Science.gov

Sample records for nucleocapsid protein expressed

  1. Expression from baculovirus and serological reactivity of the nucleocapsid protein of dolphin morbillivirus.

    PubMed

    Grant, Rebecca J; Kelley, Karen L; Maruniak, James E; Garcia-Maruniak, Alejandra; Barrett, Tom; Manire, Charles A; Romero, Carlos H

    2010-07-14

    The nucleocapsid (N) protein of dolphin morbillivirus (DMV) was expressed from a baculovirus (Autographa californica nuclear polyhedrosis virus) vector and shown by SDS-PAGE and Western blot analysis to be about 57 kDa. Transmission electron microscopy revealed fully assembled nucleocapsid-like particles (NLPs) exhibiting the typical helical herringbone morphology. These NLPs were approximately 20-22 nm in diameter and varied in length from 50 to 100 nm. Purified DMV-N protein was used as antigen in an indirect ELISA (iELISA) and shown to react with rabbit and human antisera to measles virus (MV) and dog sera with antibodies to canine distemper virus (CDV). The iELISA was used for the demonstration of morbillivirus antibodies in the serum of cetaceans and manatees, showing potential as a serological tool for the mass screening of morbillivirus antibodies in marine mammals. PMID:20005643

  2. Antigenic properties and diagnostic potential of puumala virus nucleocapsid protein expressed in insect cells.

    PubMed Central

    Vapalahti, O; Lundkvist, A; Kallio-Kokko, H; Paukku, K; Julkunen, I; Lankinen, H; Vaheri, A

    1996-01-01

    Puumala virus (PUU) is a member of the genus Hantavirus in the family Bunyaviridae and the causative agent of nephropathia epidemica, a European form of hemorrhagic fever with renal syndrome. Sera of nephropathia epidemica patients react specifically with PUU nucleocapsid (N) protein. In order to safely provide large quantities of antigen for diagnostic purposes, PUU Sotkamo strain N protein was expressed by using the baculovirus system in Sf9 insect cells to up to 30 to 50% of the total cellular protein. The recombinant N protein (bac-PUU-N) was solubilized with 6 M urea, dialyzed, and purified by anion-exchange liquid chromatography. In an immunoglobulin M mu-capture assay purified and unpurified bac-PUU-N antigen showed identical results compared with the results of a similar assay based on native PUU antigen grown in Vero E6 cells. An immunoglobulin G monoclonal antibody-capture assay based on unpurified bac-PUU-N also showed results identical to those of an assay with native PUU-N antigen. Moreover, a panel of monoclonal antibodies reactive with eight different epitopes showed identical reactivity patterns with both natural and bac-PUU-N antigen, while two epitopes in PUU-N expressed as a fusion protein in Escherichia coli were not recognized. Puumala hantavirus N protein expressed by the baculovirus system offers a safe and inexpensive source of specific antigen for large-scale diagnostic and seroepidemiological purposes. PMID:8748286

  3. Diagnostic Potential of Puumala Virus Nucleocapsid Protein Expressed in Drosophila melanogaster Cells

    PubMed Central

    Brus Sjölander, Katarina; Golovljova, Irina; Plyusnin, Alexander; Lundkvist, Åke

    2000-01-01

    Puumala virus (PUU) nucleocapsid protein (N) was expressed in insect cells by using the Drosophila Expression System (DES; Invitrogen BV, Groningen, The Netherlands). Stable transfectants were established by hygromycin B selection and showed continuous expression of the recombinant protein (DES-PUU-N) for at least 5 months. The antigenic property of DES-PUU-N was shown to be identical to that of native PUU N when examined with a panel of hantavirus-specific monoclonal antibodies. Enzyme-linked immunosorbent assays (ELISAs) for detection of human immunoglobulin M (IgM) and IgG antibodies were established by using DES-PUU-N as antigen and were compared to assays based on native N. The ELISAs were evaluated for patient diagnosis and seroepidemiological purposes with panels of sera collected from patients with hemorrhagic fever with renal syndrome (HFRS) and from healthy blood donors. Equally high sensitivities and specificities for detection of PUU-specific IgM in acute-phase HFRS patient sera were obtained by the ELISA based on DES-PUU-N and the assay based on the native antigen. For detection of PUU-specific IgG, the ELISA based on monoclonal antibody-captured DES-PUU-N antigen showed optimal sensitivity and specificity. PMID:10834996

  4. Nucleocapsid protein N of Lelystad virus: expression by recombinant baculovirus, immunological properties, and suitability for detection of serum antibodies.

    PubMed Central

    Meulenberg, J J; Bende, R J; Pol, J M; Wensvoort, G; Moormann, R J

    1995-01-01

    The ORF7 gene, encoding the nucleocapsid protein N of Lelystad virus (LV), was inserted downstream of the P10 promoter into Autographa californica nuclear polyhedrosis virus (baculovirus). The resulting recombinant baculovirus, designated bac-ORF7, expressed a 15-kDa protein in insect cells. This protein was similar in size to the N protein expressed by LV in CL2621 cells when it was analyzed on sodium dodecyl sulfate-polyacrylamide gels. The N protein expressed by bac-ORF7 was immunoprecipitated with anti-ORF7 was immunoprecipitated with anti-ORF7 peptide serum, porcine convalescent-phase anti-LV serum, and N protein-specific monoclonal antibodies, indicating that this N protein had retained its native antigenic structure. The recombinant N protein was immunogenic in pigs, and the porcine antibodies raised against this protein recognized LV in an immunoperoxidase monolayer assay. However, pigs vaccinated twice with approximately 20 micrograms of N protein were not protected against a challenge with 10(5) 50% tissue culture infective doses of LV. Experimental and field sera directed against various European and North American isolates reacted with the N protein expressed by bac-ORF7 in a blocking enzyme-linked immunosorbent assay. Therefore, the recombinant N protein may be useful for developing diagnostic assays for the detection of serum antibodies directed against different isolates of LV. PMID:8574824

  5. Cloning and expression of a codon-optimized gene encoding the influenza A virus nucleocapsid protein in Lactobacillus casei.

    PubMed

    Suebwongsa, Namfon; Panya, Marutpong; Namwat, Wises; Sookprasert, Saovaluk; Redruello, Begoña; Mayo, Baltasar; Alvarez, Miguel A; Lulitanond, Viraphong

    2013-06-01

    Lactic acid bacteria (LAB) species are envisioned as promising vehicles for the mucosal delivery of therapeutic and prophylactic molecules, including the development of oral vaccines. In this study, we report on the expression of a synthetic nucleocapsid (NP) gene of influenza A virus in Lactobacillus casei. The NP gene was re-designed based on the tRNA pool and the codon usage preference of L. casei BL23. The codon-optimized NP gene was then cloned and expressed in L. casei RCEID02 under the control of a constitutive promoter, that of the lactate dehydrogenase (ldh) gene. The synthetic NP gene was further expressed in L. casei EM116 under the control of an inducible promoter, that of the structural gene of nisin (nisA) from Lactococcus lactis. Based on Western blot analysis, the specific protein band of NP, with a molecular mass of 56.0 kDa, was clearly detected in both expression systems. Thus, our study demonstrates the success of expressing a codon-optimized influenza A viral gene in L. casei. The suitability of the recombinant LAB strains for immunization purposes is currently under evaluation. PMID:24400527

  6. Preparation and characterization of a stable BHK-21 cell line constitutively expressing the Schmallenberg virus nucleocapsid protein.

    PubMed

    Zhang, Yongning; Wu, Shaoqiang; Song, Shanshan; Lv, Jizhou; Feng, Chunyan; Lin, Xiangmei

    2015-08-01

    Schmallenberg virus (SBV) is a newly emerged orthobunyavirus that predominantly infects livestock such as cattle, sheep, and goats. Its nucleocapsid (N) protein is an ideal target antigen for SBV diagnosis. In this study, a stable BHK-21 cell line, BHK-21-EGFP-SBV-N, constitutively expressing the SBV N protein was obtained using a lentivector-mediated gene transfer system combined with puromycin selection. To facilitate the purification of recombinant SBV N protein, the coding sequence for a hexa-histidine tag was introduced into the C-terminus of the SBV N gene during construction of the recombinant lentivirus vector pLV-EGFP-SBV-N. The BHK-21-EGFP-SBV-N cell line was demonstrated to spontaneously emit strong enhanced green fluorescent protein (EGFP) signals that exhibited a discrete punctate distribution throughout the cytoplasm. SBV N mRNA and protein expression in this cell line were detected by real-time RT-PCR and western blot, respectively. The expressed recombinant SBV N protein carried an N-terminal EGFP tag, and was successfully purified using Ni-NTA agarose by means of its C-terminal His tag. The purified SBV N protein could be recognized by SBV antisera and an anti-SBV monoclonal antibody (mAb) 2C8 in an indirect enzyme-linked immunosorbent assay and western blot analyses. Indirect immunofluorescence assays further demonstrated that the stable cell line reacts with SBV antisera and mAb 2C8. These results suggest that the generated cell line has the potential to be used in the serological diagnosis of SBV. PMID:26013296

  7. Characterization of Tula virus antigenic determinants defined by monoclonal antibodies raised against baculovirus-expressed nucleocapsid protein.

    PubMed

    Lundkvist, A; Vapalahti, O; Plyusnin, A; Sjölander, K B; Niklasson, B; Vaheri, A

    1996-11-01

    Tula virus was recently discovered by RT-PCR in lung samples from European common voles (Microtus arvalis and M. rossiaemeridionalis). Since virus isolation attempts had been unsuccessful, no antigen was available for analysis or for use in immunoassays. To circumvent this, complete Tula virus nucleocapsid protein (bac-TUL-N) was expressed in recombinant baculovirus. Rodent antibody end-point titers to bac-TUL-N and to truncated N fragments indicated that the NH2-terminal region is the major antigenic target and revealed a high cross-reactivity to Puumala virus N. Immunizations with crude bac-TUL-N preparations evoked high antibody responses to native hantavirus N in Balb/c mice and six monoclonal antibodies (Mabs) were generated. Epitope mapping of the Mabs, based on a competitive assay, reactivities to truncated recombinant N fragments, and reactivity patterns to different hantavirus strains, identified five recognition sites on Tula virus N. One epitope, which was identified as specific for Tula virus, was located in a region of N which is highly variable among the hantaviruses (aa 226-293), and four epitopes were mapped to the NH2-terminal region of the protein (aa 1-61). One epitope was expressed only in Tula and Prospect Hill viruses, one epitope in Tula, Prospect Hill, Khabarovsk, and Sin Nombre viruses, while two epitopes were conserved in all examined hantaviruses carried by rodents within the subfamily Arvicolinae of the Muridae family. PMID:8896239

  8. Structural characterization by transmission electron microscopy and immunoreactivity of recombinant Hendra virus nucleocapsid protein expressed and purified from Escherichia coli.

    PubMed

    Pearce, Lesley A; Yu, Meng; Waddington, Lynne J; Barr, Jennifer A; Scoble, Judith A; Crameri, Gary S; McKinstry, William J

    2015-12-01

    Hendra virus (family Paramyxoviridae) is a negative sense single-stranded RNA virus (NSRV) which has been found to cause disease in humans, horses, and experimentally in other animals, e.g. pigs and cats. Pteropid bats commonly known as flying foxes have been identified as the natural host reservoir. The Hendra virus nucleocapsid protein (HeV N) represents the most abundant viral protein produced by the host cell, and is highly immunogenic with naturally infected humans and horses producing specific antibodies towards this protein. The purpose of this study was to express and purify soluble, functionally active recombinant HeV N, suitable for use as an immunodiagnostic reagent to detect antibodies against HeV. We expressed both full-length HeV N, (HeV NFL), and a C-terminal truncated form, (HeV NCORE), using a bacterial heterologous expression system. Both HeV N constructs were engineered with an N-terminal Hisx6 tag, and purified using a combination of immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC). Purified recombinant HeV N proteins self-assembled into soluble higher order oligomers as determined by SEC and negative-stain transmission electron microscopy. Both HeV N proteins were highly immuno-reactive with sera from animals and humans infected with either HeV or the closely related Nipah virus (NiV), but displayed no immuno-reactivity towards sera from animals infected with a non-pathogenic paramyxovirus (CedPV), or animals receiving Equivac® (HeV G glycoprotein subunit vaccine), using a Luminex-based multiplexed microsphere assay. PMID:26196500

  9. The Coronavirus Nucleocapsid Is a Multifunctional Protein

    PubMed Central

    McBride, Ruth; van Zyl, Marjorie; Fielding, Burtram C.

    2014-01-01

    The coronavirus nucleocapsid (N) is a structural protein that forms complexes with genomic RNA, interacts with the viral membrane protein during virion assembly and plays a critical role in enhancing the efficiency of virus transcription and assembly. Recent studies have confirmed that N is a multifunctional protein. The aim of this review is to highlight the properties and functions of the N protein, with specific reference to (i) the topology; (ii) the intracellular localization and (iii) the functions of the protein. PMID:25105276

  10. The expression and antigenicity of a truncated spike-nucleocapsid fusion protein of severe acute respiratory syndrome-associated coronavirus

    PubMed Central

    Mu, Feng; Niu, Dongsheng; Mu, Jingsong; He, Bo; Han, Weiguo; Fan, Baoxing; Huang, Shengyong; Qiu, Yan; You, Bo; Chen, Weijun

    2008-01-01

    Background In the absence of effective drugs, controlling SARS relies on the rapid identification of cases and appropriate management of the close contacts, or effective vaccines for SARS. Therefore, developing specific and sensitive laboratory tests for SARS as well as effective vaccines are necessary for national authorities. Results Genes encoding truncated nucleocapsid (N) and spike (S) proteins of SARSCoV were cloned into the expression vector pQE30 and fusionally expressed in Escherichia coli M15. The fusion protein was analyzed for reactivity with SARS patients' sera and with anti-sera against the two human coronaviruses HCoV 229E and HCoV OC43 by ELISA, IFA and immunoblot assays. Furthermore, to evaluate the antigen-specific humoral antibody and T-cell responses in mice, the fusion protein was injected into 6-week-old BALB/c mice and a neutralization test as well as a T-cell analysis was performed. To evaluate the antiviral efficacy of immunization, BALB/c mice were challenged intranasally with SARSCoV at day 33 post injection and viral loads were determined by fluorescent quantitative RT-PCR. Serological results showed that the diagnostic sensitivity and specificity of the truncated S-N fusion protein derived the SARS virus were > 99% (457/460) and 100.00% (650/650), respectively. Furthermore there was no cross-reactivity with other two human coronaviruses. High titers of antibodies to SRASCoV appeared in the immunized mice and the neutralization test showed that antibodies to the fusion protein could inhibit SARSCoV. The T cell proliferation showed that the fusion protein could induce an antigen-specific T-cell response. Fluorescent quantitative RT-PCR showed that BALB/c mice challenged intranasally with SARSCoV at day 33 post injection were completely protected from virus replication. Conclusion The truncated S-N fusion protein is a suitable immunodiagnostic antigen and vaccine candidate. PMID:19038059

  11. Expression of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus in soybean seed yields an immunogenic antigenic protein.

    PubMed

    Vimolmangkang, Sornkanok; Gasic, Ksenija; Soria-Guerra, Ruth; Rosales-Mendoza, Sergio; Moreno-Fierros, Leticia; Korban, Schuyler S

    2012-03-01

    Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is a serious disease of swine and contributes to severe worldwide economic losses in swine production. Current vaccines against PRRS rely on the use of an attenuated-live virus; however, these are unreliable. Thus, alternative effective vaccines against PRRS are needed. Plant-based subunit vaccines offer viable, safe, and environmentally friendly alternatives to conventional vaccines. In this study, efforts have been undertaken to develop a soybean-based vaccine against PRRSV. A construct carrying a synthesized PRRSV-ORF7 antigen, nucleocapsid N protein of PRRSV, has been introduced into soybean, Glycine max (L.) Merrill. cvs. Jack and Kunitz, using Agrobacterium-mediated transformation. Transgenic plants carrying the sORF7 transgene have been successfully generated. Molecular analyses of T(0) plants confirmed integration of the transgene and transcription of the PRRSV-ORF7. Presence of a 15-kDa protein in seeds of T(1) transgenic lines was confirmed by Western blot analysis using PRRSV-ORF7 antisera. The amount of the antigenic protein accumulating in seeds of these transgenic lines was up to 0.65% of the total soluble protein (TSP). A significant induction of a specific immune response, both humoral and mucosal, against PRRSV-ORF7 was observed following intragastric immunization of BALB/c female mice with transgenic soybean seeds. These findings provide a 'proof of concept', and serve as a critical step in the development of a subunit plant-based vaccine against PRRS. PMID:21971995

  12. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the structural domain of the nucleocapsid N protein from porcine reproductive and respiratory syndrome virus (PRRSV).

    PubMed

    Doan, Danny N P; Dokland, Terje

    2003-08-01

    The structural domain of the PRRSV nucleocapsid N protein was overexpressed in Escherichia coli and purified to homogeneity. Crystals of the expressed protein, designated His-Ndelta(57), were obtained by hanging-drop vapour diffusion using PEG 3350 as precipitant at pH 6.5. A native data set from a frozen crystal was collected to 2.7 A resolution using synchrotron radiation. The crystals belong to space group P3(1)21 or P3(2)21, with unit-cell parameters a = 44.41, c = 125.05, and contain a dimer in the asymmetric unit. PMID:12876367

  13. Expression and purification of the nucleocapsid protein of Schmallenberg virus, and preparation and characterization of a monoclonal antibody against this protein.

    PubMed

    Zhang, Yongning; Wu, Shaoqiang; Wang, Jianchang; Wernike, Kerstin; Lv, Jizhou; Feng, Chunyan; Zhang, Jihong; Wang, Caixia; Deng, Junhua; Yuan, Xiangfen; Lin, Xiangmei

    2013-11-01

    Schmallenberg virus (SBV) is a novel orthobunyavirus that primarily infects ruminants such as cattle, sheep and goats. The nucleocapsid (N) protein of SBV has been shown to be an ideal target antigen for serological detection. To prepare a monoclonal antibody (mAb) against the N protein, the full-length coding sequence of the SBV N gene was cloned into pET-28a-c(+) and pMAL-c5X vectors to generate two recombinant plasmids, which were expressed in Escherichia coli BL21 as histidine (His)-tagged (His-SBV-N) and maltose-binding protein (MBP)-tagged (MBP-SBV-N) fusion proteins, respectively. After affinity purification of His-SBV-N with Ni-NTA agarose and MBP-SBV-N with amylose resin, His-SBV-N was used to immunize BALB/c mice, while MBP-SBV-N was utilized to screen for mAb-secreting hybridomas. Six hybridoma cell lines stably secreting mAbs against N were obtained. Clone 2C8 was selected for further study because of its rapid growth characteristics in vitro and good reactivity with recombinant SBV N proteins in enzyme-linked immunosorbent assays. The epitope recognized by 2C8 is located at amino acids 51-76 of the SBV N protein. Western blot analyses showed that 2C8 reacts with both recombinant SBV N proteins and SBV isolates. It is also cross-reactive with the N proteins of genetically related Shamonda, Douglas and Akabane viruses, but not with the Rift Valley fever virus N protein. The successful preparation of recombinant N proteins and mAbs provides valuable materials that can be used in the serological diagnosis of SBV. PMID:23988909

  14. Characterization of hepatitis G virus (GB-C virus) particles: evidence for a nucleocapsid and expression of sequences upstream of the E1 protein.

    PubMed

    Xiang, J; Klinzman, D; McLinden, J; Schmidt, W N; LaBrecque, D R; Gish, R; Stapleton, J T

    1998-04-01

    Hepatitis G virus (HGV or GB-C virus) is a newly described virus that is closely related to hepatitis C virus (HCV). Based on sequence analysis and by evaluation of translational initiation codon preferences utilized during in vitro translation, HGV appears to have a truncated or absent core protein at the amino terminus of the HGV polyprotein. Consequently, the biophysical properties of HGV may be very different from those of HCV. To characterize HGV particle types, we evaluated plasma from chronically infected individuals with and without concomitant HCV infection by using sucrose gradient centrifugation, isopycnic banding in cesium chloride, and saline density flotation centrifugation. Similar to HCV, HGV particles included an extremely-low-density virion particle (1.07 to 1.09 g/ml) and a nucleocapsid of approximately 1.18 g/ml. One major difference between the particle types was that HGV was consistently more stable in cesium chloride than HCV. Plasma samples from chronically HGV-infected individuals and controls were assessed by a synthetic peptide-based immunoassay to determine if they contained HGV antibody specific for a conserved region in the coding region upstream of the E1 protein. Chronically HGV-infected individuals contained antibody to the HGV core protein peptide, whereas no binding to a hepatitis A virus peptide control was observed. Competitive inhibition of binding to the HGV peptide confirmed the specificity of the assay. These data indicate that HGV has a nucleocapsid and that at least part of the putative core region of HGV is expressed in vivo. PMID:9525592

  15. The Nucleocapsid Protein of Human Coronavirus NL63

    PubMed Central

    Zuwała, Kaja; Golda, Anna; Kabala, Wojciech; Burmistrz, Michał; Zdzalik, Michal; Nowak, Paulina; Kedracka-Krok, Sylwia; Zarebski, Mirosław; Dobrucki, Jerzy; Florek, Dominik; Zeglen, Sławomir; Wojarski, Jacek; Potempa, Jan; Dubin, Grzegorz; Pyrc, Krzysztof

    2015-01-01

    Human coronavirus (HCoV) NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E). Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV. PMID:25700263

  16. Measles virus nucleocapsid protein protects rats from encephalitis.

    PubMed Central

    Bankamp, B; Brinckmann, U G; Reich, A; Niewiesk, S; ter Meulen, V; Liebert, U G

    1991-01-01

    Lewis rats immunized with recombinant vaccinia virus expressing the nucleocapsid (N) protein of measles virus were protected from encephalitis when subsequently challenged by intracerebral infection with neurotropic measles virus. Immunized rats revealed polyvalent antibodies to the N protein of measles virus in the absence of any neutralizing antibodies as well as an N protein-specific proliferative lymphocyte response. Depletion of CD8+ T lymphocytes did not abrogate the protective potential of the N protein-specific cell-mediated immune response in rats, while protection could be adoptively transferred with N protein-specific CD4+ T lymphocytes. These results indicate that a CD4+ cell-mediated immune response specific for the N protein of measles virus is sufficient to control measles virus infections of the central nervous system. Images PMID:1825854

  17. Heterogeneity in Retroviral Nucleocapsid Protein Function

    NASA Astrophysics Data System (ADS)

    Landes, Christy

    2009-03-01

    Time-resolved single-molecule fluorescence spectroscopy was used to study the human T-cell lymphotropic virus type 1 (HTLV-1) nucleocapsid protein (NC) chaperone activity as compared to that of the HIV-1 NC protein. HTLV-1 NC contains two zinc fingers with each having a CCHC binding motif similar to HIV-1 NC. HIV-1 NC is required for recognition and packaging of the viral RNA and is also a nucleic acid chaperone protein that facilitates nucleic acid restructuring during reverse transcription. Because of similarities in structures between the two retroviruses, we have used single-molecule fluorescence energy transfer to investigate the chaperoning activity of HTLV-1 NC protein. The results indicate that HTLV-1 NC protein induces structural changes by opening the transactivation response (TAR)-DNA hairpin to an even greater extent than HIV-1 NC. However, unlike HIV-1 NC, HTLV-1 NC does not chaperone the strand-transfer reaction involving TAR-DNA. These results suggest that despite its effective destabilization capability, HTLV-1 NC is not as effective at overall chaperone function as is its HIV-1 counterpart.

  18. Interactions of normal and mutant vesicular stomatitis virus matrix proteins with the plasma membrane and nucleocapsids.

    PubMed Central

    Chong, L D; Rose, J K

    1994-01-01

    We demonstrated recently that a fraction of the matrix (M) protein of vesicular stomatitis virus (VSV) binds tightly to cellular membranes in vivo when expressed in the absence of other VSV proteins. This membrane-associated M protein was functional in binding purified VSV nucleocapsids in vitro. Here we show that the membrane-associated M protein is largely associated with a membrane fraction having the density of plasma membranes, indicating membrane specificity in the binding. In addition, we analyzed truncated forms of M protein to identify regions responsible for membrane association and nucleocapsid binding. Truncated M protein lacking the amino-terminal basic domain still associated with cellular membranes, although not as tightly as wild-type M protein, and could not bind nucleocapsids. In contrast, deletion of the carboxy-terminal 14 amino acids did not disrupt stable membrane association or nucleocapsid interaction. These results suggest that the amino terminus of M protein either interacts directly with membranes and nucleocapsids or stabilizes a conformation that is required for M protein to mediate both of these interactions. Images PMID:8254754

  19. HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140

    SciTech Connect

    Guan, Ying; Guo, Lei; Yang, Erxia; Liao, Yun; Liu, Longding; Che, Yanchun; Zhang, Ying; Wang, Lichun; Wang, Jingjing; Li, Qihan

    2014-09-15

    During HSV-1 infection, the viral UL31 protein forms a complex with the UL34 protein at the cellular nuclear membrane, where both proteins play important roles in the envelopment of viral nucleocapsids and their egress into the cytoplasm. To characterize the mechanism of HSV-1 nucleocapsid egress, we screened host proteins to identify proteins that interacted with UL31 via yeast two-hybrid analysis. Transmembrane protein 140 (TMEM140), was identified and confirmed to bind to and co-localize with UL31 during viral infection. Further studies indicated that TMEM140 inhibits HSV-1 proliferation through selectively blocking viral nucleocapsid egress during the viral assembly process. The blockage function of TMEM140 is mediated by impeding the formation of the UL31–UL34 complex due to competitive binding to UL31. Collectively, these data suggest the essentiality of the UL31–UL34 interaction in the viral nucleocapsid egress process and provide a new anti-HSV-1 strategy in viral assembly process of nucleocapsid egress. - Highlights: • Cellular TMEM140 protein interacts with HSV-1 UL31 protein during viral infection. • Increasing expression of TMEM140 leads to inhibition of HSV-1 proliferation. • Increasing expression of TMEM140 blocks HSV-1 nucleocapsid egress process. • Binding to UL31 of TMEM140 impedes formation of HSV-1 UL31–UL34 complex.

  20. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses

    PubMed Central

    Wulan, Wahyu N.; Heydet, Deborah; Walker, Erin J.; Gahan, Michelle E.; Ghildyal, Reena

    2015-01-01

    Most viruses with non-segmented single stranded RNA genomes complete their life cycle in the cytoplasm of infected cells. However, despite undergoing replication in the cytoplasm, the structural proteins of some of these RNA viruses localize to the nucleus at specific times in the virus life cycle, primarily early in infection. Limited evidence suggests that this enhances successful viral replication by interfering with or inhibiting the host antiviral response. Nucleocapsid proteins of RNA viruses have a well-established, essential cytoplasmic role in virus replication and assembly. Intriguingly, nucleocapsid proteins of some RNA viruses also localize to the nucleus/nucleolus of infected cells. Their nuclear function is less well understood although significant advances have been made in recent years. This review will focus on the nucleocapsid protein of cytoplasmic enveloped RNA viruses, including their localization to the nucleus/nucleolus and function therein. A greater understanding of the nuclear localization of nucleocapsid proteins has the potential to enhance therapeutic strategies as it can be a target for the development of live-attenuated vaccines or antiviral drugs. PMID:26082769

  1. [Antigenic relationship between nucleocapsid proteins of phyto- and zoorhabdoviruses].

    PubMed

    Maksymenko, L O; Parkhomenko, N I; Didenko, L F; Diachenko, N S; Olevyns'ka, Z M

    2005-01-01

    The methods of electrophoresis in PAAG and immunological method were used for comparative analysis of structural proteins of phytorhabdovirus of potato curly dwarf (PCDV) and zoorhabdoviruses-vesicular stomatitis virus (VSV) and fixed rabies Virus (RV). Molecular weight of viral proteins was determined by the method of polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The proteins with molecular weight 45-51 kD, are probably, the major component of the viral nucleocapsid. Nucleocapsid protein 45 kD RV virus was isolated by the method of preparative electrophoresis and then the monospecific serum was obtained. The Ouchterlony and immunoblotting method were used to show, that nucleocapsid proteins with molecular weights 51 and 45 kD both of phytorhabdovirus PCDV and zoorhabdoviruses VSV and RV are serologically related. The obtained data may be used in biotechnology as the basis for creation of a new class of diagnostic preparations with the purpose to detect RV virus using proteins of curly potato dwarf virus and may be also used in serological tests to reveal viruses of Rhabdoviridae family in various eukaryotic objects. PMID:16018215

  2. Purification, crystallization and preliminary X-ray crystallographic analysis of the nucleocapsid protein of Bunyamwera virus

    SciTech Connect

    Rodgers, John W.; Zhou, Qingxian; Green, Todd J.; Barr, John N.; Luo, Ming

    2006-04-01

    The nucleocapsid protein of Bunyamwera virus, the prototypic member of the Bunyaviridae family of segmented negative-sense RNA viruses, has been expressed and crystallized. Complete X-ray diffraction data sets have been collected. Bunyamwera virus (BUNV) is the prototypic member of the Bunyaviridae family of segmented negative-sense RNA viruses. The BUNV nucleocapsid protein has been cloned and expressed in Escherichia coli. The purified protein has been crystallized and a complete data set has been collected to 3.3 Å resolution at a synchrotron source. Crystals of the nucleocapsid protein belong to space group C2, with unit-cell parameters a = 384.7, b = 89.8, c = 89.2 Å, β = 94.4°. Self-rotation function analysis of the X-ray diffraction data has provided insight into the oligomeric state of the protein as well as the orientation of the oligomers in the asymmetric unit. The structure determination of the protein is ongoing.

  3. Self-Assembly of Nucleocapsid-Like Particles from Recombinant Hepatitis C Virus Core Protein

    PubMed Central

    Kunkel, Meghan; Lorinczi, Marta; Rijnbrand, René; Lemon, Stanley M.; Watowich, Stanley J.

    2001-01-01

    Little is known about the assembly pathway and structure of hepatitis C virus (HCV) since insufficient quantities of purified virus are available for detailed biophysical and structural studies. Here, we show that bacterially expressed HCV core proteins can efficiently self-assemble in vitro into nucleocapsid-like particles. These particles have a regular, spherical morphology with a modal distribution of diameters of approximately 60 nm. Self-assembly of nucleocapsid-like particles requires structured RNA molecules. The 124 N-terminal residues of the core protein are sufficient for self-assembly into nucleocapsid-like particles. Inclusion of the carboxy-terminal domain of the core protein modifies the core assembly pathway such that the resultant particles have an irregular outline. However, these particles are similar in size and shape to those assembled from the 124 N-terminal residues of the core protein. These results provide novel opportunities to delineate protein-protein and protein-RNA interactions critical for HCV assembly, to study the molecular details of HCV assembly, and for performing high-throughput screening of assembly inhibitors. PMID:11160716

  4. Trafficking motifs in the SARS-coronavirus nucleocapsid protein

    SciTech Connect

    You, Jae-Hwan; Reed, Mark L.; Hiscox, Julian A. . E-mail: j.a.hiscox@leeds.ac.uk

    2007-07-13

    The severe acute respiratory syndrome-coronavirus nucleocapsid (N) protein is involved in virus replication and modulation of cell processes. In this latter respect control may in part be achieved through the sub-cellular localisation of the protein. N protein predominately localises in the cytoplasm (the site of virus replication and assembly) but also in the nucleus/nucleolus. Using a combination of live-cell and confocal microscopy coupled to mutagenesis we identified a cryptic nucleolar localisation signal in the central part of the N protein. In addition, based on structural comparison to the avian coronavirus N protein, a nuclear export signal was identified in the C-terminal region of the protein.

  5. Modulation of apoptosis and immune signaling pathways by the Hantaan virus nucleocapsid protein

    SciTech Connect

    Ontiveros, Steven J.; Li Qianjun; Jonsson, Colleen B.

    2010-06-05

    Herein, we show a direct relationship between the Hantaan virus (HTNV) nucleocapsid (N) protein and the modulation of apoptosis. We observed an increase in caspase-7 and -8, but not -9 in cells expressing HTNV N protein mutants lacking amino acids 270-330. Similar results were observed for the New World hantavirus, Andes virus. Nuclear factor kappa B (NF-kappaB) was sequestered in the cytoplasm after tumor necrosis factor receptor (TNFR) stimulation in cells expressing HTNV N protein. Further, TNFR stimulated cells expressing HTNV N protein inhibited caspase activation. In contrast, cells expressing N protein truncations lacking the region from amino acids 270-330 were unable to inhibit nuclear import of NF-kappaB and the mutants also triggered caspase activity. These results suggest that the HTNV circumvents host antiviral signaling and apoptotic response mediated by the TNFR pathway through host interactions with the N protein.

  6. Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function.

    PubMed

    Mirambeau, Gilles; Lyonnais, Sébastien; Gorelick, Robert J

    2010-01-01

    Retroviral nucleocapsid (NC) is central to viral replication. Nucleic acid chaperoning is a key function for NC through the action of its conserved basic amino acids and zinc-finger structures. NC manipulates genomic RNA from its packaging in the producer cell to reverse transcription into the infected host cell. This chaperone function, in conjunction with NC's aggregating properties, is up-modulated by successive NC processing events, from the Gag precursor to the fully mature protein, resulting in the condensation of the nucleocapsid within the capsid shell. Reverse transcription also depends on NC processing, whereas this process provokes NC dissociation from double-stranded DNA, leading to a preintegration complex (PIC), competent for host chromosomal integration. In addition NC interacts with cellular proteins, some of which are involved in viral budding, and also with several viral proteins. All of these properties are reviewed here, focusing on HIV-1 as a paradigmatic reference and highlighting the plasticity of the nucleocapsid architecture. PMID:21045549

  7. Antibody study in canine distemper virus nucleocapsid protein gene-immunized mice.

    PubMed

    Yuan, B; Li, X Y; Zhu, T; Yuan, L; Hu, J P; Chen, J; Gao, W; Ren, W Z

    2015-01-01

    The gene for the nucleocapsid (N) protein of canine distemper virus was cloned into the pMD-18T vector, and positive recombinant plasmids were obtained by enzyme digestion and sequencing. After digestion by both EcoRI and KpnI, the plasmid was directionally cloned into the eukaryotic expression vector pcDNA; the positive clone pcDNA-N was screened by electrophoresis and then transfected into COS-7 cells. Immunofluorescence analysis results showed that the canine distemper virus N protein was expressed in the cytoplasm of transfected COS-7 cells. After emulsification in Freund's adjuvant, the recombinant plasmid pcDNA-N was injected into the abdominal cavity of 8-week-old BABL/c mice, with the pcDNA original vector used as a negative control. Mice were immunized 3 times every 2 weeks. The blood of immunized mice was drawn 2 weeks after completing the immunizations to measure titer levels. The antibody titer in the pcDNA-N test was 10(1.62 ± 0.164), while in the control group this value was 10(0.52 ± 0.56), indicating that specific humoral immunity was induced in canine distemper virus nucleocapsid protein-immunized mice. PMID:25966074

  8. Synthesis of human parainfluenza virus 2 nucleocapsid protein in yeast as nucleocapsid-like particles and investigation of its antigenic structure.

    PubMed

    Bulavaitė, Aistė; Lasickienė, Rita; Vaitiekaitė, Aušra; Sasnauskas, Kęstutis; Žvirblienė, Aurelija

    2016-05-01

    The aim of this study was to investigate the suitability of yeast Saccharomyces cerevisiae expression system for the production of human parainfluenza virus type 2 (HPIV2) nucleocapsid (N) protein in the form of nucleocapsid-like particles (NLPs) and to characterize its antigenic structure. The gene encoding HPIV2 N amino acid (aa) sequence RefSeq NP_598401.1 was cloned into the galactose-inducible S. cerevisiae expression vector and its high-level expression was achieved. However, this recombinant HPIV2 N protein did not form NLPs. The PCR mutagenesis was carried out to change the encoded aa residues to the ones conserved across HPIV2 isolates. Synthesis of the modified proteins in yeast demonstrated that the single aa substitution NP_598401.1:p.D331V was sufficient for the self-assembly of NLPs. The significance of certain aa residues in this position was confirmed by analysing HPIV2 N protein structure models. To characterize the antigenic structure of NLP-forming HPIV2 N protein, a panel of monoclonal antibodies (MAbs) was generated. The majority of the MAbs raised against the recombinant NLPs recognized HPIV2-infected cells suggesting the antigenic similarity between the recombinant and virus-derived HPIV2 N protein. Fine epitope mapping revealed the C-terminal part (aa 386-504) as the main antigenic region of the HPIV2 N protein. In conclusion, the current study provides new data on the impact of HPIV2 N protein sequence variants on the NLP self-assembly and demonstrates an efficient production of recombinant HPIV2 N protein in the form of NLPs. PMID:26821928

  9. Phenotypic mixing between different hepadnavirus nucleocapsid proteins reveals C protein dimerization to be cis preferential.

    PubMed Central

    Chang, C; Zhou, S; Ganem, D; Standring, D N

    1994-01-01

    Hepadnaviruses encode a single core (C) protein which assembles into a nucleocapsid containing the polymerase (P) protein and pregenomic RNA during viral replication in hepatocytes. We examined the ability of heterologous hepadnavirus C proteins to cross-oligomerize. Using a two-hybrid assay in HepG2 cells, we observed cross-oligomerization among the core proteins from hepatitis B virus (HBV), woodchuck hepatitis virus, and ground squirrel hepatitis virus. When expressed in Xenopus oocytes, in which hepadnavirus C proteins form capsids, the C polypeptides from woodchuck hepatitis virus and ground squirrel hepatitis virus, but not duck hepatitis B virus, can efficiently coassemble with an epitope-tagged HBV core polypeptide to form mixed capsids. However, when two different core mRNAs are coexpressed in oocytes the core monomers show a strong preference for forming homodimers rather than heterodimers. This holds true even for coexpression of two HBV C proteins differing only by an epitope tag, suggesting that core monomers are not free to diffuse and associate with other monomers. Thus, mixed capsids result from aggregation of different species of homodimers. Images PMID:7518533

  10. Identification of HIV-1 Inhibitors Targeting The Nucleocapsid Protein

    PubMed Central

    Breuer, Sebastian; Chang, Max W.; Yuan, Jinyun; Torbett, Bruce E.

    2012-01-01

    The HIV-1 nucleocapsid (NC) is a RNA/DNA binding protein encoded within the Gag polyprotein, which is critical for the selection and chaperoning of viral genomic RNA during virion assembly. RNA/DNA binding occurs through a highly conserved zinc-knuckle motif present in NC. Given the necessity of NC-viral RNA/DNA interaction for viral replication, identification of compounds that disrupt the NC-RNA/DNA interaction may have value as an anti-viral strategy. To identify small molecules that disrupt NC-viral RNA/DNA binding a high-throughput fluorescence polarization assay was developed and a library of 14,400 diverse, drug-like compounds was screened. Compounds that disrupted NC binding to a fluorescence-labeled DNA tracer were next evaluated by differential scanning fluorimetry to identify compounds that must bind to NC or Gag to impart their effects. Two compounds were identified that inhibited NC-DNA interaction, specifically bound NC with nM affinity, and showed modest anti-HIV-1 activity in ex vivo cell assays. PMID:22587465

  11. A major antigenic domain of hantaviruses is located on the aminoproximal site of the viral nucleocapsid protein.

    PubMed

    Gött, P; Zöller, L; Darai, G; Bautz, E K

    1997-01-01

    Hantavirus nucleocapsid protein has recently been shown to be an immunodominant antigen in hemorrhagic with renal syndrome (HFRS) inducing an early and long-lasting immune response. Recombinant proteins representing various regions of the nucleocapsid proteins as well as segments of the G1 and the G2 glycoproteins of hantavirus strains CG18-20 (Puumala serotype) and Hantaan 76-118 have been expressed in E. coli. The antigenicity of these proteins was tested in enzyme immunoassays and immunoblots. These studies revealed that human IgG immune response is primarily directed against epitopes located within the amino acid residues 1 to 119 of the amino terminus of viral nucleocapsid proteins. This fragment was recognized by all HFRS patient sera tested (n = 128). The corresponding enzyme immunoassays proved to be more sensitive than the indirect immunofluorescence assays. Furthermore, the majority of bank vole monoclonal antibodies raised against Puumala virus reacted specifically with this site. A recombinant G1 protein (aa 59 to 401) derived from the CG 18-20 strain was recognized by 19 out of 20 sera from HFRS patients. PMID:9208453

  12. Andes Virus Nucleocapsid Protein Interrupts Protein Kinase R Dimerization To Counteract Host Interference in Viral Protein Synthesis

    PubMed Central

    Wang, Zekun

    2014-01-01

    manufacture of viral proteins. The studies reported here reveal that the hantavirus nucleocapsid protein counteracts the PKR antiviral response by inhibiting PKR dimerization, which is required for its activation. We report the discovery of a new PKR inhibitor whose expression in hantavirus-infected cells prevents the PKR-induced host translational shutdown to ensure the continuous synthesis of viral proteins required for efficient virus replication. PMID:25410857

  13. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    SciTech Connect

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence.

  14. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging

    SciTech Connect

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K.; Osorio, Fernando A.; Hiscox, Julian A.

    2008-08-15

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus.

  15. A highly conserved region of the Sendai virus nucleocapsid protein contributes to the NP-NP binding domain.

    PubMed

    Myers, T M; Pieters, A; Moyer, S A

    1997-03-17

    The nucleocapsid protein (NP) of Sendai virus is an essential component of both the nucleocapsid template and the NP-NP and NP0-P protein complexes required for viral RNA replication. When expressed alone in mammalian cells NP self-assembles into nucleocapsid-like particles which appear to contain cellular RNA. To identify putative NP-NP binding domains, fusions between the monomeric maltose-binding protein (MBP) and portions of NP were constructed. The fusion proteins which contain the central conserved region (CCR) (amino acids 258-357, MBP-NP1) and the N-terminal 255 amino acids (MBP-NP2) of NP both oligomerized, suggesting that these regions contain sequences important for NP-NP self-assembly. In addition, the MBP-NP1 fusion protein can function as an inhibitor of viral RNA replication. Complementary studies involving site-directed mutagenesis of the full-length NP protein have identified specific residues in the CCR which are essential for viral RNA replication in vitro. Two such replication-negative mutants, F324V and F324I, were defective in self-assembly, suggesting that the Phe residue at amino acid 324 is essential for the NP-NP interaction. A third mutant, NP260-1 (Y260D), self-assembled to form aberrant oligomers which exhibit an unusual helical structure and appear to lack any associated RNA. The mutants NP299-5 (L299I and I300V) and NP313-2 (I313F), in contrast, appear to form all the required protein complexes, but were inactive in viral RNA replication, suggesting that interactions specifically with Sendai RNA were disrupted. These data have thus identified specific residues in the CCR of the native NP protein which appear to be important for NP-NP or NP-RNA interactions and for genome replication. PMID:9126246

  16. Phylogenetic analysis of Puumala virus subtype Bavaria, characterization and diagnostic use of its recombinant nucleocapsid protein.

    PubMed

    Mertens, Marc; Kindler, Eveline; Emmerich, Petra; Esser, Jutta; Wagner-Wiening, Christiane; Wölfel, Roman; Petraityte-Burneikiene, Rasa; Schmidt-Chanasit, Jonas; Zvirbliene, Aurelija; Groschup, Martin H; Dobler, Gerhard; Pfeffer, Martin; Heckel, Gerald; Ulrich, Rainer G; Essbauer, Sandra S

    2011-10-01

    Puumala virus (PUUV) is the predominant hantavirus species in Germany causing large numbers of mild to moderate cases of haemorrhagic fever with renal syndrome (HFRS). During an outbreak in South-East Germany in 2004 a novel PUUV subtype designated Bavaria was identified as the causative agent of HFRS in humans [1]. Here we present a molecular characterization of this PUUV strain by investigating novel partial and almost entire nucleocapsid (N) protein-encoding small (S-) segment sequences and partial medium (M-) segment sequences from bank voles (Myodes glareolus) trapped in Lower Bavaria during 2004 and 2005. Phylogenetic analyses confirmed their classification as subtype Bavaria, which is further subdivided into four geographical clusters. The entire N protein, harbouring an amino-terminal hexahistidine tag, of the Bavarian strain was produced in yeast Saccharomyces cerevisiae and showed a slightly different reactivity with N-specific monoclonal antibodies, compared to the yeast-expressed N protein of the PUUV strain Vranica/Hällnäs. Endpoint titration of human sera from different parts of Germany and from Finland revealed only very slight differences in the diagnostic value of the different recombinant proteins. Based on the novel N antigen indirect and monoclonal antibody capture IgG-ELISAs were established. By using serum panels from Germany and Finland their validation demonstrated a high sensitivity and specificity. In summary, our investigations demonstrated the Bavarian PUUV strain to be genetically divergent from other PUUV strains and the potential of its N protein for diagnostic applications. PMID:21598005

  17. Trichoplusia ni Kinesin-1 Associates with Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Proteins and Is Required for Production of Budded Virus

    PubMed Central

    Biswas, Siddhartha; Blissard, Gary W.

    2016-01-01

    ABSTRACT The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are

  18. Nucleocapsid Protein from Fig Mosaic Virus Forms Cytoplasmic Agglomerates That Are Hauled by Endoplasmic Reticulum Streaming

    PubMed Central

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki

    2014-01-01

    ABSTRACT Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly

  19. Serologic Cross-Reactions between Nucleocapsid Proteins of Human Respiratory Syncytial Virus and Human Metapneumovirus

    PubMed Central

    Zhang, Yange; Pohl, Jan; Brooks, W. Abdullah

    2015-01-01

    Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) share virologic and epidemiologic features and cause clinically similar respiratory illness predominantly in young children. In a previous study of acute febrile respiratory illness in Bangladesh, we tested paired serum specimens from 852 children presenting fever and cough for diagnostic increases in titers of antibody to hRSV and hMPV by enzyme immunoassay (EIA). Unexpectedly, of 93 serum pairs that showed a ≥4-fold increase in titers of antibody to hRSV, 24 (25.8%) showed a concurrent increase in titers of antibody to hMPV; of 91 pairs showing an increase to hMPV, 13 (14.3%) showed a concurrent increase to hRSV. We speculated that common antigens shared by these viruses explain this finding. Since the nucleocapsid (N) proteins of these viruses show the greatest sequence homology, we tested hyperimmune antisera prepared for each virus against baculovirus-expressed recombinant N (recN) proteins for potential cross-reactivity. The antisera were reciprocally reactive with both proteins. To localize common antigenic regions, we first expressed the carboxy domain of the hMPV N protein that was the most highly conserved region within the hRSV N protein. Although reciprocally reactive with antisera by Western blotting, this truncated protein did not react with hMPV IgG-positive human sera by EIA. Using 5 synthetic peptides that spanned the amino-terminal portion of the hMPV N protein, we identified a single peptide that was cross-reactive with human sera positive for either virus. Antiserum prepared for this peptide was reactive with recN proteins of both viruses, indicating that a common immunoreactive site exists in this region. PMID:25740767

  20. The localization of porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus of infected cells and identification of a potential nucleolar localization signal sequence.

    PubMed

    Rowland, R R; Kervin, R; Kuckleburg, C; Sperlich, A; Benfield, D A

    1999-10-01

    The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) possesses two regions in the N-terminal half of the protein that are enriched in basic amino acids. Presumably, these basic regions are important for packaging the RNA genome within the nucleocapsid of the virus. The PSORT computer program identified the same regions as nuclear localization signal (NLS) sequence motifs. N protein localization to the nucleus of infected MARC-145 and porcine pulmonary macrophages was observed following staining with SDOW-17 and SR-30 anti-N monoclonal antibodies. Furthermore, the co-localization of SR-30 antibody with human ANA-N autoimmune serum identified the nucleolus as the primary site for N protein localization within the nucleus. The localization of the N protein in the absence of infection was studied by following fluorescence in MARC-145 cells transfected with a plasmid, which expressed the nucleocapsid protein fused to an enhanced green fluorescent protein (N-EGFP). Similar to infected cells, N-EGFP localized to the cytoplasm and the nucleolus. Results following the transfection of cells with pEGFP fused to truncated portions of the N gene identified a region containing the second basic stretch of amino acids as the nucleolar localization signal (NoLS) sequence. Another outcome following transfection was the rapid disappearance of cells that expressed high levels of N-EGFP. However, cell death did not correlate with localization of N-EGFP to the nucleolus. PMID:10500278

  1. Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation

    SciTech Connect

    Raymond, Donald D.; Piper, Mary E.; Gerrard, Sonja R.; Smith, Janet L.

    2010-07-13

    Rift Valley fever virus (RVFV) is a negative-sense RNA virus (genus Phlebovirus, family Bunyaviridae) that infects livestock and humans and is endemic to sub-Saharan Africa. Like all negative-sense viruses, the segmented RNA genome of RVFV is encapsidated by a nucleocapsid protein (N). The 1.93-{angstrom} crystal structure of RVFV N and electron micrographs of ribonucleoprotein (RNP) reveal an encapsidated genome of substantially different organization than in other negative-sense RNA virus families. The RNP polymer, viewed in electron micrographs of both virus RNP and RNP reconstituted from purified N with a defined RNA, has an extended structure without helical symmetry. N-RNA species of {approx}100-kDa apparent molecular weight and heterogeneous composition were obtained by exhaustive ribonuclease treatment of virus RNP, by recombinant expression of N, and by reconstitution from purified N and an RNA oligomer. RNA-free N, obtained by denaturation and refolding, has a novel all-helical fold that is compact and well ordered at both the N and C termini. Unlike N of other negative-sense RNA viruses, RVFV N has no positively charged surface cleft for RNA binding and no protruding termini or loops to stabilize a defined N-RNA oligomer or RNP helix. A potential protein interaction site was identified in a conserved hydrophobic pocket. The nonhelical appearance of phlebovirus RNP, the heterogeneous {approx}100-kDa N-RNA multimer, and the N fold differ substantially from the RNP and N of other negative-sense RNA virus families and provide valuable insights into the structure of the encapsidated phlebovirus genome.

  2. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells

    PubMed Central

    Cui, Lei; Wang, Haiying; Ji, Yanxi; Yang, Jie; Xu, Shan; Huang, Xingyu; Wang, Zidao; Qin, Lei; Tien, Po; Zhou, Xi

    2015-01-01

    ABSTRACT RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic

  3. The Multimerization of Hantavirus Nucleocapsid Protein Depends on Type-Specific Epitopes

    PubMed Central

    Yoshimatsu, Kumiko; Lee, Byoung-Hee; Araki, Koichi; Morimatsu, Masami; Ogino, Michiko; Ebihara, Hideki; Arikawa, Jiro

    2003-01-01

    Multimerization of the Hantaan virus nucleocapsid protein (NP) in Hantaan virus-infected Vero E6 cells was observed in a competitive enzyme-linked immunosorbent assay (ELISA). Recombinant and truncated NPs of Hantaan, Seoul, and Dobrava viruses lacking the N-terminal 49 amino acids were also detected as multimers. Although truncated NPs of Hantaan virus lacking the N-terminal 154 amino acids existed as a monomer, those of Seoul and Dobrava formed multimers. The multimerized truncated NP antigens of Seoul and Dobrava viruses could detect serotype-specific antibodies, whereas the monomeric truncated NP antigen of Hantaan virus lacking the N-terminal 154 amino acids could not, suggesting that a hantavirus serotype-specific epitope on the NP results in multimerization. The NP-NP interaction was also detected by using a yeast two-hybrid assay. Two regions, amino acids 100 to 125 (region 1) and amino acids 404 to 429 (region 2), were essential for the NP-NP interaction in yeast. The NP of Seoul virus in which the tryptophan at amino acid number 119 was replaced by alanine (W119A mutation) did not multimerize in the yeast two-hybrid assay, indicating that tryptophan 119 in region 1 is important for the NP-NP interaction in yeast. However, W119A mutants expressed in mammalian cells were detected as the multimer by using competitive ELISA. Similarly, the truncated NP of Seoul virus expressing amino acids 155 to 429 showed a homologous interaction in a competitive ELISA but not in the yeast two-hybrid assay, indicating that the C-terminal region is important for the multimerization detected by competitive ELISA. Combined, the results indicate that several steps and regions are involved in multimerization of hantavirus NP. PMID:12502810

  4. DNA vaccination of mice with a plasmid encoding Puumala hantavirus nucleocapsid protein mimics the B-cell response induced by virus infection.

    PubMed

    Koletzki, D; Schirmbeck, R; Lundkvist, A; Meisel, H; Krüger, D H; Ulrich, R

    2001-11-17

    Inoculation of naked DNA has been applied for the development of prophylactic and therapeutic vaccines against different viral infections. To study the humoral immune response induced by DNA vaccination we cloned the entire nucleocapsid protein-encoding sequence of the Puumala hantavirus strain Vranica/Hällnäs into the CMV promoter-driven expression unit of the plasmid pcDNA3, generating pcDNA3-VR1. A single dose injection of 50 microg of plasmid DNA into each M. tibialis anterior of BALB/c mice induced a high-titered antibody response against the nucleocapsid protein as documented 6 and 11 weeks after immunisation. PEPSCAN analysis of a serum pool of the pcDNA3-VR1-vaccinated animals revealed antibodies reacting with epitopes covering the whole nucleocapsid protein. The epitope-specificity of the immune response induced by DNA vaccination seems to reflect the antibody response in experimentally virus-infected bank voles (the natural host of the Puumala virus) and humans. The data suggest that DNA vaccination could be used for the identification of highly immunogenic epitopes in viral proteins. PMID:11035190

  5. The nucleocapsid protein of measles virus blocks host interferon response

    SciTech Connect

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko

    2012-03-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-{alpha}/{beta} and {gamma}-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  6. Vaccinia Virus Mutations in the L4R Gene Encoding a Virion Structural Protein Produce Abnormal Mature Particles Lacking a Nucleocapsid

    PubMed Central

    Moussatche, Nissin; Condit, Richard C.

    2014-01-01

    ABSTRACT Electron micrographs from the 1960s revealed the presence of an S-shaped tubular structure in the center of the vaccinia virion core. Recently, we showed that packaging of virus transcription enzymes is necessary for the formation of the tubular structure, suggesting that the structure is equivalent to a nucleocapsid. Based on this study and on what is known about nucleocapsids of other viruses, we hypothesized that in addition to transcription enzymes, the tubular structure also contains the viral DNA and a structural protein as a scaffold. The vaccinia virion structural protein L4 stands out as the best candidate for the role of a nucleocapsid structural protein because it is abundant, it is localized in the center of the virion core, and it binds DNA. In order to gain more insight into the structure and relevance of the nucleocapsid, we analyzed thermosensitive and inducible mutants in the L4R gene. Using a cryo-fixation method for electron microscopy (high-pressure freezing followed by freeze-substitution) to preserve labile structures like the nucleocapsid, we were able to demonstrate that in the absence of functional L4, mature particles with defective internal structures are produced under nonpermissive conditions. These particles do not contain a nucleocapsid. In addition, the core wall of these virions is abnormal. This suggests that the nucleocapsid interacts with the core wall and that the nucleocapsid structure might be more complex than originally assumed. IMPORTANCE The vaccinia virus nucleocapsid has been neglected since the 1960s due to a lack of electron microscopy techniques to preserve this labile structure. With the advent of cryo-fixation techniques, like high-pressure freezing/freeze-substitution, we are now able to consistently preserve and visualize the nucleocapsid. Because vaccinia virus early transcription is coupled to the viral core structure, detailing the structure of the nucleocapsid is indispensable for determining the

  7. Roles of Phosphorylation of the Nucleocapsid Protein of Mumps Virus in Regulating Viral RNA Transcription and Replication

    PubMed Central

    Zengel, James; Pickar, Adrian; Xu, Pei; Lin, Alita

    2015-01-01

    ABSTRACT Mumps virus (MuV) is a paramyxovirus with a negative-sense nonsegmented RNA genome. The viral RNA genome is encapsidated by the nucleocapsid protein (NP) to form the ribonucleoprotein (RNP), which serves as a template for transcription and replication. In this study, we investigated the roles of phosphorylation sites of NP in MuV RNA synthesis. Using radioactive labeling, we first demonstrated that NP was phosphorylated in MuV-infected cells. Using both liquid chromatography-mass spectrometry (LC-MS) and in silico modeling, we identified nine putative phosphorylated residues within NP. We mutated these nine residues to alanine. Mutation of the serine residue at position 439 to alanine (S439A) was found to reduce the phosphorylation of NP in transfected cells by over 90%. The effects of these mutations on the MuV minigenome system were examined. The S439A mutant was found to have higher activity, four mutants had lower activity, and four mutants had similar activity compared to wild-type NP. MuV containing the S439A mutation had 90% reduced phosphorylation of NP and enhanced viral RNA synthesis and viral protein expression at early time points after infection, indicating that S439 is the major phosphorylation site of NP and its phosphorylation plays an important role in downregulating viral RNA synthesis. IMPORTANCE Mumps virus (MuV), a paramyxovirus, is an important human pathogen that is reemerging in human populations. Nucleocapsid protein (NP) of MuV is essential for viral RNA synthesis. We have identified the major phosphorylation site of NP. We have found that phosphorylation of NP plays a critical role in regulating viral RNA synthesis. The work will lead to a better understanding of viral RNA synthesis and possible novel targets for antiviral drug development. PMID:25948749

  8. Epitope mapping of the nucleocapsid protein of European and North American isolates of porcine reproductive and respiratory syndrome virus.

    PubMed

    Rodriguez, M J; Sarraseca, J; Garcia, J; Sanz, A; Plana-Durán, J; Ignacio Casal, J

    1997-09-01

    Two major genotypes of porcine reproductive and respiratory syndrome virus (PRRSV) have been described, which correspond to the European and North American isolates. PRRSV nucleocapsid (N) protein has been identified as the most immunodominant viral protein. The N genes from two PRRSV isolates, Olot/91 (European) and Québec 807/94 (North American), were cloned and expressed in: (i) baculovirus under the control of the polyhedrin promoter and (ii) Escherichia coli using the pET3x system. The N protein from both isolates was expressed much more efficiently in E. coli as a fusion protein than in baculovirus. The antigenicity of the protein was similar in both systems and it was recognized by a collection of 48 PRRSV-positive pig sera. The antigenic structure of the PRRSV N protein was investigated using seven monoclonal antibodies (MAbs) and overlapping fragments of the protein expressed in E. coli. Four MAbs recognized two discontinuous epitopes that were present in the partially folded protein, or at least a large fragment comprising the first 78 residues. The other three MAbs revealed the presence of a common antigenic site localized in the central region of the protein (amino acids 50-66). This region is well conserved among different isolates of European and North American origin and is the most hydrophilic region of the protein. However, this epitope, although recognized by the MAbs and many pig sera, is not useful for diagnostic purposes. Moreover, none of the N protein fragments were able to mimic the antigenicity of the entire protein. PMID:9292014

  9. Identification of a region in the Sindbis virus nucleocapsid protein that is involved in specificity of RNA encapsidation.

    PubMed Central

    Owen, K E; Kuhn, R J

    1996-01-01

    The specific encapsidation of genomic RNA by an alphavirus requires recognition of the viral RNA by the nucleocapsid protein. In an effort to identify individual residues of the Sindbis virus nucleocapsid protein which are essential for this recognition event, a molecular genetic analysis of a domain of the protein previously suggested to be involved in RNA binding in vitro was undertaken. The experiments presented describe the generation of a panel of viruses which contain mutations in residues 97 through 111 of the nucleocapsid protein. All of the viruses generated were viable, and the results suggest that, individually, the residues mutated do not play a critical role in encapsidation. However, one mutant which had lost the ability to specifically encapsidate the genomic RNA was identified. This mutant virus, which contained a deletion of residues 97 to 106, encapsidated both the genomic RNA and the subgenomic mRNA of the virus. It is proposed that the encapsidation of this second species of RNA, which is not present in wild-type virions, is the result of the loss of a domain of the nucleocapsid protein required for specific recognition of the genomic RNA packaging signal. The results suggest that this region of the protein is important in dictating specificity in the encapsidation reaction in vivo. The isolation and preliminary characterization of two independent second-site revertants to this deletion mutant are also described. PMID:8627749

  10. Identification of the interaction between vimentin and nucleocapsid protein of transmissible gastroenteritis virus.

    PubMed

    Zhang, Xin; Shi, HongYan; Chen, JianFei; Shi, Da; Dong, Hui; Feng, Li

    2015-03-16

    Nucleocapsid (N) protein of transmissible gastroenteritis virus (TGEV) packages viral RNA genome to form a ribonucleoprotein complex. In addition to its function as a structural protein, N protein is involved in cell apoptosis or cell-cycle regulation. N protein possibly interacts with host factors to modulate cellular functions. To identify cellular proteins that interacted with N protein of TGEV, methods of GST pull-down and Co-IP were utilized to precipitate cellular proteins of swine testicular (ST). Bound cellular proteins were resolved by SDS-PAGE. Analysis of interacting proteins by mass spectrometry allowed identification of 15 cellular protein bands representative of 12 cellular proteins including vimentin that bound to N protein. Furthermore, the function of vimentin cytoskeleton in ST cells during TGEV infection was examined. Vimentin cytoskeleton was required for virus replication. The present study thus provides protein-related information about interaction of TGEV N protein with host cell that should be useful for understanding host cell response to coronavirus pathogenesis infection and the underlying mechanism of coronavirus replication. PMID:25533531

  11. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus.

    PubMed

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang

    2016-05-01

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. PMID:26967976

  12. Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease.

    PubMed

    Krupovic, Mart; Cvirkaite-Krupovic, Virginija; Prangishvili, David; Koonin, Eugene V

    2015-01-01

    Many proteins of viruses infecting hyperthermophilic Crenarchaeota have no detectable homologs in current databases, hampering our understanding of viral evolution. We used sensitive database search methods and structural modeling to show that a nucleocapsid protein (TP1) of Thermoproteus tenax virus 1 (TTV1) is a derivative of the Cas4 nuclease, a component of the CRISPR-Cas adaptive immunity system that is encoded also by several archaeal viruses. In TTV1, the Cas4 gene was split into two, with the N-terminal portion becoming TP1, and lost some of the catalytic amino acid residues, apparently resulting in the inactivation of the nuclease. To our knowledge, this is the first described case of exaptation of an enzyme for a virus capsid protein function. PMID:26514828

  13. Autographa californica Multiple Nucleopolyhedrovirus orf132 Encodes a Nucleocapsid-Associated Protein Required for Budded-Virus and Multiply Enveloped Occlusion-Derived Virus Production

    PubMed Central

    Yang, Ming; Wang, Shuo; Yue, Xiu-Li

    2014-01-01

    ABSTRACT Autographa californica multiple nucleopolyhedrovirus orf132 (named ac132) has homologs in all genome-sequenced group I nucleopolyhedroviruses. Its role in the viral replication cycle is unknown. In this study, ac132 was shown to express a protein of around 28 kDa, which was determined to be associated with the nucleocapsids of both occlusion-derived virus and budded virus. Confocal microscopy showed that AC132 protein appeared in central region of the nucleus as early as 12 h postinfection with the virus. It formed a ring zone at the periphery of the nucleus by 24 h postinfection. To investigate its role in virus replication, ac132 was deleted from the viral genome by using a bacmid system. In the Sf9 cell culture transfected by the ac132 knockout bacmid, infection was restricted to single cells, and the titer of infectious budded virus was reduced to an undetectable level. However, viral DNA replication and the expression of late genes vp39 and odv-e25 and a reporter gene under the control of the very late gene p10 promoter were unaffected. Electron microscopy showed that nucleocapsids, virions, and occlusion bodies were synthesized in the cells transfected by an ac132 knockout bacmid, but the formation of the virogenic stroma and occlusion bodies was delayed, the numbers of enveloped nucleocapsids were reduced, and the occlusion bodies contained mainly singly enveloped nucleocapsids. AC132 was found to interact with envelope protein ODV-E18 and the viral DNA-binding protein P6.9. The data from this study suggest that ac132 possibly plays an important role in the assembly and envelopment of nucleocapsids. IMPORTANCE To our knowledge, this is the first report on a functional analysis of ac132. The data presented here demonstrate that ac132 is required for production of the budded virus and multiply enveloped occlusion-derived virus of Autographa californica multiple nucleopolyhedrovirus. This article reveals unique phenotypic changes induced by ac132

  14. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging.

    PubMed

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K; Osorio, Fernando A; Hiscox, Julian A

    2008-08-15

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus. PMID:18550142

  15. Development and Evaluation of Recombinant Nucleocapsid Protein Based Diagnostic ELISA for Detection of Nipah Virus Infection in Pigs.

    PubMed

    Kulkarni, Diwakar D; Venkatesh, Govindarajalu; Tosh, Chakradhar; Patel, Priyanka; Mashoria, Anita; Gupta, Vandana; Gupta, Sourabh; D, Senthilkumar

    2016-01-01

    The recombinant viral protein-based indirect enzyme-linked immunosorbent assay (ELISA) is a cost-effective, safe, specific, and rapid tool to diagnose the viral infection. Nipah virus nucleocapsid (NiV-N) protein was expressed in Escherichia coli and purified by histidine tag-based affinity chromatography. The N protein was selected based on its immuno dominance and conservation among different NiV strains. An indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) for swine sera was optimized using the recombinant NiV-N protein as an antigen along with negative and positive controls. The background reading was blocked using skim milk powder and chicken serum. A total number of 1709 swine serum samples from various states of India were tested with indirect ELISA and Western blot. The test was considered positive only when its total reactivity reading was higher than 0.2 cut-off value and the ratio of the total reactivity to the background reading was more than 2.0. Since specificity is high for Western blotting it was used as standard test for comparison of results of indirect ELISA. Sensitivity and specificity of indirect ELISA was 100% and 98.7%, respectively, in comparison with Western blotting. Recombinant N protein-based ELISA can be used in screening large number of serum samples for epidemiological investigations in developing countries where high containment laboratories are not available to handle this zoonotic virus. PMID:26327601

  16. Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes.

    PubMed

    Mühlberger, E; Lötfering, B; Klenk, H D; Becker, S

    1998-11-01

    This paper describes the first reconstituted replication system established for a member of the Filoviridae, Marburg virus (MBGV). MBGV minigenomes containing the leader and trailer regions of the MBGV genome and the chloramphenicol acetyltransferase (CAT) gene were constructed. In MBGV-infected cells, these minigenomes were replicated and encapsidated and could be passaged. Unlike most other members of the order Mononegavirales, filoviruses possess four proteins presumed to be components of the nucleocapsid (NP, VP35, VP30, and L). To determine the protein requirements for replication and transcription, a reverse genetic system was established for MBGV based on the vaccinia virus T7 expression system. Northern blot analysis of viral RNA revealed that three nucleocapsid proteins (NP, VP35, and L) were essential and sufficient for transcription as well as replication and encapsidation. These data indicate that VP35, rather than VP30, is the functional homologue of rhabdo- and paramyxovirus P proteins. The reconstituted replication system was profoundly affected by the NP-to-VP35 expression ratio. To investigate whether CAT gene expression was achieved entirely by mRNA or in part by full-length plus-strand minigenomes, a copy-back minireplicon containing the CAT gene but lacking MBGV-specific transcriptional start sites was employed in the artificial replication system. This construct was replicated without accompanying CAT activity. It was concluded that the CAT activity reflected MBGV-specific transcription and not replication. PMID:9765419

  17. An Eriophyid Mite-Transmitted Plant Virus Contains Eight Genomic RNA Segments with Unusual Heterogeneity in the Nucleocapsid Protein

    PubMed Central

    McMechan, Anthony J.; Wosula, Everlyne N.; Wegulo, Stephen N.; Graybosch, Robert A.; French, Roy; Hein, Gary L.

    2014-01-01

    ABSTRACT Eriophyid mite-transmitted, multipartite, negative-sense RNA plant viruses with membrane-bound spherical virions are classified in the genus Emaravirus. We report here that the eriophyid mite-transmitted Wheat mosaic virus (WMoV), an Emaravirus, contains eight genomic RNA segments, the most in a known negative-sense RNA plant virus. Remarkably, two RNA 3 consensus sequences, encoding the nucleocapsid protein, were found with 12.5% sequence divergence, while no heterogeneity was observed in the consensus sequences of additional genomic RNA segments. The RNA-dependent RNA polymerase, glycoprotein precursor, nucleocapsid, and P4 proteins of WMoV exhibited limited sequence homology with the orthologous proteins of other emaraviruses, while proteins encoded by additional genomic RNA segments displayed no significant homology with proteins reported in GenBank, suggesting that the genus Emaravirus evolved further with a divergent octapartite genome. Phylogenetic analyses revealed that WMoV formed an evolutionary link between members of the Emaravirus genus and the family Bunyaviridae. Furthermore, genomic-length virus- and virus-complementary (vc)-sense strands of all WMoV genomic RNAs accumulated asymmetrically in infected wheat, with 10- to 20-fold more virus-sense genomic RNAs than vc-sense RNAs. These data further confirm the octapartite negative-sense polarity of the WMoV genome. In WMoV-infected wheat, subgenomic-length mRNAs of vc sense were detected for genomic RNAs 3, 4, 7, and 8 but not for other RNA species, suggesting that the open reading frames present in the complementary sense of genomic RNAs are expressed through subgenomic- or near-genomic-length vc-sense mRNAs. IMPORTANCE Wheat mosaic virus (WMoV), an Emaravirus, is the causal agent of High Plains disease of wheat and maize. In this study, we demonstrated that the genome of WMoV comprises eight negative-sense RNA segments with an unusual sequence polymorphism in an RNA encoding the nucleocapsid

  18. A NEW ROLE FOR HIV NUCLEOCAPSID PROTEIN IN MODULATING THE SPECIFICITY OF PLUS STRAND PRIMING

    PubMed Central

    Jacob, Deena T.; DeStefano, Jeffrey J.

    2008-01-01

    The current study indicates a new role for HIV nucleocapsid protein (NC) in modulating the specificity of plus strand priming. RNase H cleavage by reverse transcriptase (RT) during minus strand synthesis gives rise to RNA fragments that could potentially be used as primers for synthesis of the plus strand, leading to the initiation of priming from multiple points as has been observed for other retroviruses. For HIV, the central and 3′ polypurine tracts (PPTs) are the major sites of plus strand initiation. Using reconstituted in vitro assays, results showed that NC greatly reduced the efficiency of extension of non-PPT RNA primers, but not PPT. Experiments mimicking HIV replication showed that RT generated and used both PPT and non-PPT RNAs to initiate “plus strand” synthesis, but non-PPT usage was strongly inhibited by NC. The results support a role for NC in specifying primer usage during plus strand synthesis. PMID:18632127

  19. The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid.

    PubMed

    York, Ashley; Kutluay, Sebla B; Errando, Manel; Bieniasz, Paul D

    2016-08-01

    The APOBEC3 (A3) cytidine deaminases are antiretroviral proteins, whose targets include human immunodeficiency virus type-1 (HIV-1). Their incorporation into viral particles is critical for antiviral activity and is driven by interactions with the RNA molecules that are packaged into virions. However, it is unclear whether A3 proteins preferentially target RNA molecules that are destined to be packaged and if so, how. Using cross-linking immunoprecipitation sequencing (CLIP-seq), we determined the RNA binding preferences of the A3F, A3G and A3H proteins. We found that A3 proteins bind preferentially to RNA segments with particular properties, both in cells and in virions. Specifically, A3 proteins target RNA sequences that are G-rich and/or A-rich and are not scanned by ribosomes during translation. Comparative analyses of HIV-1 Gag, nucleocapsid (NC) and A3 RNA binding to HIV-1 RNA in cells and virions revealed the striking finding that A3 proteins partially mimic the RNA binding specificity of the HIV-1 NC protein. These findings suggest a model for A3 incorporation into HIV-1 virions in which an NC-like RNA binding specificity is determined by nucleotide composition rather than sequence. This model reconciles the promiscuity of A3 RNA binding that has been observed in previous studies with a presumed advantage that would accompany selective binding to RNAs that are destined to be packaged into virions. PMID:27541140

  20. The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid

    PubMed Central

    Errando, Manel; Bieniasz, Paul D.

    2016-01-01

    The APOBEC3 (A3) cytidine deaminases are antiretroviral proteins, whose targets include human immunodeficiency virus type-1 (HIV-1). Their incorporation into viral particles is critical for antiviral activity and is driven by interactions with the RNA molecules that are packaged into virions. However, it is unclear whether A3 proteins preferentially target RNA molecules that are destined to be packaged and if so, how. Using cross-linking immunoprecipitation sequencing (CLIP-seq), we determined the RNA binding preferences of the A3F, A3G and A3H proteins. We found that A3 proteins bind preferentially to RNA segments with particular properties, both in cells and in virions. Specifically, A3 proteins target RNA sequences that are G-rich and/or A-rich and are not scanned by ribosomes during translation. Comparative analyses of HIV-1 Gag, nucleocapsid (NC) and A3 RNA binding to HIV-1 RNA in cells and virions revealed the striking finding that A3 proteins partially mimic the RNA binding specificity of the HIV-1 NC protein. These findings suggest a model for A3 incorporation into HIV-1 virions in which an NC-like RNA binding specificity is determined by nucleotide composition rather than sequence. This model reconciles the promiscuity of A3 RNA binding that has been observed in previous studies with a presumed advantage that would accompany selective binding to RNAs that are destined to be packaged into virions. PMID:27541140

  1. Characterization of cross-reactive and serotype-specific epitopes on the nucleocapsid proteins of hantaviruses.

    PubMed

    Tischler, Nicole D; Rosemblatt, Mario; Valenzuela, Pablo D T

    2008-07-01

    The hantavirus nucleocapsid (N) protein fulfills several key roles in virus replication and assembly and is the major antigen in humoral immune responses in humans and mice. Here we report on epitopes involved in serotype-specific and cross-reactive recognition of the N proteins of hantaviruses using monoclonal antibodies (mAbs) against the N proteins of Andes virus (ANDV) and Sin Nombre virus (SNV). The mAbs define at least twelve different epitopic patterns which span eight sequences, including amino acids 17-59, 66-78, 79-91, 157-169, 222-234, 244-263, 274-286 and 326-338 on the SNV and ANDV N proteins. Studies on the cross-reactivity of these mAbs with different hantavirus N proteins indicated that epitopes located within amino acids 244-286 are related to serotype specificity. We analyzed further the location of epitopes with available three-dimensional structure information including the N-terminal coiled-coil and derived exposed and hidden residues of these epitopes. The generated recombinant N proteins and the characterized mAbs are functional tools being now available for hantavirus diagnostics and replication studies. PMID:18342973

  2. Nucleocapsid protein structures from orthobunyaviruses reveal insight into ribonucleoprotein architecture and RNA polymerization

    PubMed Central

    Ariza, Antonio; Tanner, Sian J.; Walter, Cheryl T.; Dent, Kyle C.; Shepherd, Dale A.; Wu, Weining; Matthews, Susan V.; Hiscox, Julian A.; Green, Todd J.; Luo, Ming; Elliott, Richard M.; Fooks, Anthony R.; Ashcroft, Alison E.; Stonehouse, Nicola J.; Ranson, Neil A.; Barr, John N.; Edwards, Thomas A.

    2013-01-01

    All orthobunyaviruses possess three genome segments of single-stranded negative sense RNA that are encapsidated with the virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex, which is uncharacterized at high resolution. We report the crystal structure of both the Bunyamwera virus (BUNV) N–RNA complex and the unbound Schmallenberg virus (SBV) N protein, at resolutions of 3.20 and 2.75 Å, respectively. Both N proteins crystallized as ring-like tetramers and exhibit a high degree of structural similarity despite classification into different orthobunyavirus serogroups. The structures represent a new RNA-binding protein fold. BUNV N possesses a positively charged groove into which RNA is deeply sequestered, with the bases facing away from the solvent. This location is highly inaccessible, implying that RNA polymerization and other critical base pairing events in the virus life cycle require RNP disassembly. Mutational analysis of N protein supports a correlation between structure and function. Comparison between these crystal structures and electron microscopy images of both soluble tetramers and authentic RNPs suggests the N protein does not bind RNA as a repeating monomer; thus, it represents a newly described architecture for bunyavirus RNP assembly, with implications for many other segmented negative-strand RNA viruses. PMID:23595147

  3. Distinct nucleic acid interaction properties of HIV-1 nucleocapsid protein precursor NCp15 explain reduced viral infectivity

    PubMed Central

    Wang, Wei; Naiyer, Nada; Mitra, Mithun; Li, Jialin; Williams, Mark C.; Rouzina, Ioulia; Gorelick, Robert J.; Wu, Zhengrong; Musier-Forsyth, Karin

    2014-01-01

    During human immunodeficiency virus type 1 (HIV-1) maturation, three different forms of nucleocapsid (NC) protein—NCp15 (p9 + p6), NCp9 (p7 + SP2) and NCp7—appear successively. A mutant virus expressing NCp15 shows greatly reduced infectivity. Mature NCp7 is a chaperone protein that facilitates remodeling of nucleic acids (NAs) during reverse transcription. To understand the strict requirement for NCp15 processing, we compared the chaperone function of the three forms of NC. NCp15 anneals tRNA to the primer-binding site at a similar rate as NCp7, whereas NCp9 is the most efficient annealing protein. Assays to measure NA destabilization show a similar trend. Dynamic light scattering studies reveal that NCp15 forms much smaller aggregates relative to those formed by NCp7 and NCp9. Nuclear magnetic resonance studies suggest that the acidic p6 domain of HIV-1 NCp15 folds back and interacts with the basic zinc fingers. Neutralizing the acidic residues in p6 improves the annealing and aggregation activity of NCp15 to the level of NCp9 and increases the protein–NA aggregate size. Slower NCp15 dissociation kinetics is observed by single-molecule DNA stretching, consistent with the formation of electrostatic inter-protein contacts, which likely contribute to the distinct aggregate morphology, irregular HIV-1 core formation and non-infectious virus. PMID:24813443

  4. Mechanisms of HIV-1 Nucleocapsid Protein Inhibition by Lysyl-Peptidyl-Anthraquinone Conjugates.

    PubMed

    Sosic, Alice; Sinigaglia, Laura; Cappellini, Marta; Carli, Ilaria; Parolin, Cristina; Zagotto, Giuseppe; Sabatino, Giuseppina; Rovero, Paolo; Fabris, Dan; Gatto, Barbara

    2016-01-20

    The Nucleocapsid protein NCp7 (NC) is a nucleic acid chaperone responsible for essential steps of the HIV-1 life cycle and an attractive candidate for drug development. NC destabilizes nucleic acid structures and promotes the formation of annealed substrates for HIV-1 reverse transcription elongation. Short helical nucleic acid segments bordered by bulges and loops, such as the Trans-Activation Response element (TAR) of HIV-1 and its complementary sequence (cTAR), are nucleation elements for helix destabilization by NC and also preferred recognition sites for threading intercalators. Inspired by these observations, we have recently demonstrated that 2,6-disubstituted peptidyl-anthraquinone-conjugates inhibit the chaperone activities of recombinant NC in vitro, and that inhibition correlates with the stabilization of TAR and cTAR stem-loop structures. We describe here enhanced NC inhibitory activity by novel conjugates that exhibit longer peptidyl chains ending with a conserved N-terminal lysine. Their efficient inhibition of TAR/cTAR annealing mediated by NC originates from the combination of at least three different mechanisms, namely, their stabilizing effects on nucleic acids dynamics by threading intercalation, their ability to target TAR RNA substrate leading to a direct competition with the protein for the same binding sites on TAR, and, finally, their effective binding to the NC protein. Our results suggest that these molecules may represent the stepping-stone for the future development of NC-inhibitors capable of targeting the protein itself and its recognition site in RNA. PMID:26666402

  5. Quantitative Characterization of Configurational Space Sampled by HIV-1 Nucleocapsid Using Solution NMR, X-ray Scattering and Protein Engineering.

    PubMed

    Deshmukh, Lalit; Schwieters, Charles D; Grishaev, Alexander; Clore, G Marius

    2016-06-01

    Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function. PMID:26946052

  6. Poly(A)-binding protein interacts with the nucleocapsid protein of porcine reproductive and respiratory syndrome virus and participates in viral replication.

    PubMed

    Wang, Xiaoye; Bai, Juan; Zhang, Lili; Wang, Xianwei; Li, Yufeng; Jiang, Ping

    2012-12-01

    Interactions between host factors and the viral protein play important roles in host adaptation and regulation of virus replication. Poly(A)-binding protein (PABP), a host cellular protein that enhances translational efficiency by circularizing mRNAs, was identified by yeast two-hybrid screening as a cellular partner for PRRSV nucleocapsid (N) protein in porcine alveolar macrophages. The specific interaction of PRRSV N protein with PABP was confirmed in infected cells by co-immunoprecipitation and in vitro by GST pull-down assay. We showed by confocal microscopy that the PABP co-localized with the PRRSV N protein. Using a series of deletion mutants, the interactive domain of N protein with PABP was mapped to a region of amino acids 52-69. For PABP, C-terminal half, which interestingly interacts other translation regulators, was determined to be the domain interactive with N protein. Short hairpin RNA (shRNA)-mediated silencing of PABP in cells resulted in significantly reduced PRRSV RNA synthesis, viral encoded protein expression and viral titer. Overall, the results presented here point toward an important role for PABP in regulating PRRSV replication. PMID:22985629

  7. Sin Nombre hantavirus nucleocapsid protein exhibits a metal-dependent DNA-specific endonucleolytic activity.

    PubMed

    Möncke-Buchner, Elisabeth; Szczepek, Michal; Bokelmann, Marcel; Heinemann, Patrick; Raftery, Martin J; Krüger, Detlev H; Reuter, Monika

    2016-09-01

    We demonstrate that the nucleocapsid protein of Sin Nombre hantavirus (SNV-N) has a DNA-specific endonuclease activity. Upon incubation of SNV-N with DNA in the presence of magnesium or manganese, we observed DNA digestion in sequence-unspecific manner. In contrast, RNA was not affected under the same conditions. Moreover, pre-treatment of SNV-N with RNase before DNA cleavage increased the endonucleolytic activity. Structure-based protein fold prediction using known structures from the PDB database revealed that Asp residues in positions 88 and 103 of SNV-N show sequence similarity with the active site of the restriction endonuclease HindIII. Crystal structure of HindIII predicts that residues Asp93 and Asp108 are essential for coordination of the metal ions required for HindIII DNA cleavage. Therefore, we hypothesized that homologous residues in SNV-N, Asp88 and Asp103, may have a similar function. Replacing Asp88 and Asp103 by alanine led to an SNV-N protein almost completely abrogated for endonuclease activity. PMID:27261891

  8. Structure of the nucleocapsid protein of porcine reproductive and respiratory syndrome virus.

    PubMed

    Doan, Danny N P; Dokland, Terje

    2003-11-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped RNA virus of the Arteriviridae family, genomically related to the coronaviruses. PRRSV is the causative agent of both severe and persistent respiratory disease and reproductive failure in pigs worldwide. The PRRSV virion contains a core made of the 123 amino acid nucleocapsid (N) protein, a product of the ORF7 gene. We have determined the crystal structure of the capsid-forming domain of N. The structure was solved to 2.6 A resolution by SAD methods using the anomalous signal from sulfur. The N protein exists in the crystal as a tight dimer forming a four-stranded beta sheet floor superposed by two long alpha helices and flanked by two N- and two C-terminal alpha helices. The structure of N represents a new class of viral capsid-forming domains, distinctly different from those of other known enveloped viruses, but reminiscent of the coat protein of bacteriophage MS2. PMID:14604534

  9. Vaccinia virus protein A3 is required for the production of normal immature virions and for the encapsidation of the nucleocapsid protein L4.

    PubMed

    Jesus, Desyree Murta; Moussatche, Nissin; McFadden, Baron B D; Nielsen, Casey Paulasue; D'Costa, Susan M; Condit, Richard C

    2015-07-01

    Maturation of the vaccinia virion is an intricate process that results in the organization of the viroplasm contained in immature virions into the lateral bodies, core wall and nucleocapsid observed in the mature particles. It is unclear how this organization takes place and studies with mutants are indispensable in understanding this process. By characterizing an inducible mutant in the A3L gene, we revealed that A3, an inner core wall protein, is important for formation of normal immature viruses and also for the correct localization of L4, a nucleocapsid protein. L4 did not accumulate in the viral factories in the absence of A3 and was not encapsidated in the particles that do not contain A3. These data strengthen our previously suggested hypothesis that A3 and L4 interact and that this interaction is critical for proper formation of the core wall and nucleocapsid. PMID:25765002

  10. Vaccinia virus protein A3 is required for the production of normal immature virions and for the encapsidation of the nucleocapsid protein L4

    PubMed Central

    Jesus, Desyree Murta; Moussatche, Nissin; McFadden, Baron D.; Nielsen, Casey Paulasue; D’Costa, Susan M.; Condit, Richard C.

    2015-01-01

    Maturation of the vaccinia virion is an intricate process that results in the organization of the viroplasm contained in immature virions into the lateral bodies, core wall and nucleocapsid observed in the mature particles. It is unclear how this organization takes place and studies with mutants are indispensable in understanding this process. By characterizing an inducible mutant in the A3L gene, we revealed that A3, an inner core wall protein, is important for formation of normal immature viruses and also for the correct localization of L4, a nucleocapsid protein. L4 did not accumulate in the viral factories in the absence of A3 and was not encapsidated in the particles that do not contain A3. These data strengthen our previously suggested hypothesis that A3 and L4 interact and that this interaction is critical for proper formation of the core wall and nucleocapsid. PMID:25765002

  11. Solution structure and backbone dynamics of Mason-Pfizer monkey virus (MPMV) nucleocapsid protein.

    PubMed Central

    Gao, Y.; Kaluarachchi, K.; Giedroc, D. P.

    1998-01-01

    Retroviral nucleocapsid proteins (NCPs) are CCHC-type zinc finger proteins that mediate virion RNA binding activities associated with retrovirus assembly and genomic RNA encapsidation. Mason-Pfizer monkey virus (MPMV), a type D retrovirus, encodes a 96-amino acid nucleocapsid protein, which contains two Cys-X2-Cys-X4-His-X4-Cys (CCHC) zinc fingers connected by an unusually long 15-amino acid linker. Homonuclear, two-dimensional sensitivity-enhanced 15N-1H, three-dimensional 15N-1H, and triple resonance NMR spectroscopy have been used to determine the solution structure and residue-specific backbone dynamics of the structured core domain of MPMV NCP containing residues 21-80. Structure calculations and spectral density mapping of N-H bond vector mobility reveal that MPMV NCP 21-80 is best described as two independently folded, rotationally uncorrelated globular domains connected by a seven-residue flexible linker consisting of residues 42-48. The N-terminal CCHC zinc finger domain (residues 24-37) appears to adopt a fold like that described previously for HIV-1 NCP; however, residues within this domain and the immediately adjacent linker region (residues 38-41) are characterized by extensive conformational averaging on the micros-ms time scale at 25 degrees C. In contrast to other NCPs, residues 49-77, which includes the C-terminal CCHC zinc-finger (residues 53-66), comprise a well-folded globular domain with the Val49-Pro-Gly-Leu52 sequence and C-terminal tail residues 67-77 characterized by amide proton exchange properties and 15N R1, R2, and (1H-15N) NOE values indistinguishable to residues in the core C-terminal finger. Twelve refined structural models of MPMV NCP residues 49-80 (pairwise backbone RMSD of 0.77 A) reveal that the side chains of the conserved Pro50 and Trp62 are in van der Waals contact with one another. Residues 70-73 in the C-terminal tail adopt a reverse turn-like structure. Ile77 is involved in extensive van der Waals contact with the core

  12. Intrinsic Nucleic Acid Dynamics Modulates HIV-1 Nucleocapsid Protein Binding to Its Targets

    PubMed Central

    Bazzi, Ali; Zargarian, Loussiné; Chaminade, Françoise; De Rocquigny, Hugues; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2012-01-01

    HIV-1 nucleocapsid protein (NC) is involved in the rearrangement of nucleic acids occurring in key steps of reverse transcription. The protein, through its two zinc fingers, interacts preferentially with unpaired guanines in single-stranded sequences. In mini-cTAR stem-loop, which corresponds to the top half of the cDNA copy of the transactivation response element of the HIV-1 genome, NC was found to exhibit a clear preference for the TGG sequence at the bottom of mini-cTAR stem. To further understand how this site was selected among several potential binding sites containing unpaired guanines, we probed the intrinsic dynamics of mini-cTAR using 13C relaxation measurements. Results of spin relaxation time measurements have been analyzed using the model-free formalism and completed by dispersion relaxation measurements. Our data indicate that the preferentially recognized guanine in the lower part of the stem is exempt of conformational exchange and highly mobile. In contrast, the unrecognized unpaired guanines of mini-cTAR are involved in conformational exchange, probably related to transient base-pairs. These findings support the notion that NC preferentially recognizes unpaired guanines exhibiting a high degree of mobility. The ability of NC to discriminate between close sequences through their dynamic properties contributes to understanding how NC recognizes specific sites within the HIV genome. PMID:22745685

  13. Intrinsic nucleic acid dynamics modulates HIV-1 nucleocapsid protein binding to its targets.

    PubMed

    Bazzi, Ali; Zargarian, Loussiné; Chaminade, Françoise; De Rocquigny, Hugues; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2012-01-01

    HIV-1 nucleocapsid protein (NC) is involved in the rearrangement of nucleic acids occurring in key steps of reverse transcription. The protein, through its two zinc fingers, interacts preferentially with unpaired guanines in single-stranded sequences. In mini-cTAR stem-loop, which corresponds to the top half of the cDNA copy of the transactivation response element of the HIV-1 genome, NC was found to exhibit a clear preference for the TGG sequence at the bottom of mini-cTAR stem. To further understand how this site was selected among several potential binding sites containing unpaired guanines, we probed the intrinsic dynamics of mini-cTAR using (13)C relaxation measurements. Results of spin relaxation time measurements have been analyzed using the model-free formalism and completed by dispersion relaxation measurements. Our data indicate that the preferentially recognized guanine in the lower part of the stem is exempt of conformational exchange and highly mobile. In contrast, the unrecognized unpaired guanines of mini-cTAR are involved in conformational exchange, probably related to transient base-pairs. These findings support the notion that NC preferentially recognizes unpaired guanines exhibiting a high degree of mobility. The ability of NC to discriminate between close sequences through their dynamic properties contributes to understanding how NC recognizes specific sites within the HIV genome. PMID:22745685

  14. Targeted binding of nucleocapsid protein transforms the folding landscape of HIV-1 TAR RNA

    PubMed Central

    McCauley, Micah J.; Rouzina, Ioulia; Manthei, Kelly A.; Gorelick, Robert J.; Musier-Forsyth, Karin; Williams, Mark C.

    2015-01-01

    Retroviral nucleocapsid (NC) proteins are nucleic acid chaperones that play a key role in the viral life cycle. During reverse transcription, HIV-1 NC facilitates the rearrangement of nucleic acid secondary structure, allowing the transactivation response (TAR) RNA hairpin to be transiently destabilized and annealed to a cDNA hairpin. It is not clear how NC specifically destabilizes TAR RNA but does not strongly destabilize the resulting annealed RNA–DNA hybrid structure, which must be formed for reverse transcription to continue. By combining single-molecule optical tweezers measurements with a quantitative mfold-based model, we characterize the equilibrium TAR stability and unfolding barrier for TAR RNA. Experiments show that adding NC lowers the transition state barrier height while also dramatically shifting the barrier location. Incorporating TAR destabilization by NC into the mfold-based model reveals that a subset of preferential protein binding sites is responsible for the observed changes in the unfolding landscape, including the unusual shift in the transition state. We measure the destabilization induced at these NC binding sites and find that NC preferentially targets TAR RNA by binding to specific sequence contexts that are not present on the final annealed RNA–DNA hybrid structure. Thus, specific binding alters the entire RNA unfolding landscape, resulting in the dramatic destabilization of this specific structure that is required for reverse transcription. PMID:26483503

  15. Use of recombinant nucleocapsid proteins for serological diagnosis offeline coronavirus infection by three immunochromatographic tests.

    PubMed

    Takano, Tomomi; Ishihara, Yuka; Matsuoka, Masafumi; Yokota, Shoko; Matsuoka-Kobayashi, Yukie; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2014-02-01

    Three types of immunochromatographic assays (ICAs) were designed to detect anti-feline coronavirus (FCoV) antibodies. Recombinant FCoV nucleocapsid protein (rNP) was used as a conjugate or test line in all 3 ICA kits (CJIgG/TNP, CJNP/TNP, and CJNP/TPA). All three ICA kits were capable of detecting anti-FCoV antibodies; however, non-specific positive reactions of anti-FCoV antibody-negative plasma samples with the test line were observed in 2 ICA kits (CJIgG/TNP and CJNP/TNP), in which rNP was used as the test line. On the other hand, the specific detection of anti-FCoV antibodies was possible in all plasma, serum, whole blood, and ascitic fluid samples using the ICA kit with protein A blotted as the test line (CJNP/TPA). In addition, the specificity and sensitivity of ICA (CJNP/TPA) were equivalent to those of the reference ELISA. The development of simple antibody test methods using the principle of ICA (CJNP/TPA) for other coronavirus and feline viral infections is expected in the future. PMID:24516876

  16. Use of recombinant nucleocapsid proteins for serological diagnosis of Feline coronavirus infection by three immunochromatographic tests.

    PubMed

    Takano, Tomomi; Ishihara, Yuka; Matsuoka, Masafumi; Yokota, Shoko; Matsuoka-Kobayashi, Yukie; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2013-10-26

    Three types of immunochromatographic assays (ICAs) were designed to detect anti-feline coronavirus (FCoV) antibodies. Recombinant FCoV nucleocapsid protein (rNP) was used as a conjugate or test line in all 3 ICA kits (CJIgG/TNP, CJNP/TNP, and CJNP/TPA). All three ICA kits were capable of detecting anti-FCoV antibodies; however, non-specific positive reactions of anti-FCoV antibody-negative plasma samples with the test line were observed in 2 ICA kits (CJIgG/TNP and CJNP/TNP), in which rNP was used as the test line. On the other hand, the specific detection of anti-FCoV antibodies was possible in all plasma, serum, whole blood, and ascitic fluid samples using the ICA kit with protein A blotted as the test line (CJNP/TPA). In addition, the specificity and sensitivity of ICA (CJNP/TPA) were equivalent to those of the reference ELISA. The development of simple antibody test methods using the principle of ICA (CJNP/TPA) for other coronavirus and feline viral infections is expected in the future. PMID:24513291

  17. Observation of HIV-1 Nucleocapsid Protein induced TAR DNA melting at the single molecule level

    NASA Astrophysics Data System (ADS)

    Cosa, Gonzalo; Harbron, Elizabeth; O'Connor, Donald; Musier-Forsyth, Karin; Barbara, Paul

    2003-03-01

    Reverse transcription of the HIV-1 RNA genome involves several nucleic acid rearrangement steps, and the HIV-1 nucleocapsid protein (NC) plays a key role in this process. NC is a nucleic acid chaperone protein, which facilitates the formation of the most stable nucleic acid structures. Single molecule fluorescence resonance energy transfer (SM-FRET) measurements enable us to observe the NC-induced conformational fluctuations of a transactivation response region (TAR) DNA hairpin, which is part of the initial product of reverse transcription known as minus-strand strong-stop DNA. SM-FRET studies show that the majority of conformational fluctuations of the fluorescently-labeled TAR DNA hairpin in the presence of NC occur in <100 ms. A single molecule explores a wide range of confomations unpon NC binding, with fluctuations encompassing as many as 40 bases in both arms of the hairpin. No conformational fluctuations are observed with the dye-labeled TAR DNA hairpin in the absence of NC or when a labeled TAR DNA hairpin variant lacking bulges and internal loops is analyzed in the presence of NC. This study represents the first real-time observation of NC-mediated nucleic acid conformational fluctuations, revealing new insights into NC's nucleic acid chaperone activity.

  18. Single DNA molecule stretching measures the activity of chemicals that target the HIV-1 nucleocapsid protein

    PubMed Central

    Cruceanu, Margareta; Stephen, Andrew G.; Beuning, Penny J.; Gorelick, Robert J.; Fisher, Robert J.; Williams, Mark C.

    2006-01-01

    We develop a biophysical method for investigating chemical compounds that target the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NCp7). We used an optical tweezers instrument to stretch single λ-DNA molecules through the helix-to-coil transition in the presence of NCp7 and various chemical compounds. The change in the helix-coil transition width induced by wild-type NCp7 and its zinc finger variants correlates with in vitro nucleic acid chaperone activity measurements and in vivo assays. The compound-NC interaction measured here reduces NCp7’s capability to alter the transition width. Purified compounds from the NCI Diversity set, 119889, 119911, and 119913 reduce the chaperone activity of 5 nM NC in aqueous solution at 10 nM, 25 nM, and 100 nM concentration, respectively. Similarly, gallein reduced the activity of 4 nM NC at 100 nM concentration. Further analysis allows us to dissect the impact of each compound on both sequence-specific and non-sequence-specific DNA binding of NC, two of the main components of NC’s nucleic acid chaperone activity. These results suggest that DNA stretching experiments can be used to screen chemical compounds targeting NC proteins, and to further explore the mechanisms by which these compounds interact with NC and alter its nucleic acid chaperone activity. PMID:17034752

  19. Flexible segments modulate co-folding of dUTPase and nucleocapsid proteins.

    PubMed

    Németh-Pongrácz, Veronika; Barabás, Orsolya; Fuxreiter, Mónika; Simon, István; Pichová, Iva; Rumlová, Michalea; Zábranská, Helena; Svergun, Dmitri; Petoukhov, Maxim; Harmat, Veronika; Klement, Eva; Hunyadi-Gulyás, Eva; Medzihradszky, Katalin F; Kónya, Emese; Vértessy, Beáta G

    2007-01-01

    The homotrimeric fusion protein nucleocapsid (NC)-dUTPase combines domains that participate in RNA/DNA folding, reverse transcription, and DNA repair in Mason-Pfizer monkey betaretrovirus infected cells. The structural organization of the fusion protein remained obscured by the N- and C-terminal flexible segments of dUTPase and the linker region connecting the two domains that are invisible in electron density maps. Small-angle X-ray scattering reveals that upon oligonucleotide binding the NC domains adopt the trimeric symmetry of dUTPase. High-resolution X-ray structures together with molecular modeling indicate that fusion with NC domains dramatically alters the conformation of the flexible C-terminus by perturbing the orientation of a critical beta-strand. Consequently, the C-terminal segment is capable of double backing upon the active site of its own monomer and stabilized by non-covalent interactions formed with the N-terminal segment. This co-folding of the dUTPase terminal segments, not observable in other homologous enzymes, is due to the presence of the fused NC domain. Structural and genomic advantages of fusing the NC domain to a shortened dUTPase in betaretroviruses and the possible physiological consequences are envisaged. PMID:17169987

  20. Flexible segments modulate co-folding of dUTPase and nucleocapsid proteins

    PubMed Central

    Németh-Pongrácz, Veronika; Barabás, Orsolya; Fuxreiter, Mónika; Simon, István; Pichová, Iva; Rumlová, Michalea; Zábranská, Helena; Svergun, Dmitri; Petoukhov, Maxim; Harmat, Veronika; Klement, Éva; Hunyadi-Gulyás, Éva; Medzihradszky, Katalin F.; Kónya, Emese; Vértessy, Beáta G.

    2007-01-01

    The homotrimeric fusion protein nucleocapsid (NC)-dUTPase combines domains that participate in RNA/DNA folding, reverse transcription, and DNA repair in Mason-Pfizer monkey betaretrovirus infected cells. The structural organization of the fusion protein remained obscured by the N- and C-terminal flexible segments of dUTPase and the linker region connecting the two domains that are invisible in electron density maps. Small-angle X-ray scattering reveals that upon oligonucleotide binding the NC domains adopt the trimeric symmetry of dUTPase. High-resolution X-ray structures together with molecular modeling indicate that fusion with NC domains dramatically alters the conformation of the flexible C-terminus by perturbing the orientation of a critical β-strand. Consequently, the C-terminal segment is capable of double backing upon the active site of its own monomer and stabilized by non-covalent interactions formed with the N-terminal segment. This co-folding of the dUTPase terminal segments, not observable in other homologous enzymes, is due to the presence of the fused NC domain. Structural and genomic advantages of fusing the NC domain to a shortened dUTPase in betaretroviruses and the possible physiological consequences are envisaged. PMID:17169987

  1. Recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay for detection of antibody to turkey coronavirus.

    PubMed

    Abdelwahab, Mohamed; Loa, Chien Chang; Wu, Ching Ching; Lin, Tsang Long

    2015-06-01

    Nucleocapsid (N) protein gene of turkey coronavirus (TCoV) was expressed in a prokaryotic system and used to develop an enzyme-linked immunosorbent assay (ELISA) for detection of antibody to TCoV. Anti-TCoV hyperimmune turkey serum and normal turkey serum were used as positive or negative controls for optimization of the ELISA. Goat anti-turkey IgG (H+L) conjugated with horseradish peroxidase was used as detector antibody. Three hundred and twenty two turkey sera from the field were used to evaluate the performance of ELISA and determine the cut-off point of ELISA. The established ELISA was also examined with serum samples obtained from turkeys experimentally infected with TCoV. Those serum samples were collected at various time intervals from 1 to 63 days post-infection. The optimum conditions for differentiation between anti-TCoV hyperimmune serum and normal turkey serum were recombinant TCoV N protein concentration at 20 μg/ml, serum dilution at 1:800, and conjugate dilution at 1:10,000. Of the 322 sera from the field, 101 were positive for TCoV by immunofluorescent antibody assay (IFA). The sensitivity and specificity of the ELISA relative to IFA test were 86.0% and 96.8%, respectively, using the optimum cut-off point of 0.2 as determined by logistic regression method. Reactivity of anti-rotavirus, anti-reovirus, anti-adenovirus, or anti-enterovirus antibodies with the recombinant N protein coated on the ELISA plates was not detected. These results indicated that the established antibody-capture ELISA in conjunction with recombinant TCoV N protein as the coating protein can be utilized for detection of antibodies to TCoV in turkey flocks. PMID:25745958

  2. Biophysical characterisation of the nucleocapsid protein from a highly pathogenic porcine reproductive and respiratory syndrome virus strain.

    PubMed

    Jourdan, Stefanie S; Osorio, Fernando A; Hiscox, Julian A

    2012-03-01

    The arterivirus nucleocapsid (N) protein is a multifunctional protein that binds viral RNA for encapsidation and has potential roles in host cell processes. This study characterised the N protein from a highly virulent North American strain of porcine reproductive and respiratory syndrome virus (PRRSV). The association with viral RNA was mapped to defined motifs on the N protein. The results indicated that disulphide bridge formation played a key role in RNA binding, offering an explanation why infectious virus cannot be rescued if cysteine residues are mutated, and that multiple sites may promote RNA binding. PMID:22306009

  3. Disulfide Linkages Mediating Nucleocapsid Protein Dimerization Are Not Required for Porcine Arterivirus Infectivity

    PubMed Central

    Zhang, Rong; Chen, Chunyan; Sun, Zhi; Tan, Feifei; Zhuang, Jinshan; Tian, Debin; Tong, Guangzhi

    2012-01-01

    The nucleocapsid (N) proteins of the North American (type II) and European (type I) genotypes of porcine reproductive and respiratory syndrome virus (PRRSV) share only approximately 60% genetic identity, and the functionality of N in both genotypes, especially its role in virion assembly, is still poorly understood. In this study, we demonstrated that the ORF7 3′ untranslated region or ORF7 of type I is functional in the type II PRRSV background. Based on these results, we postulated that the cysteine at position 90 (Cys90) of the type II N protein, which corresponds to an alanine in the type I protein, is nonessential for virus infectivity. The replacement of Cys90 with alanine confirmed this hypothesis. We then hypothesized that all of the cysteines in the N protein could be replaced by alanines. Mutational analysis revealed that, in contradiction to previously reported findings, the replacement of all of the cysteines, either singly or in combination, did not impair the growth of either type II or type I PRRSV. Treatment with the alkylating agent N-ethylmaleimide inhibited cysteine-mediated N dimerization in living cells but not in released virions. Additionally, bimolecular fluorescence complementation assays revealed noncovalent interactions in living cells among the N and C termini and between the N-terminal and C-terminal regions of the N proteins of both genotypes of PRRSV. These results demonstrate that the disulfide linkages mediating the N dimerization are not required for PRRSV viability and help to promote our understanding of the mechanism underlying arterivirus particle assembly. PMID:22301142

  4. Identification of phosphorylation sites in the nucleocapsid protein (N protein) of SARS-coronavirus

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Shao, Jianmin; Sun, Maomao; Liu, Jinxiu; Xu, Gongjin; Zhang, Xumin; Xu, Ningzhi; Wang, Rong; Liu, Siqi

    2007-12-01

    After decoding the genome of SARS-coronavirus (SARS-CoV), next challenge is to understand how this virus causes the illness at molecular bases. Of the viral structural proteins, the N protein plays a pivot role in assembly process of viral particles as well as viral replication and transcription. The SARS-CoV N proteins expressed in the eukaryotes, such as yeast and HEK293 cells, appeared in the multiple spots on two-dimensional electrophoresis (2DE), whereas the proteins expressed in E. coli showed a single 2DE spotE These 2DE spots were further examined by Western blot and MALDI-TOF/TOF MS, and identified as the N proteins with differently apparent pI values and similar molecular mass of 50 kDa. In the light of the observations and other evidences, a hypothesis was postulated that the SARS-CoV N protein could be phosphorylated in eukaryotes. To locate the plausible regions of phosphorylation in the N protein, two truncated N proteins were generated in E. coli and treated with PKC[alpha]. The two truncated N proteins after incubation of PKC[alpha] exhibited the differently electrophoretic behaviors on 2DE, suggesting that the region of 1-256 aa in the N protein was the possible target for PKC[alpha] phosphorylation. Moreover, the SARS-CoV N protein expressed in yeast were partially digested with trypsin and carefully analyzed by MALDI-TOF/TOF MS. In contrast to the completely tryptic digestion, these partially digested fragments generated two new peptide mass signals with neutral loss, and MS/MS analysis revealed two phosphorylated peptides located at the "dense serine" island in the N protein with amino acid sequences, GFYAEGSRGGSQASSRSSSR and GNSGNSTPGSSRGNSPARMASGGGK. With the PKC[alpha] phosphorylation treatment and the partially tryptic digestion, the N protein expressed in E. coli released the same peptides as observed in yeast cells. Thus, this investigation provided the preliminary data to determine the phosphorylation sites in the SARS-CoV N protein, and

  5. Characterization of the nucleocapsid protein of Hantaan virus strain 76-118 using monoclonal antibodies.

    PubMed

    Yoshimatsu, K; Arikawa, J; Tamura, M; Yoshida, R; Lundkvist, A; Niklasson, B; Kariwa, H; Azuma, I

    1996-04-01

    We characterized the antigenic sites on the nucleocapsid protein (NP) of Hantaan virus (HTN) using 10 monoclonal antibodies (MAbs). At least seven antigenic sites were revealed by a competitive binding assay and divided into three partially overlapping antigenic regions (I, II and III). Regions I [amino acids (aa) 1-103], II (aa 104-204) and III (aa 205-402) were mapped on NP by examining the reactivity of truncated gene products. Those that corresponded to region I reacted with immune mouse serum, indicating that the region contained major linear epitopes as reported with Four corners virus (FCV) and Puumala virus (PUU) NP. At least one MAb to each region inhibited viral growth when they were introduced into cells by scrape-loading. In addition, they conferred protection from a lethal HTN challenge to newborn mice. A PEPSCAN assay localized the epitope of MAb E5/G6 between aa 166-175. Since E5/G6, which had the highest inhibitory effect both in cells and in mice, showed no virus neutralization activity by ordinary neutralization test, this region is suggested to be important for the virus growth after entry into the cells. PMID:8627258

  6. Identification of a binding site for the human immunodeficiency virus type 1 nucleocapsid protein.

    PubMed

    Sakaguchi, K; Zambrano, N; Baldwin, E T; Shapiro, B A; Erickson, J W; Omichinski, J G; Clore, G M; Gronenborn, A M; Appella, E

    1993-06-01

    The nucleocapsid (NC) protein NCp7 of human immunodeficiency virus type 1 (HIV-1) is important for encapsidation of the virus genome, RNA dimerization, and primer tRNA annealing in vitro. Here we present evidence from gel mobility-shift experiments indicating that NCp7 binds specifically to an RNA sequence. Two complexes were identified in native gels. The more slowly migrating complex contained two RNA molecules and one peptide, while the more rapidly migrating one is composed of one RNA and one peptide. Further, mutational analysis of the RNA shows that the predicted stem and loop structure of stem-loop 1 plays a critical role. Our results show that NCp7 binds to a unique RNA structure within the psi region; in addition, this structure is necessary for RNA dimerization. We propose that NCp7 binds to the RNA via a direct interaction of one zinc-binding motif to stem-loop 1 followed by binding of the other zinc-binding motif to stem-loop 1, stem-loop 2, or the linker region of the second RNA molecule, forming a bridge between the two RNAs. PMID:8506369

  7. Nucleocapsid Protein: A Desirable Target for Future Therapies Against HIV-1.

    PubMed

    Mori, Mattia; Kovalenko, Lesia; Lyonnais, Sébastien; Antaki, Danny; Torbett, Bruce E; Botta, Maurizio; Mirambeau, Gilles; Mély, Yves

    2015-01-01

    The currently available anti-HIV-1 therapeutics is highly beneficial to infected patients. However, clinical failures occur as a result of the ability of HIV-1 to rapidly mutate. One approach to overcome drug resistance is to target HIV-1 proteins that are highly conserved among phylogenetically distant viral strains and currently not targeted by available therapies. In this respect, the nucleocapsid (NC) protein, a zinc finger protein, is particularly attractive, as it is highly conserved and plays a central role in virus replication, mainly by interacting with nucleic acids. The compelling rationale for considering NC as a viable drug target is illustrated by the fact that point mutants of this protein lead to noninfectious viruses and by the inability to select viruses resistant to a first generation of anti-NC drugs. In our review, we discuss the most relevant properties and functions of NC, as well as recent developments of small molecules targeting NC. Zinc ejectors show strong antiviral activity, but are endowed with a low therapeutic index due to their lack of specificity, which has resulted in toxicity. Currently, they are mainly being investigated for use as topical microbicides. Greater specificity may be achieved by using non-covalent NC inhibitors (NCIs) targeting the hydrophobic platform at the top of the zinc fingers or key nucleic acid partners of NC. Within the last few years, innovative methodologies have been developed to identify NCIs. Though the antiviral activity of the identified NCIs needs still to be improved, these compounds strongly support the druggability of NC and pave the way for future structure-based design and optimization of efficient NCIs. PMID:25749978

  8. Mapping of B-cell epitopes in the nucleocapsid protein of Puumala hantavirus.

    PubMed

    Lundkvist, A; Meisel, H; Koletzki, D; Lankinen, H; Cifire, F; Geldmacher, A; Sibold, C; Gött, P; Vaheri, A; Krüger, D H; Ulrich, R

    2002-01-01

    Hantavirus nucleocapsid protein (N) has been proven to induce highly protective immune responses in animal models. The knowledge on the mechanisms behind N-induced protection is still limited, although recent data suggest that both cellular and humoral immune responses are of importance. For a detailed B-cell epitope mapping of Puumala hantavirus (PUUV) N, we used recombinant N derivatives of the Russian strain CG18-20 and the Swedish strain Vranica/Hällnäs, as well as overlapping synthetic peptides corresponding to the Finnish prototype strain Sotkamo. The majority of a panel of monoclonal antibodies (mAbs) reacted with proteins derived from all included PUUV strains demonstrating the antigenic similarity of these proteins. In line with previous results, the epitopes of most mAbs were mapped within the 80 N-terminal amino acids of N. The present study further revealed that the epitopes of four mAbs raised against native viral N were located within amino acids 14-45, whereas one mAb raised against recombinant N was mapped to amino acids 14-39. Differences between the reactivity of the PUUV strains Vranica/Hällnäs and CG18-20 N suggested the importance of amino acid position 35 for the integrity of the epitopes. In line with the patterns obtained by the truncated recombinant proteins, mapping by overlapping peptides (PEPSCAN) confirmed a complex recognition pattern for most analyzed mAbs. Together, the results revealed the existence of several, partially overlapping, and discontinuous B-cell epitopes. In addition, based on differences within the same competition group, novel epitopes were defined. PMID:11952140

  9. Specificity of Rous sarcoma virus nucleocapsid protein in genomic RNA packaging.

    PubMed Central

    Dupraz, P; Spahr, P F

    1992-01-01

    Site-directed mutagenesis has shown that the nucleocapsid (NC) protein of Rous sarcoma virus (RSV) is required for packaging and dimerization of viral RNA. However, it has not been possible to demonstrate, in vivo or in vitro, specific binding of viral RNA sequences by NC. To determine whether specific packaging of viral RNA is mediated by NC in vivo, we have constructed RSV mutants carrying sequences of Moloney murine leukemia virus (MoMuLV). Either the NC coding region alone, the psi RNA packaging sequence, or both the NC and psi sequences of MoMuLV were substituted for the corresponding regions of a full-length RSV clone to yield chimeric plasmid pAPrcMNC, pAPrc psi M, or pAPrcM psi M, respectively. In addition, a mutant of RSV in which the NC is completely deleted was tested as a control. Upon transfection, each of the chimeric mutants produced viral particles containing processed core proteins but were noninfectious. Thus, MoMuLV NC can replace RSV NC functionally in the assembly and release of mature virions but not in infectivity. Surprisingly, the full-deletion mutant showed a strong block in virus release, suggesting that NC is involved in virus assembly. Mutant PrcMNC packaged 50- to 100-fold less RSV RNA than did the wild type; in cotransfection experiments, MoMuLV RNA was preferentially packaged. This result suggests that the specific recognition of viral RNA during virus assembly involves, at least in part, the NC protein. Images PMID:1378506

  10. Genetic and antigenic characterization of recombinant nucleocapsid proteins derived from canine coronavirus and canine respiratory coronavirus in China.

    PubMed

    Lu, Shuai; Chen, Yingzhu; Qin, Kun; Zhou, Jianfang; Lou, Yongliang; Tan, Wenjie

    2016-06-01

    To characterize the antigenicity of nucleocapsid proteins (NP) derived from canine coronavirus (CCoV) and canine respiratory coronavirus (CRCoV) in China, the N genes of CCoV (CCoV-BJ70) and CRCoV (CRCoV-BJ202) were cloned from swabs obtained from diseased pet dogs in Beijing and then sequenced. The recombinant NPs (rNPs) were expressed in Escherichia coli and purified by nickel-affinity column and size exclusion chromatography. Sequencing data indicated that the N genes of CCoV-BJ70 and CRCoV-BJ202 belonging to two distinctly different groups were relatively conserved within each subgroup. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that rNPs of CCoV and CRCoV were expressed efficiently and isolated with a final purity of over 95%. Western blot analysis revealed the rNP from CRCoV could cross-react with mice antisera against human coronavirus (HCoV-229E, NL63, OC43, HKU1), while rNP of CCoV had cross-reactivity with only anti-sera against viruses belonging to the same group (HCoV-229E and NL63). In summary, CCoV and CRCoV rNPs were successfully expressed in E. coli and showed antigenic cross-reactivity with antisera raised against human coronaviruses. These findings indicate that further serologic studies on coronavirus infections at the animal-human interface are needed. PMID:27084706

  11. Sequence-Specific Binding of Human Immunodeficiency Virus Type 1 Nucleocapsid Protein to Short Oligonucleotides

    PubMed Central

    Fisher, Robert J.; Rein, Alan; Fivash, Matthew; Urbaneja, Maria A.; Casas-Finet, José R.; Medaglia, Maxine; Henderson, Louis E.

    1998-01-01

    We have analyzed the binding of recombinant human immunodeficiency virus type 1 nucleocapsid protein (NC) to very short oligonucleotides by using surface plasmon resonance (SPR) technology. Our experiments, which were conducted at a moderate salt concentration (0.15 M NaCl), showed that NC binds more stably to runs of d(G) than to other DNA homopolymers. However, it exhibits far more stable binding with the alternating base sequence d(TG)n than with any homopolymeric oligodeoxyribonucleotide; thus, it shows a strong sequence preference under our experimental conditions. We found that the minimum length of an alternating d(TG) sequence required for stable binding was five nucleotides. Stable binding to the tetranucleotide d(TG)2 was observed only under conditions where two tetranucleotide molecules were held in close spatial proximity. The stable, sequence-specific binding to d(TG)n required that both zinc fingers be present, each in its proper position in the NC protein, and was quite salt resistant, indicating a large hydrophobic contribution to the binding. Limited tests with RNA oligonucleotides indicated that the preferential sequence-specific binding observed with DNA also occurs with RNA. Evidence was also obtained that NC can bind to nucleic acid molecules in at least two distinct modes. The biological significance of the specific binding we have detected is not known; it may reflect the specificity with which the parent Gag polyprotein packages genomic RNA or may relate to the functions of NC after cleavage of the polyprotein, including its role as a nucleic acid chaperone. PMID:9499042

  12. Understanding the isomerization of the HIV-1 dimerization initiation domain by the nucleocapsid protein

    PubMed Central

    Turner, Kevin B.; Hagan, Nathan A.

    2008-01-01

    The specific binding of HIV-1 nucleocapsid (NC) to the hinge region of the kissing-loop (KL) dimer formed by stemloop 1 (SL1) can have significant consequences on its ability to isomerize into the corresponding extended duplex (ED) form. The binding determinants and the effects on the isomerization process were investigated in vitro by a concerted strategy involving ad hoc RNA mutants and electrospray ionization-Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry, which enabled us to characterize the stoichiometry and conformational state of all possible protein-RNA and RNA-RNA assemblies present simultaneously in solution. For the first time, NC-hinge interactions were observed in constructs including at least one unpaired guanine at the 5′-end of the loop-loop duplex, whereas no interactions were detected when the unpaired guanine was placed at its 3′-end. This binding mode is supported by the presence of a grip-like motif described by recent crystal structures, which is formed by the 5′-purines of both hairpins held together by mutual stacking interactions. Using tandem mass spectrometry, hinge interactions were clearly shown to reduce the efficiency of KL/ED isomerization without inducing its complete block. This outcome is consistent with the partial stabilization of the extra-helical grip by the bound protein, which can hamper the purine components from parting ways and initiate the strand exchange process. These findings confirm that the broad binding and chaperone activities of NC induce unique effects that are clearly dependent on the structural context of the cognate nucleic acid substrate. For this reason, the presence of multiple binding sites on the different forms assumed by SL1 can produce seemingly contrasting effects that contribute to a fine modulation of the two-step process of RNA dimerization and isomerization. PMID:17466332

  13. Cross-Protection against Challenge with Puumala Virus after Immunization with Nucleocapsid Proteins from Different Hantaviruses

    PubMed Central

    de Carvalho Nicacio, Cristina; Gonzalez Della Valle, Marcelo; Padula, Paula; Björling, Ewa; Plyusnin, Alexander; Lundkvist, Åke

    2002-01-01

    Hantaviruses are rodent-borne agents that cause hemorrhagic fever with renal syndrome or hantavirus pulmonary syndrome in humans. The nucleocapsid protein (N) is relatively conserved among hantaviruses and highly immunogenic in both laboratory animals and humans, and it has been shown to induce efficient protective immunity in animal models. To investigate the ability of recombinant N (rN) from different hantaviruses to elicit cross-protection, we immunized bank voles with rN from Puumala (PUUV), Topografov (TOPV), Andes (ANDV), and Dobrava (DOBV) viruses and subsequently challenged them with PUUV. All animals immunized with PUUV and TOPV rN were completely protected. In the group immunized with DOBV rN, 7 of 10 animals were protected, while only 3 of 8 animals were protected in the group immunized with ANDV rN, which is more closely related to PUUV rN than DOBV rN. Humoral and cellular immune responses after rN immunization were also investigated. The highest cross-reactive humoral responses against PUUV antigen were detected in sera from ANDV rN-immunized animals, followed by those from TOPV rN-immunized animals, and only very low antibody cross-reactivity was observed in sera from DOBV rN-immunized animals. In proliferation assays, T lymphocytes from animals immunized with all heterologous rNs were as efficiently recalled in vitro by PUUV rN as were T lymphocytes from animals immunized with homologous protein. In summary, this study has shown that hantavirus N can elicit cross-protective immune responses against PUUV, and the results suggest a more important role for the cellular arm of the immune response than for the humoral arm in cross-protection elicited by rN. PMID:12050380

  14. Severe Fever with Thrombocytopenia Syndrome Virus Antigen Detection Using Monoclonal Antibodies to the Nucleocapsid Protein

    PubMed Central

    Fukuma, Aiko; Fukushi, Shuetsu; Yoshikawa, Tomoki; Tani, Hideki; Taniguchi, Satoshi; Kurosu, Takeshi; Egawa, Kazutaka; Suda, Yuto; Singh, Harpal; Nomachi, Taro; Gokuden, Mutsuyo; Ando, Katsuyuki; Kida, Kouji; Kan, Miki; Kato, Nobuyuki; Yoshikawa, Akira; Kitamoto, Hiroaki; Sato, Yuko; Suzuki, Tadaki; Hasegawa, Hideki; Morikawa, Shigeru; Shimojima, Masayuki; Saijo, Masayuki

    2016-01-01

    Background Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne infectious disease with a high case fatality rate, and is caused by the SFTS virus (SFTSV). SFTS is endemic to China, South Korea, and Japan. The viral RNA level in sera of patients with SFTS is known to be strongly associated with outcomes. Virological SFTS diagnosis with high sensitivity and specificity are required in disease endemic areas. Methodology/Principal Findings We generated novel monoclonal antibodies (MAbs) against the SFTSV nucleocapsid (N) protein and developed a sandwich antigen (Ag)-capture enzyme-linked immunosorbent assay (ELISA) for the detection of N protein of SFTSV using MAb and polyclonal antibody as capture and detection antibodies, respectively. The Ag-capture system was capable of detecting at least 350–1220 TCID50/100 μl/well from the culture supernatants of various SFTSV strains. The efficacy of the Ag-capture ELISA in SFTS diagnosis was evaluated using serum samples collected from patients suspected of having SFTS in Japan. All 24 serum samples (100%) containing high copy numbers of viral RNA (>105 copies/ml) showed a positive reaction in the Ag-capture ELISA, whereas 12 out of 15 serum samples (80%) containing low copy numbers of viral RNA (<105 copies/ml) showed a negative reaction in the Ag-capture ELISA. Among these Ag-capture ELISA-negative 12 samples, 9 (75%) were positive for IgG antibodies against SFTSV. Conclusions The newly developed Ag-capture ELISA is useful for SFTS diagnosis in acute phase patients with high levels of viremia. PMID:27045364

  15. Human B-cell epitopes of Puumala virus nucleocapsid protein, the major antigen in early serological response.

    PubMed

    Vapalahti, O; Kallio-Kokko, H; Närvänen, A; Julkunen, I; Lundkvist, A; Plyusnin, A; Lehväslaiho, H; Brummer-Korvenkontio, M; Vaheri, A; Lankinen, H

    1995-08-01

    Puumala virus (PUU) is a member of the Hantavi rus genus in the family Bunyaviridae and the etiologic agent of nephropathia epidemica (NE), a form of haemorrhagic fever with renal syndrome (HFRS). In this study we compared the immunofluorescence patterns of NE sera and antibodies raised against recombinant PUU proteins and confirm that the nucleocapsid protein is the major target in the early IgG response of NE patients and provides the molecular basis for simple and rapid differentiation between acute illness and old immunity by granular vs. diffuse fluorescence staining in the indirect immunofluorescence test. The differential kinetics of B-cell responses to PUU nucleocapsid vs. envelope proteins was emphasized further by the endpoint titres of IgG antibodies to N, G1 and G2 proteins in NE patients. The granular fluorescence correlated with low IgG avidity in 99.8%, and diffuse fluorescence with high avidity in 100% of 617 NE sera studied. Epitope scanning with overlapping 14-mer peptides covering the whole nucleocapsid protein by a shift of 3 amino acids revealed six major antigenic epitopes recognized by sera from acute-phase NE patients. The epitopes clustered mainly in the hydrophilic regions, and two of them in a highly variable region which could probably serve as an antigen to distinguish serologically between infections of closely related hantaviruses, some apparently apathogenic, some causing lethal infections. The anti-peptide epitope pattern varied between different individuals and a collection of several pin-bound peptides was needed to be recognised by most NE sera studied. PMID:7595404

  16. Solution Structure of Mouse Hepatitis Virus (MHV) nsp3a and Determinants of the Interaction with MHV Nucleocapsid (N) Protein

    PubMed Central

    Keane, Sarah C.

    2013-01-01

    Coronaviruses (CoVs) are positive-sense, single-stranded, enveloped RNA viruses that infect a variety of vertebrate hosts. The CoV nucleocapsid (N) protein contains two structurally independent RNA binding domains, designated the N-terminal domain (NTD) and the dimeric C-terminal domain (CTD), joined by a charged linker region rich in serine and arginine residues (SR-rich linker). An important goal in unraveling N function is to molecularly characterize N-protein interactions. Recent genetic evidence suggests that N interacts with nsp3a, a component of the viral replicase. Here we present the solution nuclear magnetic resonance (NMR) structure of mouse hepatitis virus (MHV) nsp3a and show, using isothermal titration calorimetry, that MHV N219, an N construct that extends into the SR-rich linker (residues 60 to 219), binds cognate nsp3a with high affinity (equilibrium association constant [Ka], [1.4 ± 0.3] × 106 M−1). In contrast, neither N197, an N construct containing only the folded NTD (residues 60 to 197), nor the CTD dimer (residues 260 to 380) binds nsp3a with detectable affinity. This indicates that the key nsp3a binding determinants localize to the SR-rich linker, a finding consistent with those of reverse genetics studies. NMR chemical shift perturbation analysis reveals that the N-terminal region of an MHV N SR-rich linker peptide (residues 198 to 230) binds to the acidic face of MHV nsp3a containing the acidic α2 helix with an affinity (expressed as Ka) of 8.1 × 103 M−1. These studies reveal that the SR-rich linker of MHV N is necessary but not sufficient to maintain this high-affinity binding to N. PMID:23302895

  17. Identification of a common antigenic site in the nucleocapsid protein of European and North American isolates of porcine reproductive and respiratory syndrome virus.

    PubMed

    Casal, J I; Rodriguez, M J; Sarraseca, J; Garcia, J; Plana-Duran, J; Sanz, A

    1998-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid (N) protein has been identified as the most immunodominant viral protein. The N protein genes from two PRRSV isolates Olot/91 (European) and Quebec 807/94 (North American) were cloned and expressed in Escherichia coli using the pET3x system. The antigenic structure of the PRRSV N protein was dissected using seven monoclonal antibodies (MAbs) and overlapping fragments of the protein expressed in E.coli. Three antigenic sites were found. Four MAbs recognized two discontinuous epitopes that were present in the partially folded protein or at least a large fragment comprising the first 78 residues, respectively. The other three MAbs revealed the presence of a common antigenic site localized in the central region of the protein (amino acids 50 to 66). This hydrophillic region is well conserved among different isolates of European and North American origin. However, since this epitope is not recognized by many pig sera, it is not adequate for diagnostic purposes. Moreover, none of the N protein fragments were able to mimic the antigenicity of the entire N protein. PMID:9782317

  18. Mutations in Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Zinc Fingers Cause Premature Reverse Transcription ▿

    PubMed Central

    Thomas, James A.; Bosche, William J.; Shatzer, Teresa L.; Johnson, Donald G.; Gorelick, Robert J.

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) requires that its genome be reverse transcribed into double-stranded DNA for productive infection of cells. This process requires not only reverse transcriptase but also the nucleocapsid protein (NC), which functions as a nucleic acid chaperone. Reverse transcription generally begins once the core of the virion enters the cytoplasm of a newly infected cell. However, some groups have reported the presence of low levels of viral DNA (vDNA) within particles prior to infection, the significance and function of which is controversial. We report here that several HIV-1 NC mutants, which we previously identified as being replication defective, contain abnormally high levels of intravirion DNA. These findings were further reinforced by the inability of these NC mutants to perform endogenous reverse transcription (ERT), in contrast to the readily measurable ERT activity in wild-type HIV-1. When either of the NC mutations is combined with a mutation that inactivates the viral protease, we observed a significant reduction in the amount of intravirion DNA. Interestingly, we also observed high levels of intravirion DNA in the context of wild-type NC when we delayed budding by means of a PTAP(−) (Pro-Thr-Ala-Pro) mutation. Premature reverse transcription is most probably occurring before these mutant virions bud from producer cells, but we fail to see any evidence that the NC mutations alter the timing of Pr55Gag processing. Critically, our results also suggest that the presence of intravirion vDNA could serve as a diagnostic for identifying replication-defective HIV-1. PMID:18667500

  19. Structural requirements for nucleocapsid protein-mediated dimerization of avian leukosis virus RNA.

    PubMed

    Ali, Moez Ben; Chaminade, Françoise; Kanevsky, Igor; Ennifar, Eric; Josset, Laurence; Ficheux, Damien; Darlix, Jean-Luc; Fossé, Philippe

    2007-09-28

    The avian leukosis virus (ALV) belongs to the alpha group of retroviruses that are widespread in nature. The 5'-untranslated region of ALV genome contains the L3 element that is important for virus infectivity and the formation of an unstable RNA dimer in vitro. The L3 sequence is predicted to fold into a long stem-loop structure with two internal loops and an apical one. Phylogenetic analysis predicts that the L3 stem-loop is conserved in alpharetroviruses. Furthermore, a significant selection mechanism maintains a palindrome in the apical loop. The nucleocapsid protein of the alpharetroviruses (NCp12) is required for RNA dimer formation and replication in vivo. It is not known whether L3 can be an NCp12-mediated RNA dimerization site able to bind NCp12 with high affinity. Here, we report that NCp12 chaperones formation of a stable ALV RNA dimer through L3. To investigate the NCp12-mediated L3 dimerization reaction, we performed site-directed mutagenesis, gel retardation and heterodimerization assays and analysis of thermostability of dimeric RNAs. We show that the affinity of NCp12 for L3 is lower than its affinity for the microPsi RNA packaging signal. Results show that conservation of a long stem-loop structure and a loop-loop interaction are not required for NCp12-mediated L3 dimerization. We show that the L3 apical stem-loop is sufficient to form an extended duplex and the whole stem-loop L3 cannot be converted by NCp12 into a duplex extending throughout L3. Three-dimensional modelling of the stable L3 dimer supports the notion that the extended duplex may represent the minimal dimer linkage structure found in the genomic RNA. PMID:17706668

  20. Specific interactions between HIV-1 nucleocapsid protein and the TAR element.

    PubMed

    Kanevsky, Igor; Chaminade, Françoise; Ficheux, Damien; Moumen, Abdeladim; Gorelick, Robert; Negroni, Matteo; Darlix, Jean-Luc; Fossé, Philippe

    2005-05-20

    During retroviral reverse transcription, the minus-strand strong-stop DNA (ss-cDNA) is transferred to the 3' end of the genomic RNA and this requires the repeat (R) sequences present at both ends of the genome. In vitro, the human immunodeficiency virus type 1 (HIV-1) R sequence can promote DNA strand transfer when present in ectopic internal positions. Using HIV-1 model systems, the R sequences and nucleocapsid protein (NC) were found to be key determinants of ss-cDNA transfer. To gain insights into specific interactions between HIV-1 NC and RNA and the influence of NC on R folding, we investigated the secondary structures of R in two natural contexts, namely at the 5' or 3' end of RNAs representing the terminal regions of the genome, and in two ectopic internal positions that also support efficient minus-strand transfer. To investigate the roles of NC zinc fingers and flanking basic domains in the NC/RNA interactions, we used NC mutants. Analyses of the viral RNA/NC complexes by chemical and enzymatic probings, and gel retardation assays were performed under conditions allowing ss-cDNA transfer by reverse transcriptase. We report that NC binds the TAR apical loop specifically in the four genetic contexts without changing the folding of the TAR hairpin and R region significantly, and this requires the NC zinc fingers. In addition, we show that efficient annealing of cTAR DNA to the 3' R relies on sequence complementarities between TAR and cTAR terminal loops. These findings suggest that the TAR apical loop in the acceptor RNA is the initiation site for the annealing reaction that is chaperoned by NC during the minus-strand transfer. PMID:15854644

  1. Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone

    SciTech Connect

    Qualley, Dominic F. Sokolove, Victoria L.; Ross, James L.

    2015-03-13

    Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two other retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable. - Highlights: • BLV NC binds strongly to DNA and RNA. • BLV NC promotes mini-TAR annealing as well as HIV-1 NC. • Annealing kinetics suggest a low degree of similarity between BLV NC and HTLV-1 NC.

  2. Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1.

    PubMed Central

    Summers, M. F.; Henderson, L. E.; Chance, M. R.; Bess, J. W.; South, T. L.; Blake, P. R.; Sagi, I.; Perez-Alvarado, G.; Sowder, R. C.; Hare, D. R.

    1992-01-01

    All retroviral nucleocapsid (NC) proteins contain one or two copies of an invariant 3Cys-1His array (CCHC = C-X2-C-X4-H-X4-C; C = Cys, H = His, X = variable amino acid) that are essential for RNA genome packaging and infectivity and have been proposed to function as zinc-binding domains. Although the arrays are capable of binding zinc in vitro, the physiological relevance of zinc coordination has not been firmly established. We have obtained zinc-edge extended X-ray absorption fine structure (EXAFS) spectra for intact retroviruses in order to determine if virus-bound zinc, which is present in quantities nearly stoichiometric with the CCHC arrays (Bess, J.W., Jr., Powell, P.J., Issaq, H.J., Schumack, L.J., Grimes, M.K., Henderson, L.E., & Arthur, L.O., 1992, J. Virol. 66, 840-847), exists in a unique coordination environment. The viral EXAFS spectra obtained are remarkably similar to the spectrum of a model CCHC zinc finger peptide with known 3Cys-1His zinc coordination structure. This finding, combined with other biochemical results, indicates that the majority of the viral zinc is coordinated to the NC CCHC arrays in mature retroviruses. Based on these findings, we have extended our NMR studies of the HIV-1 NC protein and have determined its three-dimensional solution-state structure. The CCHC arrays of HIV-1 NC exist as independently folded, noninteracting domains on a flexible polypeptide chain, with conservatively substituted aromatic residues forming hydrophobic patches on the zinc finger surfaces. These residues are essential for RNA genome recognition, and fluorescence measurements indicate that at least one residue (Trp37) participates directly in binding to nucleic acids in vitro. The NC is only the third HIV-1 protein to be structurally characterized, and the combined EXAFS, structural, and nucleic acid-binding results provide a basis for the rational design of new NC-targeted antiviral agents and vaccines for the control of AIDS. PMID:1304355

  3. A LINE-like transposable element in Drosophila, the I factor, encodes a protein with properties similar to those of retroviral nucleocapsids.

    PubMed

    Dawson, A; Hartswood, E; Paterson, T; Finnegan, D J

    1997-07-16

    I factors are members of the LINE-like family of transposable elements and move by reverse transcription of an RNA intermediate. Complete I factors contain two open reading frames. The amino acid sequence encoded by the first of these, ORF1, includes the motif CX2CX4HX4C that is characteristic of the nucleocapsid domain of retroviral gag polypeptides followed by a copy of the slightly different sequences CX2CX4HX6C and CX2CX9HX6C. The function of this protein is unknown. We have expressed this protein in Escherichia coli and Spodoptera frugiperda cells and have shown that it binds both DNA and RNA but without any evidence for sequence specificity. The properties of deletion derivatives of the protein indicate that more than one region is responsible for DNA binding and that the CCHC motif is not essential for this. The ORF1 protein expressed in either E. coli or Spodoptera cells forms high molecular weight structures that require the region of the protein including the CCHC motif for their formation. This protein can also accelerate the annealing of complementary single-stranded oligonucleotides. These results suggest that this protein may associate with the RNA transposition intermediates of the I factor to form particles that enter the nucleus during transposition and that it may stimulate both the priming of reverse transcription and integration. This may be generally true for the product of the first open reading frame of LINE-like elements. PMID:9250689

  4. Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein.

    PubMed

    Renner, Max; Bertinelli, Mattia; Leyrat, Cédric; Paesen, Guido C; Saraiva de Oliveira, Laura Freitas; Huiskonen, Juha T; Grimes, Jonathan M

    2016-01-01

    Non-segmented, (-)RNA viruses cause serious human diseases. Human metapneumovirus (HMPV), an emerging pathogen of this order of viruses (Mononegavirales) is one of the main causes of respiratory tract illness in children. To help elucidate the assembly mechanism of the nucleocapsid (the viral RNA genome packaged by the nucleoprotein N) we present crystallographic structures of HMPV N in its assembled RNA-bound state and in a monomeric state, bound to the polymerase cofactor P. Our structures reveal molecular details of how P inhibits the self-assembly of N and how N transitions between the RNA-free and RNA-bound conformational state. Notably, we observe a role for the C-terminal extension of N in directly preventing premature uptake of RNA by folding into the RNA-binding cleft. Our structures suggest a common mechanism of how the growth of the nucleocapsid is orchestrated, and highlight an interaction site representing an important target for antivirals. PMID:26880565

  5. A key role for the carboxy-terminal tail of the murine coronavirus nucleocapsid protein in coordination of genome packaging.

    PubMed

    Kuo, Lili; Koetzner, Cheri A; Masters, Paul S

    2016-07-01

    The prototype coronavirus mouse hepatitis virus (MHV) exhibits highly selective packaging of its genomic positive-stranded RNA into assembled virions, despite the presence in infected cells of a large excess of subgenomic viral mRNAs. One component of this selectivity is the MHV packaging signal (PS), an RNA structure found only in genomic RNA and not in subgenomic RNAs. It was previously shown that a major determinant of PS recognition is the second of the two RNA-binding domains of the viral nucleocapsid (N) protein. We have now found that PS recognition additionally depends upon a segment of the carboxy-terminal tail (domain N3) of the N protein. Since domain N3 is also the region of N protein that interacts with the membrane (M) protein, this finding suggests a mechanism by which selective genome packaging is accomplished, through the coupling of genome encapsidation to virion assembly. PMID:27105451

  6. Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein.

    PubMed

    Verma, Sandhya; Bednar, Valerie; Blount, Andrew; Hogue, Brenda G

    2006-05-01

    The coronavirus nucleocapsid (N) protein is a multifunctional viral gene product that encapsidates the RNA genome and also plays some as yet not fully defined role in viral RNA replication and/or transcription. A number of conserved negatively charged amino acids are located within domain III in the carboxy end of all coronavirus N proteins. Previous studies suggested that the negatively charged residues are involved in virus assembly by mediating interaction between the membrane (M) protein carboxy tail and nucleocapsids. To determine the importance of these negatively charged residues, a series of alanine and other charged-residue substitutions were introduced in place of those in the N gene within a mouse hepatitis coronavirus A59 infectious clone. Aspartic acid residues 440 and 441 were identified as functionally important. Viruses could not be isolated when both residues were replaced by positively charged amino acids. When either amino acid was replaced by a positively charged residue or both were changed to alanine, viruses were recovered that contained second-site changes within N, but not in the M or envelope protein. The compensatory role of the new changes was confirmed by the construction of new viruses. A few viruses were recovered that retained the D441-to-arginine change and no compensatory changes. These viruses exhibited a small-plaque phenotype and produced significantly less virus. Overall, results from our analysis of a large panel of plaque-purified recovered viruses indicate that the negatively charged residues at positions 440 and 441 are key residues that appear to be involved in virus assembly. PMID:16611893

  7. T-helper and humoral responses to Puumala hantavirus nucleocapsid protein: identification of T-helper epitopes in a mouse model.

    PubMed

    de Carvalho Nicacio, C; Sällberg, M; Hultgren, C; Lundkvist, A

    2001-01-01

    Puumala hantavirus (PUUV) is a rodent-borne agent causing nephropathia epidemica in humans, a milder form of haemorrhagic fever with renal syndrome occurring in Fennoscandia, central Europe and western Russia. In this study we characterized the immunogenicity of an E. coli-expressed nucleocapsid (N) protein of PUUV (strain Kazan-E6) in inbred mice (BALB/c, CBA and C57/BL6). The recombinant N (rN) protein raised PUUV-specific antibodies in all three tested murine haplotypes, and all IgG subclasses were detected. Epitope mapping using peptides spanning the N protein revealed that the B-cell recognition sites were mainly located at the amino-terminal part of the protein. Proliferative T-helper (Th) lymphocyte responses were detected in all haplotypes after a single immunization with rN. Several Th-recognition sites, spanning amino acids 6-27, 96-117, 211-232 and 256-277, were identified using overlapping peptides. Peptides representing the identified sites could also prime Th-lymphocytes to proliferate in response to recall with rN protein, thereby confirming the authenticity of the identified sites. The rN-primed Th-lymphocytes produced predominantly interleukin (IL)-2 and gamma interferon, together with lower levels of IL-4 and IL-6, indicating a mixed Th1/Th2 response. PMID:11125166

  8. Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein

    PubMed Central

    Renner, Max; Bertinelli, Mattia; Leyrat, Cédric; Paesen, Guido C; Saraiva de Oliveira, Laura Freitas; Huiskonen, Juha T; Grimes, Jonathan M

    2016-01-01

    Non-segmented, (-)RNA viruses cause serious human diseases. Human metapneumovirus (HMPV), an emerging pathogen of this order of viruses (Mononegavirales) is one of the main causes of respiratory tract illness in children. To help elucidate the assembly mechanism of the nucleocapsid (the viral RNA genome packaged by the nucleoprotein N) we present crystallographic structures of HMPV N in its assembled RNA-bound state and in a monomeric state, bound to the polymerase cofactor P. Our structures reveal molecular details of how P inhibits the self-assembly of N and how N transitions between the RNA-free and RNA-bound conformational state. Notably, we observe a role for the C-terminal extension of N in directly preventing premature uptake of RNA by folding into the RNA-binding cleft. Our structures suggest a common mechanism of how the growth of the nucleocapsid is orchestrated, and highlight an interaction site representing an important target for antivirals. DOI: http://dx.doi.org/10.7554/eLife.12627.001 PMID:26880565

  9. Cloning and characterization of DNA complementary to the canine distemper virus mRNA encoding matrix, phosphoprotein, and nucleocapsid protein

    SciTech Connect

    Rozenblatt, S.; Eizenberg, O.; Englund, G.; Bellini, W.J.

    1985-02-01

    Double-stranded cDNA synthesized from total polyadenylate-containing mRNA, extracted from monkey kidney cells infected with canine distemper virus (CDV), has been cloned into the PstI site of Escherichia coli plasmid pBR322. Clones containing canine distemper virus DNA were identified by hybridization to a canine distemper virus-specific, /sup 32/P-labeled cDNA. Four specific clones containing different classes of sequences have been identified. The cloned plasmids contain inserts of 800 (clone 44-80), 960 (clone 74-16), 1700 (clone 364), and 950 (clone 40-9) base pairs. The sizes of the mRNA species complementary to these inserts are 1500, 1850, 1850 and 2500 nucleotides, respectively, as determined by the Northern technique. Three of the cloned DNA fragments were further identified as the reverse transcripts of the mRNA coding for the matrix, phosphoprotein, and nucleocapsid protein of CDV.

  10. An interactome map of the nucleocapsid protein from a highly pathogenic North American porcine reproductive and respiratory syndrome virus strain generated using SILAC-based quantitative proteomics.

    PubMed

    Jourdan, Stefanie S; Osorio, Fernando; Hiscox, Julian A

    2012-04-01

    Positive strand RNA viruses replicate in the cytoplasm of an infected cell and encode nucleocapsid proteins. These proteins function to promote encapsidation of the RNA genome and virus particle assembly as well as playing potential roles in viral RNA synthesis. Nucleocapsid proteins can also associate with cellular proteins and signaling cascades. The arterivirus nucleocapsid (N) protein is no exception and localizes to both the cytoplasm and the nucleolus in virus-infected cells. This study generated an interactome map of the N protein from a highly virulent North American strain of porcine reproductive and respiratory syndrome virus (PRRSV). This is a major pathogen of swine resulting in significant morbidity and mortality. Crucial to the study was the use of SILAC coupled to affinity purification using GFP-traps and LC-MS/MS. This approach has not been applied before to the investigation of host/viral protein interactomes and this study revealed that the PRRSV N protein interacts with the host cell protein synthesis machinery especially at the level of translation initiation as well as with the RNA post-transcriptional modification machinery. Applications of the dataset can include studies of virus/host interactions and the design of live attenuated recombinant vaccines. PMID:22522808

  11. Structure and Function Analysis of Nucleocapsid Protein of Tomato Spotted Wilt Virus Interacting with RNA Using Homology Modeling*

    PubMed Central

    Li, Jia; Feng, Zhike; Wu, Jianyan; Huang, Ying; Lu, Gang; Zhu, Min; Wang, Bi; Mao, Xiang; Tao, Xiaorong

    2015-01-01

    The nucleocapsid (N) protein of tomato spotted wilt virus (TSWV) plays key roles in assembling genomic RNA into ribonucleoprotein (RNP), which serves as a template for both viral gene transcription and genome replication. However, little is known about the molecular mechanism of how TSWV N interacts with genomic RNA. In this study, we demonstrated that TSWV N protein forms a range of higher ordered oligomers. Analysis of the RNA binding behavior of N protein revealed that no specific oligomer binds to RNA preferentially, instead each type of N oligomer is able to bind RNA. To better characterize the structure and function of N protein interacting with RNA, we constructed homology models of TSWV N and N-RNA complexes. Based on these homology models, we demonstrated that the positively charged and polar amino acids in its predicted surface cleft of TSWV N are critical for RNA binding. Moreover, by N-RNA homology modeling, we found that the RNA component is deeply embedded in the predicted protein cleft; consistently, TSWV N-RNA complexes are relatively resistant to digestion by RNase. Collectively, using homology modeling, we determined the RNA binding sites on N and found a new protective feature for N protein. Our findings also provide novel insights into the molecular details of the interaction of TSWV N with RNA components. PMID:25540203

  12. Critical Epitopes in the Nucleocapsid Protein of SFTS Virus Recognized by a Panel of SFTS Patients Derived Human Monoclonal Antibodies

    PubMed Central

    Yu, Li; Zhang, Li; Sun, Lina; Lu, Jing; Wu, Wei; Li, Chuan; Zhang, Quanfu; Zhang, Fushun; Jin, Cong; Wang, Xianjun; Bi, Zhenqiang; Li, Dexin; Liang, Mifang

    2012-01-01

    Background SFTS virus (SFTSV) is a newly discovered pathogen to cause severe fever with thrombocytopenia syndrome (SFTS) in human. Successful control of SFTSV epidemic requires better understanding of the antigen target in humoral immune responses to the new bunyavirus infection. Methodology/Principal Findings We have generated a combinatorial Fab antibody phage library from two SFTS patients recovered from SFTSV infection. To date, 94 unique human antibodies have been generated and characterized from over 1200 Fab antibody clones obtained by screening the library with SFTS purified virions. All those monoclonal antibodies (MAbs) recognized the nucleocapsid (N) protein of SFTSV while none of them were reactive to the viral glycoproteins Gn or Gc. Furthermore, over screening 1000 mouse monoclonal antibody clones derived from SFTSV virions immunization, 462 clones reacted with N protein, while only 16 clones were reactive to glycoprotein. Furthermore, epitope mapping of SFTSV N protein was performed through molecular simulation, site mutation and competitive ELISA, and we found that at least 4 distinct antigenic epitopes within N protein were recognized by those human and mouse MAbs, in particular mutation of Glu10 to Ala10 abolished or significantly reduced the binding activity of nearly most SFTS patients derived MAbs. Conclusions/Significance The large number of human recombinant MAbs derived from SFTS patients recognized the viral N protein indicated the important role of the N protein in humoral responses to SFTSV infection, and the critical epitopes we defined in this study provided molecular basis for detection and diagnosis of SFTSV infection. PMID:22719874

  13. Nucleolin is required for efficient nuclear egress of herpes simplex virus type 1 nucleocapsids.

    PubMed

    Sagou, Ken; Uema, Masashi; Kawaguchi, Yasushi

    2010-02-01

    Herpesvirus nucleocapsids assemble in the nucleus and must cross the nuclear membrane for final assembly and maturation to form infectious progeny virions in the cytoplasm. It has been proposed that nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane, and these enveloped nucleocapsids then fuse with the outer nuclear membrane to enter the cytoplasm. Little is known about the mechanism(s) for nuclear egress of herpesvirus nucleocapsids and, in particular, which, if any, cellular proteins are involved in the nuclear egress pathway. UL12 is an alkaline nuclease encoded by herpes simplex virus type 1 (HSV-1) and has been suggested to be involved in viral DNA maturation and nuclear egress of nucleocapsids. Using a live-cell imaging system to study cells infected by a recombinant HSV-1 expressing UL12 fused to a fluorescent protein, we observed the previously unreported nucleolar localization of UL12 in live infected cells and, using coimmunoprecipitation analyses, showed that UL12 formed a complex with nucleolin, a nucleolus marker, in infected cells. Knockdown of nucleolin in HSV-1-infected cells reduced capsid accumulation, as well as the amount of viral DNA resistant to staphylococcal nuclease in the cytoplasm, which represented encapsidated viral DNA, but had little effect on these viral components in the nucleus. These results indicated that nucleolin is a cellular factor required for efficient nuclear egress of HSV-1 nucleocapsids in infected cells. PMID:19955312

  14. Identification of a novel canine distemper virus B-cell epitope using a monoclonal antibody against nucleocapsid protein.

    PubMed

    Yi, Li; Cheng, Yuening; Zhang, Miao; Cao, Zhigang; Tong, Mingwei; Wang, Jianke; Zhao, Hang; Lin, Peng; Cheng, Shipeng

    2016-02-01

    Canine distemper virus (CDV) is a member of the genus Morbillivirus within the family Paramyxoviridae and has caused severe economic losses in China. Nucleocapsid protein (N) is the major structural viral protein and can be used to diagnose CDV and other morbilliviruses. In this study, a specific monoclonal antibody, 1N8, was produced against the CDV N protein (amino acids 277-471). A linear N protein epitope was identified by subjecting a series of partially overlapping synthesized peptides to enzyme-linked immunosorbent assay (ELISA) analysis. The results indicated that (350)LNFGRSYFDPA(360) was the minimal linear epitope that could be recognized by mAb 1N8. ELISA assays revealed that mouse anti-CDV sera could also recognize the minimal linear epitope. Alignment analysis of the amino acid sequences indicated that the epitope was highly conserved among CDV strains. Furthermore, the epitope was conserved among other morbilliviruses, which was confirmed with PRRV using western blotting. Taken together, the results of this study may have potential applications in the development of suitable diagnostic techniques for CDV or other morbilliviruses. PMID:26514066

  15. Activation of NF-κB by nucleocapsid protein of the porcine reproductive and respiratory syndrome virus.

    PubMed

    Luo, Rui; Fang, Liurong; Jiang, Yunbo; Jin, Hui; Wang, Yanwei; Wang, Dang; Chen, Huanchun; Xiao, Shaobo

    2011-02-01

    Nuclear factor kappa B (NF-κB) is a critical transcription factor in innate and adaptive immune response as well as cell proliferation and survival. Previous studies have demonstrated that porcine reproductive and respiratory syndrome virus (PRRSV) infection activated NF-κB pathways through IκB degradation in MARC-145 cells and alveolar macrophages. To evaluate the mechanisms behind this, we investigated the role of PRRSV structural proteins in the regulation of NF-κB. In this study, we screened the structural proteins of PRRSV by NF-κB DNA-binding assay and luciferase activity assay and demonstrated that PRRSV nucleocapsid (N) protein could activate NF-κB in MARC-145 cells. Furthermore, we revealed that the region between aa 30 and 73 of N protein was essential for its function in the activation of NF-κB. These results presented here provide a basis for understanding molecular mechanism of PRRSV infection and inflammation response. PMID:21063763

  16. Characterization of Puumala virus nucleocapsid protein: identification of B-cell epitopes and domains involved in protective immunity.

    PubMed

    Lundkvist, A; Kallio-Kokko, H; Sjölander, K B; Lankinen, H; Niklasson, B; Vaheri, A; Vapalahti, O

    1996-02-15

    B-cell epitopes in the nucleocapsid protein (N) of Puumala (PUU) virus were investigated by use of truncated recombinant proteins and overlapping peptides. Six of seven epitopes, recognized by bank vole monoclonal antibodies, were localized within the amino-terminal region of the protein (aa 1-79). Polyclonal antibodies from wild-trapped or experimentally infected bank voles identified epitopes located over the entire protein. Antibody end-point titers to different N fragments indicated that the amino-terminal region is the major antigenic target in PUU virus-infected bank voles. To investigate the role of PUU virus N in protective immunity, we analyzed the immunogenicity of truncated recombinant N and developed an animal model based on colonized bank voles. No PUU virus N antigen, nor any glycoprotein-specific antibodies, could be detected after virus challenge in animals immunized with an amino-terminal fragment (aa 1-118), a fragment covering two thirds of the animals immunized with shorter N fragments displayed either N antigen, or glycoprotein-specific antibodies, suggestive of partial protection. Prechallenge sera from all groups of immunized animals were found negative or only weakly positive for neutralizing antibodies when assayed by focus reduction neutralization test, which indicated an important role for cell-mediated immunity in protection. PMID:8607269

  17. Fundamental differences between the nucleic acid chaperone activities of HIV-1 nucleocapsid protein and Gag or Gag-derived proteins: Biological implications

    PubMed Central

    Wu, Tiyun; Datta, Siddhartha A.K.; Mitra, Mithun; Gorelick, Robert J.; Rein, Alan; Levin, Judith G.

    2010-01-01

    The HIV-1 Gag polyprotein precursor has multiple domains including nucleocapsid (NC). Although mature NC and NC embedded in Gag are nucleic acid chaperones (proteins that remodel nucleic acid structure), few studies include detailed analysis of the chaperone activity of partially processed Gag proteins and comparison with NC and Gag. Here we address this issue by using a reconstituted minus-strand transfer system. NC and NC-containing Gag proteins exhibited annealing and duplex destabilizing activities required for strand transfer. Surprisingly, unlike NC, with increasing concentrations, Gag proteins drastically inhibited the DNA elongation step. This result is consistent with “nucleic acid-driven multimerization” of Gag and the reported slow dissociation of Gag from bound nucleic acid, which prevent reverse transcriptase from traversing the template (“roadblock” mechanism). Our findings illustrate one reason why NC (and not Gag) has evolved as a critical cofactor in reverse transcription, a paradigm that might also extend to other retrovirus systems. PMID:20655566

  18. The ϕ6 Cystovirus Protein P7 Becomes Accessible to Antibodies in the Transcribing Nucleocapsid: A Probe for Viral Structural Elements

    PubMed Central

    Alimova, Alexandra; Wei, Hui; Katz, Al; Spatz, Linda; Gottlieb, Paul

    2015-01-01

    Protein P7 is a component of the cystovirus viral polymerase complex. In the unpackaged procapsid, the protein is situated in close proximity to the viral directed RNA polymerase, P2. Cryo-electron microscopy difference maps from the species ϕ6 procapsid have demonstrated that P7 and P2 likely interact prior to viral RNA packaging. The location of P7 in the post-packaged nucleocapsid (NC) remains unknown. P7 may translocate closer to the five-fold axis of a filled procapsid but this has not been directly visualized. We propose that monoclonal antibodies (Mabs) can be selected that serve as probe- reagents for viral assembly and structure. A set of Mabs have been isolated that recognize and bind to the ϕ6 P7. The antibody set contains five unique Mabs, four of which recognize a linear epitope and one which recognizes a conformational epitope. The four unique Mabs that recognize a linear epitope display restricted utilization of Vκ and VH genes. The restricted genetic range among 4 of the 5 antibodies implies that the antibody repertoire is limited. The limitation could be the consequence of a paucity of exposed antigenic sites on the ϕ6 P7 surface. It is further demonstrated that within ϕ6 nucleocapsids that are primed for early-phase transcription, P7 is partially accessible to the Mabs, indicating that the nucleocapsid shell (protein P8) has undergone partial disassembly exposing the protein’s antigenic sites. PMID:25799314

  19. A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3

    PubMed Central

    Chaurasiya, Kathy R.; Geertsema, Hylkje; Cristofari, Gaël; Darlix, Jean-Luc; Williams, Mark C.

    2012-01-01

    Reverse transcription in retroviruses and retrotransposons requires nucleic acid chaperones, which drive the rearrangement of nucleic acid conformation. The nucleic acid chaperone properties of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein have been extensively studied, and nucleic acid aggregation, duplex destabilization and rapid binding kinetics have been identified as major components of its activity. However, the properties of other nucleic acid chaperone proteins, such as retrotransposon Ty3 NC, a likely ancestor of HIV-1 NC, are not well understood. In addition, it is unclear whether a single zinc finger is sufficient to optimize the properties characteristic of HIV-1 NC. We used single-molecule DNA stretching as a method for detailed characterization of Ty3 NC chaperone activity. We found that wild type Ty3 NC aggregates single- and double-stranded DNA, weakly stabilizes dsDNA, and exhibits rapid binding kinetics. Single-molecule studies in the presence of Ty3 NC mutants show that the N-terminal basic residues and the unique zinc finger at the C-terminus are required for optimum chaperone activity in this system. While the single zinc finger is capable of optimizing Ty3 NC's DNA interaction kinetics, two zinc fingers may be necessary in order to facilitate the DNA destabilization exhibited by HIV-1 NC. PMID:21917850

  20. A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3.

    PubMed

    Chaurasiya, Kathy R; Geertsema, Hylkje; Cristofari, Gaël; Darlix, Jean-Luc; Williams, Mark C

    2012-01-01

    Reverse transcription in retroviruses and retrotransposons requires nucleic acid chaperones, which drive the rearrangement of nucleic acid conformation. The nucleic acid chaperone properties of the human immunodeficiency virus type-1 (HIV-1) nucleocapsid (NC) protein have been extensively studied, and nucleic acid aggregation, duplex destabilization and rapid binding kinetics have been identified as major components of its activity. However, the properties of other nucleic acid chaperone proteins, such as retrotransposon Ty3 NC, a likely ancestor of HIV-1 NC, are not well understood. In addition, it is unclear whether a single zinc finger is sufficient to optimize the properties characteristic of HIV-1 NC. We used single-molecule DNA stretching as a method for detailed characterization of Ty3 NC chaperone activity. We found that wild type Ty3 NC aggregates single- and double-stranded DNA, weakly stabilizes dsDNA, and exhibits rapid binding kinetics. Single-molecule studies in the presence of Ty3 NC mutants show that the N-terminal basic residues and the unique zinc finger at the C-terminus are required for optimum chaperone activity in this system. While the single zinc finger is capable of optimizing Ty3 NC's DNA interaction kinetics, two zinc fingers may be necessary in order to facilitate the DNA destabilization exhibited by HIV-1 NC. PMID:21917850

  1. Cross-reactive and serospecific epitopes of nucleocapsid proteins of three hantaviruses: prospects for new diagnostic tools.

    PubMed

    Lindkvist, Marie; Näslund, Jonas; Ahlm, Clas; Bucht, Göran

    2008-10-01

    The diagnosis of infectious diseases is sometimes difficult because of extensive immunological cross-reactivity between related viral antigens. On the path of constructing sero-specific antigens, we have identified residues involved in sero-specific and cross-reactive recognition of the nucleocapsid proteins (NPs) of Puumala virus (PUUV), Seoul virus (SEOV), and Sin Nombre virus (SNV) using serum samples from 17 Nephropathia epidemica patients. The mapping was performed by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis on a panel of N protein derivatives and alanine-substitution mutants in the three different hantavirus backgrounds. Four regions with different serological profiles were identified encompassing the amino acids (aa) 14-17, 22-24, 26, and 35-38. One of the regions showed strong cross-reactivity and was important for the recognition of SEOV and SNV antigens, but not the PUUV antigen (aa 35-38). Two regions displayed perceivable SEOV characteristics (aa 14-17 and aa 22-24 and 26) and the combined result of the alanine replacements resulted in a synergetic effect against the PUUV antigen (aa 14-17, 22-24, 26). PMID:18620010

  2. [Enzyme-linked immunosorbent assay for detection of antibodies to porcine reproductive and respiratory syndrome virus, by using recombinant nucleocapsid protein N].

    PubMed

    Bogdanova, V S; Tsibezov, V V; Grabovetskiĭ, V V; Eliseeva, O V; Grebennikova, T V; Verkhovskiĭ, O A; Zabereshchnyĭ, A D; Aliper, T I

    2007-01-01

    Recombinant nucleocapsid (rN) protein N of porcine reproductive and respiratory syndrome virus (PRRSV) was prepared, by using the E. coli expressiom system. Insertion of a polyhistidine marker into the structure of the protein allowed the latter to be purified by metal-chelate affinity chromatography. The purity of protein was confirmed by PAAG electrophoresis and its immunospecificity was verified by immunoblotting using rN-specific monoclonal antibodies. The protein was used as an antigen to develop indirect ELISA of PRRSV antibodies. ELISA was shown to be highly sensitive and specific. PMID:17500240

  3. A recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay to detect antibodies against porcine deltacoronavirus

    PubMed Central

    SU, Mingjun; LI, Chunqiu; GUO, Donghua; WEI, Shan; WANG, Xinyu; GENG, Yufei; YAO, Shuang; GAO, Jing; WANG, Enyu; ZHAO, Xiwen; WANG, Zhihui; WANG, Jianfa; WU, Rui; FENG, Li; SUN, Dongbo

    2015-01-01

    Recently, porcine deltacoronavirus (PDCoV) has been proven to be associated with enteric disease in piglets. Diagnostic tools for serological surveys of PDCoV remain in the developmental stage when compared with those for other porcine coronaviruses. In our study, an indirect enzyme-linked immunosorbent assay (ELISA) (rPDCoV-N-ELISA) was developed to detect antibodies against PDCoV using a histidine-tagged recombinant nucleocapsid (N) protein as an antigen. The rPDCoV-N-ELISA did not cross-react with antisera against porcine epidemic diarrhea virus, swine transmissible gastroenteritis virus, porcine group A rotavirus, classical swine fever virus, porcine circovirus-2, porcine pseudorabies virus, and porcine reproductive and respiratory syndrome virus; the receiver operating characteristic (ROC) curve analysis revealed 100% sensitivity and 90.4% specificity of the rPDCoV-N-ELISA based on samples of known status (n=62). Analyses of field samples (n=319) using the rPDCoV-N-ELISA indicated that 11.59% of samples were positive for antibodies against PDCoV. These data demonstrated that the rPDCoV-N-ELISA can be used for epidemiological investigations of PDCoV and that PDCoV had a low serum prevalence in pig population in Heilongjiang province, northeast China. PMID:26668175

  4. Structural determinants of TAR RNA-DNA annealing in the absence and presence of HIV-1 nucleocapsid protein

    PubMed Central

    Kanevsky, Igor; Chaminade, Françoise; Chen, Yingying; Godet, Julien; René, Brigitte; Darlix, Jean-Luc; Mély, Yves; Mauffret, Olivier; Fossé, Philippe

    2011-01-01

    Annealing of the TAR RNA hairpin to the cTAR DNA hairpin is required for the minus-strand transfer step of HIV-1 reverse transcription. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. To gain insight into the mechanism of NC-mediated TAR RNA–DNA annealing, we used structural probes (nucleases and potassium permanganate), gel retardation assays, fluorescence anisotropy and cTAR mutants under conditions allowing strand transfer. In the absence of NC, cTAR DNA-TAR RNA annealing depends on nucleation through the apical loops. We show that the annealing intermediate of the kissing pathway is a loop–loop kissing complex involving six base-pairs and that the apical stems are not destabilized by this loop–loop interaction. Our data support a dynamic structure of the cTAR hairpin in the absence of NC, involving equilibrium between both the closed conformation and the partially open ‘Y’ conformation. This study is the first to show that the apical and internal loops of cTAR are weak and strong binding sites for NC, respectively. NC slightly destabilizes the lower stem that is adjacent to the internal loop and shifts the equilibrium toward the ‘Y’ conformation exhibiting at least 12 unpaired nucleotides in its lower part. PMID:21724607

  5. Structural determinants of TAR RNA-DNA annealing in the absence and presence of HIV-1 nucleocapsid protein.

    PubMed

    Kanevsky, Igor; Chaminade, Françoise; Chen, Yingying; Godet, Julien; René, Brigitte; Darlix, Jean-Luc; Mély, Yves; Mauffret, Olivier; Fossé, Philippe

    2011-10-01

    Annealing of the TAR RNA hairpin to the cTAR DNA hairpin is required for the minus-strand transfer step of HIV-1 reverse transcription. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. To gain insight into the mechanism of NC-mediated TAR RNA-DNA annealing, we used structural probes (nucleases and potassium permanganate), gel retardation assays, fluorescence anisotropy and cTAR mutants under conditions allowing strand transfer. In the absence of NC, cTAR DNA-TAR RNA annealing depends on nucleation through the apical loops. We show that the annealing intermediate of the kissing pathway is a loop-loop kissing complex involving six base-pairs and that the apical stems are not destabilized by this loop-loop interaction. Our data support a dynamic structure of the cTAR hairpin in the absence of NC, involving equilibrium between both the closed conformation and the partially open 'Y' conformation. This study is the first to show that the apical and internal loops of cTAR are weak and strong binding sites for NC, respectively. NC slightly destabilizes the lower stem that is adjacent to the internal loop and shifts the equilibrium toward the 'Y' conformation exhibiting at least 12 unpaired nucleotides in its lower part. PMID:21724607

  6. A recombinant nucleocapsid protein-based indirect enzyme-linked immunosorbent assay to detect antibodies against porcine deltacoronavirus.

    PubMed

    Su, Mingjun; Li, Chunqiu; Guo, Donghua; Wei, Shan; Wang, Xinyu; Geng, Yufei; Yao, Shuang; Gao, Jing; Wang, Enyu; Zhao, Xiwen; Wang, Zhihui; Wang, Jianfa; Wu, Rui; Feng, Li; Sun, Dongbo

    2016-05-01

    Recently, porcine deltacoronavirus (PDCoV) has been proven to be associated with enteric disease in piglets. Diagnostic tools for serological surveys of PDCoV remain in the developmental stage when compared with those for other porcine coronaviruses. In our study, an indirect enzyme-linked immunosorbent assay (ELISA) (rPDCoV-N-ELISA) was developed to detect antibodies against PDCoV using a histidine-tagged recombinant nucleocapsid (N) protein as an antigen. The rPDCoV-N-ELISA did not cross-react with antisera against porcine epidemic diarrhea virus, swine transmissible gastroenteritis virus, porcine group A rotavirus, classical swine fever virus, porcine circovirus-2, porcine pseudorabies virus, and porcine reproductive and respiratory syndrome virus; the receiver operating characteristic (ROC) curve analysis revealed 100% sensitivity and 90.4% specificity of the rPDCoV-N-ELISA based on samples of known status (n=62). Analyses of field samples (n=319) using the rPDCoV-N-ELISA indicated that 11.59% of samples were positive for antibodies against PDCoV. These data demonstrated that the rPDCoV-N-ELISA can be used for epidemiological investigations of PDCoV and that PDCoV had a low serum prevalence in pig population in Heilongjiang province, northeast China. PMID:26668175

  7. Proteomics Analysis of Helicoverpa armigera Single Nucleocapsid Nucleopolyhedrovirus Identified Two New Occlusion-Derived Virus-Associated Proteins, HA44 and HA100▿

    PubMed Central

    Deng, Fei; Wang, Ranran; Fang, Minggang; Jiang, Yue; Xu, Xushi; Wang, Hanzhong; Chen, Xinwen; Arif, Basil M.; Guo, Lin; Wang, Hualin; Hu, Zhihong

    2007-01-01

    Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry were used to analyze the structural proteins of the occlusion-derived virus (ODV) of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HearNPV), a group II NPV. Twenty-three structural proteins of HearNPV ODV were identified, 21 of which have been reported previously as structural proteins or ODV-associated proteins in other baculoviruses. These include polyhedrin, P78/83, P49, ODV-E18, ODV-EC27, ODV-E56, P74, LEF-3, HA66 (AC66), DNA polymerase, GP41, VP39, P33, ODV-E25, helicase, P6.9, ODV/BV-C42, VP80, ODV-EC43, ODV-E66, and PIF-1. Two proteins encoded by HearNPV ORF44 (ha44) and ORF100 (ha100) were discovered as ODV-associated proteins for the first time. ha44 encodes a protein of 378 aa with a predicted mass of 42.8 kDa. ha100 encodes a protein of 510 aa with a predicted mass of 58.1 kDa and is a homologue of the gene for poly(ADP-ribose) glycohydrolase (parg). Western blot analysis and immunoelectron microscopy confirmed that HA44 is associated with the nucleocapsid and HA100 is associated with both the nucleocapsid and the envelope of HearNPV ODV. HA44 is conserved in group II NPVs and granuloviruses but does not exist in group I NPVs, while HA100 is conserved only in group II NPVs. PMID:17581982

  8. Facilitation of hammerhead ribozyme catalysis by the nucleocapsid protein of HIV-1 and the heterogeneous nuclear ribonucleoprotein A1.

    PubMed Central

    Bertrand, E L; Rossi, J J

    1994-01-01

    In order to improve the activity of hammerhead ribozymes in vivo, we have analyzed the effect of several prototypical RNA binding proteins on the ribozyme cleavage reaction: bacteriophage T4 gene 32 protein (gp32), hnRNP A1 (A1) and the nucleocapsid protein of HIV-1 (NCp7). We show that, while gp32 has no effect on the cleavage reaction, A1 and NCp7 affect different steps of the reaction. Moreover, some of these effects depend upon the ribozyme-substrate hybrid length. A1 and NCp7 inhibit the reaction of the least stable ribozyme-substrate complexes, which have 12 bp of duplex. NCp7, but not A1, inhibits the cleavage of substrates that have long ribozyme-substrate duplexes (17 or 20 bp), while cleavage of complexes having shorter duplexes (13 or 14 bp) is not affected. NCp7 and A1 enhance the turnover of ribozymes by increasing the rate of product dissociation, but only when both cleavage products are bound with < or = 7 bp. A1 and NCp7 enhance ribozyme binding to long substrates, such as mRNAs, the structure of which otherwise limits ribozyme binding. Therefore, the effects of A1 or NCp7 on the different steps of the cleavage reaction define a length of the ribozyme-substrate duplex which allows enhancement of the rate of binding and product release without inhibiting the cleavage step. Interestingly, this duplex length (14 bases, or 7 on each side of the cleavage site) is identical for A1 and NCp7. Since A1 is thought to interact with most, if not all mRNAs in vivo, it may enhance the intracellular activity of ribozymes targeted against any mRNA.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8026475

  9. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication

    SciTech Connect

    Lee, Changhee; Hodgins, Douglas; Calvert, Jay G.; Welch, Siao-Kun W.; Jolie, Rika; Yoo, Dongwan . E-mail: dyoo@uoguelph.ca

    2006-03-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus replicating in the cytoplasm, but the nucleocapsid (N) protein is specifically localized to the nucleus and nucleolus in virus-infected cells. A 'pat7' motif of 41-PGKK(N/S)KK has previously been identified in the N protein as the functional nuclear localization signal (NLS); however, the biological consequences of N protein nuclear localization are unknown. In the present study, the role of N protein nuclear localization during infection was investigated in pigs using an NLS-null mutant virus. When two lysines at 43 and 44 at the NLS locus were substituted to glycines, the modified NLS with 41-PGGGNKK restricted the N protein to the cytoplasm. This NLS-null mutation was introduced into a full-length infectious cDNA clone of PRRSV. Upon transfection of cells, the NLS-null full-length clone induced cytopathic effects and produced infectious progeny. The NLS-null virus grew to a titer 100-fold lower than that of wild-type virus. To examine the response to NLS-null PRRSV in the natural host, three groups of pigs, consisting of seven animals per group, were intranasally inoculated with wild-type, placebo, or NLS-null virus, and the animals were maintained for 4 weeks. The NLS-null-infected pigs had a significantly shorter mean duration of viremia than wild-type-infected pigs but developed significantly higher titers of neutralizing antibodies. Mutations occurred at the NLS locus in one pig during viremia, and four types of mutations were identified: 41-PGRGNKK, 41-PGGRNKK, and 41-PGRRNKK, and 41-PGKKSKK. Both wild-type and NLS-null viruses persisted in the tonsils for at least 4 weeks, and the NLS-null virus persisting in the tonsils was found to be mutated to either 41-PGRGNKK or 41-PGGRNKK in all pigs. No other mutation was found in the N gene. All types of reversions which occurred during viremia and persistence were able to translocate the mutated N proteins to the nucleus, indicating a

  10. Retrovirus-Specific Differences in Matrix and Nucleocapsid Protein-Nucleic Acid Interactions: Implications for Genomic RNA Packaging

    PubMed Central

    Sun, Meng; Grigsby, Iwen F.; Gorelick, Robert J.; Mansky, Louis M.

    2014-01-01

    Retroviral RNA encapsidation involves a recognition event between genomic RNA (gRNA) and one or more domains in Gag. In HIV-1, the nucleocapsid (NC) domain is involved in gRNA packaging and displays robust nucleic acid (NA) binding and chaperone functions. In comparison, NC of human T-cell leukemia virus type 1 (HTLV-1), a deltaretrovirus, displays weaker NA binding and chaperone activity. Mutation of conserved charged residues in the deltaretrovirus bovine leukemia virus (BLV) matrix (MA) and NC domains affects virus replication and gRNA packaging efficiency. Based on these observations, we hypothesized that the MA domain may generally contribute to NA binding and genome encapsidation in deltaretroviruses. Here, we examined the interaction between HTLV-2 and HIV-1 MA proteins and various NAs in vitro. HTLV-2 MA displays higher NA binding affinity and better chaperone activity than HIV-1 MA. HTLV-2 MA also binds NAs with higher affinity than HTLV-2 NC and displays more robust chaperone function. Mutation of two basic residues in HTLV-2 MA α-helix II, previously implicated in BLV gRNA packaging, reduces NA binding affinity. HTLV-2 MA binds with high affinity and specificity to RNA derived from the putative packaging signal of HTLV-2 relative to nonspecific NA. Furthermore, an HIV-1 MA triple mutant designed to mimic the basic character of HTLV-2 MA α-helix II dramatically improves binding affinity and chaperone activity of HIV-1 MA in vitro and restores RNA packaging to a ΔNC HIV-1 variant in cell-based assays. Taken together, these results are consistent with a role for deltaretrovirus MA proteins in viral RNA packaging. PMID:24227839

  11. Studies on the mechanism of inactivation of the HIV-1 nucleocapsid protein NCp7 with 2-mercaptobenzamide thioesters.

    PubMed

    Jenkins, Lisa M Miller; Byrd, J Calvin; Hara, Toshiaki; Srivastava, Pratibha; Mazur, Sharlyn J; Stahl, Stephen J; Inman, John K; Appella, Ettore; Omichinski, James G; Legault, Pascale

    2005-04-21

    The HIV-1 nucleocapsid protein (NCp7) is a small basic protein with two CysCysHisCys zinc-binding domains that specifically recognizes the Psi-site of the viral RNA. NCp7 plays a number of crucial roles in the viral lifecycle, including reverse transcription and RNA encapsidation. Several classes of potential anti-HIV compounds have been designed to inactivate NCp7 through zinc ejection, including a special class of thioester compounds. We have investigated the mechanism of action of two N-substituted-S-acyl-2-mercaptobenzamide compounds (compounds 1 and 2) that target NCp7. UV/Visible spectroscopy studies demonstrated that both thioesters were able to eject metal from NCp7. NMR and mass spectroscopy studies showed that the thioester compounds specifically ejected zinc from the carboxyl-terminal zinc-binding domain of NCp7 by covalent modification of Cys(39). Exposure of NCp7 to compounds 1 and 2 destroyed its ability to specifically bind RNA, whereas NCp7 already bound to RNA was protected from zinc ejection by the thioesters. The thiol component of the thioesters (compound 3, 2-mercaptobenzoyl-beta-alaninamide) did not eject zinc from NCp7, but when compound 3 was incubated with acetyl CoA prior to incubation with NCp7, we observed extensive metal ejection. Thus, the thiol released by the reaction of compounds 1 and 2 could be re-acylated in vivo by acyl CoA to form a new thioester compound that is able to react with NCp7. These studies provide a better understanding of the mechanism of action of thioester compounds, which is important for future design of anti-HIV-1 compounds that target NCp7. PMID:15828823

  12. Structure of Severe Fever with Thrombocytopenia Syndrome Virus Nucleocapsid Protein in Complex with Suramin Reveals Therapeutic Potential

    PubMed Central

    Jiao, Lianying; Ouyang, Songying; Liang, Mifang; Niu, Fengfeng; Shaw, Neil; Wu, Wei; Ding, Wei; Jin, Cong; Peng, Yao; Zhu, Yanping; Zhang, Fushun; Wang, Tao; Li, Chuan; Zuo, Xiaobing; Luan, Chi-Hao; Li, Dexin

    2013-01-01

    Severe fever with thrombocytopenia syndrome is an emerging infectious disease caused by a novel bunyavirus (SFTSV). Lack of vaccines and inadequate therapeutic treatments have made the spread of the virus a global concern. Viral nucleocapsid protein (N) is essential for its transcription and replication. Here, we present the crystal structures of N from SFTSV and its homologs from Buenaventura (BUE) and Granada (GRA) viruses. The structures reveal that phleboviral N folds into a compact core domain and an extended N-terminal arm that mediates oligomerization, such as tetramer, pentamer, and hexamer of N assemblies. Structural superimposition indicates that phleboviral N adopts a conserved architecture and uses a similar RNA encapsidation strategy as that of RVFV-N. The RNA binding cavity runs along the inner edge of the ring-like assembly. A triple mutant of SFTSV-N, R64D/K67D/K74D, almost lost its ability to bind RNA in vitro, is deficient in its ability to transcribe and replicate. Structural studies of the mutant reveal that both alterations in quaternary assembly and the charge distribution contribute to the loss of RNA binding. In the screening of inhibitors Suramin was identified to bind phleboviral N specifically. The complex crystal structure of SFTSV-N with Suramin was refined to a 2.30-Å resolution. Suramin was found sitting in the putative RNA binding cavity of SFTSV-N. The inhibitory effect of Suramin on SFTSV replication was confirmed in Vero cells. Therefore, a common Suramin-based therapeutic approach targeting SFTSV-N and its homologs could be developed for containing phleboviral outbreaks. PMID:23576501

  13. Zinc Finger Structures in the Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Facilitate Efficient Minus- and Plus-Strand Transfer

    PubMed Central

    Guo, Jianhui; Wu, Tiyun; Anderson, Jada; Kane, Bradley F.; Johnson, Donald G.; Gorelick, Robert J.; Henderson, Louis E.; Levin, Judith G.

    2000-01-01

    The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) has two zinc fingers, each containing the invariant metal ion binding residues CCHC. Recent reports indicate that mutations in the CCHC motifs are deleterious for reverse transcription in vivo. To identify reverse transcriptase (RT) reactions affected by such changes, we have probed zinc finger functions in NC-dependent RT-catalyzed HIV-1 minus- and plus-strand transfer model systems. Our approach was to examine the activities of wild-type NC and a mutant in which all six cysteine residues were replaced by serine (SSHS NC); this mutation severely disrupts zinc coordination. We find that the zinc fingers contribute to the role of NC in complete tRNA primer removal from minus-strand DNA during plus-strand transfer. Annealing of the primer binding site sequences in plus-strand strong-stop DNA [(+) SSDNA] to its complement in minus-strand acceptor DNA is not dependent on NC zinc fingers. In contrast, the rate of annealing of the complementary R regions in (−) SSDNA and 3′ viral RNA during minus-strand transfer is approximately eightfold lower when SSHS NC is used in place of wild-type NC. Moreover, unlike wild-type NC, SSHS NC has only a small stimulatory effect on minus-strand transfer and is essentially unable to block TAR-induced self-priming from (−) SSDNA. Our results strongly suggest that NC zinc finger structures are needed to unfold highly structured RNA and DNA strand transfer intermediates. Thus, it appears that in these cases, zinc finger interactions are important components of NC nucleic acid chaperone activity. PMID:10982342

  14. Vaccinia virions deficient in transcription enzymes lack a nucleocapsid

    SciTech Connect

    McFadden, Baron D.H.; Moussatche, Nissin; Kelley, Karen; Kang, Byung-Ho; Condit, Richard C.

    2012-12-05

    The poxvirus virion contains an inner tubular nucleocapsid structure. The nucleocapsid is apparently labile to conventional electron microscopy fixation procedures and has therefore been largely ignored for decades. Advancements in electron microscopy sample preparation, notably high pressure freezing, better preserve the nucleocapsid structure. Using high pressure freezing and electron microscopy, we have compared the virion structures of wt virus and mutant viruses known to be deficient in packaging of viral transcription enzymes. We show that the mutant viruses lack a defined nucleocapsid. These results support the hypothesis that the nucleocapsid contains the viral DNA genome complexed with viral transcription enzymes and structural proteins. The studies open the door to further investigation of the composition and ultrastructure of the poxvirus nucleocapsid.

  15. Vaccinia Virions Deficient in Transcription Enzymes Lack a Nucleocapsid

    PubMed Central

    McFadden, Baron D.H.; Moussatche, Nissin; Kelley, Karen; Kang, Byung-Ho; Condit, Richard C.

    2012-01-01

    The poxvirus virion contains an inner tubular nucleocapsid structure. The nucleocapsid is apparently labile to conventional electron microscopy fixation procedures and has therefore been largely ignored for decades. Advancements in electron microscopy sample preparation, notably high pressure freezing, better preserve the nucleocapsid structure. Using high pressure freezing and electron microscopy, we have compared the virion structures of wt virus and mutant viruses known to be deficient in packaging of viral transcription enzymes. We show that the mutant viruses lack a defined nucleocapsid. These results support the hypothesis that the nucleocapsid contains the viral DNA genome complexed with viral transcription enzymes and structural proteins. The studies open the door to further investigation of the composition and ultrastructure of the poxvirus nucleocapsid. PMID:22944110

  16. Crystal Structure of the Core Region of Hantavirus Nucleocapsid Protein Reveals the Mechanism for Ribonucleoprotein Complex Formation

    PubMed Central

    Guo, Yu; Wang, Wenming; Sun, Yuna; Ma, Chao; Wang, Xu; Wang, Xin; Liu, Pi; Shen, Shu; Li, Baobin; Lin, Jianping; Deng, Fei

    2015-01-01

    ABSTRACT Hantaviruses, which belong to the genus Hantavirus in the family Bunyaviridae, infect mammals, including humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS) in humans with high mortality. Hantavirus encodes a nucleocapsid protein (NP) to encapsidate the genome and form a ribonucleoprotein complex (RNP) together with viral polymerase. Here, we report the crystal structure of the core domains of NP (NPcore) encoded by Sin Nombre virus (SNV) and Andes virus (ANDV), which are two representative members that cause HCPS in the New World. The constructs of SNV and ANDV NPcore exclude the N- and C-terminal portions of full polypeptide to obtain stable proteins for crystallographic study. The structure features an N lobe and a C lobe to clamp RNA-binding crevice and exhibits two protruding extensions in both lobes. The positively charged residues located in the RNA-binding crevice play a key role in RNA binding and virus replication. We further demonstrated that the C-terminal helix and the linker region connecting the N-terminal coiled-coil domain and NPcore are essential for hantavirus NP oligomerization through contacts made with two adjacent protomers. Moreover, electron microscopy (EM) visualization of native RNPs extracted from the virions revealed that a monomer-sized NP-RNA complex is the building block of viral RNP. This work provides insight into the formation of hantavirus RNP and provides an understanding of the evolutionary connections that exist among bunyaviruses. IMPORTANCE Hantaviruses are distributed across a wide and increasing range of host reservoirs throughout the world. In particular, hantaviruses can be transmitted via aerosols of rodent excreta to humans or from human to human and cause HFRS and HCPS, with mortalities of 15% and 50%, respectively. Hantavirus is therefore listed as a category C pathogen. Hantavirus encodes an NP that plays essential roles both in RNP formation and

  17. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain.

    PubMed

    Funk, Christina; Ott, Melanie; Raschbichler, Verena; Nagel, Claus-Henning; Binz, Anne; Sodeik, Beate; Bauerfeind, Rudolf; Bailer, Susanne M

    2015-06-01

    Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+)Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary envelopment. PMID:26083367

  18. The Herpes Simplex Virus Protein pUL31 Escorts Nucleocapsids to Sites of Nuclear Egress, a Process Coordinated by Its N-Terminal Domain

    PubMed Central

    Nagel, Claus-Henning; Binz, Anne; Sodeik, Beate; Bauerfeind, Rudolf; Bailer, Susanne M.

    2015-01-01

    Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+)Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary envelopment. PMID:26083367

  19. Point mutations in the proximal Cys-His box of Rous sarcoma virus nucleocapsid protein.

    PubMed Central

    Dupraz, P; Oertle, S; Meric, C; Damay, P; Spahr, P F

    1990-01-01

    To extend our previous studies of the function of the Cys-His box of Rous sarcoma virus NC protein, we have constructed a series of point mutations of the conserved or nonconserved amino acids of the proximal Cys-His box and a one-amino-acid deletion. All mutants were characterized for production of viral proteins and particles, for packaging and maturation of viral RNA, for reverse transcriptase activity, and for infectivity. Our results indicated the following. (i) Mutations affecting the strictly conserved amino acids cysteine 21, cysteine 24, and histidine 29 were lethal; only the mutant His-29----Pro was still able to package viral RNA, most of it in an immature form. (ii) Mutation of the highly conserved glycine 28 to valine reduced viral RNA packaging by 90% and infectivity 30-fold, whereas mutant Gly-28----Ala was fully infectious. This suggests a steric hindrance limit at this position. (iii) Shortening the distance between cysteine 24 and histidine 29 by deleting one amino acid abolished the maturation of viral RNA and yielded noninfectious particles. (iv) Substitution of tyrosine 22 by serine lowered viral RNA packaging efficiency and yielded particles that were 400-fold less infectious; double mutant Tyr-22Thr-23----SerSer had the same infectivity as Tyr-22----Ser, whereas mutant Thr-23----Ser was fully infectious. (v) Changing glutamine 33 to a charged glutamate residue did not affect virus infectivity. Similarities and differences between our avian mutants and those in murine retroviruses are discussed. Images PMID:2168981

  20. A sandwich-ELISA for the diagnosis of Peste des petits ruminants (PPR) infection in small ruminants using anti-nucleocapsid protein monoclonal antibody.

    PubMed

    Singh, R P; Sreenivasa, B P; Dhar, P; Bandyopadhyay, S K

    2004-11-01

    A sandwich ELISA test using PPR specific monoclonal antibody (clone 4G6) to an epitope of nucleocapsid protein has been developed. The test uses polyclonal sera to capture the antigen from clinical samples (swabs and tissues). Captured antigens from clinical samples are detected using PPR specific monoclonal antibody. The test is specific to PPR as it failed to detect rinderpest vaccine virus (RBOK strain). Varieties of clinical samples originating from laboratory experiments (n = 231) and from field (n = 259) were employed to test the efficacy of sandwich-ELISA test. The test compared very well with an internationally accepted commercial Immune-capture ELISA kit, which uses biotinylated monoclonal antibody against the nucleocapsid protein. On a parallel testing using 490 clinical samples, 4G6 MAb based sandwich ELISA had an overall relative diagnostic specificity of 92.8% and diagnostic sensitivity of 88.9% compared to the commercial kit. The newly developed test is free from prozone phenomenon. PPR outbreaks from various parts of India have been confirmed using the test. Findings suggested that the newly developed ELISA is suitable for PPR diagnosis under field conditions. PMID:15503204

  1. Monoclonal Antibodies Directed against Conserved Epitopes on the Nucleocapsid Protein and the Major Envelope Glycoprotein of Equine Arteritis Virus

    PubMed Central

    Weiland, Emilie; Bolz, Sylvia; Weiland, Frank; Herbst, Werner; Raamsman, Martin J. B.; Rottier, Peter J. M.; De Vries, Antoine A. F.

    2000-01-01

    We recently developed a highly effective immunization procedure for the generation of monoclonal antibodies (MAbs) directed against the porcine reproductive and respiratory syndrome virus (E. Weiland, M. Wieczorek-Krohmer, D. Kohl, K. K. Conzelmann, and F. Weiland, Vet. Microbiol. 66:171–186, 1999). The same method was used to produce a panel of 16 MAbs specific for the equine arteritis virus (EAV). Ten MAbs were directed against the EAV nucleocapsid (N) protein, and five MAbs recognized the major viral envelope glycoprotein (GL). Two of the EAV GL-specific MAbs and one antibody of unknown specificity neutralized virus infectivity. A comparison of the reactivities of the MAbs with 1 U.S. and 22 newly obtained European field isolates of EAV demonstrated that all N-specific MAbs, the three nonneutralizing anti-GL MAbs, and the weakest neutralizing MAb (MAb E7/d15-c9) recognized conserved epitopes. In contrast, the two MAbs with the highest neutralization titers bound to 17 of 23 (MAb E6/A3) and 10 of 23 (MAb E7/d15-c1) of the field isolates. Ten of the virus isolates reacted with only one of these two MAbs, indicating that they recognized different epitopes. The GL-specific MAbs and the strongly neutralizing MAb of unknown specificity (MAb E6/A3) were used for the selection of neutralization-resistant (NR) virus variants. The observation that the E6/A3-specific NR virus variants were neutralized by MAb E7/d15-c1 and that MAb E6/A3 blocked the infectivity of the E7/d15-c1-specific NR escape mutant confirmed that these antibodies reacted with distinct antigenic sites. Immunoelectron microscopy revealed for the first time that the antigenic determinants recognized by the anti-GL MAbs were localized on the virion surface. Surprisingly, although the immunofluorescence signal obtained with the neutralizing antibodies was relatively weak, they mediated binding of about three times as much gold granules to the viral envelope than the nonneutralizing anti-GL MAbs. PMID

  2. Antibody responses to Four Corners hantavirus infections in the deer mouse (Peromyscus maniculatus): identification of an immunodominant region of the viral nucleocapsid protein.

    PubMed Central

    Yamada, T; Hjelle, B; Lanzi, R; Morris, C; Anderson, B; Jenison, S

    1995-01-01

    Antibody responses to Four Corners hantavirus (FCV) infections in the deer mouse (Peromyscus maniculatus) were characterized by using FCV nucleocapsid protein (N), glycoprotein 1 (G1), and glycoprotein 2 (G2) recombinant polypeptides in Western immunoblot assays. Strong immunoglobulin G reactivities to FCV N were observed among FCV-infected wild P. maniculatus mice (n = 34) and in laboratory-infected P. maniculatus mice (n = 11). No immunoglobulin G antibody reactivities to FCV G1 or G2 linear determinants were detected. The strongest N responses were mapped to an amino-proximal segment between amino acids 17 and 59 (QLVTARQKLKDAERAVELDPDDVNKSTLQSRRAAVSALETKLG). FCV N antibodies cross-reacted with recombinant N proteins encoded by Puumala, Seoul, and Hantaan viruses. PMID:7853538

  3. Antibody responses to Four Corners hantavirus infections in the deer mouse (Peromyscus maniculatus): identification of an immunodominant region of the viral nucleocapsid protein.

    PubMed

    Yamada, T; Hjelle, B; Lanzi, R; Morris, C; Anderson, B; Jenison, S

    1995-03-01

    Antibody responses to Four Corners hantavirus (FCV) infections in the deer mouse (Peromyscus maniculatus) were characterized by using FCV nucleocapsid protein (N), glycoprotein 1 (G1), and glycoprotein 2 (G2) recombinant polypeptides in Western immunoblot assays. Strong immunoglobulin G reactivities to FCV N were observed among FCV-infected wild P. maniculatus mice (n = 34) and in laboratory-infected P. maniculatus mice (n = 11). No immunoglobulin G antibody reactivities to FCV G1 or G2 linear determinants were detected. The strongest N responses were mapped to an amino-proximal segment between amino acids 17 and 59 (QLVTARQKLKDAERAVELDPDDVNKSTLQSRRAAVSALETKLG). FCV N antibodies cross-reacted with recombinant N proteins encoded by Puumala, Seoul, and Hantaan viruses. PMID:7853538

  4. Role of ribosomes in Semliki Forest virus nucleocapsid uncoating.

    PubMed Central

    Singh, I; Helenius, A

    1992-01-01

    The mechanism by which Semliki Forest virus nucleocapsids are uncoated was analyzed in living cells and in vitro. In BHK-21 cells, uncoating occurred with virtually complete efficiency within 1 to 2 min after the nucleocapsids entered the cytoplasm. It was inhibited by monensin, which blocks nucleocapsid penetration from endosomes. As previously shown for Sindbis virus (G. Wengler and G. Wengler, Virology 134:435-442, 1984), the capsid proteins from incoming nucleocapsids became associated with ribosomes. The ribosome-bound capsid proteins were distributed throughout the cytoplasm, while the viral RNA remained associated with vacuolar membranes. Using purified nucleocapsids and ribosomes in vitro, we established that ribosomes alone were sufficient for uncoating. Their role was to release the capsid proteins from nucleocapsids and irreversibly sequester them, in a process independent of energy and translation. The process was stoichiometric rather than catalytic, with a maximum of three to six capsid proteins bound to each ribosome. More than 80% of the capsid proteins could thus be removed from the viral RNA, resulting in the formation of nucleocapsid remnants whose sedimentation coefficients progressively decreased from 140S to 80S as uncoating proceeded. Images PMID:1433506

  5. Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P

    SciTech Connect

    Green, Todd J.; Luo, Ming

    2009-10-05

    The negative-strand RNA viruses (NSRVs) are unique because their nucleocapsid, not the naked RNA, is the active template for transcription and replication. The viral polymerase of nonsegmented NSRVs contains a large polymerase catalytic subunit (L) and a nonenzymatic cofactor, the phosphoprotein (P). Insight into how P delivers the polymerase complex to the nucleocapsid has long been pursued by reverse genetics and biochemical approaches. Here, we present the X-ray crystal structure of the C-terminal domain of P of vesicular stomatitis virus, a prototypic nonsegmented NSRV, bound to nucleocapsid-like particles. P binds primarily to the C-terminal lobe of 2 adjacent N proteins within the nucleocapsid. This binding mode is exclusive to the nucleocapsid, not the nucleocapsid (N) protein in other existing forms. Localization of phosphorylation sites within P and their proximity to the RNA cavity give insight into how the L protein might be oriented to access the RNA template.

  6. Specific binding of human immunodeficiency virus type 1 gag polyprotein and nucleocapsid protein to viral RNAs detected by RNA mobility shift assays.

    PubMed Central

    Berkowitz, R D; Luban, J; Goff, S P

    1993-01-01

    Packaging of retroviral genomic RNA during virion assembly is thought to be mediated by specific interactions between the gag polyprotein and RNA sequences (often termed the psi or E region) near the 5' end of the genome. For many retroviruses, including human immunodeficiency virus type 1 (HIV-1), the portions of the gag protein and the RNA that are required for this interaction remain poorly defined. We have used an RNA gel mobility shift assay to measure the in vitro binding of purified glutathione S-transferase-HIV-1 gag fusion proteins to RNA riboprobes. Both the complete gag polyprotein and the nucleocapsid (NC) protein alone were found to bind specifically to an HIV-1 riboprobe. Either Cys-His box of NC could be removed without eliminating specific binding to the psi riboprobe, but portions of gag containing only the MA and CA proteins without NC did not bind to RNA. There were at least two binding sites in HIV-1 genomic RNA that bound to the gag polyprotein: one entirely 5' to gag and one entirely within gag. The HIV-1 NC protein bound to riboprobes containing other retroviral psi sequences almost as well as to the HIV-1 psi riboprobe. Images PMID:8230441

  7. Fine level epitope mapping and conservation analysis of two novel linear B-cell epitopes of the avian infectious bronchitis coronavirus nucleocapsid protein.

    PubMed

    Han, Zongxi; Zhao, Fei; Shao, Yuhao; Liu, Xiaoli; Kong, Xiangang; Song, Yang; Liu, Shengwang

    2013-01-01

    The nucleocapsid (N) protein of the infectious bronchitis virus (IBV) may play an essential role in the replication and translation of viral RNA. The N protein can also induce high titers of cross-reactive antibodies and cell-mediated immunity, which protects chickens from acute infection. In this study, we generated two monoclonal antibodies (mAbs), designated as 6D10 and 4F10, which were directed against the N protein of IBV using the whole viral particles as immunogens. Both of the mAbs do not cross react with Newcastle disease virus (NDV), infectious laryngotracheitis virus (ILTV) and subtype H9 avian influenza virus (AIV). After screening a phage display peptide library and peptide scanning, we identified two linear B-cell epitopes that were recognized by the mAbs 6D10 and 4F10, which corresponded to the amino acid sequences (242)FGPRTK(247) and (195)DLIARAAKI(203), respectively, in the IBV N protein. Alignments of amino acid sequences from a large number of IBV isolates indicated that the two epitopes, especially (242)FGPRTK(247), were well conserved among IBV strains. This conclusion was further confirmed by the relationships of 18 heterologous sequences to the 2 mAbs. The novel mAbs and the epitopes identified will be useful for developing diagnostic assays for IBV infections. PMID:23123213

  8. Crystal structure-based exploration of the important role of Arg106 in the RNA-binding domain of human coronavirus OC43 nucleocapsid protein

    PubMed Central

    Chen, I-Jung; Yuann, Jeu-Ming P.; Chang, Yu-Ming; Lin, Shing-Yen; Zhao, Jincun; Perlman, Stanley; Shen, Yo-Yu; Huang, Tai-Huang; Hou, Ming-Hon

    2013-01-01

    Human coronavirus OC43 (HCoV-OC43) is a causative agent of the common cold. The nucleocapsid (N) protein, which is a major structural protein of CoVs, binds to the viral RNA genome to form the virion core and results in the formation of the ribonucleoprotein (RNP) complex. We have solved the crystal structure of the N-terminal domain of HCoV-OC43 N protein (N-NTD) (residues 58 to 195) to a resolution of 2.0Å. The HCoV-OC43 N-NTD is a single domain protein composed of a five-stranded β-sheet core and a long extended loop, similar to that observed in the structures of N-NTDs from other coronaviruses. The positively charged loop of the HCoV-OC43 N-NTD contains a structurally well-conserved positively charged residue, R106. To assess the role of R106 in RNA binding, we undertook a series of site-directed mutagenesis experiments and docking simulations to characterize the interaction between R106 and RNA. The results show that R106 plays an important role in the interaction between the N protein and RNA. In addition, we showed that, in cells transfected with plasmids that encoded the mutant (R106A) N protein and infected with virus, the level of the matrix protein gene was decreased by 7-fold compared to cells that were transfected with the wild-type N protein. This finding suggests that R106, by enhancing binding of the N protein to viral RNA plays a critical role in the viral replication. The results also indicate that the strength of N protein/RNA interactions is critical for HCoV-OC43 replication. PMID:23501675

  9. [Protein expression and purification].

    PubMed

    Růčková, E; Müller, P; Vojtěšek, B

    2014-01-01

    Production of recombinant proteins is essential for many applications in both basic research and also in medicine, where recombinant proteins are used as pharmaceuticals. This review summarizes procedures involved in recombinant protein expression and purification, including molecular cloning of target genes into expression vectors, selection of the appropriate expression system, and protein purification techniques. Recombinant DNA technology allows protein engineering to modify protein stability, activity and function or to facilitate protein purification by affinity tag fusions. A wide range of cloning systems enabling fast and effective design of expression vectors is currently available. A first choice of protein expression system is usually the bacteria Escherichia coli. The main advantages of this prokaryotic expression system are low cost and simplicity; on the other hand this system is often unsuitable for production of complex mammalian proteins. Protein expression mediated by eukaryotic cells (yeast, insect and mammalian cells) usually produces properly folded and posttranslationally modified proteins. How-ever, cultivation of insect and, especially, mammalian cells is time consuming and expensive. Affinity tagged recombinant proteins are purified efficiently using affinity chromatography. An affinity tag is a protein or peptide that mediates specific binding to a chromatography column, unbound proteins are removed during a washing step and pure protein is subsequently eluted. PMID:24945544

  10. C terminal retroviral-type zinc finger domain from the HIV-1 nucleocapsid protein is structurally similar to the N-terminal zinc finger domain

    SciTech Connect

    South, T.L.; Blake, P.R. ); Hare, D.R.; Summers, M.F. )

    1991-06-25

    Two-dimensional NMR spectroscopic and computational methods were employed for the structure determination of an 18-residue peptide with the amino acid sequence of the C-terminal retriviral-type (r.t.) zinc finger domain from the nucleocapsid protein (NCP) of HIV-1 (Zn(HIV1-F2)). Unlike results obtained for the first retroviral-type zinc finger peptide, Zn (HIV1-F1) broad signals indicative of confomational lability were observed in the {sup 1}H NMR spectrum of An(HIV1-F2) at 25 C. The NMR signals narrowed upon cooling to {minus}2 C, enabling complete {sup 1}H NMR signal assignment via standard two-dimensional (2D) NMR methods. Distance restraints obtained from qualitative analysis of 2D nuclear Overhauser effect (NOESY) data were sued to generate 30 distance geometry (DG) structures with penalties in the range 0.02-0.03 {angstrom}{sup 2}. All structures were qualitatively consistent with the experimental NOESY spectrum based on comparisons with 2D NOESY back-calculated spectra. These results indicate that the r.t. zinc finger sequences observed in retroviral NCPs, simple plant virus coat proteins, and in a human single-stranded nucleic acid binding protein share a common structural motif.

  11. HLA class I-restricted human cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid antigen.

    PubMed Central

    Bertoletti, A; Ferrari, C; Fiaccadori, F; Penna, A; Margolskee, R; Schlicht, H J; Fowler, P; Guilhot, S; Chisari, F V

    1991-01-01

    Knowledge of the immune effector mechanisms responsible for clearance of hepatitis B virus (HBV)-infected cells has been severely limited by the absence of reproducible systems to selectively expand and to characterize HBV-specific cytotoxic T lymphocytes (CTLs) in the peripheral blood of patients with viral hepatitis. By using a strategy involving sequential stimulation with HBV nucleocapsid synthetic peptides followed by autologous, or HLA class I-matched, HBV nucleocapsid transfectants, we now report the existence of CTLs able to lyse target cells that express endogenously synthesized HBV nucleocapsid antigen in the peripheral blood of patients with acute viral hepatitis B. The CTL response is HLA-A2 restricted, mediated by CD8-positive T cells, and specific for a single epitope, located between amino acid residues 11 and 27 of HBV core protein; these residues are shared with the secretable precore-derived hepatitis B e antigen. Equivalent lysis of target cells that express each of these proteins suggests that their intracellular trafficking pathways may intersect. The current report provides definitive evidence that HLA class I-restricted, CD8-positive CTLs that recognize endogenously synthesized HBV nucleocapsid antigen are induced during acute HBV infection in humans and establishes a strategy that should permit a detailed analysis of the role played by HBV-specific CTLs in the immunopathogenesis of viral hepatitis. PMID:1660137

  12. Structural insights into the cTAR DNA recognition by the HIV-1 nucleocapsid protein: role of sugar deoxyriboses in the binding polarity of NC

    PubMed Central

    Bazzi, Ali; Zargarian, Loussiné; Chaminade, Françoise; Boudier, Christian; De Rocquigny, Hughes; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2011-01-01

    An essential step of the reverse transcription of the HIV-1 genome is the first strand transfer that requires the annealing of the TAR RNA hairpin to the cTAR DNA hairpin. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. Using nuclear magnetic resonance and gel retardation assays, we investigated the interaction between NC and the top half of the cTAR DNA (mini-cTAR). We show that NC(11-55) binds the TGG sequence in the lower stem that is destabilized by the adjacent internal loop. The 5′ thymine interacts with residues of the N-terminal zinc knuckle and the 3′ guanine is inserted in the hydrophobic plateau of the C-terminal zinc knuckle. The TGG sequence is preferred relative to the apical and internal loops containing unpaired guanines. Investigation of the DNA–protein contacts shows the major role of hydrophobic interactions involving nucleobases and deoxyribose sugars. A similar network of hydrophobic contacts is observed in the published NC:DNA complexes, whereas NC contacts ribose differently in NC:RNA complexes. We propose that the binding polarity of NC is related to these contacts that could be responsible for the preferential binding to single-stranded nucleic acids. PMID:21227929

  13. Structural insights into the cTAR DNA recognition by the HIV-1 nucleocapsid protein: role of sugar deoxyriboses in the binding polarity of NC.

    PubMed

    Bazzi, Ali; Zargarian, Loussiné; Chaminade, Françoise; Boudier, Christian; De Rocquigny, Hughes; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2011-05-01

    An essential step of the reverse transcription of the HIV-1 genome is the first strand transfer that requires the annealing of the TAR RNA hairpin to the cTAR DNA hairpin. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. Using nuclear magnetic resonance and gel retardation assays, we investigated the interaction between NC and the top half of the cTAR DNA (mini-cTAR). We show that NC(11-55) binds the TGG sequence in the lower stem that is destabilized by the adjacent internal loop. The 5' thymine interacts with residues of the N-terminal zinc knuckle and the 3' guanine is inserted in the hydrophobic plateau of the C-terminal zinc knuckle. The TGG sequence is preferred relative to the apical and internal loops containing unpaired guanines. Investigation of the DNA-protein contacts shows the major role of hydrophobic interactions involving nucleobases and deoxyribose sugars. A similar network of hydrophobic contacts is observed in the published NC:DNA complexes, whereas NC contacts ribose differently in NC:RNA complexes. We propose that the binding polarity of NC is related to these contacts that could be responsible for the preferential binding to single-stranded nucleic acids. PMID:21227929

  14. Detection of IgM antibodies against a recombinant nucleocapsid protein of canine distemper virus in dog sera using a dot-blot assay.

    PubMed

    Barben, G; Stettler, M; Jaggy, A; Vandevelde, M; Zurbriggen, A

    1999-03-01

    A dot-blot assay for the detection of IgM antibodies (ABs) against canine distemper virus (CDV) in canine serum is described. The diagnostic potential of this technique was evaluated by analysing sera from three test groups: (i) specific pathogen-free (SPF) beagle dogs experimentally infected with virulent CDV; (ii) SPF dogs immunized with a combined vaccine containing CDV, and (iii) SPF dogs immunized with a CDV-free vaccine. As antigen for the dot-blot assay we used the recombinant nucleocapsid protein (N protein) of the virulent A75/17 CDV strain. All 12 dogs of group 1, infected with virulent CDV, showed detectable CDV-specific IgM levels in their serum. All dogs of group 2 were also positive for anti-CDV IgM after the first immunization with the CDV-containing vaccine. The four dogs immunized with a CDV-free vaccine (group iii) remained negative throughout the course of the experiment. From these results, we conclude that the IgM detection test, which requires only a single serum sample, is a useful method for diagnosing current or recent CDV infection in CDV-infected or CDV-immunized dogs under experimental conditions. PMID:10216448

  15. Structural characterization of a 39-residue synthetic peptide containing the two zinc binding domains from the HIV-1 p7 nucleocapsid protein by CD and NMR spectroscopy.

    PubMed

    Omichinski, J G; Clore, G M; Sakaguchi, K; Appella, E; Gronenborn, A M

    1991-11-01

    A 39-residue peptide (p7-DF) containing the two zinc binding domains of the p7 nucleocapsid protein was prepared by solid-phase peptide synthesis. The solution structure of the peptide was characterized using circular dichroic and nuclear magnetic resonance spectroscopy in both the presence and absence of zinc ions. Circular dichroic spectroscopy indicates that the peptide exhibits a random coil conformation in the absence of zinc but appears to form an ordered structure in the presence of zinc. Two-dimensional nuclear magnetic resonance spectroscopy indicates that the two zinc binding domains within the peptide form stable, but independent, units upon the addition of 2 equivalents of ZnCl2 per equivalent of peptide. Structure calculations on the basis of nuclear Overhauser (NOE) data indicate that the two zinc binding domains have the same polypeptide fold within the errors of the coordinates (approximately 0.5 A for the backbone atoms, the zinc atoms and the coordinating cysteine and histidine ligands). The linker region (Arg17-Gly23) is characterized by a very limited number of sequential NOEs and the absence of any non-sequential NOEs suggest that this region of polypeptide chain is highly flexible. The latter coupled with the occurrence of a large number of basic residues (four out of seven) in the linker region suggests that it may serve to allow adaptable positioning of the nucleic acid recognition sequences within the protein. PMID:1959614

  16. Enhancement of the basal-level activity of HIV-1 long terminal repeat by HIV-1 nucleocapsid protein.

    PubMed

    Zhang, J L; Sharma, P L; Crumpacker, C S

    2000-03-15

    Two HIV-1 proteins, Tat and NCp7 (NC), have zinc finger-like structures. NC is a virion protein and has been shown to accumulate in the nucleus 8 h postinfection. Since transcription factors with zinc fingers assist the transcriptional activity of both RNA polymerases II and III, we examined the effect of NC on HIV-1 LTR-directed gene expression. The HIV-1 NC binds to the HIV-1 LTR and results in a mobility shift in polyacrylamide gel electrophoresis. Competition assays with cold probes revealed that the binding of NC and formation of a DNA-protein complex could be prevented by the addition of excess unlabeled LTR self-probe, but not the HIV-1 V3 envelope gene. The DNase I footprint analysis showed that NC binds to six regions within HIV-1 LTR, four of which are near the transcription start site. The NC alone enhances LTR basal-level activity in RNA runoff experiments. When the general transcription factors (GTFs) were added in the assay, NC enhances NF-kappaB, Sp1, and TFIIB-induced HIV-1 LTR-directed RNA transcription. RNA transcription directed by the adenovirus major late promoter, however, is not significantly affected by NC in the cell-free system. Transient transfection of human T lymphocytes with the plasmids containing HIV-1 nc or gag showed enhancement of LTR-CAT activity. Moreover, transfection of HIV-1 provirus containing mutations in NC zinc-finger domains dramatically decreases the enhancement activity in human T cells, in which HIV-1 LTR is stably integrated into the cellular genome. These observations show that NC binds to HIV-1 LTR and cooperatively enhances GTFs and NF-kappaB induced HIV-1 LTR basal-level activity. NC may play the role of a nucleation protein, which binds to LTR and enhances basal-level transcription by recruiting cellular transcription factors to the HIV-1 promoter in competition with cellular promoters. PMID:10704334

  17. Investigation by two-photon fluorescence correlation spectroscopy of the interaction of the nucleocapsid protein of HIV-1 with hairpin loop DNA sequences

    NASA Astrophysics Data System (ADS)

    Mely, Yves; Azoulay, Joel; Beltz, Herve; Clamme, Jean-Pierre; Bernacchi, Serena; Ficheux, Damien; Roques, Bernard P.; Darlix, Jean-Luc

    2004-09-01

    The nucleocapsid protein NCp7 of HIV-1 possesses nucleic acid chaperone properties that are critical for the two strand transfer reactions required during reverse transcription. The first DNA strand transfer relies on the destabilization by NCp7 of double-stranded segments of the transactivation response element, TAR sequence, at the 3' end of the genomic RNA and the complementary sequence cTAR at the 3" terminus of the early product of reverse transcription. To characterize NCp7-mediated nucleic acid destabilization, we investigated by steady-state and time-resolved fluorescence spectroscopy and two photon fluorescence correlation spectroscopy, the interaction of a doubly-labelled cTAR sequence with NCp7. The conformational fluctuations observed in the absence of NCp7 were associated with the rapid opening and closing (fraying) of the double stranded terminal segment of cTAR. NCp7 destabilizes cTAR mainly through a large increase of the opening rate constant. Additionally, the various destabilizing structures (bulges, internal loop, mismatches) spread all over cTAR secondary structure were found to be critical for NCp7 chaperone activity. Taken together, our data enabled us to propose a molecular mechanism for the destabilizing activity of NCp7 on cTAR which is crucial for the formation of the cTAR-TAR complex during the first strand transfer reaction.

  18. Design and Synthesis of DiselenoBisBenzamides (DISeBAs) as Nucleocapsid Protein 7 (NCp7) Inhibitors with anti-HIV Activity.

    PubMed

    Sancineto, Luca; Mariotti, Alice; Bagnoli, Luana; Marini, Francesca; Desantis, Jenny; Iraci, Nunzio; Santi, Claudio; Pannecouque, Christophe; Tabarrini, Oriana

    2015-12-24

    The interest in the synthesis of Se-containing compounds is growing with the discovery of derivatives exhibiting various biological activities. In this manuscript, we have identified a series of 2,2'-diselenobisbenzamides (DISeBAs) as novel HIV retroviral nucleocapsid protein 7 (NCp7) inhibitors. Because of its pleiotropic functions in the whole viral life cycle and its mutation intolerant nature, NCp7 represents a target of great interest which is not reached by any anti-HIV agent in clinical use. Using the diselenobisbenzoic scaffold, amino acid, and benzenesulfonamide derivatives were prepared and biologically profiled against different models of HIV infection. The incorporation of amino acids such as glycine and glutamate into DISeBAs 7 and 8 resulted in selective anti-HIV activity against both acutely and chronically infected cells as well as an interesting virucidal effect. DISeBAs demonstrated broad antiretroviral activity, encompassing HIV-1 drug-resistant strains including clinical isolates, as well as simian immunodeficiency virus (SIV). Time of addition experiments, along with the observed dose dependent inhibition of the Gag precursor proper processing, confirmed that their mechanism of action is based on NCp7 inhibition. PMID:26613134

  19. Site-selective probing of cTAR destabilization highlights the necessary plasticity of the HIV-1 nucleocapsid protein to chaperone the first strand transfer

    PubMed Central

    Godet, Julien; Kenfack, Cyril; Przybilla, Frédéric; Richert, Ludovic; Duportail, Guy; Mély, Yves

    2013-01-01

    The HIV-1 nucleocapsid protein (NCp7) is a nucleic acid chaperone required during reverse transcription. During the first strand transfer, NCp7 is thought to destabilize cTAR, the (−)DNA copy of the TAR RNA hairpin, and subsequently direct the TAR/cTAR annealing through the zipping of their destabilized stem ends. To further characterize the destabilizing activity of NCp7, we locally probe the structure and dynamics of cTAR by steady-state and time resolved fluorescence spectroscopy. NC(11–55), a truncated NCp7 version corresponding to its zinc-finger domain, was found to bind all over the sequence and to preferentially destabilize the penultimate double-stranded segment in the lower part of the cTAR stem. This destabilization is achieved through zinc-finger–dependent binding of NC to the G10 and G50 residues. Sequence comparison further revealed that C•A mismatches close to the two G residues were critical for fine tuning the stability of the lower part of the cTAR stem and conferring to G10 and G50 the appropriate mobility and accessibility for specific recognition by NC. Our data also highlight the necessary plasticity of NCp7 to adapt to the sequence and structure variability of cTAR to chaperone its annealing with TAR through a specific pathway. PMID:23511968

  20. A novel double recognition enzyme-linked immunosorbent assay based on the nucleocapsid protein for early detection of European porcine reproductive and respiratory syndrome virus infection.

    PubMed

    Venteo, A; Rebollo, B; Sarraseca, J; Rodriguez, M J; Sanz, A

    2012-04-01

    Precise and rapid detection of porcine reproductive respiratory syndrome virus (PRRSV) infection in swine farms is critical. Improvement of control procedures, such as testing incoming gilt and surveillance of seronegative herds requires more rapid and sensitive methods. However, standard serological techniques detect mainly IgG antibodies. A double recognition enzyme-linked immunosorbent assay (DR-ELISA) was developed for detection of antibodies specific to European PRRSV. This new assay can recognize both IgM and IgG antibodies to PRSSV which might be useful for detecting in routine surveillance assays pigs that are in the very early stages of infection and missed by conventional assays detecting only IgG antibodies. DR-ELISA is based on the double recognition of antigen by antibody. In this study, the recombinant nucleocapsid protein (N) of PRRSV was used both as the coating and the enzyme-conjugated antigen. To evaluate the sensitivity of the assay at early stages of the infection, sera from 69 pigs infected with PRRSV were collected during successive days post infection (pi) and tested. While standard methods showed low sensitivity rates before day 14 pi, DR-ELISA detected 88.4% seropositive samples at day 7 showing greater sensitivity at early stages of the infection. Further studies were carried out to assess the efficiency of the new assay, and the results showed DR-ELISA to be a sensitive and accurate method for early diagnosis of EU-PRRSV infection. PMID:22342444

  1. Nucleotide and deduced amino acid sequences of the nucleocapsid protein of the virulent A75/17-CDV strain of canine distemper virus.

    PubMed

    Stettler, M; Zurbriggen, A

    1995-05-01

    Virus persistence is essential in the chronic inflammatory canine distemper virus (CDV)-induced demyelinating disease. In the case of CDV there is a close association between persistence and virulence. Virulent CDV isolated from dogs with distemper shows immediate persistence in primary dog brain cell cultures (DBCC) and in different cell lines. We have evidence that the nucleocapsid (NP) protein plays an important role in the development of persistence. The NP-protein, the most abundant structural virus protein, also influences virus assembly and has some regulatory functions in virus transcription and replication. In this study we compared the nucleotide and deduced amino acid sequence of a virulent CDV strain (A75/17-CDV) to a culture-attenuated non-virulent strain (OP-CDV). Viral RNA was extracted from DBCC infected with virulent CDV. Virulent CDV retains its in vivo properties, such as virulence and ability to cause demyelination, when propagated in these DBCC. The viral RNA was reverse transcribed and the resulting cDNA amplified by polymerase chain reaction for subsequent cloning. The nucleotide sequences of these clones were determined by the dideoxy chain termination method. The number of nucleotides and the putative NP-protein of the virulent strain matched the attenuated CDV strain. We observed a total of 105 nucleotide differences. Three were localised within the 3' and five within the 5' non-coding region of the NP-gene. The 97 nucleotide changes within the coding region resulted in 22 amino acid differences. 10 of these amino acid (AA) modifications were within the N-terminal region (AA 1 to 159) and 12 within the C-terminal area (AA 351 to 523).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8588315

  2. Spatial proximity of the HIV-1 nucleocapsid protein zinc fingers investigated by time-resolved fluorescence and fluorescence resonance energy transfer.

    PubMed

    Mély, Y; Jullian, N; Morellet, N; De Rocquigny, H; Dong, C Z; Piémont, E; Roques, B P; Gérard, D

    1994-10-11

    The three-dimensional structure of peptides encompassing the two zinc-saturated finger motifs of the nucleocapsid protein NCp7 of HIV-1 has been reported by several groups. Whereas the folded structures of the finger motifs were in good agreement, discrepancies existed concerning their spatial relationship since the fingers were found either close to each other [Morellet, N., Jullian, N., De Rocquigny, H., Maigret, B., Darlix, J. L., & Roques, B. P. (1992) Embo J. 11, 3059-3065] or independently folded [Omichinski, J. G., Clore, G. M., Sakaguchi, K., Appella, E., & Gronenborn, A. M. (1991) FEBS Lett. 292, 25-30, Summers, M. F., Henderson, L. E., Chance, M. R., Bess, J. W., Jr., South, T. L., Blake, P. R., Sagi, I., Perez-Alvarado, G., Sowder, R.C., III, Hare, D.R., & Arthur, L. O. (1992) Protein Sci. 1, 563-574]. As in the interacting finger model, Phe16 in the NH2-terminal finger and Trp37 in the COOH-terminal finger were found to be spatially close, the fluorescence properties of the aromatic residues at positions 16 and 37 in the wild-type and two conservatively substituted (12-53) NCp7 peptides were investigated and compared with those of three negative control derivatives where the finger motifs were not in close contact. Direct distance measurements by Tyr-Trp fluorescence resonance energy transfer of the former derivatives yielded a 7-12 A interchromophore distance range which is clearly inconsistent with the 12.5-18 A range measured for the negative controls and thus a random orientation of the zinc finger motifs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7918429

  3. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly

    SciTech Connect

    Zheng, Yan Kielian, Margaret

    2015-10-15

    Alphaviruses have a nucleocapsid core composed of the RNA genome surrounded by an icosahedral lattice of capsid protein. An insertion after position 186 in the capsid protein produced a strongly temperature-sensitive growth phenotype. Even when the structural proteins were synthesized at the permissive temperature (28 °C), subsequent incubation of the cells at the non-permissive temperature (37 °C) dramatically decreased mutant capsid protein stability and particle assembly. Electron microscopy confirmed the presence of cytoplasmic nucleocapsids in mutant-infected cells cultured at the permissive temperature, but these nucleocapsids were not stable to sucrose gradient separation. In contrast, nucleocapsids isolated from mutant virus particles had similar stability to that of wildtype virus. Our data support a model in which cytoplasmic nucleocapsids go through a maturation step during packaging into virus particles. The insertion site lies in the interface between capsid proteins in the assembled nucleocapsid, suggesting the region where such a stabilizing transition occurs. - Highlights: • We characterize an alphavirus capsid insertion mutation. • These capsid mutants are highly temperature sensitive for growth. • The insertion affects nucleocapsid stability. • Results suggest that the nucleocapsid is stabilized during virus budding.

  4. The RING Domain and the L79 Residue of Z Protein Are Involved in both the Rescue of Nucleocapsids and the Incorporation of Glycoproteins into Infectious Chimeric Arenavirus-Like Particles ▿

    PubMed Central

    Casabona, Juan Cruz; Levingston Macleod, Jesica M.; Loureiro, Maria Eugenia; Gomez, Guillermo A.; Lopez, Nora

    2009-01-01

    Arenaviruses, such as Tacaribe virus (TacV) and its closely related pathogenic Junin virus (JunV), are enveloped viruses with a bipartite negative-sense RNA genome that encodes the nucleocapsid protein (N), the precursor of the envelope glycoprotein complex (GP), the polymerase (L), and a RING finger protein (Z), which is the driving force of arenavirus budding. We have established a plasmid-based system which allowed the successful packaging of TacV-like nucleocapsids along with Z and GP of JunV into infectious virus-like particles (VLPs). By coexpressing different combinations of the system components, followed by biochemical analysis of the VLPs, the requirements for the assembly of both N and GP into particles were defined. We found that coexpression of N with Z protein in the absence of minigenome and other viral proteins was sufficient to recruit N within lipid-enveloped Z-containing VLPs. In addition, whereas GP was not required for the incorporation of N, coexpression of N substantially enhanced the ratio of GP to Z into VLPs. Disruption of the RING structure or mutation of residue L79 to alanine within Z protein, although it had no effect on Z self-budding, severely impaired VLP infectivity. These mutations drastically altered intracellular Z-N interactions and the incorporation of both N and GP into VLPs. Our results support the conclusion that the interaction between Z and N is required for assembly of both the nucleocapsids and the glycoproteins into infectious arenavirus budding particles. PMID:19420075

  5. The RING domain and the L79 residue of Z protein are involved in both the rescue of nucleocapsids and the incorporation of glycoproteins into infectious chimeric arenavirus-like particles.

    PubMed

    Casabona, Juan Cruz; Levingston Macleod, Jesica M; Loureiro, Maria Eugenia; Gomez, Guillermo A; Lopez, Nora

    2009-07-01

    Arenaviruses, such as Tacaribe virus (TacV) and its closely related pathogenic Junin virus (JunV), are enveloped viruses with a bipartite negative-sense RNA genome that encodes the nucleocapsid protein (N), the precursor of the envelope glycoprotein complex (GP), the polymerase (L), and a RING finger protein (Z), which is the driving force of arenavirus budding. We have established a plasmid-based system which allowed the successful packaging of TacV-like nucleocapsids along with Z and GP of JunV into infectious virus-like particles (VLPs). By coexpressing different combinations of the system components, followed by biochemical analysis of the VLPs, the requirements for the assembly of both N and GP into particles were defined. We found that coexpression of N with Z protein in the absence of minigenome and other viral proteins was sufficient to recruit N within lipid-enveloped Z-containing VLPs. In addition, whereas GP was not required for the incorporation of N, coexpression of N substantially enhanced the ratio of GP to Z into VLPs. Disruption of the RING structure or mutation of residue L79 to alanine within Z protein, although it had no effect on Z self-budding, severely impaired VLP infectivity. These mutations drastically altered intracellular Z-N interactions and the incorporation of both N and GP into VLPs. Our results support the conclusion that the interaction between Z and N is required for assembly of both the nucleocapsids and the glycoproteins into infectious arenavirus budding particles. PMID:19420075

  6. Pentagalloylglucose Blocks the Nuclear Transport and the Process of Nucleocapsid Egress to Inhibit HSV-1 Infection.

    PubMed

    Jin, Fujun; Ma, Kaiqi; Chen, Maoyun; Zou, Muping; Wu, Yanting; Li, Feng; Wang, Yifei

    2016-03-23

    Herpes simplex virus type 1 (HSV-1), a widespread virus, causes a variety of human viral diseases worldwide. The serious threat of drug-resistance highlights the extreme urgency to develop novel antiviral drugs with different mechanisms of action. Pentagalloylglucose (PGG) is a natural polyphenolic compound with significant anti-HSV activity; however, the mechanisms underlying its antiviral activity need to be defined by further studies. In this study, we found that PGG treatment delays the nuclear transport process of HSV-1 particles by inhibiting the upregulation of dynein (a cellular major motor protein) induced by HSV-1 infection. Furthermore, PGG treatment affects the nucleocapsid egress of HSV-1 by inhibiting the expression and disrupting the cellular localization of pEGFP-UL31 and pEGFP-UL34, which are indispensable for HSV-1 nucleocapsid egress from the nucleus. However, the over-expression of pEGFP-UL31 and pEGFP-UL34 could decrease the antiviral effect of PGG. In this study, for the first time, the antiviral activity of PGG against acyclovir-resistant virus was demonstrated in vitro, and the possible mechanisms of its anti-HSV activities were identified based on the inhibition of nuclear transport and nucleocapsid egress in HSV-1. It was further confirmed that PGG could be a promising candidate for HSV therapy, especially for drug-resistant strains. PMID:26166506

  7. Serological diagnosis of hantavirus infections by an enzyme-linked immunosorbent assay based on detection of immunoglobulin G and M responses to recombinant nucleocapsid proteins of five viral serotypes.

    PubMed

    Elgh, F; Lundkvist, A; Alexeyev, O A; Stenlund, H; Avsic-Zupanc, T; Hjelle, B; Lee, H W; Smith, K J; Vainionpää, R; Wiger, D; Wadell, G; Juto, P

    1997-05-01

    Worldwide, hantaviruses cause more than 100,000 human infections annually. Rapid and accurate methods are important both in monitoring acute infections and for epidemiological studies. We and others have shown that the amino termini of hantavirus nucleocapsid proteins (Ns) are sensitive tools for the detection of specific antibodies in hantavirus disease. Accordingly, we expressed truncated Ns (amino acids 1 to 117) in Escherichia coli from the five hantaviruses known to be pathogenic to man; Hantaan (HTN), Seoul (SEO), Dobrava (DOB), Sin Nombre (SN), and Puumala (PUU) viruses. In order to obtain pure antigens for use in an enzyme-linked immunosorbent assay (ELISA), the recombinant proteins were purified by polyhistidine-metal chelate affinity chromatography. Polyclonal animal antisera and a panel of serum specimens from hantavirus-infected individuals from Scandinavia, Slovenia, Russia, Korea, China, and the United States were used to evaluate the usefulness of the method. With both human and animal sera, it was possible to designate the antibody response into two groups: those with HTN, SEO, and DOB virus reactivity on the one hand and those with SN and PUU virus reactivity on the other. In sera from Scandinavia, European Russia, and the United States, the antibody response was directed mainly to the PUU and SN virus group. The sera from Asia reacted almost exclusively with the HTN, SEO, and DOB types of viruses. This was true for both the immunoglobulin M (IgM) and IgG antibody responses, indicating that this type of discrimination can be done during the acute phase of hantavirus infections. Both the HTN, SEO, and DOB virus and the PUU and SN virus types of antibody response patterns were found in patients from the Balkan region (Solvenia). PMID:9114393

  8. Sequence of Events in Measles Virus Replication: Role of Phosphoprotein-Nucleocapsid Interactions

    PubMed Central

    Brunel, Joanna; Chopy, Damien; Dosnon, Marion; Bloyet, Louis-Marie; Devaux, Patricia; Urzua, Erica; Cattaneo, Roberto; Longhi, Sonia

    2014-01-01

    ABSTRACT The genome of nonsegmented negative-strand RNA viruses is tightly embedded within a nucleocapsid made of a nucleoprotein (N) homopolymer. To ensure processive RNA synthesis, the viral polymerase L in complex with its cofactor phosphoprotein (P) binds the nucleocapsid that constitutes the functional template. Measles virus P and N interact through two binding sites. While binding of the P amino terminus with the core of N (NCORE) prevents illegitimate encapsidation of cellular RNA, the interaction between their C-terminal domains, PXD and NTAIL is required for viral RNA synthesis. To investigate the binding dynamics between the two latter domains, the PXD F497 residue that makes multiple hydrophobic intramolecular interactions was mutated. Using a quantitative mammalian protein complementation assay and recombinant viruses, we found that an increase in PXD-to-NTAIL binding strength is associated with a slower transcript accumulation rate and that abolishing the interaction renders the polymerase nonfunctional. The use of a newly developed system allowing conditional expression of wild-type or mutated P genes, revealed that the loss of the PXD-NTAIL interaction results in reduced transcription by preformed transcriptases, suggesting reduced engagement on the genomic template. These intracellular data indicate that the viral polymerase entry into and progression along its genomic template relies on a protein-protein interaction that serves as a tightly controlled dynamic anchor. IMPORTANCE Mononegavirales have a unique machinery to replicate RNA. Processivity of their polymerase is only achieved when the genome template is entirely embedded into a helical homopolymer of nucleoproteins that constitutes the nucleocapsid. The polymerase binds to the nucleocapsid template through the phosphoprotein. How the polymerase complex enters and travels along the nucleocapsid template to ensure uninterrupted synthesis of up to ∼6,700-nucleotide messenger RNAs from six

  9. Nucleocapsid Annealing-Mediated Electrophoresis (NAME) Assay Allows the Rapid Identification of HIV-1 Nucleocapsid Inhibitors

    PubMed Central

    Sosic, Alice; Cappellini, Marta; Scalabrin, Matteo; Gatto, Barbara

    2015-01-01

    RNA or DNA folded in stable tridimensional folding are interesting targets in the development of antitumor or antiviral drugs. In the case of HIV-1, viral proteins involved in the regulation of the virus activity recognize several nucleic acids. The nucleocapsid protein NCp7 (NC) is a key protein regulating several processes during virus replication. NC is in fact a chaperone destabilizing the secondary structures of RNA and DNA and facilitating their annealing. The inactivation of NC is a new approach and an interesting target for anti-HIV therapy. The Nucleocapsid Annealing-Mediated Electrophoresis (NAME) assay was developed to identify molecules able to inhibit the melting and annealing of RNA and DNA folded in thermodynamically stable tridimensional conformations, such as hairpin structures of TAR and cTAR elements of HIV, by the nucleocapsid protein of HIV-1. The new assay employs either the recombinant or the synthetic protein, and oligonucleotides without the need of their previous labeling. The analysis of the results is achieved by standard polyacrylamide gel electrophoresis (PAGE) followed by conventional nucleic acid staining. The protocol reported in this work describes how to perform the NAME assay with the full-length protein or its truncated version lacking the basic N-terminal domain, both competent as nucleic acids chaperones, and how to assess the inhibition of NC chaperone activity by a threading intercalator. Moreover, NAME can be performed in two different modes, useful to obtain indications on the putative mechanism of action of the identified NC inhibitors. PMID:25650789

  10. Mapping of B-cell determinants in the nucleocapsid protein of Puumala virus: definition of epitopes specific for acute immunoglobulin G recognition in humans.

    PubMed Central

    Lundkvist, A; Björsten, S; Niklasson, B; Ahlborg, N

    1995-01-01

    The complete amino acid sequence of the Puumala (PUU) virus nucleocapsid protein (N), deduced from the genome of the prototype strain Sotkamo, was synthesized as decapeptides with 5-amino-acid overlaps. By use of the PEPSCAN method, 86 peptides were examined for reactivity with sera from serologically confirmed nephropathia epidemica (NE) patients and 11 PUU virus N-specific bank vole monoclonal antibodies. The human sera showed reactivity with several different regions, while only one of the monoclonal antibodies reacted with one single peptide. Sequences were selected by this PEPSCAN analysis of human antibody reactivities, and five 15-amino-acid peptides were synthesized and evaluated as antigens by an enzyme-linked immunosorbent assay (ELISA). Peptide-reactive antibodies of the immunoglobulin M (IgM) class were measured in serum samples drawn from patients with acute NE. In comparison with the results of a mu-capture IgM ELISA using native PUU virus antigen, only a few serum samples were found positive (sensitivity, 2 to 10%). Interestingly, when antibodies of the IgG class were measured, the sensitivities of the five peptide ELISAs were found to be 79, 46, 2, 100, and 40%, respectively, as compared with the sensitivity of an IgG ELISA based on native viral antigen. The IgG reactivities of sequentially drawn sera from NE patients with the two peptides giving the highest assay sensitivities were analyzed and compared with their reactivities with native viral antigen. All patients had detectable anti-peptide IgG in the acute-phase sample, which, however, had totally declined in samples drawn after 2 years. The opposite pattern was seen with native viral antigen, in which case all patients showed the highest levels of specific IgG after 2 years. The results suggest the presence of epitopes specific for the acute IgG response. PMID:7536616

  11. Impact of the terminal bulges of HIV-1 cTAR DNA on its stability and the destabilizing activity of the nucleocapsid protein NCp7.

    PubMed

    Beltz, Hervé; Azoulay, Joel; Bernacchi, Serena; Clamme, Jean-Pierre; Ficheux, Damien; Roques, Bernard; Darlix, Jean-Luc; Mély, Yves

    2003-04-18

    Reverse transcription of HIV-1 genomic RNA to double-stranded DNA by reverse transcriptase (RT) is a critical step in HIV-1 replication. This process relies on two viral proteins, the RT enzyme and nucleocapsid protein NCp7 that has well documented nucleic acid chaperone properties. At the beginning of the linear DNA synthesis, the newly made minus-strand strong-stop DNA ((-)ssDNA) is transferred to the 3'end of the genomic RNA by means of an hybridization reaction between transactivation response element (TAR) RNA and cTAR DNA sequences. Since both TAR sequences exhibit stable hairpin structures, NCp7 needs to destabilize the TAR structures in order to chaperone their hybridization. To further characterize the relationships between TAR stability and NC-mediated destabilization, the role of the A(49) and G(52) bulged residues in cTAR DNA stability was investigated. The stability of cTAR and mutants where one or the two terminal bulges were replaced by base-pairs as well as the NCp7-mediated destabilization of these cTAR sequences were examined. Thermodynamic data indicate that the two bulges cooperatively destabilize cTAR by reducing the stacking interactions between the bases. This causes a free energy change of about 6.4 kcal/mol and seems to be critical for NC activity. Time-resolved fluorescence data of doubly labelled cTAR derivatives suggest that NC-mediated melting of cTAR ends propagates up to the 10C.A(44) mismatch or T(40) bulge. Fluorescence correlation spectroscopy using two-photon excitation was also used to monitor cTAR ends fraying by NC. Results show that NC causes a very significant increase of cTAR ends fraying, probably limited to the terminal base-pair in the case of cTAR mutants. Since the TAR RNA and cTAR DNA bulges or mismatches appear well conserved among all HIV-1 strains, the present data support the notion of a co-evolutionary relationship between TAR and NC activity. PMID:12684000

  12. HLA-A*0201 T-cell epitopes in severe acute respiratory syndrome (SARS) coronavirus nucleocapsid and spike proteins

    SciTech Connect

    Tsao, Y.-P.; Lin, J.-Y.; Jan, J.-T.; Leng, C.-H.; Chu, C.-C.; Yang, Y.-C.; Chen, S.-L. . E-mail: showlic@ha.mc.ntu.edu.tw

    2006-05-26

    The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla{sub b}ind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be First identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-{gamma} stimulation of blood CD8{sup +} T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.

  13. HIV-1 nucleocapsid protein activates transient melting of least stable parts of the secondary structure of TAR and its complementary sequence.

    PubMed

    Bernacchi, Serena; Stoylov, Stoyl; Piémont, Etienne; Ficheux, Damien; Roques, Bernard P; Darlix, Jean Luc; Mély, Yves

    2002-03-29

    The nucleocapsid protein NCp7 of HIV-1 possesses a nucleic acid chaperone activity that is critical in minus and plus strand transfer during reverse transcription. The minus strand transfer notably relies on the ability of NCp7 to destabilize the stable stem with five contiguous, double-stranded segments of both the TAR sequence at the 3' end of the viral genome and the complementary sequence, cTAR, in minus strong-stop DNA. In order to examine the nature and the extent of NCp7 destabilizing activity, we investigated, by absorbance and fluorescence spectroscopy, the interaction of TAR and cTAR with a (12-55)NCp7 peptide containing the zinc-finger motifs but lacking the ability to aggregate the oligonucleotides. The absorbance changes in the UV band of cTAR show that seven to eight base-pairs, on average, are melted per oligonucleotide at a ratio of one peptide to 7.5 nucleotides. In contrast, the melting of TAR does not exceed an average of one base-pair per oligonucleotide. This may be linked to the greater stability of TAR, since a strong correlation between NCp7 destabilizing effect and oligonucleotide stability was observed. The effect of (12-55)NCp7 on the stem terminus was investigated by using a cTAR molecule doubly labeled at the 3' and 5' ends by a donor/acceptor couple. In the absence of the peptide, about 80 % of the oligonucleotides are in a dark non-fluorescent state, having a close proximity of the two dyes. The remaining 20 % are distributed between three fluorescent species, having either the terminal segment, the two terminal segments or all segments of the stem melted. This is in line with a fraying mechanism wherein the stem terminus fluctuates rapidly between open and closed states. Addition of (12-55)NCp7 shifts the equilibrium toward the open species, suggesting that NC enhances fraying of the stem terminus. Taken together, our data suggest that NCp7 activates the transient opening of base-pairs in the least stable parts of the stem. Also

  14. Vaccination of calves using the BRSV nucleocapsid protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects the lungs against BRSV replication and pathology.

    PubMed

    Letellier, Carine; Boxus, Mathieu; Rosar, Laurent; Toussaint, Jean-François; Walravens, Karl; Roels, Stefan; Meyer, Gilles; Letesson, Jean-Jacques; Kerkhofs, Pierre

    2008-09-01

    Respiratory syncytial virus (RSV) is a major cause of respiratory disease in both cattle and young children. Despite the development of vaccines against bovine (B)RSV, incomplete protection and exacerbation of subsequent RSV disease have occurred. In order to circumvent these problems, calves were vaccinated with the nucleocapsid protein, known to be a major target of CD8(+) T cells in cattle. This was performed according to a DNA prime-protein boost strategy. The results showed that DNA vaccination primed a specific T-cell-mediated response, as indicated by both a lymphoproliferative response and IFN-gamma production. These responses were enhanced after protein boost. After challenge, mock-vaccinated calves displayed gross pneumonic lesions and viral replication in the lungs. In contrast, calves vaccinated by successive administrations of plasmid DNA and protein exhibited protection against the development of pneumonic lesions and the viral replication in the BAL fluids and the lungs. The protection correlated to the cell-mediated immunity and not to the antibody response. PMID:18644416

  15. Rapid and sensitive detection of immunoglobulin M (IgM) and IgG antibodies against canine distemper virus by a new recombinant nucleocapsid protein-based enzyme-linked immunosorbent assay.

    PubMed

    von Messling, V; Harder, T C; Moennig, V; Rautenberg, P; Nolte, I; Haas, L

    1999-04-01

    Canine distemper morbillivirus (CDV) infection causes a frequently fatal systemic disease in a broad range of carnivore species, including domestic dogs. In CDV infection, classical serology provides data of diagnostic and prognostic values (kinetics of seroconversion) and is also used to predict the optimal vaccination age of pups. Routine CDV serology is still based on time- and cost-intensive virus neutralization assays (V-NA). Here, we describe a new capture-sandwich enzyme-linked immunosorbent assay (ELISA) that uses recombinant baculovirus-expressed nucleocapsid (N) protein of a recent CDV wild-type isolate (2544/Han95) for the detection of CDV-specific antibodies in canine sera. Recombinant antigen was produced with high efficacy in Heliothis virescens larvae. The capture-sandwich ELISA enabled a clear-cut qualitative evaluation of the CDV-specific immunoglobulin G (IgG) and IgM serostatuses of 196 and 35 dog sera, respectively. Inter-rater agreement analysis (kappa = 0.988) indicated that the ELISA can be used unrestrictedly as a substitute for the V-NA for the qualitative determination of CDV-specific IgG serostatus. In an attempt to semiquantify N-specific antibodies, a one-step-dilution (alpha method) IgG-specific ELISA was implemented. Alpha values of >/=50% showed very good inter-rater agreement (kappa = 0.968) with V-NA titers of >/=1/100 50% neutralizing dose (ND50) as measured against the central European CDV wild-type isolate 2544/Han95 in canine sera originating from northern Germany. An ND50 titer of 1/100 is considered a threshold, and titers of >/=1/100 indicate a resilient, protective immunity. CDV N-specific antibodies of the IgM class were detected by the newly developed ELISA in 9 of 15 sera obtained from dogs with symptoms of acute distemper. In leucocytes of 5 of the 15 dogs (all of which were also IgM positive) CDV RNA was detected by reverse transcription (RT)-PCR. The recombinant capture-sandwich ELISA detecting N-specific antibodies

  16. Rapid and Sensitive Detection of Immunoglobulin M (IgM) and IgG Antibodies against Canine Distemper Virus by a New Recombinant Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay

    PubMed Central

    von Messling, Veronika; Harder, Timm C.; Moennig, Volker; Rautenberg, Peter; Nolte, Ingo; Haas, Ludwig

    1999-01-01

    Canine distemper morbillivirus (CDV) infection causes a frequently fatal systemic disease in a broad range of carnivore species, including domestic dogs. In CDV infection, classical serology provides data of diagnostic and prognostic values (kinetics of seroconversion) and is also used to predict the optimal vaccination age of pups. Routine CDV serology is still based on time- and cost-intensive virus neutralization assays (V-NA). Here, we describe a new capture-sandwich enzyme-linked immunosorbent assay (ELISA) that uses recombinant baculovirus-expressed nucleocapsid (N) protein of a recent CDV wild-type isolate (2544/Han95) for the detection of CDV-specific antibodies in canine sera. Recombinant antigen was produced with high efficacy in Heliothis virescens larvae. The capture-sandwich ELISA enabled a clear-cut qualitative evaluation of the CDV-specific immunoglobulin G (IgG) and IgM serostatuses of 196 and 35 dog sera, respectively. Inter-rater agreement analysis (κ = 0.988) indicated that the ELISA can be used unrestrictedly as a substitute for the V-NA for the qualitative determination of CDV-specific IgG serostatus. In an attempt to semiquantify N-specific antibodies, a one-step-dilution (alpha method) IgG-specific ELISA was implemented. Alpha values of ≥50% showed very good inter-rater agreement (κ = 0.968) with V-NA titers of ≥1/100 50% neutralizing dose (ND50) as measured against the central European CDV wild-type isolate 2544/Han95 in canine sera originating from northern Germany. An ND50 titer of 1/100 is considered a threshold, and titers of ≥1/100 indicate a resilient, protective immunity. CDV N-specific antibodies of the IgM class were detected by the newly developed ELISA in 9 of 15 sera obtained from dogs with symptoms of acute distemper. In leucocytes of 5 of the 15 dogs (all of which were also IgM positive) CDV RNA was detected by reverse transcription (RT)-PCR. The recombinant capture-sandwich ELISA detecting N-specific antibodies of the

  17. Resolution of the cellular proteome of the nucleocapsid protein from a highly pathogenic isolate of porcine reproductive and respiratory syndrome virus identifies PARP-1 as a cellular target whose interaction is critical for virus biology.

    PubMed

    Liu, Long; Lear, Zoe; Hughes, David J; Wu, Weining; Zhou, En-min; Whitehouse, Adrian; Chen, Hongying; Hiscox, Julian A

    2015-03-23

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major threat to the swine industry and food security worldwide. The nucleocapsid (N) protein is a major structural protein of PRRSV. The primary function of this protein is to encapsidate the viral RNA genome, and it is also thought to participate in the modulation of host cell biology and recruitment of cellular factors to facilitate virus infection. In order to the better understand these latter roles the cellular interactome of PRRSV N protein was defined using label free quantitative proteomics. This identified several cellular factors that could interact with the N protein including poly [ADP-ribose] polymerase 1 (PARP-1), a cellular protein, which can add adenosine diphosphate ribose to a protein. Use of the PARP-1 small molecule inhibitor, 3-AB, in PRRSV infected cells demonstrated that PARP-1 was required and acted as an enhancer factor for virus biology. Serial growth of PRRSV in different concentrations of 3-AB did not yield viruses that were able to grow with wild type kinetics, suggesting that by targeting a cellular protein crucial for virus biology, resistant phenotypes did not emerge. This study provides further evidence that cellular proteins, which are critical for virus biology, can also be targeted to ablate virus growth and provide a high barrier for the emergence of drug resistance. PMID:25614100

  18. Endosome-to-cytosol transport of viral nucleocapsids.

    PubMed

    Le Blanc, Isabelle; Luyet, Pierre-Philippe; Pons, Véronique; Ferguson, Charles; Emans, Neil; Petiot, Anne; Mayran, Nathalie; Demaurex, Nicolas; Fauré, Julien; Sadoul, Rémy; Parton, Robert G; Gruenberg, J

    2005-07-01

    During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra-endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. This last step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid (LBPA) and its putative effector Alix/AIP1, and is regulated by phosphatidylinositol-3-phosphate (PtdIns3P) signalling via the PtdIns3P-binding protein Snx16. We conclude that the nucleocapsid is exported into the cytoplasm after the back-fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PtdIns3P and their effectors. PMID:15951806

  19. Leptospira Protein Expression During Infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are characterizing protein expression in vivo during experimental leptospirosis using immunofluorescence microscopy. Coding regions for several proteins were identified through analysis of Leptospira interrogans serovar Copenhageni and L. borgpetersenii serovar Hardjo genomes. In addition, codi...

  20. Apical Budding of a Recombinant Influenza A Virus Expressing a Hemagglutinin Protein with a Basolateral Localization Signal

    PubMed Central

    Mora, Rosalia; Rodriguez-Boulan, Enrique; Palese, Peter; García-Sastre, Adolfo

    2002-01-01

    Influenza virions bud preferentially from the apical plasma membrane of infected epithelial cells, by enveloping viral nucleocapsids located in the cytosol with its viral integral membrane proteins, i.e., hemagglutinin (HA), neuraminidase (NA), and M2 proteins, located at the plasma membrane. Because individually expressed HA, NA, and M2 proteins are targeted to the apical surface of the cell, guided by apical sorting signals in their transmembrane or cytoplasmic domains, it has been proposed that the polarized budding of influenza virions depends on the interaction of nucleocapsids and matrix proteins with the cytoplasmic domains of HA, NA, and/or M2 proteins. Since HA is the major protein component of the viral envelope, its polarized surface delivery may be a major force that drives polarized viral budding. We investigated this hypothesis by infecting MDCK cells with a transfectant influenza virus carrying a mutant form of HA (C560Y) with a basolateral sorting signal in its cytoplasmic domain. C560Y HA was expressed nonpolarly on the surface of infected MDCK cells. Interestingly, viral budding remained apical in C560Y virus-infected cells, and so did the location of NP and M1 proteins at late times of infection. These results are consistent with a model in which apical viral budding is a shared function of various viral components rather than a role of the major viral envelope glycoprotein HA. PMID:11884578

  1. The 15N and 46R Residues of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nucleocapsid Protein Enhance Regulatory T Lymphocytes Proliferation

    PubMed Central

    Bai, Juan; Li, Yufeng; Zhang, Qiaoya; Jiang, Ping

    2015-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) negatively modulates host immune responses, resulting in persistent infection and immunosuppression. PRRSV infection increases the number of PRRSV-specific regulatory T lymphocytes (Tregs) in infected pigs. However, the target antigens for Tregs proliferation in PRRSV infection have not been fully understood. In this study, we demonstrated that the highly pathogenic PRRSV (HP-PRRSV) induced more CD4+CD25+Foxp3+ Tregs than classical PRRSV (C-PRRSV) strain. Of the recombinant GP5, M and N proteins of HP-PRRSV expressed in baculovirus expression systems, only N protein induced Tregs proliferation. The Tregs assays showed that three amino-acid regions, 15–21, 42–48 and 88–94, in N protein played an important role in induction of Tregs proliferation with synthetic peptides covering the whole length of N protein. By using reverse genetic methods, it was firstly found that the 15N and 46R residues in PRRSV N protein were critical for induction of Tregs proliferation. The phenotype of induced Tregs closely resembled that of transforming-growth-factor-β-secreting T helper 3 Tregs in swine. These data should be useful for understanding the mechanism of immunity to PRRSV and development of infection control strategies in the future. PMID:26397116

  2. An improved high pressure freezing and freeze substitution method to preserve the labile vaccinia virus nucleocapsid.

    PubMed

    Jesus, Desyree Murta; Moussatche, Nissin; Condit, Richard C

    2016-07-01

    In recent years, high pressure freezing and freeze substitution have been widely used for electron microscopy to reveal viral and cellular structures that are difficult to preserve. Vaccinia virus, a member of the Poxviridae family, presents one of the most complex viral structures. The classical view of vaccinia virus structure consists of an envelope surrounding a biconcave core, with a lateral body in each concavity of the core. This classical view was challenged by Peters and Muller (1963), who demonstrated the presence of a folded tubular structure inside the virus core and stated the difficulty in visualizing this structure, possibly because it is labile and cannot be preserved by conventional sample preparation. Therefore, this tubular structure, now called the nucleocapsid, has been mostly neglected over the years. Earlier studies were able to preserve the nucleocapsid, but with low efficiency. In this study, we report the protocol (and troubleshooting) that resulted in preservation of the highest numbers of nucleocapsids in several independent preparations. Using this protocol, we were able to demonstrate an interdependence between the formation of the virus core wall and the nucleocapsid, leading to the hypothesis that an interaction exists between the major protein constituents of these compartments, A3 (core wall) and L4 (nucleocapsid). Our results show that high pressure freezing and freeze substitution can be used in more in-depth studies concerning the nucleocapsid structure and function. PMID:27155322

  3. Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly

    SciTech Connect

    Liu Chao; Li Zhaofei Wu Wenbi; Li Lingling; Yuan Meijin; Pan Lijing; Yang Kai Pang Yi

    2008-12-05

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) orf53 (ac53) is a highly conserved gene existing in all sequenced Lepidoptera and Hymenoptera baculoviruses, but its function remains unknown. To investigate its role in the baculovirus life cycle, an ac53 deletion virus (vAc{sup ac53KO-PH-GFP}) was generated through homologous recombination in Escherichia coli. Fluorescence and light microscopy and titration analysis revealed that vAc{sup ac53KO-PH-GFP} could not produce infectious budded virus in infected Sf9 cells. Real-time PCR demonstrated that the ac53 deletion did not affect the levels of viral DNA replication. Electron microscopy showed that many lucent tubular shells devoid of the nucleoprotein core are present in the virogenic stroma and ring zone, indicating that the ac53 knockout affected nucleocapsid assembly. With a recombinant virus expressing an Ac53-GFP fusion protein, we observed that Ac53 was distributed within the cytoplasm and nucleus at 24 h post-infection, but afterwards accumulated predominantly near the nucleus-cytoplasm boundary. These data demonstrate that ac53 is involved in nucleocapsid assembly and is an essential gene for virus production.

  4. Protein identification and Peptide expression resolver: harmonizing protein identification with protein expression data.

    PubMed

    Kearney, Paul; Butler, Heather; Eng, Kevin; Hugo, Patrice

    2008-01-01

    Proteomic discovery platforms generate both peptide expression information and protein identification information. Peptide expression data are used to determine which peptides are differentially expressed between study cohorts, and then these peptides are targeted for protein identification. In this paper, we demonstrate that peptide expression information is also a powerful tool for enhancing confidence in protein identification results. Specifically, we evaluate the following hypothesis: tryptic peptides originating from the same protein have similar expression profiles across samples in the discovery study. Evidence supporting this hypothesis is provided. This hypothesis is integrated into a protein identification tool, PIPER (Protein Identification and Peptide Expression Resolver), that reduces erroneous protein identifications below 5%. PIPER's utility is illustrated by application to a 72-sample biomarker discovery study where it is demonstrated that false positive protein identifications can be reduced below 5%. Consequently, it is recommended that PIPER methodology be incorporated into proteomic studies where both protein expression and identification data are collected. PMID:18062667

  5. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  6. A new mechanism for nuclear import by actin-based propulsion used by a baculovirus nucleocapsid.

    PubMed

    Au, Shelly; Wu, Wei; Zhou, Lixin; Theilmann, David A; Panté, Nelly

    2016-08-01

    The transport of macromolecules into the nucleus is mediated by soluble cellular receptors of the importin β superfamily and requires the Ran-GTPase cycle. Several studies have provided evidence that there are exceptions to this canonical nuclear import pathway. Here, we report a new unconventional nuclear import mechanism exploited by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). We found that AcMNPV nucleocapsids entered the nucleus of digitonin-permeabilized cells in the absence of exogenous cytosol or under conditions that blocked the Ran-GTPase cycle. AcMNPV contains a protein that activates the Arp2/3 complex and induces actin polymerization at one end of the rod-shaped nucleocapsid. We show that inhibitors of Arp2/3 blocked nuclear import of nucleocapsids in semi-permeabilized cells. Nuclear import of nucleocapsids was also reconstituted in purified nuclei supplemented with G-actin and Arp2/3 under actin polymerization conditions. Thus, we propose that actin polymerization drives not only migration of baculovirus through the cytoplasm but also pushes the nucleocapsid through the nuclear pore complex to enter the cell nucleus. Our findings point to a very distinct role of actin-based motility during the baculovirus infection cycle. PMID:27284005

  7. Ultrastructural Localization of the Herpes Simplex Virus Type 1 UL31, UL34, and US3 Proteins Suggests Specific Roles in Primary Envelopment and Egress of Nucleocapsids

    PubMed Central

    Reynolds, Ashley E.; Wills, Elizabeth G.; Roller, Richard J.; Ryckman, Brent J.; Baines, Joel D.

    2002-01-01

    The wild-type UL31, UL34, and US3 proteins localized on nuclear membranes and perinuclear virions; the US3 protein was also on cytoplasmic membranes and extranuclear virions. The UL31 and UL34 proteins were not detected in extracellular virions. US3 deletion caused (i) virion accumulation in nuclear membrane invaginations, (ii) delayed virus production onset, and (iii) reduced peak virus titers. These data support the herpes simplex virus type 1 deenvelopment-reenvelopment model of virion egress and suggest that the US3 protein plays an important, but nonessential, role in the egress pathway. PMID:12163613

  8. Data Mining for Expressivity of Recombinant Protein Expression

    NASA Astrophysics Data System (ADS)

    Kira, Satoshi; Isoai, Atsushi; Yamamura, Masayuki

    We analyzed the expressivity of recombinant proteins by using data mining methods. The expression technique of recombinant protein is a key step towards elucidating the functions of genes discovered through genomic sequence projects. We have studied the productive efficiency of recombinant proteins in fission yeast, Schizosaccharomyces pombe (S.pombe), by mining the expression results. We gathered 57 proteins whose expression levels were known roughly in the host. Correlation analysis, principal component analysis and decision tree analysis were applied to these expression data. Analysis featuring codon usage and amino acid composition clarified that the amino acid composition affected to the expression levels of a recombinant protein strongly than the effect of codon usage. Furthermore, analysis of amino acid composition showed that protein solubility and the metabolism cost of amino acids correlated with a protein expressivity. Codon usage was often interesting in the field of recombinant expressions. However, our analysis found the weak correlation codon features with expressivities. These results indicated that ready-made indices of codon bias were irrelevant ones for modeling the expressivities of recombinant proteins. Our data driven approach was an easy and powerful method to improve recombinant protein expression, and this approach should be concentrated attention with the huge amount of expression data accumulating through the post-genome era.

  9. Mesodynamics in the SARS nucleocapsid measured by NMR field cycling.

    PubMed

    Clarkson, Michael W; Lei, Ming; Eisenmesser, Elan Z; Labeikovsky, Wladimir; Redfield, Alfred; Kern, Dorothee

    2009-09-01

    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R (1) at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire beta-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions. PMID:19641854

  10. Predictable tuning of protein expression in bacteria.

    PubMed

    Bonde, Mads T; Pedersen, Margit; Klausen, Michael S; Jensen, Sheila I; Wulff, Tune; Harrison, Scott; Nielsen, Alex T; Herrgård, Markus J; Sommer, Morten O A

    2016-03-01

    We comprehensively assessed the contribution of the Shine-Dalgarno sequence to protein expression and used the data to develop EMOPEC (Empirical Model and Oligos for Protein Expression Changes; http://emopec.biosustain.dtu.dk). EMOPEC is a free tool that makes it possible to modulate the expression level of any Escherichia coli gene by changing only a few bases. Measured protein levels for 91% of our designed sequences were within twofold of the desired target level. PMID:26752768

  11. Expression of multiple proteins in transgenic plants

    DOEpatents

    Vierstra, Richard D.; Walker, Joseph M.

    2002-01-01

    A method is disclosed for the production of multiple proteins in transgenic plants. A DNA construct for introduction into plants includes a provision to express a fusion protein of two proteins of interest joined by a linking domain including plant ubiquitin. When the fusion protein is produced in the cells of a transgenic plant transformed with the DNA construction, native enzymes present in plant cells cleave the fusion protein to release both proteins of interest into the cells of the transgenic plant. Since the proteins are produced from the same fusion protein, the initial quantities of the proteins in the cells of the plant are approximately equal.

  12. Expression and purification of GST fusion proteins.

    PubMed

    Harper, S; Speicher, D W

    2001-05-01

    An increasingly common strategy for expressing proteins and large peptides in prokaryotic systems is to express the protein of interest connected to a "tag" that provides the basis for rapid high-affinity purification. This unit describes the expression and purification of fusion proteins containing the 26-kDa glutathione-S-transferase protein as well as methods for cleaving the affinity tag and repurifying the target protein. Advantages of this popular fusion protein system include high protein yields, high-affinity one-step protein purification of the fusion protein, existence of several alternative protease cleavage sites for removing the affinity tag when required, and ease of removal of the cleaved affinity tag. PMID:18429193

  13. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  14. Autographa californica multiple nucleopolyhedrovirus PK-1 is essential for nucleocapsid assembly

    SciTech Connect

    Liang, Changyong; Li, Min; Dai, Xuejuan; Zhao, Shuling; Hou, Yanling; Zhang, Yongli; Lan, Dandan; Wang, Yun; Chen, Xinwen

    2013-09-01

    PK-1 (Ac10) is a baculovirus-encoded serine/threonine kinase and its function is unclear. Our results showed that a pk-1 knockout AcMNPV failed to produce infectious progeny, while the pk-1 repair virus could rescue this defect. qPCR analysis demonstrated that pk-1 deletion did not affect viral DNA replication. Analysis of the repaired recombinants with truncated pk-1 mutants demonstrated that the catalytic domain of protein kinases of PK-1 was essential to viral infectivity. Moreover, those PK-1 mutants that could rescue the infectious BV production defect exhibited kinase activity in vitro. Therefore, it is suggested that the kinase activity of PK-1 is essential in regulating viral propagation. Electron microscopy revealed that pk-1 deletion affected the formation of normal nucleocapsids. Masses of electron-lucent tubular structures were present in cell transfected with pk-1 knockout bacmid. Therefore, PK-1 appears to phosphorylate some viral or cellular proteins that are essential for DNA packaging to regulate nucleocapsid assembly. - Highlights: • A pk-1 knockout AcMNPV failed to produce infectious progeny. • The pk-1 deletion did not affect viral DNA replication. • The catalytic domain of protein kinases (PKc) of PK-1 was essential to viral infectivity. • The kinase activity of PK-1 is essential in regulating viral propagation. • PK-1 appears to phosphorylate some viral proteins that are essential for DNA packaging to regulate nucleocapsid assembly.

  15. Development of an Escherichia coli-Lactobacillus casei shuttle vector for heterologous protein expression in Lactobacillus casei.

    PubMed

    Suebwongsa, Namfon; Lulitanond, Viraphong; Mayo, Baltasar; Yotpanya, Panjamaporn; Panya, Marutpong

    2016-01-01

    There is an increasing interest to develop various lactic acid bacteria (LAB) species as mucosal delivery vehicles, for which the development of a variety of cloning and expression systems for these bacteria is of primary importance. This study reports the complete nucleotide sequence of the cryptic plasmid pRCEID7.6 derived from the chicken probiotic LAB strain Lactobacillus casei TISTR1341. Sequence analysis and comparison showed that pRCEID7.6 is composed of nine putative open reading frames. The replicon origin of pRCEID7.6 consisted of untranslated origin of replication and translated replication protein B sequences. This region was used to construct Escherichia coli/L. casei shuttle vectors carrying erythromycin and chloramphenicol resistance genes as selective markers. Segregation and structural stability of the vectors in L. casei was sufficient for most genetic applications. The feasibility of this vector for heterologous protein expression in L. casei was determined by cloning in pRCEID-LC7.6, the gene encoding the nucleocapsid protein (NP), from the influenza A virus under the control of the homologous promoter from the lactate dehydrogenase gene. L. casei carrying this recombinant plasmid was shown to successfully express the NP protein. Therefore, this shuttle vector can be used for further study in the development of mucosal delivery vehicles. PMID:27026866

  16. Hepatitis C virus core protein inhibits E6AP expression via DNA methylation to escape from ubiquitin-dependent proteasomal degradation.

    PubMed

    Kwak, Juri; Shim, Joo Hee; Tiwari, Indira; Jang, Kyung Lib

    2016-09-28

    The E6-associated protein (E6AP) is a ubiquitin ligase that mediates ubiquitination and proteasomal degradation of hepatitis C virus (HCV) core protein. Given the role of HCV core protein as a major component of the viral nucleocapsid, as well as a multifunctional protein involved in viral pathogenesis and hepatocarcinogenesis, HCV has likely evolved a strategy to counteract the host anti-viral defense mechanism of E6AP and maximize its potential to produce infectious virus particles. In the present study, we found that HCV core protein derived from either ectopic expression or HCV infection inhibits E6AP expression via promoter hypermethylation in human hepatocytes. As a result, the potential of E6AP to ubiquitinate and degrade HCV core protein through the ubiquitin-proteasome system was severely impaired, which in turn led to stimulation of virus propagation. The effects of HCV core protein were almost completely abolished when the E6AP level was restored by ectopic expression of E6AP, treatment with a universal DNA methyltransferase (DNMT) inhibitor, 5-Aza-2'dC, or knock-down of DNMT1. In conclusion, HCV core protein inhibits E6AP expression via DNA methylation to protect itself from ubiquitin-dependent proteasomal degradation and stimulate virus propagation, providing a potential target for the development of anti-viral drugs against HCV. PMID:27317649

  17. In silico prediction and ex vivo evaluation of potential T-cell epitopes in glycoproteins 4 and 5 and nucleocapsid protein of genotype-I (European) of porcine reproductive and respiratory syndrome virus.

    PubMed

    Díaz, Ivan; Pujols, Joan; Ganges, Llilianne; Gimeno, Mariona; Darwich, Laila; Domingo, Mariano; Mateu, Enric

    2009-09-18

    T-cell epitopes of porcine reproductive and respiratory syndrome virus (PRRSV) glycoproteins 4 (GP4), 5 (GP5) and nucleocapsid (N) were predicted using bioinformatics and later tested by IFN-gamma ELISPOT in pigs immunized with either a modified live vaccine (MLV) or DNA (open reading frames 4, 5 or 7). For MLV-vaccinated pigs, immunodominant epitopes were found in N but T-epitopes were also found in GP4 and GP5. For DNA-immunized pigs, some peptides were differently recognized. Using a large set of PRRSV sequences it was shown that N contains a conserved epitope and that for GP5, the genotype-I counterparts of previously reported epitopes of genotype-II strains were also immunogenic. PMID:19646408

  18. Differential Contributions of Tacaribe Arenavirus Nucleoprotein N-Terminal and C-Terminal Residues to Nucleocapsid Functional Activity

    PubMed Central

    D'Antuono, Alejandra; Loureiro, Maria Eugenia; Foscaldi, Sabrina; Marino-Buslje, Cristina

    2014-01-01

    ABSTRACT The arenavirus nucleoprotein (NP) is the main protein component of viral nucleocapsids and is strictly required for viral genome replication mediated by the L polymerase. Homo-oligomerization of NP is presumed to play an important role in nucleocapsid assembly, albeit the underlying mechanism and the relevance of NP-NP interaction in nucleocapsid activity are still poorly understood. Here, we evaluate the contribution of the New World Tacaribe virus (TCRV) NP self-interaction to nucleocapsid functional activity. We show that alanine substitution of N-terminal residues predicted to be available for NP-NP interaction strongly affected NP self-association, as determined by coimmunoprecipitation assays, produced a drastic inhibition of transcription and replication of a TCRV minigenome RNA, and impaired NP binding to RNA. Mutagenesis and functional analysis also revealed that, while dispensable for NP self-interaction, key amino acids at the C-terminal domain were essential for RNA synthesis. Furthermore, mutations at these C-terminal residues rendered NP unable to bind RNA both in vivo and in vitro but had no effect on the interaction with the L polymerase. In addition, while all oligomerization-defective variants tested exhibited unaltered capacities to sustain NP-L interaction, NP deletion mutants were fully incompetent to bind L, suggesting that, whereas NP self-association is dispensable, the integrity of both the N-terminal and C-terminal domains is required for binding the L polymerase. Overall, our results suggest that NP self-interaction mediated by the N-terminal domain may play a critical role in TCRV nucleocapsid assembly and activity and that the C-terminal domain of NP is implicated in RNA binding. IMPORTANCE The mechanism of arenavirus functional nucleocapsid assembly is still poorly understood. No detailed information is available on the nucleocapsid structure, and the regions of full-length NP involved in binding to viral RNA remain to be

  19. Virions and intracellular nucleocapsids produced during mixed heterotypic influenza infection of MDCK cells

    SciTech Connect

    Sklyanskaya, E.I.; Varich, N.L.; Amvrosieva, T.V.; Kaverin, N.V.

    1985-02-01

    Phenotypically mixed virus yields, obtained by coinfection of MDCK cells with influenza A/WSN/33 and B/Lee/40 viruses, contained both A/WSN/33 and B/Lee/40 NP proteins, as revealed by polyacrylamide gel electrophoresis of the purified /sup 14/C-amino acids-labeled virus. Virions were lysed with 0.6 M KCl-Triton X-100 buffer, and nucleocapsids were immunoprecipitated with antibodies against NP protein of influenza A virus. Polyacrylamide gel electrophoresis of the immunoprecipitate revealed NP protein of A/WSN/33 but not of B/Lee/40 virus. However, in similar experiments with the lysates of doubly infected cells, the band of B/Lee/40 NP protein was revealed in the polyacrylamide gel electrophoresis patterns of the immunoprecipitates. In an attempt to analyze the RNA content of the immune complexes, the authors absorbed the lysates of doubly infected (/sup 3/H)uridine-labeled cells with protein A-containing Staphylococcus aureus covered with antibodies against the NP protein of influenza A virus. RNA extracted from the immune complexes contained genomic RNA segments of both A/WSN/33 and B/Lee/40 viruses. In control samples containing an artificial mixture of cell lysates separately infected with each virus, the analysis revealed homologous components (i.e., A/WSN/33 NP protein or RNA segments) in the immune complexes. The results suggest the presence of phenotypically mixed nucleocapsids in the cells doubly infected with influenza A and B viruses; in the course of the virion formation, the nucleocapsids lacking the heterologous NP protein are selected.

  20. Transient Protein Expression by Agroinfiltration in Lettuce.

    PubMed

    Chen, Qiang; Dent, Matthew; Hurtado, Jonathan; Stahnke, Jake; McNulty, Alyssa; Leuzinger, Kahlin; Lai, Huafang

    2016-01-01

    Current systems of recombinant protein production include bacterial, insect, and mammalian cell culture. However, these platforms are expensive to build and operate at commercial scales and/or have limited abilities to produce complex proteins. In recent years, plant-based expression systems have become top candidates for the production of recombinant proteins as they are highly scalable, robust, safe, and can produce complex proteins due to having a eukaryotic endomembrane system. Newly developed "deconstructed" viral vectors delivered via Agrobacterium tumefaciens (agroinfiltration) have enabled robust plant-based production of proteins with a wide range of applications. The leafy Lactuca sativa (lettuce) plant with its strong foundation in agriculture is an excellent host for pharmaceutical protein production. Here, we describe a method for agroinfiltration of lettuce that can rapidly produce high levels of recombinant proteins in a matter of days and has the potential to be scaled up to an agricultural level. PMID:26614281

  1. Biotechnology Protein Expression and Purification Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The purpose of the Project Scientist Core Facility is to provide purified proteins, both recombinant and natural, to the Biotechnology Science Team Project Scientists and the NRA-Structural Biology Test Investigators. Having a core facility for this purpose obviates the need for each scientist to develop the necessary expertise and equipment for molecular biology, protein expression, and protein purification. Because of this, they are able to focus their energies as well as their funding on the crystallization and structure determination of their target proteins.

  2. Membrane protein expression in Lactococcus lactis.

    PubMed

    King, Martin S; Boes, Christoph; Kunji, Edmund R S

    2015-01-01

    The Gram-positive bacterium Lactococcus lactis has many properties that are ideal for the overproduction of membrane proteins in a functional form. Growth of lactococci is rapid, proceeds to high cell densities, and does not require aeration, which facilitates large-scale fermentation. The available promoter systems are strong and tightly regulated, allowing expression of toxic gene products in a controlled manner. Expressed membrane proteins are targeted exclusively to the cytoplasmic membrane, allowing the use of ionophores, ligands, and inhibitors to study activity of the membrane protein in whole cells. Constructed plasmids are stable and expression levels are highly reproducible. The relatively small genome size of the organism causes little redundancy, which facilitates complementation studies and allows for easier purification. The produced membrane proteins are often stable, as the organism has limited proteolytic capability, and they are readily solubilized from the membrane with mild detergents. Lactococci are multiple amino acid auxotrophs, allowing the incorporation of labels, such as selenomethionine. Among the few disadvantages are the low transformation frequency, AT-rich codon usage, and resistance to lysis by mechanical means, but these problems can be overcome fairly easily. We will describe in detail the protocols used to express membrane proteins in L. lactis, from cloning of the target gene to the isolation of membrane vesicles for the determination of expression levels. PMID:25857778

  3. Development of Monoclonal Antibody and Diagnostic Test for Middle East Respiratory Syndrome Coronavirus Using Cell-Free Synthesized Nucleocapsid Antigen.

    PubMed

    Yamaoka, Yutaro; Matsuyama, Shutoku; Fukushi, Shuetsu; Matsunaga, Satoko; Matsushima, Yuki; Kuroyama, Hiroyuki; Kimura, Hirokazu; Takeda, Makoto; Chimuro, Tomoyuki; Ryo, Akihide

    2016-01-01

    Protein nativity is one of the most critical factors for the quality of antigens used as immunogens and the reactivities of the resultant antibodies. The preparation and purification of native viral antigens in conventional cell-based protein expression systems are often accompanied by technical hardships. These challenges are attributable mainly to protein aggregation and insolubility during expression and purification, as well as to very low expression levels associated with the toxicity of some viral proteins. Here, we describe a novel approach for the production of monoclonal antibodies (mAbs) against nucleocapsid protein (NP) of the Middle East respiratory syndrome coronavirus (MERS-CoV). Using a wheat germ cell-free protein synthesis system, we successfully prepared large amounts of MERS-CoV NP antigen in a state that was highly soluble and intact for immunization. Following mouse immunization and hybridoma generation, we selected seven hybridoma clones that produced mAbs with exclusive reactivity against MERS-CoV NP. Epitope mapping and subsequent bioinformatic analysis revealed that these mAbs recognized epitopes located within relatively highly conserved regions of the MERS-CoV amino-acid sequence. Consistently, the mAbs exhibited no obvious cross-reactivity with NPs derived from other related viruses, including SARS coronavirus. After determining the optimal combinations of these mAbs, we developed an enzyme-linked immunosorbent assay and a rapid immunochromatographic antigen detection test that can be reliably used for laboratory diagnosis of MERS-CoV. Thus, this study provides strong evidence that the wheat germ cell-free system is useful for the production of diagnostic mAbs against emerging pathogens. PMID:27148198

  4. Development of Monoclonal Antibody and Diagnostic Test for Middle East Respiratory Syndrome Coronavirus Using Cell-Free Synthesized Nucleocapsid Antigen

    PubMed Central

    Yamaoka, Yutaro; Matsuyama, Shutoku; Fukushi, Shuetsu; Matsunaga, Satoko; Matsushima, Yuki; Kuroyama, Hiroyuki; Kimura, Hirokazu; Takeda, Makoto; Chimuro, Tomoyuki; Ryo, Akihide

    2016-01-01

    Protein nativity is one of the most critical factors for the quality of antigens used as immunogens and the reactivities of the resultant antibodies. The preparation and purification of native viral antigens in conventional cell-based protein expression systems are often accompanied by technical hardships. These challenges are attributable mainly to protein aggregation and insolubility during expression and purification, as well as to very low expression levels associated with the toxicity of some viral proteins. Here, we describe a novel approach for the production of monoclonal antibodies (mAbs) against nucleocapsid protein (NP) of the Middle East respiratory syndrome coronavirus (MERS-CoV). Using a wheat germ cell-free protein synthesis system, we successfully prepared large amounts of MERS-CoV NP antigen in a state that was highly soluble and intact for immunization. Following mouse immunization and hybridoma generation, we selected seven hybridoma clones that produced mAbs with exclusive reactivity against MERS-CoV NP. Epitope mapping and subsequent bioinformatic analysis revealed that these mAbs recognized epitopes located within relatively highly conserved regions of the MERS-CoV amino-acid sequence. Consistently, the mAbs exhibited no obvious cross-reactivity with NPs derived from other related viruses, including SARS coronavirus. After determining the optimal combinations of these mAbs, we developed an enzyme-linked immunosorbent assay and a rapid immunochromatographic antigen detection test that can be reliably used for laboratory diagnosis of MERS-CoV. Thus, this study provides strong evidence that the wheat germ cell-free system is useful for the production of diagnostic mAbs against emerging pathogens. PMID:27148198

  5. An SH3 binding motif within the nucleocapsid protein of porcine reproductive and respiratory syndrome virus interacts with the host cellular signaling proteins STAMI, TXK, Fyn, Hck, and cortactin.

    PubMed

    Kenney, Scott P; Meng, Xiang-Jin

    2015-06-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically important global swine disease, and has a complicated virus-host immunomodulation that often leads to a weak Th2 immune response and viral persistence. In this study, we identified a Src homology 3 (SH3) binding motif, PxxPxxP, that is conserved within the N protein of PRRSV strains. Subsequently, we identified five host cellular proteins [signal transducing adaptor molecule (STAM)I, TXK tyrosine kinase (TXK), protein tyrosine kinase fyn (Fyn), hematopoietic cell kinase (Hck), and cortactin] that interact with this SH3 motif. We demonstrated that binding of SH3 proteins with PRRSV N protein depends on at least one intact PxxP motif as disruption of P53 within the motif significantly reduced interaction of each of the 5 proteins. The first PxxP motif appears to be more important for STAMI-N protein interactions whereas the second PxxP motif was more important for Hck interaction. Both STAMI and Hck interactions with PRRSV N protein required an unhindered C-terminal domain as the interaction was only observed with STAMI and Hck proteins with N-terminal but not C-terminal fluorescent tags. We showed that the P56 residue within the SH3 motif is critical for virus lifecycle as mutation resulted in a loss of virus infectivity, however the P50 and P53 mutations did not abolish virus infectivity suggesting that these highly conserved proline residues within the SH3 motif may provide a selective growth advantage through interactions with the host rather than a vital functional element. These results have important implications in understanding PRRSV-host interactions. PMID:25882913

  6. Proteomics for Protein Expression Profiling in Neuroscience*

    PubMed Central

    Freeman, Willard M.; Hemby, Scott E.

    2013-01-01

    As the technology of proteomics moves from a theoretical approach to a practical reality, neuroscientists will have to determine the most appropriate applications for this technology. Neuroscientists will have to surmount difficulties particular to their research, such as limited sample amounts, heterogeneous cellular compositions in samples, and the fact that many proteins of interest are rare, hydrophobic proteins. This review examines protein isolation and protein fractionation and separation using two-dimensional electrophoresis (2-DE) and mass spectrometry proteomic methods. Methods for quantifying relative protein expression between samples (e.g., 2-DIGE, and ICAT) are also described. The coverage of the proteome, ability to detect membrane proteins, resource requirements, and quantitative reliability of different approaches is also discussed. Although there are many challenges in proteomic neuroscience, this field promises many rewards in the future. PMID:15176464

  7. Enhanced expression of adenovirus transforming proteins.

    PubMed Central

    Gaynor, R B; Tsukamoto, A; Montell, C; Berk, A J

    1982-01-01

    Proteins encoded in regions EIA and EIB of human adenoviruses cause transformation of rodent cells. One protein from EIA also stimulates transcription of other early regions at early times in a productive infection. In the past, direct analysis of these proteins synthesized in vivo has been difficult because of the low levels produced in both transformed cells and productively infected cells. We present a simple method which leads to expression of EIA and EIB mRNAs and proteins at 30-fold greater levels than those observed during the early phase of a standard productive infection. Under these conditions, these proteins are among the most prominent translation products of infected cells. This allowed direct visualization of EIA and EIB proteins on two-dimensional gels of pulse-labeled total cell protein. Experiments with EIA and EIB mutants confirm that the identified proteins are indeed encoded in these regions. Two EIA proteins are observed, one translated from each of the major early EIA mRNAs. Both of these EIA proteins are phosphorylated. Images PMID:7143568

  8. Expression Pattern of Id Proteins in Medulloblastoma

    PubMed Central

    Snyder, Andrew D.; Dulin-Smith, Ashley N.; Houston, Ronald H.; Durban, Ashley N.; Brisbin, Bethany J.; Oostra, Tyler D.; Marshall, Jordan T.; Kahwash, Basil M.

    2013-01-01

    Inhibitor of DNA binding or inhibitor of differentiation (Id) proteins are up regulated in a variety of neoplasms, particularly in association with high-grade, poorly differentiated tumors, while differentiated tissues show little or no Id expression. The four Id genes are members of the helix-loop-helix (HLH) family of transcription factors and act as negative regulators of transcription by binding to and sequestering HLH complexes. We tested the hypothesis that Id proteins are overexpressed in medulloblastoma by performing immunohistochemistry using a medulloblastoma tissue microarray with 45 unique medulloblastoma and 11 normal control cerebella, and antibodies specific for Id1, Id2, Id3, and Id4. A semi-quantitative staining score that took staining intensity and the proportion of immunoreactive cells into account was used. Id1 was not detected in normal cerebella or in medulloblastoma cells, but 78 % of tumors showed strong Id1 expression in endothelial nuclei of tumor vessels. Id2 expression was scant in normal cerebella and increased in medulloblastoma (median staining score: 4). Id3 expression was noted in some neurons of the developing cerebellar cortex, but it was markedly up regulated in medulloblastoma (median staining score: 12) and in tumor endothelial cells. Id4 was not expressed in normal cerebella or in tumor cells. Id2 or Id3 overexpression drove proliferation in medulloblastoma cell lines by altering the expression of critical cell cycle regulatory proteins in favor of cell proliferation. This study shows that Id1 expression in endothelial cells may contribute to angiogenic processes and that increased expression of Id2 and Id3 in medulloblastoma is potentially involved in tumor cell proliferation and survival. PMID:23397264

  9. The humoral immune response to recombinant nucleocapsid antigen of canine distemper virus in dogs vaccinated with attenuated distemper virus or DNA encoding the nucleocapsid of wild-type virus.

    PubMed

    Griot-Wenk, M E; Cherpillod, P; Koch, A; Zurbriggen, R; Bruckner, L; Wittek, R; Zurbriggen, A

    2001-06-01

    This study compared the humoral immune response against the nucleocapsid-(N) protein of canine distemper virus (CDV) of dogs vaccinated with a multivalent vaccine against parvo-, adeno-, and parainfluenza virus and leptospira combined with either the attenuated CDV Onderstepoort strain (n = 15) or an expression plasmid containing the N-gene of CDV (n = 30). The vaccinations were applied intramuscularly three times at 2-week intervals beginning at the age of 6 weeks. None of the pre-immune sera recognized the recombinant N-protein, confirming the lack of maternal antibodies at this age. Immunization with DNA vaccine for CDV resulted in positive serum N-specific IgG response. However, their IgG (and IgA) titres were lower than those of CDV-vaccinated dogs. Likewise, DNA-vaccinated dogs did not show an IgM peak. There was no increase in N-specific serum IgE titres in either group. Serum titres to the other multivalent vaccine components were similar in both groups. PMID:11475904

  10. Development of an immunochromatography strip test based on truncated nucleocapsid antigens of three representative hantaviruses

    PubMed Central

    2014-01-01

    Background Hantaviruses are causative agents of hemorrhagic fever with renal syndrome (HFRS) and nephropathia epidemica (NE) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. There is a need for time-saving diagnostic methods. In the present study, recombinant N antigens were used as antigens in an immunochromatography strip (ICG) test to detect specific IgG antibodies. Methods The N-terminal 103 amino acids (aa) of Hantaan virus (HTNV), Puumala virus (PUUV) and Andes virus (ANDV) nucleocapsid (N) protein were expressed in E. coli as representative antigens of three groups (HFRS, NE and HPS-causing viruses) of hantavirus. Five different types of ICG test strips, one antigen line on one strip for each of the three selected hantaviruses (HTNV, PUUV and ANDV), three antigen lines on one strip and a mixed antigen line on one strip, were developed and sensitivities were compared. Results A total of 87 convalescent-phase patient sera, including sera from 35 HFRS patients, 36 NE patients and 16 HPS patients, and 25 sera from healthy seronegative people as negative controls were used to evaluate the ICG test. Sensitivities of the three-line strip and mixed-line strip were similar to those of the single antigen strip (97.2 to 100%). On the other hand, all of the ICG test strips showed high specificities to healthy donors. Conclusion These results indicated that the ICG test with the three representative antigens is an effective serodiagnostic tool for screening and typing of hantavirus infection in humans. PMID:24885901

  11. Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)

    USGS Publications Warehouse

    Nishizawa, T.; Kurath, G.; Winton, J.R.

    1997-01-01

    We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.

  12. Microgravity alters the expression of salivary proteins.

    PubMed

    Mednieks, Maija; Khatri, Aditi; Rubenstein, Renee; Burleson, Joseph A; Hand, Arthur R

    2014-06-01

    Spaceflight provides a unique opportunity to study how physiologic responses are influenced by the external environment. Microgravity has been shown to alter the function of a number of tissues and organ systems. Very little, however, is known about how microgravity affects the oral cavity. The rodent model is useful for study in that their salivary gland morphology and physiology is similar to that of humans. Useful also is the fact that saliva, a product of the salivary glands with a major role in maintaining oral health, can be easily collected in humans whereas the glands can be studied in experimental animals. Our working hypothesis is that expression of secretory proteins in saliva will respond to microgravity and will be indicative of the nature of physiologic reactions to travel in space. This study was designed to determine which components of the salivary proteome are altered in mice flown on the US space shuttle missions and to determine if a subset with predictive value can be identified using microscopy and biochemistry methods. The results showed that the expression of secretory proteins associated with beta-adrenergic hormone regulated responses and mediated via the cyclic AMP pathway was significantly altered, whereas that of a number of unrelated proteins was not. The findings are potentially applicable to designing a biochemical test system whereby specific salivary proteins can be biomarkers for stress associated with travel in space and eventually for monitoring responses to conditions on earth. PMID:24984624

  13. Virus replicon particles expressing porcine reproductive and respiratory syndrome virus proteins elicit immune priming but do not confer protection from viremia in pigs.

    PubMed

    Eck, Melanie; Durán, Margarita García; Ricklin, Meret E; Locher, Samira; Sarraseca, Javier; Rodríguez, María José; McCullough, Kenneth C; Summerfield, Artur; Zimmer, Gert; Ruggli, Nicolas

    2016-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection. PMID:26895704

  14. Regulation of Mutant p53 Protein Expression

    PubMed Central

    Vijayakumaran, Reshma; Tan, Kah Hin; Miranda, Panimaya Jeffreena; Haupt, Sue; Haupt, Ygal

    2015-01-01

    For several decades, p53 has been detected in cancer biopsies by virtue of its high protein expression level which is considered indicative of mutation. Surprisingly, however, mouse genetic studies revealed that mutant p53 is inherently labile, similar to its wild type (wt) counterpart. Consistently, in response to stress conditions, both wt and mutant p53 accumulate in cells. While wt p53 returns to basal level following recovery from stress, mutant p53 remains stable. In part, this can be explained in mutant p53-expressing cells by the lack of an auto-regulatory loop with Mdm2 and other negative regulators, which are pivotal for wt p53 regulation. Further, additional protective mechanisms are acquired by mutant p53, largely mediated by the co-chaperones and their paralogs, the stress-induced heat shock proteins. Consequently, mutant p53 is accumulated in cancer cells in response to chronic stress and this accumulation is critical for its oncogenic gain of functions (GOF). Building on the extensive knowledge regarding wt p53, the regulation of mutant p53 is unraveling. In this review, we describe the current understanding on the major levels at which mutant p53 is regulated. These include the regulation of p53 protein levels by microRNA and by enzymes controlling p53 proteasomal degradation. PMID:26734569

  15. Expression of Contractile Protein Isoforms in Microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Page A. W.

    1996-01-01

    The general objective of this experiment is to determine the effect of space flight parameters, including microgravity, on ontogenesis and embryogenesis of Japanese quail. Nine U.S. and two Russian investigators are cooperating in this study. Specific objectives of the participating scientists include assessing the gross and microscopic morphological and histological development of the embryo, as well as the temporal and spacial development of specific cells, tissues, and organs. Temporally regulated production of specific proteins is also being investigated. Our objective is to determine the effects of microgravity on developmentally programmed expression of Troponin T and I isoforms known to regulate cardiac and skeletal muscle contraction.

  16. Structural studies on the authentic mumps virus nucleocapsid showing uncoiling by the phosphoprotein

    PubMed Central

    Cox, Robert; Pickar, Adrian; Qiu, Shihong; Tsao, Jun; Rodenburg, Cynthia; Dokland, Terje; Elson, Andrew; He, Biao; Luo, Ming

    2014-01-01

    Mumps virus (MuV) is a highly contagious pathogen, and despite extensive vaccination campaigns, outbreaks continue to occur worldwide. The virus has a negative-sense, single-stranded RNA genome that is encapsidated by the nucleocapsid protein (N) to form the nucleocapsid (NC). NC serves as the template for both transcription and replication. In this paper we solved an 18-Å–resolution structure of the authentic MuV NC using cryo-electron microscopy. We also observed the effects of phosphoprotein (P) binding on the MuV NC structure. The N-terminal domain of P (PNTD) has been shown to bind NC and appeared to induce uncoiling of the helical NC. Additionally, we solved a 25-Å–resolution structure of the authentic MuV NC bound with the C-terminal domain of P (PCTD). The location of the encapsidated viral genomic RNA was defined by modeling crystal structures of homologous negative strand RNA virus Ns in NC. Both the N-terminal and C-terminal domains of MuV P bind NC to participate in access to the genomic RNA by the viral RNA-dependent-RNA polymerase. These results provide critical insights on the structure-function of the MuV NC and the structural alterations that occur through its interactions with P. PMID:25288750

  17. Arabidopsis thaliana SEPALLATA3 protein prokaryotic expression and purification.

    PubMed

    He, Q; Fu, A Y; Zhang, G C; Li, T J; Zhang, J H

    2015-01-01

    SEPALLATA3 (SEP3) can be attributed to E class gene of the ABCE model of floral organ development. In order to reveal how SEP3 proteins form polymers, and the relationship between the polymers and their biological functions, the experiments of Arabidopsis thaliana AtSEP3 protein soluble expression in vitro were performed to construct a vector of prokaryotic expression, and investigate induced expression of recombinant proteins in Escherichia coli cells. The protein soluble expression was analyzed through the aspects of different protein domains, induction time, induction temperature, etc. Different structural domains and expression conditions were screened, and 0.1% IPTG inducing at 22 oC for 15 h was estimated as an optimal expression strategy. The nickel chelating resin was used to purify the protein in size exclusion chromatography (SEC) and the results indicated that AtSEP3 protein was present in the form of tetramer. PMID:26025404

  18. Over-expression of secreted proteins from mammalian cell lines

    PubMed Central

    Dalton, Annamarie C; Barton, William A

    2014-01-01

    Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

  19. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    DOEpatents

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  20. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast

    DOEpatents

    Mayfield, Stephen P

    2015-01-13

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery of proteins/peptides, especially gut active proteins, without purification is disclosed.

  1. Purify First: rapid expression and purification of proteins from XMRV.

    PubMed

    Gillette, William K; Esposito, Dominic; Taylor, Troy E; Hopkins, Ralph F; Bagni, Rachel K; Hartley, James L

    2011-04-01

    Purifying proteins from recombinant sources is often difficult, time-consuming, and costly. We have recently instituted a series of improvements in our protein purification pipeline that allows much more accurate choice of expression host and conditions and purification protocols. The key elements are parallel cloning, small scale parallel expression and lysate preparation, and small scale parallel protein purification. Compared to analyzing expression data only, results from multiple small scale protein purifications predict success at scale-up with greatly improved reliability. Using these new procedures we purified eight of nine proteins from xenotropic murine leukemia virus-related virus (XMRV) on the first attempt at large scale. PMID:21146612

  2. Calreticulin: Roles in Cell-Surface Protein Expression

    PubMed Central

    Jiang, Yue; Dey, Sandeepa; Matsunami, Hiroaki

    2014-01-01

    In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins. PMID:25230046

  3. Proteomics beyond large-scale protein expression analysis.

    PubMed

    Boersema, Paul J; Kahraman, Abdullah; Picotti, Paola

    2015-08-01

    Proteomics is commonly referred to as the application of high-throughput approaches to protein expression analysis. Typical results of proteomics studies are inventories of the protein content of a sample or lists of differentially expressed proteins across multiple conditions. Recently, however, an explosion of novel proteomics workflows has significantly expanded proteomics beyond the analysis of protein expression. Targeted proteomics methods, for example, enable the analysis of the fine dynamics of protein systems, such as a specific pathway or a network of interacting proteins, and the determination of protein complex stoichiometries. Structural proteomics tools allow extraction of restraints for structural modeling and identification of structurally altered proteins on a proteome-wide scale. Other variations of the proteomic workflow can be applied to the large-scale analysis of protein activity, location, degradation and turnover. These exciting developments provide new tools for multi-level 'omics' analysis and for the modeling of biological networks in the context of systems biology studies. PMID:25636126

  4. HeLa Based Cell Free Expression Systems for Expression of Plasmodium Rhoptry Proteins.

    PubMed

    Yadavalli, Raghavendra; Sam-Yellowe, Tobili

    2015-01-01

    Malaria causes significant global morbidity and mortality. No routine vaccine is currently available. One of the major reasons for lack of a vaccine is the challenge of identifying suitable vaccine candidates. Malarial proteins expressed using prokaryotic and eukaryotic cell based expression systems are poorly glycosylated, generally insoluble and undergo improper folding leading to reduced immunogenicity. The wheat germ, rabbit reticulocyte lysate and Escherichia coli lysate cell free expression systems are currently used for expression of malarial proteins. However, the length of expression time and improper glycosylation of proteins still remains a challenge. We demonstrate expression of Plasmodium proteins in vitro using HeLa based cell free expression systems, termed "in vitro human cell free expression systems". The 2 HeLa based cell free expression systems transcribe mRNA in 75 min and 3 µl of transcribed mRNA is sufficient to translate proteins in 90 min. The 1-step expression system is a transcription and translation coupled expression system; the transcription and co-translation occurs in 3 hr. The process can also be extended for 6 hr by providing additional energy. In the 2-step expression system, mRNA is first transcribed and then added to the translation mix for protein expression. We describe how to express malaria proteins; a hydrophobic PF3D7_0114100 Maurer's Cleft - 2 transmembrane (PfMC-2TM) protein, a hydrophilic PF3D7_0925900 protein and an armadillo repeats containing protein PF3D7_1361800, using the HeLa based cell free expression system. The proteins are expressed in micro volumes employing 2-step and 1-step expression strategies. An affinity purification method to purify 25 µl of proteins expressed using the in vitro human cell free expression system is also described. Protein yield is determined by Bradford's assay and the expressed and purified proteins can be confirmed by western blotting analysis. Expressed recombinant proteins can be

  5. SUMO fusion technology for difficult-to-express proteins.

    PubMed

    Butt, Tauseef R; Edavettal, Suzanne C; Hall, John P; Mattern, Michael R

    2005-09-01

    The demands of structural and functional genomics for large quantities of soluble, properly folded proteins in heterologous hosts have been aided by advancements in the field of protein production and purification. Escherichia coli, the preferred host for recombinant protein expression, presents many challenges which must be surmounted in order to over-express heterologous proteins. These challenges include the proteolytic degradation of target proteins, protein misfolding, poor solubility, and the necessity for good purification methodologies. Gene fusion technologies have been able to improve heterologous expression by overcoming many of these challenges. The ability of gene fusions to improve expression, solubility, purification, and decrease proteolytic degradation will be discussed in this review. The main disadvantage, cleaving the protein fusion, will also be addressed. Focus will be given to the newly described SUMO fusion system and the improvements that this technology has advanced over traditional gene fusion systems. PMID:16084395

  6. Data presenting a modified bacterial expression vector for expressing and purifying Nus solubility-tagged proteins.

    PubMed

    Gupta, Nidhi; Wu, Heng; Terman, Jonathan R

    2016-09-01

    Bacteria are the predominant source for producing recombinant proteins but while many exogenous proteins are expressed, only a fraction of those are soluble. We have found that a new actin regulatory enzyme Mical is poorly soluble when expressed in bacteria but the use of a Nus fusion protein tag greatly increases its solubility. However, available vectors containing a Nus tag have been engineered in a way that hinders the separation of target proteins from the Nus tag during protein purification. We have now used recombinant DNA approaches to overcome these issues and reengineer a Nus solubility tag-containing bacterial expression vector. The data herein present a modified bacterial expression vector useful for expressing proteins fused to the Nus solubility tag and separating such target proteins from the Nus tag during protein purification. PMID:27547802

  7. Aberrant expression of signaling proteins in essential thrombocythemia.

    PubMed

    Hui, Wuhan; Ye, Fei; Zhang, Wei; Liu, Congyan; Cui, Miao; Li, Wei; Xu, Juan; Zhang, David Y

    2013-09-01

    Dysregulated expression of signaling proteins may contribute to the pathophysiology of essential thrombocythemia (ET). This study aimed to characterize protein expression in ET and to correlate the dysregulated proteins with phenotypes and prognosis of ET patients. The expression of 128 proteins in peripheral blood neutrophils from 74 ET patients was assessed and compared with those from 29 healthy subjects and 35 polycythemia vera (PV) patients using protein pathway array. Fifteen proteins were differentially expressed between ET patients and normal controls. These dysregulated proteins were involved in the signaling pathways related with apoptosis and inflammation. Our results showed a significant overlap in protein expression between ET patients with JAK2V617F mutation and PV patients. In addition, nine proteins were associated with JAK2V617F mutation status in ET patients. Furthermore, estrogen receptor beta (ERβ) and Stat3 were independent risk factors for subsequent thrombosis during follow-up on multivariable analysis. Our study shows a broad dysregulation of signaling protein in ET patients, suggesting their roles in ET pathogenesis. The expression levels of ERβ and Stat3 could be promising predictors of subsequent thrombosis in ET patients. PMID:23639951

  8. Cloning and expression of special F protein from human liver

    PubMed Central

    Liu, Shu-Ye; Yu, Xin-Da; Song, Chun-Juan; Lu, Wei; Zhang, Jian-Dong; Shi, Xin-Rong; Duan, Ying; Zhang, Ju

    2007-01-01

    AIM: To clone human liver special F protein and to express it in a prokaryotic system. METHODS: Total RNA was isolated from human liver tissue and first-strand cDNA was reverse transcribed using the PCR reverse primer. Following this, cDNA of the F protein was ligated into the clone vector pUCm-T. The segment of F protein’s cDNA was subcloned into the expression vector pET-15b and transformed into E. coli BL21 (DE3) pLyss. Isopropy-β-D-thiogalactoside (IPTG) was then used to induce expression of the target protein. RESULTS: The cDNA clone of human liver special F protein (1134bp) was successfully produced, with the cDNA sequence being published in Gene-bank: DQ188836. We confirmed the expression of F protein by Western blot with a molecular weight of 43 kDa. The expressed protein accounted for 40% of the total protein extracted. CONCLUSION: F protein expresses cDNA clone in a prokaryotic system, which offers a relatively simple way of producing sufficient quantities of F protein and contributes to understanding the principal biological functions of this protein. PMID:17465469

  9. Relating protein adduction to gene expression changes: a systems approach

    PubMed Central

    Zhang, Bing; Shi, Zhiao; Duncan, Dexter T; Prodduturi, Naresh; Marnett, Lawrence J; Liebler, Daniel C

    2013-01-01

    Modification of proteins by reactive electrophiles such as the 4-hydroxy-2-nonenal (HNE) plays a critical role in oxidant-associated human diseases. However, little is known about protein adduction and the mechanism by which protein damage elicits adaptive effects and toxicity. We developed a systems approach for relating protein adduction to gene expression changes through the integration of protein adduction, gene expression, protein-DNA interaction, and protein-protein interaction data. Using a random walk strategy, we expanded a list of responsive transcription factors inferred from gene expression studies to upstream signaling networks, which in turn allowed overlaying protein adduction data on the network for the prediction of stress sensors and their associated regulatory mechanisms. We demonstrated the general applicability of transcription factor-based signaling network inference using 103 known pathways. Applying our workflow on gene expression and protein adduction data from HNE-treatment not only rediscovered known mechanisms of electrophile stress but also generated novel hypotheses regarding protein damage sensors. Although developed for analyzing protein adduction data, the framework can be easily adapted for phosphoproteomics and other types of protein modification data. PMID:21594272

  10. Self-Assembly of Measles Virus Nucleocapsid-like Particles: Kinetics and RNA Sequence Dependence.

    PubMed

    Milles, Sigrid; Jensen, Malene Ringkjøbing; Communie, Guillaume; Maurin, Damien; Schoehn, Guy; Ruigrok, Rob W H; Blackledge, Martin

    2016-08-01

    Measles virus RNA genomes are packaged into helical nucleocapsids (NCs), comprising thousands of nucleo-proteins (N) that bind the entire genome. N-RNA provides the template for replication and transcription by the viral polymerase and is a promising target for viral inhibition. Elucidation of mechanisms regulating this process has been severely hampered by the inability to controllably assemble NCs. Here, we demonstrate self-organization of N into NC-like particles in vitro upon addition of RNA, providing a simple and versatile tool for investigating assembly. Real-time NMR and fluorescence spectroscopy reveals biphasic assembly kinetics. Remarkably, assembly depends strongly on the RNA-sequence, with the genomic 5' end and poly-Adenine sequences assembling efficiently, while sequences such as poly-Uracil are incompetent for NC formation. This observation has important consequences for understanding the assembly process. PMID:27270664

  11. Identification of a single-nucleocapsid baculovirus isolated from Clanis bilineata tsingtauica (Lepidoptera: Sphingidae).

    PubMed

    Wang, Liqun; Yi, Jianping; Zhu, Shanying; Li, Bing; Chen, Yan; Shen, Weide; Wang, Wenbing

    2008-01-01

    A nucleopolyhedrovirus isolated from infected larvae of Clanis bilineata tsingtauica was characterized. Electron microscopical studies on the ultrastructure of C. bilineata nucleopolyhedrovirus (ClbiSNPV) occlusion bodies (OBs) showed several virions (up to 16) with a single nucleocapsid packaged within a single viral envelope. The diameter of the OBs was 0.77-1.7 mum with a mean of 1.13 +/- 0.19 mum. The complete sequence of the ClbiSNPV polyhedrin (polh) gene contained 741 nucleotides, predicting a protein of 246 amino acids. Phylogenetic analyses using the complete sequence of the polh genes indicated that ClbiSNPV clusters with Group II NPVs. This is the first record of a baculovirus from C. bilineata. PMID:18584114

  12. Pannexin 2 protein expression is not restricted to the CNS

    PubMed Central

    Le Vasseur, Maxence; Lelowski, Jonathan; Bechberger, John F.; Sin, Wun-Chey; Naus, Christian C.

    2014-01-01

    Pannexins (Panx) are proteins homologous to the invertebrate gap junction proteins called innexins (Inx) and are traditionally described as transmembrane channels connecting the intracellular and extracellular compartments. Three distinct Panx paralogs (Panx1, Panx2 and Panx3) have been identified in vertebrates but previous reports on Panx expression and functionality focused primarily on Panx1 and Panx3 proteins. Several gene expression studies reported that Panx2 transcript is largely restricted to the central nervous system (CNS) hence suggesting that Panx2 might serve an important role in the CNS. However, the lack of suitable antibodies prevented the creation of a comprehensive map of Panx2 protein expression and Panx2 protein localization profile is currently mostly inferred from the distribution of its transcript. In this study, we characterized novel commercial monoclonal antibodies and surveyed Panx2 expression and distribution at the mRNA and protein level by real-time qPCR, Western blotting and immunofluorescence. Panx2 protein levels were readily detected in every tissue examined, even when transcriptional analysis predicted very low Panx2 protein expression. Furthermore, our results indicate that Panx2 transcriptional activity is a poor predictor of Panx2 protein abundance and does not correlate with Panx2 protein levels. Despite showing disproportionately high transcript levels, the CNS expressed less Panx2 protein than any other tissues analyzed. Additionally, we showed that Panx2 protein does not localize at the plasma membrane like other gap junction proteins but remains confined within cytoplasmic compartments. Overall, our results demonstrate that the endogenous expression of Panx2 protein is not restricted to the CNS and is more ubiquitous than initially predicted. PMID:25505382

  13. Expression strategies for structural studies of eukaryotic membrane proteins.

    PubMed

    Lyons, Joseph A; Shahsavar, Azadeh; Paulsen, Peter Aasted; Pedersen, Bjørn Panyella; Nissen, Poul

    2016-06-01

    Integral membrane proteins in eukaryotes are central to various cellular processes and key targets in structural biology, biotechnology and drug development. However, the number of available structures for eukaryotic membrane protein belies their physiological importance. Recently, the number of available eukaryotic membrane protein structures has been steadily increasing due to the development of novel strategies in construct design, expression and structure determination. Here, we examine the major expression systems exploited for eukaryotic membrane proteins. Additionally we strive to tabulate and describe the recent expression strategies in eukaryotic membrane protein structural biology. We find that a majority of targets have been expressed in advanced host systems and modified from their wild-type form with distinct focus on conformation and thermostabilisation. However, strategies for native protein purification should also be considered where possible, particularly in light of the recent advances in single particle cryo electron microscopy. PMID:27362979

  14. mir-29 regulates Mcl-1 protein expression and apoptosis.

    PubMed

    Mott, J L; Kobayashi, S; Bronk, S F; Gores, G J

    2007-09-13

    Cellular expression of Mcl-1, an anti-apoptotic Bcl-2 family member, is tightly regulated. Recently, Bcl-2 expression was shown to be regulated by microRNAs, small endogenous RNA molecules that regulate protein expression through sequence-specific interaction with messenger RNA. By analogy, we reasoned that Mcl-1 expression may also be regulated by microRNAs. We chose human immortalized, but non-malignant, H69 cholangiocyte and malignant KMCH cholangiocarcinoma cell lines for these studies, because Mcl-1 is dysregulated in cells with the malignant phenotype. By in silico analysis, we identified a putative target site in the Mcl-1 mRNA for the mir-29 family, and found that mir-29b was highly expressed in cholangiocytes. Interestingly, mir-29b was downregulated in malignant cells, consistent with Mcl-1 protein upregulation. Enforced mir-29b expression reduced Mcl-1 protein expression in KMCH cells. This effect was direct, as mir-29b negatively regulated the expression of an Mcl-1 3' untranslated region (UTR)-based reporter construct. Enforced mir-29b expression reduced Mcl-1 cellular protein levels and sensitized the cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity. Transfection of non-malignant cells (that express high levels of mir-29) with a locked-nucleic acid antagonist of mir-29b increased Mcl-1 levels and reduced TRAIL-mediated apoptosis. Thus mir-29 is an endogenous regulator of Mcl-1 protein expression, and thereby, apoptosis. PMID:17404574

  15. mir-29 Regulates Mcl-1 Protein Expression and Apoptosis

    PubMed Central

    Mott, Justin L.; Kobayashi, Shogo; Bronk, Steven F.; Gores, Gregory J.

    2008-01-01

    Cellular expression of Mcl-1, an anti-apoptotic Bcl-2 family member, is tightly regulated. Recently, Bcl-2 expression was shown to be regulated by microRNAs, small endogenous RNA molecules that regulate protein expression through sequence-specific interaction with messenger RNA. By analogy, we reasoned that Mcl-1 expression may also be regulated by microRNAs. We chose human immortalized, but non-malignant, H69 cholangiocyte and malignant KMCH cholangiocarcinoma cell lines for these studies because Mcl-1 is dysregulated in cells with the malignant phenotype. In silico analysis identified a putative target site in the Mcl-1 mRNA for the mir-29 family, and we found that mir-29b was highly expressed in cholangiocytes. Interestingly, mir-29b was downregulated in malignant cells, consistent with Mcl-1 protein upregulation. Enforced mir-29b expression reduced Mcl-1 protein expression in KMCH cells. This effect was direct, as mir-29b negatively regulated expression of an Mcl-1 3’ untranslated region (UTR)-based reporter construct. Enforced mir-29b expression reduced Mcl-1 cellular protein levels and sensitized the cancer cells to TRAIL cytotoxicity. Transfection of non-malignant cells (that express high levels of mir-29) with a locked-nucleic acid antagonist of mir-29b increased Mcl-1 levels and reduced TRAIL-mediated apoptosis. Thus mir-29 is an endogenous regulator of Mcl-1 protein expression and, thereby, apoptosis. PMID:17404574

  16. Maltose-Binding Protein (MBP), a Secretion-Enhancing Tag for Mammalian Protein Expression Systems.

    PubMed

    Reuten, Raphael; Nikodemus, Denise; Oliveira, Maria B; Patel, Trushar R; Brachvogel, Bent; Breloy, Isabelle; Stetefeld, Jörg; Koch, Manuel

    2016-01-01

    Recombinant proteins are commonly expressed in eukaryotic expression systems to ensure the formation of disulfide bridges and proper glycosylation. Although many proteins can be expressed easily, some proteins, sub-domains, and mutant protein versions can cause problems. Here, we investigated expression levels of recombinant extracellular, intracellular as well as transmembrane proteins tethered to different polypeptides in mammalian cell lines. Strikingly, fusion of proteins to the prokaryotic maltose-binding protein (MBP) generally enhanced protein production. MBP fusion proteins consistently exhibited the most robust increase in protein production in comparison to commonly used tags, e.g., the Fc, Glutathione S-transferase (GST), SlyD, and serum albumin (ser alb) tag. Moreover, proteins tethered to MBP revealed reduced numbers of dying cells upon transient transfection. In contrast to the Fc tag, MBP is a stable monomer and does not promote protein aggregation. Therefore, the MBP tag does not induce artificial dimerization of tethered proteins and provides a beneficial fusion tag for binding as well as cell adhesion studies. Using MBP we were able to secret a disease causing laminin β2 mutant protein (congenital nephrotic syndrome), which is normally retained in the endoplasmic reticulum. In summary, this study establishes MBP as a versatile expression tag for protein production in eukaryotic expression systems. PMID:27029048

  17. Maltose-Binding Protein (MBP), a Secretion-Enhancing Tag for Mammalian Protein Expression Systems

    PubMed Central

    Reuten, Raphael; Nikodemus, Denise; Oliveira, Maria B.; Patel, Trushar R.; Brachvogel, Bent; Breloy, Isabelle; Stetefeld, Jörg; Koch, Manuel

    2016-01-01

    Recombinant proteins are commonly expressed in eukaryotic expression systems to ensure the formation of disulfide bridges and proper glycosylation. Although many proteins can be expressed easily, some proteins, sub-domains, and mutant protein versions can cause problems. Here, we investigated expression levels of recombinant extracellular, intracellular as well as transmembrane proteins tethered to different polypeptides in mammalian cell lines. Strikingly, fusion of proteins to the prokaryotic maltose-binding protein (MBP) generally enhanced protein production. MBP fusion proteins consistently exhibited the most robust increase in protein production in comparison to commonly used tags, e.g., the Fc, Glutathione S-transferase (GST), SlyD, and serum albumin (ser alb) tag. Moreover, proteins tethered to MBP revealed reduced numbers of dying cells upon transient transfection. In contrast to the Fc tag, MBP is a stable monomer and does not promote protein aggregation. Therefore, the MBP tag does not induce artificial dimerization of tethered proteins and provides a beneficial fusion tag for binding as well as cell adhesion studies. Using MBP we were able to secret a disease causing laminin β2 mutant protein (congenital nephrotic syndrome), which is normally retained in the endoplasmic reticulum. In summary, this study establishes MBP as a versatile expression tag for protein production in eukaryotic expression systems. PMID:27029048

  18. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, William C.; Brown, Christopher S.

    1994-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional sodium doedocyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  19. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, W. C.; Brown, C. S.

    1995-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional SDS PAGE and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  20. Nucleic Acid Programmable Protein Array: A Just-In-Time Multiplexed Protein Expression and Purification Platform

    PubMed Central

    Qiu, Ji; LaBaer, Joshua

    2012-01-01

    Systematic study of proteins requires the availability of thousands of proteins in functional format. However, traditional recombinant protein expression and purification methods have many drawbacks for such study at the proteome level. We have developed an innovative in situ protein expression and capture system, namely NAPPA (nucleic acid programmable protein array), where C-terminal tagged proteins are expressed using an in vitro expression system and efficiently captured/purified by antitag antibodies coprinted at each spot. The NAPPA technology presented in this chapter enable researchers to produce and display fresh proteins just in time in a multiplexed high-throughput fashion and utilize them for various downstream biochemical researches of interest. This platform could revolutionize the field of functional proteomics with it ability to produce thousands of spatially separated proteins in high density with narrow dynamic rand of protein concentrations, reproducibly and functionally. PMID:21943897

  1. Expression of heat shock protein genes in insect stress responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heat shock proteins (HSPs) that are abundantly expressed in insects are important modulators of insect survival. Expression of HSP genes in insects is not only developmentally regulated, but also induced by various stressors in order to confer protection against such stressors. The expression o...

  2. Evolution, diversification, and expression of KNOX proteins in plants

    PubMed Central

    Gao, Jie; Yang, Xue; Zhao, Wei; Lang, Tiange; Samuelsson, Tore

    2015-01-01

    The KNOX (KNOTTED1-like homeobox) transcription factors play a pivotal role in leaf and meristem development. The majority of these proteins are characterized by the KNOX1, KNOX2, ELK, and homeobox domains whereas the proteins of the KNATM family contain only the KNOX domains. We carried out an extensive inventory of these proteins and here report on a total of 394 KNOX proteins from 48 species. The land plant proteins fall into two classes (I and II) as previously shown where the class I family seems to be most closely related to the green algae homologs. The KNATM proteins are restricted to Eudicots and some species have multiple paralogs of this protein. Certain plants are characterized by a significant increase in the number of KNOX paralogs; one example is Glycine max. Through the analysis of public gene expression data we show that the class II proteins of this plant have a relatively broad expression specificity as compared to class I proteins, consistent with previous studies of other plants. In G. max, class I protein are mainly distributed in axis tissues and KNATM paralogs are overall poorly expressed; highest expression is in the early plumular axis. Overall, analysis of gene expression in G. max demonstrates clearly that the expansion in gene number is associated with functional diversification. PMID:26557129

  3. Expression of Recombinant Proteins in the Methylotrophic Yeast Pichia pastoris

    PubMed Central

    Weidner, Maria; Taupp, Marcus; Hallam, Steven J.

    2010-01-01

    Protein expression in the microbial eukaryotic host Pichia pastoris offers the possibility to generate high amounts of recombinant protein in a fast and easy to use expression system. As a single-celled microorganism P. pastoris is easy to manipulate and grows rapidly on inexpensive media at high cell densities. Being a eukaryote, P. pastoris is able to perform many of the post-translational modifications performed by higher eukaryotic cells and the obtained recombinant proteins undergo protein folding, proteolytic processing, disulfide bond formation and glycosylation [1]. As a methylotrophic yeast P. pastoris is capable of metabolizing methanol as its sole carbon source. The strong promoter for alcohol oxidase, AOX1, is tightly regulated and induced by methanol and it is used for the expression of the gene of interest. Accordingly, the expression of the foreign protein can be induced by adding methanol to the growth medium [2; 3]. Another important advantage is the secretion of the recombinant protein into the growth medium, using a signal sequence to target the foreign protein to the secretory pathway of P. pastoris. With only low levels of endogenous protein secreted to the media by the yeast itself and no added proteins to the media, a heterologous protein builds the majority of the total protein in the medium and facilitates following protein purification steps [3; 4]. The vector used here (pPICZαA) contains the AOX1 promoter for tightly regulated, methanol-induced expression of the gene of interest; the α-factor secretion signal for secretion of the recombinant protein, a Zeocin resistance gene for selection in both E. coli and Pichia and a C-terminal peptide containing the c-myc epitope and a polyhistidine (6xHis) tag for detection and purification of a recombinant protein. We also show western blot analysis of the recombinant protein using the specific Anti-myc-HRP antibody recognizing the c-myc epitope on the parent vector. PMID:20186119

  4. Engineering Cells to Improve Protein Expression

    PubMed Central

    Xiao, Su; Shiloach, Joseph; Betenbaugh, Michael J.

    2014-01-01

    Cellular engineering of bacteria, fungi, insect cells and mammalian cells is a promising methodology to improve recombinant protein production for structural, biochemical, and commercial applications. Increased understanding of the host organism biology has suggested engineering strategies targeting bottlenecks in transcription, translation, protein processing and secretory pathways, as well as cell growth and survival. A combination of metabolic engineering and synthetic biology has been used to improve the properties of cells for protein production, which has resulted in enhanced yields of multiple protein classes. PMID:24704806

  5. Optimizing transient recombinant protein expression in mammalian cells.

    PubMed

    Hopkins, Ralph F; Wall, Vanessa E; Esposito, Dominic

    2012-01-01

    Transient gene expression (TGE) in mammalian cells has become a routine process for expressing recombinant proteins in cell lines such as human embryonic kidney 293 and Chinese hamster ovary cells. The rapidly increasing need for recombinant proteins requires further improvements in TGE technology. While a great deal of focus has been directed toward optimizing the secretion of antibodies and other naturally secreted targets, much less work has been done on ways to improve cytoplasmic expression in mammalian cells. The benefits to protein production in mammalian cells, particularly for eukaryotic proteins, should be very significant - glycosylation and other posttranslational modifications will likely be native or near-native, solubility and protein folding would likely improve overexpression in heterologous hosts, and expression of proteins in their proper intracellular compartments is much more likely to occur. Improvements in this area have been slow, however, due to limited development of the cell culture processes needed for low-cost, higher-throughput expression in mammalian cells, and the relatively low diversity of DNA vectors for protein production in these systems. Here, we describe how the use of recombinational cloning, coupled with improvements in transfection protocols which increase speed and lower cost, can be combined to make mammalian cells much more amenable for routine recombinant protein expression. PMID:21987258

  6. Insulin influenced expression of myelin proteins in diabetic peripheral neuropathy.

    PubMed

    Rachana, Kuruvanthe S; Manu, Mallahalli S; Advirao, Gopal M

    2016-08-26

    Diabetic peripheral neuropathy (DPN) is one of the downstream complications of diabetes. This complication is caused by the deficiency of insulin action and subsequent hyperglycemia, but the details of their pathogenesis remain unclear. Hence, it is of critical importance to understand how such hormonal variation affects the expression of myelin proteins such as myelin basic protein (MBP) and myelin associated glycoprotein (MAG) in the peripheral nerve. An earlier report from our lab has demonstrated the expression of insulin receptors (IR) in Schwann cells (SCs) of sciatic nerve. To assess the neurotrophic role of insulin in diabetic neuropathy, we studied the expression of these myelin proteins under control, DPN and insulin treated DPN subjects at developmental stages. Further, the expression of these myelin proteins was correlated with the expression of insulin receptor. Expression of myelin proteins was significantly reduced in the diabetic model compared to normal, and upregulated in insulin treated diabetic rats. Similarly, an in vitro study was also carried out in SCs grown at high glucose and insulin treated conditions. The expression pattern of myelin proteins in SCs was comparable to that of in vivo samples. In addition, quantitative study of myelin genes by real time PCR has also showed the significant expression pattern change in the insulin treated and non-treated DPN subjects. Taken together, these results corroborate the critical importance of insulin as a neurotrophic factor in demyelinized neurons in diabetic neuropathy. PMID:27373589

  7. Major cancer protein amplifies global gene expression

    Cancer.gov

    Scientists may have discovered why a protein called MYC can provoke a variety of cancers. Like many proteins associated with cancer, MYC helps regulate cell growth. A new study carried out by researchers at the National Institutes of Health and colleagues

  8. Transient protein expression in three Pisum sativum (green pea) varieties.

    PubMed

    Green, Brian J; Fujiki, Masaaki; Mett, Valentina; Kaczmarczyk, Jon; Shamloul, Moneim; Musiychuk, Konstantin; Underkoffler, Susan; Yusibov, Vidadi; Mett, Vadim

    2009-02-01

    The expression of proteins in plants both transiently and via permanently transformed lines has been demonstrated by a number of groups. Transient plant expression systems, due to high expression levels and speed of production, show greater promise for the manufacturing of biopharmaceuticals when compared to permanent transformants. Expression vectors based on a tobacco mosaic virus (TMV) are the most commonly utilized and the primary plant used, Nicotiana benthamiana, has demonstrated the ability to express a wide range of proteins at levels amenable to purification. N. benthamiana has two limitations for its use; one is its relatively slow growth, and the other is its low biomass. To address these limitations we screened a number of legumes for transient protein expression. Using the alfalfa mosaic virus (AMV) and the cucumber mosaic virus (CMV) vectors, delivered via Agrobacterium, we were able to identify three Pisum sativum varieties that demonstrated protein expression transiently. Expression levels of 420 +/- 26.24 mg GFP/kgFW in the green pea variety speckled pea were achieved. We were also able to express three therapeutic proteins indicating promise for this system in the production of biopharmaceuticals. PMID:19156736

  9. Protein expression analyses at the single cell level.

    PubMed

    Ohno, Masae; Karagiannis, Peter; Taniguchi, Yuichi

    2014-01-01

    The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level. PMID:25197931

  10. Expression of trisomic proteins in Down syndrome model systems.

    PubMed

    Spellman, Claire; Ahmed, Md Mahiuddin; Dubach, Daphne; Gardiner, Katheleen J

    2013-01-10

    Down syndrome (DS) is the most common genetic aberration leading to intellectual disability. DS results from an extra copy of the long arm of human chromosome 21 (HSA21) and the increased expression of trisomic genes due to gene dosage. While expression in DS and DS models has been studied extensively at the RNA level, much less is known about expression of trisomic genes at the protein level. We have used quantitative Western blotting with antibodies to 20 proteins encoded by HSA21 to assess trisomic protein expression in lymphoblastoid cell lines (LCLs) from patients with DS and in brains from two mouse models of DS. These antibodies have recently become available and the 20 proteins largely have not been investigated previously for their potential contributions to the phenotypic features of DS. Twelve proteins had detectable expression in LCLs and three, CCT8, MX1 and PWP2, showed elevated levels in LCLs derived from patients with DS compared with controls. Antibodies against 15 proteins detected bands of appropriate sizes in lysates from mouse brain cortex. Genes for 12 of these proteins are trisomic in the Tc1 mouse model of DS, but only SIM2 and ZNF295 showed elevated expression in Tc1 cortex when compared with controls. Genes for eight of the 15 proteins are trisomic in the Ts65Dn mouse model of DS, but only ZNF294 was over expressed in cortex. Comparison of trisomic gene expression at the protein level with previous reports at the mRNA level showed many inconsistencies. These may be caused by natural inter-individual variability, differences in the age of mice analyzed, or post-transcriptional regulation of gene dosage effects. These antibodies provide resources for further investigation of the molecular basis of intellectual disability in DS. PMID:23103828