undesired prothrombotic or proinflammatory side effects. PMID:23226277

  10. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark (Santa Cruz, CA); Vercoutere, Wenonah (Santa Cruz, CA); Haussler, David (Santa Cruz, CA); Winters-Hilt, Stephen (Santa Cruz, CA)

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  11. Physical approaches for nucleic acid delivery to liver.

    PubMed

    Kamimura, Kenya; Liu, Dexi

    2008-12-01

    The liver is a key organ for numerous metabolic pathways and involves many inherited diseases that, although being different in their pathology, are often caused by lack or overproduction of a critical gene product in the diseased cells. In principle, a straightforward method to fix such problem is to introduce into these cells with a gene-coding sequence to provide the missing gene product or with the nucleic acid sequence to inhibit production of the excessive gene product. Practically, however, success of nucleic acid-based pharmaceutics is dependent on the availability of a method capable of delivering nucleic acid sequence in the form of DNA or RNA to liver cells. In this review, we will summarize the progress toward the development of physical methods for nucleic acid delivery to the liver. Emphasis is placed on the mechanism of action, pros, and cons of each method developed so far. We hope the information provided will encourage new endeavor to improve the current methodologies or develop new strategies that will lead to safe and effective delivery of nucleic acids to the liver. PMID:19083101

  12. Multienzymatic synthesis of nucleic acid derivatives: a general perspective.

    PubMed

    Fernández-Lucas, Jesús

    2015-06-01

    Living cells are most perfect synthetic factory. The surprising synthetic efficiency of biological systems is allowed by the combination of multiple processes catalyzed by enzymes working sequentially. In this sense, biocatalysis tries to reproduce nature's synthetic strategies to perform the synthesis of different organic compounds using natural catalysts such as cells or enzymes. Nowadays, the use of multienzymatic systems in biocatalysis is becoming a habitual strategy for the synthesis of organic compounds that leads to the realization of complex synthetic schemes. By combining several steps in one pot, a significant step economy can be realized and the potential for environmentally benign synthesis is improved. Using this sustainable synthetic system, several work-up steps can be avoided and pure products are ideally isolated after a series of reactions in one single vessel after just one straightforward purification step. In recent years, enzymatic methodology for the preparation of nucleic acid derivatives (NADs) has become a standard technique for the synthesis of a wide variety of natural NADs. Enzymatic methods have been shown to be an efficient alternative for the synthesis of nucleoside and nucleotide analogs to the traditional multistep chemical methods, since chemical glycosylation reactions include several protection-deprotection steps and the use of chemical reagents and organic solvents that are expensive and environmentally harmful. In this minireview, we want to illustrate what we consider the most current relevant examples of in vivo and in vitro multienzymatic systems used for the synthesis of nucleic acid derivatives showing advantages and disadvantages of each methodology. Finally, a detailed perspective about the impact of -omics in multienzymatic systems has been described. PMID:25952113

  13. Method for nucleic acid hybridization using single-stranded DNA binding protein

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1996-01-01

    Method of nucleic acid hybridization for detecting the presence of a specific nucleic acid sequence in a population of different nucleic acid sequences using a nucleic acid probe. The nucleic acid probe hybridizes with the specific nucleic acid sequence but not with other nucleic acid sequences in the population. The method includes contacting a sample (potentially including the nucleic acid sequence) with the nucleic acid probe under hybridizing conditions in the presence of a single-stranded DNA binding protein provided in an amount which stimulates renaturation of a dilute solution (i.e., one in which the t.sub.1/2 of renaturation is longer than 3 weeks) of single-stranded DNA greater than 500 fold (i.e., to a t.sub.1/2 less than 60 min, preferably less than 5 min, and most preferably about 1 min.) in the absence of nucleotide triphosphates.

  14. Optimization of influencing factors of nucleic acid adsorption onto silica-coated magnetic particles: application to viral nucleic acid extraction from serum.

    PubMed

    Sun, Ning; Deng, Congliang; Liu, Yi; Zhao, Xiaoli; Tang, Yan; Liu, Renxiao; Xia, Qiang; Yan, Wenlong; Ge, Guanglu

    2014-01-17

    We present a detailed study of nucleic acid adsorption onto silica-coated magnetic particles in the presence of guanidinium thiocyanate, and extraction of nucleic acid from two important transfusion-transmitted viruses using these particles. Silica-coated magnetic particles were prepared by encapsulating Fe3O4 nanoparticles with tetraethylorthosilicate (TEOS) hydrolysis. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and vibrating sample magnetometer (VSM) were used for particle characterization. The results indicate that silica-coated magnetic particles are spheroid with a narrow hydrodynamic size distribution of about 500nm. VSM data indicates that these particles display paramagnetic behavior with saturation magnetization of about 30emu/g. The adsorption capacities were evaluated with DNA from salmon sperm and RNA of Escherichia coli strain JM109 in the presence of guanidinium thiocyanate. The maximum of adsorption is up to 10.6mg DNA or 7.7mg RNA per 1g of silica-coated magnetic particles with 4M guanidinium thiocyanate (GTC) at pH 5.5 without adding ethanol. The influencing factors were analyzed in term of the adsorption of nucleic acids onto silica-coated magnetic particles. The adsorption capacity in acidic condition is found to be larger than that in alkaline condition and increases with adding equivalent volume of ethanol. A simple method was therefore established to extract nucleic acids of two important transfusion-transmitted viruses from serum and compared with the commercial kits. The results indicate that the extraction method based on silica-coated magnetic particles can be adapted to rapidly and facilely isolate viral nucleic acid for diagnosis of viral infection from serum within 30min, irrespective of genome compositions of virus. PMID:24360257

  15. Computation of statistical secondary structure of nucleic acids.

    PubMed Central

    Yamamoto, K; Kitamura, Y; Yoshikura, H

    1984-01-01

    This paper presents a computer analysis of statistical secondary structure of nucleic acids. For a given single stranded nucleic acid, we generated "structure map" which included all the annealing structures in the sequence. The map was transformed into "energy map" by rough approximation; here, the energy level of every pairing structure consisting of more than 2 successive nucleic acid pairs was calculated. By using the "energy map", the probability of occurrence of each annealed structure was computed, i.e., the structure was computed statistically. The basis of computation was the 8-queen problem in the chess game. The validity of our computer programme was checked by computing tRNA structure which has been well established. Successful application of this programme to small nuclear RNAs of various origins is demonstrated. PMID:6198622

  16. Computation of statistical secondary structure of nucleic acids.

    PubMed

    Yamamoto, K; Kitamura, Y; Yoshikura, H

    1984-01-11

    This paper presents a computer analysis of statistical secondary structure of nucleic acids. For a given single stranded nucleic acid, we generated "structure map" which included all the annealing structures in the sequence. The map was transformed into "energy map" by rough approximation; here, the energy level of every pairing structure consisting of more than 2 successive nucleic acid pairs was calculated. By using the "energy map", the probability of occurrence of each annealed structure was computed, i.e., the structure was computed statistically. The basis of computation was the 8-queen problem in the chess game. The validity of our computer programme was checked by computing tRNA structure which has been well established. Successful application of this programme to small nuclear RNAs of various origins is demonstrated. PMID:6198622

  17. Importance of Nucleic Acid Recognition in Inflammation and Autoimmunity.

    PubMed

    Barrat, Franck J; Elkon, Keith B; Fitzgerald, Katherine A

    2016-01-14

    An important concept in immunology is the classification of immune responses as either innate or adaptive, based on whether the antigen receptors are encoded in the germline or generated somatically by gene rearrangement. The innate immune system is an ancient mode of immunity, and by being a first layer in our defense against infectious agents, it is essential for our ability to develop rapid and sustained responses to pathogens. We discuss the importance of nucleic acid recognition by the innate immune system to mounting an appropriate immune response to pathogens and also how inflammation driven by uncontrolled recognition of self-nucleic acids can lead to autoimmune diseases. We also summarize current efforts to either harness the immune system using agonists of nucleic acid-specific innate sensors or, on the contrary, by using inhibitors in autoimmune situations. PMID:26526766

  18. Geometric properties of nucleic acids with potential for autobuilding.

    PubMed

    Gruene, Tim; Sheldrick, George M

    2011-01-01

    Medium- to high-resolution X-ray structures of DNA and RNA molecules were investigated to find geometric properties useful for automated model building in crystallographic electron-density maps. We describe a simple method, starting from a list of electron-density 'blobs', for identifying backbone phosphates and nucleic acid bases based on properties of the local electron-density distribution. This knowledge should be useful for the automated building of nucleic acid models into electron-density maps. We show that the distances and angles involving C1' and the P atoms, using the pseudo-torsion angles \\eta' and \\theta\\,' that describe the ...P-C1'-P-C1'... chain, provide a promising basis for building the nucleic acid polymer. These quantities show reasonably narrow distributions with asymmetry that should allow the direction of the phosphate backbone to be established. PMID:21173468

  19. Extracellular Nucleic Acids in Urine: Sources, Structure, Diagnostic Potential

    PubMed Central

    Bryzgunova, O. E.; Laktionov, P. P.

    2015-01-01

    Cell-free nucleic acids (cfNA) may reach the urine through cell necrosis or apoptosis, active secretion of nucleic acids by healthy and tumor cells of the urinary tract, and transport of circulating nucleic acids (cir- NA) from the blood into primary urine. Even though urinary DNA and RNA are fragmented, they can be used to detect marker sequences. MicroRNAs are also of interest as diagnostic probes. The stability of cfNA in the urine is determined by their structure and packaging into supramolecular complexes and by nuclease activity in the urine. This review summarizes current data on the sources of urinary cfNA, their structural features, diagnostic potential and factors affecting their stability. PMID:26483959

  20. Prospects for using self-assembled nucleic acid structures.

    PubMed

    Rudchenko, M N; Zamyatnin, A A

    2015-04-01

    According to the central dogma in molecular biology, nucleic acids are assigned with key functions on storing and executing genetic information in any living cell. However, features of nucleic acids are not limited only with properties providing template-dependent biosynthetic processes. Studies of DNA and RNA unveiled unique features of these polymers able to make various self-assembled three-dimensional structures that, among other things, use the complementarity principle. Here, we review various self-assembled nucleic acid structures as well as application of DNA and RNA to develop nanomaterials, molecular automata, and nanodevices. It can be expected that in the near future results of these developments will allow designing novel next-generation diagnostic systems and medicinal drugs. PMID:25869355

  1. [Peptide Nucleic Acids (PNA)--the explorer of gene mystery].

    PubMed

    Fei, Yi-Nan; Zhang, Fei-Xiong

    2006-05-01

    Peptide Nucleic Acids(PNA) are DNA analogues in which the naturally occurring nucleobases are attached via methylene carbonyl linkages to an achiral pseudopeptide backbone of N-(2-aminoethyl) glycine units. PNA can bind to both DNA and RNA targets in a sequence-specific manner. PNA provides a powerful tool to study the mechanism for gene replication and transcription as well as an innovative strategy to regulate target gene expression. Advances as a probe in molecular biotechnology have greatly improved the sensitivity and the efficiency in genetic investigations and diagnosis. Peptide Nucleic Acid (PNA) which recognizes and binds to a complementary nucleic acid sequence presents unique physicochemical properties and has been incorporated into an expanding set of biological investigations. Accordingly, PNA is becoming the explorer of gene mystery. PMID:16735246

  2. Nature and Magnitude of Aromatic Stacking of Nucleic Acid Bases

    SciTech Connect

    Sponer, Jiri; Riley, Kevin E.; Hobza, Pavel

    2008-04-07

    This review summarises recent advances in quantum chemical calculations of base-stacking forces in nucleic acids. We explain in detail the very complex relationship between the gas-phase basestacking energies, as revealed by quantum chemical (QM) calculations, and the highly variable roles of these interactions in nucleic acids. This issue is rarely discussed in quantum chemical and physical chemistry literature. We further extensively discuss methods that are available for basestacking studies, complexity of comparison of stacking calculations with gas phase experiments, balance of forces in stacked complexes of nucleic acid bases, and the relation between QM and force field descriptions. We also review all recent calculations on base-stacking systems, including details analysis of the B-DNA stacking. Specific attention is paid to the highest accuracy QM calculations, to the decomposition of the interactions, and development of dispersion-balanced DFT methods. Future prospects of computational studies of base stacking are discussed.

  3. Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology.

    PubMed

    Michelotti, Nicole; Johnson-Buck, Alexander; Manzo, Anthony J; Walter, Nils G

    2012-01-01

    Nucleic acid nanotechnology exploits the programmable molecular recognition properties of natural and synthetic nucleic acids to assemble structures with nanometer-scale precision. In 2006, DNA origami transformed the field by providing a versatile platform for self-assembly of arbitrary shapes from one long DNA strand held in place by hundreds of short, site-specific (spatially addressable) DNA 'staples'. This revolutionary approach has led to the creation of a multitude of two-dimensional and three-dimensional scaffolds that form the basis for functional nanodevices. Not limited to nucleic acids, these nanodevices can incorporate other structural and functional materials, such as proteins and nanoparticles, making them broadly useful for current and future applications in emerging fields such as nanomedicine, nanoelectronics, and alternative energy. PMID:22131292

  4. Amino-containing magnetic nanoemulsions: elaboration and nucleic acid extraction

    NASA Astrophysics Data System (ADS)

    Veyret, Raphael; Delair, Thierry; Pichot, Christian; Elaissari, Abdelhamid

    2005-08-01

    Amino-containing magnetic colloids were prepared from highly magnetic oil-in-water (O/W) emulsions. The functionalization was performed by controlling the adsorption of polyethyleneimine onto negatively charged magnetic emulsions. The cationic magnetic nanodroplets were characterized in terms of chemical composition, particle size, size distribution, zeta potential and colloidal stability as a function of storage time. These amino-containing magnetic emulsions were assessed as a new tool for nucleic acid extraction and amplification. The adsorption of nucleic acids was mostly controlled by attractive electrostatic interactions. The adsorption efficiency of a model RNA was found to be encouraging and the captured nucleic acid molecules were directly enzymatically amplified in the presence of the magnetic particles without any elution step.

  5. Translating nucleic acid-sensing pathways into therapies.

    PubMed

    Junt, Tobias; Barchet, Winfried

    2015-09-15

    Nucleic acid sensing by innate receptors initiates immune defences against viruses and other pathogens. A hallmark of this response is the release of interferons (IFNs), which promote protective immunity by inducing IFN-stimulated genes (ISGs). A similar ISG signature is found in autoinflammatory and autoimmune conditions, indicating that chronic activation of nucleic acid-sensing pathways may contribute to these diseases. Here, we review how nucleic acid-sensing pathways are currently being targeted pharmacologically with both agonists and antagonists. We discuss how an improved understanding of the biology of these pathways is leading to novel therapies for infections, cancer, and autoimmune and autoinflammatory disorders, and how new therapeutics will, in turn, generate a deeper understanding of these complex diseases. PMID:26292638

  6. Circulating nucleic acids as biomarkers in breast cancer

    PubMed Central

    2013-01-01

    During tumor development, tumor cells release their nucleic acids into the blood circulation. This process occurs by apoptotic and necrotic cell deaths along with active cell secretion, resulting in high levels of circulating DNA, mRNA, and microRNA in the blood of patients with breast cancer. As circulating cell-free tumor nucleic acids may reflect the characteristics of the primary tumor and even of micrometastatic cells, they may be excellent blood biomarkers for screening breast cancer. Assays that allow the repetitive monitoring of patients by using blood samples as liquid biopsy may be efficient in assessing cancer progression in patients whose tumor tissue is not available. This review evaluates the recent data on the potential use of circulating cell-free nucleic acids as biomarkers for breast cancer. PMID:24090167

  7. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes.

    PubMed

    Victora, Andrea; Mller, Heiko M; Exner, Thomas E

    2014-12-16

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3-0.6 ppm and correlation coefficients (r(2)) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  8. Accurate ab initio prediction of NMR chemical shifts of nucleic acids and nucleic acids/protein complexes

    PubMed Central

    Victora, Andrea; Mller, Heiko M.; Exner, Thomas E.

    2014-01-01

    NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.30.6 ppm and correlation coefficients (r2) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization. PMID:25404135

  9. Kit for detecting nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N. (San Ramon, CA); Straume, Tore (Tracy, CA); Bogen, Kenneth T. (Walnut Creek, CA)

    2001-01-01

    A kit is provided for detecting a target nucleic acid sequence in a sample, the kit comprising: a first hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the first hybridization probe including a first complexing agent for forming a binding pair with a second complexing agent; and a second hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the first hybridization probe does not selectively hybridize, the second hybridization probe including a detectable marker; a third hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the third hybridization probe including the same detectable marker as the second hybridization probe; and a fourth hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the third hybridization probe does not selectively hybridize, the fourth hybridization probe including the first complexing agent for forming a binding pair with the second complexing agent; wherein the first and second hybridization probes are capable of simultaneously hybridizing to the target sequence and the third and fourth hybridization probes are capable of simultaneously hybridizing to the target sequence, the detectable marker is not present on the first or fourth hybridization probes and the first, second, third, and fourth hybridization probes each include a competitive nucleic acid sequence which is sufficiently complementary to a third portion of the target sequence that the competitive sequences of the first, second, third, and fourth hybridization probes compete with each other to hybridize to the third portion of the target sequence.

  10. Recent Advances in Chemical Modification of Peptide Nucleic Acids

    PubMed Central

    Rozners, Eriks

    2012-01-01

    Peptide nucleic acid (PNA) has become an extremely powerful tool in chemistry and biology. Although PNA recognizes single-stranded nucleic acids with exceptionally high affinity and sequence selectivity, there is considerable ongoing effort to further improve properties of PNA for both fundamental science and practical applications. The present paper discusses selected recent studies that improve on cellular uptake and binding of PNA to double-stranded DNA and RNA. The focus is on chemical modifications of PNA's backbone and heterocyclic nucleobases. The paper selects representative recent studies and does not attempt to provide comprehensive coverage of the broad and vibrant field of PNA modification. PMID:22991652

  11. Recognition of Legionella pneumophila nucleic acids by innate immune receptors.

    PubMed

    Cunha, Larissa D; Zamboni, Dario S

    2014-12-01

    Innate immune receptors evolved to sense conserved molecules that are present in microbes or are released during non-physiological conditions. Activation of these receptors is essential for early restriction of microbial infections and generation of adaptive immunity. Among the conserved molecules sensed by innate immune receptors are the nucleic acids, which are abundantly contained in all infectious organisms including virus, bacteria, fungi and parasites. In this review we focus in the innate immune proteins that function to sense nucleic acids from the intracellular bacterial pathogen Legionella pneumophila and the importance of these processes to the outcome of the infection. PMID:25172398

  12. Nanopores and nucleic acids: prospects for ultrarapid sequencing

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Akeson, M.

    2000-01-01

    DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.

  13. Towards Improved Accuracy of Bordetella pertussis Nucleic Acid Amplification Tests

    PubMed Central

    2012-01-01

    In many clinical microbiology laboratories, nucleic acid amplification tests such as PCR have become the routine methods for the diagnosis of pertussis. While PCR has greatly increased the ability of laboratories to detect Bordetella pertussis infections, it has also been associated with false-positive results that can, given the tendency of B. pertussis to cause outbreaks, result in unnecessary and costly control measures. The species specificity of Bordetella gene targets and their number of copies per genome greatly impact the performance characteristics of nucleic acid amplification tests for B. pertussis. It is crucial that laboratorians recognize these characteristics, to limit false-positive test results and prevent pseudo-outbreaks. PMID:22442315

  14. The GenBank nucleic acid sequence database.

    PubMed

    Burks, C; Fickett, J W; Goad, W B; Kanehisa, M; Lewitter, F I; Rindone, W P; Swindell, C D; Tung, C S; Bilofsky, H S

    1985-12-01

    The GenBank nucleic acid sequence database is a computer-based collection of all published DNA and RNA sequences; it contains over five million bases in close to six thousand sequence entries drawn from four thousand five hundred published articles. Each sequence is accompanied by relevant biological annotation. The database is available either on magnetic tape, on floppy diskettes, on-line or in hardcopy form. We discuss the structure of the database, the extent of the data and the implications of the database for research on nucleic acids. PMID:3880345

  15. Conformational Flexibility of Pyrimidine Ring in Nucleic Acid Bases

    NASA Astrophysics Data System (ADS)

    Shishkin, Oleg V.; Gorb, Leonid; Leszczynski, Jerzy

    Nucleic acid bases (NABs) have been considered for many years to be planar and conformationally rigid. However, recently, two possible sources of nucleobases nonplanarity have been found. Ab initio quantum-chemical calculations using large basis sets augmented by inclusion of electron correlation and recent experimental studies revealed that amino groups in isolated cytosine, guanine, and adenine adopt a nonplanar trigonal-pyramidal configuration. Since the values of amino group inversion barriers do not exceed approximately 1 kcal mol-1, this group possesses rather flexible geometry. A different source of nonplanarity of nucleobases originates from the high deformability of the pyrimidine ring. Transition of such a ring in uracil, thymine, cytosine, and guanine molecules from a planar equilibrium conformation to a sofa configuration characterized by a relevant torsion angle of 20 entails an increase of energy by less than 1.5 kcal mol-1. Therefore, at room temperature, certain fraction of isolated DNA bases should possess nonplanar structure of the heterocyclic ring. This review summarizes recent theoretical studies on the flexibility of the NABs.

  16. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    NASA Astrophysics Data System (ADS)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct novel SNA-based nanomaterials with desired properties and applying targeting moieties to the SNA platform to achieve cell type specific gene regulation effects. Due to the flexibility of the SNA approach, the SNA platform can potentially be applied to many genetic disorders through tailored target specificities.

  17. Nucleic acids encoding human trithorax protein

    DOEpatents

    Evans, Glen A.; Djabali, Malek; Selleri, Licia; Parry, Pauline

    2001-01-01

    In accordance with the present invention, there is provided an isolated peptide having the characteristics of human trithorax protein (as well as DNA encoding same, antisense DNA derived therefrom and antagonists therefor). The invention peptide is characterized by having a DNA binding domain comprising multiple zinc fingers and at least 40% amino acid identity with respect to the DNA binding domain of Drosophila trithorax protein and at least 70% conserved sequence with respect to the DNA binding domain of Drosophila trithorax protein, and wherein said peptide is encoded by a gene located at chromosome 11 of the human genome at q23. Also provided are methods for the treatment of subject(s) suffering from immunodeficiency, developmental abnormality, inherited disease, or cancer by administering to said subject a therapeutically effective amount of one of the above-described agents (i.e., peptide, antagonist therefor, DNA encoding said peptide or antisense DNA derived therefrom). Also provided is a method for the diagnosis, in a subject, of immunodeficiency, developmental abnormality, inherited disease, or cancer associated with disruption of chromosome 11 at q23.

  18. Multicenter Evaluation of the Verigene Clostridium difficile Nucleic Acid Assay

    PubMed Central

    Buchan, Blake W.; Tan, Sokha; Stamper, Paul D.; Riebe, Katherine M.; Pancholi, Preeti; Kelly, Cheryl; Rao, Arundhati; Fader, Robert; Cavagnolo, Robert; Watson, Wendy; Goering, Richard V.; Trevino, Ernest A.; Weissfeld, Alice S.; Ledeboer, Nathan A.

    2013-01-01

    The Verigene Clostridium difficile Nucleic Acid test (Verigene CDF test) (Nanosphere, Northbrook, IL) is a multiplex qualitative PCR assay that utilizes a nanoparticle-based array hybridization method to detect C. difficile tcdA and tcdB in fecal specimens. In addition, the assay detects binary toxin gene sequences and the single base pair deletion at nucleotide 117 (? 117) in tcdC to provide a presumptive identification of the epidemic strain 027/NAP1/BI (referred to here as ribotype 027). This study compared the Verigene CDF test with anaerobic direct and enriched toxigenic culture on stool specimens from symptomatic patients among five geographically diverse laboratories within the United States. The Verigene CDF test was performed according to the manufacturer's instructions, and the reference methods performed by a central laboratory included direct culture onto cycloserine cefoxitin fructose agar (CCFA) and enriched culture using cycloserine cefoxitin mannitol broth with taurocholate and lysozyme. Recovered isolates were identified as C. difficile using gas liquid chromatography and were tested for toxin using a cell culture cytotoxicity neutralization assay. Strains belonging to ribotype 027 were determined by PCR ribotyping and bidirectional sequencing for ? 117 in tcdC. A total of 1,875 specimens were evaluable. Of these, 275 specimens (14.7%) were culture positive by either direct or enriched culture methods. Compared to direct culture alone, the overall sensitivity, specificity, positive predictive value, and negative predictive value for the Verigene CDF test were 98.7%, 87.5%, 42%, and 99.9%, respectively. Compared to combined direct and enriched culture results, the sensitivity, specificity, positive predictive value, and negative predictive values of the Verigene CDF test were 90.9%, 92.5%, 67.6%, and 98.3%, respectively. Of the 250 concordantly culture-positive specimens, 59 (23.6%) were flagged as hypervirulent; 53 were confirmed as ribotype 027, and all 59 possessed ? 117 in tcdC. Time to results was approximately 2.5 h per specimen. The Verigene CDF test is a novel nucleic acid microarray that reliably detects both C. difficile toxins A and B in unformed stool specimens and appears to adequately identify ribotype 027 isolates. PMID:24088862

  19. Polymerase chain reaction system using magnetic beads for analyzing a sample that includes nucleic acid

    DOEpatents

    Nasarabadi, Shanavaz (Livermore, CA)

    2011-01-11

    A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reaction chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.

  20. Modeling nucleic acid structure in the presence of single-stranded binding proteins

    NASA Astrophysics Data System (ADS)

    Forties, Robert; Bundschuh, Ralf

    2009-03-01

    There are many important proteins which bind single-stranded nucleic acids, such as the nucleocapsid protein in HIV, the RecA DNA repair protein in bacteria, and all proteins involved in mRNA splicing and translation. We extend the Vienna Package for quantitatively modeling the secondary structure of nucleic acids to include proteins which bind to unpaired portions of the nucleic acid. All parameters needed to model nucleic acid secondary structures in the absence of proteins have been previously measured. This leaves the footprint and sequence dependent binding affinity of the protein as adjustable parameters of our model. Using this model we are able to predict the probability of the protein binding at any position in the nucleic acid sequence, the impact of the protein on nucleic acid base pairing, the end-to-end distance distribution for the nucleic acid, and FRET distributions for fluorophores attached to the nucleic acid.

  1. Nucleic acid encoding TGF-. beta. and its uses

    SciTech Connect

    Derynck, R.M.A.; Goeddel, D.V.

    1989-12-12

    This patent describes a method. It comprises: constructing a vector which includes nucleic acid encoding biologically active TGF-{beta}, transforming a host eukaryotic cell with the vector, culturing the transformed cell and recovering mature TGF-{beta} from the culture medium.

  2. Nucleic acid separations using superficially porous silica particles.

    PubMed

    Close, Elizabeth D; Nwokeoji, Alison O; Milton, Dafydd; Cook, Ken; Hindocha, Darsha M; Hook, Elliot C; Wood, Helen; Dickman, Mark J

    2016-04-01

    Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica particles in conjunction with ion pair reverse-phase liquid chromatography for the analysis of nucleic acids. We have investigated a range of different pore-sizes and phases for the analysis of a diverse range of nucleic acids including oligonucleotides, oligoribonucleotides, phosphorothioate oligonucleotides and high molecular weight dsDNA and RNA. The pore size of the superficially porous silica particles was shown to significantly affect the resolution of the nucleic acids. Optimum separations of small oligonucleotides such as those generated in RNase mapping experiments were obtained with 80Å pore sizes and can readily be interfaced with mass spectrometry analysis. Improved resolution of larger oligonucleotides (>19mers) was observed with pore sizes of 150Å. The optimum resolution for larger dsDNA/RNA molecules was achieved using superficially porous silica particles with pore sizes of 400Å. Furthermore, we have utilised 150Å pore size solid-core particles to separate typical impurities of a fully phosphorothioated oligonucleotide, which are often generated in the synthesis of this important class of therapeutic oligonucleotide. PMID:26948761

  3. Arrays of nucleic acid probes on biological chips

    DOEpatents

    Chee, Mark (Palo Alto, CA); Cronin, Maureen T. (Los Altos, CA); Fodor, Stephen P. A. (Palo Alto, CA); Huang, Xiaohua X. (Mt. View, CA); Hubbell, Earl A. (Mt. View, CA); Lipshutz, Robert J. (Palo Alto, CA); Lobban, Peter E. (Palo Alto, CA); Morris, MacDonald S. (San Jose, CA); Sheldon, Edward L. (Menlo Park, CA)

    1998-11-17

    DNA chips containing arrays of oligonucleotide probes can be used to determine whether a target nucleic acid has a nucleotide sequence identical to or different from a specific reference sequence. The array of probes comprises probes exactly complementary to the reference sequence, as well as probes that differ by one or more bases from the exactly complementary probes.

  4. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Enterovirus nucleic acid assay. 866.3225 Section 866.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3225...

  5. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Enterovirus nucleic acid assay. 866.3225 Section 866.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3225...

  6. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    DOEpatents

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  7. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enterovirus nucleic acid assay. 866.3225 Section 866.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3225...

  8. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Enterovirus nucleic acid assay. 866.3225 Section 866.3225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3225...

  9. Structure, stability and behaviour of nucleic acids in ionic liquids

    PubMed Central

    Tateishi-Karimata, Hisae; Sugimoto, Naoki

    2014-01-01

    Nucleic acids have become a powerful tool in nanotechnology because of their conformational polymorphism. However, lack of a medium in which nucleic acid structures exhibit long-term stability has been a bottleneck. Ionic liquids (ILs) are potential solvents in the nanotechnology field. Hydrated ILs, such as choline dihydrogen phosphate (choline dhp) and deep eutectic solvent (DES) prepared from choline chloride and urea, are ‘green’ solvents that ensure long-term stability of biomolecules. An understanding of the behaviour of nucleic acids in hydrated ILs is necessary for developing DNA materials. We here review current knowledge about the structures and stabilities of nucleic acids in choline dhp and DES. Interestingly, in choline dhp, A–T base pairs are more stable than G–C base pairs, the reverse of the situation in buffered NaCl solution. Moreover, DNA triplex formation is markedly stabilized in hydrated ILs compared with aqueous solution. In choline dhp, the stability of Hoogsteen base pairs is comparable to that of Watson–Crick base pairs. Moreover, the parallel form of the G-quadruplex is stabilized in DES compared with aqueous solution. The behaviours of various DNA molecules in ILs detailed here should be useful for designing oligonucleotides for the development of nanomaterials and nanodevices. PMID:25013178

  10. Photosensitizers binding to nucleic acids as anticancer agents.

    PubMed

    Xodo, Luigi E; Cogoi, Susanna; Rapozzi, Valentina

    2016-02-01

    Cationic porphyrins (Prs) and phthalocyanines (Pcs) are strong photosensitizers that have drawn much attention for their potential in photodynamic therapy. These compounds have the interesting property of binding to nucleic acids, in particular G-rich quadruplex-forming sequences in DNA and RNA. In this review, we highlight their potential as anticancer drugs. PMID:26807879

  11. Watson-Crick hydrogen bonding of unlocked nucleic acids.

    PubMed

    Langkjr, Niels; Wengel, Jesper; Pasternak, Anna

    2015-11-15

    We herein describe the synthesis of two new unlocked nucleic acid building blocks containing hypoxanthine and 2,6-diaminopurine as nucleobase moieties and their incorporation into oligonucleotides. The modified oligonucleotides were used to examine the thermodynamic properties of UNA against unmodified oligonucleotides and the resulting thermodynamic data support that the hydrogen bonding face of UNA is Watson-Crick like. PMID:26497284

  12. Differentiation of nucleic acid segments on the basis of nucleotide differences

    SciTech Connect

    Kornher, J.S.; Livak, K.J.

    1989-11-07

    This patent describes a process for distinguishing nucleic acid segments on the basis of nucleotide differences. It comprises synthesizing separately complementary nucleic acid strands on each of at least two target nucleic acid templates using a nucleic acid polymerase and nucleoside triphosphate substrates, wherein at least one of the natural nucleoside triphosphate substrates is completely replaced with a mobility-shifting analog; and comparing the mobility of the separately synthesized strands in the single-stranded form through a size-fractionation medium.

  13. 21 CFR 866.5910 - Quality control material for cystic fibrosis nucleic acid assays.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... nucleic acid assays. 866.5910 Section 866.5910 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Test Systems § 866.5910 Quality control material for cystic fibrosis nucleic acid assays. (a) Identification. Quality control material for cystic fibrosis nucleic acid assays. A quality control material...

  14. NPDock: a web server for protein–nucleic acid docking

    PubMed Central

    Tuszynska, Irina; Magnus, Marcin; Jonak, Katarzyna; Dawson, Wayne; Bujnicki, Janusz M.

    2015-01-01

    Protein–RNA and protein–DNA interactions play fundamental roles in many biological processes. A detailed understanding of these interactions requires knowledge about protein–nucleic acid complex structures. Because the experimental determination of these complexes is time-consuming and perhaps futile in some instances, we have focused on computational docking methods starting from the separate structures. Docking methods are widely employed to study protein–protein interactions; however, only a few methods have been made available to model protein–nucleic acid complexes. Here, we describe NPDock (Nucleic acid–Protein Docking); a novel web server for predicting complexes of protein–nucleic acid structures which implements a computational workflow that includes docking, scoring of poses, clustering of the best-scored models and refinement of the most promising solutions. The NPDock server provides a user-friendly interface and 3D visualization of the results. The smallest set of input data consists of a protein structure and a DNA or RNA structure in PDB format. Advanced options are available to control specific details of the docking process and obtain intermediate results. The web server is available at http://genesilico.pl/NPDock. PMID:25977296

  15. Chimeric RNA-DNA molecular beacons for quantification of nucleic acids, single nucleotide polymophisms, and nucleic acid damage.

    PubMed

    El-Yazbi, Amira F; Loppnow, Glen R

    2013-05-01

    Single nucleotide polymorphisms (SNPs) are the main cause for variations in the human genome. DNA lesions, such as cyclobutane pyrimidine dimers (CPDs), [6-4] pyrimidine-pyrimidinones, dewar pyrimidinones, and photohydrates, can subsequently lead to mutagenesis, carcinogenesis, and cell death. Much effort has focused on methods for detecting DNA, SNPs, or damaged nucleic acids. However, almost all of the proposed methods consist of multistep procedures, are limited to specific types of damage, some of these methods require expensive instruments, and some suffer from a high level of interferences. In this paper, we present a novel, simple, mix-and-read assay for the detection of nucleic acids that is general for all types of SNPs and nucleic acid damage. This method uses a chimeric RNA-DNA molecular beacon (chMB). The calibration curve of the chMB for detecting single base mismatch and ultraviolet (UV)-induced DNA damage shows good linearity (R(2) = 0.981 and 0.996, respectively) and limits of detection of 10.4 ± 2.2 and 8.64 ± 1.2 nM, respectively. The chimeric RNA-DNA MB proves to be a more sensitive and selective tool for the quantification of nucleic acids, DNA mismatches, and UV-induced DNA damage than DNA MBs. PMID:23544988

  16. NAFlex: a web server for the study of nucleic acid flexibility

    PubMed Central

    Hospital, Adam; Faustino, Ignacio; Collepardo-Guevara, Rosana; Gonzlez, Carlos; Gelp, Josep Lluis; Orozco, Modesto

    2013-01-01

    We present NAFlex, a new web tool to study the flexibility of nucleic acids, either isolated or bound to other molecules. The server allows the user to incorporate structures from protein data banks, completing gaps and removing structural inconsistencies. It is also possible to define canonical (average or sequence-adapted) nucleic acid structures using a variety of predefined internal libraries, as well to create specific nucleic acid conformations from the sequence. The server offers a variety of methods to explore nucleic acid flexibility, such as a colorless wormlike-chain model, a base-pair resolution mesoscopic model and atomistic molecular dynamics simulations with a wide variety of protocols and force fields. The trajectories obtained by simulations, or imported externally, can be visualized and analyzed using a large number of tools, including standard Cartesian analysis, essential dynamics, helical analysis, local and global stiffness, energy decomposition, principal components and in silico NMR spectra. The server is accessible free of charge from the mmb.irbbarcelona.org/NAFlex webpage. PMID:23685436

  17. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    SciTech Connect

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  18. Nucleic acids encoding modified human immunodeficiency virus type 1 (HIV-1) group M consensus envelope glycoproteins

    SciTech Connect

    Haynes, Barton F.; Gao, Feng; Korber, Bette T.; Hahn, Beatrice H.; Shaw, George M.; Kothe, Denise; Li, Ying Ying; Decker, Julie; Liao, Hua-Xin

    2011-12-06

    The present invention relates, in general, to an immunogen and, in particular, to an immunogen for inducing antibodies that neutralizes a wide spectrum of HIV primary isolates and/or to an immunogen that induces a T cell immune response. The invention also relates to a method of inducing anti-HIV antibodies, and/or to a method of inducing a T cell immune response, using such an immunogen. The invention further relates to nucleic acid sequences encoding the present immunogens.

  19. Method for promoting specific alignment of short oligonucleotides on nucleic acids

    DOEpatents

    Studier, F. William (Stony Brook, NY); Kieleczawa, Jan (Coram, NY); Dunn, John J. (Bellport, NY)

    1996-01-01

    Disclosed is a method for promoting specific alignment of short oligonucleotides on a nucleic acid polymer. The nucleic acid polymer is incubated in a solution containing a single-stranded DNA-binding protein and a plurality of oligonucleotides which are perfectly complementary to distinct but adjacent regions of a predetermined contiguous nucleotide sequence in the nucleic acid polymer. The plurality of oligonucleotides anneal to the nucleic acid polymer to form a contiguous region of double stranded nucleic acid. Specific application of the methods disclosed include priming DNA synthesis and template-directed ligation.

  20. Recent Developments in Peptide-Based Nucleic Acid Delivery

    PubMed Central

    Veldhoen, Sandra; Laufer, Sandra D.; Restle, Tobias

    2008-01-01

    Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cell-penetrating peptides (CPPs). The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10–30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisense-oligonucleotides), which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls. PMID:19325804

  1. The association between low-grade inflammation, iron status and nucleic acid oxidation in the elderly.

    PubMed

    Broedbaek, Kasper; Siersma, Volkert; Andersen, Jon T; Petersen, Morten; Afzal, Shoaib; Hjelvang, Brian; Weimann, Allan; Semba, Richard D; Ferrucci, Luigi; Poulsen, Henrik E

    2011-04-01

    This study applied a case-control approach to investigate the association between low-grade inflammation, defined by high values within the normal range of C-reactive protein (CRP) and interleukin-6 (IL-6), and urinary markers of nucleic acid oxidation. No differences in excretion of urinary markers of nucleic acid oxidation between cases and controls were found and multivariable linear regression analysis showed no association between urinary markers of nucleic acid oxidation and inflammatory markers. Post-hoc multivariable linear regression analysis showed significant associations between nucleic acid oxidation and various iron status markers and especially a close relationship between nucleic acid oxidation and ferritin. This study shows no association between low-grade inflammation and urinary markers of nucleic acid oxidation in a population of elderly Italian people. The results suggest that low-grade inflammation only has a negligible impact on whole body nucleic acid oxidation, whereas iron status seems to be of great importance. PMID:21275071

  2. Activating frataxin expression by repeat-targeted nucleic acids.

    PubMed

    Li, Liande; Matsui, Masayuki; Corey, David R

    2016-01-01

    Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression. PMID:26842135

  3. Detection of nucleic acid hybrids by prolonged chemiluminescence

    SciTech Connect

    Dattagupta, N.; Clemens, A.H.

    1988-12-27

    A method for determining a particular single stranded polynucleotide sequence in a test medium, comprising the steps of: (a) immobilizing on a solid support single stranded nucleic acids in the test medium, (b) contacting the immobilized nucleic acids with a polynucleotide probe having a base sequence substantially complementary to the sequence to be determined and the contacting being under conditions favorable to hybridization between the probe and the sequence to be determined, wherein the probe is labeled with a chemiluminescence enhancer, (c) separating the immobilized hybrids from the unhybridized probe, (d) initiating a chemiluminescent reaction by contacting the separated, labeled, immobilized hybrids with an oxidant, a 2.3-dihydro-1,4-phthalazinedione chemiluminescence precursor, and a peroxidase enzyme, (e) detecting the resulting light emission, and (f) relating the amount of emitted light to the amount of the single stranded polynucleotide sequence.

  4. Activating frataxin expression by repeat-targeted nucleic acids

    PubMed Central

    Li, Liande; Matsui, Masayuki; Corey, David R.

    2016-01-01

    Friedreich's ataxia is an incurable genetic disorder caused by a mutant expansion of the trinucleotide GAA within an intronic FXN RNA. This expansion leads to reduced expression of frataxin (FXN) protein and evidence suggests that transcriptional repression is caused by an R-loop that forms between the expanded repeat RNA and complementary genomic DNA. Synthetic agents that increase levels of FXN protein might alleviate the disease. We demonstrate that introducing anti-GAA duplex RNAs or single-stranded locked nucleic acids into patient-derived cells increases FXN protein expression to levels similar to analogous wild-type cells. Our data are significant because synthetic nucleic acids that target GAA repeats can be lead compounds for restoring curative FXN levels. More broadly, our results demonstrate that interfering with R-loop formation can trigger gene activation and reveal a new strategy for upregulating gene expression. PMID:26842135

  5. Synthetic nucleic acid delivery systems: present and perspectives.

    PubMed

    Draghici, Bogdan; Ilies, Marc A

    2015-05-28

    Self-assembled synthetic gene delivery systems represent the bottom-up approach to gene delivery and gene silencing, in which scientists are designing novel cationic and procationic amphiphiles that can pack, transport, and deliver nucleic acids to various targets in the body in a controlled manner. These supramolecular assemblies are safer than viruses, but they are lagging behind them in efficiency. We are presenting recent progress that has narrowed this gap through better understanding the delivery barriers and incorporation of this knowledge in the design of novel synthetic amphiphiles, formulations, and revolutionary screening and optimization processes. Structure-properties and structure-activity relationships were drawn within each amphiphile class, presenting the cellular and animal models used to generate them. We are also revealing pertinent in vitro/in vivo correlations that emphasize promising amphiphiles and successful formulation optimization efforts for efficient in vivo nucleic acid delivery, together with main organ targets and diseases treatable with these revolutionary technologies. PMID:25658858

  6. Ultrasensitive nucleic acid sequence detection by single-molecule electrophoresis

    SciTech Connect

    Castro, A; Shera, E.B.

    1996-09-01

    This is the final report of a one-year laboratory-directed research and development project at Los Alamos National Laboratory. There has been considerable interest in the development of very sensitive clinical diagnostic techniques over the last few years. Many pathogenic agents are often present in extremely small concentrations in clinical samples, especially at the initial stages of infection, making their detection very difficult. This project sought to develop a new technique for the detection and accurate quantification of specific bacterial and viral nucleic acid sequences in clinical samples. The scheme involved the use of novel hybridization probes for the detection of nucleic acids combined with our recently developed technique of single-molecule electrophoresis. This project is directly relevant to the DOE`s Defense Programs strategic directions in the area of biological warfare counter-proliferation.

  7. Nonviral Approaches for Neuronal Delivery of Nucleic Acids

    PubMed Central

    Bergen, Jamie M.; Park, In-Kyu; Horner, Philip J.

    2007-01-01

    The delivery of therapeutic nucleic acids to neurons has the potential to treat neurological disease and spinal cord injury. While select viral vectors have shown promise as gene carriers to neurons, their potential as therapeutic agents is limited by their toxicity and immunogenicity, their broad tropism, and the cost of large-scale formulation. Nonviral vectors are an attractive alternative in that they offer improved safety profiles compared to viruses, are less expensive to produce, and can be targeted to specific neuronal subpopulations. However, most nonviral vectors suffer from significantly lower transfection efficiencies than neurotropic viruses, severely limiting their utility in neuron-targeted delivery applications. To realize the potential of nonviral delivery technology in neurons, vectors must be designed to overcome a series of extra- and intracellular barriers. In this article, we describe the challenges preventing successful nonviral delivery of nucleic acids to neurons and review strategies aimed at overcoming these challenges. PMID:17932730

  8. Fool's Gold Footprinting: microfluidic probing of nucleic acids

    NASA Astrophysics Data System (ADS)

    Jones, Christopher D.; Schlatterer, Joerg C.; Brenowitz, Michael; Pollack, Lois

    2012-02-01

    We describe a microfluidic device containing a mineral matrix capable of rapidly generating hydroxyl radicals that enables high-resolution structural studies of nucleic acids. Hydroxyl radicals cleave the solvent accessible backbone of DNA and RNA; the cleavage products can be detected with as fine as single nucleotide resolution. Protection from hydroxyl radical cleavage (footprinting) can identify sites of protein binding or the presence of tertiary structure. Here we report preparation of micron sized particles of iron sulfide (pyrite) and fabrication of a microfluidic prototype that together generate enough hydroxyl radicals within 20 ms to cleave DNA sufficiently for a footprinting analysis to be conducted. This prototype enables the development of high-throughput and/or rapid reaction devices with which to probe nucleic acid folding dynamics and ligand binding.

  9. Lipid nanoparticles as vehicles for macromolecules: nucleic acids and peptides.

    PubMed

    del Pozo-Rodrguez, Ana; Delgado, Diego; Solins, Maria A; Gascn, Alicia R

    2011-09-01

    Traditional drug delivery systems are not efficient for peptide, protein and nucleic acid (plasmid DNA, oligonucleotides or short interfering RNA) delivery, thereby LNP have been exploited as potential delivery and targeting systems of these molecules. Since their discovery in the early 90's several research groups have focused their efforts on the improvement of this kind of nanocarriers in terms of effectiveness and safety. This review features the recent and most relevant patents related to these topics, with particular attention to targeting and protection from environmental agents. Moreover, in the case of nucleic acids strategies to improve transfection mediated by lipid nanoparticles (entrance to the cells, intracellular distribution or going through nuclear envelope) will be assessed. Regarding peptides and proteins, enhancement of encapsulation efficiency and absorption through mucoses are the main studied drawbacks. Finally, this work also includes a summary of the existing patents about the use of LNP as immune response adjuvants by using either plasmid DNA or proteins. PMID:21834776

  10. Nucleic Acid Engineering: RNA Following the Trail of DNA.

    PubMed

    Kim, Hyejin; Park, Yongkuk; Kim, Jieun; Jeong, Jaepil; Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum

    2016-02-01

    The self-assembly feature of the naturally occurring biopolymer, DNA, has fascinated researchers in the fields of materials science and bioengineering. With the improved understanding of the chemical and structural nature of DNA, DNA-based constructs have been designed and fabricated from two-dimensional arbitrary shapes to reconfigurable three-dimensional nanodevices. Although DNA has been used successfully as a building block in a finely organized and controlled manner, its applications need to be explored. Hence, with the myriad of biological functions, RNA has recently attracted considerable attention to further the application of nucleic acid-based structures. This Review categorizes different approaches of engineering nucleic acid-based structures and introduces the concepts, principles, and applications of each technique, focusing on how DNA engineering is applied as a guide to RNA engineering. PMID:26735596

  11. Zip nucleic acids are potent hydrolysis probes for quantitative PCR

    PubMed Central

    Paris, Clment; Moreau, Valrie; Deglane, Galle; Voirin, Emilie; Erbacher, Patrick; Lenne-Samuel, Nathalie

    2010-01-01

    Zip nucleic acids (ZNAs) are oligonucleotides conjugated with cationic spermine units that increase affinity for their target. ZNAs were recently shown to enable specific and sensitive reactions when used as primers for polymerase chain reaction (PCR) and reverse-transcription. Here, we report their use as quantitative PCR hydrolysis probes. Ultraviolet duplex melting data demonstrate that attachment of cationic residues to the 3? end of an oligonucleotide does not alter its ability to discriminate nucleotides nor the destabilization pattern relative to mismatch location in the oligonucleotide sequence. The stability increase provided by the cationic charges allows the use of short dual-labeled probes that significantly improve single-nucleotide polymorphism genotyping. Longer ZNA probes were shown to display reduced background fluorescence, therefore, generating greater sensitivity and signal level as compared to standard probes. ZNA probes thus provide broad flexibility in assay design and also represent an effective alternative to minor groove binder- and locked nucleic-acid-containing probes. PMID:20071749

  12. Hands-free sample preparation platform for nucleic acid analysis.

    PubMed

    Baier, T; Hansen-Hagge, T E; Gransee, R; Cromb, A; Schmahl, S; Paulus, C; Drese, K S; Keegan, H; Martin, C; O'Leary, J J; Furuberg, L; Solli, L; Grnn, P; Falang, I M; Karlgrd, A; Gulliksen, A; Karlsen, F

    2009-12-01

    A Lab-On-Chip system with an instrument is presented which is capable of performing total sample preparation and automated extraction of nucleic acid from human cell samples fixed in a methanol based solution. The target application is extraction of mRNA from cervical liquid based cytology specimens for detection of transformed HPV-infections. The device accepts 3 ml of sample and performs the extraction in a disposable polymer chip of credit card size. All necessary reagents for cell lysis, washing, and elution are stored on-chip and the extraction is performed in two filter stages; one for cell pre-concentration and the other for nucleic acid capture. Tests performed using cancer cell lines and cervical liquid based cytology specimens confirm the extraction of HPV-mRNA by the system. PMID:19904407

  13. Phase Transitions in Sequence Matches and Nucleic Acid Structure

    NASA Astrophysics Data System (ADS)

    Waterman, Michael S.; Gordon, Louis; Arratia, Richard

    1987-03-01

    Analyses of phase transitions in biopolymers have previously been restricted to studies of average behavior along macromolecules. Extremal properties, such as longest helical region, can now be studied with a new family of probability distributions [Arratia, R., Gordon, L. & Waterman, M. S. (1986) Ann. Stat. 14, 971-993]. Not only is such extremal behavior analyzed with great precision, but new phase transitions are determined. One phase transition occurs when behavior of the free energy of the longest helical region abruptly changes from proportional to logarithm of the sequence length to proportional to sequence length. The annealing of two single-stranded molecules and the melting of a double helix are both considered. These results, initially suggested by studies of optimal matching of random DNA sequences [Smith, T. F., Waterman, M. S. & Burks, C. (1985) Nucleic Acids Res. 13, 645-656], also have importance for significance tests in comparison of nucleic acid or protein sequences.

  14. The oral microbiota: general overview, taxonomy, and nucleic acid techniques.

    PubMed

    Siqueira, Jos F; Ras, Isabela N

    2010-01-01

    Application of nucleic acid technology to the analysis of the bacterial diversity in the oral cavity in conditions of health and disease has not only confirmed the findings from early culture studies but also significantly expanded the list of oral inhabitants and candidate pathogens associated with the major oral diseases. Over 800 bacterial distinct species-level taxa have been detected in the oral cavity and recent studies using high-throughput technology suggest that the breadth of bacterial diversity can be much larger. This chapter provides an overview of the diversity and taxonomy of oral bacteria. Emphasis is also given on nucleic acid technologies that have been widely used for the study of the oral microbiota. PMID:20717778

  15. Nucleic acid detection in the diagnosis and prevention of schistosomiasis.

    PubMed

    He, Ping; Song, Lan-Gui; Xie, Hui; Liang, Jin-Yi; Yuan, Dong-Ya; Wu, Zhong-Dao; Lv, Zhi-Yue

    2016-01-01

    Schistosomiasis is an important zoonotic parasitic disease that causes serious harms to humans and animals. Surveillance and diagnosis play key roles in schistosomiasis control, however, current techniques for surveillance and diagnosis of the disease have limitations. As genome data for parasites are increasing, novel techniques for detection incorporating nucleotide sequences are receiving widespread attention. These sensitive, specific, and rapid detection methods are particularly important in the diagnosis of low-grade and early infections, and may prove to have clinical significance. This paper reviews the progress of nucleic acid detection in the diagnosis and prevention of schistosomiasis, including such aspects as the selection of target genes, and development and application of nucleic acid detection methods. PMID:27025210

  16. Nucleic Acid Aptamers: Research Tools in Disease Diagnostics and Therapeutics

    PubMed Central

    Yadava, Pramod K.

    2014-01-01

    Aptamers are short sequences of nucleic acid (DNA or RNA) or peptide molecules which adopt a conformation and bind cognate ligands with high affinity and specificity in a manner akin to antibody-antigen interactions. It has been globally acknowledged that aptamers promise a plethora of diagnostic and therapeutic applications. Although use of nucleic acid aptamers as targeted therapeutics or mediators of targeted drug delivery is a relatively new avenue of research, one aptamer-based drug “Macugen” is FDA approved and a series of aptamer-based drugs are in clinical pipelines. The present review discusses the aspects of design, unique properties, applications, and development of different aptamers to aid in cancer diagnosis, prevention, and/or treatment under defined conditions. PMID:25050359

  17. System for portable nucleic acid testing in low resource settings

    NASA Astrophysics Data System (ADS)

    Lu, Hsiang-Wei; Roskos, Kristina; Hickerson, Anna I.; Carey, Thomas; Niemz, Angelika

    2013-03-01

    Our overall goal is to enable timely diagnosis of infectious diseases through nucleic acid testing at the point-of-care and in low resource settings, via a compact system that integrates nucleic acid sample preparation, isothermal DNA amplification, and nucleic acid lateral flow (NALF) detection. We herein present an interim milestone, the design of the amplification and detection subsystem, and the characterization of thermal and fluidic control and assay execution within this system. Using an earlier prototype of the amplification and detection unit, comprised of a disposable cartridge containing flexible pouches, passive valves, and electrolysis-driven pumps, in conjunction with a small heater, we have demonstrated successful execution of an established and clinically validated isothermal loop-mediated amplification (LAMP) reaction targeting Mycobacterium tuberculosis (M.tb) DNA, coupled to NALF detection. The refined design presented herein incorporates miniaturized and integrated electrolytic pumps, novel passive valves, overall design changes to facilitate integration with an upstream sample preparation unit, and a refined instrument design that automates pumping, heating, and timing. Nucleic acid amplification occurs in a two-layer pouch that facilitates fluid handling and appropriate thermal control. The disposable cartridge is manufactured using low-cost and scalable techniques and forms a closed system to prevent workplace contamination by amplicons. In a parallel effort, we are developing a sample preparation unit based on similar design principles, which performs mechanical lysis of mycobacteria and DNA extraction from liquefied and disinfected sputum. Our next step is to combine sample preparation, amplification, and detection in a final integrated cartridge and device, to enable fully automated sample-in to answer-out diagnosis of active tuberculosis in primary care facilities of low-resource and high-burden countries.

  18. Spontaneous Mutual Ordering of Nucleic Acids and Proteins

    NASA Astrophysics Data System (ADS)

    Wills, Peter R.

    2014-12-01

    It is proposed that the prebiotic ordering of nucleic acid and peptide sequences was a cooperative process in which nearly random populations of both kinds of polymers went through a codependent series of self-organisation events that simultaneously refined not only the accuracy of genetic replication and coding but also the functional specificity of protein catalysts, especially nascent aminoacyl-tRNA synthetase "urzymes".

  19. Prospects for antisense peptide nucleic acid (PNA) therapies for HIV.

    PubMed

    Pandey, Virendra N; Upadhyay, Alok; Chaubey, Binay

    2009-08-01

    Since the discovery and synthesis of a novel DNA mimic, peptide nucleic acid (PNA) in 1991, PNAs have attracted tremendous interest and have shown great promise as potential antisense drugs. They have been used extensively as tools for specific modulation of gene expression by targeting translation or transcription processes. This review discusses the present and future therapeutic potential of this class of compound as anti-HIV-1 drugs. PMID:19534584

  20. Method and apparatus for staining immobilized nucleic acids

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.; Jacobson, Stephen C.

    2000-01-01

    A method for staining immobilized nucleic acids includes the steps of affixing DNA probes to a solid substrate, moving target DNA material into proximity with the DNA probes, whereby the target DNA hybridized with specific ones of the DNA probes, and moving a fluorescent dye into proximity with the hybridized target DNA, whereby the fluorescent dye binds to the hybridized DNA to enable subsequent detection of fluorescence.

  1. Molecular dynamics simulations of nucleic acid-protein complexes

    PubMed Central

    MacKerell, Alexander D.

    2010-01-01

    Summary Molecular dynamics simulation studies of protein-nucleic acid complexes are more complicated than studies of either component alone the force field has to be properly balanced, the systems tend to become very large, and a careful treatment of solvent and of electrostatic interactions is necessary. Recent investigations into several protein-DNA and protein-RNA systems have shown the feasibility of the simulation approach, yielding results of biological interest not readily accessible to experimental methods. PMID:18281210

  2. Computing Nonequilibrium Conformational Dynamics of Structured Nucleic Acid Assemblies.

    PubMed

    Sedeh, Reza Sharifi; Pan, Keyao; Adendorff, Matthew Ralph; Hallatschek, Oskar; Bathe, Klaus-Jrgen; Bathe, Mark

    2016-01-12

    Synthetic nucleic acids can be programmed to form precise three-dimensional structures on the nanometer-scale. These thermodynamically stable complexes can serve as structural scaffolds to spatially organize functional molecules including multiple enzymes, chromophores, and force-sensing elements with internal dynamics that include substrate reaction-diffusion, excitonic energy transfer, and force-displacement response that often depend critically on both the local and global conformational dynamics of the nucleic acid assembly. However, high molecular weight assemblies exhibit long time-scale and large length-scale motions that cannot easily be sampled using all-atom computational procedures such as molecular dynamics. As an alternative, here we present a computational framework to compute the overdamped conformational dynamics of structured nucleic acid assemblies and apply it to a DNA-based tweezer, a nine-layer DNA origami ring, and a pointer-shaped DNA origami object, which consist of 204, 3,600, and over 7,000 basepairs, respectively. The framework employs a mechanical finite element model for the DNA nanostructure combined with an implicit solvent model to either simulate the Brownian dynamics of the assembly or alternatively compute its Brownian modes. Computational results are compared with an all-atom molecular dynamics simulation of the DNA-based tweezer. Several hundred microseconds of Brownian dynamics are simulated for the nine-layer ring origami object to reveal its long time-scale conformational dynamics, and the first ten Brownian modes of the pointer-shaped structure are predicted. PMID:26636351

  3. Imperfectly matched nucleic acid complexes and their biochemical manifestation

    NASA Astrophysics Data System (ADS)

    Zenkova, M. A.; Karpova, G. G.

    1993-04-01

    The review is devoted to the analysis of experimental data on the selectivity of the interaction of nucleic acid with antisense oligonucleotides and their derivatives, which lead to the prospect of achieving a highly selective influence on many biochemical and molecular-genetic processes in living organisms. Theoretical estimates of the level of specificity of the interactions of nucleic acids and the thermodynamic parameters of the formation of perfectly and imperfectly matched complementary complexes are examined in the review. Attention is concentrated on the complementation accuracy of the interaction of DNA and RNA with oligonucleotides and their derivatives in various model systems both in vitro and in vivo. Data on the specificity of the inhibition of translation with the aid of antisense oligonucleotides in model systems in vitro are analysed. The question of the influence of the steric structure of the nucleic acid molecule on the accuracy and efficiency of the interactions with antisense oligonucleotides and their derivatives is discussed. The bibliography includes 247 references.

  4. Nucleic Acid-Sensing Receptors: Rheostats of Autoimmunity and Autoinflammation.

    PubMed

    Sharma, Shruti; Fitzgerald, Katharine A; Cancro, Michael P; Marshak-Rothstein, Ann

    2015-10-15

    Distinct families of germline-encoded pattern recognition receptors can sense both microbial and endogenous nucleic acids. These DNA and RNA sensors include endosomal TLRs and cytosolic sensors upstream of stimulator of type I IFN genes (STING) and MAVS. The existence of overlapping specificities for both foreign and self nucleic acids suggests that, under optimal conditions, the activity of these receptors is finely tuned to effectively mediate host defense yet constrain pathogenic self-reactivity. This equilibrium becomes disrupted with the loss of either TLR9 or STING. To maintain immune protection, this loss can be counterbalanced by the elevated response of an alternative receptor(s). Unfortunately, this adjustment can lead to an increased risk for the development of systemic autoimmunity, as evidenced by the exacerbated clinical disease manifestations of TLR9-deficient and STING-deficient autoimmune-prone mice. These studies underscore the delicate balance normally maintained by tonic signals that prevent unchecked immune responses to nucleic acids released during infections and cellular duress or death. PMID:26432899

  5. Nucleic acid sample preparation using spontaneous biphasic plug flow.

    PubMed

    Thomas, Peter C; Strotman, Lindsay N; Theberge, Ashleigh B; Berthier, Erwin; O'Connell, Rachel; Loeb, Jennifer M; Berry, Scott M; Beebe, David J

    2013-09-17

    Nucleic acid (NA) extraction and purification has become a common technique in both research and clinical laboratories. Current methods require repetitive wash steps with a pipet that are laborious and time-consuming, making the procedure inefficient for clinical settings. We present here a simple technique that relies on spontaneous biphasic plug flow inside a capillary to achieve sample preparation. By filling the sample with oil, aqueous contaminants were displaced from the captured NA without pipetting wash buffers or use of external force and equipment. mRNA from mammalian cell culture was purified, and polymerase chain reaction (PCR) amplification showed similar threshold cycle values as those obtained from a commercially available kit. Human immunodeficiency virus (HIV) viral-like particles were spiked into serum and a 5-fold increase in viral RNA extraction yield was achieved compared to the conventional wash method. In addition, viral RNA was successfully purified from human whole blood, and a limit of detection of approximately 14 copies of RNA extracted per sample was determined. The results demonstrate the utility of the current technique for nucleic acid purification for clinical purposes, and the overall approach provides a potential method to implement nucleic acid testing in low-resource settings. PMID:23941230

  6. Nucleic Acid Bioconjugates in Cancer Detection and Therapy.

    PubMed

    Patel, Pradeepkumar L; Rana, Niki K; Patel, Mayurbhai R; Kozuch, Stephen D; Sabatino, David

    2016-02-01

    Nucleoside- and nucleotide-based chemotherapeutics have been used to treat cancer for more than 50 years. However, their inherent cytotoxicities and the emergent resistance of tumors against treatment has inspired a new wave of compounds in which the overall pharmacological profile of the bioactive nucleic acid component is improved by conjugation with delivery vectors, small-molecule drugs, and/or imaging modalities. In this manner, nucleic acid bioconjugates have the potential for targeting and effecting multiple biological processes in tumors, leading to synergistic antitumor effects. Consequently, tumor resistance and recurrence is mitigated, leading to more effective forms of cancer therapy. Bioorthogonal chemistry has led to the development of new nucleoside bioconjugates, which have served to improve treatment efficacy en route towards FDA approval. Similarly, oligonucleotide bioconjugates have shown encouraging preclinical and clinical results. The modified oligonucleotides and their pharmaceutically active formulations have addressed many weaknesses of oligonucleotide-based drugs. They have also paved the way for important advancements in cancer diagnosis and treatment. Cancer-targeting ligands such as small-molecules, peptides, and monoclonal antibody fragments have all been successfully applied in oligonucleotide bioconjugation and have shown promising anticancer effects in vitro and in vivo. Thus, the application of bioorthogonal chemistry will, in all likelihood, continue to supply a promising pipeline of nucleic acid bioconjugates for applications in cancer detection and therapy. PMID:26663095

  7. Efficient, Validated Method for Detection of Mycobacterial Growth in Liquid Culture Media by Use of Bead Beating, Magnetic-Particle-Based Nucleic Acid Isolation, and Quantitative PCR

    PubMed Central

    Waldron, Anna M.; Begg, Douglas J.; de Silva, Kumudika; Purdie, Auriol C.; Whittington, Richard J.

    2015-01-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 104-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n = 54) and sheep fecal and tissue (n = 90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis. PMID:25609725

  8. Efficient, validated method for detection of mycobacterial growth in liquid culture media by use of bead beating, magnetic-particle-based nucleic acid isolation, and quantitative PCR.

    PubMed

    Plain, Karren M; Waldron, Anna M; Begg, Douglas J; de Silva, Kumudika; Purdie, Auriol C; Whittington, Richard J

    2015-04-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 10(4)-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n=54) and sheep fecal and tissue (n=90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis. PMID:25609725

  9. Light Effects on the Nucleic Acids of Excised Cotton Cotyledons 1

    PubMed Central

    Basler, Eddie

    1966-01-01

    The effects of light and glucose in the nutrient medium on the nucleic acid metabolism of excised 8-day cotton (Gossypium hirsutum var. Acala 44) cotyledons were determined. The rates of synthesis as affected by light and glucose were determined by brief exposures to C14-labeled orotic acid. The nucleic acids were fractionated by homogenizing in Tris-HCl buffer and centrifuging to obtain soluble and microsomal RNA (20,000 g supernatant) and a particulate nucleic acid fraction (20,000 g precipitate) or by extracting in phenol followed by 10% NaCl extraction at 100. The phenol extract was analyzed by density gradient centrifugation. Light and glucose caused parallel changes in nucleic acid levels of the various fractions, in orotic acid-6-C14 absorption and in rates of synthesis of nucleic acids. Light and glucose appear to enhance binding of the ribosome nucleic acid so that it becomes less extractable in Tris-HCl buffer or phenol. The bound nucleic acids were labeled at a slightly higher rate than the total nucleic acids extracted by Tris-HCl or phenol. However, light treatment for 48 hours promoted a very high labeling rate in the soluble, low molecular weight nucleic acid as shown by density gradient centrifugation of the phenol extractable fraction. It was concluded that a part of the nucleic acid changes were brought about by light acting through the photosynthetic production of carbohydrate. This conclusion was strengthened by the observation that herbicide inhibitors of photosynthesis and limited atmospheric CO2 concentrations partially inhibited the nucleic acid changes. However, glucose did not cause changes in nucleic acid levels as large as those caused by light and changes were observed to occur in light even though the endogenous sugar levels were maintained at a low level by the inhibition of photosynthesis with herbicides. The data indicated that light may produce changes in nucleic acid levels by other mechanisms additional to those regulating the sugar level in the tissue. PMID:5906375

  10. Guanidine bridged nucleic acid (GuNA): an effect of a cationic bridged nucleic acid on DNA binding affinity.

    PubMed

    Shrestha, Ajaya R; Kotobuki, Yutaro; Hari, Yoshiyuki; Obika, Satoshi

    2014-01-18

    A novel 2',4'-BNA/LNA analog bridged by guanidine, termed as guanidine bridged nucleic acid (GuNA), was synthesized and incorporated into oligonucleotides. Thermal stabilities and nuclease resistance of GuNA-modified oligonucleotides were investigated and compared with those of 2',4'-BNA/LNA and natural DNA oligonucleotides. GuNA exhibited interestingly high binding affinity towards complementary ssDNA than 2',4'-BNA/LNA. PMID:24270219

  11. Graphene oxide protected nucleic acid probes for bioanalysis and biomedicine.

    PubMed

    Cui, Liang; Song, Yanling; Ke, Guoliang; Guan, Zhichao; Zhang, Huimin; Lin, Ya; Huang, Yishun; Zhu, Zhi; Yang, Chaoyong James

    2013-08-01

    Recently, the binding ability of DNA on GO and resulting nuclease resistance have attracted increasing attention, leading to new applications both in vivo and in vitro. In vivo, nucleic acids absorbed on GO can be effectively protected from enzymatic degradation and biological interference in complicated samples, making it useful for targeted delivery, gene regulation, intracellular detection and imaging with high uptake efficiencies, high intracellular stability, and very low toxicity. In vitro, the adsorption of ssDNA on GO surface and desorption of dsDNA or well-folded ssDNA from GO surface result in the protection and deprotection of DNA from nucleic digestion, respectively, which has led to target-triggered cyclic enzymatic amplification methods (CEAM) for amplified detection of analytes with sensitivity 2-3 orders of magnitude higher than that of 1:1 binding strategies. This Concept article explores some of the latest developments in this field. PMID:23839798

  12. [Fluorescence research on reaction mechanism of nucleic acid with small organic molecules].

    PubMed

    Zhang, Nuo; Wu, Dan; Han, Yan-Yan; Cai, Yan-Yan; Li, Ru; Zhao, Yan-Fang; Wei, Qin

    2010-06-01

    The interaction mechanism of nucleic acid with small organic molecules plays an important role in the recognition of the structure and function of nucleic acids, which can also reveal the biological function of nucleic acids and the mechanism of some drugs. Research on the interaction between nucleic acid and small organic molecules plays an important part in simulating the life process and exploring the essence of life. In the present article, detailed description of the fluorescence spectroscopy research methods used in this field is presented. The fluorescence quenching types of the interaction between nucleic acid and small organic molecules (including dyes and drugs) are discussed. There are many factors influencing the fluorescence quenching type, including the temperature, the rate constant of bimolecular quenching process, the fluorescence lifetime, changes of the absorption spectra and so on. So according to different affecting factors, the fluorescence quenching type can be determined based on corresponding theories. Many different kinds of calculation methods are also summarized, including the calculations of the binding constant, the distance between fluorescence donor and receptor, the interaction force type and the binding mode of nucleic acid with small organic molecules. Furthermore, the formation constant of nucleic acid with small organic molecules is studied with different binding numbers. These conclusions have guiding significance for studying the interaction between nucleic acid and small organic molecules. These results can also provide guidance for the development of new nucleic acid probe, and the design of new drug molecules, of which nucleic acid is the important target. PMID:20707147

  13. Devices and approaches for generating specific high-affinity nucleic acid aptamers

    NASA Astrophysics Data System (ADS)

    Szeto, Kylan; Craighead, Harold G.

    2014-09-01

    High-affinity and highly specific antibody proteins have played a critical role in biological imaging, medical diagnostics, and therapeutics. Recently, a new class of molecules called aptamers has emerged as an alternative to antibodies. Aptamers are short nucleic acid molecules that can be generated and synthesized in vitro to bind to virtually any target in a wide range of environments. They are, in principal, less expensive and more reproducible than antibodies, and their versatility creates possibilities for new technologies. Aptamers are generated using libraries of nucleic acid molecules with random sequences that are subjected to affinity selections for binding to specific target molecules. This is commonly done through a process called Systematic Evolution of Ligands by EXponential enrichment, in which target-bound nucleic acids are isolated from the pool, amplified to high copy numbers, and then reselected against the desired target. This iterative process is continued until the highest affinity nucleic acid sequences dominate the enriched pool. Traditional selections require a dozen or more laborious cycles to isolate strongly binding aptamers, which can take months to complete and consume large quantities of reagents. However, new devices and insights from engineering and the physical sciences have contributed to a reduction in the time and effort needed to generate aptamers. As the demand for these new molecules increases, more efficient and sensitive selection technologies will be needed. These new technologies will need to use smaller samples, exploit a wider range of chemistries and techniques for manipulating binding, and integrate and automate the selection steps. Here, we review new methods and technologies that are being developed towards this goal, and we discuss their roles in accelerating the availability of novel aptamers.

  14. Deep ultraviolet mapping of intracellular protein and nucleic acid in femtograms per pixel.

    PubMed

    Cheung, Man C; Evans, James G; McKenna, Brian; Ehrlich, Daniel J

    2011-11-01

    By using imaging spectrophotometry with paired images in the 200- to 280-nm wavelength range, we have directly mapped intracellular nucleic acid and protein distributions across a population of Chinese hamster ovary (CHO-K1) cells. A broadband 100 objective with a numerical aperture of 1.2 NA (glycerin immersion) and a novel laser-induced-plasma point source generated high-contrast images with short (?100 ms) exposures and a lateral resolution nearing 200 nm that easily resolves internal organelles. In a population of 420 CHO-K1 cells and 477 nuclei, we found a G1 whole-cell nucleic acid peak at 26.6 pg, a nuclear-isolated total nucleic acid peak at 11.4 pg, and, as inferred by RNase treatment, a G1 total DNA mass of 7.4 pg. At the G1 peak, we found a whole-cell protein mass of 95.6 pg, and a nuclear-isolated protein mass of 39.3 pg. An algorithm for protein quantification that senses peptide-bond (220-nm) absorbance was found to have a higher signal-to-noise ratio and to provide more reliable nucleic acid and protein determinations when compared to more classical 280/260-nm algorithms when used for intracellular mass mapping. Using simultaneous imaging with common nuclear stains (Hoechst 33342, Syto-14, and Sytox Orange), we have compared staining patterns to deep-UV images of condensed chromatin and have confirmed bias of these common nuclear stains related to nuclear packaging. The approach allows absolute mass measurements with no special sample preparation or staining. It can be used in conjunction with normal fluorescence microscopy and with relatively modest modification of the microscope. PMID:21796773

  15. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    SciTech Connect

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  16. Microchip Module for Blood Sample Preparation and Nucleic Acid Amplification Reactions

    PubMed Central

    Yuen, Po Ki; Kricka, Larry J.; Fortina, Paolo; Panaro, Nicholas J.; Sakazume, Taku; Wilding, Peter

    2001-01-01

    A computer numerical control-machined plexiglas-based microchip module was designed and constructed for the integration of blood sample preparation and nucleic acid amplification reactions. The microchip module is comprised of a custom-made heater-cooler for thermal cycling, a series of 254 ?m??254 ?m microchannels for transporting human whole blood and reagents in and out of an 89 ?L dual-purpose (cell isolation and PCR) glass-silicon microchip. White blood cells were first isolated from a small volume of human whole blood (<3 ?L) in an integrated cell isolationPCR microchip containing a series of 3.5-?m feature-sized weir-type filters, formed by an etched silicon dam spanning the flow chamber. A genomic target, a region in the human coagulation Factor V gene (226-bp), was subsequently directly amplified by microchip-based PCR on DNA released from white blood cells isolated on the filter section of the microchip mounted onto the microchip module. The microchip module provides a convenient means to simplify nucleic acid analyses by integrating two key steps in genetic testing procedures, cell isolation and PCR and promises to be adaptable for additional types of integrated assays. PMID:11230164

  17. Introduction of structural affinity handles as a tool in selective nucleic acid separations

    NASA Technical Reports Server (NTRS)

    Willson, III, Richard Coale (Inventor); Cano, Luis Antonio (Inventor)

    2011-01-01

    The method is used for separating nucleic acids and other similar constructs. It involves selective introduction, enhancement, or stabilization of affinity handles such as single-strandedness in the undesired (or desired) nucleic acids as compared to the usual structure (e.g., double-strandedness) of the desired (or undesired) nucleic acids. The undesired (or desired) nucleic acids are separated from the desired (or undesired) nucleic acids due to capture by methods including but not limited to immobilized metal affinity chromatography, immobilized single-stranded DNA binding (SSB) protein, and immobilized oligonucleotides. The invention is useful to: remove contaminating genomic DNA from plasmid DNA; remove genomic DNA from plasmids, BACs, and similar constructs; selectively separate oligonucleotides and similar DNA fragments from their partner strands; purification of aptamers, (deoxy)-ribozymes and other highly structured nucleic acids; Separation of restriction fragments without using agarose gels; manufacture recombinant Taq polymerase or similar products that are sensitive to host genomic DNA contamination; and other applications.

  18. Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein-Nucleic Acid Interactions

    PubMed Central

    Hellman, Lance M.; Fried, Michael G.

    2009-01-01

    The gel electrophoresis mobility shift assay (EMSA) is used to detect protein complexes with nucleic acids. It is the core technology underlying a wide range of qualitative and quantitative analyses for the characterization of interacting systems. In the classical assay, solutions of protein and nucleic acid are combined and the resulting mixtures are subjected to electrophoresis under native conditions through polyacrylamide or agarose gel. After electrophoresis, the distribution of species containing nucleic acid is determined, usually by autoradiography of 32P-labeled nucleic acid. In general, protein-nucleic acid complexes migrate more slowly than the corresponding free nucleic acid. In this article, we identify the most important factors that determine the stabilities and electrophoretic mobilities of complexes under assay conditions. A representative protocol is provided and commonly used variants are discussed. Expected outcomes are briefly described. References to extensions of the method and a troubleshooting guide are provided. PMID:17703195

  19. Solving nucleic acid structures by molecular replacement: examples from group II intron studies

    SciTech Connect

    Marcia, Marco Humphris-Narayanan, Elisabeth; Keating, Kevin S.; Somarowthu, Srinivas; Rajashankar, Kanagalaghatta; Pyle, Anna Marie

    2013-11-01

    Strategies for phasing nucleic acid structures by molecular replacement, using both experimental and de novo designed models, are discussed. Structured RNA molecules are key players in ensuring cellular viability. It is now emerging that, like proteins, the functions of many nucleic acids are dictated by their tertiary folds. At the same time, the number of known crystal structures of nucleic acids is also increasing rapidly. In this context, molecular replacement will become an increasingly useful technique for phasing nucleic acid crystallographic data in the near future. Here, strategies to select, create and refine molecular-replacement search models for nucleic acids are discussed. Using examples taken primarily from research on group II introns, it is shown that nucleic acids are amenable to different and potentially more flexible and sophisticated molecular-replacement searches than proteins. These observations specifically aim to encourage future crystallographic studies on the newly discovered repertoire of noncoding transcripts.

  20. Stains, labels and detection strategies for nucleic acids assays.

    PubMed

    Kricka, Larry J

    2002-03-01

    Selected developments and trends in stains, labels and strategies for detecting and measuring nucleic acids (DNA, RNA) and related molecules [e.g. oligo(deoxy)nucleotides, nucleic acid fragments and polymerase chain reaction products] are surveyed based on the literature in the final decade of the 20th century (1991-2000). During this period, important families of cyanine dyes were developed for sensitive detection of double-stranded DNA, single-stranded DNA, and oligo(deoxy)nucleotides in gels and in solution, and families of energy transfer primers were produced for DNA sequencing applications. The continuing quest for improved labels for hybridization assays has produced a series of candidate labels including genes encoding enzymes, microparticles (e.g. quantum dots, nanocrystals, phosphors), and new examples of the fluorophore (e.g. cyanine dyes) and enzyme class of labels (e.g. firefly luciferase mutants). Label detection technologies for use in northern and southern blotting assays have focused on luminescent methods, particularly enhanced chemiluminescence for peroxidase labels and adamantyl 1,2-dioxetanes for alkaline phosphatase labels. Sets of labels have been selected to meet the demands of multicolour assays (e.g. four-colour sequencing and single nucleotide primer extension assays). Non-separation assay formats have emerged based on fluorescence polarization, fluorescence energy transfer (TaqMan, molecular beacons) and channelling principles. Microanalytical devices (microchips), high-throughput simultaneous test arrays (microarrays, gene chips), capillary electrophoretic analysis and dipstick devices have presented new challenges and requirements for nucleic acid detection, and fluorescent methods currently dominate in many of these applications. PMID:11928759

  1. Functional nucleic-acid-based sensors for environmental monitoring.

    PubMed

    Sett, Arghya; Das, Suradip; Bora, Utpal

    2014-10-01

    Efforts to replace conventional chromatographic methods for environmental monitoring with cheaper and easy to use biosensors for precise detection and estimation of hazardous environmental toxicants, water or air borne pathogens as well as various other chemicals and biologics are gaining momentum. Out of the various types of biosensors classified according to their bio-recognition principle, nucleic-acid-based sensors have shown high potential in terms of cost, sensitivity, and specificity. The discovery of catalytic activities of RNA (ribozymes) and DNA (DNAzymes) which could be triggered by divalent metallic ions paved the way for their extensive use in detection of heavy metal contaminants in environment. This was followed with the invention of small oligonucleotide sequences called aptamers which can fold into specific 3D conformation under suitable conditions after binding to target molecules. Due to their high affinity, specificity, reusability, stability, and non-immunogenicity to vast array of targets like small and macromolecules from organic, inorganic, and biological origin, they can often be exploited as sensors in industrial waste management, pollution control, and environmental toxicology. Further, rational combination of the catalytic activity of DNAzymes and RNAzymes along with the sequence-specific binding ability of aptamers have given rise to the most advanced form of functional nucleic-acid-based sensors called aptazymes. Functional nucleic-acid-based sensors (FNASs) can be conjugated with fluorescent molecules, metallic nanoparticles, or quantum dots to aid in rapid detection of a variety of target molecules by target-induced structure switch (TISS) mode. Although intensive research is being carried out for further improvements of FNAs as sensors, challenges remain in integrating such bio-recognition element with advanced transduction platform to enable its use as a networked analytical system for tailor made analysis of environmental monitoring. PMID:24903959

  2. Nucleic acid programmed polymeric nanomaterials for biological communication

    NASA Astrophysics Data System (ADS)

    Rush, Anthony Michael

    A number of nucleic acid-polymer conjugates were synthesized, resulting in amphiphilic polymer-nucleic acid conjugates with the capability to self-assemble into a range of discrete nanoscale architectures. These nanomaterials, termed DNA-polymer amphiphile nanoparticles (DPA NPs), were studied with respect to their enzymatic processing by both endo- and exonucleases and further deployed as antisense genetic regulatory elements in live cultured human cells. DPA NPs were designed to act as substrates for both non sequence-specific exonucleases and a sequence-specific endonuclease. In all cases, nucleic acids arranged in the corona of spherical nanoparticles exhibited increased resistance to nucleolytic cleavage as compared to native single- or double-stranded analogues. For the exonucleases studied (Exonuclease III from E. Coli and phosphodiesterase I from Crotalus adamanteus), nanoparticle display retarded enzymatic processing by roughly a factor of five. For the endonuclease studied (Nt.CviPII), nanoparticle display prohibited virtually all enzyme activity on oligonucleotides within the nanoparticle shell. To test the ability of these materials to regulate mRNA levels in live cultured human cells, LPA (LNA-polymer amphiphile) NPs were designed to be perfectly complementary to a 20-base region of mRNA encoding the anti-apoptosis protein survivin. In this study two key observations were made. The first observation is that packaging LNA into spherical micellar nanoparticles serves to dramatically enhance cellular uptake of LNA based on flow cytometry and fluorescence microscopy data. The second observation is that LPA NPs are capable of regulating mRNA levels by what is hypothesized to be activation of target mRNA for catalytic RNase H-mediated degradation. These materials represent a unique class of DNA delivery system capable of rendering nucleic acids with natural backbone chemistry resistant to nuclease degradation and further serving to deliver DNA into cells to facilitate depletion of mRNA levels in a sequence-specific fashion. Notably, the use of detergents, charge-neutralizing, or DNA-sequestering components are not required for these materials to be effective in cells.

  3. Antibody-linked spherical nucleic acids for cellular targeting.

    PubMed

    Zhang, Ke; Hao, Liangliang; Hurst, Sarah J; Mirkin, Chad A

    2012-10-10

    Spherical nucleic acid (SNA) constructs are promising new single entity gene regulation materials capable of both cellular transfection and gene knockdown, but thus far are promiscuous structures, exhibiting excellent genetic but little cellular selectivity. In this communication, we describe a strategy to impart targeting capabilities to these constructs through noncovalent functionalization with a complementary antibody-DNA conjugate. As a proof-of-concept, we designed HER2-targeting SNAs and demonstrated that such structures exhibit cell type selectivity in terms of their uptake, and significantly greater gene knockdown in cells overexpressing the target antigen as compared to the analogous antibody-free and off-target materials. PMID:23020598

  4. Nonenzymatic catalytic signal amplification for nucleic acid hybridization assays

    NASA Technical Reports Server (NTRS)

    Fan, Wenhong (Inventor); Cassell, Alan M. (Inventor); Han, Jie (Inventor)

    2006-01-01

    Devices, methods, and kits for amplifying the signal from hybridization reactions between nucleic acid probes and their cognate targets are presented. The devices provide partially-duplexed, immobilized probe complexes, spatially separate from and separately addressable from immobilized docking strands. Cognate target acts catalytically to transfer probe from the site of probe complex immobilization to the site of immobilized docking strand, generating a detectable signal. The methods and kits of the present invention may be used to identify the presence of cognate target in a fluid sample.

  5. Recognition of Chromosomal DNA Inside Cells by Locked Nucleic Acids

    PubMed Central

    Beane, Randall; Gabillet, Sylvie; Montaillier, Christophe; Arar, Khalil; Corey, David R.

    2009-01-01

    Sequence-selective recognition of DNA inside cells by oligonucleotides would provide valuable insights into cellular processes and new leads for therapeutics. Recent work, however, has shown that noncoding RNA transcripts overlap chromosomal DNA. These RNAs provide alternate targets for oligonucleotides designed to bind promoter DNA, potentially overturning previous assumptions about mechanism. Here, we show that antigene locked nucleic acids (agLNAs) reduce RNA levels of targeted genes, block RNA polymerase and transcription factor association at gene promoters, and bind to chromosomal DNA. These data suggest that the mechanism of LNAs involves recognition of chromosomal DNA and that LNAs are bona fide antigene molecules. PMID:19053275

  6. Kinetic Monte Carlo method applied to nucleic acid hairpin folding

    NASA Astrophysics Data System (ADS)

    Sauerwine, Ben; Widom, Michael

    2011-12-01

    Kinetic Monte Carlo on coarse-grained systems, such as nucleic acid secondary structure, is advantageous for being able to access behavior at long time scales, even minutes or hours. Transition rates between coarse-grained states depend upon intermediate barriers, which are not directly simulated. We propose an Arrhenius rate model and an intermediate energy model that incorporates the effects of the barrier between simulated states without enlarging the state space itself. Applying our Arrhenius rate model to DNA hairpin folding, we demonstrate improved agreement with experiment compared to the usual kinetic Monte Carlo model. Further improvement results from including rigidity of single-stranded stacking.

  7. Development and performance evaluation of calf diarrhea pathogen nucleic acid purification and detection workflow.

    PubMed

    Schroeder, Megan E; Bounpheng, Mangkey A; Rodgers, Sandy; Baker, Rocky J; Black, Wendy; Naikare, Hemant; Velayudhan, Binu; Sneed, Loyd; Szonyi, Barbara; Clavijo, Alfonso

    2012-09-01

    Calf diarrhea (scours) is a primary cause of illness and death in young calves. Significant economic losses associated with this disease include morbidity, mortality, and direct cost of treatment. Multiple pathogens are responsible for infectious diarrhea, including, but not limited to, Bovine coronavirus (BCV), bovine Rotavirus A (BRV), and Cryptosporidium spp. Identification and isolation of carrier calves are essential for disease management. Texas Veterinary Medical Diagnostic Laboratory current methods for calf diarrhea pathogen identification include electron microscopy (EM) for BCV and BRV and a direct fluorescent antibody test (DFAT) for organism detection of Cryptosporidium spp. A workflow was developed consisting of an optimized fecal nucleic acid purification and multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) for single tube concurrent detection of BCV, BRV, and Cryptosporidium spp., and an internal control to monitor nucleic acid purification efficacy and PCR reagent functionality. In "spike-in" experiments using serial dilutions of each pathogen, the analytical sensitivity was determined to be <10 TCID(50)/ml for BCV and BRV, and <20 oocysts for Cryptosporidium spp. Analytical specificity was confirmed using Canine and Feline coronavirus, Giardia spp., and noninfected bovine purified nucleic acid. Diagnostic sensitivity was ?98% for all pathogens when compared with respective traditional methods. The results demonstrate that the newly developed assay can purify and subsequently detect BCV, BRV, and Cryptosporidium spp. concurrently in a single PCR, enabling simplified and streamlined calf diarrhea pathogen identification. PMID:22914823

  8. Evaluation of commercial kits for the extraction and purification of viral nucleic acids from environmental and fecal samples.

    PubMed

    Iker, Brandon C; Bright, Kelly R; Pepper, Ian L; Gerba, Charles P; Kitajima, Masaaki

    2013-07-01

    The extraction and purification of nucleic acids is a critical step in the molecular detection of enteric viruses from environmental or fecal samples. In the present study, the performance of three commercially available kits was assessed: the MO BIO PowerViral Environmental DNA/RNA Isolation kit, the Qiagen QIAamp Viral RNA Mini kit, and the Zymo ZR Virus DNA/RNA Extraction kit. Viral particles of adenovirus 2 (AdV), murine norovirus (MNV), and poliovirus type 1 (PV1) were spiked in molecular grade water and three different types of sample matrices (i.e., biosolids, feces, and surface water concentrates), extracted with the kits, and the yields of the nucleic acids were determined by quantitative PCR (qPCR). The MO BIO kit performed the best with the biosolids, which were considered to contain the highest level of inhibitors and provided the most consistent detection of spiked virus from all of the samples. A qPCR inhibition test using an internal control plasmid DNA and a nucleic acid purity test using an absorbance at 230 nm for the nucleic acid extracts demonstrated that the MO BIO kit was able to remove qPCR inhibitors more effectively than the Qiagen and Zymo kits. These results suggest that the MO BIO kit is appropriate for the extraction and purification of viral nucleic acids from environmental and clinical samples that contain high levels of inhibitors. PMID:23578704

  9. Human liver apolipoprotein B-100 cDNA: complete nucleic acid and derived amino acid sequence.

    PubMed Central

    Law, S W; Grant, S M; Higuchi, K; Hospattankar, A; Lackner, K; Lee, N; Brewer, H B

    1986-01-01

    Human apolipoprotein B-100 (apoB-100), the ligand on low density lipoproteins that interacts with the low density lipoprotein receptor and initiates receptor-mediated endocytosis and low density lipoprotein catabolism, has been cloned, and the complete nucleic acid and derived amino acid sequences have been determined. ApoB-100 cDNAs were isolated from normal human liver cDNA libraries utilizing immunoscreening as well as filter hybridization with radiolabeled apoB-100 oligodeoxynucleotides. The apoB-100 mRNA is 14.1 kilobases long encoding a mature apoB-100 protein of 4536 amino acids with a calculated amino acid molecular weight of 512,723. ApoB-100 contains 20 potential glycosylation sites, and 12 of a total of 25 cysteine residues are located in the amino-terminal region of the apolipoprotein providing a potential globular structure of the amino terminus of the protein. ApoB-100 contains relatively few regions of amphipathic helices, but compared to other human apolipoproteins it is enriched in beta-structure. The delineation of the entire human apoB-100 sequence will now permit a detailed analysis of the conformation of the protein, the low density lipoprotein receptor binding domain(s), and the structural relationship between apoB-100 and apoB-48 and will provide the basis for the study of genetic defects in apoB-100 in patients with dyslipoproteinemias. PMID:3464946

  10. BGL7 beta-glucosidase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Ward, Michael

    2014-03-25

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.

  11. BGL6 beta-glucosidase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Ward, Michael

    2014-03-04

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  12. BGL7 beta-glucosidase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Ward, Michael

    2015-04-14

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.

  13. BGL6 beta-glucosidase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Ward, Michael

    2015-08-11

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  14. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2011-06-14

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  15. BGL4 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2011-12-06

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl4, and the corresponding BGL4 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL4, recombinant BGL4 proteins and methods for producing the same.

  16. BGL7 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Ward, Michael

    2008-08-05

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.

  17. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2008-04-01

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  18. BGL4 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA) [Los Gatos, CA; Goedegebuur, Frits (Vlaardingen, NL) [Vlaardingen, NL; Ward, Michael (San Francisco, CA) [San Francisco, CA; Yao, Jian (Sunnyvale, CA) [Sunnyvale, CA

    2008-01-22

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl4, and the corresponding BGL4 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL4, recombinant BGL4 proteins and methods for producing the same.

  19. BGL4 .beta.-glucosidase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-05-16

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl4, and the corresponding BGL4 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL4, recombinant BGL4 proteins and methods for producing the same.

  20. BGL5 .beta.-glucosidase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2008-03-18

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl5, and the corresponding BGL5 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL5, recombinant BGL5 proteins and methods for producing the same.

  1. BGL5 .beta.-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-02-28

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl5, and the corresponding BGL5 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL5, recombinant BGL5 proteins and methods for producing the same.

  2. BGL3 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA); Yao, Jian (Sunnyvale, CA)

    2007-09-25

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  3. BGL6 beta-glucosidase and nucleic acids encoding the same

    DOEpatents

    Dunn-Coleman, Nigel (Los Gatos, CA); Ward, Michael (San Francisco, CA)

    2009-09-01

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  4. BGL7 beta-glucosidase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Ward, Michael

    2013-01-29

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.

  5. BGL3 beta-glucosidase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2012-10-30

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  6. BGL6 .beta.-glucosidase and nucleic acids encoding the same

    SciTech Connect

    Dunn-Coleman, Nigel; Ward, Michael

    2012-10-02

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl6, and the corresponding BGL6 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL6, recombinant BGL6 proteins and methods for producing the same.

  7. Nucleic acid sequence detection using multiplexed oligonucleotide PCR

    DOEpatents

    Nolan, John P. (Santa Fe, NM); White, P. Scott (Los Alamos, NM)

    2006-12-26

    Methods for rapidly detecting single or multiple sequence alleles in a sample nucleic acid are described. Provided are all of the oligonucleotide pairs capable of annealing specifically to a target allele and discriminating among possible sequences thereof, and ligating to each other to form an oligonucleotide complex when a particular sequence feature is present (or, alternatively, absent) in the sample nucleic acid. The design of each oligonucleotide pair permits the subsequent high-level PCR amplification of a specific amplicon when the oligonucleotide complex is formed, but not when the oligonucleotide complex is not formed. The presence or absence of the specific amplicon is used to detect the allele. Detection of the specific amplicon may be achieved using a variety of methods well known in the art, including without limitation, oligonucleotide capture onto DNA chips or microarrays, oligonucleotide capture onto beads or microspheres, electrophoresis, and mass spectrometry. Various labels and address-capture tags may be employed in the amplicon detection step of multiplexed assays, as further described herein.

  8. Archaeal Nucleic Acid Ligases and Their Potential in Biotechnology

    PubMed Central

    Chambers, Cecilia R.; Patrick, Wayne M.

    2015-01-01

    With their ability to catalyse the formation of phosphodiester linkages, DNA ligases and RNA ligases are essential tools for many protocols in molecular biology and biotechnology. Currently, the nucleic acid ligases from bacteriophage T4 are used extensively in these protocols. In this review, we argue that the nucleic acid ligases from Archaea represent a largely untapped pool of enzymes with diverse and potentially favourable properties for new and emerging biotechnological applications. We summarise the current state of knowledge on archaeal DNA and RNA ligases, which makes apparent the relative scarcity of information on in vitro activities that are of most relevance to biotechnologists (such as the ability to join blunt- or cohesive-ended, double-stranded DNA fragments). We highlight the existing biotechnological applications of archaeal DNA ligases and RNA ligases. Finally, we draw attention to recent experiments in which protein engineering was used to modify the activities of the DNA ligase from Pyrococcus furiosus and the RNA ligase from Methanothermobacter thermautotrophicus, thus demonstrating the potential for further work in this area. PMID:26494982

  9. Rapid and simple method for purification of nucleic acids.

    PubMed

    Boom, R; Sol, C J; Salimans, M M; Jansen, C L; Wertheim-van Dillen, P M; van der Noordaa, J

    1990-03-01

    We have developed a simple, rapid, and reliable protocol for the small-scale purification of DNA and RNA from, e.g., human serum and urine. The method is based on the lysing and nuclease-inactivating properties of the chaotropic agent guanidinium thiocyanate together with the nucleic acid-binding properties of silica particles or diatoms in the presence of this agent. By using size-fractionated silica particles, nucleic acids (covalently closed circular, relaxed circular, and linear double-stranded DNA; single-stranded DNA; and rRNA) could be purified from 12 different specimens in less than 1 h and were recovered in the initial reaction vessel. Purified DNA (although significantly sheared) was a good substrate for restriction endonucleases and DNA ligase and was recovered with high yields (usually over 50%) from the picogram to the microgram level. Copurified rRNA was recovered almost undegraded. Substituting size-fractionated silica particles for diatoms (the fossilized cell walls of unicellular algae) allowed for the purification of microgram amounts of genomic DNA, plasmid DNA, and rRNA from cell-rich sources, as exemplified for pathogenic gram-negative bacteria. In this paper, we show representative experiments illustrating some characteristics of the procedure which may have wide application in clinical microbiology. PMID:1691208

  10. Polyamines and nucleic acids during development of the chick embryo

    PubMed Central

    Caldarera, C. M.; Barbiroli, B.; Moruzzi, G.

    1965-01-01

    1. A higher concentration of polyamines (spermine, spermidine, putrescine and cadaverine) during development of the chick embryo was observed between the fifth and tenth day of incubation; the concentrations of nucleic acids showed a parallel increase. 2. When spermine (5μmoles) was injected into the yolk sac of embryos at the tenth day of incubation, a high amine-oxidase activity was noted and the spermine and spermidine concentrations were decreased; also, there was a remarkable decrease in RNA and DNA concentrations and a parallel increase in that of total free nucleotides. 3. On the other hand, when iproniazid (16μmoles) was injected there was an inhibition of amine-oxidase activity and a similar increase in the concentrations of spermine and spermidine and of nucleic acids, whereas that of total free nucleotides decreased. 4. Another group of embryos injected with spermine and iproniazid together showed a remarkable increase in spermine and spermidine concentrations and a parallel increase in those of RNA and DNA, and a decrease in that of total free nucleotides. PMID:16749128

  11. Design, preparation and application of nucleic acid delivery carriers.

    PubMed

    Yang, Jun; Liu, Hongmei; Zhang, Xin

    2014-01-01

    Gene delivery vectors must deliver their cargoes into the cytosol or the nucleus, where DNA or siRNA functions in vivo. Therefore it is crucial for the rational design of the nucleic acid delivery carriers. Compared with viral vectors, non-viral vectors have overcome some fatal defections in gene therapy. Whereas the most important issue for the non-viral vectors is the low transfection efficiency, which hinders the progress of non-viral carriers. Sparked by the structures of the virus and understanding of the process of virus infection, various biomimic structures of non-viral carriers were designed and prepared to improve the transfection issues in vitro and in vivo. However, less impressive results are achieved. In this review, we will investigate the evolution of the virus-mimicking carriers of nucleic acids for gene therapy, especially in cancer therapy; explore and discuss the relationship between the structures, materials and functions of the carriers, to provide guidance for establishing safe and highly efficient non-viral carriers for gene therapy. PMID:24239630

  12. Digestion of Nucleic Acids Starts in the Stomach.

    PubMed

    Liu, Yu; Zhang, Yanfang; Dong, Ping; An, Ran; Xue, Changhu; Ge, Yinlin; Wei, Liangzhou; Liang, Xingguo

    2015-01-01

    The ingestion of nucleic acids (NAs) as a nutritional supplement or in genetically modified food has attracted the attention of researchers in recent years. Discussions over the fate of NAs led us to study their digestion in the stomach. Interestingly, we found that NAs are digested efficiently by human gastric juice. By performing digests with commercial, recombinant and mutant pepsin, a protein-specific enzyme, we learned that the digestion of NAs could be attributed to pepsin rather than to the acidity of the stomach. Further study showed that pepsin cleaved NAs in a moderately site-specific manner to yield 3'-phosphorylated fragments and the active site to digest NAs is probably the same as that used to digest protein. Our results rectify the misunderstandings that the digestion of NAs in the gastric tract begins in the intestine and that pepsin can only digest protein, shedding new light on NA metabolism and pepsin enzymology. PMID:26168909

  13. Digestion of Nucleic Acids Starts in the Stomach

    PubMed Central

    Liu, Yu; Zhang, Yanfang; Dong, Ping; An, Ran; Xue, Changhu; Ge, Yinlin; Wei, Liangzhou; Liang, Xingguo

    2015-01-01

    The ingestion of nucleic acids (NAs) as a nutritional supplement or in genetically modified food has attracted the attention of researchers in recent years. Discussions over the fate of NAs led us to study their digestion in the stomach. Interestingly, we found that NAs are digested efficiently by human gastric juice. By performing digests with commercial, recombinant and mutant pepsin, a protein-specific enzyme, we learned that the digestion of NAs could be attributed to pepsin rather than to the acidity of the stomach. Further study showed that pepsin cleaved NAs in a moderately site-specific manner to yield 3′-phosphorylated fragments and the active site to digest NAs is probably the same as that used to digest protein. Our results rectify the misunderstandings that the digestion of NAs in the gastric tract begins in the intestine and that pepsin can only digest protein, shedding new light on NA metabolism and pepsin enzymology. PMID:26168909

  14. Molecular cytogenetics by polymerase catalyzed amplification or in situ labelling of specific nucleic acid sequences

    SciTech Connect

    Bolund, L.; Brandt, C.; Hindkjaer, J.; Koch, J.; Koelvraa, S.; Pedersen, S. )

    1993-01-01

    The Polymerase Chain Reaction (PCR) can be performed on isolated cells or chromosomes and the product can be analyzed by DNA technology or by FISH to test metaphases. The authors have good experiences analyzing aberrant chromosomes by FACS sorting, PCR with degenerated primers and painting of test metaphases with the PCR product. They also utilize polymerases for PRimed IN Situ labelling (PRINS) of specific nucleic acid sequences. In PRINS oligonucleotides are hybridized to their target sequences and labeled nucleotides are incorporated at the site of hybridization with the oligonucleotide as primer. PRINS may eventually allow the study of individual genes, gene expression and even somatic mutations (in mRNA) in single cells.

  15. Simultaneous Extraction of Viral and Bacterial Nucleic Acids for Molecular Diagnostic Applications.

    PubMed

    Kajiura, Lauren N; Stewart, Scott D; Dresios, John; Uyehara, Catherine F T

    2015-12-01

    Molecular detection of microbial pathogens in clinical samples requires the application of efficient sample lysis protocols and subsequent extraction and isolation of their nucleic acids. Here, we describe a simple and time-efficient method for simultaneous extraction of genomic DNA from gram-positive and -negative bacteria, as well as RNA from viral agents present in a sample. This method compared well with existing bacterial- and viral-specialized extraction protocols, worked reliably on clinical samples, and was not pathogen specific. This method may be used to extract DNA and RNA concurrently from viral and bacterial pathogens present in a sample and effectively detect coinfections in routine clinical diagnostics. PMID:26543438

  16. Nucleic acid hybridization for measurement of effects of antiviral compounds on human cytomegalovirus DNA replication.

    PubMed Central

    Gadler, H

    1983-01-01

    A nucleic acid hybridization technique has been developed to study the effect of different antiviral compounds on the replication of human cytomegalovirus in vitro. One laboratory strain of human cytomegalovirus, Ad. 169, and six clinical isolates were studied. Doses needed for 50% inhibition of viral DNA replication were calculated for foscarnet, acyclovir, and arabinosyladenine. The mean 50% inhibition dose values obtained were 179 microM for foscarnet, 82 microM for acyclovir, and 44 microM for arabinosyladenine. This method yields values that agree with earlier reports, and it offers great advantages over usual methods to date for studying inhibition of viral DNA replication. Images PMID:6314892

  17. Simultaneous Extraction of Viral and Bacterial Nucleic Acids for Molecular Diagnostic Applications

    PubMed Central

    Kajiura, Lauren N.; Stewart, Scott D.; Dresios, John; Uyehara, Catherine F. T.

    2015-01-01

    Molecular detection of microbial pathogens in clinical samples requires the application of efficient sample lysis protocols and subsequent extraction and isolation of their nucleic acids. Here, we describe a simple and time-efficient method for simultaneous extraction of genomic DNA from gram-positive and -negative bacteria, as well as RNA from viral agents present in a sample. This method compared well with existing bacterial- and viral-specialized extraction protocols, worked reliably on clinical samples, and was not pathogen specific. This method may be used to extract DNA and RNA concurrently from viral and bacterial pathogens present in a sample and effectively detect coinfections in routine clinical diagnostics. PMID:26543438

  18. Nucleic acids encoding plant glutamine phenylpyruvate transaminase (GPT) and uses thereof

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-03-29

    Glutamine phenylpyruvate transaminase (GPT) proteins, nucleic acid molecules encoding GPT proteins, and uses thereof are disclosed. Provided herein are various GPT proteins and GPT gene coding sequences isolated from a number of plant species. As disclosed herein, GPT proteins share remarkable structural similarity within plant species, and are active in catalyzing the synthesis of 2-hydroxy-5-oxoproline (2-oxoglutaramate), a powerful signal metabolite which regulates the function of a large number of genes involved in the photosynthesis apparatus, carbon fixation and nitrogen metabolism.

  19. Compatible solute influence on nucleic acids: Many questions but few answers

    PubMed Central

    Kurz, Matthias

    2008-01-01

    Compatible solutes are small organic osmolytes including but not limited to sugars, polyols, amino acids, and their derivatives. They are compatible with cell metabolism even at molar concentrations. A variety of organisms synthesize or take up compatible solutes for adaptation to extreme environments. In addition to their protective action on whole cells, compatible solutes display significant effects on biomolecules in vitro. These include stabilization of native protein and nucleic acid structures. They are used as additives in polymerase chain reactions to increase product yield and specificity, but also in other nucleic acid and protein applications. Interactions of compatible solutes with nucleic acids and protein-nucleic acid complexes are much less understood than the corresponding interactions of compatible solutes with proteins. Although we may begin to understand solute/nucleic acid interactions there are only few answers to the many questions we have. I summarize here the current state of knowledge and discuss possible molecular mechanisms and thermodynamics. PMID:18522725

  20. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  1. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    SciTech Connect

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  2. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    SciTech Connect

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2014-04-08

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  3. Single-molecule characterization and engineering of the surfaces of nucleic acid sensors

    NASA Astrophysics Data System (ADS)

    Josephs, Eric Alan

    The advent of personalized medicine will require biosensors capable of reliably detecting small levels of disease biomarkers. In microarrays and sensors for nucleic acids, hybridization events between surface-tethered DNA probes and the nucleic acids of interest (targets) are transduced into a detectable signal. However, target-binding ultimately occurs as a result of molecular motions and interactions between the probe and target at the nanometer scale, and common characterization methods either lack the resolution to characterize the sensors at this scale or provide only limited information about their interactions with their nanoscale chemical environment. In this dissertation I argue that an impediment to the development of more reliable and practical biosensors is the lack of knowledge and control of the nanometer length-scale structure of biosensor surfaces, which has a profound impact on molecular recognition and reactions for detection. After reviewing the fundamental surface chemistry and structural motifs of biosensors in Chapter 1, in Chapter 2 I use electrochemical atomic force microscopy (EC-AFM) to characterize in situ a common class of model nucleic acid sensors---thiolated DNA attached to a gold electrode which has been passivated by an alkanethiol self-assembled monolayer---with single-molecule resolution. This level of detail allows me to observe both the conformations of individual probes and their spatial distribution at the nanoscale, then determine how these are affected by assembly conditions, probe structure, and interactions with co-adsorbates. I also determine how these nanoscale details affect the dynamic response of probes to electric fields, which have been commonly used in sensing schemes, and ultimately the ability of the surface-tethered probes to bind with target nucleic acids. In Chapter 3, I demonstrate and optimize the nanoscale patterning of individual DNA molecules into isolated, chemically well-defined niches on the surface, and the use of these patterned probes as a single-molecule `nano-array' able to bind with target nucleic acids. Additionally, an outstanding issue is the expense of the high-quality substrates used in these studies. In Chapter 4, I discuss the development of single-crystal gold micro-plates with controllable surface chemistries as high-quality substrates for biotechnological platforms at a fraction of the cost.

  4. Cells labeled with multiple fluorophores bound to a nucleic acid carrier

    SciTech Connect

    Dattagupta, N.; Kamarch, M.E.

    1989-04-25

    In passing labeled cells through a cell sorter, the improvement which comprises employing a labeled cell comprising a cell, an antibody specific to and bound to such cell, a nucleic acid fragment joined to the antibody, and a plurality of labels on the nucleic acid fragment. Because of the presence of multiple labels, the sensitivity of the separation of labeled cells in increased.

  5. Methods for point-of-care detection of nucleic acid in a sample

    SciTech Connect

    Bearinger, Jane P.; Dugan, Lawrence C.

    2015-12-29

    Provided herein are methods and apparatus for detecting a target nucleic acid in a sample and related methods and apparatus for diagnosing a condition in an individual. The condition is associated with presence of nucleic acid produced by certain pathogens in the individual.

  6. 21 CFR 866.3980 - Respiratory viral panel multiplex nucleic acid assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... assay. 866.3980 Section 866.3980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... § 866.3980 Respiratory viral panel multiplex nucleic acid assay. (a) Identification. A respiratory viral panel multiplex nucleic acid assay is a qualitative in vitro diagnostic device intended...

  7. Comparative assessment of automated nucleic acid sample extraction equipment for biothreat agents.

    PubMed

    Kalina, Warren Vincent; Douglas, Christina Elizabeth; Coyne, Susan Rajnik; Minogue, Timothy Devin

    2014-04-01

    Magnetic beads offer superior impurity removal and nucleic acid selection over older extraction methods. The performances of nucleic acid extraction of biothreat agents in blood or buffer by easyMAG, MagNA Pure, EZ1 Advanced XL, and Nordiag Arrow were evaluated. All instruments showed excellent performance in blood; however, the easyMAG had the best precision and versatility. PMID:24452173

  8. Nucleic acids encoding mosaic clade M human immunodeficiency virus type 1 (HIV-1) envelope immunogens

    SciTech Connect

    Korber, Bette T; Fischer, William; Liao, Hua-Xin; Haynes, Barton F; Letvin, Norman; Hahn, Beatrice H

    2015-04-21

    The present invention relates to nucleic acids encoding mosaic clade M HIV-1 Env polypeptides and to compositions and vectors comprising same. The nucleic acids of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  9. Microgel Tethering For Microarray-Based Nucleic Acid Diagnostics

    NASA Astrophysics Data System (ADS)

    Dai, Xiaoguang

    Molecular diagnostics (MDx) have radically changed the process of clinical microbial identification based on identifying genetic information, MDx approaches are both specific and fast. They can identify microbes to the species and strain level over a time scale that can be as short as one hour. With such information clinicians can administer the most effective and appropriate antimicrobial treatment at an early time point with substantial implications both for patient well-being and for easing the burden on the health-care system. Among the different MDx approaches, such as fluorescence in-situ hybridization, microarrays, next-generation sequencing, and mass spectrometry, point-of-care MDx platforms are drawing particular interest due to their low cost, robustness, and wide application. This dissertation develops a novel MDx technology platform capable of high target amplification and detection performance. For nucleic acid target detection, we fabricate an array of electron-beam-patterned microgels on a standard glass microscope slide. The microgels can be as small as a few hundred nanometers. The unique way of energy deposition during electron-beam lithography provides the microgels with a very diffuse water -gel interface that enables them to not only serve as substrates to immobilize DNA probes but do so while preserving them in a highly hydrated environment that optimizes their performance. Benefiting from the high spatial resolution provided by such techniques as position-sensitive microspotting and dip-pen nanolithography, multiple oligonucleotide probes known as molecular beacons (MBs) can be patterned on microgels. Furthermore, nucleic acid target amplification can be conducted in direct contact with the microgel-tethered detection array. Specifically, we use an isothermal RNA amplification reaction - nucleic acid sequence-based amplification (NASBA). ssRNA amplicons of from the NASBA reaction can directly hybridize with microgel-tethered MBs, and the fluorescence response can be monitored in real-time without any additional labeling. With the properties of low complexity, high sensitivity and specificity, this platform holds important possibilities for commercialization. To further de-risk this MDx approach, future research includes enhancing the multiplexity of target amplification and detection by solid-phase NASBA, as well as combining the platform into a microfluidic device that can both process and handle small sample sizes.

  10. Solving nucleic acid structures by molecular replacement: examples from group II intron studies

    PubMed Central

    Marcia, Marco; Humphris-Narayanan, Elisabeth; Keating, Kevin S.; Somarowthu, Srinivas; Rajashankar, Kanagalaghatta; Pyle, Anna Marie

    2013-01-01

    Structured RNA molecules are key players in ensuring cellular viability. It is now emerging that, like proteins, the functions of many nucleic acids are dictated by their tertiary folds. At the same time, the number of known crystal structures of nucleic acids is also increasing rapidly. In this context, molecular replacement will become an increasingly useful technique for phasing nucleic acid crystallographic data in the near future. Here, strategies to select, create and refine molecular-replacement search models for nucleic acids are discussed. Using examples taken primarily from research on group II introns, it is shown that nucleic acids are amenable to different and potentially more flexible and sophisticated molecular-replacement searches than proteins. These observations specifically aim to encourage future crystallographic studies on the newly discovered repertoire of noncoding transcripts. PMID:24189228

  11. RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids

    PubMed Central

    Abdullah, Zeinab; Schlee, Martin; Roth, Susanne; Mraheil, Mobarak Abu; Barchet, Winfried; Bttcher, Jan; Hain, Torsten; Geiger, Sergej; Hayakawa, Yoshihiro; Fritz, Jrg H; Civril, Filiz; Hopfner, Karl-Peter; Kurts, Christian; Ruland, Jrgen; Hartmann, Gunther; Chakraborty, Trinad; Knolle, Percy A

    2012-01-01

    Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill-defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG-I, MDA5 and STING thereby triggering interferon ? production. Secreted Listeria nucleic acids also caused RIG-I-dependent IL-1?-production and inflammasome activation. The signalling molecule CARD9 contributed to IL-1? production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG-I provides a mechanistic explanation for efficient induction of immunity by live bacteria. PMID:23064150

  12. RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids.

    PubMed

    Abdullah, Zeinab; Schlee, Martin; Roth, Susanne; Mraheil, Mobarak Abu; Barchet, Winfried; Bttcher, Jan; Hain, Torsten; Geiger, Sergej; Hayakawa, Yoshihiro; Fritz, Jrg H; Civril, Filiz; Hopfner, Karl-Peter; Kurts, Christian; Ruland, Jrgen; Hartmann, Gunther; Chakraborty, Trinad; Knolle, Percy A

    2012-11-01

    Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill-defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG-I, MDA5 and STING thereby triggering interferon ? production. Secreted Listeria nucleic acids also caused RIG-I-dependent IL-1?-production and inflammasome activation. The signalling molecule CARD9 contributed to IL-1? production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG-I provides a mechanistic explanation for efficient induction of immunity by live bacteria. PMID:23064150

  13. Advances in the Determination of Nucleic Acid Conformational Ensembles

    PubMed Central

    Salmon, Loïc; Yang, Shan; Al-Hashimi, Hashim M.

    2016-01-01

    Conformational changes in nucleic acids play a key role in the way genetic information is stored, transferred, and processed in living cells. Here, we describe new approaches that employ a broad range of experimental data, including NMR derived chemical shifts and residual dipolar couplings, small angle X-ray scattering, and computational approaches such as molecular dynamics simulations, to determine ensembles of DNA and RNA at atomic resolution. We review the complimentary information that can be obtained from diverse sets of data and the various methods that have been developed to combine these data with computational methods to construct ensembles and assess their uncertainty. We conclude by surveying RNA and DNA ensembles determined using these methods, highlighting the unique physical and functional insights that have been obtained so far. PMID:24364917

  14. Nucleic acid-based drugs against emerging zoonotic viruses.

    PubMed

    Wong, Jonathan P

    2015-09-01

    Global outbreaks of diseases caused by zoonotic viruses have steadily increased in recent years. Emerging zoonotic viruses are generally phylogenetically diverse, are unpredictable and are known to cause diseases with high case fatality rates in humans and are hard to protect against due to lack of approved antiviral drugs. The aim of this review is to discuss how advances in genomics, rational drug design and innate immune signaling can contribute to the design of nucleic acid-based drugs to combat these emerging threats. Specifically, the antiviral activity of siRNAs, antisense oligonucleotides is mediated by sequence-specific gene silencing, and broad-spectrum innate and antiviral immune responses can be elicited by toll-like receptor agonists. This review will summarize their current state of development, safety and efficacy, and provide perspectives on future development. PMID:26399689

  15. Imaging of nucleic acids with atomic force microscopy

    PubMed Central

    Lyubchenko, Yuri L.; Shlyakhtenko, Luda S.; Ando, Toshio

    2011-01-01

    Atomic force microscopy (AFM) is a key tool of nanotechnology with great importance in applications to DNA nanotechnology and to the recently emerging field of RNA nanotechnology. Advances in the methodology of AFM now enable reliable and reproducible imaging of DNA of various structures, topologies, and DNA and RNA nanostructures. These advances are reviewed here with emphasis on methods utilizing modification of mica to prepare the surfaces enabling reliable and reproducible imaging of DNA and RNA nanostructures. Since the AFM technology for DNA is more mature, AFM imaging of DNA is introduced in this review to provide experience and background for the improvement of AFM imaging of RNA. Examples of imaging different structures of RNA and DNA are discussed and illustrated. Special attention is given to the potential use of AFM to image the dynamics of nucleic acids at the nanometer scale. As such, we review recent advances with the use of time-lapse AFM. PMID:21310240

  16. Nucleic Acid-Based Approaches for Detection of Viral Hepatitis

    PubMed Central

    Behzadi, Payam; Ranjbar, Reza; Alavian, Seyed Moayed

    2014-01-01

    Context: To determining suitable nucleic acid diagnostics for individual viral hepatitis agent, an extensive search using related keywords was done in major medical library and data were collected, categorized, and summarized in different sections. Results: Various types of molecular biology tools can be used to detect and quantify viral genomic elements and analyze the sequences. These molecular assays are proper technologies for rapidly detecting viral agents with high accuracy, high sensitivity, and high specificity. Nonetheless, the application of each diagnostic method is completely dependent on viral agent. Conclusions: Despite rapidity, automation, accuracy, cost-effectiveness, high sensitivity, and high specificity of molecular techniques, each type of molecular technology has its own advantages and disadvantages. PMID:25789132

  17. NTDB: Thermodynamic Database for Nucleic Acids, Version 2.0

    PubMed Central

    Chiu, Wing Lok Abe Kurtz; Sze, Chun Ngai; Ma, Nap Tak; Chiu, Lai Fan; Leung, Chung Wai; Au-Yeung, Steve Chik Fun

    2003-01-01

    The second release of Thermodynamic Database for Nucleic Acids, NTDB 2.0, includes more than 4600 entries (250% increase over release 1.0). It contains sequence types and details of several thermodynamic parameters (enthalpy, ?H; entropy, ?S; Gibbs free energy, ?G; melting temperature, Tm), experimental models and methods for extracting thermodynamic parameters, buffer conditions as well as all relevant literature information. In addition, the database statistics and references related to NTDB are included. Information on normal and modified nucleobases and nucleosides are collected in a new section Nucleoside whereby data collected thus far will be release in NTDB 2.0. The NTDB is freely available at http://ntdb.chem.cuhk.edu.hk. PMID:12520057

  18. Diastereomer characterizations of nitroxide-labeled nucleic acids

    SciTech Connect

    Grant, Gian Paola G.; Popova, Anna; Qin, Peter Z.

    2008-07-04

    Site-directed spin labeling (SDSL) obtains structural and dynamic information of a macromolecule using a site-specifically attached stable nitroxide radical. SDSL studies of arbitrary DNA and RNA sequences can be achieved using an efficient phosphorothioate labeling scheme, where a nitroxide is attached to a phosphorothioate substituted at a target site during chemical synthesis. The chemically introduced phosphorothioate contains two diastereomers (Rp and Sp), and nitroxides attached to each diastereomer may experience different local environments. Here, we report work on using anion-exchange HPLC to separate and characterize diastereomers in three DNA oligonucleotides and one RNA oligonucleotide. In all oligonucleotides studied, the Rp diastereomer was found to elute earlier than the Sp in the unlabeled oligonucleotides, while a reversal in the elution order (Sp earlier than Rp) was observed for nitroxide-labeled oligonucleotides. The results enable a one-step purification procedure for preparing diastereomerically pure nitroxide-labeled oligonucleotides. This expands the score of nucleic acids SDSL.

  19. Spherical Nucleic Acids: A New Form of DNA

    NASA Astrophysics Data System (ADS)

    Cutler, Joshua Isaac

    Spherical Nucleic Acids (SNAs) are a new class of nucleic acid-based nanomaterials that exhibit unique properties currently being explored in the contexts of gene-based cancer therapies and in the design of programmable nanoparticle-based materials. The properties of SNAs differ from canonical, linear nucleic acids by virtue of their dense packing into an oriented 3-dimensional array. SNAs can be synthesized from a number of useful nanoparticle templates, such as plasmonic gold and silver, magnetic oxides, luminescent semi-conductor quantum dots, and silica. In addition, by crosslinking the oligonucleotides and dissolving the core, they can be made in a hollow form as well. This dissertation describes the evolution of SNAs from initial studies of inorganic nanoparticle-based materials densely functionalized with oligonucleotides to the proving of a hypothesis that their unique properties can be observed in a core-less structure if the nucleic acids are densely packed and highly oriented. Chapter two describes the synthesis of densely functionalized polyvalent oligonucleotide superparamagnetic iron oxide nanoparticles using the copper-catalyzed azide-alkyne cycloaddition reaction. These particles are shown to exhibit cooperative binding in a density- and salt concentration-dependent fashion, with nearly identical behaviors to those of SNA-functionalized gold nanoparticles. Importantly, these particles are the first non-gold particles shown to be capable of entering cells in high numbers via the SNA-mediated cellular uptake pathway, and provided the first evidence that SNA-mediated cellular uptake is core-independent. In the third chapter, a gold nanoparticle catalyzed alkyne cross-linking reaction is described that is capable of forming hollow organic nanoparticles using polymers with alkyne-functionalized backbones. With this method, the alkyne-modified polymers adsorb to the particle surfaces, cross-link on the surface, allowing the gold nanoparticle to be subsequently dissolved oxidatively with KCN or Iodine. The reaction pathway is analyzed through characterization of the reaction progression and resulting products, and a mechanistic pathway is proposed. This is the first report of a gold nanoparticle catalyzed reaction involving the conversion of propargyl ethers to terminal alcohols, which can subsequently cross-link if densely arranged on a gold nanoparticle surface. Importantly, these structures can be synthesized using gold nanoparticles of a range of sizes, thereby providing control over the size and properties of the resulting crosslinked particle. Chapter four returns to the topic of SNAs and builds upon the chemistry of chapter three culminating in the synthesis of cross-linked hollow SNA nanoparticles. These structures are formed by the cross-linking of synthetically modified alkyne-bearing oligonucleotides through the pathway described in chapter three. When the gold core is dissolved, the resulting hollow SNAs exhibit nearly identical binding, nuclease resistance, cellular uptake, and gene regulation properties of SNA-gold nanoparticle conjugates. Indeed, this chapter demonstrates that the unique properties of SNA-nanoparticle conjugates are core-independent and stem solely from the dense ensemble of oligonucleotides arranged on their surfaces. The fifth chapter further asserts the synthetic achievements made in chapter four by showing how hollow SNAs can be substituted for SNA-gold nanoparticles in the context of DNA-programmable assembly. In this case, they can be used as building blocks within binary synthetic schemes to synthesize unique nanoparticle superlattices. It bolsters the design rules of DNA-programmable assembly by showing that the predicted structures form based on the behavior of SNA hybridization, and are universal for any SNA-functionalized nanoparticle.

  20. Clinical applications of nucleic acid aptamers in cancer

    PubMed Central

    PEI, XIAOYU; ZHANG, JUN; LIU, JIE

    2014-01-01

    Nucleic acid aptamers are small single-stranded DNA or RNA oligonucleotide segments, which bind to their targets with high affinity and specificity via unique three-dimensional structures. Aptamers are generated by an iterative in vitro selection process, termed as systematic evolution of ligands by exponential enrichment. Owing to their specificity, non-immunogenicity, non-toxicity, easily modified chemical structure and wide range of targets, aptamers appear to be ideal candidates for various clinical applications (diagnosis or treatment), such as cell detection, target diagnosis, molecular imaging and drug delivery. Several aptamers have entered the clinical pipeline for applications in diseases such as macular degeneration, coronary artery bypass graft surgery and various types of cancer. The aim of this review was to summarize and highlight the clinical applications of aptamers in cancer diagnosis and treatment. PMID:24772298

  1. Study on the interaction between nucleic acid and Eu 3+-oxolinic acid and the determination of nucleic acid using the resonance light scattering technique

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Sun, Shuna; Yang, Jinghe; Wang, Minqin; Liu, Liyan; Guo, Changying

    2005-12-01

    At pH 9.75, the resonance light scattering (RLS) intensity of OA-Eu 3+ system is greatly enhanced by nucleic acid. Based on this phenomenon, a new quantitative method for nucleic acid in aqueous solution has been developed. Under the optimum condition, the enhanced RLS is proportional to the concentration of nucleic acid in the range of 1.0 × 10 -9 to 1.0 × 10 -6 g/ml for herring sperm DNA, 8.0 × 10 -10 to 1.0 × 10 -6 g/ml for calf thymus DNA and 1.0 × 10 -9 to 1.0 × 10 -6 g/ml for yeast RNA, and their detection limits are 0.020, 0.011 and 0.010 ng/ml, respectively. Synthetic samples and actual samples were satisfactorily determined. In addition, the interaction mechanism between nucleic acid and OA-Eu 3+ is also investigated.

  2. Up-converting phosphor reporters for nucleic acid microarrays.

    PubMed

    van De Rijke, F; Zijlmans, H; Li, S; Vail, T; Raap, A K; Niedbala, R S; Tanke, H J

    2001-03-01

    An important application of robotically spotted DNA microarrays is the monitoring of RNA expression levels. A clear limitation of this technology is the relatively large amount of RNA that is required per hybridization as a result of low hybridization efficiency and limiting detection sensitivity provided by conventional fluorescent reporters. We have used a recently introduced luminescent reporter technology, called UPT (up-converting phosphor technology). Down-converting phosphors have been applied before to detect nucleic acids on filters using time-resolved fluorometry. The unique feature of the phosphor particles (size 0.4 microm) used here is that they emit visible light when illuminated with infrared (IR) light (980 nm) as a result of a phenomenon called up-conversion. Because neither support material of microarrays nor biomolecules possess up-conversion properties, an enhanced image contrast is expected when these nonfading phosphor particles are applied to detect nucleic acid hybrids on microarrays. Comparison of the UPT reporter to cyanin 5 (Cy5) in a low-complexity model system showed a two order of maginitude linear relationship between phosphor luminescence and target concentration and resulted in an excellent correlation between the two reporter systems for variable target concentrations (R2 = 0.95). However, UPT proved to be superior in sensitivity, even though a wide-field microscope equipped with a xenon lamp was used. This higher sensitivity was demonstrated by complementary DNA (cDNA) microarray hybridizations using cDNAs for housekeeping genes as probes and complex cDNA as target. These results suggest that a UPT reporter technology in combination with a dedicated IR laser array-scanner holds significant promise for various microarray applications. PMID:11231563

  3. A novel nucleic acid analogue shows strong angiogenic activity

    SciTech Connect

    Tsukamoto, Ikuko; Sakakibara, Norikazu; Maruyama, Tokumi; Igarashi, Junsuke; Kosaka, Hiroaki; Kubota, Yasuo; Tokuda, Masaaki; Ashino, Hiromi; Hattori, Kenichi; Tanaka, Shinji; Kawata, Mitsuhiro; Konishi, Ryoji

    2010-09-03

    Research highlights: {yields} A novel nucleic acid analogue (2Cl-C.OXT-A, m.w. 284) showed angiogenic potency. {yields} It stimulated the tube formation, proliferation and migration of HUVEC in vitro. {yields} 2Cl-C.OXT-A induced the activation of ERK1/2 and MEK in HUVEC. {yields} Angiogenic potency in vivo was confirmed in CAM assay and rabbit cornea assay. {yields} A synthesized small angiogenic agent would have great clinical therapeutic value. -- Abstract: A novel nucleic acid analogue (2Cl-C.OXT-A) significantly stimulated tube formation of human umbilical endothelial cells (HUVEC). Its maximum potency at 100 {mu}M was stronger than that of vascular endothelial growth factor (VEGF), a positive control. At this concentration, 2Cl-C.OXT-A moderately stimulated proliferation as well as migration of HUVEC. To gain mechanistic insights how 2Cl-C.OXT-A promotes angiogenic responses in HUVEC, we performed immunoblot analyses using phospho-specific antibodies as probes. 2Cl-C.OXT-A induced robust phosphorylation/activation of MAP kinase ERK1/2 and an upstream MAP kinase kinase MEK. Conversely, a MEK inhibitor PD98059 abolished ERK1/2 activation and tube formation both enhanced by 2Cl-C.OXT-A. In contrast, MAP kinase responses elicited by 2Cl-C.OXT-A were not inhibited by SU5416, a specific inhibitor of VEGF receptor tyrosine kinase. Collectively these results suggest that 2Cl-C.OXT-A-induces angiogenic responses in HUVEC mediated by a MAP kinase cascade comprising MEK and ERK1/2, but independently of VEGF receptor tyrosine kinase. In vivo assay using chicken chorioallantoic membrane (CAM) and rabbit cornea also suggested the angiogenic potency of 2Cl-C.OXT-A.

  4. Nucleic Acid Encoding A Lectin-Derived Progenitor Cell Preservation Factor

    DOEpatents

    Colucci, M. Gabriella (Dugenta, IT); Chrispeels, Maarten J. (La Jolla, CA); Moore, Jeffrey G. (New York, NY)

    2001-10-30

    The invention relates to an isolated nucleic acid molecule that encodes a protein that is effective to preserve progenitor cells, such as hematopoietic progenitor cells. The nucleic acid comprises a sequence defined by SEQ ID NO:1, a homolog thereof, or a fragment thereof. The encoded protein has an amino acid sequence that comprises a sequence defined by SEQ ID NO:2, a homolog thereof, or a fragment thereof that contains an amino acid sequence TNNVLQVT. Methods of using the encoded protein for preserving progenitor cells in vitro, ex vivo, and in vivo are also described. The invention, therefore, include methods such as myeloablation therapies for cancer treatment wherein myeloid reconstitution is facilitated by means of the specified protein. Other therapeutic utilities are also enabled through the invention, for example, expanding progenitor cell populations ex vivo to increase chances of engraftation, improving conditions for transporting and storing progenitor cells, and facilitating gene therapy to treat and cure a broad range of life-threatening hematologic diseases.

  5. Selective precipitation of ribonucleic acid from a mixture of total cellular nucleic acids extracted from cultured mammalian cells

    PubMed Central

    Harrison, P. R.

    1971-01-01

    A simple and reproducible method is described for precipitating RNA selectively from total mammalian-cell nucleic acids extracted by the phenolsodium dodecyl sulphate procedure at pH8.0. Under specified conditions bulk RNA is precipitated almost quantitatively whereas bulk DNA remains in solution. Minor components of RNA (detected by pulse-labelling and chromatography on methylated albuminkieselguhr) and rapidly labelled components of DNA containing single-stranded regions are also precipitated. The usefulness of the method is discussed in the context of isolating separately both RNA and DNA from cultured cells that are difficult to obtain in quantity. PMID:5165620

  6. Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis.

    PubMed

    Tóth, Kinga; Barták, Barbara Kinga; Tulassay, Zsolt; Molnár, Béla

    2016-02-01

    Screening methods for the most frequent diagnosed malignant tumor, colorectal cancer (CRC), have limitations. Circulating cell-free DNA (cfDNA) analysis came into focus as a potential screening test for CRC. Detection of epigenetic and genetic alterations of cfDNA as DNA methylation or DNA mutations and related ribonucleic acids may improve cancer detection based on unique, CRC-specific patterns. In this review the authors summarize the CRC-specific nucleic acid biomarkers measured in peripheral blood and their potential as screening markers. Detection of DNA mutation has inadequate sensitivity; however, methylated DNA can be established with higher sensitivity from CRC plasma samples. The ribonucleic acid based miRNA studies represented higher sensitivity for CRC as compared with mRNA studies. Recently, isolation of cfDNA has become automated, highly reproducible and a high throughput method. With automated possible diagnostic tools, a new approach may be available for CRC screening as liquid biopsy. PMID:26652067

  7. Interaction of keratin K1 with nucleic acids on the cell surface.

    PubMed

    Chelobanov, B P; Laktionov, P P; Kharkova, M V; Rykova, E Yu; Pyshnyi, D V; Pyshnaya, I A; Marcus, K; Meyer, H E; Vlassov, V V

    2003-11-01

    The interaction of surface proteins from A431 cells and cellular extracts with nucleic acids was investigated using affinity modification with 32P-labeled reactive oligonucleotide derivatives. Proteins with molecular weights of 68, 46, 38, and 28 kD as well as several low molecular weight proteins capable of binding to nucleic acids were found on the surface of intact cells. It was demonstrated that a protein with molecular weight of 68 kD is exposed at the cell surface, since the treatment of cells with trypsin results in the cleavage of this protein. Disruption of the integrity of the cell membrane (scrapping, treatment with trypsin, or permeabilization of the cell membrane with streptolysin O or saponin) disrupts the interaction of the reactive oligonucleotides with the cell surface proteins. Affinity modification of the cytosolic and membrane-cytosolic cell fractions with labeled oligonucleotides results in the modification of a large number of proteins, where proteins with molecular weights of 68, 46, 38, and 28 kD can be found as minor components. Surface oligonucleotide-binding proteins with molecular weight of ~68 kD were isolated by affinity chromatography after the modification of intact A431 cells with a reactive oligonucleotide derivative. The isolated surface oligonucleotide-binding proteins from A431 cells were sequenced, and one of the proteins was identified as keratin K1. PMID:14640967

  8. Nucleic acid induced unfolding of recombinant prion protein globular fragment is pH dependent.

    PubMed

    Bera, Alakesh; Nandi, Pradip K

    2014-12-01

    Nucleic acid can catalyze the conversion of ?-helical cellular prion protein to ?-sheet rich Proteinase K resistant prion protein oligomers and amyloid polymers in vitro and in solution. Because unfolding of a protein molecule from its ordered ?-helical structure is considered to be a necessary step for the structural conversion to its ?-sheet rich isoform, we have studied the unfolding of the ?-helical globular 121-231 fragment of mouse recombinant prion protein in the presence of different nucleic acids at neutral and acid pH. Nucleic acids, either single or double stranded, do not have any significant effect on the secondary structure of the protein fragment at neutral pH; however the protein secondary structure is modified by the nucleic acids at pH 5. Nucleic acids do not show any significant effect on the temperature induced unfolding of the globular prion protein domain at neutral pH which, however, undergoes a gross conformational change at pH 5 as evidenced from the lowering of the midpoint of thermal denaturation temperatures, Tm, of the protein. The extent of Tm decrease shows a dependence on the nature of nucleic acid. The interaction of nucleic acid with the nonpolar groups exposed from the protein interior at pH 5 probably contributes substantially to the unfolding process of the protein. PMID:25271002

  9. Integrated, DC voltage-driven nucleic acid diagnostic platform for real sample analysis: Detection of oral cancer.

    PubMed

    Slouka, Zdenek; Senapati, Satyajyoti; Shah, Sunny; Lawler, Robin; Shi, Zonggao; Stack, M Sharon; Chang, Hsueh-Chia

    2015-12-01

    We present an integrated and low-cost microfluidic platform capable of extraction of nucleic acids from real biological samples. We demonstrate the application of this platform in pathogen detection and cancer screening. The integrated platform consists of three units including a pretreatment unit for separation of nucleic acids from lysates, a preconcentration unit for concentration of isolated nucleic acids and a sensing unit localized at a designated position on the chip for specific detection of the target nucleic acid. The platform is based on various electrokinetic phenomena exhibited by ion exchange membranes in a DC electrical field that allow them to serve as molecular filters, analyte preconcentrators and sensors. In this manuscript, we describe each unit of the integrated chip separately and show specific detection of a microRNA (miRNA 146a) biomarker associated with oral cancer as a proof-of-concept experiment. This platform technology can easily be extended to other targets of interest by optimizing the properties of the ion exchange membranes and the specific probes functionalized onto the sensors. PMID:26459441

  10. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  11. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    PubMed Central

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA’s persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  12. Effective and site-specific phosphoramidation reaction for universally labeling nucleic acids.

    PubMed

    Su, Yu-Chih; Chen, Hsing-Yin; Ko, Ni Chien; Hwang, Chi-Ching; Wu, Min Hui; Wang, Li-Fang; Wang, Yun-Ming; Chang, Sheng-Nan; Wang, Eng-Chi; Wang, Tzu-Pin

    2014-03-15

    Here we report efficient and selective postsynthesis labeling strategies, based on an advanced phosphoramidation reaction, for nucleic acids of either synthetic or enzyme-catalyzed origin. The reactions provided phosphorimidazolide intermediates of DNA or RNA which, whether reacted in one pot (one-step) or purified (two-step), were directly or indirectly phosphoramidated with label molecules. The acquired fluorophore-labeled nucleic acids, prepared from the phosphoramidation reactions, demonstrated labeling efficacy by their F/N ratio values (number of fluorophores per molecule of nucleic acid) of 0.02-1.2 which are comparable or better than conventional postsynthesis fluorescent labeling methods for DNA and RNA. Yet, PCR and UV melting studies of the one-step phosphoramidation-prepared FITC-labeled DNA indicated that the reaction might facilitate nonspecific hybridization in nucleic acids. Intrinsic hybridization specificity of nucleic acids was, however, conserved in the two-step phosphoramidation reaction. The reaction of site-specific labeling nucleic acids at the 5'-end was supported by fluorescence quenching and UV melting studies of fluorophore-labeled DNA. The two-step phosphoramidation-based, effective, and site-specific labeling method has the potential to expedite critical research including visualization, quantification, structural determination, localization, and distribution of nucleic acids in vivo and in vitro. PMID:24361708

  13. Nucleic acid-sensing TLRs and autoimmunity: novel insights from structural and cell biology.

    PubMed

    Pelka, Karin; Shibata, Takuma; Miyake, Kensuke; Latz, Eicke

    2016-01-01

    Invasion of pathogenic microorganisms or tissue damage activates innate immune signaling receptors that sample subcellular locations for foreign molecular structures, altered host molecules, or signs of compartment breaches. Upon engagement of innate immune receptors an acute but transient inflammatory response is initiated, aimed at the clearance of pathogens and cellular debris. Among the molecules that are sensed are nucleic acids, which activate several members of the transmembrane Toll-like receptor (TLR) family. Inappropriate recognition of nucleic acids by TLRs can cause inflammatory pathologies and autoimmunity. Here, we review the mechanisms involved in triggering nucleic acid-sensing TLRs and indicate checkpoints that restrict their activation to endolysosomal compartments. These mechanisms are crucial to sample the content of endosomes for nucleic acids in the context of infection or tissue damage, yet prevent accidental activation by host nucleic acids under physiological conditions. Decoding the molecular mechanisms that regulate nucleic acid recognition by TLRs is central to understand pathologies linked to unrestricted nucleic acid sensing and to develop novel therapeutic strategies. PMID:26683145

  14. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE.

    PubMed

    Rao, Archana N; Grainger, David W

    2014-04-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA's persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  15. Effects of Phosfon-S on Nucleic Acid Metabolism in Pisum sativum Alaska

    PubMed Central

    Brook, Judith; West, S. H.; Anthony, D. S.

    1967-01-01

    Phosfon-S, a substance which inhibits stem elongation, alters nucleic acid metabolism in Pisum sativum Alaska. Methylated albumin kieselguhr (MAK) columns were used to fractionate 32P-labeled nucleic acids. Phosfon-S treatment of the plants resulted in a decrease in soluble RNA and an increase in ribosomal RNA. Specific activities of the various nucleic acid fractions were lower as a result of treatment. The nucleic acids from treated tissues were more resistant to RNase degradation, and endogenous RNase activity was lower in treated tissues. When RNase treated nucleic acids were fractionated on MAK columns, the DNA-RNA fractions from treated plants had a higher specific activity than that of the control, which was not true before nuclease treatment. Spectrophotometric examination of this fraction revealed a difference in absorption spectra, possibly indicating a Phosfon-S nucleic acid complex. It is suggested that these alterations in nucleic acid metabolism could in turn alter a wide variety of metabolic processes, resulting in retarded growth. PMID:16656572

  16. Nucleic acid binding and chaperone properties of HIV-1 Gag and nucleocapsid proteins

    PubMed Central

    Cruceanu, Margareta; Urbaneja, Maria A.; Hixson, Catherine V.; Johnson, Donald G.; Datta, Siddhartha A.; Fivash, Matthew J.; Stephen, Andrew G.; Fisher, Robert J.; Gorelick, Robert J.; Casas-Finet, Jose R.; Rein, Alan; Rouzina, Ioulia; Williams, Mark C.

    2006-01-01

    The Gag polyprotein of HIV-1 is essential for retroviral replication and packaging. The nucleocapsid (NC) protein is the primary region for the interaction of Gag with nucleic acids. In this study, we examine the interactions of Gag and its NC cleavage products (NCp15, NCp9 and NCp7) with nucleic acids using solution and single molecule experiments. The NC cleavage products bound DNA with comparable affinity and strongly destabilized the DNA duplex. In contrast, the binding constant of Gag to DNA was found to be ?10-fold higher than that of the NC proteins, and its destabilizing effect on dsDNA was negligible. These findings are consistent with the primary function of Gag as a nucleic acid binding and packaging protein and the primary function of the NC proteins as nucleic acid chaperones. Also, our results suggest that NCp7's capability for fast sequence-nonspecific nucleic acid duplex destabilization, as well as its ability to facilitate nucleic acid strand annealing by inducing electrostatic attraction between strands, likely optimize the fully processed NC protein to facilitate complex nucleic acid secondary structure rearrangements. In contrast, Gag's stronger DNA binding and aggregation capabilities likely make it an effective chaperone for processes that do not require significant duplex destabilization. PMID:16449201

  17. 77 FR 16126 - Microbiology Devices; Reclassification of Nucleic Acid-Based Systems for Mycobacterium tuberculosis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... Food and Drug Administration 21 CFR Part 866 Microbiology Devices; Reclassification of Nucleic Acid-Based Systems for Mycobacterium tuberculosis Complex AGENCY: Food and Drug Administration, HHS. ACTION: Proposed rule. SUMMARY: The Food and Drug Administration (FDA) is proposing to reclassify nucleic...

  18. Shedding light on proteins, nucleic acids, cells, humans and fish

    NASA Technical Reports Server (NTRS)

    Setlow, Richard B.

    2002-01-01

    I was trained as a physicist in graduate school. Hence, when I decided to go into the field of biophysics, it was natural that I concentrated on the effects of light on relatively simple biological systems, such as proteins. The wavelengths absorbed by the amino acid subunits of proteins are in the ultraviolet (UV). The wavelengths that affect the biological activities, the action spectra, also are in the UV, but are not necessarily parallel to the absorption spectra. Understanding these differences led me to investigate the action spectra for affecting nucleic acids, and the effects of UV on viruses and cells. The latter studies led me to the discovery of the important molecular nature of the damages affecting DNA (cyclobutane pyrimidine dimers) and to the discovery of nucleotide excision repair. Individuals with the genetic disease xeroderma pigmentosum (XP) are extraordinarily sensitive to sunlight-induced skin cancer. The finding, by James Cleaver, that their skin cells were defective in DNA repair strongly suggested that DNA damage was a key step in carcinogenesis. Such information was important for estimating the wavelengths in sunlight responsible for human skin cancer and for predicting the effects of ozone depletion on the incidence of non-melanoma skin cancer. It took experiments with backcross hybrid fish to call attention to the probable role of the longer UV wavelengths not absorbed by DNA in the induction of melanoma. These reflections trace the biophysicist's path from molecules to melanoma.

  19. Synthesis and characterization of peptide nucleic acid platinum nanoclusters

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Pandey, Rajeev R.; Singh, Krishna V.; Senthil Andavan, G. T.; Tsai, Chunglin; Lake, Roger; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2006-03-01

    Peptide nucleic acid (PNA) is an analogue of deoxyribonucleic acid (DNA) and possesses a neutral backbone that affords stronger hybridization, greater stability and higher specificity in base pairing. However, it has not been explored as much as DNA in self-assembling functional nanostructures or nanoelectronic devices. We report here for the first time the metallization of PNA with platinum (Pt) nanoparticles via chemical binding, reduction and deposition. Pt ions from a precursor salt solution are allowed to bind over the PNA fragments followed by a reduction and then growth into metal nanoparticles. PNA-Pt complexes form chains several hundred nanometres in length and by varying the duration of chemical reduction step, the dimension of the Pt nanoparticles can be controlled. The structural features and chemical composition of PNA-Pt nanoparticles have been characterized via scanning electron microscopy, transmission electron microscopy and Fourier transform-infrared spectroscopy. These results are also supported by modelling and analysis of the nature of high-lying molecular orbitals on PNA using density functional theory (DFT) method.

  20. Observations on the nucleolar and total cell body nucleic acid of injured nerve cells

    PubMed Central

    Watson, W. E.

    1968-01-01

    1. The nucleic acid content of neuronal nucleoli and the total cell body nucleic acid content of neurones of the hypoglossal nucleus were measured by ultraviolet absorption microspectrography. 2. After nerve injury both the nucleolar nucleic acid and the total cell body nucleic acid increased: nucleolar changes preceded those of the cell body. 3. The closer to the nerve cell body that the axon was injured the earlier was the onset and the decline of the nucleolar response. 4. Actinomycin D was given to prevent DNA-primed RNA synthesis, and the rate of `decay' of nucleolar RNA was measured. This rate varied after nerve injury and was closely related to the nucleolar nucleic acid content. 5. The apparent rate of transfer of labelled RNA from the neuronal nucleus into the cytoplasm changed after nerve injury in a manner closely related to the changes in nucleolar nucleic acid content. 6. It was demonstrated by making consecutive nerve injuries or by preventing or delaying nerve regeneration, that the nucleic acid changes were not induced by removal of contact between the neurone and its motor end-plate, and were not repressed by the restoration of such contact. 7. When regeneration was prevented the nucleolar nucleic acid content and the total cell body nucleic acid ultimately decreased to values less than normal: this decrease was greater when more of the axon was initially removed. 8. The results are discussed in relation to the factor responsible for derepression and repression of DNA cistrons for ribosome synthesis in injured nerve cells. ImagesABCAB PMID:5664236

  1. Interaction of cetylpyridine bromide with nucleic acids and determination of nucleic acids at nanogram levels based on the enhancement of resonance Rayleigh light scattering

    NASA Astrophysics Data System (ADS)

    Liu, Rutao; Yang, Jinghe; Wu, Xia

    2002-07-01

    Resonance Rayleigh light scattering (RRLS) spectra of cetylpyridine bromide (CPB)-nucleic acid system and their analytical application have been first studied. The effective factors and optimum conditions of the reaction have been investigated. After CPB and nucleic acid are mixed together, a new absorption peak located at 300 nm appeared, which is due to the formation of new ion associate of CPB-nucleic acid. The new associate can result in two apparent RRLS peaks at 310-400 and 460-480 nm. The RRLS peak of the corrected spectra located at 290-350 nm, which indicate that the RRLS is originated from the absorption of CPB-nucleic acid associate. The peak at 460-480 nm disappears in the corrected RRLS spectra, which indicated that this peak is originated from the strong line emission of the Xe lamp. Under the optimum conditions, the enhanced intensity of RRLS is proportional to the concentration of nucleic acid in the range of 5.0×10 -9-5.0×10 -5 g ml -1 for calf thymus DNA (ctDNA), 1.0×10 -8-4.0×10 -5 g ml -1 for fish sperm DNA (fsDNA) and 1.0×10 -8-5.0×10 -5 g ml -1 for yeast RNA (yRNA). The detection limits ( S/ N=3) are 4.3, 8.7 and 7.4 ng ml -1, respectively. Synthetic samples were determined satisfactorily.

  2. Strategies for automated sample preparation, nucleic acid purification, and concentration of low-target-number nucleic acids in environmental and food processing samples

    NASA Astrophysics Data System (ADS)

    Bruckner-Lea, Cynthia J.; Holman, David A.; Schuck, Beatrice L.; Brockman, Fred J.; Chandler, Darrell P.

    1999-01-01

    The purpose of this work is to develop a rapid, automated system for nucleic acid purification and concentration from environmental and food processing samples. Our current approach involves off-line filtration and cell lysis (ballistic disintegration) functions in appropriate buffers followed by automated nucleic acid capture and purification on renewable affinity matrix microcolumns. Physical cell lysis and renewable affinity microcolumns eliminate the need for toxic organic solvents, enzyme digestions or other time- consuming sample manipulations. Within the renewable affinity microcolumn, we have examined nucleic acid capture and purification efficiency with various microbead matrices (glass, polymer, paramagnetic), surface derivitization (sequence-specific capture oligonucleotides or peptide nucleic acids), and DNA target size and concentration under variable solution conditions and temperatures. Results will be presented comparing automated system performance relative to benchtop procedures for both clean (pure DNA from a laboratory culture) and environmental (soil extract) samples, including results which demonstrate 8 minute purification and elution of low-copy nucleic acid targets from a crude soil extract in a form suitable for PCR or microarray-based detectors. Future research will involve the development of improved affinity reagents and complete system integration, including upstream cell concentration and cell lysis functions and downstream, gene-based detectors. Results of this research will ultimately lead to improved processes and instrumentation for on-line, automated monitors for pathogenic micro-organisms in food, water, air, and soil samples.

  3. Synthesis of phosphoramidites of isoGNA, an isomer of glycerol nucleic acid

    PubMed Central

    Kim, Keunsoo; Punna, Venkateshwarlu; Karri, Phaneendrasai

    2014-01-01

    Summary IsoGNA, an isomer of glycerol nucleic acid GNA, is a flexible (acyclic) nucleic acid with bases directly attached to its linear backbone. IsoGNA exhibits (limited) base-pairing properties which are unique compared to other known flexible nucleic acids. Herein, we report on the details of the preparation of isoGNA phosphoramidites and an alternative route for the synthesis of the adenine derivative. The synthetic improvements described here enable an easy access to isoGNA and allows for the further exploration of this structural unit in oligonucleotide chemistry thereby spurring investigations of its usefulness and applicability. PMID:25246971

  4. Viruses of Entamoeba histolytica IV. Studies on the Nucleic Acids of the Filamentous and Polyhedral Viruses

    PubMed Central

    Hruska, Jerome F.; Mattern, Carl F. T.; Diamond, Louis S.

    1974-01-01

    The nucleic acids of two amoebal viruses were studied by several independent methods. The filamentous virus, VABRM, was shown to be inhibited by bromodeoxyuridine, iododeoxyuridine, and cytosine arabinoside. With acridine orange staining, VABRM inclusions appeared greenish-yellow, indicating that these contained double-stranded nucleic acid. The polyhedral virus, V301, was also inhibited by bromodeoxyuridine, iododeoxyuridine, and cytosine arabinoside. In addition, nucleic acid hybridization showed that a new DNA species was synthesized in infected amoebal cultures. The intracellular localization of this new DNA was consistent with previous electron microscope studies of the cytoplasmic maturation of V301. PMID:4129841

  5. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    NASA Astrophysics Data System (ADS)

    Prasek, Jan; Huska, Dalibor; Jasek, Ondrej; Zajickova, Lenka; Trnkova, Libuse; Adam, Vojtech; Kizek, Rene; Hubalek, Jaromir

    2011-05-01

    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode.

  6. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids.

    PubMed

    Prasek, Jan; Huska, Dalibor; Jasek, Ondrej; Zajickova, Lenka; Trnkova, Libuse; Adam, Vojtech; Kizek, Rene; Hubalek, Jaromir

    2011-01-01

    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode. PMID:21711910

  7. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    PubMed Central

    2011-01-01

    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode. PMID:21711910

  8. Probing nucleic acid structure with shape-selective rhodium and ruthenium complexes.

    PubMed

    Jackson, B A; Barton, J K

    2001-05-01

    In this unit, transition metal complexes are used as photochemical probes for the structure of RNA and DNA. The transition metal ion provides a rigid substitutionally inert framework and an octahedral geometry for ligand coordination. The complexes can be constructed to define shapes, symmetries, and functionalities that complement those of the nucleic acid target. Complex formation is easily detected by light-induced nucleic acid cleavage. The modular construction of the complexes makes it possible to generate probes to examine a wide variety of structural characteristics of nucleic acids. PMID:18428863

  9. Hyaluronic acid for anticancer drug and nucleic acid delivery.

    PubMed

    Dosio, Franco; Arpicco, Silvia; Stella, Barbara; Fattal, Elias

    2016-02-01

    Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results. PMID:26592477

  10. Intracellular Nucleic Acid Delivery by the Supercharged Dengue Virus Capsid Protein

    PubMed Central

    Freire, João Miguel; Veiga, Ana Salomé; Conceição, Thaís M.; Kowalczyk, Wioleta; Mohana-Borges, Ronaldo; Andreu, David; Santos, Nuno C.; Da Poian, Andrea T.; Castanho, Miguel A. R. B.

    2013-01-01

    Supercharged proteins are a recently identified class of proteins that have the ability to efficiently deliver functional macromolecules into mammalian cells. They were first developed as bioengineering products, but were later found in the human proteome. In this work, we show that this class of proteins with unusually high net positive charge is frequently found among viral structural proteins, more specifically among capsid proteins. In particular, the capsid proteins of viruses from the Flaviviridae family have all a very high net charge to molecular weight ratio (> +1.07/kDa), thus qualifying as supercharged proteins. This ubiquity raises the hypothesis that supercharged viral capsid proteins may have biological roles that arise from an intrinsic ability to penetrate cells. Dengue virus capsid protein was selected for a detailed experimental analysis. We showed that this protein is able to deliver functional nucleic acids into mammalian cells. The same result was obtained with two isolated domains of this protein, one of them being able to translocate lipid bilayers independently of endocytic routes. Nucleic acids such as siRNA and plasmids were delivered fully functional into cells. The results raise the possibility that the ability to penetrate cells is part of the native biological functions of some viral capsid proteins. PMID:24339931

  11. Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma

    PubMed Central

    Shum, Ka-To; Zhou, Jiehua; Rossi, John J.

    2014-01-01

    Lymphomas are cancers that arise from white blood cells and usually present as solid tumors. Treatment of lymphoma often involves chemotherapy, and can also include radiotherapy and/or bone marrow transplantation. There is an un-questioned need for more effective therapies and diagnostic tool for lymphoma. Aptamers are single stranded DNA or RNA oligonucleotides whose three-dimensional structures are dictated by their sequences. The immense diversity in function and structure of nucleic acids enable numerous aptamers to be generated through an iterative in vitro selection technique known as Systematic Evolution of Ligands by EXponential enrichment (SELEX). Aptamers have several biochemical properties that make them attractive tools for use as potential diagnostic and pharmacologic agents. Isolated aptamers may directly inhibit the function of target proteins, or they can also be formulated for use as delivery agents for other therapeutic or imaging cargoes. More complex aptamer identification methods, using whole cancer cells (Cell-SELEX), may identify novel targets and aptamers to affect them. This review focuses on recent advances in the use of nucleic acid aptamers as diagnostic and therapeutic agents and as targeted delivery carriers that are relevant to lymphoma. Some representative examples are also discussed. PMID:25057429

  12. Adsorption of amino acids and nucleic acid bases onto minerals: a few suggestions for prebiotic chemistry experiments

    NASA Astrophysics Data System (ADS)

    Zaia, Dimas A. M.

    2012-10-01

    Amino acids and nucleic acid bases are very important for the living organisms. Thus, their protection from decomposition, selection, pre-concentration and formation of biopolymers are important issues for understanding the origin of life on the Earth. Minerals could have played all of these roles. This paper discusses several aspects involving the adsorption of amino acids and nucleic acid bases onto minerals under conditions that could have been found on the prebiotic Earth; in particular, we recommend the use of minerals, amino acids, nucleic acid bases and seawater ions in prebiotic chemistry experiments. Several experiments involving amino acids, nucleic acid bases, minerals and seawater ions are also suggested, including: (a) using well-characterized minerals and the standardization of the mineral synthesis methods; (b) using primary chondrite minerals (olivine, pyroxene, etc.) and clays modified with metals (Cu, Fe, Ni, Mo, Zn, etc.); (c) determination of the possible products of decomposition due to interactions of amino acids and nucleic acid bases with minerals; (d) using minerals with more organophilic characteristics; (e) using seawaters with different concentrations of ions (i.e. Na+, Ca2+, Mg2+, SO4 2- and Cl-) (f) using non-protein amino acids (AIB, ?-ABA, ?-ABA, ?-ABA and ?-Ala and g) using nucleic acid bases other than adenine, thymine, uracil and cytosine. These experiments could be useful to clarify the role played by minerals in the origin of life on the Earth.

  13. Study on the resonance light-scattering spectrum of anionic dye xylenol orange-cetyltrimethylammonium-nucleic acids system and determination of nucleic acids at nanogram levels

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoming; Cai, Changqun; Luo, He `an; Zhang, Guanghuo

    2005-07-01

    The interaction of xylenol orange (XO) and nucleic acids in the presence of cetyltrimethylammonium bromide (CTMAB) in aqueous solution has been studied by a resonance light-scattering (RLS) technique with a common spectrofluorometer. In hexamethylenetetramine (HMTA) buffer (pH7.30), XO and nucleic acids react with cetyltrimethylammonium bromide to form large particles of three-component complex, which results in strong enhanced RLS signals characterized by three peaks at 295.9, 335.5 and 542 nm, Mechanistic studies showed that the enhanced RLS stems from the aggregation of XO on DNA through the bridged and synergistic effect of CTMAB. With the enhanced RLS signals at the three wavelengths, the enhanced RLS intensity is proportional to the concentration of nucleic acids in an appropriate range. The lowest limit of determination was 5.31 ng ml -1, three synthetic samples of yDNA were analyzed satisfactorily.

  14. Simple Bulk Readout of Digital Nucleic Acid Quantification Assays.

    PubMed

    Morinishi, Leanna S; Blainey, Paul

    2015-01-01

    Digital assays are powerful methods that enable detection of rare cells and counting of individual nucleic acid molecules. However, digital assays are still not routinely applied, due to the cost and specific equipment associated with commercially available methods. Here we present a simplified method for readout of digital droplet assays using a conventional real-time PCR instrument to measure bulk fluorescence of droplet-based digital assays. We characterize the performance of the bulk readout assay using synthetic droplet mixtures and a droplet digital multiple displacement amplification (MDA) assay. Quantitative MDA particularly benefits from a digital reaction format, but our new method applies to any digital assay. For established digital assay protocols such as digital PCR, this method serves to speed up and simplify assay readout. Our bulk readout methodology brings the advantages of partitioned assays without the need for specialized readout instrumentation. The principal limitations of the bulk readout methodology are reduced dynamic range compared with droplet-counting platforms and the need for a standard sample, although the requirements for this standard are less demanding than for a conventional real-time experiment. Quantitative whole genome amplification (WGA) is used to test for contaminants in WGA reactions and is the most sensitive way to detect the presence of DNA fragments with unknown sequences, giving the method great promise in diverse application areas including pharmaceutical quality control and astrobiology. PMID:26436576

  15. Method for producing labeled single-stranded nucleic acid probes

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-10-19

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  16. Nucleic acid aptamers: clinical applications and promising new horizons

    PubMed Central

    Ni, Xiaohua; Castanares, Mark; Mukherjee, Amarnath; Lupold, Shawn E.

    2011-01-01

    Aptamers are a special class of nucleic acid molecules that are beginning to be investigated for clinical use. These small RNA/DNA molecules can form secondary and tertiary structures capable of specifically binding proteins or other cellular targets; they are essentially a chemical equivalent of antibodies. Aptamers have the advantage of being highly specific, relatively small in size, and non-immunogenic. Since the discovery of aptamers in the early 1990s, great efforts have been made to make them clinically relevant for diseases like cancer, HIV, and macular degeneration. In the last two decades, many aptamers have been clinically developed as inhibitors for targets such as vascular endothelial growth factor (VEGF) and thrombin. The first aptamer based therapeutic was FDA approved in 2004 for the treatment of age-related macular degeneration and several other aptamers are currently being evaluated in clinical trials. With advances in targeted-therapy, imaging, and nanotechnology, aptamers are readily considered as potential targeting ligands because of their chemical synthesis and ease of modification for conjugation. Preclinical studies using aptamer-siRNA chimeras and aptamer targeted nanoparticle therapeutics have been very successful in mouse models of cancer and HIV. In summary aptamers are in several stages of development, from pre-clinical studies to clinical trials and even as FDA approved therapeutics. In this review, we will discuss the current state of aptamers in clinical trials as well as some promising aptamers in pre-clinical development. PMID:21838685

  17. Functional nucleic acid entrapment in sol-gel derived materials.

    PubMed

    Carrasquilla, Carmen; Brennan, John D

    2013-10-01

    Functional nucleic acids (FNAs) are single-stranded DNA or RNA molecules, typically generated through in vitro selection, that have the ability to act as receptors for target molecules (aptamers) or perform catalysis of a chemical reaction (deoxyribozymes and ribozymes). Fluorescence-signaling aptamers and deoxyribozymes have recently emerged as promising biological recognition and signaling elements, although little has been done to evaluate their potential for solid-phase assays, particularly with species made of RNA due to their lack of chemical stability and susceptibility to nuclease attack. Herein, we present a detailed overview of the methods utilized for solid-phase immobilization of FNAs using a sol-gel entrapment method that can provide protection from nuclease degradation and impart long-term chemical stability to the FNA reporter systems, while maintaining their signaling capabilities. This article will also provide a brief review of the results of such entrapment studies involving fluorescence-signaling versions of a DNA aptamer, selected RNA-cleaving deoxyribozymes, and two different RNA aptamers in a series of sol-gel derived composites, ranging from highly polar silica to hydrophobic methylsilsesquioxane-based materials. Given the ability to produce sol-gel derived materials in a variety of configurations, particularly as thin film coatings on electrodes, optical fibers, and other devices, this entrapment method should provide a useful platform for numerous solid-phase FNA-based biosensing applications. PMID:24025165

  18. Improved nucleic acid descriptors for siRNA efficacy prediction

    PubMed Central

    Sciabola, Simone; Cao, Qing; Orozco, Modesto; Faustino, Ignacio; Stanton, Robert V.

    2013-01-01

    Although considerable progress has been made recently in understanding how gene silencing is mediated by the RNAi pathway, the rational design of effective sequences is still a challenging task. In this article, we demonstrate that including three-dimensional descriptors improved the discrimination between active and inactive small interfering RNAs (siRNAs) in a statistical model. Five descriptor types were used: (i) nucleotide position along the siRNA sequence, (ii) nucleotide composition in terms of presence/absence of specific combinations of di- and trinucleotides, (iii) nucleotide interactions by means of a modified auto- and cross-covariance function, (iv) nucleotide thermodynamic stability derived by the nearest neighbor model representation and (v) nucleic acid structure flexibility. The duplex flexibility descriptors are derived from extended molecular dynamics simulations, which are able to describe the sequence-dependent elastic properties of RNA duplexes, even for non-standard oligonucleotides. The matrix of descriptors was analysed using three statistical packages in R (partial least squares, random forest, and support vector machine), and the most predictive model was implemented in a modeling tool we have made publicly available through SourceForge. Our implementation of new RNA descriptors coupled with appropriate statistical algorithms resulted in improved model performance for the selection of siRNA candidates when compared with publicly available siRNA prediction tools and previously published test sets. Additional validation studies based on in-house RNA interference projects confirmed the robustness of the scoring procedure in prospective studies. PMID:23241392

  19. To Build a Virus on a Nucleic Acid Substrate

    PubMed Central

    Zlotnick, Adam; Porterfield, J.Zachary; Wang, Joseph Che-Yen

    2013-01-01

    Many viruses package their genomes concomitant with assembly. Here, we show that this reaction can be described by three coefficients: association of capsid protein (CP) to nucleic acid (NA), KNA; CP-CP interaction, ?; and ?, proportional to the work required to package NA. The value of ? can vary as NA is packaged. A phase diagram of average ln? versus ln? identifies conditions where assembly is likely to fail or succeed. NA morphology can favor (ln? > 0) or impede (ln?< 0) assembly. As ln? becomes larger, capsids become more stable and assembly becomes more cooperative. Where (ln?+ln?)< 0, the CP is unable to contain the NA, so that assembly results in aberrant particles. This phase diagram is consistent with quantitative studies of cowpea chlorotic mottle virus, hepatitis B virus, and simian virus 40 assembling on ssRNA and dsDNA substrates. Thus, the formalism we develop is suitable for describing and predicting behavior of experimental studies of CP assembly on NA. PMID:23561536

  20. Mass spectral characterization of a protein-nucleic acid photocrosslink.

    PubMed

    Golden, M C; Resing, K A; Collins, B D; Willis, M C; Koch, T H

    1999-12-01

    A photocrosslink between basic fibroblast growth factor (bFGF155) and a high affinity ssDNA oligonucleotide was characterized by positive ion electrospray ionization mass spectrometry (ESIMS). The DNA was a 61-mer oligonucleotide photoaptamer bearing seven bromodeoxyuridines, identified by in vitro selection. Specific photocrosslinking of the protein to the oligonucleotide was achieved by 308 nm XeCl excimer laser excitation. The cross-linked protein nucleic acid complex was proteolyzed with trypsin. The resulting peptide crosslink was purified by PAGE, eluted, and digested by snake venom phosphodiesterase/alkaline phosphatase. Comparison of the oligonucleotide vs. the degraded peptide crosslink by high performance liquid chromatography coupled to an electrospray ionization triple quadrupole mass spectrometer showed a single ion unique to the crosslinked material. Sequencing by collision induced dissociation (MS/MS) on a triple quadrupole mass spectrometer revealed that this ion was the nonapeptide TGQYKLGSK (residues 130-138) crosslinked to a dinucleotide at Tyr133. The MS/MS spectrum indicated sequential fragmentation of the oligonucleotide to uracil covalently attached to the nonapeptide followed by fragmentation of the peptide bonds. Tyr133 is located within the heparin binding pocket, suggesting that the in vitro selection targeted this negative ion binding region of bFGF155. PMID:10631998

  1. Diastereomer characterizations of nitroxide-labeled nucleic acids

    PubMed Central

    Grant, Gian Paola G.; Popova, Anna; Qin, Peter Z.

    2008-01-01

    Site-directed spin labeling (SDSL) obtains structural and dynamic information of a macromolecule using a site-specifically attached stable nitroxide radical. SDSL studies of arbitrary DNA and RNA sequences can be achieved using an efficient phosphorothioate labeling scheme, where a nitroxide is attached to a phosphorothioate substituted at a target site during chemical synthesis. The chemically introduced phosphorothioate contains two diastereomers (Rp and Sp), and nitroxides attached to each diastereomer may experience different local environments. Here, we report work on using anion-exchange HPLC to separate and characterize diastereomers in three DNA oligonucleotides and one RNA oligonucleotide. In all oligonucleotides studied, the Rp diastereomer was found to elute earlier than the Sp in the unlabeled oligonucleotides, while a reversal in the elution order (Sp earlier than Rp) was observed for nitroxide-labeled oligonucleotides. The results enable a one-step purification procedure for preparing diastereomerically pure nitroxide-labeled oligonucleotides. This expands the score of nucleic acids SDSL. PMID:18442474

  2. Charge-Neutral Morpholino Microarrays for Nucleic Acid Analysis

    PubMed Central

    Qiao, Wanqiong; Kalachikov, Sergey; Liu, Yatao; Levicky, Rastislav

    2012-01-01

    A principal challenge in microarray experiments is to facilitate hybridization between probe strands on the array with complementary target strands from solution while suppressing any competing interactions that the probes and targets may experience. Synthetic DNA analogs, whose hybridization to targets can exhibit qualitatively different dependence on experimental conditions than for nucleic acid probes, open up an attractive alternative for improving selectivity of array hybridization. Morpholinos (MOs), a class of uncharged DNA analogs, are investigated as microarray probes instead of DNA. Morpholino microarrays were fabricated by contact printing of amino-modified probes onto aldehyde slides. In addition to covalent immobilization, MOs were found to efficiently immobilize through physical adsorption; such physically adsorbed probes could be removed by post-printing washes with surfactant solutions. Hybridization of double-stranded DNA targets to MO microarrays revealed a hybridization maximum at intermediate ionic strengths. The decline in hybridization at lower ionic strengths was attributed to an electrostatic barrier accumulated from hybridized DNA targets, while at higher ionic strengths it was attributed to stabilization of target secondary structure in solution. These trends, which illustrate ionic strength tuning of forming on-array relative to solution secondary structure, were supported by a stability analysis of MO/DNA and DNA/DNA duplexes in solution. PMID:23246344

  3. Solution influence on biomolecular equilibria - Nucleic acid base associations

    NASA Technical Reports Server (NTRS)

    Pohorille, A.; Pratt, L. R.; Burt, S. K.; Macelroy, R. D.

    1984-01-01

    Various attempts to construct an understanding of the influence of solution environment on biomolecular equilibria at the molecular level using computer simulation are discussed. First, the application of the formal statistical thermodynamic program for investigating biomolecular equilibria in solution is presented, addressing modeling and conceptual simplications such as perturbative methods, long-range interaction approximations, surface thermodynamics, and hydration shell. Then, Monte Carlo calculations on the associations of nucleic acid bases in both polar and nonpolar solvents such as water and carbon tetrachloride are carried out. The solvent contribution to the enthalpy of base association is positive (destabilizing) in both polar and nonpolar solvents while negative enthalpies for stacked complexes are obtained only when the solute-solute in vacuo energy is added to the total energy. The release upon association of solvent molecules from the first hydration layer around a solute to the bulk is accompanied by an increase in solute-solvent energy and decrease in solvent-solvent energy. The techniques presented are expectd to displace less molecular and more heuristic modeling of biomolecular equilibria in solution.

  4. DNA binding proteins that alter nucleic acid flexibility

    NASA Astrophysics Data System (ADS)

    McCauley, Micah; Hardwidge, Philip R.; Maher, L. J., III; Williams, Mark C.

    2007-09-01

    Dual - beam optical tweezers experiments subject single molecules of DNA to high forces (~ 300 pN) with 0.1 pN accuracy, probing the energy and specificity of nucleic acid - ligand structures. Stretching phage ?-DNA reveals an increase in the applied force up to a critical force known as the overstretching transition. In this region, base pairing and stacking are disrupted as double stranded DNA (dsDNA) is melted. Proteins that bind to the double strand will tend to stabilize dsDNA, and melting will occur at higher forces. Proteins that bind to single stranded DNA (ssDNA) destabilize melting, provided that the rate of association is comparable to the pulling rate of the experiment. Many proteins, however, exhibit some affinity for both dsDNA and ssDNA. We describe experiments upon DNA + HMGB2 (box A), a nuclear protein that is believed to facilitate transcription. By characterizing changes in the structure of dsDNA with a polymer model of elasticity, we have determined the equilibrium association constant for HMGB2 to be K ds = 0.15 +/- 0.7 10 9 M -1 for dsDNA binding. Analysis of the melting transition reveals an equilibrium association constant for HMGB2 to ssDNA to be K ss = 0.039 +/- 0.019 10 9 M -1 for ssDNA binding.

  5. Digital MDA for enumeration of total nucleic acid contamination

    PubMed Central

    Blainey, Paul C.; Quake, Stephen R.

    2011-01-01

    Multiple displacement amplification (MDA) is an isothermal, sequence-independent method for the amplification of high molecular weight DNA that is driven by ϕ29 DNA polymerase (DNAP). Here we report digital MDA (dMDA), an ultrasensitive method for quantifying nucleic acid fragments of unknown sequence. We use the new assay to show that our custom ϕ29 DNAP preparation is free of contamination at the limit of detection of the dMDA assay (1 contaminating molecule per assay microliter). Contamination in commercially available preparations is also investigated. The results of the dMDA assay provide strong evidence that the so-called ‘template-independent’ MDA background can be attributed to high-molecular weight contaminants and is not primer-derived in the commercial kits tested. dMDA is orders of magnitude more sensitive than PCR-based techniques for detection of microbial genomic DNA fragments and opens up new possibilities for the ultrasensitive quantification of DNA fragments in a wide variety of application areas using MDA chemistry and off-the-shelf hardware developed for digital PCR. PMID:21071419

  6. Nucleic acid detection using non-radioactive labelling methods.

    PubMed

    Mansfield, E S; Worley, J M; McKenzie, S E; Surrey, S; Rappaport, E; Fortina, P

    1995-06-01

    Nucleic acid probe-based assays are now widely used in genetic research, human identification, forensics and in a broad spectrum of clinical assays in the fields of microbiology, haematology/oncology and virology. Labelled probes are used in a variety of assay formats including dot-blots, Southern blots (DNA target), Northern blots (RNA target), Western blots (protein target), in situ hybridization, plaque or colony screening and immobilized arrays on silicon or glass surfaces. Traditionally, the probes used in these assays have a radioactive 32phosphorous label that has a short shelf-life, is dangerous, has high disposal costs and, when labelled to high specific-activity, may be unstable. Extensive efforts to develop alternative labelling techniques have resulted in colorimetric, chemiluminescent and fluorescent assay formats. This review summarizes the properties desired in a probe, describes the advantages and disadvantages of the different non-radioactive labelling strategies, and illustrates examples of probe-based assays in which detection is facilitated by imaging samples using a general purpose fluorescence scanner. PMID:7477006

  7. NUCLEIC ACIDS OF CHLOROPLASTS AND MITOCHONDRIA IN SWISS CHARD

    PubMed Central

    Kislev, Naomi; Swift, Hewson; Bogorad, Lawrence

    1965-01-01

    Nucleic acids in young leaves of Swiss chard have been studied by light and electron microscope techniques. Leaf DNA has also been characterized by density gradient centrifugation and shown to contain a minor band of higher guanine plus cytosine (GC) content, presumably attributable to chloroplasts. The chloroplasts were faintly stained by the Feulgen reaction; radioautography demonstrated the incorporation of tritiated thymidine in the cytoplasm and in some nuclei. The Feulgen stainability and most of the radioactivity were removable with DNase. Under the electron microscope, both mitochondria and chloroplasts were found to contain filamentous and particulate components within the matrix areas. The morphology of the filamentous component was dependent on the fixation, being partially clumped after OSO4 or formalin, but finely filamentous after Kellenberger fixation. The filaments were stainable with uranyl acetate, and were extractable with DNase following formalin fixation under conditions in which nuclear DNA was also extracted. The particulate component, after formalin fixation and uranyl staining, was prominent in chloroplasts from young leaves, but was only sparsely distributed in mitochondria. The stainability was removed with ribonuclease. We have concluded that chloroplasts and mitochondria of Swiss chard possess a filamentous component that contains DNA, probably responsible for both cytoplasmic thymidine incorporation and the minor band in CsCl centrifugation. A particulate ribosome-like component that contains RNA is also present. PMID:14287184

  8. New nucleic acid triple helix, Poly(AAU)

    SciTech Connect

    Broitman, S.L.; Im, D.D.; Fresco, J.R.

    1987-05-01

    A polynucleotide helical structure containing two strands of poly(A) and one of poly(U) has been discovered. The stoichiometry of the complex was determined by continuous variation titrations and isosbestic wavelength analysis. Thermal denaturation profiles were used to examine complex stability over a wide range of conditions. The complex forms only when the poly(A) strands are of molecular weight between 9000-50,000 Daltons (dp approx. 28-150), whereas the size of the poly(U) strand has no effect. This limitation may explain why poly(AAU) was not observed in previous investigations. The complex shows inverse dependence of stability on ionic strength, but is not favored by decreasing pH. This behavior, together with the intermediate poly(A) size requirement suggest that the conformational entropy of the poly(A) strands is a critical determinant of the stability of this complex. The potential of the poly(A) tails of mRNA for formation of this triple helix, and of AAU/T triplet formation to contribute to the binding of unique sequence RNA strands to gene-encoding nucleic acid double helices are noted.

  9. Proposed Ancestors of Phage Nucleic Acid Packaging Motors (and Cells)

    PubMed Central

    Serwer, Philip

    2011-01-01

    I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells) include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1) initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2) are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke. PMID:21994778

  10. Multiplexed detection of nucleic acids in a combinatorial screening chip.

    PubMed

    Schudel, Benjamin R; Tanyeri, Melikhan; Mukherjee, Arnab; Schroeder, Charles M; Kenis, Paul J A

    2011-06-01

    Multiplexed diagnostic testing has the potential to dramatically improve the quality of healthcare. Simultaneous measurement of health indicators and/or disease markers reduces turnaround time and analysis cost and speeds up the decision making process for diagnosis and treatment. At present, however, most diagnostic tests only provide information on a single indicator or marker. Development of efficient diagnostic tests capable of parallel screening of infectious disease markers could significantly advance clinical and diagnostic testing in both developed and developing parts of the world. Here, we report the multiplexed detection of nucleic acids as disease markers within discrete wells of a microfluidic chip using molecular beacons and total internal reflection fluorescence microscopy (TIRFM). Using a 4 4 array of 200 pL wells, we screened for the presence of four target single stranded oligonucleotides encoding for conserved regions of the genomes of four common viruses: human immunodeficiency virus-1 (HIV-1), human papillomavirus (HPV), Hepatitis A (Hep A) and Hepatitis B (Hep B). Target oligonucleotides are accurately detected and discriminated against alternative oligonucleotides with different sequences. This combinatorial chip represents a versatile platform for the development of clinical diagnostic tests for simultaneous screening, detection and monitoring of a wide range of biological markers of disease and health using minimal sample size. PMID:21512691

  11. Phospholipid conjugate for intracellular delivery of peptide nucleic acids

    PubMed Central

    Shen, Gang; Fang, Huafeng; Song, Yinyin; Bielska, Agata A.; Wang, Zhenghui; Taylor, John-Stephen A.

    2009-01-01

    Peptide nucleic acids (PNAs) have a number of attractive features that have made them an ideal choice for antisense and antigene-based tools, probes and drugs, but their poor membrane permeability has limited their application as therapeutic or diagnostic agents. Herein we report a general method for the synthesis of phospholipid-PNAs (LP-PNAs), and compare the effect of non-cleavable lipids and bioreductively cleavable lipids (L and LSS) and phospholipid (LP) on the splice-correcting bioactivity of a PNA bearing the cell penetrating Arg9 group (PNA-R9). While the three constructs show similar and increasing bioactivity at 1–3 μM, the activity of LP-PNA-R9 continues to increase from 4–6 μM while the activity of L-PNA-R9 remains constant and LSS-PNA-R9 decreases rapidly in parallel with their relative cytotoxicity. The activity of both LP-PNA-R9 and L-PNA-R9 were found to dramatically increase with chloroquine, as expected for an endocytotic entry mechanism. Both constructs were also found to have CMC values of 1.0 and 4.5 μM in 150 mM NaCl, pH 7 water, suggesting that micelle formation may play a hitherto unrecognized role in modulating toxicity and/or facilitating endocytosis. PMID:19678628

  12. Quantum-Sequencing: Biophysics of quantum tunneling through nucleic acids

    NASA Astrophysics Data System (ADS)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    Tunneling microscopy and spectroscopy has extensively been used in physical surface sciences to study quantum tunneling to measure electronic local density of states of nanomaterials and to characterize adsorbed species. Quantum-Sequencing (Q-Seq) is a new method based on tunneling microscopy for electronic sequencing of single molecule of nucleic acids. A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free single-molecule sequencing method. Here, we present the unique ``electronic fingerprints'' for all nucleotides on DNA and RNA using Q-Seq along their intrinsic biophysical parameters. We have analyzed tunneling spectra for the nucleotides at different pH conditions and analyzed the HOMO, LUMO and energy gap for all of them. In addition we show a number of biophysical parameters to further characterize all nucleobases (electron and hole transition voltage and energy barriers). These results highlight the robustness of Q-Seq as a technique for next-generation sequencing.

  13. Guanine base stacking in G-quadruplex nucleic acids

    PubMed Central

    Lech, Christopher Jacques; Heddi, Brahim; Phan, Anh Tun

    2013-01-01

    G-quadruplexes constitute a class of nucleic acid structures defined by stacked guanine tetrads (or G-tetrads) with guanine bases from neighboring tetrads stacking with one another within the G-tetrad core. Individual G-quadruplexes can also stack with one another at their G-tetrad interface leading to higher-order structures as observed in telomeric repeat-containing DNA and RNA. In this study, we investigate how guanine base stacking influences the stability of G-quadruplexes and their stacked higher-order structures. A structural survey of the Protein Data Bank is conducted to characterize experimentally observed guanine base stacking geometries within the core of G-quadruplexes and at the interface between stacked G-quadruplex structures. We couple this survey with a systematic computational examination of stacked G-tetrad energy landscapes using quantum mechanical computations. Energy calculations of stacked G-tetrads reveal large energy differences of up to 12 kcal/mol between experimentally observed geometries at the interface of stacked G-quadruplexes. Energy landscapes are also computed using an AMBER molecular mechanics description of stacking energy and are shown to agree quite well with quantum mechanical calculated landscapes. Molecular dynamics simulations provide a structural explanation for the experimentally observed preference of parallel G-quadruplexes to stack in a 5?5? manner based on different accessible tetrad stacking modes at the stacking interfaces of 5?5? and 3?3? stacked G-quadruplexes. PMID:23268444

  14. Monitoring Gene Expression In Vivo with Nucleic Acid Molecular Switches

    SciTech Connect

    David C. Ward; Patricia Bray-Ward

    2005-01-26

    The overall objectives of this project were (1) to develop allosteric ribozymes capable of acting as molecular switches for monitoring the levels of both wild-type and mutant mRNA species in living cells and whole animals and (2) to develop highly efficient reagents to deliver nucleic acid molecular switches into living cells, tissues and animals with the ultimate goal of expression profiling specific mRNAs of diagnostic or prognostic value within tumors in animals. During the past year, we have moved our laboratory to Nevada and in the moving process we have lost electronic and paper copies of prior progress reports concerning the construction and biological properties of the molecular switches. Since there was minimal progress during the last year on molecular switches, we are relying on past project reports to provide a summary of our data on this facet of the grant. Here we are summarizing the work done on the delivery reagents and their application to inducing mutations in living cells, which will include work done during the no cost extension.

  15. Towards biochemically relevant QM computations on nucleic acids: controlled electronic structure geometry optimization of nucleic acid structural motifs using penalty restraint functions.

    PubMed

    Kruse, Holger; poner, Ji?

    2015-01-14

    Recent developments in dispersion-corrected density functional theory methods allow for the first time the description of large fragments of nucleic acids (hundreds of atoms) with an accuracy clearly surpassing the accuracy of common biomolecular force fields. Such calculations can significantly improve the description of the potential energy surface of nucleic acid molecules, which may be useful for studies of molecular interactions and conformational preferences of nucleic acids, as well as verification and parameterization of other methods. The first of such studies, however, demonstrated that successful applications of accurate QM calculations to larger nucleic acid building blocks are hampered by difficulties in obtaining geometries that are biochemically relevant and are not biased by non-native structural features. We present an approach that can greatly facilitate large-scale QM studies on nucleic acids, namely electronic structure geometry optimization of nucleic acid fragments utilizing a penalty function to restrain key internal coordinates with a specific focus on the torsional backbone angles. This work explores the viability of these restraint optimizations for DFT-D3, PM6-D3H and HF-3c optimizations on a set of examples (a UpA dinucleotide, a DNA G-quadruplex and a B-DNA fragment). Evaluation of different penalty function strengths reveals only a minor system-dependency and reasonable restraint values range from 0.01 to 0.05 Eh rad(-2) for the backbone torsions. Restraints are crucial to perform the QM calculations on biochemically relevant conformations in implicit solvation and gas phase geometry optimizations. The reasons for using restrained instead of constrained or unconstrained optimizations are explained and an open-source external optimizer is provided. PMID:25427983

  16. Rapid Molecular Detection of Multidrug-Resistant Tuberculosis by PCR-Nucleic Acid Lateral Flow Immunoassay

    PubMed Central

    Kamphee, Hatairat; Chaiprasert, Angkana; Prammananan, Therdsak; Wiriyachaiporn, Natpapas; Kanchanatavee, Airin; Dharakul, Tararaj

    2015-01-01

    Several existing molecular tests for multidrug-resistant tuberculosis (MDR-TB) are limited by complexity and cost, hindering their widespread application. The objective of this proof of concept study was to develop a simple Nucleic Acid Lateral Flow (NALF) immunoassay as a potential diagnostic alternative, to complement conventional PCR, for the rapid molecular detection of MDR-TB. The NALF device was designed using antibodies for the indirect detection of labeled PCR amplification products. Multiplex PCR was optimized to permit the simultaneous detection of the drug resistant determining mutations in the 81-bp hot spot region of the rpoB gene (rifampicin resistance), while semi-nested PCR was optimized for the S315T mutation detection in the katG gene (isoniazid resistance). The amplification process additionally targeted a conserved region of the genes as Mycobacterium tuberculosis (Mtb) DNA control. The optimized conditions were validated with the H37Rv wild-type (WT) Mtb isolate and Mtb isolates with known mutations (MT) within the rpoB and katG genes. Results indicate the correct identification of WT (drug susceptible) and MT (drug resistant) Mtb isolates, with the least limit of detection (LOD) being 104 genomic copies per PCR reaction. NALF is a simple, rapid and low-cost device suitable for low resource settings where conventional PCR is already employed on a regular basis. Moreover, the use of antibody-based NALF to target primer-labels, without the requirement for DNA hybridization, renders the device generic, which could easily be adapted for the molecular diagnosis of other infectious and non-infectious diseases requiring nucleic acid detection. PMID:26355296

  17. Plants having modified response to ethylene by transformation with an ETR nucleic acid

    DOEpatents

    Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.

    2001-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  18. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids.

    PubMed

    Lavery, R; Sklenar, H

    1988-08-01

    An algorithm is presented which solves the problem of obtaining a rigorous helicoidal description of an irregular nucleic acid segment. Central to this approach is the definition of a function describing simultaneously the curvature of the nucleic acid segment in question and the corresponding stepwise variation of helicoidal parameters along the segment. Minimisation of this function leads to an optimal distribution of the conformational irregularity of the segment between these two components. Further, it is shown that this approach can be applied equally easily to single or double stranded nucleic acids. The results of this analysis yield both the absolute helicoidal parameters of individual bases/base pairs and the relative helicoidal parameters between successive bases/base pairs as well as the overall locus of the helical axis. The possibilities of this mathematical approach are demonstrated with the help of a computer program termed "Curves" which is applied to the study of a number of different nucleic acid structures. PMID:2482765

  19. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins. PMID:25940624

  20. Prediction of nucleic acid binding probability in proteins: a neighboring residue network based score.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-06-23

    We describe a general binding score for predicting the nucleic acid binding probability in proteins. The score is directly derived from physicochemical and evolutionary features and integrates a residue neighboring network approach. Our process achieves stable and high accuracies on both DNA- and RNA-binding proteins and illustrates how the main driving forces for nucleic acid binding are common. Because of the effective integration of the synergetic effects of the network of neighboring residues and the fact that the prediction yields a hierarchical scoring on the protein surface, energy funnels for nucleic acid binding appear on protein surfaces, pointing to the dynamic process occurring in the binding of nucleic acids to proteins. PMID:25940624

  1. In-silico design of computational nucleic acids for molecular information processing.

    PubMed

    Ramlan, Effirul Ikhwan; Zauner, Klaus-Peter

    2013-01-01

    Within recent years nucleic acids have become a focus of interest for prototype implementations of molecular computing concepts. During the same period the importance of ribonucleic acids as components of the regulatory networks within living cells has increasingly been revealed. Molecular computers are attractive due to their ability to function within a biological system; an application area extraneous to the present information technology paradigm. The existence of natural information processing architectures (predominately exemplified by protein) demonstrates that computing based on physical substrates that are radically different from silicon is feasible. Two key principles underlie molecular level information processing in organisms: conformational dynamics of macromolecules and self-assembly of macromolecules. Nucleic acids support both principles, and moreover computational design of these molecules is practicable. This study demonstrates the simplicity with which one can construct a set of nucleic acid computing units using a new computational protocol. With the new protocol, diverse classes of nucleic acids imitating the complete set of boolean logical operators were constructed. These nucleic acid classes display favourable thermodynamic properties and are significantly similar to the approximation of successful candidates implemented in the laboratory. This new protocol would enable the construction of a network of interconnecting nucleic acids (as a circuit) for molecular information processing. PMID:23647621

  2. In-silico design of computational nucleic acids for molecular information processing

    PubMed Central

    2013-01-01

    Within recent years nucleic acids have become a focus of interest for prototype implementations of molecular computing concepts. During the same period the importance of ribonucleic acids as components of the regulatory networks within living cells has increasingly been revealed. Molecular computers are attractive due to their ability to function within a biological system; an application area extraneous to the present information technology paradigm. The existence of natural information processing architectures (predominately exemplified by protein) demonstrates that computing based on physical substrates that are radically different from silicon is feasible. Two key principles underlie molecular level information processing in organisms: conformational dynamics of macromolecules and self-assembly of macromolecules. Nucleic acids support both principles, and moreover computational design of these molecules is practicable. This study demonstrates the simplicity with which one can construct a set of nucleic acid computing units using a new computational protocol. With the new protocol, diverse classes of nucleic acids imitating the complete set of boolean logical operators were constructed. These nucleic acid classes display favourable thermodynamic properties and are significantly similar to the approximation of successful candidates implemented in the laboratory. This new protocol would enable the construction of a network of interconnecting nucleic acids (as a circuit) for molecular information processing. PMID:23647621

  3. The Effects of Borate Minerals on the Synthesis of Nucleic Acid Bases, Amino Acids and Biogenic Carboxylic Acids from Formamide

    NASA Astrophysics Data System (ADS)

    Saladino, Raffaele; Barontini, Maurizio; Cossetti, Cristina; di Mauro, Ernesto; Crestini, Claudia

    2011-08-01

    The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.

  4. Efficacy of peptide nucleic acid and selected conjugates against specific cellular pathologies of amyotrophic lateral sclerosis.

    PubMed

    Browne, Elisse C; Parakh, Sonam; Duncan, Luke F; Langford, Steven J; Atkin, Julie D; Abbott, Belinda M

    2016-04-01

    Cellular studies have been undertaken on a nonamer peptide nucleic acid (PNA) sequence, which binds to mRNA encoding superoxide dismutase 1, and a series of peptide nucleic acids conjugated to synthetic lipophilic vitamin analogs including a recently prepared menadione (vitamin K) analog. Reduction of both mutant superoxide dismutase 1 inclusion formation and endoplasmic reticulum stress, two of the key cellular pathological hallmarks in amyotrophic lateral sclerosis, by two of the prepared PNA oligomers is reported for the first time. PMID:26935939

  5. 5[prime] to 3[prime] nucleic acid synthesis using 3[prime]-photoremovable protecting group

    DOEpatents

    Pirrung, M.C.; Shuey, S.W.; Bradley, J.C.

    1999-06-01

    The present invention relates, in general, to a method of synthesizing a nucleic acid, and, in particular, to a method of effecting 5[prime] to 3[prime] nucleic acid synthesis. The method can be used to prepare arrays of oligomers bound to a support via their 5[prime] end. The invention also relates to a method of effecting mutation analysis using such arrays. The invention further relates to compounds and compositions suitable for use in such methods.

  6. 5'to 3' nucleic acid synthesis using 3'-photoremovable protecting group

    DOEpatents

    Pirrung, Michael C. (Houston, TX); Shuey, Steven W. (Durham, NC); Bradley, Jean-Claude (Durham, NC)

    1999-01-01

    The present invention relates, in general, to a method of synthesizing a nucleic acid, and, in particular, to a method of effecting 5' to 3' nucleic acid synthesis. The method can be used to prepare arrays of oligomers bound to a support via their 5' end. The invention also relates to a method of effecting mutation analysis using such arrays. The invention further relates to compounds and compositions suitable for use in such methods.

  7. Artificial Specific Binders Directly Recovered from Chemically Modified Nucleic Acid Libraries

    PubMed Central

    Kasahara, Yuuya; Kuwahara, Masayasu

    2012-01-01

    Specific binders comprised of nucleic acids, that is, RNA/DNA aptamers, are attractive functional biopolymers owing to their potential broad application in medicine, food hygiene, environmental analysis, and biological research. Despite the large number of reports on selection of natural DNA/RNA aptamers, there are not many examples of direct screening of chemically modified nucleic acid aptamers. This is because of (i) the inferior efficiency and accuracy of polymerase reactions involving transcription/reverse-transcription of modified nucleotides compared with those of natural nucleotides, (ii) technical difficulties and additional time and effort required when using modified nucleic acid libraries, and (iii) ambiguous efficacies of chemical modifications in binding properties until recently; in contrast, the effects of chemical modifications on biostability are well studied using various nucleotide analogs. Although reports on the direct screening of a modified nucleic acid library remain in the minority, chemical modifications would be essential when further functional expansion of nucleic acid aptamers, in particular for medical and biological uses, is considered. This paper focuses on enzymatic production of chemically modified nucleic acids and their application to random screenings. In addition, recent advances and possible future research are also described. PMID:23094139

  8. Effect of Varying Magnetic Fields on Targeted Gene Delivery of Nucleic Acid-Based Molecules.

    PubMed

    Oral, Ozlem; C?k?m, Taha; Zuvin, Merve; Unal, Ozlem; Yagci-Acar, Havva; Gozuacik, Devrim; Ko?ar, Ali

    2015-11-01

    Several physical methods have been developed to introduce nucleic acid expression vectors into mammalian cells. Magnetic transfection (magnetofection) is one such transfection method, and it involves binding of nucleic acids such as DNA, RNA or siRNA to magnetic nanoparticles followed by subsequent exposure to external magnetic fields. However, the challenge between high efficiency of nucleic acid uptake by cells and toxicity was not totally resolved. Delivery of nucleic acids and their transport to the target cells require carefully designed and controlled systems. In this study, we introduced a novel magnetic system design providing varying magnet turn speeds and magnetic field directions. The system was tested in the magnetofection of human breast (MCF-7), prostate (DU-145, PC-3) and bladder (RT-4) cancer cell lines using green fluorescent protein DNA as a reporter. Polyethylenimine coated superparamagnetic iron oxide nanoparticles (SPIONs) were used as nucleic acid carriers. Adsorption of PEI on SPION improved the cytocompatibility dramatically. Application of external magnetic field increased intracellular uptake of nanoparticles and transfection efficiency without any additional cytotoxicity. We introduce our novel magnetism-based method as a promising tool for enhanced nucleic acid delivery into mammalian cells. PMID:25963582

  9. Elucidation of nucleic acid-drug interactions by tandem mass spectrometry.

    PubMed

    Hari, Yvonne; Nyakas, Adrien; Stucki, Silvan R; Schrch, Stefan

    2014-01-01

    In continuation of the long tradition of mass spectrometric research at the University of Bern, our group focuses on the characterization of nucleic acids as therapeutic agents and as drug targets. This article provides a short overview of our recent work on platinated single-stranded and higher-order nucleic acids. Nearly three decades ago the development of soft ionization techniques opened a whole new chapter in the mass spectrometric analysis of not only nucleic acids themselves, but also their interactions with potential drug candidates. In contrast to modern next generation sequencing approaches, though, the goal of the tandem mass spectrometric investigation of nucleic acids is by no means the complete sequencing of genetic DNA, but rather the characterization of short therapeutic and regulatory oligonucleotides and the elucidation of nucleic acid-drug interactions. The influence of cisplatin binding on the gas-phase dissociation of nucleic acids was studied by the means of electrospray ionization tandem mass spectrometry. Experiments on native and modified DNA and RNA oligomers confirmed guanine base pairs as the preferred platination site and laid the basis for the formulation of a gas-phase fragmentation mechanism of platinated oligonucleotides. The study was extended to double-stranded DNA and DNA quadruplexes. While duplexes are believed to be the main target of cisplatin in vivo, the recently discovered DNA quadruplexes constitute another promising target for anti-tumor drugs owing to their regulatory functions in the cell cycle. PMID:24801849

  10. Analysis of single nucleic acid molecules in micro- and nano-fluidics.

    PubMed

    Friedrich, Sarah M; Zec, Helena C; Wang, Tza-Huei

    2016-02-23

    Nucleic acid analysis has enhanced our understanding of biological processes and disease progression, elucidated the association of genetic variants and disease, and led to the design and implementation of new treatment strategies. These diverse applications require analysis of a variety of characteristics of nucleic acid molecules: size or length, detection or quantification of specific sequences, mapping of the general sequence structure, full sequence identification, analysis of epigenetic modifications, and observation of interactions between nucleic acids and other biomolecules. Strategies that can detect rare or transient species, characterize population distributions, and analyze small sample volumes enable the collection of richer data from biosamples. Platforms that integrate micro- and nano-fluidic operations with high sensitivity single molecule detection facilitate manipulation and detection of individual nucleic acid molecules. In this review, we will highlight important milestones and recent advances in single molecule nucleic acid analysis in micro- and nano-fluidic platforms. We focus on assessment modalities for single nucleic acid molecules and highlight the role of micro- and nano-structures and fluidic manipulation. We will also briefly discuss future directions and the current limitations and obstacles impeding even faster progress toward these goals. PMID:26818700

  11. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    PubMed Central

    Sung, Chih-Chien; Hsu, Yu-Chuan; Lin, Yuh-Feng

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies. PMID:24058721

  12. Peptide nucleic acid-mediated recombination for targeted genomic repair and modification.

    PubMed

    Schleifman, Erica B; Glazer, Peter M

    2014-01-01

    The ability to directly manipulate the human genome to correct a disease-related mutation, introduce a sequence change that would lead to site-specific gene knockout, or increase gene expression is a very powerful tool with tremendous clinical value. Triplex formation by synthetic DNA-binding molecules such as peptide nucleic acids (PNAs) has been studied for over 20 years and much of the work in the last 10 years has shown its great promise in its use to direct site-specific gene modification for the use in gene therapy. In this chapter, detailed protocols are described for the design and use of triplex-forming PNAs to bind and mediate gene modification at specific chromosomal targets. Target site identification, PNA and donor oligonucleotide design, in vitro characterization of binding, optimization with reporter systems, as well as various methods to assess gene modification and isolate modified cells are described. PMID:24297362

  13. Exosome Encased Spherical Nucleic Acid Gold Nanoparticle Conjugates As Potent MicroRNA Regulation Agents

    PubMed Central

    Alhasan, Ali H.; Patel, Pinal C.; Choi, Chung Hang J.

    2013-01-01

    Exosomes are a class of naturally occurring nanomaterials that play crucial roles in the protection and transport of endogenous macromolecules, such as microRNA and mRNA, over long distances. Intense effort is underway to exploit the use of exosomes to deliver synthetic therapeutics. Herein, we use transmission electron microscopy to show that when spherical nucleic acid (SNA) constructs are endocytosed into PC-3 prostate cancer cells, a small fraction of them (< 1%) can be naturally sorted into exosomes. The exosome-encased SNAs are secreted into the extracellular environment from which they can be isolated and selectively re-introduced into the cell type from which they were derived. In the context of anti-miR21 experiments, the exosome-encased SNAs knockdown miR-21 target by approximately 50%. Similar knockdown of miR-21 by free SNAs requires a ~3000-fold higher concentration. PMID:24106176

  14. Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy

    PubMed Central

    Flingai, Seleeke; Plummer, Emily M.; Patel, Ami; Shresta, Sujan; Mendoza, Janess M.; Broderick, Kate E.; Sardesai, Niranjan Y.; Muthumani, Kar; Weiner, David B.

    2015-01-01

    Dengue virus (DENV) is the most important mosquito-borne viral infection in humans. In recent years, the number of cases and outbreaks has dramatically increased worldwide. While vaccines are being developed, none are currently available that provide balanced protection against all DENV serotypes. Advances in human antibody isolation have uncovered DENV neutralizing antibodies (nAbs) that are capable of preventing infection from multiple serotypes. Yet delivering monoclonal antibodies using conventional methods is impractical due to high costs. Engineering novel methods of delivering monoclonal antibodies could tip the scale in the fight against DENV. Here we demonstrate that simple intramuscular delivery by electroporation of synthetic DNA plasmids engineered to express modified human nAbs against multiple DENV serotypes confers protection against DENV disease and prevents antibody-dependent enhancement (ADE) of disease in mice. This synthetic nucleic acid antibody prophylaxis/immunotherapy approach may have important applications in the fight against infectious disease. PMID:26220099

  15. Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy.

    PubMed

    Flingai, Seleeke; Plummer, Emily M; Patel, Ami; Shresta, Sujan; Mendoza, Janess M; Broderick, Kate E; Sardesai, Niranjan Y; Muthumani, Kar; Weiner, David B

    2015-01-01

    Dengue virus (DENV) is the most important mosquito-borne viral infection in humans. In recent years, the number of cases and outbreaks has dramatically increased worldwide. While vaccines are being developed, none are currently available that provide balanced protection against all DENV serotypes. Advances in human antibody isolation have uncovered DENV neutralizing antibodies (nAbs) that are capable of preventing infection from multiple serotypes. Yet delivering monoclonal antibodies using conventional methods is impractical due to high costs. Engineering novel methods of delivering monoclonal antibodies could tip the scale in the fight against DENV. Here we demonstrate that simple intramuscular delivery by electroporation of synthetic DNA plasmids engineered to express modified human nAbs against multiple DENV serotypes confers protection against DENV disease and prevents antibody-dependent enhancement (ADE) of disease in mice. This synthetic nucleic acid antibody prophylaxis/immunotherapy approach may have important applications in the fight against infectious disease. PMID:26220099

  16. DimaSense™: A Novel Nucleic Acid Detection System

    SciTech Connect

    Stadler, A.

    2011-05-18

    Recently, we developed a suite of methods for the rational design and fabrication of well-defined nanoparticle architectures, including clusters using bio-encoded nanoscale building blocks and layer-by-layer stepwise assembly on a solid support. In particular, the Nano-Assembly platform using Encoded Solid Supports (NAESS) allows for controlled interactions, purification of side products, modularity of design, and the construction of complex nanoparticle architectures. This approach offers several advantages over the current art of designing nanoparticle clusters, which include the high-yield synthesis of desired architectures, a 'plug-and-play' design allowing for the introduction of a variety of sensing modalities, and ease of scalability in high-throughput and synthesis yield. As a utility proof of concept, we implemented our unique cluster fabrication platform to design gold nanoparticle dimers which are linked via a single-stranded DNA oligonucleotide recognition motif. The design of this motif is such that binding of complementary nucleic acids results in specific, selective and rapid dimer dissociation, which can be monitored by dynamic light scattering (DLS). We demonstrated single level mismatch selectivity using this approach. The limit of detection was determined to be 1011 molecules of synthetic target RNA or DNA within 30 minutes of incubation at 33 C. This detection limit is determined by the dimer's concentration which can be probed by currently used standard DLS instruments. We also demonstrated a specific detection of target RNA in a solution containing competing 1,000-fold excess of non-complementary DNA fragments, 10% BSA, and endonucleases. Molecular diagnostic companies, RNA-based technology developers, and personalized medicine companies have applications that could benefit from using DimaSense{trademark}. The technology represents a platform which enables the simple and reasonably inexpensive design and fabrication of highly selective genetic sensors. These sensors operate with very low concentrations of target, can utilize standard instrumentation, produce detection results rapidly, and are robust enough to function in the presence of many competing genetic targets. Many current genetic target detection products/approaches/technologies rely upon methods (such as qPCR) which are more complicated, cumbersome, and costly to perform, and are not well suited to point-of-care diagnostic applications. Several clinical diagnostic applications, particularly point-of-care (POC) diagnostics for infectious diseases, are possible and appear to be a good fit for the technology. In addition, the advent of personalized medicine will create opportunities for molecular diagnostic companies with the capabilities of rapidly and quantitatively detecting nucleic acid sequences. The global POC market was {approx}$7.7B in 2010, with a recent annual growth rate of {approx}7%. A specific disease or disease-class diagnostic would need to be identified before a more meaningful sub-market value could be stated. Additional validation of the technology to show that it displays appropriate performance parameters for a commercial application on 'real world' samples is required for true commercial readiness. In addition, optimization of sensor design parameters, to effect a 10-fold increase in sensitivity, may be required to produce a commercially ready sensor system. These validation and sensor design optimization are estimated to require 3-4 months and {approx}$75k. For an unregulated product to give this sensor system a distinct competitive advantage, 2-3 years of product development and $1.5-3M are likely required. For regulated markets, time to market (through clinic) and cost would depend upon the product.

  17. Chance and necessity in the selection of nucleic acid catalysts.

    PubMed

    Lorsch, J R; Szostak, J W

    1996-02-01

    In Tom Stoppard's famous play [Rosencrantz and Guildenstern are Dead], the ill-fated heroes toss a coin 101 times. The first 100 times they do so the coin lands heads up. The chance of this happening is approximately 1 in 10(30), a sequence of events so rare that one might argue that it could only happen in such a delightful fiction. Similarly rare events, however, may underlie the origins of biological catalysis. What is the probability that an RNA, DNA, or protein molecule of a given random sequence will display a particular catalytic activity? The answer to this question determines whether a collection of such sequences, such as might result from prebiotic chemistry on the early earth, is extremely likely or unlikely to contain catalytically active molecules, and hence whether the origin of life itself is a virtually inevitable consequence of chemical laws or merely a bizarre fluke. The fact that a priori estimates of this probability, given by otherwise informed chemists and biologists, ranged from 10(-5) to 10(-50), inspired us to begin to address the question experimentally. As it turns out, the chance that a given random sequence RNA molecule will be able to catalyze an RNA polymerase-like phosphoryl transfer reaction is close to 1 in 10(13), rare enough, to be sure, but nevertheless in a range that is comfortably accessible by experiment. It is the purpose of this Account to describe the recent advances in combinatorial biochemistry that have made it possible for us to explore the abundance and diversity of catalysts existing in nucleic acid sequence space. PMID:11539421

  18. Intracellular fate of spherical nucleic acid nanoparticle conjugates.

    PubMed

    Wu, Xiaochen A; Choi, Chung Hang J; Zhang, Chuan; Hao, Liangliang; Mirkin, Chad A

    2014-05-28

    Spherical nucleic acid (SNA) nanoparticle conjugates are a class of bionanomaterials that are extremely potent in many biomedical applications. Their unique ability to enter multiple mammalian cell types as single-entity agents arises from their novel three-dimensional architecture, which consists of a dense shell of highly oriented oligonucleotides chemically attached typically to a gold nanoparticle core. This architecture allows SNAs to engage certain cell surface receptors to facilitate entry. Here, we report studies aimed at determining the intracellular fate of SNAs and the trafficking events that occur inside C166 mouse endothelial cells after cellular entry. We show that SNAs traffic through the endocytic pathway into late endosomes and reside there for up to 24 h after incubation. Disassembly of oligonucleotides from the nanoparticle core is observed 16 h after cellular entry, most likely due to degradation by enzymes such as DNase II localized in late endosomes. Our observations point to these events being likely independent of core composition and treatment conditions, and they do not seem to be particularly dependent upon oligonucleotide sequence. Significantly and surprisingly, the SNAs do not enter the lysosomes under the conditions studied. To independently track the fate of the particle core and the fluorophore-labeled oligonucleotides that comprise its shell, we synthesized a novel class of quantum dot SNAs to determine that as the SNA structures are broken down over the 24 h time course of the experiment, the oligonucleotide fragments are recycled out of the cell while the nanoparticle core is not. This mechanistic insight points to the importance of designing and synthesizing next-generation SNAs that can bypass the degradation bottleneck imposed by their residency in late endosomes, and it also suggests that such structures might be extremely useful for endosomal signaling pathways by engaging receptors that are localized within the endosome. PMID:24841494

  19. Chance and necessity in the selection of nucleic acid catalysts

    NASA Technical Reports Server (NTRS)

    Lorsch, J. R.; Szostak, J. W.

    1996-01-01

    In Tom Stoppard's famous play [Rosencrantz and Guildenstern are Dead], the ill-fated heroes toss a coin 101 times. The first 100 times they do so the coin lands heads up. The chance of this happening is approximately 1 in 10(30), a sequence of events so rare that one might argue that it could only happen in such a delightful fiction. Similarly rare events, however, may underlie the origins of biological catalysis. What is the probability that an RNA, DNA, or protein molecule of a given random sequence will display a particular catalytic activity? The answer to this question determines whether a collection of such sequences, such as might result from prebiotic chemistry on the early earth, is extremely likely or unlikely to contain catalytically active molecules, and hence whether the origin of life itself is a virtually inevitable consequence of chemical laws or merely a bizarre fluke. The fact that a priori estimates of this probability, given by otherwise informed chemists and biologists, ranged from 10(-5) to 10(-50), inspired us to begin to address the question experimentally. As it turns out, the chance that a given random sequence RNA molecule will be able to catalyze an RNA polymerase-like phosphoryl transfer reaction is close to 1 in 10(13), rare enough, to be sure, but nevertheless in a range that is comfortably accessible by experiment. It is the purpose of this Account to describe the recent advances in combinatorial biochemistry that have made it possible for us to explore the abundance and diversity of catalysts existing in nucleic acid sequence space.

  20. Base pairing and base mis-pairing in nucleic acids

    NASA Technical Reports Server (NTRS)

    Wang, A. H. J.; Rich, A.

    1986-01-01

    In recent years we have learned that DNA is conformationally active. It can exist in a number of different stable conformations including both right-handed and left-handed forms. Using single crystal X-ray diffraction analysis we are able to discover not only additional conformations of the nucleic acids but also different types of hydrogen bonded base-base interactions. Although Watson-Crick base pairings are the predominant type of interaction in double helical DNA, they are not the only types. Recently, we have been able to examine mismatching of guanine-thymine base pairs in left-handed Z-DNA at atomic resolution (1A). A minimum amount of distortion of the sugar phosphate backbone is found in the G x T pairing in which the bases are held together by two hydrogen bonds in the wobble pairing interaction. Because of the high resolution of the analysis we can visualize water molecules which fill in to accommodate the other hydrogen bonding positions in the bases which are not used in the base-base interactions. Studies on other DNA oligomers have revealed that other types of non-Watson-Crick hydrogen bonding interactions can occur. In the structure of a DNA octamer with the sequence d(GCGTACGC) complexed to an antibiotic triostin A, it was found that the two central AT base pairs are held together by Hoogsteen rather than Watson-Crick base pairs. Similarly, the G x C base pairs at the ends are also Hoogsteen rather than Watson-Crick pairing. Hoogsteen base pairs make a modified helix which is distinct from the Watson-Crick double helix.

  1. Nucleic acid-based aptamers: applications, development and clinical trials.

    PubMed

    Kanwar, Jagat R; Roy, Kislay; Maremanda, Nihal G; Subramanian, Krishnakumar; Veedu, Rakesh N; Bawa, Raj; Kanwar, Rupinder K

    2015-01-01

    Short single-stranded oligonucleotides called aptamers, often termed as chemical antibodies, have been developed as powerful alternatives to traditional antibodies with respect to their obvious advantages like high specificity and affinity, longer shelf-life, easier manufacturing protocol, freedom to introduce chemical modifications for further improvement, etc. Reiterative selection process of aptamers over 10-15 cycles starting from a large initial pool of random nucleotide sequences renders them with high binding affinity, thereby making them extremely specific for their targets. Aptamer-based detection systems are well investigated and likely to displace primitive detection systems. Aptamer chimeras (combination of aptamers with another aptamer or biomacromolecule or chemical moiety) have the potential activity of both the parent molecules, and thus hold the capability to perform diverse functions at the same time. Owing to their extremely high specificity and lack of immunogenicity or pathogenicity, a number of other aptamers have recently entered clinical trials and have garnered favorable attention from pharmaceutical companies. Promising results from the clinical trials provide new hope to change the conventional style of therapy. Aptamers have attained high therapeutic relevance in a short time as compared to synthetic drugs and/or other modes of therapy. This review follows the various trends in aptamer technology including production, selection, modifications and success in clinical fields. It focusses largely on the various applications of aptamers which mainly depend upon their selection procedures. The review also sheds light on various modifications and chimerizations that have been implemented in order to improve the stability and functioning of the aptamers, including introduction of locked nucleic acids (LNAs). The application of various aptamers in detection systems has been discussed elaborately in order to stress on their role as efficient diagnostic agents. The key aspect of this review is focused on success of aptamers on the basis of their performance in clinical trials for various diseases. PMID:25723512

  2. Yield and future issues of nucleic acid testing.

    PubMed

    Roth, W K; Seifried, E

    2001-06-01

    Despite the much lower actual yield than that estimated for hepatitis C virus (HCV) and human immunodeficiency virus (HIV) nucleic acid testing (NAT)-only positives in the USA and Germany, look-back procedures have revealed that no HCV transmission has occurred in Germany since the introduction of NAT. This indicates sufficient sensitivity of the pool-PCR approach. The slow ramp-up of hepatitis B virus (HBV) however, may require a different approach. It has been shown in Germany that the pooling of samples followed by virus enrichment results in a significant yield. Single donation testing for HBV would not increase the yield, because virus enrichment from mini-pool results in a similar sensitivity to that of single donation testing. Both strategies may be useful for extending future NAT to HBV screening. New candidate viruses for NAT are Parvo B19 and hepatitis A virus (HAV) because of their extreme resistance to inactivation procedures. Their low pathogenicity and epidemiologic characteristics, however, make them candidate viruses only for pooled source plasma. The main future issues of NAT will be related to the automation of pooling, extraction and amplification as a single homogeneous process. Depending on the throughput, automated single donation NAT as demonstrated by the 'Tigris' system may be an option, as far as all transfusion-relevant viruses will be included. In the near future high throughput systems will rely on pooled donor samples, most probably in conjunction with efficient enrichment procedures. For these systems, automation of the extraction and amplification process will be one of the first steps. These procedures will also limitthe costs of NAT and keep it available for use with future candidate viruses. PMID:11499978

  3. Remote Enantioselection Transmitted by an Achiral Peptide Nucleic Acid Backbone

    NASA Technical Reports Server (NTRS)

    Kozlov, Igor A.; Orgel, Leslie E.; Nielsen, Peter E.

    2000-01-01

    short homochiral segment of DNA into a PNA helix could have guaranteed that the next short segment of DNA to be incorporated would have the same handedness as the first. Once two segments of the same handedness were present, the probability that a third segment would have the same handedness would increase, and so on. Evolution could then slowly dilute out the PNA part. This scenario would ultimately allow the formation of a chiral oligonucleotide by processes that are largely resistant to enantiomeric crossinhibition. It is important to note that the ligation of homochiral dinucleotides on a nucleic acid template would probably be at least as enantiospecific as the reaction that we have studied. The disadvantage of using chiral monomers as components of a replicating system arises from the difficulty of generating a first long homochiral template from a racemic mixture of monomers, although results of experiments designed to overcome this difficulty by employing homochiral tetramers have been reported.l l The probability of obtaining a homochiral n-mer from achiral substrates is approximately 1P-I if the nontemplate-directed extension of the primer is not enantioselective. Hence, it would be very hard to get started with a homochiral 40-mer, for example. No such difficulty exists in a scenario that originates with an achiral genetic material and in which the incorporation of very few chiral monomers in this achiral background gradually progresses towards homochirality. It seems possible that some PNA sequences could act as catalysts, analogous to ribozymes, even though PNA lacks clear metal binding sites. Although such catalysts could not be enantioselective, the incorporation of as few as two chiral nucleotides could then impose chiral specificity on the system. Furthermore, such patch chimeras could help to bridge the gap in catalytic potential between PNA and RNA, while guaranteeing enantioselectivity.

  4. Physical methods of nucleic acid transfer: general concepts and applications

    PubMed Central

    Villemejane, Julien; Mir, Lluis M

    2009-01-01

    Physical methods of gene (and/or drug) transfer need to combine two effects to deliver the therapeutic material into cells. The physical methods must induce reversible alterations in the plasma membrane to allow the direct passage of the molecules of interest into the cell cytosol. They must also bring the nucleic acids in contact with the permeabilized plasma membrane or facilitate access to the inside of the cell. These two effects can be achieved in one or more steps, depending upon the methods employed. In this review, we describe and compare several physical methods: biolistics, jet injection, hydrodynamic injection, ultrasound, magnetic field and electric pulse mediated gene transfer. We describe the physical mechanisms underlying these approaches and discuss the advantages and limitations of each approach as well as its potential application in research or in preclinical and clinical trials. We also provide conclusions, comparisons, and projections for future developments. While some of these methods are already in use in man, some are still under development or are used only within clinical trials for gene transfer. The possibilities offered by these methods are, however, not restricted to the transfer of genes and the complementary uses of these technologies are also discussed. As these methods of gene transfer may bypass some of the side effects linked to viral or biochemical approaches, they may find their place in specific clinical applications in the future. This article is part of a themed section on Vector Design and Drug Delivery. For a list of all articles in this section see the end of this paper, or visit: http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19154421

  5. Relevance of nucleic acid amplification techniques for diagnosis of respiratory tract infections in the clinical laboratory.

    PubMed Central

    Ieven, M; Goossens, H

    1997-01-01

    Clinical laboratories are increasingly receiving requests to perform nucleic acid amplification tests for the detection of a wide variety of infectious agents. In this paper, the efficiency of nucleic acid amplification techniques for the diagnosis of respiratory tract infections is reviewed. In general, these techniques should be applied only for the detection of microorganisms for which available diagnostic techniques are markedly insensitive or nonexistent or when turnaround times for existing tests (e.g., viral culture) are much longer than those expected with amplification. This is the case for rhinoviruses, coronaviruses, and hantaviruses causing a pulmonary syndrome, Bordetella pertussis, Chlamydia pneumoniae, Mycoplasma pneumoniae, and Coxiella burnetii. For Legionella spp. and fungi, contamination originating from the environment is a limiting factor in interpretation of results, as is the difficulty in differentiating colonization and infection. Detection of these agents in urine or blood by amplification techniques remains to be evaluated. In the clinical setting, there is no need for molecular diagnostic tests for the diagnosis of Pneumocystis carinii. At present, amplification methods for Mycobacterium tuberculosis cannot replace the classical diagnostic techniques, due to their lack of sensitivity and the absence of specific internal controls for the detection of inhibitors of the reaction. Also, the results of interlaboratory comparisons are unsatisfactory. Furthermore, isolates are needed for susceptibility studies. Additional work remains to be done on sample preparation methods, comparison between different amplification methods, and analysis of results. The techniques can be useful for the rapid identification of M. tuberculosis in particular circumstances, as well as the rapid detection of most rifampin-resistant isolates. The introduction of diagnostic amplification techniques into a clinical laboratory implies a level of proficiency for excluding false-positive and false-negative results. PMID:9105753

  6. Determination of nucleic acid by its enhancement effect on the fluorescence of Ellagic acid - Cationic surfactant system

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Huang, Wei; Wang, Yanwei; Tang, Bo

    2010-04-01

    In this paper, nucleic acid can greatly enhance the fluorescence of Ellagic acid (EA) in the presence of cetylpyridine bromide (CPB). Experiments indicate that under the optimum conditions, the enhanced intensity of fluorescence is proportional to the concentration of nucleic acid in the range of 5.0 × 10 -9-3.5 × 10 -5 g mL -1 for hsDNA, 5.0 × 10 -9-3.5 × 10 -5 g mL -1 for ctDNA and 5.0 × 10 -9-3.5 × 10 -5 g mL -1 for yRNA. Their detection limits (S/N = 3) are 7.6 × 10 -9 g mL -1, 8.6 × 10 -9 g mL -1 and 6.1 × 10 -9 g mL -1, respectively. The method has been satisfactorily used for the determination of nucleic acid in actual samples. Resonance Light Scattering, Ultraviolet and other means are used to discuss its mechanism. It is considered that the charge-transfer complex EA-CPB aggregate in the extended nucleic acids by hydrogen bond and electric attraction. The hydrophobic microenvironment of nucleic acid makes the fluorescence intensity of EA-CPB-nucleic acid system much stronger.

  7. Simple Protocol for Secondary School Hands-On Activity: Electrophoresis of Pre-Stained Nucleic Acids on Agar-Agar Borate Gels

    ERIC Educational Resources Information Center

    Britos, Leticia; Goyenola, Guillermo; Orono, Silvia Umpierrez

    2004-01-01

    An extremely simple, inexpensive, and safe method is presented, which emulates nucleic acids isolation and electrophoretic analysis as performed in a research environment, in the context of a secondary school hands-on activity. The protocol is amenable to an interdisciplinary approach, taking into consideration the electrical and chemical

  8. Simple Protocol for Secondary School Hands-On Activity: Electrophoresis of Pre-Stained Nucleic Acids on Agar-Agar Borate Gels

    ERIC Educational Resources Information Center

    Britos, Leticia; Goyenola, Guillermo; Orono, Silvia Umpierrez

    2004-01-01

    An extremely simple, inexpensive, and safe method is presented, which emulates nucleic acids isolation and electrophoretic analysis as performed in a research environment, in the context of a secondary school hands-on activity. The protocol is amenable to an interdisciplinary approach, taking into consideration the electrical and chemical…

  9. Experimental characterization of the human non-sequence-specific nucleic acid interactome

    PubMed Central

    2013-01-01

    Background The interactions between proteins and nucleic acids have a fundamental function in many biological processes, including gene transcription, RNA homeostasis, protein translation and pathogen sensing for innate immunity. While our knowledge of the ensemble of proteins that bind individual mRNAs in mammalian cells has been greatly augmented by recent surveys, no systematic study on the non-sequence-specific engagement of native human proteins with various types of nucleic acids has been reported. Results We designed an experimental approach to achieve broad coverage of the non-sequence-specific RNA and DNA binding space, including methylated cytosine, and tested for interaction potential with the human proteome. We used 25 rationally designed nucleic acid probes in an affinity purification mass spectrometry and bioinformatics workflow to identify proteins from whole cell extracts of three different human cell lines. The proteins were profiled for their binding preferences to the different general types of nucleic acids. The study identified 746 high-confidence direct binders, 139 of which were novel and 237 devoid of previous experimental evidence. We could assign specific affinities for sub-types of nucleic acid probes to 219 distinct proteins and individual domains. The evolutionarily conserved protein YB-1, previously associated with cancer and drug resistance, was shown to bind methylated cytosine preferentially, potentially conferring upon YB-1 an epigenetics-related function. Conclusions The dataset described here represents a rich resource of experimentally determined nucleic acid-binding proteins, and our methodology has great potential for further exploration of the interface between the protein and nucleic acid realms. PMID:23902751

  10. NAIL: Nucleic Acid detection using Isotachophoresis and Loop-mediated isothermal amplification.

    PubMed

    Borysiak, Mark D; Kimura, Kevin W; Posner, Jonathan D

    2015-04-01

    Nucleic acid amplification tests are the gold standard for many infectious disease diagnoses due to high sensitivity and specificity, rapid operation, and low limits of detection. Despite the advantages of nucleic acid amplification tests, they currently offer limited point-of-care (POC) utility due to the need for complex instruments and laborious sample preparation. We report the development of the Nucleic Acid Isotachophoresis LAMP (NAIL) diagnostic device. NAIL uses isotachophoresis (ITP) and loop-mediated isothermal amplification (LAMP) to extract and amplify nucleic acids from complex matrices in less than one hour inside of an integrated chip. ITP is an electrokinetic separation technique that uses an electric field and two buffers to extract and purify nucleic acids in a single step. LAMP amplifies nucleic acids at constant temperature and produces large amounts of DNA that can be easily detected. A mobile phone images the amplification results to eliminate the need for laser fluorescent detection. The device requires minimal user intervention because capillary valves and heated air chambers act as passive valves and pumps for automated fluid actuation. In this paper, we describe NAIL device design and operation, and demonstrate the extraction and detection of pathogenic E. coli O157:H7 cells from whole milk samples. We use the Clinical and Laboratory Standards Institute (CLSI) limit of detection (LoD) definitions that take into account the variance from both positive and negative samples to determine the diagnostic LoD. According to the CLSI definition, the NAIL device has a limit of detection (LoD) of 1000 CFU mL(-1) for E. coli cells artificially inoculated into whole milk, which is two orders of magnitude improvement to standard tube-LAMP reactions with diluted milk samples and comparable to lab-based methods. The NAIL device potentially offers significant reductions in the complexity and cost of traditional nucleic acid diagnostics for POC applications. PMID:25666345

  11. Cytosolic malate dehydrogenase confers selectivity of the nucleic acid-conducting channel

    PubMed Central

    Hanss, Basil; Leal-Pinto, Edgar; Teixeira, Avelino; Christian, Robert E.; Shabanowitz, Jeffery; Hunt, Donald F.; Klotman, Paul E.

    2002-01-01

    We have described previously a cell surface channel that is highly selective for nucleic acids. Nucleic acid conductance is 10 pS and the channel is at least 10,000-fold more selective for oligodeoxynucleotides than any anion tested (1). Herein we provide evidence that the nucleic acid-conducting channel (NACh) is a heteromultimeric complex of at least two proteins; a 45-kDa pore-forming subunit (p45) and a 36-kDa regulatory subunit (p36). Reconstitution of p45 in planar lipid bilayers resulted in formation of a channel which gated in the absence of nucleic acid and which was more selective for anions (including oligonucleotide) than cations. This channel exhibited transitions from one level of current to another (or to the closed state); however the incidence of transitions was rare. Channel activity was not observed when p36 was reconstituted alone. Reconstitution of p36 with p45 restored nucleic acid dependence and selectivity to the channel. Protein sequence analysis identified p36 as cytosolic malate dehydrogenase (cMDH). Experiments were performed to prove that cMDH is a regulatory subunit of NACh. Selective activity was observed when p45 was reconstituted with pig heart cMDH but not with mitochondrial MDH. Both the enzyme substrate l-malate and antiserum raised against cMDH block NACh activity. These data demonstrate that a nucleic acid conducting channel is a complex of at least two proteins, p45 and cMDH. Furthermore, these data establish that cMDH confers nucleic acid selectivity of the channel. PMID:11805283

  12. Multiplexed analysis of genes using nucleic acid-stabilized silver-nanocluster quantum dots.

    PubMed

    Enkin, Natalie; Wang, Fuan; Sharon, Etery; Albada, H Bauke; Willner, Itamar

    2014-11-25

    Luminescent nucleic acid-stabilized Ag nanoclusters (Ag NCs) are applied for the optical detection of DNA and for the multiplexed analysis of genes. Two different sensing modules including Ag NCs as luminescence labels are described. One sensing module involves the assembly of a three-component sensing module composed of a nucleic acid-stabilized Ag NC and a quencher-modified nucleic acid hybridized with a nucleic acid scaffold that is complementary to the target DNA. The luminescence of the Ag NCs is quenched in the sensing module nanostructure. The strand displacement of the scaffold by the target DNA separates the nucleic acid-functionalized Ag NCs, leading to the turned-on luminescence of the NCs and to the optical readout of the sensing process. By implementing two different-sized Ag NC-modified sensing modules, the parallel multiplexed analysis of two genes (the Werner Syndrome gene and the HIV, human immunodeficiency, gene), using 615 and 560 nm luminescent Ag NCs, is demonstrated. The second sensing module includes the nucleic acid functionalized Ag NCs and the quencher-modified nucleic acid hybridized with a hairpin DNA scaffold. The luminescence of the Ag NCs is quenched in the sensing module. Opening of the hairpin by the target DNA triggers the luminescence of the Ag NCs, due to the spatial separation of the Ag NCs/quencher units. The system is applied for the optical detection of the BRAC1 gene. In addition, by implementing two-sized Ag NCs, the multiplexed analysis of two genes by the hairpin sensing module approach is demonstrated. PMID:25327411

  13. Resonance Rayleigh scattering study of the reaction of nucleic acids with thionine and its analytical application

    NASA Astrophysics Data System (ADS)

    Long, Xiufen; Bi, Shuping; Tao, Xiancong; Wang, Yongzhong; Zhao, Hong

    2004-01-01

    Resonance Rayleigh scattering (RRS) of the thionine (TH)-nucleic acids system and its analytical application have been studied. In pH 2.2 acidic buffer medium, some nucleic acids can react with TH to form TH-nucleic acids complex. This results in a great enhancement of RRS and the appearance of new RRS spectra. The RRS spectral characteristics of TH-ctDNA system, the affecting factors and the optimum conditions of the reaction have been investigated. The enhancement of the RRS signal is directly proportional to the concentration of nucleic acids in the range 0-10.0 μg/ml for calf thymus DNA and 0-15.0 μg/ml for yeast RNA, and its detection limits (3σ) are 3.5 ng/ml for calf thymus DNA and 4.9 ng/ml for yeast RNA, respectively. The method shows a wide linear range and high sensitivity, and was applied to the determination of trace amounts of nucleic acid in synthetic samples and practical samples with satisfactory results. The bind properties for the interactions of TH with ctDNA were investigated using a Scatchard plot based on the measurement of the enhanced RRS data at 340 nm, and the binding number and intrinsic binding constant are 4.9 and 2.6×10 5 mol/dm 3, respectively.

  14. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. PMID:24685509

  15. Nucleic acid therapeutic carriers with on-demand triggered release.

    PubMed

    Venkatesh, Siddarth; Wower, Jacek; Byrne, Mark E

    2009-09-01

    Biohybrid platforms such as synthetic polymer networks engineered from artificial and natural materials hold immense potential as drug and gene delivery vehicles. Here, we report the synthesis and characterization of novel polymer networks that release oligonucleotide sequences via enzymatic and physical triggers. Chemical monomers and acrylated oligonucleotides were copolymerized into networks, and phosphoimaging revealed that 70% of the oligonucleotides were incorporated into the networks. We observed that the immobilized oligonucleotides were readily cleaved when the networks were incubated with the type II restriction enzyme BamHI. The diffusion of the cleaved fragments through the macromolecular chains resulted in relatively constant release profiles very close to zero-order. To our knowledge, this is the first study which harnesses the sequence-specificity of restriction endonucleases as triggering agents for the cleavage and release of oligonucleotide sequences from a synthetic polymer network. The polymer networks exhibited an oligonucleotide diffusion coefficient of 5.6 x 10(-8) cm(2)/s and a diffusional exponent of 0.92. Sigmoidal temperature responsive characteristics of the networks matched the theoretical melting temperature of the oligonucleotides and indicated a cooperative melting transition of the oligonucleotides. The networks were also triggered to release a RNA-cleaving deoxyribozyme, which degraded a HIV-1 mRNA transcript in vitro. To tailor release profiles of the oligonucleotides, we controlled the structure of the macromolecular architecture of the networks by varying their cross-linking content. When incubated with DNase I, networks of cross-linking content 0.15%, 0.22%, and 0.45% exhibited oligonucleotide diffusion coefficients of 1.67 x 10(-8), 7.65 x 10(-9), and 2.7 x 10(-9) cm(2)/s, and diffusional exponents of 0.55, 0.8, and 0.8, respectively. The modular nature of our platform promises to open new avenues for the creation and optimization of a rich toolbox of novel drug and gene delivery platforms. We anticipate further inquiry into nucleic acid based programmable on-demand switches and modulatory devices of exquisite sensitivity and control. PMID:19670897

  16. Self-powered switch-controlled nucleic acid extraction system.

    PubMed

    Han, Kyungsup; Yoon, Yong-Jin; Shin, Yong; Park, Mi Kyoung

    2015-12-15

    Over the past few decades, lab-on-a-chip (LOC) technologies have played a great role in revolutionizing the way in vitro medical diagnostics are conducted and transforming bulky and expensive laboratory instruments and labour-intensive tests into easy to use, cost-effective miniaturized systems with faster analysis time, which can be used for near-patient or point-of-care (POC) tests. Fluidic pumps and valves are among the key components for LOC systems; however, they often require on-line electrical power or batteries and make the whole system bulky and complex, therefore limiting its application to POC testing especially in low-resource setting. This is particularly problematic for molecular diagnostics where multi-step sample processing (e.g. lysing, washing, elution) is necessary. In this work, we have developed a self-powered switch-controlled nucleic acid extraction system (SSNES). The main components of SSNES are a powerless vacuum actuator using two disposable syringes and a switchgear made of PMMA blocks and an O-ring. In the vacuum actuator, an opened syringe and a blocked syringe are bound together and act as a working syringe and an actuating syringe, respectively. The negative pressure in the opened syringe is generated by a restoring force of the compressed air inside the blocked syringe and utilized as the vacuum source. The Venus symbol shape of the switchgear provides multiple functions including being a reagent reservoir, a push-button for the vacuum actuator, and an on-off valve. The SSNES consists of three sets of vacuum actuators, switchgears and microfluidic components. The entire system can be easily fabricated and is fully disposable. We have successfully demonstrated DNA extraction from a urine sample using a dimethyl adipimidate (DMA)-based extraction method and the performance of the DNA extraction has been confirmed by genetic (HRAS) analysis of DNA biomarkers from the extracted DNAs using the SSNES. Therefore, the SSNES can be widely used as a powerless and disposable system for DNA extraction and the syringe-based vacuum actuator would be easily utilized for diverse applications with various microchannels as a powerless fluidic pump. PMID:26562630

  17. [Genotoxic modification of nucleic acid bases and biological consequences of it. Review and prospects of experimental and computational investigations

    NASA Technical Reports Server (NTRS)

    Poltev, V. I.; Bruskov, V. I.; Shuliupina, N. V.; Rein, R.; Shibata, M.; Ornstein, R.; Miller, J.

    1993-01-01

    The review is presented of experimental and computational data on the influence of genotoxic modification of bases (deamination, alkylation, oxidation) on the structure and biological functioning of nucleic acids. Pathways are discussed for the influence of modification on coding properties of bases, on possible errors of nucleic acid biosynthesis, and on configurations of nucleotide mispairs. The atomic structure of nucleic acid fragments with modified bases and the role of base damages in mutagenesis and carcinogenesis are considered.

  18. Comparison of methods in the recovery of nucleic acids from archival formalin-fixed paraffin-embedded autopsy tissues.

    PubMed

    Okello, John B A; Zurek, Jaymi; Devault, Alison M; Kuch, Melanie; Okwi, Andrew L; Sewankambo, Nelson K; Bimenya, Gabriel S; Poinar, Debi; Poinar, Hendrik N

    2010-05-01

    Archival formalin-fixed paraffin-embedded (FFPE) human tissue collections are typically in poor states of storage across the developing world. With advances in biomolecular techniques, these extraordinary and virtually untapped resources have become an essential part of retrospective epidemiological studies. To successfully use such tissues in genomic studies, scientists require high nucleic acid yields and purity. In spite of the increasing number of FFPE tissue kits available, few studies have analyzed their applicability in recovering high-quality nucleic acids from archived human autopsy samples. Here we provide a study involving 10 major extraction methods used to isolate total nucleic acid from FFPE tissues ranging in age from 3 to 13years. Although all 10 methods recovered quantifiable amounts of DNA, only 6 recovered quantifiable RNA, varying considerably and generally yielding lower DNA concentrations. Overall, we show quantitatively that TrimGen's WaxFree method and our in-house phenol-chloroform extraction method recovered the highest yields of amplifiable DNA, with considerable polymerase chain reaction (PCR) inhibition, whereas Ambion's RecoverAll method recovered the most amplifiable RNA. PMID:20079706

  19. Quantitative and discriminative analysis of nucleic acid samples using luminometric nonspecific nanoparticle methods

    NASA Astrophysics Data System (ADS)

    Pihlasalo, S.; Mariani, L.; Härmä, H.

    2016-03-01

    Homogeneous simple assays utilizing luminescence quenching and time-resolved luminescence resonance energy transfer (TR-LRET) were developed for the quantification of nucleic acids without sequence information. Nucleic acids prevent the adsorption of a protein to europium nanoparticles which is detected as a luminescence quenching of europium nanoparticles with a soluble quencher or as a decrease of TR-LRET from europium nanoparticles to the acceptor dye. Contrary to the existing methods based on fluorescent dye binding to nucleic acids, equal sensitivities for both single- (ssDNA) and double-stranded DNA (dsDNA) were measured and a detection limit of 60 pg was calculated for the quenching assay. The average coefficient of variation was 5% for the quenching assay and 8% for the TR-LRET assay. The TR-LRET assay was also combined with a nucleic acid dye selective to dsDNA in a single tube assay to measure the total concentration of DNA and the ratio of ssDNA and dsDNA in the mixture. To our knowledge, such a multiplexed assay is not accomplished with commercially available assays.Homogeneous simple assays utilizing luminescence quenching and time-resolved luminescence resonance energy transfer (TR-LRET) were developed for the quantification of nucleic acids without sequence information. Nucleic acids prevent the adsorption of a protein to europium nanoparticles which is detected as a luminescence quenching of europium nanoparticles with a soluble quencher or as a decrease of TR-LRET from europium nanoparticles to the acceptor dye. Contrary to the existing methods based on fluorescent dye binding to nucleic acids, equal sensitivities for both single- (ssDNA) and double-stranded DNA (dsDNA) were measured and a detection limit of 60 pg was calculated for the quenching assay. The average coefficient of variation was 5% for the quenching assay and 8% for the TR-LRET assay. The TR-LRET assay was also combined with a nucleic acid dye selective to dsDNA in a single tube assay to measure the total concentration of DNA and the ratio of ssDNA and dsDNA in the mixture. To our knowledge, such a multiplexed assay is not accomplished with commercially available assays. Electronic supplementary information (ESI) available: The labeling of amino modified polystyrene nanoparticles with Eu3+ chelate and the experimental details and results for the optimization of nucleic acid binding protein and for the ratiometric measurement of DNA and RNA with quenching assay. See DOI: 10.1039/c5nr09252c

  20. Variables Influencing Extraction of Nucleic Acids from Microbial Plankton (Viruses, Bacteria, and Protists) Collected on Nanoporous Aluminum Oxide Filters

    PubMed Central

    Mueller, Jaclyn A.; Culley, Alexander I.

    2014-01-01

    Anodic aluminum oxide (AAO) filters have high porosity and can be manufactured with a pore size that is small enough to quantitatively capture viruses. These properties make the filters potentially useful for harvesting total microbial communities from water samples for molecular analyses, but their performance for nucleic acid extraction has not been systematically or quantitatively evaluated. In this study, we characterized the flux of water through commercially produced nanoporous (0.02 ?m) AAO filters (Anotop; Whatman) and used isolates (a virus, a bacterium, and a protist) and natural seawater samples to test variables that we expected would influence the efficiency with which nucleic acids are recovered from the filters. Extraction chemistry had a significant effect on DNA yield, and back flushing the filters during extraction was found to improve yields of high-molecular-weight DNA. Using the back-flush protocol, the mass of DNA recovered from microorganisms collected on AAO filters was ?100% of that extracted from pellets of cells and viruses and 94% 9% of that obtained by direct extraction of a liquid bacterial culture. The latter is a minimum estimate of the relative recovery of microbial DNA, since liquid cultures include dissolved nucleic acids that are retained inefficiently by the filter. In conclusion, we demonstrate that nucleic acids can be extracted from microorganisms on AAO filters with an efficiency similar to that achievable by direct extraction of microbes in suspension or in pellets. These filters are therefore a convenient means by which to harvest total microbial communities from multiple aqueous samples in parallel for subsequent molecular analyses. PMID:24747903

  1. Molecular spectroscopy study of the reaction of nucleic acids with brilliant cresol blue

    NASA Astrophysics Data System (ADS)

    Wang, Ya Ting; Zhao, Feng Lin; Li, Ke An; Tong, Shen Yang

    2000-08-01

    The interaction of brilliant cresol blue (BCB) with nucleic acids in aqueous solution has been studied by spectrophotometry and Rayleigh light scattering (RLS) spectroscopy. Under suitable conditions, the RLS spectra of BCB changed significantly due to the presence of nucleic acids. RLS intensity of BCB at 364 nm is greatly enhanced with the addition of nucleic acids, and a new RLS peak is observed at 552 nm. This peak is about half the intensity of that at 364 nm. The results of this study show that BCB interacts with DNA possibly due to the cooperative effect of electrostatic attraction, intercalation, coordination and hydrophobic effect. Under optimum conditions, the increase of RLS at 364 nm of a BCB solution is proportional to the concentration of nucleic acids added. This result is the basis for a new RLS method for determination of nucleic acids. The linear range of ctDNA, fsDNA and yRNA is 0.12-4.70, 0.11-4.64 and 0.43-7.07 μg ml -1, respectively.

  2. The sensitive determination of nucleic acids using resonance light scattering quenching method

    NASA Astrophysics Data System (ADS)

    Jia, Zhen; Yang, Jinghe; Wu, Xia; Sun, Changxia; Liu, Shufang; Wang, Fei; Zhao, Zongshan

    2006-06-01

    It is found that in hexamethylene tetramine (HMTA)-HCl buffer of pH 7.00, nucleic acids can quench the resonance light scattering (RLS) of europium (III) (Eu 3+)-2-thenoyltrifluoroacetne (TTA)-1,10-phenanthroline (Phen) system. Based on this, a sensitive method for the determination of nucleic acids is proposed. The experiments indicate that under the optimum conditions, the quenched RLS intensity is in proportion to the concentration of nucleic acids in the range of 1.0 × 10 -10 to 2.0 × 10 -6 g ml -1 for fish sperm (fsDNA), 1.0 × 10 -11 to 1.0 × 10 -6 g ml -1 for yeast RNA (yRNA), 5.0 × 10 -11 to 5.0 × 10 -7 g ml -1 for calf thymus DNA (ctDNA). Their detection limits (S/N = 3) are 0.03, 0.006 and 0.002 ng ml -1, respectively. Therefore, the proposed method is the most sensitive RLS method for the determination of nucleic acids so far. The interaction between nucleic acids and Eu 3+-TTA-Phen is also discussed.

  3. Adsorption of Nucleic Acid Components on Rutile (TiO2) Surfaces

    NASA Astrophysics Data System (ADS)

    Cleaves, H. James; Jonsson, Caroline M.; Jonsson, Christopher L.; Sverjensky, Dimitri A.; Hazen, Robert M.

    2010-04-01

    Nucleic acids, the storage molecules of genetic information, are composed of repeating polymers of ribonucleotides (in RNA) or deoxyribonucleotides (in DNA), which are themselves composed of a phosphate moiety, a sugar moiety, and a nitrogenous base. The interactions between these components and mineral surfaces are important because there is a tremendous flux of nucleic acids in the environment due to cell death and horizontal gene transfer. The adsorption of mono-, oligo-, and polynucleotides and their components on mineral surfaces may have been important for the origin of life. We have studied here interactions of nucleic acid components with rutile (TiO2), a mineral common in many terrestrial crustal rocks. Our results suggest roles for several nucleic acid functional groups (including sugar hydroxyl groups, the phosphate group, and extracyclic functional groups on the bases) in binding, in agreement with results obtained from studies of other minerals. In contrast with recent studies of nucleotide adsorption on ZnO, aluminum oxides, and hematite, our results suggest a different preferred orientation for the monomers on rutile surfaces. The conformations of the molecules bound to rutile surfaces appear to favor specific interactions, which in turn may allow identification of the most favorable mineral surfaces for nucleic acid adsorption.

  4. Coarse-Grained Modeling of Nucleic Acids Using Anisotropic Gay-Berne and Electric Multipole Potentials.

    PubMed

    Li, Guohui; Shen, Hujun; Zhang, Dinglin; Li, Yan; Wang, Honglei

    2016-02-01

    In this work, we attempt to apply a coarse-grained (CG) model, which is based on anisotropic Gay-Berne and electric multipole (EMP) potentials, to the modeling of nucleic acids. First, a comparison has been made between the CG and atomistic models (AMBER point-charge model) in the modeling of DNA and RNA hairpin structures. The CG results have demonstrated a good quality in maintaining the nucleic acid hairpin structures, in reproducing the dynamics of backbone atoms of nucleic acids, and in describing the hydrogen-bonding interactions between nucleic acid base pairs. Second, the CG and atomistic AMBER models yield comparable results in modeling double-stranded DNA and RNA molecules. It is encouraging that our CG model is capable of reproducing many elastic features of nucleic acid base pairs in terms of the distributions of the interbase pair step parameters (such as shift, slide, tilt, and twist) and the intrabase pair parameters (such as buckle, propeller, shear, and stretch). Finally, The GBEMP model has shown a promising ability to predict the melting temperatures of DNA duplexes with different lengths. PMID:26717419

  5. Concentration methods for high-resolution THz spectroscopy of nucleic-acid biomolecules and crystals

    NASA Astrophysics Data System (ADS)

    Brown, E. R.; Zhang, W.; Mendoza, E. A.; Kuznetsova, Y.; Brueck, S. R. J.; Rahman, M.; Norton, M. L.

    2012-03-01

    Biomolecules can exhibit low-lying vibrational modes in the THz region which are detectable in transmission given a strong molecular dipole moment and optical depth, and a spectrometer of adequate sensitivity. The nucleic acids are particularly interesting because of applications such as label-free gene assay, bio-agent detection, etc. However for nucleic acids, sample preparation and THz coupling are of paramount importance because of the strong absorption by liquid water and the small concentration of molecules present in physiological solutions. Concentration methods become necessary to make the THz vibrational modes detectable, either by concentrating the nucleic-acid sample itself in a small volume but large area, or by concentrating the THz radiation down to the volume of the sample. This paper summarizes one type of the first method: nanofluidic channel arrays for biological nucleic acids; and two types of the second method: (1) a circular-waveguide pinhole, and (2) a circular-waveguide, conical-horn coupling structure, both for DNA crystals. The first method has been demonstrated on a very short artificial nucleic acid [small-interfering (si) RNA (17-to-25 bp)] and a much longer, biological molecule [Lambda-phage DNA (48.5 kbp)]. The second method has been demonstrated on small (~100 micron) single crystals of DNA grown by the sitting-drop method.

  6. Mismatch discrimination in fluorescent in situ hybridization using different types of nucleic acids.

    PubMed

    Fontenete, Silvia; Silvia, Fontenete; Barros, Joana; Joana, Barros; Madureira, Pedro; Pedro, Madureira; Figueiredo, Céu; Céu, Figueiredo; Wengel, Jesper; Jesper, Wengel; Azevedo, Nuno Filipe; Filipe, Azevedo Nuno

    2015-05-01

    In the past few years, several researchers have focused their attention on nucleic acid mimics due to the increasing necessity of developing a more robust recognition of DNA or RNA sequences. Fluorescence in situ hybridization (FISH) is an example of a method where the use of these novel nucleic acid monomers might be crucial to the success of the analysis. To achieve the expected accuracy in detection, FISH probes should have high binding affinity towards their complementary strands and discriminate effectively the noncomplementary strands. In this study, we investigate the effect of different chemical modifications in fluorescent probes on their ability to successfully detect the complementary target and discriminate the mismatched base pairs by FISH. To our knowledge, this paper presents the first study where this analysis is performed with different types of FISH probes directly in biological targets, Helicobacter pylori and Helicobacter acinonychis. This is also the first study where unlocked nucleic acids (UNA) were used as chemistry modification in oligonucleotides for FISH methodologies. The effectiveness in detecting the specific target and in mismatch discrimination appears to be improved using locked nucleic acids (LNA)/2'-O-methyl RNA (2'OMe) or peptide nucleic acid (PNA) in comparison to LNA/DNA, LNA/UNA, or DNA probes. Further, the use of LNA modifications together with 2'OMe monomers allowed the use of shorter fluorescent probes and increased the range of hybridization temperatures at which FISH would work. PMID:25840566

  7. Recent Advances in Delivery of Drug-Nucleic Acid Combinations for Cancer Treatment

    PubMed Central

    Li, Jing; Wang, Yan; Zhu, Yu; Oupický, David

    2013-01-01

    Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations. PMID:23624358

  8. Recent advances in delivery of drug-nucleic acid combinations for cancer treatment.

    PubMed

    Li, Jing; Wang, Yan; Zhu, Yu; Oupický, David

    2013-12-10

    Cancer treatment that uses a combination of approaches with the ability to affect multiple disease pathways has been proven highly effective in the treatment of many cancers. Combination therapy can include multiple chemotherapeutics or combinations of chemotherapeutics with other treatment modalities like surgery or radiation. However, despite the widespread clinical use of combination therapies, relatively little attention has been given to the potential of modern nanocarrier delivery methods, like liposomes, micelles, and nanoparticles, to enhance the efficacy of combination treatments. This lack of knowledge is particularly notable in the limited success of vectors for the delivery of combinations of nucleic acids with traditional small molecule drugs. The delivery of drug-nucleic acid combinations is particularly challenging due to differences in the physicochemical properties of the two types of agents. This review discusses recent advances in the development of delivery methods using combinations of small molecule drugs and nucleic acid therapeutics to treat cancer. This review primarily focuses on the rationale used for selecting appropriate drug-nucleic acid combinations as well as progress in the development of nanocarriers suitable for simultaneous delivery of drug-nucleic acid combinations. PMID:23624358

  9. Phytoagents for cancer management: regulation of nucleic acid oxidation, ROS, and related mechanisms.

    PubMed

    Lee, Wai-Leng; Huang, Jing-Ying; Shyur, Lie-Fen

    2013-01-01

    Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The "double-edged sword" role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review. PMID:24454991

  10. Phytoagents for Cancer Management: Regulation of Nucleic Acid Oxidation, ROS, and Related Mechanisms

    PubMed Central

    Shyur, Lie-Fen

    2013-01-01

    Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The “double-edged sword” role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review. PMID:24454991

  11. NMR Solution Structure of a Peptide Nucleic Acid Complexed with RNA

    NASA Astrophysics Data System (ADS)

    Brown, Stephen C.; Thompson, Stephen A.; Veal, James M.; Davis, Donald G.

    1994-08-01

    Peptide nucleic acids (PNA) incorporating nucleic acid bases into an achiral polyamide backbone bind to DNA in a sequence-dependent manner. The structure of a PNA-ribonucleic acid (RNA) complex was determined with nuclear magnetic resonance methods. A hexameric PNA formed a 1:1 complex with a complementary RNA that is an antiparallel, right-handed double helix with Watson-Crick base pairing similar to the "A" form structure of RNA duplexes. The achiral PNA backbone assumed a distinct conformation upon binding that differed from previously proposed models and provides a basis for further structure-based design of antisense agents.

  12. Advances in polymeric and inorganic vectors for nonviral nucleic acid delivery

    PubMed Central

    Sunshine, Joel C; Bishop, Corey J; Green, Jordan J

    2014-01-01

    Nonviral systems for nucleic acid delivery offer a host of potential advantages compared with viruses, including reduced toxicity and immunogenicity, increased ease of production and less stringent vector size limitations, but remain far less efficient than their viral counterparts. In this article we review recent advances in the delivery of nucleic acids using polymeric and inorganic vectors. We discuss the wide range of materials being designed and evaluated for these purposes while considering the physical requirements and barriers to entry that these agents face and reviewing recent novel approaches towards improving delivery with respect to each of these barriers. Furthermore, we provide a brief overview of past and ongoing nonviral gene therapy clinical trials. We conclude with a discussion of multifunctional nucleic acid carriers and future directions. PMID:22826857

  13. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    PubMed Central

    Craw, Pascal; Mackay, Ruth E.; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S. Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  14. Achiral, acyclic nucleic acids: synthesis and biophysical studies of a possible prebiotic polymer.

    PubMed

    Srivastava, P; Abou El Asrar, R; Knies, C; Abramov, M; Froeyen, M; Rozenski, J; Rosemeyer, H; Herdewijn, P

    2015-09-21

    The search for prebiotic, nucleic acid precursors is, at its best, a speculative undertaking. Given the complex structure of RNA, it is not very likely that RNA was the first information system in the universe and thus finding possible precursor/s i.e. pre-RNA remains an open challenge. We, in this paper, have tried to construct nucleic acid polymers with a simple acyclic, achiral backbone. Such a linear, achiral backbone may have been formed from simple monomers that may have existed in the "prebiotic soup". We have shown that such polymers are capable of identifying the complementary "other self" and thus forming a potential system for information storage and transmission. This study thus involves investigation of nucleic acid analogues with a modified backbone that are likely to have formed in the prebiotic setting. PMID:26228702

  15. Beyond DNA origami: A look on the bright future of nucleic acid nanotechnology

    PubMed Central

    Michelotti, Nicole; Johnson-Buck, Alexander; Manzo, Anthony J.

    2012-01-01

    Nucleic acid nanotechnology exploits the programmable molecular recognition properties of natural and synthetic nucleic acids to assemble structures with nanometer-scale precision. In 2006, DNA origami transformed the field by providing a versatile platform for self-assembly of arbitrary shapes from one long DNA strand held in place by hundreds of short, site-specific (spatially addressable) DNA staples. This revolutionary approach has led to the creation of a multitude of 2D and 3D scaffolds that form the basis for functional nanodevices. Not limited to nucleic acids, these nanodevices can incorporate other structural and functional materials, such as proteins and nanoparticles, making them broadly useful for current and future applications in emerging fields such as nanomedicine, nanoelectronics, and alternative energy. PMID:22131292

  16. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification.

    PubMed

    Craw, Pascal; Mackay, Ruth E; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  17. Peptide modules for overcoming barriers of nucleic acids transport to cells.

    PubMed

    Egorova, Anna A; Kiselev, Anton V

    2016-01-01

    Absence of safe and efficient methods of nucleic acids delivery is one of the major issues which limits the development of human gene therapy. Highly efficient viral vectors raise questions due to safety reasons. Among non-viral vectors peptide-based carriers can be considered as good candidates for the development of "artificial viruses"--multifunctional polyplexes that mimic viruses. Suggested strategy to obtain multifunctionality is to combine several peptide modules into one modular carrier. Different kinds of peptide modules are needed for successful overcoming barriers of nucleic acids transport into the cells. Design of such modules and establishment of structure-function relationships are issues of importance to researchers working in the field of nucleic acids delivery. PMID:26265355

  18. Microwell array-mediated delivery of lipoplexes containing nucleic acids for enhanced therapeutic efficacy.

    PubMed

    Wu, Yun; Gallego-Perez, Daniel; Lee, L James

    2015-01-01

    Many delivery methods have been developed to improve the therapeutic efficacy and facilitate the clinical translation of nucleic acids-based therapeutics. We present a facile microwell array to mediate the delivery of nucleic acids carried by lipoplexes, which combines the advantages of lipoplexes as an efficient carrier system, the surface mediated delivery, and the control of surface topography. This method shows much higher transfection efficiency than conventional transfection method for oligodeoxynucleotides and microRNAs, and thus significantly reduces the effective therapeutic dosages. Microwell array is also a very flexible platform. Multifunctional lipoplexes containing both nucleic acid therapeutics and imaging reagents can be easily prepared in the microwell array and efficiently delivered to cells, demonstrating its potential applications in theranostic medicine. PMID:25319649

  19. Multiplexed microfluidic blotting of proteins and nucleic acids by parallel, serpentine microchannels.

    PubMed

    He, Sha; Zhang, Yi; Wang, Pei; Xu, Xingzhi; Zhu, Kui; Pan, Wenying; Liu, Wenwen; Cai, Kaiyong; Sun, Jiashu; Zhang, Wei; Jiang, Xingyu

    2015-01-01

    This work develops a high-throughput, high-efficiency and straightforward microfluidic blotting method for analyzing proteins and nucleic acids. Sample solutions containing antibodies (for protein detection) or hybridization probes (for nucleic acid detection) are introduced into the parallel, serpentine microchannels to specifically recognize the immobilized targets on the substrate, achieving the identification of multiple targets in multiple samples simultaneously. The loading control, molecular weight markers, and antigen/antibody titration are designed and integrated into the microfluidic chip, thus allowing for the quantification of proteins and nucleic acids. Importantly, we could easily distinguish the adjacent blotting bands inside parallel microchannels, which may be difficult to achieve in conventional blotting. The small dimensions of microfluidic channels also help to reduce the amount of probing molecules and to accelerate the biochemical reaction. Our microfluidic blotting could bypass the steps of blocking and washing, further reducing the operation time and complexity. PMID:25342223

  20. Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe

    PubMed Central

    Qin, Peter Z; Haworth, Ian S; Cai, Qi; Kusnetzow, Ana K; Grant, Gian Paola G; Price, Eric A; Sowa, Glenna Z; Popova, Anna; Herreros, Bruno; He, Honghang

    2008-01-01

    This protocol describes the procedures for measuring nanometer distances in nucleic acids using a nitroxide probe that can be attached to any nucleotide within a given sequence. Two nitroxides are attached to phosphorothioates that are chemically substituted at specific sites of DNA or RNA. Inter-nitroxide distances are measured using a four-pulse double electronelectron resonance technique, and the measured distances are correlated to the parent structures using a Web-accessible computer program. Four to five days are needed for sample labeling, purification and distance measurement. The procedures described herein provide a method for probing global structures and studying conformational changes of nucleic acids and protein/nucleic acid complexes. PMID:17947978

  1. Measuring Residual Dipolar Couplings in Excited Conformational States of Nucleic Acids by CEST NMR Spectroscopy

    PubMed Central

    Zhao, Bo; Zhang, Qi

    2015-01-01

    Nucleic acids undergo structural transitions to access sparsely populated and transiently lived conformational statesor excited conformational statesthat play important roles in diverse biological processes. Despite ever-increasing detection of these functionally essential states, 3D structure determination of excited states (ESs) of RNA remains elusive. This is largely due to challenges in obtaining high-resolution structural constraints in these ESs by conventional structural biology approaches. Here, we present nucleic-acid-optimized chemical exchange saturation transfer (CEST) NMR spectroscopy for measuring residual dipolar couplings (RDCs), which provide unique long-range angular constraints in ESs of nucleic acids. We demonstrate these approaches on a fluoride riboswitch, where one-bond 13C-1H RDCs from both base and sugar moieties provide direct structural probes into an ES of the ligand-free riboswitch. PMID:26462068

  2. Nanomedical system for nucleic acid drugs created with the biodegradable nanoparticle platform.

    PubMed

    Yamamoto, Hiromitsu; Tahara, Kohei; Kawashima, Yoshiaki

    2012-01-01

    Nanomedical applications of biodegradable poly(DL-lactide-co-glycolide) (PLGA) nanoparticles (NPs) developed are discussed in this review. A surface-functionalized PLGA NP platform for drug delivery was established to encapsulate a number of macromolecular drugs such as peptides and nucleic acids as well as low-molecular-weight drugs by the emulsion solvent diffusion method. The interaction of PLGA NPs with cells and tissues could be controlled by changing the surface properties of NPs, suggesting their potential utility for the intracellular drug delivery of nucleic acid-based drugs. Furthermore, orally administered NF-κB decoy oligonucleotide-loaded CS-PLGA NPs are also useful in treating experimental colitis. These approaches using surface-modified PLGA NPs could be able to open new possibilities for nucleic acid-based drug delivery via noninvasive administration method. PMID:22034956

  3. Chemically synthesized non-radioactive biotinylated long-chain nucleic acid hybridization probes.

    PubMed Central

    al-Hakim, A H; Hull, R

    1988-01-01

    A new method for the chemical labelling of nucleic acid with biotin to produce non-radioactive probes has been developed. NN'-Bis-(3-aminopropyl)butane-1,4-diamine (spermine) and long-chain diamino compounds (diaminohexane, diaminodecane and diaminododecane) were linked covalently to biotin and the resultant conjugates were attached to nucleic acid by using a cross-linking reagent (glutaraldehyde or diepoxyoctane). Iodoacetylation and biotinylation of the long-chain diamino compounds produced modified biotinylated conjugates that can be linked to DNA without the use of a cross-linking reagent. These types of probes attach one biotin molecule to each linker arm of spermine, diamino and iodoacetylated amino derivatives. Such probes have long linker arms separating the biotin moiety from the hybridization sites of the nucleic acid. These probes can detect 10 pg of target DNA by dot-blot hybridization. Images Fig. 2. PMID:3137926

  4. Challenges and surprises that arise with nucleic acids during model building and refinement

    SciTech Connect

    Scott, William G.

    2012-04-01

    The challenges that arise in nucleic acid model building as a consequence of their simpler and more symmetric super-secondary structures are addressed. The process of building and refining crystal structures of nucleic acids, although similar to that for proteins, has some peculiarities that give rise to both various complications and various benefits. Although conventional isomorphous replacement phasing techniques are typically used to generate an experimental electron-density map for the purposes of determining novel nucleic acid structures, it is also possible to couple the phasing and model-building steps to permit the solution of complex and novel RNA three-dimensional structures without the need for conventional heavy-atom phasing approaches.

  5. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  6. Fluorescence enhancement of yttrium(III)-rutin by nucleic acids in the presence of cetyltrimethylammonium bromide

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Guo, Changying; Wang, Fei; Yang, Jinghe; Ran, Dehuan; Zheng, Jinhua; Wu, Jinbo

    2006-11-01

    It is found that nucleic acids can enhance the fluorescence intensity of yttrium(III) (Y 3+)-rutin in presence of cetyltrimethylammonium bromide (CTMAB) system. In hexamethylenetetramine (HMTA)-HCl buffer, the maximum enhanced fluorescence is produced, with maximum excitation and emission wavelengths at 452 and 520 nm, respectively. Based on this, a new fluorimetric method of determination of nucleic acids is proposed. Under optimum conditions, the enhanced fluorescence intensity is proportion to the concentration of nucleic acids in the range of 1.0 × 10 -7 to 1.0 × 10 -5 g/ml for fish sperm DNA (fsDNA), 1.0 × 10 -7 to 4.6 × 10 -6 g/ml for yeast RNA (yRNA), their detection limits (S/N = 3) are 7.5 × 10 -8, 8.0 × 10 -8 g/ml, respectively. The interaction mechanism is also studied.

  7. Label-free functional nucleic acid sensors for detecting target agents

    DOEpatents

    Lu, Yi; Xiang, Yu

    2015-01-13

    A general methodology to design label-free fluorescent functional nucleic acid sensors using a vacant site approach and an abasic site approach is described. In one example, a method for designing label-free fluorescent functional nucleic acid sensors (e.g., those that include a DNAzyme, aptamer or aptazyme) that have a tunable dynamic range through the introduction of an abasic site (e.g., dSpacer) or a vacant site into the functional nucleic acids. Also provided is a general method for designing label-free fluorescent aptamer sensors based on the regulation of malachite green (MG) fluorescence. A general method for designing label-free fluorescent catalytic and molecular beacons (CAMBs) is also provided. The methods demonstrated here can be used to design many other label-free fluorescent sensors to detect a wide range of analytes. Sensors and methods of using the disclosed sensors are also provided.

  8. Intracellular mRNA Regulation with Self-Assembled Locked Nucleic Acid Polymer Nanoparticles

    PubMed Central

    2015-01-01

    We present an untemplated, single-component antisense oligonucleotide delivery system capable of regulating mRNA abundance in live human cells. While most approaches to nucleic acid delivery rely on secondary carriers and complex multicomponent charge-neutralizing formulations, we demonstrate efficient delivery using a simple locked nucleic acid (LNA)-polymer conjugate that assembles into spherical micellar nanoparticles displaying a dense shell of nucleic acid at the surface. Cellular uptake of soft LNA nanoparticles occurs rapidly within minutes as evidenced by flow cytometry and fluorescence microscopy. Importantly, these LNA nanoparticles knockdown survivin mRNA, an established target for cancer therapy, in a sequence-specific fashion as analyzed by RT-PCR. PMID:24827740

  9. Visualising single molecules of HIV-1 and miRNA nucleic acids

    PubMed Central

    2013-01-01

    Background The scarcity of certain nucleic acid species and the small size of target sequences such as miRNA, impose a significant barrier to subcellular visualization and present a major challenge to cell biologists. Here, we offer a generic and highly sensitive visualization approach (oligo fluorescent in situ hybridization, O-FISH) that can be used to detect such nucleic acids using a single-oligonucleotide probe of 1926 nucleotides in length. Results We used O-FISH to visualize miR146a in human and avian cells. Furthermore, we reveal the sensitivity of O-FISH detection by using a HIV-1 model system to show that as little as 12 copies of nucleic acids can be detected in a single cell. We were able to discern newly synthesized viral cDNA and, moreover, observed that certain HIV RNA sequences are only transiently available for O-FISH detection. Conclusions Taken together, these results suggest that the O-FISH method can potentially be used for in situ probing of, as few as, 12 copies of nucleic acid and, additionally, to visualize small RNA such as miRNA. We further propose that the O-FISH method could be extended to understand viral function by probing newly transcribed viral intermediates; and discern the localisation of nucleic acids of interest. Additionally, interrogating the conformation and structure of a particular nucleic acid in situ might also be possible, based on the accessibility of a target sequence. PMID:23590669

  10. Photochemistry of nucleic acid bases and their thio- and aza-analogues in solution.

    PubMed

    Pollum, Marvin; Martnez-Fernndez, Lara; Crespo-Hernndez, Carlos E

    2015-01-01

    The steady-state and time-resolved photochemistry of the natural nucleic acid bases and their sulfur- and nitrogen-substituted analogues in solution is reviewed. Emphasis is given to the experimental studies performed over the last 3-5 years that showcase topical areas of scientific inquiry and those that require further scrutiny. Significant progress has been made toward mapping the radiative and nonradiative decay pathways of nucleic acid bases. There is a consensus that ultrafast internal conversion to the ground state is the primary relaxation pathway in the nucleic acid bases, whereas the mechanism of this relaxation and the level of participation of the (1)??*, (1) n?*, and (3)??* states are still matters of debate. Although impressive research has been performed in recent years, the microscopic mechanism(s) by which the nucleic acid bases dissipate excess vibrational energy to their environment, and the role of the N-glycosidic group in this and in other nonradiative decay pathways, are still poorly understood. The simple replacement of a single atom in a nucleobase with a sulfur or nitrogen atom severely restricts access to the conical intersections responsible for the intrinsic internal conversion pathways to the ground state in the nucleic acid bases. It also enhances access to ultrafast and efficient inter-system crossing pathways that populate the triplet manifold in yields close to unity. Determining the coupled nuclear and electronic pathways responsible for the significantly different photochemistry in these nucleic acid base analogues serves as a convenient platform to examine the current state of knowledge regarding the photodynamic properties of the DNA and RNA bases from both experimental and computational perspectives. Further investigations should also aid in forecasting the prospective use of sulfur- and nitrogen-substituted base analogues in photochemotherapeutic applications. PMID:25238718

  11. Identification of Dekkera bruxellensis (Brettanomyces) from Wine by Fluorescence In Situ Hybridization Using Peptide Nucleic Acid Probes

    PubMed Central

    Stender, Henrik; Kurtzman, Cletus; Hyldig-Nielsen, Jens J.; Sørensen, Ditte; Broomer, Adam; Oliveira, Kenneth; Perry-O'Keefe, Heather; Sage, Andrew; Young, Barbara; Coull, James

    2001-01-01

    A new fluorescence in situ hybridization method using peptide nucleic acid (PNA) probes for identification of Brettanomyces is described. The test is based on fluorescein-labeled PNA probes targeting a species-specific sequence of the rRNA of Dekkera bruxellensis. The PNA probes were applied to smears of colonies, and results were interpreted by fluorescence microscopy. The results obtained from testing 127 different yeast strains, including 78 Brettanomyces isolates from wine, show that the spoilage organism Brettanomyces belongs to the species D. bruxellensis and that the new method is able to identify Brettanomyces (D. bruxellensis) with 100% sensitivity and 100% specificity. PMID:11157265

  12. Delivery of Nucleic Acids and Nanomaterials by Cell-Penetrating Peptides: Opportunities and Challenges

    PubMed Central

    Huang, Yue-Wern; Lee, Han-Jung; Tolliver, Larry M.; Aronstam, Robert S.

    2015-01-01

    Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review, we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the nature of versatile CPPs and their interactions with various types of cargoes. We then discuss in vivo and in vitro delivery of nucleic acids and nanomaterials by CPPs. Studies on the mechanisms of cellular entry and limitations in the methods used are detailed. PMID:25883975

  13. Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer

    DOEpatents

    Kwok, Pui-Yan (Clayton, MO); Chen, Xiangning (St. Louis, MO)

    1999-01-01

    A method for detecting the presence of a target nucleotide or sequence of nucleotides in a nucleic acid is disclosed. The method is comprised of forming an oligonucleotide labeled with two fluorophores on the nucleic acid target site. The doubly labeled oligonucleotide is formed by addition of a singly labeled dideoxynucleoside triphosphate to a singly labeled polynucleotide or by ligation of two singly labeled polynucleotides. Detection of fluorescence resonance energy transfer upon denaturation indicates the presence of the target. Kits are also provided. The method is particularly applicable to genotyping.

  14. Nucleic acid and protein structures and interactions in viruses investigated by laser Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Thomas, George J.

    1986-03-01

    Raman spectroscopy may be profitably exploited to determine details of protein and nucleic acid structures and their mutual interactions in viruses and gene regulatory complexes. Present applications use data obtained from model nucleic acid crystals, fibers and solutions to reveal preferred backbone and nucleoside conformations for different morphological states of DNA and RNA in plant (TMV, BDMV) and bacterial viruses (P22, Pfl, Xf, Pf3, fd, Ifl, IKe). Interpretation of the results is enhanced by deconvolution methods which, in favorable cases, permit quantitative conclusions regarding macromolecular structures. Both equilibrium and dynamic Raman applications are described.

  15. Preparation and determination of optical purity of ?-lysine modified peptide nucleic acid analogues.

    PubMed

    Huang, Hu; Joe, Goon Ho; Choi, Sung Rok; Kim, Su Nam; Kim, Yong Tae; Pak, Hwang Siek; Kim, Sung Kee; Hong, Joon Hee; Han, Hyo-Kyung; Kang, Jong Seong; Lee, Wonjae

    2012-03-01

    Peptide nucleic acids (PNAs) are DNA analogues in which the nucleic acid backbone is replaced by a pseudopeptide backbone and nucleobases are attached to the backbone by methylene carbonyl linkers. ?-Carbon modification of the PNA structure allows monomers, and subsequently oligomers, with improved properties to be obtained. In this study, we report the convenient synthesis of ?-lysine-modified PNA monomers for pyrimidine bases (thymine and cytosine) with high optical purity (> 99.5%) and direct enantiomer separation of ?-lysine-modified PNA analogs, using chiral HPLC to determine the optical purity. PMID:22477199

  16. In-situ detection of viral nucleic acids using fluorescent probes

    NASA Astrophysics Data System (ADS)

    Donovan, Richard M.

    1990-07-01

    The objective of this work was to develop and improve technologies in cytometry and molecular biology for the specific in situ detection of viral nucleic acids. The major application for this system was the detection and measurement of individual cells stained specifically for the Human Immunodeficiency Virus (HIV) in patients with Acquired Immune Deficiency Syndrome (AIDS). Staining procedures used nucleic acid either directly or indirect labeled with enzymes or fluorescent probes. A cytometry system was used to acquire digitized images of labeled cells and determine their individual staining density or intensity. Efforts are underway to improve the sensitivity of these assays using time-resolved methods.

  17. Highly selective and sensitive nucleic acid detection based on polysaccharide-functionalized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Yan, Jing-Kun; Ma, Hai-Le; Cai, Pan-Fu; Wu, Jian-Yong

    2015-01-01

    Polysaccharide-functionalized silver nanoparticles (Oc-AgNPs) with a mean diameter of 15 nm were utilized as a novel and effective fluorescence-sensing platform for nucleic acid detection. Tests on the oligonucleotide sequences associated with the human immunodeficiency virus as a model system showed that the Oc-AgNPs effectively absorbed and quenched dye-labeled single-stranded DNA through strong hydrogen bonding interactions and slight electrostatic attractive interactions. The proposed system efficiently differentiated between complementary and mismatched nucleic acid sequences with high selectivity and good reproducibility at room temperature.

  18. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    PubMed Central

    Lui, Clarissa; Cady, Nathaniel C.; Batt, Carl A.

    2009-01-01

    The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform. PMID:22412335

  19. Self-Assembled Micronanoplexes for Improved Biolistic Delivery of Nucleic Acids

    PubMed Central

    Svarovsky, Sergei A.; Gonzalez-Moa, Maria J.; Robida, Mark D.; Borovkov, Alexandre Y.; Sykes, Kathryn

    2009-01-01

    A new method for biolistic delivery of nucleic acids using a combination of cationic micro- and nanoparticles is reported. The new method is simpler to perform than the conventional calcium/spermidine-based formulations and shows eleven-fold improved nucleic acid binding capacity and dose-dependent performance both for in vitro and in vivo applications relative to either the conventional preparation or our recently reported direct cationic microparticle method. These features may enable higher throughput gene delivery and genetic immunization programs and open new venues for biolistic delivery method. PMID:19754152

  20. Molecular dynamics simulations of G-DNA and perspectives on the simulation of nucleic acid structures

    PubMed Central

    poner, Ji?; Cang, Xiaohui; Cheatham, Thomas E.

    2013-01-01

    The article reviews the application of biomolecular simulation methods to understand the structure, dynamics and interactions of nucleic acids with a focus on explicit solvent molecular dynamics simulations of guanine quadruplex (G-DNA and G-RNA) molecules. While primarily dealing with these exciting and highly relevant four-stranded systems, where recent and past simulations have provided several interesting results and novel insight into G-DNA structure, the review provides some general perspectives on the applicability of the simulation techniques to nucleic acids. PMID:22525788