Science.gov

Sample records for nucleotide sequence polymorphism

  1. Single Nucleotide Polymorphism Mapping Using Genome-Wide Unique Sequences

    PubMed Central

    Chen, Leslie Y.Y.; Lu, Szu-Hsien; Shih, Edward S.C.; Hwang, Ming-Jing

    2002-01-01

    As more and more genomic DNAs are sequenced to characterize human genetic variations, the demand for a very fast and accurate method to genomically position these DNA sequences is high. We have developed a new mapping method that does not require sequence alignment. In this method, we first identified DNA fragments of 15 bp in length that are unique in the human genome and then used them to position single nucleotide polymorphism (SNP) sequences. By use of four desktop personal computers with AMD K7 (1 GHz) processors, our new method mapped more than 1.6 million SNP sequences in 20 hr and achieved a very good agreement with mapping results from alignment-based methods. PMID:12097348

  2. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (...

  3. Single nucleotide polymorphism mining and nucleotide sequence analysis of Mx1 gene in exonic regions of Japanese quail

    PubMed Central

    Niraj, Diwesh Kumar; Kumar, Pushpendra; Mishra, Chinmoy; Narayan, Raj; Bhattacharya, Tarun Kumar; Shrivastava, Kush; Bhushan, Bharat; Tiwari, Ashok Kumar; Saxena, Vishesh; Sahoo, Nihar Ranjan; Sharma, Deepak

    2015-01-01

    Aim: An attempt has been made to study the Myxovirus resistant (Mx1) gene polymorphism in Japanese quail. Materials and Methods: In the present, investigation four fragments viz. Fragment I of 185 bp (Exon 3 region), Fragment II of 148 bp (Exon 5 region), Fragment III of 161 bp (Exon 7 region), and Fragment IV of 176 bp (Exon 13 region) of Mx1 gene were amplified and screened for polymorphism by polymerase chain reaction-single-strand conformation polymorphism technique in 170 Japanese quail birds. Results: Out of the four fragments, one fragment (Fragment II) was found to be polymorphic. Remaining three fragments (Fragment I, III, and IV) were found to be monomorphic which was confirmed by custom sequencing. Overall nucleotide sequence analysis of Mx1 gene of Japanese quail showed 100% homology with common quail and more than 80% homology with reported sequence of chicken breeds. Conclusion: The Mx1 gene is mostly conserved in Japanese quail. There is an urgent need of comprehensive analysis of other regions of Mx1 gene along with its possible association with the traits of economic importance in Japanese quail. PMID:27047057

  4. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  5. Large-scale detection and application of expressed sequence tag single nucleotide polymorphisms in Nicotiana.

    PubMed

    Wang, Y; Zhou, D; Wang, S; Yang, L

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are widespread in the Nicotiana genome. Using an alignment and variation detection method, we developed 20,607,973 SNPs, based on the expressed sequence tag sequences of 10 Nicotiana species. The replacement rate was much higher than the transversion rate in the SNPs, and SNPs widely exist in the Nicotiana. In vitro verification indicated that all of the SNPs were high quality and accurate. Evolutionary relationships between 15 varieties were investigated by polymerase chain reaction with a special primer; the specific 302 locus of these sequence results clearly indicated the origin of Zhongyan 100. A database of Nicotiana SNPs (NSNP) was developed to store and search for SNPs in Nicotiana. NSNP is a tool for researchers to develop SNP markers of sequence data. PMID:26214460

  6. Mining for single nucleotide polymorphisms and insertions / deletions in expressed sequence tag libraries of oil palm.

    PubMed

    Riju, Aykkal; Chandrasekar, Arumugam; Arunachalam, Vadivel

    2007-01-01

    The oil palm is a tropical oil bearing tree. Recently EST-derived SNPs and SSRs are a free by-product of the currently expanding EST (Expressed Sequence Tag) data bases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion / deletion) has led to a revolution in their use as molecular markers. Available (5452) Oil palm EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script auto_snip version 1.0 which has used 576 ESTs for detecting SNPs and Indel sites. We found 1180 SNP sites and 137 indel polymorphisms with frequency 1.36 SNPs / 100 bp. Among the six tissues from which the EST libraries had been generated, mesocarp had high frequency of 2.91 SNPs and indels per 100 bp whereas the zygotic embryos had lowest frequency of 0.15 per 100 bp. We also used the Shannon index to analyze the proportion of ten possible types of SNP/indels. ESTs from tissues of normal apex showed highest values of Shannon index (0.60) whereas abnormal apex had least value (0.02). The present report deals the use of Shannon index for comparing SNP/ indel frequencies mined from ESTlibraries and also confirm that the frequency of SNP occurrence in oil palm to use them as markers for genetic studies. PMID:21670789

  7. Species diagnostic single-nucleotide polymorphism and sequence-tagged site markers for the parasitic WASP Genus Nasonia (Hymenoptera: Ptermalidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed, identified and evaluated eight single nucleotide polymorphism (SNP) and three sequence-tagged site (STS) markers in nuclear gene sequences of the wasp genus Nasonia (Hymenoptera). We studied variation of these markers in natural populations of the closely related and regionally sympatr...

  8. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  9. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  10. Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery

    PubMed Central

    Eck, Sebastian H; Benet-Pagès, Anna; Flisikowski, Krzysztof; Meitinger, Thomas; Fries, Ruedi; Strom, Tim M

    2009-01-01

    Background The majority of the 2 million bovine single nucleotide polymorphisms (SNPs) currently available in dbSNP have been identified in a single breed, Hereford cattle, during the bovine genome project. In an attempt to evaluate the variance of a second breed, we have produced a whole genome sequence at low coverage of a single Fleckvieh bull. Results We generated 24 gigabases of sequence, mainly using 36-bp paired-end reads, resulting in an average 7.4-fold sequence depth. This coverage was sufficient to identify 2.44 million SNPs, 82% of which were previously unknown, and 115,000 small indels. A comparison with the genotypes of the same animal, generated on a 50 k oligonucleotide chip, revealed a detection rate of 74% and 30% for homozygous and heterozygous SNPs, respectively. The false positive rate, as determined by comparison with genotypes determined for 196 randomly selected SNPs, was approximately 1.1%. We further determined the allele frequencies of the 196 SNPs in 48 Fleckvieh and 48 Braunvieh bulls. 95% of the SNPs were polymorphic with an average minor allele frequency of 24.5% and with 83% of the SNPs having a minor allele frequency larger than 5%. Conclusions This work provides the first single cattle genome by next-generation sequencing. The chosen approach - low to medium coverage re-sequencing - added more than 2 million novel SNPs to the currently publicly available SNP resource, providing a valuable resource for the construction of high density oligonucleotide arrays in the context of genome-wide association studies. PMID:19660108

  11. Empirical Comparison of Simple Sequence Repeats and Single Nucleotide Polymorphisms in Assessment of Maize Diversity and Relatedness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While Simple Sequence Repeats (SSRs) are extremely useful genetic markers, recent advances in technology have produced a shift toward use of single nucleotide polymorphisms (SNPs). The different mutational properties of these two classes of markers result in differences in heterozygosities and allel...

  12. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton genome complexity was investigated with a saturated molecular genetic map that combined several sets of microsatellites or simple sequence repeats (SSR) and the first major public set of single nucleotide polymorphism (SNP) markers in cotton genomes (Gossypium spp.), and that was constructed ...

  13. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library

    PubMed Central

    2009-01-01

    Background To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP) discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock population. Results The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme HaeIII; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends). Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In addition, 2% of the

  14. Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing

    PubMed Central

    2013-01-01

    Background Genetic information based on molecular markers has increasingly being used in cattle breeding improvement programmes, as a mean to improve conventionally phenotypic selection. Advances in molecular genetics have led to the identification of several genetic markers associated with genes affecting economic traits. Until recently, the identification of the causative genetic variants involved in the phenotypes of interest has remained a difficult task. The advent of novel sequencing technologies now offers a new opportunity for the identification of such variants. Despite sequencing costs plummeting, sequencing whole-genomes or large targeted regions is still too expensive for most laboratories. A transcriptomic-based sequencing approach offers a cheaper alternative to identify a large number of polymorphisms and possibly to discover causative variants. In the present study, we performed a gene-based single nucleotide polymorphism (SNP) discovery analysis in bovine Longissimus thoraci, using RNA-Seq. To our knowledge, this represents the first study done in bovine muscle. Results Messenger RNAs from Longissimus thoraci from three Limousin bull calves were subjected to high-throughput sequencing. Approximately 36–46 million paired-end reads were obtained per library. A total of 19,752 transcripts were identified and 34,376 different SNPs were detected. Fifty-five percent of the SNPs were found in coding regions and ~22% resulted in an amino acid change. Applying a very stringent SNP quality threshold, we detected 8,407 different high-confidence SNPs, 18% of which are non synonymous coding SNPs. To analyse the accuracy of RNA-Seq technology for SNP detection, 48 SNPs were selected for validation by genotyping. No discrepancies were observed when using the highest SNP probability threshold. To test the usefulness of the identified SNPs, the 48 selected SNPs were assessed by genotyping 93 bovine samples, representing mostly the nine major breeds used in France

  15. Development of Single Nucleotide Polymorphism Markers via Sequence-based Genotyping in Cotton (Gossypium spp)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-throughput single nucleotide polymorphism (SNP) genotyping has become the dominant approach to genomic analysis and genetic manipulation in many crop plants. In cotton (Gossypium spp), however, only a very limited number of loci and a dearth of information have been generated from SNP genotypi...

  16. A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops.

    PubMed

    Feltus, F A; Singh, H P; Lohithaswa, H C; Schulze, S R; Silva, T D; Paterson, A H

    2006-04-01

    Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. PMID:16607031

  17. SNUFER: A software for localization and presentation of single nucleotide polymorphisms using a Clustal multiple sequence alignment output file

    PubMed Central

    Mansur, Marco A B; Cardozo, Giovana P; Santos, Elaine V; Marins, Mozart

    2008-01-01

    SNUFER is a software for the automatic localization and generation of tables used for the presentation of single nucleotide polymorphisms (SNPs). After input of a fasta file containing the sequences to be analyzed, a multiple sequence alignment is generated using ClustalW ran inside SNUFER. The ClustalW output file is then used to generate a table which displays the SNPs detected in the aligned sequences and their degree of similarity. This table can be exported to Microsoft Word, Microsoft Excel or as a single text file, permitting further editing for publication. The software was written using Delphi 7 for programming and FireBird 2.0 for sequence database management. It is freely available for noncommercial use and can be downloaded from http://www.heranza.com.br/bioinformatica2.htm. PMID:19238196

  18. Phylogenetic discovery bias in Bacillus anthracis using single-nucleotide polymorphisms from whole-genome sequencing

    PubMed Central

    Pearson, Talima; Busch, Joseph D.; Ravel, Jacques; Read, Timothy D.; Rhoton, Shane D.; U'Ren, Jana M.; Simonson, Tatum S.; Kachur, Sergey M.; Leadem, Rebecca R.; Cardon, Michelle L.; Van Ert, Matthew N.; Huynh, Lynn Y.; Fraser, Claire M.; Keim, Paul

    2004-01-01

    Phylogenetic reconstruction using molecular data is often subject to homoplasy, leading to inaccurate conclusions about phylogenetic relationships among operational taxonomic units. Compared with other molecular markers, single-nucleotide polymorphisms (SNPs) exhibit extremely low mutation rates, making them rare in recently emerged pathogens, but they are less prone to homoplasy and thus extremely valuable for phylogenetic analyses. Despite their phylogenetic potential, ascertainment bias occurs when SNP characters are discovered through biased taxonomic sampling; by using whole-genome comparisons of five diverse strains of Bacillus anthracis to facilitate SNP discovery, we show that only polymorphisms lying along the evolutionary pathway between reference strains will be observed. We illustrate this in theoretical and simulated data sets in which complex phylogenetic topologies are reduced to linear evolutionary models. Using a set of 990 SNP markers, we also show how divergent branches in our topologies collapse to single points but provide accurate information on internodal distances and points of origin for ancestral clades. These data allowed us to determine the ancestral root of B. anthracis, showing that it lies closer to a newly described “C” branch than to either of two previously described “A” or “B” branches. In addition, subclade rooting of the C branch revealed unequal evolutionary rates that seem to be correlated with ecological parameters and strain attributes. Our use of nonhomoplastic whole-genome SNP characters allows branch points and clade membership to be estimated with great precision, providing greater insight into epidemiological, ecological, and forensic questions. PMID:15347815

  19. Development and characterization of new single nucleotide polymorphism markers from expressed sequence tags in common carp (Cyprinus carpio).

    PubMed

    Zhu, Chuankun; Cheng, Lei; Tong, Jingou; Yu, Xiaomu

    2012-01-01

    The common carp (Cyprinus carpio) is an important aquaculture fish worldwide but only limited single nucleotide polymorphism (SNP) markers are characterized from expressed sequence tags (ESTs) in this species. In this study, 1487 putative SNPs were bioinformatically mined from 14,066 online ESTs mainly from the European common carp, with the occurrence rate of about one SNP every 173 bp. One hundred and twenty-one of these SNPs were selected for validation using PCR fragment sequencing, and 48 out of 81 primers could amplify the expected fragments in the Chinese common carp genome. Only 26 (21.5%) putative SNPs were validated, however, 508 new SNPs and 68 indels were identified. The ratios of transitions to transversions were 1.77 for exon SNPs and 1.05 for intron SNPs. All the 23 SNPs selected for population tests were polymorphic, with the observed heterozygosity (Ho) ranging from 0.053 to 0.526 (mean 0.262), polymorphism information content (PIC) from 0.095 to 0.357 (mean 0.246), and 21 SNPs were in Hardy-Weinberg equilibrium. These results suggest that different common carp populations with geographic isolation have significant genetic variation at the SNP level, and these new EST-SNP markers are readily available for genetics and breeding studies in common carp. PMID:22837697

  20. A Simple Sequence Repeat- and Single-Nucleotide Polymorphism-Based Genetic Linkage Map of the Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Jairin, Jirapong; Kobayashi, Tetsuya; Yamagata, Yoshiyuki; Sanada-Morimura, Sachiyo; Mori, Kazuki; Tashiro, Kosuke; Kuhara, Satoru; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Matsumura, Masaya; Yasui, Hideshi

    2013-01-01

    In this study, we developed the first genetic linkage map for the major rice insect pest, the brown planthopper (BPH, Nilaparvata lugens). The linkage map was constructed by integrating linkage data from two backcross populations derived from three inbred BPH strains. The consensus map consists of 474 simple sequence repeats, 43 single-nucleotide polymorphisms, and 1 sequence-tagged site, for a total of 518 markers at 472 unique positions in 17 linkage groups. The linkage groups cover 1093.9 cM, with an average distance of 2.3 cM between loci. The average number of marker loci per linkage group was 27.8. The sex-linkage group was identified by exploiting X-linked and Y-specific markers. Our linkage map and the newly developed markers used to create it constitute an essential resource and a useful framework for future genetic analyses in BPH. PMID:23204257

  1. Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus

    PubMed Central

    Schmutzer, Thomas; Samans, Birgit; Dyrszka, Emmanuelle; Ulpinnis, Chris; Weise, Stephan; Stengel, Doreen; Colmsee, Christian; Lespinasse, Denis; Micic, Zeljko; Abel, Stefan; Duchscherer, Peter; Breuer, Frank; Abbadi, Amine; Leckband, Gunhild; Snowdon, Rod; Scholz, Uwe

    2015-01-01

    Brassica napus (oilseed rape, canola) is one of the world’s most important sources of vegetable oil for human nutrition and biofuel, and also a model species for studies investigating the evolutionary consequences of polyploidisation. Strong bottlenecks during its recent origin from interspecific hybridisation, and subsequently through intensive artificial selection, have severely depleted the genetic diversity available for breeding. On the other hand, high-throughput genome profiling technologies today provide unprecedented scope to identify, characterise and utilise genetic diversity in primary and secondary crop gene pools. Such methods also enable implementation of genomic selection strategies to accelerate breeding progress. The key prerequisite is availability of high-quality sequence data and identification of high-quality, genome-wide sequence polymorphisms representing relevant gene pools. We present comprehensive genome resequencing data from a panel of 52 highly diverse natural and synthetic B. napus accessions, along with a stringently selected panel of 4.3 million high-confidence, genome-wide SNPs. The data is of great interest for genomics-assisted breeding and for evolutionary studies on the origins and consequences in allopolyploidisation in plants. PMID:26647166

  2. Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus.

    PubMed

    Schmutzer, Thomas; Samans, Birgit; Dyrszka, Emmanuelle; Ulpinnis, Chris; Weise, Stephan; Stengel, Doreen; Colmsee, Christian; Lespinasse, Denis; Micic, Zeljko; Abel, Stefan; Duchscherer, Peter; Breuer, Frank; Abbadi, Amine; Leckband, Gunhild; Snowdon, Rod; Scholz, Uwe

    2015-01-01

    Brassica napus (oilseed rape, canola) is one of the world's most important sources of vegetable oil for human nutrition and biofuel, and also a model species for studies investigating the evolutionary consequences of polyploidisation. Strong bottlenecks during its recent origin from interspecific hybridisation, and subsequently through intensive artificial selection, have severely depleted the genetic diversity available for breeding. On the other hand, high-throughput genome profiling technologies today provide unprecedented scope to identify, characterise and utilise genetic diversity in primary and secondary crop gene pools. Such methods also enable implementation of genomic selection strategies to accelerate breeding progress. The key prerequisite is availability of high-quality sequence data and identification of high-quality, genome-wide sequence polymorphisms representing relevant gene pools. We present comprehensive genome resequencing data from a panel of 52 highly diverse natural and synthetic B. napus accessions, along with a stringently selected panel of 4.3 million high-confidence, genome-wide SNPs. The data is of great interest for genomics-assisted breeding and for evolutionary studies on the origins and consequences in allopolyploidisation in plants. PMID:26647166

  3. Empirical Comparison of Simple Sequence Repeats and Single Nucleotide Polymorphisms in Assessment of Maize Diversity and Relatedness

    PubMed Central

    Hamblin, Martha T.; Warburton, Marilyn L.; Buckler, Edward S.

    2007-01-01

    While Simple Sequence Repeats (SSRs) are extremely useful genetic markers, recent advances in technology have produced a shift toward use of single nucleotide polymorphisms (SNPs). The different mutational properties of these two classes of markers result in differences in heterozygosities and allele frequencies that may have implications for their use in assessing relatedness and evaluation of genetic diversity. We compared analyses based on 89 SSRs (primarily dinucleotide repeats) to analyses based on 847 SNPs in individuals from the same 259 inbred maize lines, which had been chosen to represent the diversity available among current and historic lines used in breeding. The SSRs performed better at clustering germplasm into populations than did a set of 847 SNPs or 554 SNP haplotypes, and SSRs provided more resolution in measuring genetic distance based on allele-sharing. Except for closely related pairs of individuals, measures of distance based on SSRs were only weakly correlated with measures of distance based on SNPs. Our results suggest that 1) large numbers of SNP loci will be required to replace highly polymorphic SSRs in studies of diversity and relatedness and 2) relatedness among highly-diverged maize lines is difficult to measure accurately regardless of the marker system. PMID:18159250

  4. A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonid genomes are considered to be in a pseudo-tetraploid state as a result of an evolutionarily recent genome duplication event. This situation complicates single nucleotide polymorphism (SNP) discovery in rainbow trout as many putative SNPs are actually paralogous sequence variants (PSVs) and ...

  5. Development of Single Nucleotide Polymorphism markers in Theobroma cacao and comparison to Simple Sequence Repeat markers for genotyping of Cameroon clones.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single Nucleotide Polymorphism (SNP) markers are increasingly being used in crop breeding programs, slowly replacing Simple Sequence Repeats (SSR) and other markers. SNPs provide many benefits over SSRs, including ease of analysis and unambiguous results across various platforms. We have identifie...

  6. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms

    PubMed Central

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  7. Next Generation Semiconductor Based Sequencing of the Donkey (Equus asinus) Genome Provided Comparative Sequence Data against the Horse Genome and a Few Millions of Single Nucleotide Polymorphisms.

    PubMed

    Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca

    2015-01-01

    Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450

  8. Finding the right coverage: the impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates.

    PubMed

    Fountain, Emily D; Pauli, Jonathan N; Reid, Brendan N; Palsbøll, Per J; Peery, M Zachariah

    2016-07-01

    Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown. Here, we estimated genotyping error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother-offspring dyads of Hoffman's two-toed sloth (Choloepus hoffmanni) across a range of coverage and sequence quality criteria, for both reference-aligned and de novo-assembled data sets. Genotyping error rates were more sensitive to coverage than sequence quality and low coverage yielded high error rates, particularly in de novo-assembled data sets. For example, coverage ≥5 yielded median genotyping error rates of ≥0.03 and ≥0.11 in reference-aligned and de novo-assembled data sets, respectively. Genotyping error rates declined to ≤0.01 in reference-aligned data sets with a coverage ≥30, but remained ≥0.04 in the de novo-assembled data sets. We observed approximately 10- and 13-fold declines in the number of loci sampled in the reference-aligned and de novo-assembled data sets when coverage was increased from ≥5 to ≥30 at quality score ≥30, respectively. Finally, we assessed the effects of genotyping coverage on a common population genetic application, parentage assignments, and showed that the proportion of incorrectly assigned maternities was relatively high at low coverage. Overall, our results suggest that the trade-off between sample size and genotyping error rates be considered prior to building sequencing libraries, reporting genotyping error rates become standard practice, and that effects of genotyping errors on inference be evaluated in restriction-enzyme-based SNP studies. PMID:26946083

  9. Comparison of single nucleotide polymorphisms and simple sequence repeats in genotype identification and diversity assessment of cacao germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate identification of individual genotypes in an efficient manner is especially important for cacao (Theobroma cacao L.) germplasm conservation and breeding. The development of single nucleotide polymorphism (SNP) markers in cacao offers the opportunity to use a high throughput genotyping syste...

  10. Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat

    PubMed Central

    Yuhki, Naoya; Mullikin, James C.; Beck, Thomas; Stephens, Robert; O'Brien, Stephen J.

    2008-01-01

    Two sequences of major histocompatibility complex (MHC) regions in the domestic cat, 2.976 and 0.362 Mbps, which were separated by an ancient chromosome break (55–80 MYA) and followed by a chromosomal inversion were annotated in detail. Gene annotation of this MHC was completed and identified 183 possible coding regions, 147 human homologues, possible functional genes and 36 pseudo/unidentified genes) by GENSCAN and BLASTN, BLASTP RepeatMasker programs. The first region spans 2.976 Mbp sequence, which encodes six classical class II antigens (three DRA and three DRB antigens) lacking the functional DP, DQ regions, nine antigen processing molecules (DOA/DOB, DMA/DMB, TAPASIN, and LMP2/LMP7,TAP1/TAP2), 52 class III genes, nineteen class I genes/gene fragments (FLAI-A to FLAI-S). Three class I genes (FLAI-H, I-K, I-E) may encode functional classical class I antigens based on deduced amino acid sequence and promoter structure. The second region spans 0.362 Mbp sequence encoding no class I genes and 18 cross-species conserved genes, excluding class I, II and their functionally related/associated genes, namely framework genes, including three olfactory receptor genes. One previously identified feline endogenous retrovirus, a baboon retrovirus derived sequence (ECE1) and two new endogenous retrovirus sequences, similar to brown bat endogenous retrovirus (FERVmlu1, FERVmlu2) were found within a 140 Kbp interval in the middle of class I region. MHC SNPs were examined based on comparisons of this BAC sequence and MHC homozygous 1.9× WGS sequences and found that 11,654 SNPs in 2.84 Mbp (0.00411 SNP per bp), which is 2.4 times higher rate than average heterozygous region in the WGS (0.0017 SNP per bp genome), and slightly higher than the SNP rate observed in human MHC (0.00337 SNP per bp). PMID:18629345

  11. A survey of endogenous retrovirus (ERV) sequences in the vicinity of multiple sclerosis (MS)-associated single nucleotide polymorphisms (SNPs).

    PubMed

    Brütting, Christine; Emmer, Alexander; Kornhuber, Malte; Staege, Martin S

    2016-08-01

    Although multiple sclerosis (MS) is one of the most common central nervous system diseases in young adults, little is known about its etiology. Several human endogenous retroviruses (ERVs) are considered to play a role in MS. We are interested in which ERVs can be identified in the vicinity of MS associated genetic marker to find potential initiators of MS. We analysed the chromosomal regions surrounding 58 single nucleotide polymorphisms (SNPs) that are associated with MS identified in one of the last major genome wide association studies. We scanned these regions for putative endogenous retrovirus sequences with large open reading frames (ORFs). We observed that more retrovirus-related putative ORFs exist in the relatively close vicinity of SNP marker indices in multiple sclerosis compared to control SNPs. We found very high homologies to HERV-K, HCML-ARV, XMRV, Galidia ERV, HERV-H/env62 and XMRV-like mouse endogenous retrovirus mERV-XL. The associated genes (CYP27B1, CD6, CD58, MPV17L2, IL12RB1, CXCR5, PTGER4, TAGAP, TYK2, ICAM3, CD86, GALC, GPR65 as well as the HLA DRB1*1501) are mainly involved in the immune system, but also in vitamin D regulation. The most frequently detected ERV sequences are related to the multiple sclerosis-associated retrovirus, the human immunodeficiency virus 1, HERV-K, and the Simian foamy virus. Our data shows that there is a relation between MS associated SNPs and the number of retroviral elements compared to control. Our data identifies new ERV sequences that have not been associated with MS, so far. PMID:27169423

  12. BRDT gene sequence in human testicular pathologies and the implication of its single nucleotide polymorphism (rs3088232) on fertility.

    PubMed

    Barda, S; Yogev, L; Paz, G; Yavetz, H; Lehavi, O; Hauser, R; Doniger, T; Breitbart, H; Kleiman, S E

    2014-07-01

    Bromodomain testis-specific (BRDT) protein is essential for the normal process of spermatogenesis. Mutant mice that expressed truncated BRDT had impaired testicular histology with severely reduced sperm concentration and abnormal sperm morphology, while a model of knockout Brdt mice with no BRDT protein had complete meiotic arrest. A BRDT single nucleotide polymorphism (SNP) (rs3088232) was reported as being associated with infertility in men. We assessed testicular specimens of 276 azoospermic men who underwent testicular sperm extraction to search for specimens that showed spermatogenic impairments similar to those of mutant BRDT mice. Ten similar specimens were selected for BRDT gene sequencing and they revealed three NCBI-reported SNPs (rs10783071, rs3088232 and rs10747493) variously distributed among them. Bioinformatics analysis predicted that they would not affect protein activity. Further assessment of rs3088232 frequency in a large group of non-obstructive azoospermia men and fertile controls demonstrated no significant difference between them (27.2 and 21.7% respectively; p = 0.122, Fisher's exact test). We conclude that the testicular impairments observed in the 10 specimens were not a consequence of BRDT gene mutation. The association between BRDT rs3088232 and infertility that had been reported in other studies was not supported. PMID:24865796

  13. Mining and comparison of haplotype-based expressed sequence tag single nucleotide polymorphisms among citrus cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, haplotype-based SNPs were mined out of publicly available citrus expressed sequence tags (ESTs) from different citrus cultivars (genotypes) individually and collectively for comparison. There were a total of 567,297 ESTs belonging to 27 cultivars in varying numbers and consequentially...

  14. Phylogenetic analysis of Rutaceous plants based on single nucleotide polymorphism in chloroplast and nuclear gene sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family Rutaceae encompasses several genera including the economically important genus Citrus. In this study, we selected 22 citrus relatives belonging to the various sub groups of Rutaceae and compared the sequences of three gene fragments. The accessions selected belong to the subfamily Rutoide...

  15. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  16. Genome-wide association study for endocrine fertility traits using single nucleotide polymorphism arrays and sequence variants in dairy cattle.

    PubMed

    Tenghe, A M M; Bouwman, A C; Berglund, B; Strandberg, E; de Koning, D J; Veerkamp, R F

    2016-07-01

    Endocrine fertility traits, which are defined from progesterone concentration levels in milk, are interesting indicators of dairy cow fertility because they more directly reflect the cows own reproductive physiology than classical fertility traits, which are more biased by farm management decisions. The aim of this study was to detect quantitative trait loci (QTL) for 7 endocrine fertility traits in dairy cows by performing a genome-wide association study with 85k single nucleotide polymorphisms (SNP), and then fine-map targeted QTL regions, using imputed sequence variants. Two classical fertility traits were also analyzed for QTL with 85k SNP. The association between a SNP and a phenotype was assessed by single-locus regression for each SNP, using a linear mixed model that included a random polygenic effect. A total of 2,447 Holstein Friesian cows with 5,339 lactations with both phenotypes and genotypes were used for association analysis. Heritability estimates ranged from 0.09 to 0.15 for endocrine fertility traits and 0.03 to 0.10 for classical fertility traits. The genome-wide association study identified 17 QTL regions for endocrine fertility traits on Bos taurus autosomes (BTA) 2, 3, 8, 12, 15, 17, 23, and 25. The highest number (5) of QTL regions from the genome-wide association study was identified for the endocrine trait "proportion of samples with luteal activity." Overlapping QTL regions were found between endocrine traits on BTA 2, 3, and 17. For the classical trait calving to first service, 3 QTL regions were identified on BTA 3, 15, and 23, and an overlapping region was identified on BTA 23 with endocrine traits. Fine-mapping target regions for the endocrine traits on BTA 2 and 3 using imputed sequence variants confirmed the QTL from the genome-wide association study, and identified several associated variants that can contribute to an index of markers for genetic improvement of fertility. Several potential candidate genes underlying endocrine

  17. Insertion Sequence Element Single Nucleotide Polymorphism Typing Provides Insights into the Population Structure and Evolution of Mycobacterium ulcerans across Africa

    PubMed Central

    Jordaens, Kurt; Bomans, Pieter; Leirs, Herwig; Durnez, Lies; Affolabi, Dissou; Sopoh, Ghislain; Aguiar, Julia; Phanzu, Delphin Mavinga; Kibadi, Kapay; Eyangoh, Sara; Manou, Louis Bayonne; Phillips, Richard Odame; Adjei, Ohene; Ablordey, Anthony; Rigouts, Leen; Portaels, Françoise; Eddyani, Miriam; de Jong, Bouke C.

    2014-01-01

    Buruli ulcer is an indolent, slowly progressing necrotizing disease of the skin caused by infection with Mycobacterium ulcerans. In the present study, we applied a redesigned technique to a vast panel of M. ulcerans disease isolates and clinical samples originating from multiple African disease foci in order to (i) gain fundamental insights into the population structure and evolutionary history of the pathogen and (ii) disentangle the phylogeographic relationships within the genetically conserved cluster of African M. ulcerans. Our analyses identified 23 different African insertion sequence element single nucleotide polymorphism (ISE-SNP) types that dominate in different areas where Buruli ulcer is endemic. These ISE-SNP types appear to be the initial stages of clonal diversification from a common, possibly ancestral ISE-SNP type. ISE-SNP types were found unevenly distributed over the greater West African hydrological drainage basins. Our findings suggest that geographical barriers bordering the basins to some extent prevented bacterial gene flow between basins and that this resulted in independent focal transmission clusters associated with the hydrological drainage areas. Different phylogenetic methods yielded two well-supported sister clades within the African ISE-SNP types. The ISE-SNP types from the “pan-African clade” were found to be widespread throughout Africa, while the ISE-SNP types of the “Gabonese/Cameroonian clade” were much rarer and found in a more restricted area, which suggested that the latter clade evolved more recently. Additionally, the Gabonese/Cameroonian clade was found to form a strongly supported monophyletic group with Papua New Guinean ISE-SNP type 8, which is unrelated to other Southeast Asian ISE-SNP types. PMID:24296504

  18. Single nucleotide polymorphism discovery in cutthroat trout subspecies using genome reduction, barcoding, and 454 pyro-sequencing

    PubMed Central

    2012-01-01

    Background Salmonids are popular sport fishes, and as such have been subjected to widespread stocking throughout western North America. Historically, stocking was done with little regard for genetic variation among populations and has resulted in genetic mixing among species and subspecies in many areas, thus putting the genetic integrity of native salmonid populations at risk and creating a need to assess the genetic constitution of native salmonid populations. Cutthroat trout is a salmonid species with pronounced geographic structure (there are 10 extant subspecies) and a recent history of hybridization with introduced rainbow trout in many populations. Genetic admixture has also occurred among cutthroat trout subspecies in areas where introductions have brought two or more subspecies into contact. Consequently, management agencies have increased their efforts to evaluate the genetic composition of cutthroat trout populations to identify populations that remain uncompromised and manage them accordingly, but additional genetic markers are needed to do so effectively. Here we used genome reduction, MID-barcoding, and 454-pyrosequencing to discover single nucleotide polymorphisms that differentiate cutthroat trout subspecies and can be used as a rapid, cost-effective method to characterize the genetic composition of cutthroat trout populations. Results Thirty cutthroat and six rainbow trout individuals were subjected to genome reduction and next-generation sequencing. A total of 1,499,670 reads averaging 379 base pairs in length were generated by 454-pyrosequencing, resulting in 569,060,077 total base pairs sequenced. A total of 43,558 putative SNPs were identified, and of those, 125 SNP primers were developed that successfully amplified 96 cutthroat trout and rainbow trout individuals. These SNP loci were able to differentiate most cutthroat trout subspecies using distance methods and Structure analyses. Conclusions Genomic and bioinformatic protocols were

  19. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis

    PubMed Central

    Hong, Yanbin; Pandey, Manish K.; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K.; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut. PMID:26697032

  20. Identification and Evaluation of Single-Nucleotide Polymorphisms in Allotetraploid Peanut (Arachis hypogaea L.) Based on Amplicon Sequencing Combined with High Resolution Melting (HRM) Analysis.

    PubMed

    Hong, Yanbin; Pandey, Manish K; Liu, Ying; Chen, Xiaoping; Liu, Hong; Varshney, Rajeev K; Liang, Xuanqiang; Huang, Shangzhi

    2015-01-01

    The cultivated peanut (Arachis hypogaea L.) is an allotetraploid (AABB) species derived from the A-genome (Arachis duranensis) and B-genome (Arachis ipaensis) progenitors. Presence of two versions of a DNA sequence based on the two progenitor genomes poses a serious technical and analytical problem during single nucleotide polymorphism (SNP) marker identification and analysis. In this context, we have analyzed 200 amplicons derived from expressed sequence tags (ESTs) and genome survey sequences (GSS) to identify SNPs in a panel of genotypes consisting of 12 cultivated peanut varieties and two diploid progenitors representing the ancestral genomes. A total of 18 EST-SNPs and 44 genomic-SNPs were identified in 12 peanut varieties by aligning the sequence of A. hypogaea with diploid progenitors. The average frequency of sequence polymorphism was higher for genomic-SNPs than the EST-SNPs with one genomic-SNP every 1011 bp as compared to one EST-SNP every 2557 bp. In order to estimate the potential and further applicability of these identified SNPs, 96 peanut varieties were genotyped using high resolution melting (HRM) method. Polymorphism information content (PIC) values for EST-SNPs ranged between 0.021 and 0.413 with a mean of 0.172 in the set of peanut varieties, while genomic-SNPs ranged between 0.080 and 0.478 with a mean of 0.249. Total 33 SNPs were used for polymorphism detection among the parents and 10 selected lines from mapping population Y13Zh (Zhenzhuhei × Yueyou13). Of the total 33 SNPs, nine SNPs showed polymorphism in the mapping population Y13Zh, and seven SNPs were successfully mapped into five linkage groups. Our results showed that SNPs can be identified in allotetraploid peanut with high accuracy through amplicon sequencing and HRM assay. The identified SNPs were very informative and can be used for different genetic and breeding applications in peanut. PMID:26697032

  1. Detection of a G>C single nucleotide polymorphism within a repetitive DNA sequence by high-resolution DNA melting.

    PubMed

    Schmidt, Ulrike; Hulkkonen, Johannes; Naue, Jana

    2016-09-01

    In standard forensic DNA analysis, single base mutations within short tandem repeats (STR) mostly escape detection. In this study, high-resolution DNA melting (HRM) is compared to minisequencing and Sanger sequencing as to determine the most suitable method for detection of a G to C mutation within a repetitive DNA sequence, the STR system DXS10161. It shows an ATG/ATC polymorphism surrounded by a variable number of (TATC) and (ATCT) motifs. Neutral base changes like G:C to C:G result in very low differences in the melting temperature (T m) of the PCR amplicons. By enhanced resolution of fluorescence vs. temperature in HRM, the technique showed to be suitable for detecting a G to C transversion in this repetitive DNA sequence context. Compared to minisequencing, HRM is more time- and cost-effective. Results were confirmed by Sanger sequencing. PMID:26972692

  2. Development and Validation of Single Nucleotide Polymorphism (SNP) Markers from an Expressed Sequence Tag (EST) Database in Olive Flounder (Paralichthys olivaceus)

    PubMed Central

    Kim, Jung Eun; Lee, Young Mee; Lee, Jeong-Ho; Noh, Jae Koo; Kim, Hyun Chul; Park, Choul-Ji; Park, Jong-Won; Kim, Kyung-Kil

    2014-01-01

    To successful molecular breeding, identification and functional characterization of breeding related genes and development of molecular breeding techniques using DNA markers are essential. Although the development of a useful marker is difficult in the aspect of time, cost and effort, many markers are being developed to be used in molecular breeding and developed markers have been used in many fields. Single nucleotide polymorphisms (SNPs) markers were widely used for genomic research and breeding, but has hardly been validated for screening functional genes in olive flounder. We identified single nucleotide polymorphisms (SNPs) from expressed sequence tag (EST) database in olive flounder; out of a total 4,327 ESTs, 693 contigs and 514 SNPs were detected in total EST, and these substitutions include 297 transitions and 217 transversions. As a result, 144 SNP markers were developed on the basis of 514 SNP to selection of useful gene region, and then applied to each of eight wild and culture olive flounder (total 16 samples). In our experimental result, only 32 markers had detected polymorphism in sample, also identified 21 transitions and 11 transversions, whereas indel was not detected in polymorphic SNPs. Heterozygosity of wild and cultured olive flounder using the 32 SNP markers is 0.34 and 0.29, respectively. In conclusion, we identified SNP and polymorphism in olive flounder using newly designed marker, it supports that developed markers are suitable for SNP detection and diversity analysis in olive flounder. The outcome of this study can be basic data for researches for immunity gene and characteristic with SNP. PMID:25949198

  3. Analysis of single nucleotide polymorphisms based on RNA sequencing data of diverse bio-geographical accessions in barley.

    PubMed

    Takahagi, Kotaro; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo; Mochida, Keiichi; Saisho, Daisuke

    2016-01-01

    Barley is one of the founder crops of Old world agriculture and has become the fourth most important cereal worldwide. Information on genome-scale DNA polymorphisms allows elucidating the evolutionary history behind domestication, as well as discovering and isolating useful genes for molecular breeding. Deep transcriptome sequencing enables the exploration of sequence variations in transcribed sequences; such analysis is particularly useful for species with large and complex genomes, such as barley. In this study, we performed RNA sequencing of 20 barley accessions, comprising representatives of several biogeographic regions and a wild ancestor. We identified 38,729 to 79,949 SNPs in the 19 domesticated accessions and 55,403 SNPs in the wild barley and revealed their genome-wide distribution using a reference genome. Genome-scale comparisons among accessions showed a clear differentiation between oriental and occidental barley populations. The results based on population structure analyses provide genome-scale properties of sub-populations grouped to oriental, occidental and marginal groups in barley. Our findings suggest that the oriental population of domesticated barley has genomic variations distinct from those in occidental groups, which might have contributed to barley's domestication. PMID:27616653

  4. Genome-Wide Single-Nucleotide Polymorphisms Discovery and High-Density Genetic Map Construction in Cauliflower Using Specific-Locus Amplified Fragment Sequencing

    PubMed Central

    Zhao, Zhenqing; Gu, Honghui; Sheng, Xiaoguang; Yu, Huifang; Wang, Jiansheng; Huang, Long; Wang, Dan

    2016-01-01

    Molecular markers and genetic maps play an important role in plant genomics and breeding studies. Cauliflower is an important and distinctive vegetable; however, very few molecular resources have been reported for this species. In this study, a novel, specific-locus amplified fragment (SLAF) sequencing strategy was employed for large-scale single nucleotide polymorphism (SNP) discovery and high-density genetic map construction in a double-haploid, segregating population of cauliflower. A total of 12.47 Gb raw data containing 77.92 M pair-end reads were obtained after processing and 6815 polymorphic SLAFs between the two parents were detected. The average sequencing depths reached 52.66-fold for the female parent and 49.35-fold for the male parent. Subsequently, these polymorphic SLAFs were used to genotype the population and further filtered based on several criteria to construct a genetic linkage map of cauliflower. Finally, 1776 high-quality SLAF markers, including 2741 SNPs, constituted the linkage map with average data integrity of 95.68%. The final map spanned a total genetic length of 890.01 cM with an average marker interval of 0.50 cM, and covered 364.9 Mb of the reference genome. The markers and genetic map developed in this study could provide an important foundation not only for comparative genomics studies within Brassica oleracea species but also for quantitative trait loci identification and molecular breeding of cauliflower. PMID:27047515

  5. A Laboratory Exercise for Genotyping Two Human Single Nucleotide Polymorphisms

    ERIC Educational Resources Information Center

    Fernando, James; Carlson, Bradley; LeBard, Timothy; McCarthy, Michael; Umali, Finianne; Ashton, Bryce; Rose, Ferrill F., Jr.

    2016-01-01

    The dramatic decrease in the cost of sequencing a human genome is leading to an era in which a wide range of students will benefit from having an understanding of human genetic variation. Since over 90% of sequence variation between humans is in the form of single nucleotide polymorphisms (SNPs), a laboratory exercise has been devised in order to…

  6. InPhaDel: integrative shotgun and proximity-ligation sequencing to phase deletions with single nucleotide polymorphisms.

    PubMed

    Patel, Anand; Edge, Peter; Selvaraj, Siddarth; Bansal, Vikas; Bafna, Vineet

    2016-07-01

    Phasing of single nucleotide (SNV), and structural variations into chromosome-wide haplotypes in humans has been challenging, and required either trio sequencing or restricting phasing to population-based haplotypes. Selvaraj et al demonstrated single individual SNV phasing is possible with proximity ligated (HiC) sequencing. Here, we demonstrate HiC can phase structural variants into phased scaffolds of SNVs. Since HiC data is noisy, and SV calling is challenging, we applied a range of supervised classification techniques, including Support Vector Machines and Random Forest, to phase deletions. Our approach was demonstrated on deletion calls and phasings on the NA12878 human genome. We used three NA12878 chromosomes and simulated chromosomes to train model parameters. The remaining NA12878 chromosomes withheld from training were used to evaluate phasing accuracy. Random Forest had the highest accuracy and correctly phased 86% of the deletions with allele-specific read evidence. Allele-specific read evidence was found for 76% of the deletions. HiC provides significant read evidence for accurately phasing 33% of the deletions. Also, eight of eight top ranked deletions phased by only HiC were validated using long range polymerase chain reaction and Sanger. Thus, deletions from a single individual can be accurately phased using a combination of shotgun and proximity ligation sequencing. InPhaDel software is available at: http://l337x911.github.io/inphadel/. PMID:27105843

  7. InPhaDel: integrative shotgun and proximity-ligation sequencing to phase deletions with single nucleotide polymorphisms

    PubMed Central

    Patel, Anand; Edge, Peter; Selvaraj, Siddarth; Bansal, Vikas; Bafna, Vineet

    2016-01-01

    Phasing of single nucleotide (SNV), and structural variations into chromosome-wide haplotypes in humans has been challenging, and required either trio sequencing or restricting phasing to population-based haplotypes. Selvaraj et al. demonstrated single individual SNV phasing is possible with proximity ligated (HiC) sequencing. Here, we demonstrate HiC can phase structural variants into phased scaffolds of SNVs. Since HiC data is noisy, and SV calling is challenging, we applied a range of supervised classification techniques, including Support Vector Machines and Random Forest, to phase deletions. Our approach was demonstrated on deletion calls and phasings on the NA12878 human genome. We used three NA12878 chromosomes and simulated chromosomes to train model parameters. The remaining NA12878 chromosomes withheld from training were used to evaluate phasing accuracy. Random Forest had the highest accuracy and correctly phased 86% of the deletions with allele-specific read evidence. Allele-specific read evidence was found for 76% of the deletions. HiC provides significant read evidence for accurately phasing 33% of the deletions. Also, eight of eight top ranked deletions phased by only HiC were validated using long range polymerase chain reaction and Sanger. Thus, deletions from a single individual can be accurately phased using a combination of shotgun and proximity ligation sequencing. InPhaDel software is available at: http://l337x911.github.io/inphadel/. PMID:27105843

  8. Single Nucleotide Polymorphisms and Osteoarthritis

    PubMed Central

    Wang, Ting; Liang, Yuting; Li, Hong; Li, Haibo; He, Quanze; Xue, Ying; Shen, Cong; Zhang, Chunhua; Xiang, Jingjing; Ding, Jie; Qiao, Longwei; Zheng, Qiping

    2016-01-01

    Abstract Osteoarthritis (OA) is a complex disorder characterized by degenerative articular cartilage and is largely attributed to genetic risk factors. Single nucleotide polymorphisms (SNPs) are common DNA variants that have shown promising and efficiency, compared with positional cloning, to map candidate genes of complex diseases, including OA. In this study, we aim to provide an overview of multiple SNPs from a number of genes that have recently been linked to OA susceptibility. We also performed a comprehensive meta-analysis to evaluate the association of SNP rs7639618 of double von Willebrand factor A domains (DVWA) gene with OA susceptibility. A systematic search of studies on the association of SNPs with susceptibility to OA was conducted in PubMed and Google scholar. Studies subjected to meta-analysis include human and case-control studies that met the Hardy–Weinberg equilibrium model and provide sufficient data to calculate an odds ratio (OR). A total of 9500 OA cases and 9365 controls in 7 case-control studies relating to SNP rs7639618 were included in this study and the ORs with 95% confidence intervals (CIs) were calculated. Over 50 SNPs from different genes have been shown to be associated with either hip (23), or knee (20), or both (13) OA. The ORs of these SNPs for OA and the subtypes are not consistent. As to SNP rs7639618 of DVWA, increased knee OA risk was observed in all genetic models analyzed. Specifically, people from Asian with G-allele showed significantly increased risk of knee OA (A versus G: OR = 1.28, 95% CI 1.13–1.46; AA versus GG: OR = 1.60, 95% CI 1.25–2.05; GA versus GG: OR = 1.31, 95% CI 1.18–1.44; AA versus GA+GG: OR = 1.34, 95% CI 1.12–1.61; AA+GA versus GG: OR = 1.40, 95% CI 1.19–1.64), but not in Caucasians or with hip OA. Our results suggest that multiple SNPs play different roles in the pathogenesis of OA and its subtypes; SNP rs7639618 of DVWA gene is associated with a significantly increased

  9. Deep sequencing revealed genome-wide single-nucleotide polymorphism and plasmid content of Erwinia amylovora strains isolated in Middle Atlas, Morocco.

    PubMed

    Hannou, Najat; Mondy, Samuel; Planamente, Sara; Moumni, Mohieddine; Llop, Pablo; López, María; Manceau, Charles; Barny, Marie-Anne; Faure, Denis

    2013-10-01

    Erwinia amylovora causes economic losses that affect pear and apple production in Morocco. Here, we report comparative genomics of four Moroccan E. amylovora strains with the European strain CFBP1430 and North-American strain ATCC49946. Analysis of single nucleotide polymorphisms (SNPs) revealed genetic homogeneity of Moroccan's strains and their proximity to the European strain CFBP1430. Moreover, the collected sequences allowed the assembly of a 65 kpb plasmid, which is highly similar to the plasmid pEI70 harbored by several European E. amylovora isolates. This plasmid was found in 33% of the 40 E. amylovora strains collected from several host plants in 2009 and 2010 in Morocco. PMID:23770248

  10. The EMBL Nucleotide Sequence Database.

    PubMed

    Stoesser, G; Tuli, M A; Lopez, R; Sterk, P

    1999-01-01

    The EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl.html) constitutes Europe's primary nucleotide sequence resource. Main sources for DNA and RNA sequences are direct submissions from individual researchers, genome sequencing projects and patent applications. While automatic procedures allow incorporation of sequence data from large-scale genome sequencing centres and from the European Patent Office (EPO), the preferred submission tool for individual submitters is Webin (WWW). Through all stages, dataflow is monitored by EBI biologists communicating with the sequencing groups. In collaboration with DDBJ and GenBank the database is produced, maintained and distributed at the European Bioinformatics Institute (EBI). Database releases are produced quarterly and are distributed on CD-ROM. Network services allow access to the most up-to-date data collection via Internet and World Wide Web interface. EBI's Sequence Retrieval System (SRS) is a Network Browser for Databanks in Molecular Biology, integrating and linking the main nucleotide and protein databases, plus many specialised databases. For sequence similarity searching a variety of tools (e.g. Blitz, Fasta, Blast etc) are available for external users to compare their own sequences against the most currently available data in the EMBL Nucleotide Sequence Database and SWISS-PROT. PMID:9847133

  11. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform

    PubMed Central

    Suyama, Yoshihisa; Matsuki, Yu

    2015-01-01

    Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239

  12. Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass Panicum virgatum

    PubMed Central

    Evans, Joseph; Kim, Jeongwoon; Childs, Kevin L; Vaillancourt, Brieanne; Crisovan, Emily; Nandety, Aruna; Gerhardt, Daniel J; Richmond, Todd A; Jeddeloh, Jeffrey A; Kaeppler, Shawn M; Casler, Michael D; Buell, C Robin

    2014-01-01

    Switchgrass (Panicum virgatum) is a polyploid, outcrossing grass species native to North America and has recently been recognized as a potential biofuel feedstock crop. Significant phenotypic variation including ploidy is present across the two primary ecotypes of switchgrass, referred to as upland and lowland switchgrass. The tetraploid switchgrass genome is approximately 1400 Mbp, split between two subgenomes, with significant repetitive sequence content limiting the efficiency of re-sequencing approaches for determining genome diversity. To characterize genetic diversity in upland and lowland switchgrass as a first step in linking genotype to phenotype, we designed an exome capture probe set based on transcript assemblies that represent approximately 50 Mb of annotated switchgrass exome sequences. We then evaluated and optimized the probe set using solid phase comparative genome hybridization and liquid phase exome capture followed by next-generation sequencing. Using the optimized probe set, we assessed variation in the exomes of eight switchgrass genotypes representing tetraploid lowland and octoploid upland cultivars to benchmark our exome capture probe set design. We identified ample variation in the switchgrass genome including 1 395 501 single nucleotide polymorphisms (SNPs), 8173 putative copy number variants and 3336 presence/absence variants. While the majority of the SNPs (84%) detected was bi-allelic, a substantial number was tri-allelic with limited occurrence of tetra-allelic polymorphisms consistent with the heterozygous and polyploid nature of the switchgrass genome. Collectively, these data demonstrate the efficacy of exome capture for discovery of genome variation in a polyploid species with a large, repetitive and heterozygous genome. PMID:24947485

  13. Discovery, Validation and Characterization of 1039 Cattle Single Nucleotide Polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified approximately 13000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat-masked BAC-end sequences from the cattle RPCI-42 BAC library with whole-genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel ...

  14. Nucleotide sequences 1986/1987

    SciTech Connect

    Not Available

    1987-01-01

    These eight volumes are the third annual published compendium of nucleic acid sequences included in the European Molecular Biology Laboratory Nucleotide Sequence Data Library and the GenBank Genetic Sequences Data Bank. Each volume surveys one or more subdivisions of the database. The volume subtitles are: Primates; Rodents; Other Vertebrates and Invertebrates, Plants and Organelles, Bacteria and Bacteriophage, Viruses, Structural RNA, Synthetic and Unannotated Sequences, and Database Directory and Master Indices.

  15. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection

    PubMed Central

    Lappi, Victoria; Wolfgang, William J.; Lapierre, Pascal; Palumbo, Michael J.; Medus, Carlota; Boxrud, David

    2015-01-01

    Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. PMID:26269623

  16. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection.

    PubMed

    Taylor, Angela J; Lappi, Victoria; Wolfgang, William J; Lapierre, Pascal; Palumbo, Michael J; Medus, Carlota; Boxrud, David

    2015-10-01

    Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. PMID:26269623

  17. The genetic landscape of paediatric de novo acute myeloid leukaemia as defined by single nucleotide polymorphism array and exon sequencing of 100 candidate genes.

    PubMed

    Olsson, Linda; Zettermark, Sofia; Biloglav, Andrea; Castor, Anders; Behrendtz, Mikael; Forestier, Erik; Paulsson, Kajsa; Johansson, Bertil

    2016-07-01

    Cytogenetic analyses of a consecutive series of 67 paediatric (median age 8 years; range 0-17) de novo acute myeloid leukaemia (AML) patients revealed aberrations in 55 (82%) cases. The most common subgroups were KMT2A rearrangement (29%), normal karyotype (15%), RUNX1-RUNX1T1 (10%), deletions of 5q, 7q and/or 17p (9%), myeloid leukaemia associated with Down syndrome (7%), PML-RARA (7%) and CBFB-MYH11 (5%). Single nucleotide polymorphism array (SNP-A) analysis and exon sequencing of 100 genes, performed in 52 and 40 cases, respectively (39 overlapping), revealed ≥1 aberration in 89%; when adding cytogenetic data, this frequency increased to 98%. Uniparental isodisomies (UPIDs) were detected in 13% and copy number aberrations (CNAs) in 63% (median 2/case); three UPIDs and 22 CNAs were recurrent. Twenty-two genes were targeted by focal CNAs, including AEBP2 and PHF6 deletions and genes involved in AML-associated gene fusions. Deep sequencing identified mutations in 65% of cases (median 1/case). In total, 60 mutations were found in 30 genes, primarily those encoding signalling proteins (47%), transcription factors (25%), or epigenetic modifiers (13%). Twelve genes (BCOR, CEBPA, FLT3, GATA1, KIT, KRAS, NOTCH1, NPM1, NRAS, PTPN11, SMC3 and TP53) were recurrently mutated. We conclude that SNP-A and deep sequencing analyses complement the cytogenetic diagnosis of paediatric AML. PMID:27022003

  18. Characterization of pancreatic ductal adenocarcinoma using whole transcriptome sequencing and copy number analysis by single-nucleotide polymorphism array.

    PubMed

    Di Marco, Mariacristina; Astolfi, Annalisa; Grassi, Elisa; Vecchiarelli, Silvia; Macchini, Marina; Indio, Valentina; Casadei, Riccardo; Ricci, Claudio; D'Ambra, Marielda; Taffurelli, Giovanni; Serra, Carla; Ercolani, Giorgio; Santini, Donatella; D'Errico, Antonia; Pinna, Antonio Daniele; Minni, Francesco; Durante, Sandra; Martella, Laura Raffaella; Biasco, Guido

    2015-11-01

    The aim of the current study was to implement whole transcriptome massively parallel sequencing (RNASeq) and copy number analysis to investigate the molecular biology of pancreatic ductal adenocarcinoma (PDAC). Samples from 16 patients with PDAC were collected by ultrasound‑guided biopsy or from surgical specimens for DNA and RNA extraction. All samples were analyzed by RNASeq performed at 75x2 base pairs on a HiScanSQ Illumina platform. Single‑nucleotide variants (SNVs) were detected with SNVMix and filtered on dbSNP, 1000 Genomes and Cosmic. Non‑synonymous SNVs were analyzed with SNPs&GO and PROVEAN. A total of 13 samples were analyzed by high resolution copy number analysis on an Affymetrix SNP array 6.0. RNAseq resulted in an average of 264 coding non‑synonymous novel SNVs (ranging from 146‑374) and 16 novel insertions or deletions (In/Dels) (ranging from 6‑24) for each sample, of which a mean of 11.2% were disease‑associated and somatic events, while 34.7% were frameshift somatic In/Dels. From this analysis, alterations in the known oncogenes associated with PDAC were observed, including Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations (93.7%) and inactivation of cyclin‑dependent kinase inhibitor 2A (CDKN2A) (50%), mothers against decapentaplegic homolog 4 (SMAD4) (50%), and tumor protein 53 (TP53) (56%). One case that was negative for KRAS exhibited a G13D neuroblastoma RAS viral oncogene homolog mutation. In addition, gene fusions were detected in 10 samples for a total of 23 different intra‑ or inter‑chromosomal rearrangements, however, a recurrent fusion transcript remains to be identified. SNP arrays identified macroscopic and cryptic cytogenetic alterations in 85% of patients. Gains were observed in the chromosome arms 6p, 12p, 18q and 19q which contain KRAS, GATA binding protein 6, protein kinase B and cyclin D3. Deletions were identified on chromosome arms 1p, 9p, 6p, 18q, 10q, 15q, 17p, 21q and 19q which involve TP53

  19. Detection, validation and application of genotyping-by-sequencing based single nucleotide polymorphisms in upland cotton (Gossypium hirsutum L.).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of two closely related sub-genomes in the allotetraploid Upland cotton (Gossypium hirsutum L.) combined with a narrow genetic base of the cultivated varieties has hindered the identification of polymorphic genetic markers and their utilization in improving this important crop. Genotypi...

  20. Phylogenetic diversity of bat trypanosomes of subgenus Schizotrypanum based on multilocus enzyme electrophoresis, random amplified polymorphic DNA, and cytochrome b nucleotide sequence analyses.

    PubMed

    Barnabe, C; Brisse, S; Tibayrenc, M

    2003-02-01

    Trypanosome stocks isolated from bats (Chiroptera) and belonging to the subgenus Schizotrypanum were analyzed by multilocus enzyme electrophoresis (MLEE) at 22 loci, random amplified polymorphic DNA (RAPD) with 14 primers and/or cytochrome b nucleotide sequence. Bat trypanosomes belonged to the species Trypanosoma cruzi marinkellei (10 stocks), Trypanosoma dionisii (four stocks) and Trypanosoma vespertilionis (three stocks). One T. rangeli stock and seven stocks of T. cruzi sensu stricto, the agent of Chagas disease, were included for comparison. The homology of several RAPD fragments shared by distinct species was verified by hybridization. The sequence of a 516-nucleotide portion of the maxicircle-encoded cytochrome b (CYb) coding region was determined in representative stocks of the species under study. Phylogenetic analysis of the data confirmed the previous taxonomic attribution of these bat trypanosomes based on biological, epidemiological and ecological features. However, a new finding was that within T. cruzi marinkellei two major subdivisions could be distinguished, T.c.m. I, found in the spear-nose bats Phyllostomus discolor and Phyllostomus hastatus, and T.c.m. II, from P. discolor. In addition, the T. c. marinkellei 'Z' stock from a short-tailed bat (Carollia perspicillata) was distantly related to these two subdivisions, and the monophyly of T. c. marinkellei is unclear based on the present data. Based on the present sample, the European species T. dionisii and T. vespertilionis appeared to be more homogeneous. RAPD and CYb data both suggested the monophyly of a group composed of T. cruzi and the two major subdivisions of T. cruzi marinkellei. This study shows that MLEE, RAPD and CYb can be used for taxonomic assignment and provide valuable phylogenetic information for strains and taxa within the subgenus Schizotrypanum. An evolutionary scenario in which the broad host-range parasite T. cruzi would be derived from a bat-restricted trypanosome ancestor

  1. Tracking a Tuberculosis Outbreak Over 21 Years: Strain-Specific Single-Nucleotide Polymorphism Typing Combined With Targeted Whole-Genome Sequencing

    PubMed Central

    Stucki, David; Ballif, Marie; Bodmer, Thomas; Coscolla, Mireia; Maurer, Anne-Marie; Droz, Sara; Butz, Christa; Borrell, Sonia; Längle, Christel; Feldmann, Julia; Furrer, Hansjakob; Mordasini, Carlo; Helbling, Peter; Rieder, Hans L.; Egger, Matthias; Gagneux, Sébastien; Fenner, Lukas

    2015-01-01

    Background. Whole-genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single-nucleotide polymorphism (SNP) typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. Methods. On the basis of genome sequences of 3 historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1642 patient isolates and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. Results. We identified 68 patients associated with the outbreak strain. Most received a tuberculosis diagnosis in 1991–1995, but cases were observed until 2011. Two thirds were homeless and/or substance abusers. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into 3 subclusters. Isolates from patients with confirmed epidemiological links differed by 0–11 SNPs. Conclusions. Strain-specific SNP genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real time and at high resolution. PMID:25362193

  2. Single nucleotide polymorphisms (SNPs) in a set of expressed-sequence tag (EST) and conserved ortholog set II (COSII) markers in cultivated tomato (Solanum lycopersicum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms (SNPs) are the fundamental unit of genetic variation and are applied as molecular tools for genetic mapping, breeding, germplasm characterization, taxonomy, and evaluation of distinctness, uniformity and stability (DUS). We report 29 novel SNPs in 10 EST and COSII ma...

  3. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large datasets containing single nucleotide polymorphisms (SNPs) are used to analyze genome-wide diversity in a robust collection of cultivars from representative accessions, across the world. The extent of linkage disequilibrium (LD) within a population determines the number of markers required fo...

  4. A High-Throughput Data Mining of Single Nucleotide Polymorphisms in Coffea Species Expressed Sequence Tags Suggests Differential Homeologous Gene Expression in the Allotetraploid Coffea arabica1[W

    PubMed Central

    Vidal, Ramon Oliveira; Mondego, Jorge Maurício Costa; Pot, David; Ambrósio, Alinne Batista; Andrade, Alan Carvalho; Pereira, Luiz Filipe Protasio; Colombo, Carlos Augusto; Vieira, Luiz Gonzaga Esteves; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante Guimarães

    2010-01-01

    Polyploidization constitutes a common mode of evolution in flowering plants. This event provides the raw material for the divergence of function in homeologous genes, leading to phenotypic novelty that can contribute to the success of polyploids in nature or their selection for use in agriculture. Mounting evidence underlined the existence of homeologous expression biases in polyploid genomes; however, strategies to analyze such transcriptome regulation remained scarce. Important factors regarding homeologous expression biases remain to be explored, such as whether this phenomenon influences specific genes, how paralogs are affected by genome doubling, and what is the importance of the variability of homeologous expression bias to genotype differences. This study reports the expressed sequence tag assembly of the allopolyploid Coffea arabica and one of its direct ancestors, Coffea canephora. The assembly was used for the discovery of single nucleotide polymorphisms through the identification of high-quality discrepancies in overlapped expressed sequence tags and for gene expression information indirectly estimated by the transcript redundancy. Sequence diversity profiles were evaluated within C. arabica (Ca) and C. canephora (Cc) and used to deduce the transcript contribution of the Coffea eugenioides (Ce) ancestor. The assignment of the C. arabica haplotypes to the C. canephora (CaCc) or C. eugenioides (CaCe) ancestral genomes allowed us to analyze gene expression contributions of each subgenome in C. arabica. In silico data were validated by the quantitative polymerase chain reaction and allele-specific combination TaqMAMA-based method. The presence of differential expression of C. arabica homeologous genes and its implications in coffee gene expression, ontology, and physiology are discussed. PMID:20864545

  5. A high-throughput data mining of single nucleotide polymorphisms in Coffea species expressed sequence tags suggests differential homeologous gene expression in the allotetraploid Coffea arabica.

    PubMed

    Vidal, Ramon Oliveira; Mondego, Jorge Maurício Costa; Pot, David; Ambrósio, Alinne Batista; Andrade, Alan Carvalho; Pereira, Luiz Filipe Protasio; Colombo, Carlos Augusto; Vieira, Luiz Gonzaga Esteves; Carazzolle, Marcelo Falsarella; Pereira, Gonçalo Amarante Guimarães

    2010-11-01

    Polyploidization constitutes a common mode of evolution in flowering plants. This event provides the raw material for the divergence of function in homeologous genes, leading to phenotypic novelty that can contribute to the success of polyploids in nature or their selection for use in agriculture. Mounting evidence underlined the existence of homeologous expression biases in polyploid genomes; however, strategies to analyze such transcriptome regulation remained scarce. Important factors regarding homeologous expression biases remain to be explored, such as whether this phenomenon influences specific genes, how paralogs are affected by genome doubling, and what is the importance of the variability of homeologous expression bias to genotype differences. This study reports the expressed sequence tag assembly of the allopolyploid Coffea arabica and one of its direct ancestors, Coffea canephora. The assembly was used for the discovery of single nucleotide polymorphisms through the identification of high-quality discrepancies in overlapped expressed sequence tags and for gene expression information indirectly estimated by the transcript redundancy. Sequence diversity profiles were evaluated within C. arabica (Ca) and C. canephora (Cc) and used to deduce the transcript contribution of the Coffea eugenioides (Ce) ancestor. The assignment of the C. arabica haplotypes to the C. canephora (CaCc) or C. eugenioides (CaCe) ancestral genomes allowed us to analyze gene expression contributions of each subgenome in C. arabica. In silico data were validated by the quantitative polymerase chain reaction and allele-specific combination TaqMAMA-based method. The presence of differential expression of C. arabica homeologous genes and its implications in coffee gene expression, ontology, and physiology are discussed. PMID:20864545

  6. Characterization of a mini core collection of Japanese wheat varieties using single-nucleotide polymorphisms generated by genotyping-by-sequencing

    PubMed Central

    Kobayashi, Fuminori; Tanaka, Tsuyoshi; Kanamori, Hiroyuki; Wu, Jianzhong; Katayose, Yuichi; Handa, Hirokazu

    2016-01-01

    A core collection of Japanese wheat varieties (JWC) consisting of 96 accessions was established based on their passport data and breeding pedigrees. To clarify the molecular basis of the JWC collection, genome-wide single-nucleotide polymorphism (SNP) genotyping was performed using the genotyping-by-sequencing (GBS) approach. Phylogenetic tree and population structure analyses using these SNP data revealed the genetic diversity and relationships among the JWC accessions, classifying them into four groups; “varieties in the Hokkaido area”, “modern varieties in the northeast part of Japan”, “modern varieties in the southwest part of Japan” and “classical varieties including landraces”. This clustering closely reflected the history of wheat breeding in Japan. Furthermore, to demonstrate the utility of the JWC collection, we performed a genome-wide association study (GWAS) for three traits, namely, “days to heading in autumn sowing”, “days to heading in spring sowing” and “culm length”. We found significantly associated SNP markers with each trait, and some of these were closely linked to known major genes for heading date or culm length on the genetic map. Our study indicates that this JWC collection is a useful set of germplasm for basic and applied research aimed at understanding and utilizing the genetic diversity among Japanese wheat varieties. PMID:27162493

  7. Automated Identification of Nucleotide Sequences

    NASA Technical Reports Server (NTRS)

    Osman, Shariff; Venkateswaran, Kasthuri; Fox, George; Zhu, Dian-Hui

    2007-01-01

    STITCH is a computer program that processes raw nucleotide-sequence data to automatically remove unwanted vector information, perform reverse-complement comparison, stitch shorter sequences together to make longer ones to which the shorter ones presumably belong, and search against the user s choice of private and Internet-accessible public 16S rRNA databases. ["16S rRNA" denotes a ribosomal ribonucleic acid (rRNA) sequence that is common to all organisms.] In STITCH, a template 16S rRNA sequence is used to position forward and reverse reads. STITCH then automatically searches known 16S rRNA sequences in the user s chosen database(s) to find the sequence most similar to (the sequence that lies at the smallest edit distance from) each spliced sequence. The result of processing by STITCH is the identification of the most similar well-described bacterium. Whereas previously commercially available software for analyzing genetic sequences operates on one sequence at a time, STITCH can manipulate multiple sequences simultaneously to perform the aforementioned operations. A typical analysis of several dozen sequences (length of the order of 103 base pairs) by use of STITCH is completed in a few minutes, whereas such an analysis performed by use of prior software takes hours or days.

  8. Mining an Ostrinia nubilalis Midgut Expressed Sequence Tag (EST) Library for Candidate Genes and Single Nucleotide Polymorphisms (SNPs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    European corn borer, Ostrinia nubilalis, larvae feed upon many plant hosts and are a major target for genetically-engineered corn expressing Bacillus thuringiensis (Bt) toxins. DNA sequencing of a non-normalized O. nubilalis larval midgut cDNA library (ARS-CICGRU ONmgEST) identified 535 unique sequ...

  9. Restriction site-associated DNA sequencing generates high-quality single nucleotide polymorphisms for assessing hybridization between bighead and silver carp in the United States and China.

    PubMed

    Lamer, James T; Sass, Greg G; Boone, Jason Q; Arbieva, Zarema H; Green, Stefan J; Epifanio, John M

    2014-01-01

    Bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are invasive species and listed as US federally injurious species under the Lacy Act. They have established populations in much of the Mississippi River Basin (MRB; Mississippi, Illinois, and Missouri rivers) and are capable of producing fertile hybrids and complex introgression. Characterizing the composition of this admixture requires a large set of high-quality, evolutionarily conserved, diagnostic genetic markers to aid in the identification and management of these species in the midst of morphological ambiguity. Restriction site-associated DNA (RAD) sequencing of 45 barcoded bighead and silver carp from the United States and China produced reads that were aligned to the silver carp transcriptome yielded 261 candidate single nucleotide polymorphisms (SNPs) with fixed allelic differences between the two species. We selected the highest quality 112 SNP loci for validation using 194 putative pure-species and F1 hybrids from the MRB and putative bighead carp and silver carp pure species from China (Amur, Pearl and Yangtze rivers). Fifty SNPs were omitted due to design/amplification failure or lack of diagnostic utility. A total of 57 species-diagnostic SNPs conserved between carp species in US and Chinese rivers were identified; 32 were annotated to functional gene loci. Twenty-seven of the 181 (15%) putative pure species were identified as hybrid backcrosses after validation, including three backcrosses from the Amur River, where hybridization has not been documented previously. The 57 SNPs identified through RAD sequencing provide a diagnostic tool to detect population admixture and to identify hybrid and pure-species Asian carps in the United States and China. PMID:23957862

  10. Whole-Genome Sequencing of Erwinia amylovora Strains from Mexico Detects Single Nucleotide Polymorphisms in rpsL Conferring Streptomycin Resistance and in the avrRpt2 Effector Altering Host Interactions.

    PubMed

    Smits, Theo H M; Guerrero-Prieto, Víctor M; Hernández-Escarcega, Germán; Blom, Jochem; Goesmann, Alexander; Rezzonico, Fabio; Duffy, Brion; Stockwell, Virginia O

    2014-01-01

    We report draft genome sequences of three Mexican Erwinia amylovora strains. A novel plasmid, pEA78, was identified. Comparative genomics revealed an rpsL chromosomal mutation conferring high-level streptomycin resistance in two strains. In the effector gene avrRpt2, a single nucleotide polymorphism was detected that overcomes fire blight disease resistance in Malus × robusta 5. PMID:24459281

  11. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits

    PubMed Central

    2011-01-01

    Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following

  12. Population genetic structure in farm and feral American mink (Neovison vison) inferred from RAD sequencing-generated single nucleotide polymorphisms.

    PubMed

    Thirstrup, J P; Ruiz-Gonzalez, A; Pujolar, J M; Larsen, P F; Jensen, J; Randi, E; Zalewski, A; Pertoldi, C

    2015-08-01

    Feral American mink populations (), derived from mink farms, are widespread in Europe. In this study we investigated genetic diversity and genetic differentiation between feral and farm mink using a panel of genetic markers (194 SNP) generated from RAD sequencing data. Sampling included a total of 211 individuals from 14 populations, 4 feral and 10 from farms, the latter including a total of 7 color types (Brown, Black, Mahogany, Sapphire, White, Pearl, and Silver). Our study revealed similar low levels of genetic diversity in both farm and feral mink. Results are consistent with small effective population size as a consequence of line selection in the farms and founder effects of a few escapees from the farms in feral populations. Moderately high genetic differentiation was found between farm and feral animals, suggesting a scenario in which wild populations were founded from farm escapes a few decades ago. Currently, escapes and gene flow are probably limited. Genetic differentiation was higher among farm color types than among farms, consistent with line selection using few individuals to create the lines. Finally, no indications of inbreeding were found in either farm or feral samples, with significant negative values found in most farm samples, showing farms are successful in avoiding inbreeding. PMID:26440156

  13. Characterization of the transcriptome, nucleotide sequence polymorphism, and natural selection in the desert adapted mouse Peromyscus eremicus

    PubMed Central

    Eisen, Michael B.

    2014-01-01

    As a direct result of intense heat and aridity, deserts are thought to be among the most harsh of environments, particularly for their mammalian inhabitants. Given that osmoregulation can be challenging for these animals, with failure resulting in death, strong selection should be observed on genes related to the maintenance of water and solute balance. One such animal, Peromyscus eremicus, is native to the desert regions of the southwest United States and may live its entire life without oral fluid intake. As a first step toward understanding the genetics that underlie this phenotype, we present a characterization of the P. eremicus transcriptome. We assay four tissues (kidney, liver, brain, testes) from a single individual and supplement this with population level renal transcriptome sequencing from 15 additional animals. We identified a set of transcripts undergoing both purifying and balancing selection based on estimates of Tajima’s D. In addition, we used the branch-site test to identify a transcript—Slc2a9, likely related to desert osmoregulation—undergoing enhanced selection in P. eremicus relative to a set of related non-desert rodents. PMID:25374784

  14. Genome-Wide Patterns of Nucleotide Polymorphism in Domesticated Rice

    PubMed Central

    Hernandez, Ryan D; Boyko, Adam; Fledel-Alon, Adi; York, Thomas L; Polato, Nicholas R; Olsen, Kenneth M; Nielsen, Rasmus; McCouch, Susan R; Bustamante, Carlos D; Purugganan, Michael D

    2007-01-01

    Domesticated Asian rice (Oryza sativa) is one of the oldest domesticated crop species in the world, having fed more people than any other plant in human history. We report the patterns of DNA sequence variation in rice and its wild ancestor, O. rufipogon, across 111 randomly chosen gene fragments, and use these to infer the evolutionary dynamics that led to the origins of rice. There is a genome-wide excess of high-frequency derived single nucleotide polymorphisms (SNPs) in O. sativa varieties, a pattern that has not been reported for other crop species. We developed several alternative models to explain contemporary patterns of polymorphisms in rice, including a (i) selectively neutral population bottleneck model, (ii) bottleneck plus migration model, (iii) multiple selective sweeps model, and (iv) bottleneck plus selective sweeps model. We find that a simple bottleneck model, which has been the dominant demographic model for domesticated species, cannot explain the derived nucleotide polymorphism site frequency spectrum in rice. Instead, a bottleneck model that incorporates selective sweeps, or a more complex demographic model that includes subdivision and gene flow, are more plausible explanations for patterns of variation in domesticated rice varieties. If selective sweeps are indeed the explanation for the observed nucleotide data of domesticated rice, it suggests that strong selection can leave its imprint on genome-wide polymorphism patterns, contrary to expectations that selection results only in a local signature of variation. PMID:17907810

  15. Single nucleotide polymorphisms in caprine calpastatin gene.

    PubMed

    Sharma, R; Maitra, A; Pandey, A K; Singh, L V; Mishra, B P

    2013-04-01

    The calpains and calpastatin (CAST) make up a major cytosolic proteolytic system, the calpain-calpastatin system, found in mammalian tissues. The relative levels of the components of the calpain-calpastatin system determine the extent of meat tenderization during postmortem storage. Calpastatin (CAST) is a protein inhibitor of the ubiquitous calcium-dependent proteases-micro-calpain and m-calpain. Polymorphisms in the bovine, ovine and pig CAST gene have been associated with meat tenderness but little is known about how caprine CAST gene may affect goat meat quality traits. In this study we selected different parts of the CAST gene: 1) that have been previously reported to be polymorphic, intron 5 and 12 and 3'UTR; 2) first time explored (exon 3, 7 and 8 and part of intron 7 and 8) to investigate polymorphic status of caprine CAST gene. Using comparative sequencing ten novel SN Ps located in exon 3 and intron 5, 7 and 8 were identified. Previously reported SNPs in intron 5, 3'UTR and intron 12 were absent. Sequence analysis revealed a non synonymous amino acid variation in exon 3, which would result in Lys/Arg substitution in the corresponding protein sequence. Considerable variation was detected in intronic regions. Twenty-four InDel were also recognized in intronic regions (15) and 3'UTR (9). All the sequences shared high homology with published bovine and ovine sequences. Three PCR-RFLP loci have been established for further analyzing genetic polymorphism in indigenous goats. PMID:23866627

  16. Single nucleotide polymorphisms in common bean: their discovery and genotyping using a multiplex detection system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...

  17. Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L.

    PubMed Central

    Allegre, Mathilde; Argout, Xavier; Boccara, Michel; Fouet, Olivier; Roguet, Yolande; Bérard, Aurélie; Thévenin, Jean Marc; Chauveau, Aurélie; Rivallan, Ronan; Clement, Didier; Courtois, Brigitte; Gramacho, Karina; Boland-Augé, Anne; Tahi, Mathias; Umaharan, Pathmanathan; Brunel, Dominique; Lanaud, Claire

    2012-01-01

    Theobroma cacao is an economically important tree of several tropical countries. Its genetic improvement is essential to provide protection against major diseases and improve chocolate quality. We discovered and mapped new expressed sequence tag-single nucleotide polymorphism (EST-SNP) and simple sequence repeat (SSR) markers and constructed a high-density genetic map. By screening 149 650 ESTs, 5246 SNPs were detected in silico, of which 1536 corresponded to genes with a putative function, while 851 had a clear polymorphic pattern across a collection of genetic resources. In addition, 409 new SSR markers were detected on the Criollo genome. Lastly, 681 new EST-SNPs and 163 new SSRs were added to the pre-existing 418 co-dominant markers to construct a large consensus genetic map. This high-density map and the set of new genetic markers identified in this study are a milestone in cocoa genomics and for marker-assisted breeding. The data are available at http://tropgenedb.cirad.fr. PMID:22210604

  18. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  19. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  20. Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms.

    PubMed

    Fakhrai-Rad, Hossein; Pourmand, Nader; Ronaghi, Mostafa

    2002-05-01

    Pyrosequencing, a non-electrophoretic method for DNA sequencing, is emerging as a popular platform for analysis of single nucleotide polymorphisms (SNPs). This technology has the advantage of accuracy, ease-of-use, and high flexibility for different applications. Here, we review the methodology and the use of this technique for SNP genotyping, SNP discovery, haplotyping, and allelic frequency studies. In addition, we describe new schemes for template preparation and multiplexing as an effort for cost reduction in large-scale studies. PMID:11968080

  1. Characterization of 22 novel single nucleotide polymorphism markers in steelhead and rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty-two individuals representing coastal and inland populations of steelhead and rainbow trout (Oncorhynchus mykiss) were sequenced at 15 ESTs and 9 microsatellite loci to identify single nucleotide polymorphisms (SNPs). Sixty-two polymorphisms were discovered during the screen and 13 were devel...

  2. From Single Nucleotide Polymorphism to Transcriptional Mechanism

    PubMed Central

    Martini, Sebastian; Nair, Viji; Patel, Sanjeevkumar R.; Eichinger, Felix; Nelson, Robert G.; Weil, E. Jennifer; Pezzolesi, Marcus G.; Krolewski, Andrzej S.; Randolph, Ann; Keller, Benjamin J.; Werner, Thomas; Kretzler, Matthias

    2013-01-01

    Genome-wide association studies have proven to be highly effective at defining relationships between single nucleotide polymorphisms (SNPs) and clinical phenotypes in complex diseases. Establishing a mechanistic link between a noncoding SNP and the clinical outcome is a significant hurdle in translating associations into biological insight. We demonstrate an approach to assess the functional context of a diabetic nephropathy (DN)-associated SNP located in the promoter region of the gene FRMD3. The approach integrates pathway analyses with transcriptional regulatory pattern-based promoter modeling and allows the identification of a transcriptional framework affected by the DN-associated SNP in the FRMD3 promoter. This framework provides a testable hypothesis for mechanisms of genomic variation and transcriptional regulation in the context of DN. Our model proposes a possible transcriptional link through which the polymorphism in the FRMD3 promoter could influence transcriptional regulation within the bone morphogenetic protein (BMP)-signaling pathway. These findings provide the rationale to interrogate the biological link between FRMD3 and the BMP pathway and serve as an example of functional genomics-based hypothesis generation. PMID:23434934

  3. Y-Single Nucleotide Polymorphisms Diversity in Chinese Indigenous Horse

    PubMed Central

    Han, Haoyuan; Zhang, Qin; Gao, Kexin; Yue, Xiangpeng; Zhang, Tao; Dang, Ruihua; Lan, Xianyong; Chen, Hong; Lei, Chuzhao

    2015-01-01

    In contrast to high genetic diversity of mitochondrial DNA (mtDNA), equine Y chromosome shows extremely low variability, implying limited patrilines in the domesticated horse. In this study, we applied direct sequencing and restriction fragment length polymorphism (RFLP) methods to investigate the polymorphisms of 33 Y chromosome specific loci in 304 Chinese indigenous horses from 13 breeds. Consequently, two Y-single nucleotide polymorphisms (SNPs) (Y-45701/997 and Y-50869) and one Y-indel (Y-45288) were identified. Of those, the Y-50869 (T>A) revealed the highest variation frequency (24.67%), whereas it was only 3.29% and 1.97% in Y-45288 (T/-) and Y-45701/997 (G>T) locus, respectively. These three mutations accounted for 27.96% of the total samples and identified five Y-SNP haplotypes, demonstrating genetic diversity of Y chromosome in Chinese horses. In addition, all the five Y-SNP haplotypes were shared by different breeds. Among 13 horse breeds analyzed, Balikun horse displayed the highest nucleotide diversity (π = 5.6×10−4) and haplotype diversity (h = 0.527), while Ningqiang horse showed the lowest nucleotide diversity (π = 0.00000) and haplotype diversity (h = 0.000). The results also revealed that Chinese horses had a different polymorphic pattern of Y chromosome from European and American horses. In conclusion, Chinese horses revealed genetic diversity of Y chromosome, however more efforts should be made to better understand the domestication and paternal origin of Chinese indigenous horses. PMID:26104513

  4. Long-range correlations in nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-03-01

    DNA SEQUENCES have been analysed using models, such as an it-step Markov chain, that incorporate the possibility of short-range nucleotide correlations1. We propose here a method for studying the stochastic properties of nucleotide sequences by constructing a 1:1 map of the nucleotide sequence onto a walk, which we term a 'DNA walk'. We then use the mapping to provide a quantitative measure of the correlation between nucleotides over long distances along the DNA chain. Thus we uncover in the nucleotide sequence a remarkably long-range power law correlation that implies a new scale-invariant property of DNA. We find such long-range correlations in intron-containing genes and in nontranscribed regulatory DNA sequences, but not in complementary DNA sequences or intron-less genes.

  5. Single nucleotide polymorphism analysis using different colored dye dimer probes

    NASA Astrophysics Data System (ADS)

    Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter

    2006-09-01

    Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.

  6. Comparative Performance of Single Nucleotide Polymorphism (SNP) and Microsatellite Markers for the Detection of Population Differentiation in Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Putative single nucleotide polymorphisms (SNPs) were identified from contiguous sequences assembled from Diabrotica virgifera virgifera midgut expressed sequence tags (ESTs). Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP)-based assays confirmed variation at 20 biallel...

  7. Transcriptomic analysis of the interaction between Helianthus annuus and its obligate parasite Plasmopara halstedii shows single nucleotide polymorphisms in CRN sequences

    PubMed Central

    2011-01-01

    Background Downy mildew in sunflowers (Helianthus annuus L.) is caused by the oomycete Plasmopara halstedii (Farl.) Berlese et de Toni. Despite efforts by the international community to breed mildew-resistant varieties, downy mildew remains a major threat to the sunflower crop. Very few genomic, genetic and molecular resources are currently available to study this pathogen. Using a 454 sequencing method, expressed sequence tags (EST) during the interaction between H. annuus and P. halstedii have been generated and a search was performed for sites in putative effectors to show polymorphisms between the different races of P. halstedii. Results A 454 pyrosequencing run of two infected sunflower samples (inbred lines XRQ and PSC8 infected with race 710 of P. halstedii, which exhibit incompatible and compatible interactions, respectively) generated 113,720 and 172,107 useable reads. From these reads, 44,948 contigs and singletons have been produced. A bioinformatic portal, HP, was specifically created for in-depth analysis of these clusters. Using in silico filtering, 405 clusters were defined as being specific to oomycetes, and 172 were defined as non-specific oomycete clusters. A subset of these two categories was checked using PCR amplification, and 86% of the tested clusters were validated. Twenty putative RXLR and CRN effectors were detected using PSI-BLAST. Using corresponding sequences from four races (100, 304, 703 and 710), 22 SNPs were detected, providing new information on pathogen polymorphisms. Conclusions This study identified a large number of genes that are expressed during H. annuus/P. halstedii compatible or incompatible interactions. It also reveals, for the first time, that an infection mechanism exists in P. halstedii similar to that in other oomycetes associated with the presence of putative RXLR and CRN effectors. SNPs discovered in CRN effector sequences were used to determine the genetic distances between the four races of P. halstedii. This

  8. [Application of single nucleotide polymorphism in crop genetics and improvement].

    PubMed

    Du, Chun-Fang; Liu, Hui-Min; Li, Run-Zhi; Li, Peng-Bo; Ren, Zhi-Qiang

    2003-11-01

    Single nucleotide polymorphism(SNP) is the most common type of sequence difference between alleles, which can be used as a kind of high-throughput genetic marker. Several different routes have been developed to discover and identify SNP. These include the direct sequencing of PCR amplicons, electronic SNP(eSNP) and so on. SNP assays have been made in many crop species such as maize and soybean. The elite germplasm of some crops have been narrowed in genetic diversity, increasing the amount of linkage disequilibrium (LD) present and facilitating the association of SNP haplotypes at candidate gene loci with phenotypes. SNP analysis has been broadly used in the field of plant gene mapping, integration of genetic and physical maps, DNA marker-assisted breeding and functional genomics. PMID:15639972

  9. Syndrome-based discrimination of single nucleotide polymorphism.

    PubMed

    May, E E; Dolan, P; Crozier, P; Brozik, S

    2006-01-01

    The ability to discriminate nucleic acid sequences is necessary for a wide variety of applications: high throughput screening, distinguishing genetically modified organisms (GMOs), molecular computing, differentiating biological markers, fingerprinting a specific sensor response for complex systems, etc. Hybridization-based target recognition and discrimination is central to the operation of nucleic acid sensor systems. Therefore developing a quantitative correlation between mishybridization events and sensor out put is critical to the accurate interpretation of results. In this work, using experimental data produced by introducing single mutations (single nucleotide polymorphisms, SNPs) in the probe sequence of computational catalytic molecular beacons (deoxyribozyme gates) [1], we investigate coding theory algorithms for uniquely categorizing SNPs based on the calculation of syndromes. PMID:17947098

  10. Single Nucleotide Polymorphisms for Pig Identification and Parentage Exclusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms have become an important type of marker for commercial diagnostic and parentage genotyping applications as automated genotyping systems have been developed that yield accurate genotypes. Unfortunately, a large number of highly informative public SNP markers tested in ...

  11. Complete nucleotide sequence of a maize chlorotic mottle virus isolate from Nebraska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome of a maize chlorotic mottle virus isolate from Nebraska (MCMV-NE) was cloned and sequenced. The MCMV-NE genome consists of 4,436 nucleotides and shares 99.5% nucleotide sequence identity with an MCMV isolate from Kansas (MCMV-KS). Of 22 polymorphic sites, most resulted from t...

  12. Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling.

    PubMed

    Till, Bradley J; Jankowicz-Cieslak, Joanna; Sági, László; Huynh, Owen A; Utsushi, Hiroe; Swennen, Rony; Terauchi, Ryohei; Mba, Chikelu

    2010-11-01

    Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches. PMID:20589365

  13. Statistical analysis of nucleotide sequences.

    PubMed Central

    Stückle, E E; Emmrich, C; Grob, U; Nielsen, P J

    1990-01-01

    In order to scan nucleic acid databases for potentially relevant but as yet unknown signals, we have developed an improved statistical model for pattern analysis of nucleic acid sequences by modifying previous methods based on Markov chains. We demonstrate the importance of selecting the appropriate parameters in order for the method to function at all. The model allows the simultaneous analysis of several short sequences with unequal base frequencies and Markov order k not equal to 0 as is usually the case in databases. As a test of these modifications, we show that in E. coli sequences there is a bias against palindromic hexamers which correspond to known restriction enzyme recognition sites. PMID:2251125

  14. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...

  15. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  16. Development of Single Nucleotide Polymorphism (SNP) Markers for Use in Commercial Maize (Zea Mays L.) Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of single nucleotide polymorphism (SNP) markers in maize offer the opportunity to utilize DNA markers in many new areas of population genetics, gene discovery, plant breeding, and germplasm identification. However, the steps from sequencing and SNP discovery to SNP marker design and ...

  17. The International Nucleotide Sequence Database Collaboration.

    PubMed

    Cochrane, Guy; Karsch-Mizrachi, Ilene; Takagi, Toshihisa

    2016-01-01

    The International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org) comprises three global partners committed to capturing, preserving and providing comprehensive public-domain nucleotide sequence information. The INSDC establishes standards, formats and protocols for data and metadata to make it easier for individuals and organisations to submit their nucleotide data reliably to public archives. This work enables the continuous, global exchange of information about living things. Here we present an update of the INSDC in 2015, including data growth and diversification, new standards and requirements by publishers for authors to submit their data to the public archives. The INSDC serves as a model for data sharing in the life sciences. PMID:26657633

  18. Nucleotide sequence of bacteriophage fd DNA.

    PubMed Central

    Beck, E; Sommer, R; Auerswald, E A; Kurz, C; Zink, B; Osterburg, G; Schaller, H; Sugimoto, K; Sugisaki, H; Okamoto, T; Takanami, M

    1978-01-01

    The sequence of the 6,408 nucleotides of bacteriophage fd DNA has been determined. This allows to deduce the exact organisation of the filamentous phage genome and provides easy access to DNA segments of known structure and function. PMID:745987

  19. Single nucleotide polymorphism discovery in rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To enhance capabilities for genetic analyses in rainbow trout, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be developed. However, the evolutionarily recent whole genome duplication event complicates the use of standard approaches in the discove...

  20. Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.

    2012-01-01

    Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…

  1. Complete Nucleotide Sequence of Tn10

    PubMed Central

    Chalmers, Ronald; Sewitz, Sven; Lipkow, Karen; Crellin, Paul

    2000-01-01

    The complete nucleotide sequence of Tn10 has been determined. The dinucleotide signature and percent G+C of the sequence had no discontinuities, indicating that Tn10 constitutes a homogeneous unit. The new sequence contained three new open reading frames corresponding to a glutamate permease, repressors of heavy metal resistance operons, and a hypothetical protein in Bacillus subtilis. The glutamate permease was fully functional when expressed, but Tn10 did not protect Escherichia coli from the toxic effects of various metals. PMID:10781570

  2. The multiple codes of nucleotide sequences.

    PubMed

    Trifonov, E N

    1989-01-01

    Nucleotide sequences carry genetic information of many different kinds, not just instructions for protein synthesis (triplet code). Several codes of nucleotide sequences are discussed including: (1) the translation framing code, responsible for correct triplet counting by the ribosome during protein synthesis; (2) the chromatin code, which provides instructions on appropriate placement of nucleosomes along the DNA molecules and their spatial arrangement; (3) a putative loop code for single-stranded RNA-protein interactions. The codes are degenerate and corresponding messages are not only interspersed but actually overlap, so that some nucleotides belong to several messages simultaneously. Tandemly repeated sequences frequently considered as functionless "junk" are found to be grouped into certain classes of repeat unit lengths. This indicates some functional involvement of these sequences. A hypothesis is formulated according to which the tandem repeats are given the role of weak enhancer-silencers that modulate, in a copy number-dependent way, the expression of proximal genes. Fast amplification and elimination of the repeats provides an attractive mechanism of species adaptation to a rapidly changing environment. PMID:2673451

  3. Targeted Amplicon Sequencing for Single-Nucleotide-Polymorphism Genotyping of Attaching and Effacing Escherichia coli O26:H11 Cattle Strains via a High-Throughput Library Preparation Technique

    PubMed Central

    Delannoy, Sabine; Bugarel, Marie; Nagaraja, Tiruvoor G.; Renter, David G.; den Bakker, Henk C.; Nightingale, Kendra K.; Fach, Patrick; Loneragan, Guy H.

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) O26:H11, a serotype within Shiga toxin-producing E. coli (STEC) that causes severe human disease, has been considered to have evolved from attaching and effacing E. coli (AEEC) O26:H11 through the acquisition of a Shiga toxin-encoding gene. Targeted amplicon sequencing using next-generation sequencing technology of 48 phylogenetically informative single-nucleotide polymorphisms (SNPs) and three SNPs differentiating Shiga toxin-positive (stx-positive) strains from Shiga toxin-negative (stx-negative) strains were used to infer the phylogenetic relationships of 178 E. coli O26:H11 strains (6 stx-positive strains and 172 stx-negative AEEC strains) from cattle feces to 7 publically available genomes of human clinical strains. The AEEC cattle strains displayed synonymous SNP genotypes with stx2-positive sequence type 29 (ST29) human O26:H11 strains, while stx1 ST21 human and cattle strains clustered separately, demonstrating the close phylogenetic relatedness of these Shiga toxin-negative AEEC cattle strains and human clinical strains. With the exception of seven stx-negative strains, five of which contained espK, three stx-related SNPs differentiated the STEC strains from non-STEC strains, supporting the hypothesis that these AEEC cattle strains could serve as a potential reservoir for new or existing pathogenic human strains. Our results support the idea that targeted amplicon sequencing for SNP genotyping expedites strain identification and genetic characterization of E. coli O26:H11, which is important for food safety and public health. PMID:26567298

  4. Single nucleotide polymorphisms in clinics: Fantasy or reality for cancer?

    PubMed

    Srinivasan, Srilakshmi; Clements, Judith A; Batra, Jyotsna

    2016-01-01

    Single nucleotide polymorphisms (SNPs) have been classically used for dissecting various human complex disorders using candidate gene studies. During the last decade, large scale SNP analysis, i.e. genome-wide association studies (GWAS) have provided an agnostic approach to identify possible genetic loci associated with heterogeneous disease such as cancer susceptibility, prognosis of survival or drug response. Further, the advent of new technologies, including microarray-based genotyping as well as high throughput next generation sequencing has opened new avenues for SNPs to be used in clinical practice. It is speculated that the utility of SNPs to understand the mechanisms, biology of variable drug response and ultimately treatment individualization based on the individual's genome composition will be indispensable in the near future. In the current review, we discuss the advantages and disadvantages of the clinical utility of genetic variants in disease risk-prediction, prognosis, clinical outcome and pharmacogenomics. The lessons and challenges for the utility of SNP-based biomarkers are also discussed, including the need for additional functional validation studies. PMID:26398894

  5. Single nucleotide polymorphisms of Kit gene in Chinese indigenous horses.

    PubMed

    Han, Haoyuan; Mao, Chunchun; Chen, Ningbo; Lan, Xianyong; Chen, Hong; Lei, Chuzhao; Dang, Ruihua

    2016-02-01

    Kit gene is a genetic determinant of horse white coat color which has been a highly valued trait in horses for at least 2,000 years. Single nucleotide polymorphisms (SNPs) in Kit are of importance due to their strong associations with melanoblast survival during embryonic development. In this study, a mutation analysis of all 21 Kit exons in 14 Chinese domestic horse breeds revealed six SNPs (g.91214T>G, g.143245T>G, g.164297C>T, g.170189C>T, g.171356C>G, and g.171471G>A), which located in 5'-UTR region, intron 6, exon 15, exon 20, intron 20, and exon 21 of the equine Kit gene, respectively. Subsequently, these six SNPs loci were genotyped in 632 Chinese horses by PCR-RFLP or direct sequencing. The six SNPs together defined 18 haplotypes, demonstrating abundant haplotype diversities in Chinese horses. All the mutant alleles and haplotypes were shared among different breeds. But fewer mutations were detected in horses from China than that from abroad, indicating that Chinese horses belong to a more ancient genetic pool. This study will provide fundamental genetic information for evaluating the genetic diversity of Kit gene in Chinese indigenous horse breeds. PMID:27348891

  6. Single nucleotide polymorphism genotyping using BeadChip microarrays.

    PubMed

    Lambert, Gilliam; Tsinajinnie, Darwin; Duggan, David

    2013-07-01

    The genotyping of single nucleotide polymorphisms (SNPs) has successfully contributed to the study of complex diseases more than any other technology to date. Genome-wide association studies (GWAS) using 10,000s to >1,000,000 SNPs have identified 1000s of statistically significant SNPs pertaining to 17 different human disease and trait categories. Post-GWAS fine-mapping studies using 10,000s to 100,000s SNPs on a microarray have narrowed the region of interest for many of these GWAS findings; in addition, independent signals within the original GWAS region have been identified. Focused content, SNP-based microarrays such as the human exome, for example, have too been used successfully to identify novel disease associations. Success has come to studies where 100s to 10,000s (mostly) to >100,000 samples were genotyped. For the time being, SNP-based microarrays remain cost-effective especially when studying large numbers of samples compared to other "genotyping" technologies including next generation sequencing. In this unit, protocols for manual (LIMS-free), semi-manual, and automated processing of BeadChip microarrays are presented. Lower throughput studies will find value in the manual and semi-manual protocols, while all types of studies--low-, medium-, and high-throughput--will find value in the semi-manual and automated protocols. PMID:23853082

  7. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    SciTech Connect

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markers is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.

  8. Discovery of single nucleotide polymorphisms and mutations by pyrosequencing.

    PubMed

    Ronaghi, Mostafa; Elahi, Elahe

    2002-01-01

    Comparative genomics, analyzing variation among individual genomes, is an area of intense investigation. DNA sequencing is usually employed to look for polymorphisms and mutations. Pyrosequencing, a real-time DNA sequencing method, is emerging as a popular platform for comparative genomics. Here we review the use of this technology for mutation scanning, polymorphism discovery and chemical haplotyping. We describe the methodology and accuracy of this technique and discuss how to reduce the cost for large-scale analysis. PMID:18628881

  9. A Sequence-Ready Physical Map of Barley Anchored Genetically by Two Million Single-Nucleotide Polymorphisms1[W][OPEN

    PubMed Central

    Ariyadasa, Ruvini; Mascher, Martin; Nussbaumer, Thomas; Schulte, Daniela; Frenkel, Zeev; Poursarebani, Naser; Zhou, Ruonan; Steuernagel, Burkhard; Gundlach, Heidrun; Taudien, Stefan; Felder, Marius; Platzer, Matthias; Himmelbach, Axel; Schmutzer, Thomas; Hedley, Pete E.; Muehlbauer, Gary J.; Scholz, Uwe; Korol, Abraham; Mayer, Klaus F.X.; Waugh, Robbie; Langridge, Peter; Graner, Andreas; Stein, Nils

    2014-01-01

    Barley (Hordeum vulgare) is an important cereal crop and a model species for Triticeae genomics. To lay the foundation for hierarchical map-based sequencing, a genome-wide physical map of its large and complex 5.1 billion-bp genome was constructed by high-information content fingerprinting of almost 600,000 bacterial artificial chromosomes representing 14-fold haploid genome coverage. The resultant physical map comprises 9,265 contigs with a cumulative size of 4.9 Gb representing 96% of the physical length of the barley genome. The reliability of the map was verified through extensive genetic marker information and the analysis of topological networks of clone overlaps. A minimum tiling path of 66,772 minimally overlapping clones was defined that will serve as a template for hierarchical clone-by-clone map-based shotgun sequencing. We integrated whole-genome shotgun sequence data from the individuals of two mapping populations with published bacterial artificial chromosome survey sequence information to genetically anchor the physical map. This novel approach in combination with the comprehensive whole-genome shotgun sequence data sets allowed us to independently validate and improve a previously reported physical and genetic framework. The resources developed in this study will underpin fine-mapping and cloning of agronomically important genes and the assembly of a draft genome sequence. PMID:24243933

  10. Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes

    SciTech Connect

    Wang, Xuting; Tomso, Daniel J.; Liu Xuemei; Bell, Douglas A. . E-mail: BELL1@niehs.nih.gov

    2005-09-01

    Single nucleotide polymorphisms (SNPs) in the human genome are DNA sequence variations that can alter an individual's response to environmental exposure. SNPs in gene coding regions can lead to changes in the biological properties of the encoded protein. In contrast, SNPs in non-coding gene regulatory regions may affect gene expression levels in an allele-specific manner, and these functional polymorphisms represent an important but relatively unexplored class of genetic variation. The main challenge in analyzing these SNPs is a lack of robust computational and experimental methods. Here, we first outline mechanisms by which genetic variation can impact gene regulation, and review recent findings in this area; then, we describe a methodology for bioinformatic discovery and functional analysis of regulatory SNPs in cis-regulatory regions using the assembled human genome sequence and databases on sequence polymorphism and gene expression. Our method integrates SNP and gene databases and uses a set of computer programs that allow us to: (1) select SNPs, from among the >9 million human SNPs in the NCBI dbSNP database, that are similar to cis-regulatory element (RE) consensus sequences; (2) map the selected dbSNP entries to the human genome assembly in order to identify polymorphic REs near gene start sites; (3) prioritize the candidate polymorphic RE containing genes by searching the existing genotype and gene expression data sets. The applicability of this system has been demonstrated through studies on p53 responsive elements and is being extended to additional pathways and environmentally responsive genes.

  11. Multifactor dimensionality reduction analysis identifies specific nucleotide patterns promoting genetic polymorphisms

    PubMed Central

    Arehart, Eric; Gleim, Scott; White, Bill; Hwa, John; Moore, Jason H

    2009-01-01

    Background The fidelity of DNA replication serves as the nidus for both genetic evolution and genomic instability fostering disease. Single nucleotide polymorphisms (SNPs) constitute greater than 80% of the genetic variation between individuals. A new theory regarding DNA replication fidelity has emerged in which selectivity is governed by base-pair geometry through interactions between the selected nucleotide, the complementary strand, and the polymerase active site. We hypothesize that specific nucleotide combinations in the flanking regions of SNP fragments are associated with mutation. Results We modeled the relationship between DNA sequence and observed polymorphisms using the novel multifactor dimensionality reduction (MDR) approach. MDR was originally developed to detect synergistic interactions between multiple SNPs that are predictive of disease susceptibility. We initially assembled data from the Broad Institute as a pilot test for the hypothesis that flanking region patterns associate with mutagenesis (n = 2194). We then confirmed and expanded our inquiry with human SNPs within coding regions and their flanking sequences collected from the National Center for Biotechnology Information (NCBI) database (n = 29967) and a control set of sequences (coding region) not associated with SNP sites randomly selected from the NCBI database (n = 29967). We discovered seven flanking region pattern associations in the Broad dataset which reached a minimum significance level of p ≤ 0.05. Significant models (p << 0.001) were detected for each SNP type examined in the larger NCBI dataset. Importantly, the flanking region models were elongated or truncated depending on the nucleotide change. Additionally, nucleotide distributions differed significantly at motif sites relative to the type of variation observed. The MDR approach effectively discerned specific sites within the flanking regions of observed SNPs and their respective identities, supporting the collective

  12. Evaluation of anonymous and expressed sequence tag derived polymorphic microsatellite markers in the tobacco budworm Heliothis virescens (Lepidoptera: noctuidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymorphic genetic markers were identified and characterized using a partial genomic library of Heliothis virescens enriched for simple sequence repeats (SSR) and nucleotide sequences of expressed sequence tags (EST). Nucleotide sequences of 192 clones from the partial genomic library yielded 147 u...

  13. Genotyping single nucleotide polymorphisms in barley by tetra-primer ARMS-PCR.

    PubMed

    Chiapparino, E; Lee, D; Donini, P

    2004-04-01

    Single nucleotide polymorphisms (SNPs) are the most abundant form of DNA polymorphism. These polymorphisms can be used in plants as simple genetic markers for many breeding applications, for population studies, and for germplasm fingerprinting. The great increase in the available DNA sequences in the databases has made it possible to identify SNPs by "database mining", and the single most important factor preventing their widespread use appears to be the genotyping cost. Many genotyping platforms rely on the use of sophisticated, automated equipment coupled to costly chemistry and detection systems. A simple and economical method involving a single PCR is reported here for barley SNP genotyping. Using the tetra-primer ARMS-PCR procedure, we have been able to assay unambiguously five SNPs in a set of 132 varieties of cultivated barley. The results show the reliability of this technique and its potential for use in low- to moderate-throughput situations; the association of agronomically important traits is discussed. PMID:15060595

  14. Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA

    PubMed Central

    Watson, Claire L.; Lockwood, Diana N. J.

    2009-01-01

    Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306

  15. Evaluation of published single nucleotide polymorphisms associated with acute GVHD.

    PubMed

    Chien, Jason W; Zhang, Xinyi Cindy; Fan, Wenhong; Wang, Hongwei; Zhao, Lue Ping; Martin, Paul J; Storer, Barry E; Boeckh, Michael; Warren, Edus H; Hansen, John A

    2012-05-31

    Candidate genetic associations with acute GVHD (aGVHD) were evaluated with the use of genotyped and imputed single-nucleotide polymorphism data from genome-wide scans of 1298 allogeneic hematopoietic cell transplantation (HCT) donors and recipients. Of 40 previously reported candidate SNPs, 6 were successfully genotyped, and 10 were imputed and passed criteria for analysis. Patient and donor genotypes were assessed for association with grades IIb-IV and III-IV aGVHD, stratified by donor type, in univariate and multivariate allelic, recessive and dominant models. Use of imputed genotypes to replicate previous IL10 associations was validated. Similar to previous publications, the IL6 donor genotype for rs1800795 was associated with a 20%-50% increased risk for grade IIb-IV aGVHD after unrelated HCT in the allelic (adjusted P = .011) and recessive (adjusted P = .0013) models. The donor genotype was associated with a 60% increase in risk for grade III-IV aGVHD after related HCT (adjusted P = .028). Other associations were found for IL2, CTLA4, HPSE, and MTHFR but were inconsistent with original publications. These results illustrate the advantages of using imputed single-nucleotide polymorphism data in genetic analyses and demonstrate the importance of validation in genetic association studies. PMID:22282500

  16. Characterization of single-nucleotide-polymorphism markers for Plasmopara viticola, the causal agent of grapevine downy mildew.

    PubMed

    Delmotte, F; Machefer, V; Giresse, X; Richard-Cervera, S; Latorse, M P; Beffa, R

    2011-11-01

    We report 34 new nuclear single-nucleotide-polymorphism (SNP) markers that have been developed from an expressed sequence tag library of Plasmopara viticola, the causal agent of grapevine downy mildew. This newly developed battery of markers will provide useful additional genetic tools for population genetic studies of this important agronomic species. PMID:21926208

  17. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  18. Single nucleotide polymorphism analysis reveals heterogeneity within a seedling tree population of a polyembryonic mango cultivar.

    PubMed

    Winterhagen, Patrick; Wünsche, Jens-Norbert

    2016-05-01

    Within a polyembryonic mango seedling tree population, the genetic background of individuals should be identical because vigorous plants for cultivation are expected to develop from nucellar embryos representing maternal clones. Due to the fact that the mango cultivar 'Hôi' is assigned to the polyembryonic ecotype, an intra-cultivar variability of ethylene receptor genes was unexpected. Ethylene receptors in plants are conserved, but the number of receptors or receptor isoforms is variable regarding different plant species. However, it is shown here that the ethylene receptor MiETR1 is present in various isoforms within the mango cultivar 'Hôi'. The investigation of single nucleotide polymorphisms revealed that different MiETR1 isoforms can not be discriminated simply by individual single nucleotide exchanges but by the specific arrangement of single nucleotide polymorphisms at certain positions in the exons of MiETR1. Furthermore, an MiETR1 isoform devoid of introns in the genomic sequence was identified. The investigation demonstrates some limitations of high resolution melting and ScreenClust analysis and points out the necessity of sequencing to identify individual isoforms and to determine the variability within the tree population. PMID:27093244

  19. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing.

    PubMed

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-01

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R(2) = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells. PMID:27120517

  20. Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms

    PubMed Central

    Zhang, Wei; Qi, Weihong; Albert, Thomas J.; Motiwala, Alifiya S.; Alland, David; Hyytia-Trees, Eija K.; Ribot, Efrain M.; Fields, Patricia I.; Whittam, Thomas S.; Swaminathan, Bala

    2006-01-01

    Infections by Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) are the predominant cause of bloody diarrhea and hemolytic uremic syndrome in the United States. In silico comparison of the two complete STEC O157 genomes (Sakai and EDL933) revealed a strikingly high level of sequence identity in orthologous protein-coding genes, limiting the use of nucleotide sequences to study the evolution and epidemiology of this bacterial pathogen. To systematically examine single nucleotide polymorphisms (SNPs) at a genome scale, we designed comparative genome sequencing microarrays and analyzed 1199 chromosomal genes (a total of 1,167,948 bp) and 92,721 bp of the large virulence plasmid (pO157) of eleven outbreak-associated STEC O157 strains. We discovered 906 SNPs in 523 chromosomal genes and observed a high level of DNA polymorphisms among the pO157 plasmids. Based on a uniform rate of synonymous substitution for Escherichia coli and Salmonella enterica (4.7 × 10−9 per site per year), we estimate that the most recent common ancestor of the contemporary β-glucuronidase-negative, non-sorbitolfermenting STEC O157 strains existed ca. 40 thousand years ago. The phylogeny of the STEC O157 strains based on the informative synonymous SNPs was compared to the maximum parsimony trees inferred from pulsed-field gel electrophoresis and multilocus variable numbers of tandem repeats analysis. The topological discrepancies indicate that, in contrast to the synonymous mutations, parts of STEC O157 genomes have evolved through different mechanisms with highly variable divergence rates. The SNP loci reported here will provide useful genetic markers for developing high-throughput methods for fine-resolution genotyping of STEC O157. Functional characterization of nucleotide polymorphisms should shed new insights on the evolution, epidemiology, and pathogenesis of STEC O157 and related pathogens. PMID:16606700

  1. Current research status, databases and application of single nucleotide polymorphism.

    PubMed

    Javed, R; Mukesh

    2010-07-01

    Single Nucleotide Polymorphisms (SNPs) are the most frequent form of DNA variation in the genome. SNPs are genetic markers which are bi-allelic in nature and grow at a very fast rate. Current genomic databases contain information on several million SNPs. More than 6 million SNPs have been identified and the information is publicly available through the efforts of the SNP Consortium and others data bases. The NCBI plays a major role in facillating the identification and cataloging of SNPs through creation and maintenance of the public SNP database (dbSNP) by the biomedical community worldwide and stimulate many areas of biological research including the identification of the genetic components of disease. In this review article, we are compiling the existing SNP databases, research status and their application. PMID:21717869

  2. Development of 101 novel EST-derived single nucleotide polymorphism markers for Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Li, Jiqin; Bao, Zhenmin; Li, Ling; Wang, Xiaojian; Wang, Shi; Hu, Xiaoli

    2013-09-01

    Zhikong scallop ( Chlamys farreri) is an important maricultured species in China. Many researches on this species, such as population genetics and QTL fine-mapping, need a large number of molecular markers. In this study, based on the expressed sequence tags (EST), a total of 300 putative single nucleotide polymorphisms (SNPs) were selected and validated using high resolution melting (HRM) technology with unlabeled probe. Of them, 101 (33.7%) were found to be polymorphic in 48 individuals from 4 populations. Further evaluation with 48 individuals from Qingdao population showed that all the polymorphic loci had two alleles with the minor allele frequency ranged from 0.046 to 0.500. The observed and expected heterozygosities ranged from 0.000 to 0.925 and from 0.089 to 0.505, respectively. Fifteen loci deviated significantly from Hardy-Weinberg equilibrium and significant linkage disequilibrate was detected in one pair of markers. BLASTx gave significant hits for 72 of the 101 polymorphic SNP-containing ESTs. Thirty four polymorphic SNP loci were predicted to be non-synonymous substitutions as they caused either the change of codons (33 SNPs) or pretermination of translation (1 SNP). The markers developed can be used for the population studies and genetic improvement on Zhikong scallop.

  3. A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms

    SciTech Connect

    Wong, G K; Hillier, L; Brandstrom, M; Croojmans, R; Ovcharenko, I; Gordon, L; Stubbs, L; Lucas, S; Glavina, T; Kaiser, P; Gunnarsson, U; Webber, C; Overton, I

    2005-02-20

    We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.

  4. Nucleotide sequence of 3' untranslated portion of human alpha globin mRNA.

    PubMed Central

    Wilson, J T; deRiel, J K; Forget, B G; Marotta, C A; Weissman, S M

    1977-01-01

    We have determined the nucleotide sequence of 75 nucleotides of the 3'-untranslated portion of normal human alpha globin mRNA which corresponds to the elongated amino acid sequence of the chain termination mutant Hb Constant Spring. This was accomplished by sequence analysis of cDNA fragments obtained by restriction endonuclease or T4 endonuclease IV cleavage of human globin cDNA synthesized from globin mRNA by use of viral reverse transcriptase. Analysis of cRNA synthesized from cDNA by use of RNA polymerase provided additional confirmatory sequence information. Possible polymorphism has been identified at one site of the sequence. Our sequence overlaps with, and extends the sequence of 43 nucleotides determined by Proudfood and coworkers for the very 3'-terminal portion of human alpha globin mRNA. The complete 3'-untranslated sequence of human alpha globin mRNA (112 nucleotides including termination codon) shows little homology to that of the human or rabbit beta globin mRNAs except for the presence of the hexanucleotide sequence AAUAAA which is found in most eukaryotic mRNAs near the 3'-terminal poly (A). Images PMID:909779

  5. Nucleotide Sequence Diversity and Linkage Disequilibrium of Four Nuclear Loci in Foxtail Millet (Setaria italica)

    PubMed Central

    He, Shui-lian; Yang, Yang; Morrell, Peter L.; Yi, Ting-shuang

    2015-01-01

    Foxtail millet (Setaria italica (L.) Beauv) is one of the earliest domesticated grains, which has been cultivated in northern China by 8,700 years before present (YBP) and across Eurasia by 4,000 YBP. Owing to a small genome and diploid nature, foxtail millet is a tractable model crop for studying functional genomics of millets and bioenergy grasses. In this study, we examined nucleotide sequence diversity, geographic structure, and levels of linkage disequilibrium at four nuclear loci (ADH1, G3PDH, IGS1 and TPI1) in representative samples of 311 landrace accessions across its cultivated range. Higher levels of nucleotide sequence and haplotype diversity were observed in samples from China relative to other sampled regions. Genetic assignment analysis classified the accessions into seven clusters based on nucleotide sequence polymorphisms. Intralocus LD decayed rapidly to half the initial value within ~1.2 kb or less. PMID:26325578

  6. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase.

    PubMed

    Guard, Jean; Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J

    2016-07-01

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  7. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase

    PubMed Central

    Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J.

    2016-01-01

    Abstract Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  8. Assessment of the geographic origins of pinewood nematode isolates via single nucleotide polymorphism in effector genes.

    PubMed

    Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785

  9. Assessment of the Geographic Origins of Pinewood Nematode Isolates via Single Nucleotide Polymorphism in Effector Genes

    PubMed Central

    Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785

  10. Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients

    NASA Astrophysics Data System (ADS)

    Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier

    2016-05-01

    We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f

  11. Polymorphisms of nucleotide excision repair genes predict melanoma survival.

    PubMed

    Li, Chunying; Yin, Ming; Wang, Li-E; Amos, Christopher I; Zhu, Dakai; Lee, Jeffrey E; Gershenwald, Jeffrey E; Grimm, Elizabeth A; Wei, Qingyi

    2013-07-01

    Melanoma is the most highly malignant skin cancer, and nucleotide excision repair (NER) is involved in melanoma susceptibility. In this analysis of 1,042 melanoma patients, we evaluated whether genetic variants of NER genes may predict survival outcome of melanoma patients. We used genotyping data of 74 tagging single-nucleotide polymorphisms (tagSNPs) in eight core NER genes from our genome-wide association study (including two in XPA, 14 in XPC, three in XPE, four in ERCC1, 10 in ERCC2, eight in ERCC3, 14 in ERCC4, and 19 in ERCC5) and evaluated their associations with prognosis of melanoma patients. Using the Cox proportional hazards model and Kaplan-Meier analysis, we found a predictive role of XPE rs28720291, ERCC5 rs4150314, XPC rs2470458, and ERCC2 rs50871 SNPs in the prognosis of melanoma patients (rs28720291: AG vs. GG, adjusted hazard ratio (adjHR)=11.2, 95% confidence interval (CI) 3.04-40.9, P=0.0003; rs4150314: AG vs. GG, adjHR=4.76, 95% CI 1.09-20.8, P=0.038; rs2470458: AA vs. AG/GG, adjHR=2.11, 95% CI 1.03-4.33, P=0.040; and rs50871: AA vs. AC/CC adjHR=2.27, 95% CI 1.18-4.35, P=0.015). Patients with an increasing number of unfavorable genotypes had markedly increased death risk. Genetic variants of NER genes, particularly XPE rs28720291, ERCC5 rs4150314, XPC rs2470458, and ERCC2 rs50871, may independently or jointly modulate survival outcome of melanoma patients. Because our results were based on a median follow-up of 3 years without multiple test corrections, additional large prospective studies are needed to confirm our findings. PMID:23407396

  12. Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling.

    PubMed

    Norman, Anita J; Spong, Göran

    2015-08-01

    Quantifying dispersal within wild populations is an important but challenging task. Here we present a method to estimate contemporary, individual-based dispersal distance from noninvasively collected samples using a specialized panel of 96 SNPs (single nucleotide polymorphisms). One main issue in conducting dispersal studies is the requirement for a high sampling resolution at a geographic scale appropriate for capturing the majority of dispersal events. In this study, fecal samples of brown bear (Ursus arctos) were collected by volunteer citizens, resulting in a high sampling resolution spanning over 45,000 km(2) in Gävleborg and Dalarna counties in Sweden. SNP genotypes were obtained for unique individuals sampled (n = 433) and subsequently used to reconstruct pedigrees. A Mantel test for isolation by distance suggests that the sampling scale was appropriate for females but not for males, which are known to disperse long distances. Euclidean distance was estimated between mother and offspring pairs identified through the reconstructed pedigrees. The mean dispersal distance was 12.9 km (SE 3.2) and 33.8 km (SE 6.8) for females and males, respectively. These results were significantly different (Wilcoxon's rank-sum test: P-value = 0.02) and are in agreement with the previously identified pattern of male-biased dispersal. Our results illustrate the potential of using a combination of noninvasively collected samples at high resolution and specialized SNPs for pedigree-based dispersal models. PMID:26357536

  13. Single nucleotide polymorphisms predict symptom severity of autism spectrum disorder

    PubMed Central

    Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H

    2011-01-01

    Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs) can predict symptom severity of autism spectrum disorder (ASD). We divided 118 ASD children into a mild/moderate autism group (n = 65) and a severe autism group (n = 53), based on the Childhood Autism Rating Scale (CARS). For each child, we obtained 29 SNPs of 9 ASD-related genes. To generate predictive models, we employed three machine-learning techniques: decision stumps (DSs), alternating decision trees (ADTrees), and FlexTrees. DS and FlexTree generated modestly better classifiers, with accuracy = 67%, sensitivity = 0.88 and specificity = 0.42. The SNP rs878960 in GABRB3 was selected by all models, and was related associated with CARS assessment. Our results suggest that SNPs have the potential to offer accurate classification of ASD symptom severity. PMID:21786105

  14. Single nucleotide polymorphism-based dispersal estimates using noninvasive sampling

    PubMed Central

    Norman, Anita J; Spong, Göran

    2015-01-01

    Quantifying dispersal within wild populations is an important but challenging task. Here we present a method to estimate contemporary, individual-based dispersal distance from noninvasively collected samples using a specialized panel of 96 SNPs (single nucleotide polymorphisms). One main issue in conducting dispersal studies is the requirement for a high sampling resolution at a geographic scale appropriate for capturing the majority of dispersal events. In this study, fecal samples of brown bear (Ursus arctos) were collected by volunteer citizens, resulting in a high sampling resolution spanning over 45,000 km2 in Gävleborg and Dalarna counties in Sweden. SNP genotypes were obtained for unique individuals sampled (n = 433) and subsequently used to reconstruct pedigrees. A Mantel test for isolation by distance suggests that the sampling scale was appropriate for females but not for males, which are known to disperse long distances. Euclidean distance was estimated between mother and offspring pairs identified through the reconstructed pedigrees. The mean dispersal distance was 12.9 km (SE 3.2) and 33.8 km (SE 6.8) for females and males, respectively. These results were significantly different (Wilcoxon’s rank-sum test: P-value = 0.02) and are in agreement with the previously identified pattern of male-biased dispersal. Our results illustrate the potential of using a combination of noninvasively collected samples at high resolution and specialized SNPs for pedigree-based dispersal models. PMID:26357536

  15. A MEMS-Based Approach to Single Nucleotide Polymorphism Genotyping

    PubMed Central

    Zhu, Jing; Palla, Mirkó; Ronca, Stefano; Warpner, Ronald; Ju, Jingyue; Lin, Qiao

    2014-01-01

    Genotyping of single nucleotide polymorphisms (SNPs) allows diagnosis of human genetic disorders associated with single base mutations. Conventional SNP genotyping methods are capable of providing either accurate or high-throughput detection, but are still labor-, time-, and resource-intensive. Microfluidics has been applied to SNP detection to provide fast, low-cost, and automated alternatives, although these applications are still limited by either accuracy or throughput issues. To address this challenge, we present a MEMS-based SNP genotyping approach that uses solid-phase-based reactions in a single microchamber on a temperature control chip. Polymerase chain reaction (PCR), allele specific single base extension (SBE), and desalting on microbeads are performed in the microchamber, which is coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to analyze the SBE product. Experimental results from genotyping of the SNP on exon 1 of the HBB gene, which causes sickle cell anemia, demonstrate the potential of the device for rapid, accurate, multiplexed and high-throughput detection of SNPs. PMID:24729659

  16. A Microfluidic Device for Multiplex Single-Nucleotide Polymorphism Genotyping

    PubMed Central

    Zhu, Jing; Qiu, Chunmei; Palla, Mirkó; Nguyen, ThaiHuu; Russo, James J.; Ju, Jingyue; Lin, Qiao

    2015-01-01

    Single-nucleotide polymorphisms (SNPs) are the most abundant type of genetic variations; they provide the genetic fingerprint of individuals and are essential for genetic biomarker discoveries. Accurate detection of SNPs is of great significance for disease prevention, diagnosis and prognosis, and for prediction of drug response and clinical outcomes in patients. Nevertheless, conventional SNP genotyping methods are still limited by insufficient accuracy or labor-, time-, and resource-intensive procedures. Microfluidics has been increasingly utilized to improve efficiency; however, the currently available microfluidic genotyping systems still have shortcomings in accuracy, sensitivity, throughput and multiplexing capability. To address these challenges, we developed a multi-step SNP genotyping microfluidic device, which performs single-base extension of SNP specific primers and solid-phase purification of the extension products on a temperature-controlled chip. The products are ready for immediate detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), providing identification of the alleles at the target loci. The integrated device enables efficient and automated operation, while maintaining the high accuracy and sensitivity provided by MS. The multiplex genotyping capability was validated by performing rapid, accurate and simultaneous detection of 4 loci on a synthetic template. The microfluidic device has the potential to perform automatic, accurate, quantitative and high-throughput assays covering a broad spectrum of applications in biological and clinical research, drug development and forensics. PMID:26594354

  17. Research on Single Nucleotide Polymorphisms Interaction Detection from Network Perspective

    PubMed Central

    Su, Lingtao; Liu, Guixia; Wang, Han; Tian, Yuan; Zhou, Zhihui; Han, Liang; Yan, Lun

    2015-01-01

    Single Nucleotide Polymorphisms (SNPs) found in Genome-Wide Association Study (GWAS) mainly influence the susceptibility of complex diseases, but they still could not comprehensively explain the relationships between mutations and diseases. Interactions between SNPs are considered so important for deeply understanding of those relationships that several strategies have been proposed to explore such interactions. However, part of those methods perform poorly when marginal effects of disease loci are weak or absent, others may lack of considering high-order SNPs interactions, few methods have achieved the requirements in both performance and accuracy. Considering the above reasons, not only low-order, but also high-order SNP interactions as well as main-effect SNPs, should be taken into account in detection methods under an acceptable computational complexity. In this paper, a new pairwise (or low-order) interaction detection method IG (Interaction Gain) is introduced, in which disease models are not required and parallel computing is utilized. Furthermore, high-order SNP interactions were proposed to be detected by finding closely connected function modules of the network constructed from IG detection results. Tested by a wide range of simulated datasets and four WTCCC real datasets, the proposed methods accurately detected both low-order and high-order SNP interactions as well as disease-associated main-effect SNPS and it surpasses all competitors in performances. The research will advance complex diseases research by providing more reliable SNP interactions. PMID:25763929

  18. Research on single nucleotide polymorphisms interaction detection from network perspective.

    PubMed

    Su, Lingtao; Liu, Guixia; Wang, Han; Tian, Yuan; Zhou, Zhihui; Han, Liang; Yan, Lun

    2015-01-01

    Single Nucleotide Polymorphisms (SNPs) found in Genome-Wide Association Study (GWAS) mainly influence the susceptibility of complex diseases, but they still could not comprehensively explain the relationships between mutations and diseases. Interactions between SNPs are considered so important for deeply understanding of those relationships that several strategies have been proposed to explore such interactions. However, part of those methods perform poorly when marginal effects of disease loci are weak or absent, others may lack of considering high-order SNPs interactions, few methods have achieved the requirements in both performance and accuracy. Considering the above reasons, not only low-order, but also high-order SNP interactions as well as main-effect SNPs, should be taken into account in detection methods under an acceptable computational complexity. In this paper, a new pairwise (or low-order) interaction detection method IG (Interaction Gain) is introduced, in which disease models are not required and parallel computing is utilized. Furthermore, high-order SNP interactions were proposed to be detected by finding closely connected function modules of the network constructed from IG detection results. Tested by a wide range of simulated datasets and four WTCCC real datasets, the proposed methods accurately detected both low-order and high-order SNP interactions as well as disease-associated main-effect SNPS and it surpasses all competitors in performances. The research will advance complex diseases research by providing more reliable SNP interactions. PMID:25763929

  19. Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases

    PubMed Central

    Charlon, Thomas; Bossini-Castillo, Lara; Carmona, F. David; Di Cara, Alessandro; Wojcik, Jérôme; Voloshynovskiy, Sviatoslav

    2016-01-01

    Systemic Autoimmune Diseases, a group of chronic inflammatory conditions, have variable symptoms and difficult diagnosis. In order to reclassify them based on genetic markers rather than clinical criteria, we performed clustering of Single Nucleotide Polymorphisms. However naive approaches tend to group patients primarily by their geographic origin. To reduce this “ancestry signal”, we developed SNPClust, a method to select large sources of ancestry-independent genetic variations from all variations detected by Principal Component Analysis. Applied to a Systemic Lupus Erythematosus case control dataset, SNPClust successfully reduced the ancestry signal. Results were compared with association studies between the cases and controls without or with reference population stratification correction methods. SNPClust amplified the disease discriminating signal and the ratio of significant associations outside the HLA locus was greater compared to population stratification correction methods. SNPClust will enable the use of ancestry-independent genetic information in the reclassification of Systemic Autoimmune Diseases. SNPClust is available as an R package and demonstrated on the public Human Genome Diversity Project dataset at https://github.com/ThomasChln/snpclust. PMID:27490238

  20. Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases.

    PubMed

    Charlon, Thomas; Martínez-Bueno, Manuel; Bossini-Castillo, Lara; Carmona, F David; Di Cara, Alessandro; Wojcik, Jérôme; Voloshynovskiy, Sviatoslav; Martín, Javier; Alarcón-Riquelme, Marta E

    2016-01-01

    Systemic Autoimmune Diseases, a group of chronic inflammatory conditions, have variable symptoms and difficult diagnosis. In order to reclassify them based on genetic markers rather than clinical criteria, we performed clustering of Single Nucleotide Polymorphisms. However naive approaches tend to group patients primarily by their geographic origin. To reduce this "ancestry signal", we developed SNPClust, a method to select large sources of ancestry-independent genetic variations from all variations detected by Principal Component Analysis. Applied to a Systemic Lupus Erythematosus case control dataset, SNPClust successfully reduced the ancestry signal. Results were compared with association studies between the cases and controls without or with reference population stratification correction methods. SNPClust amplified the disease discriminating signal and the ratio of significant associations outside the HLA locus was greater compared to population stratification correction methods. SNPClust will enable the use of ancestry-independent genetic information in the reclassification of Systemic Autoimmune Diseases. SNPClust is available as an R package and demonstrated on the public Human Genome Diversity Project dataset at https://github.com/ThomasChln/snpclust. PMID:27490238

  1. Single Nucleotide Polymorphism in Patients with Moyamoya Disease

    PubMed Central

    2015-01-01

    Moyamoya disease (MMD) is a chronic, progressive, cerebrovascular occlusive disorder that displays various clinical features and results in cerebral infarct or hemorrhagic stroke. Specific genes associated with the disease have not yet been identified, making identification of at-risk patients difficult before clinical manifestation. Familial MMD is not uncommon, with as many as 15% of MMD patients having a family history of the disease, suggesting a genetic etiology. Studies of single nucleotide polymorphisms (SNPs) in MMD have mostly focused on mechanical stress on vessels, endothelium, and the relationship to atherosclerosis. In this review, we discuss SNPs studies targeting the genetic etiology of MMD. Genetic analyses in familial MMD and genome-wide association studies represent promising strategies for elucidating the pathophysiology of this condition. This review also discusses future research directions, not only to offer new insights into the origin of MMD, but also to enhance our understanding of the genetic aspects of MMD. There have been several SNP studies of MMD. Current SNP studies suggest a genetic contribution to MMD, but further reliable and replicable data are needed. A large cohort or family-based design would be important. Modern SNP studies of MMD depend on novel genetic, experimental, and database methods that will hopefully hasten the arrival of a consensus conclusion. PMID:26180609

  2. Single nucleotide polymorphisms and haplotype diversity in rice sucrose synthase 3.

    PubMed

    Lestari, Puji; Lee, Gian; Ham, Tae-Ho; Reflinur; Woo, Mi-Ok; Piao, Rihua; Jiang, Wenzhu; Chu, Sang Ho; Lee, Joohyun; Koh, Hee-Jong

    2011-01-01

    Rice sucrose synthase 3 (RSUS3) is expressed predominantly in rice seed endosperm and is thought to play an important role in starch filling during the milky stage of rice seed ripening. Because the genetic diversity of this locus is not known yet, the full sequence of RSUS3 from 43 rice varieties was amplified to examine the distribution of DNA polymorphisms. A total of 254 sequence variants, including SNPs and insertion/deletions, were successfully identified in the 7733 bp sequence that comprises the promoter, exons and introns, and 3' downstream nontranscribed region (NTR). Eleven haplotypes were distinguished among the 43 rice varieties based on nucleotide variation in the 3 defined regions (5' NTR, transcript, and 3' NTR). The promoter region showed evidence of a base change on a cis-element that might influence the functional role of the motif in seed-specific expression. The genetic diversity of the RSUS3 gene sequences in the rice germplasm used in this study appears to be the result of nonrandom processes. Analysis of polymorphism sites indicated that at least 11 recombinations have occurred, primarily in the transcribed region. This finding provides insight into the development of a cladistic approach for establishing future genetic association studies of the RSUS3 locus. PMID:21914668

  3. Simplified computer programs for search of homology within nucleotide sequences.

    PubMed Central

    Kröger, M; Kröger-Block, A

    1984-01-01

    Four new computer programs for search of homology within nucleotide sequences are presented. The main scope of the program design is flexibility, independence of sequence length and the capability to be used by any molecular biologist without any prior computer experience. The programs offer a linear search, a search for maximal identity, an alignment along a given sequence and a search based on homology within the amino acid coding capacity of nucleotide sequences. The language is Fortran V. Copies are available on request. PMID:6546417

  4. Novel single nucleotide polymorphism of UGT1A9 gene in Japanese.

    PubMed

    Fujita, Ken-ichi; Ando, Yuichi; Nagashima, Fumio; Yamamoto, Wataru; Endo, Hisashi; Kodama, Keiji; Araki, Kazuhiro; Miya, Toshimichi; Narabayashi, Masaru; Sasaki, Yasutsuna

    2006-02-01

    We sequenced from 5'-franking region to intron 1 (to 337 bp downstream from exon 1) of the UDP-glucuronosyltransferase (UGT) 1A9 gene prepared from 55 Japanese cancer patients. Seven single nucleotide polymorphisms (SNPs) were found. Two of them were UGT1A9 -118(T)n (n=10) and UGT1A9*5, and four were reported SNPs in intron 1 of UGT1A9 gene (89540C>T, 89549G>A, 89616T>A and 89710A>C). A novel SNP (89587T>C) was found. The sequence is as follows: SNP, 050824FujitaK001; Gene Name, UGT1A9; Accession Number, AF297093; Length, 25 bases; 5'-CCTTCTTGAAGAT/CATGTATTTATAA-3'. Two patients were heterozygous for the mutant allele, resulting in the allele frequency of 1.82%. PMID:16547398

  5. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing

    NASA Astrophysics Data System (ADS)

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-01

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori

  6. Nucleotide sequence of SHV-2 beta-lactamase gene

    SciTech Connect

    Garbarg-Chenon, A.; Godard, V.; Labia, R.; Nicolas, J.C. )

    1990-07-01

    The nucleotide sequence of plasmid-mediated beta-lactamase SHV-2 from Salmonella typhimurium (SHV-2pHT1) was determined. The gene was very similar to chromosomally encoded beta-lactamase LEN-1 of Klebsiella pneumoniae. Compared with the sequence of the Escherichia coli SHV-2 enzyme (SHV-2E.coli) obtained by protein sequencing, the deduced amino acid sequence of SHV-2pHT1 differed by three amino acid substitutions.

  7. Morpholino-functionalized nanochannel array for label-free single nucleotide polymorphisms detection.

    PubMed

    Gao, Hong-Li; Wang, Min; Wu, Zeng-Qiang; Wang, Chen; Wang, Kang; Xia, Xing-Hua

    2015-04-01

    The sensitive identification of single nucleotide polymorphisms becomes increasingly important for disease diagnosis, prevention, and practical applicability of pharmacogenomics. Herein, we propose a simple, highly selective, label-free single nucleotide polymorphisms (SNPs) sensing device by electrochemically monitoring the diffusion flux of ferricyanide probe across probe DNA/morpholino duplex functionalized nanochannels of porous anodic alumina. When perfectly matched or mismatched target DNA flows through the nanochannels modified with probe DNA/morpholino duplex, it competes for the probe DNA from morpholino, resulting in a change of the surface charges. Thus, the diffusion flux of negatively charged electroactive probe ferricyanide is modulated since it is sensitive to the surface charge due to the electrostatic interactions in electric double layer-merged nanochannels. Monitoring of the change in diffusion flux of probe enables us to detect not only a single base or two base mismatched sequence but also the specific location of the mismatched base. As is demonstrated, SNPs in the PML/RARα fusion gene, known as a biomarker of acute promyelocytic leukemia (APL), have been successfully detected. PMID:25734499

  8. Two bi-allelic single nucleotide polymorphisms within the promoter region of the horse tumour necrosis factor alpha gene.

    PubMed

    Matiasovic, J; Lukeszová, L; Horín, P

    2002-08-01

    Primers based on GenBank sequences within the 5' untranslated region (UTR) of the human and horse tumour necrosis factor alpha (TNF-alpha) genes were designed and used to amplify a 522-bp product. Sequencing of five clones derived from five independent PCRs obtained from three different animals of three different breeds (Old Kladruber, Akhal-Teke and Shetland Pony) revealed a high level of sequence identity to the TNF-alpha promoter regions of other species. The existing GenBank horse sequences were confirmed and extended upstream by 230 nucleotides. Based on the sequence obtained, a new horse-specific forward primer was designed to amplify a 213-bp PCR product, which was screened for polymorphism using single-strand conformation polymorphism (SSCP). Three allelic variants of the horse TNF-alpha gene were identified and sequenced (GenBank accession numbers ADF 349558-60). Two single nucleotide polymorphisms explained the existence of the three SSCP alleles detected: C/T and T/C single base pair substitutions at positions 137 and 147, respectively. Differences in allelic frequencies between Old Kladruber and Akhal-Teke breeds were observed. PMID:12121271

  9. Reading biological processes from nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Murugan, Anand

    Cellular processes have traditionally been investigated by techniques of imaging and biochemical analysis of the molecules involved. The recent rapid progress in our ability to manipulate and read nucleic acid sequences gives us direct access to the genetic information that directs and constrains biological processes. While sequence data is being used widely to investigate genotype-phenotype relationships and population structure, here we use sequencing to understand biophysical mechanisms. We present work on two different systems. First, in chapter 2, we characterize the stochastic genetic editing mechanism that produces diverse T-cell receptors in the human immune system. We do this by inferring statistical distributions of the underlying biochemical events that generate T-cell receptor coding sequences from the statistics of the observed sequences. This inferred model quantitatively describes the potential repertoire of T-cell receptors that can be produced by an individual, providing insight into its potential diversity and the probability of generation of any specific T-cell receptor. Then in chapter 3, we present work on understanding the functioning of regulatory DNA sequences in both prokaryotes and eukaryotes. Here we use experiments that measure the transcriptional activity of large libraries of mutagenized promoters and enhancers and infer models of the sequence-function relationship from this data. For the bacterial promoter, we infer a physically motivated 'thermodynamic' model of the interaction of DNA-binding proteins and RNA polymerase determining the transcription rate of the downstream gene. For the eukaryotic enhancers, we infer heuristic models of the sequence-function relationship and use these models to find synthetic enhancer sequences that optimize inducibility of expression. Both projects demonstrate the utility of sequence information in conjunction with sophisticated statistical inference techniques for dissecting underlying biophysical

  10. Single nucleotide polymorphism discovery in rainbow trout using reduced representation libraries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single Nucleotide Polymorphisms (SNPs) are highly abundant, widespread and evenly distributed markers, which can be easily genotyped using high-throughput assays. These characteristics explain their increasing popularity in genome analyses such as quantitative trait loci mapping, linkage disequilibr...

  11. A high-density single nucleotide polymorphism map for Neurospora crassa.

    PubMed

    Lambreghts, Randy; Shi, Mi; Belden, William J; Decaprio, David; Park, Danny; Henn, Matthew R; Galagan, James E; Bastürkmen, Meray; Birren, Bruce W; Sachs, Matthew S; Dunlap, Jay C; Loros, Jennifer J

    2009-02-01

    We report the discovery and validation of a set of single nucleotide polymorphisms (SNPs) between the reference Neurospora crassa strain Oak Ridge and the Mauriceville strain (FGSC 2555), of sufficient density to allow fine mapping of most loci. Sequencing of Mauriceville cDNAs and alignment to the completed genomic sequence of the Oak Ridge strain identified 19,087 putative SNPs. Of these, a subset was validated by cleaved amplified polymorphic sequence (CAPS), a simple and robust PCR-based assay that reliably distinguishes between SNP alleles. Experimental confirmation resulted in the development of 250 CAPS markers distributed evenly over the genome. To demonstrate the applicability of this map, we used bulked segregant analysis followed by interval mapping to locate the csp-1 mutation to a narrow region on LGI. Subsequently, we refined mapping resolution to 74 kbp by developing additional markers, resequenced the candidate gene, NCU02713.3, in the mutant background, and phenocopied the mutation by gene replacement in the WT strain. Together, these techniques demonstrate a generally applicable and straightforward approach for the isolation of novel genes from existing mutants. Data on both putative and validated SNPs are deposited in a customized public database at the Broad Institute, which encourages augmentation by community users. PMID:19015548

  12. Identification, validation and survey of a single nucleotide polymorphism (SNP) associated with pungency in Capsicum spp.

    PubMed

    Garcés-Claver, Ana; Fellman, Shanna Moore; Gil-Ortega, Ramiro; Jahn, Molly; Arnedo-Andrés, María S

    2007-11-01

    A single nucleotide polymorphism (SNP) associated with pungency was detected within an expressed sequence tag (EST) of 307 bp. This fragment was identified after expression analysis of the EST clone SB2-66 in placenta tissue of Capsicum fruits. Sequence alignments corresponding to this new fragment allowed us to identify an SNP between pungent and non-pungent accessions. Two methods were chosen for the development of the SNP marker linked to pungency: tetra-primer amplification refractory mutation system-PCR (tetra-primer ARMS-PCR) and cleaved amplified polymorphic sequence. Results showed that both methods were successful in distinguishing genotypes. Nevertheless, tetra-primer ARMS-PCR was chosen for SNP genotyping because it was more rapid, reliable and less cost-effective. The utility of this SNP marker for pungency was demonstrated by the ability to distinguish between 29 pungent and non-pungent cultivars of Capsicum annuum. In addition, the SNP was also associated with phenotypic pungent character in the tested genotypes of C. chinense, C. baccatum, C. frutescens, C. galapagoense, C. eximium, C. tovarii and C. cardenasi. This SNP marker is a faster, cheaper and more reproducible method for identifying pungent peppers than other techniques such as panel tasting, and allows rapid screening of the trait in early growth stages. PMID:17882396

  13. Are Immune Modulating Single Nucleotide Polymorphisms Associated with Necrotizing Enterocolitis?

    PubMed Central

    Franklin, Ashanti L.; Said, Mariam; Cappiello, Clint D.; Gordish-Dressman, Heather; Tatari-Calderone, Zohreh; Vukmanovic, Stanislav; Rais-Bahrami, Khodayar; Luban, Naomi L. C.; Devaney, Joseph M.; Sandler, Anthony D.

    2015-01-01

    Necrotizing enterocolitis (NEC) is a devastating gastrointestinal emergency. The purpose of this study is to determine if functional single nucleotide polymorphisms (SNPs) in immune-modulating genes pre-dispose infants to NEC. After Institutional Review Board approval and parental consent, buccal swabs were collected for DNA extraction. TaqMan allelic discrimination assays and BglII endonuclease digestion were used to genotype specific inflammatory cytokines and TRIM21. Statistical analysis was completed using logistic regression. 184 neonates were analyzed in the study. Caucasian neonates with IL-6 (rs1800795) were over 6 times more likely to have NEC (p = 0.013; OR = 6.61, 95% CI 1.48–29.39), and over 7 times more likely to have Stage III disease (p = 0.011; OR = 7.13, (95% CI 1.56–32.52). Neonates with TGFβ-1 (rs2241712) had a decreased incidence of NEC-related perforation (p = 0.044; OR = 0.28, 95% CI: 0.08–0.97) and an increased incidence of mortality (p = 0.049; OR = 2.99, 95% CI: 1.01 – 8.86). TRIM21 (rs660) was associated with NEC-related intestinal perforation (p = 0.038; OR = 4.65, 95% CI 1.09–19.78). In premature Caucasian neonates, the functional SNP IL-6 (rs1800795) is associated with both the development and increased severity of NEC. TRIM21 (rs660) and TGFβ-1 (rs2241712) were associated with NEC- related perforation in all neonates in the cohort. These findings suggest a possible genetic role in the development of NEC. PMID:26670709

  14. Discovery and validation of genic single nucleotide polymorphisms in the Pacific oyster Crassostrea gigas.

    PubMed

    Wang, Jiafeng; Qi, Haigang; Li, Li; Que, Huayong; Wang, Di; Zhang, Guofan

    2015-01-01

    The economic and ecological importance of the oyster necessitates further research on the molecular mechanisms, which both regulate the commercially important traits of the oyster and help it to survive in the variable marine environment. Single nucleotide polymorphisms (SNPs) have been widely used to assess genetic variation and identify genes underlying target traits. In addition, high-resolution melting (HRM) analysis is a potentially powerful method for validating candidate SNPs. In this study, we adopted a rapid and efficient pipeline for the screening and validation of SNPs in the genic region of Crassostrea gigas based on transcriptome sequencing and HRM analysis. Transcriptomes of three wild oyster populations were sequenced using Illumina sequencing technology. In total, 50-60 million short reads, corresponding to 4.5-5.4 Gbp, from each population were aligned to the oyster genome, and 5.8 × 10(5) SNPs were putatively identified, resulting in a predicted SNP every 47 nucleotides on average. The putative SNPs were unevenly distributed in the genome and high-density (≥2%), nonsynonymous coding SNPs were enriched in genes related to apoptosis and responses to biotic stimuli. Subsequently, 1,671 loci were detected by HRM analysis, accounting for 64.7% of the total selected candidate primers, and finally, 1,301 polymorphic SNP markers were developed based on HRM analysis. All of the validated SNPs were distributed into 897 genes and located in 672 scaffolds, and 275 of these genes were stress inducible under unfavourable salinity, temperature, and exposure to air and heavy metals. The validated SNPs in this study provide valuable molecular markers for genetic mapping and characterization of important traits in oysters. PMID:24823694

  15. Single nucleotide polymorphisms in DKK3 gene are associated with prostate cancer risk and progression

    PubMed Central

    Kim, Min Su; Lee, Ha Na; Kim, Hae Jong; Myung, Soon Chul

    2015-01-01

    ABSTRACT We had investigated whether sequence variants within DKK3 gene are associated with the development of prostate cancer in a Korean study cohort. We evaluated the association between 53 single nucleotide polymorphisms (SNPs) in the DKK3 gene and prostate cancer risk as well as clinical characteristics (PSA, clinical stage, pathological stage and Gleason score) in Korean men (272 prostate cancer subjects and 173 benign prostate hyperplasia subjects) using unconditional logistic regression analysis. Of the 53 SNPs and 25 common haplotypes, 5 SNPs and 4 haplotypes were associated with prostate cancer risk (P=0.02–0.04); 3 SNPs and 2 haplotypes were significantly associated with susceptibility to prostate cancer, however 2 SNPs and 2 haplotypes exhibited a significant protective effect on prostate cancer. Logistic analyses of the DKK3 gene polymorphisms with several prostate cancer related factors showed that several SNPs were significant; three SNPs and two haplotypes to PSA level, three SNPs and two haplotypes to clinical stage, nine SNPs and two haplotype to pathological stage, one SNP and one haplotypes to Gleason score. To the author's knowledge, this is the first report documenting that DKK3 polymorphisms are not only associated with prostate cancer but also related to prostate cancer-related factors. PMID:26689513

  16. The application and performance of single nucleotide polymorphism markers for population genetic analyses of Lepidoptera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms (SNPs) are nucleotide substitution mutations that tend to be at high densities within eukaryotic genomes. The development of assays that detect allelic variation at SNP loci is attractive for genome mapping, population genetics, and phylogeographic applications. A p...

  17. The nucleotide sequence of cowpea mosaic virus B RNA

    PubMed Central

    Lomonossoff, G.P.; Shanks, M.

    1983-01-01

    The complete sequence of the bottom component RNA (B RNA) of cowpea mosaic virus (CPMV) has been determined. Restriction enzyme fragments of double-stranded cDNA were cloned in M13 and the sequence of the inserts was determined by a combination of enzymatic and chemical sequencing techniques. Additional sequence information was obtained by primed synthesis on first strand cDNA. The complete sequence deduced is 5889 nucleotides long excluding the 3' poly(A), and contains an open reading frame sufficient to code for a polypeptide of mol. wt. 207 760. The coding region is flanked by a 5' leader sequence of 206 nucleotides and a 3' non-coding region of 82 residues which does not contain a polyadenylation signal. PMID:16453487

  18. Identification of a Novel Single Nucleotide Polymorphism in Porcine Beta-Defensin-1 Gene.

    PubMed

    Pruthviraj, D R; Usha, A P; Venkatachalapathy, R T

    2016-03-01

    Porcine beta-defensin-1 (PBD-1) gene plays an important role in the innate immunity of pigs. The peptide encoded by this gene is an antimicrobial peptide that has direct activity against a wide range of microbes. This peptide is involved in the co-creation of an antimicrobial barrier in the oral cavity of pigs. The objective of the present study was to detect polymorphisms, if any, in exon-1 and exon-2 regions of PBD-1 gene in Large White Yorkshire (LWY) and native Ankamali pigs of Kerala, India. Blood samples were collected from 100 pigs and genomic DNA was isolated using phenol chloroform method. The quantity of DNA was assessed in a spectrophotometer and quality by gel electrophoresis. Exon-1 and exon-2 regions of PBD-1 gene were amplified by polymerase chain reaction (PCR) and the products were subjected to single strand conformation polymorphism (SSCP) analysis. Subsequent silver staining of the polyacrylamide gels revealed three unique SSCP banding patterns in each of the two exons. The presence of single nucleotide polymorphisms (SNPs) was confirmed by nucleotide sequencing of the PCR products. A novel SNP was found in the 5'-UTR region of exon-1 and a SNP was detected in the mature peptide coding region of exon-2. In exon-1, the pooled population frequencies of GG, GT, and TT genotypes were 0.67, 0.30, and 0.03, respectively. GG genotype was predominant in both the breeds whereas TT genotype was not detected in LWY breed. Similarly, in exon-2, the pooled population frequencies of AA, AG, and GG genotypes were 0.50, 0.27, and 0.23, respectively. AA genotype was predominant in LWY pigs whereas GG genotype was predominant in native pigs. These results suggest that there exists a considerable genetic variation at PBD-1 locus and further association studies may help in development of a PCR based genotyping test to select pigs with better immunity. PMID:26950860

  19. Identification of a Novel Single Nucleotide Polymorphism in Porcine Beta-Defensin-1 Gene

    PubMed Central

    Pruthviraj, D. R.; Usha, A. P.; Venkatachalapathy, R. T.

    2016-01-01

    Porcine beta-defensin-1 (PBD-1) gene plays an important role in the innate immunity of pigs. The peptide encoded by this gene is an antimicrobial peptide that has direct activity against a wide range of microbes. This peptide is involved in the co-creation of an antimicrobial barrier in the oral cavity of pigs. The objective of the present study was to detect polymorphisms, if any, in exon-1 and exon-2 regions of PBD-1 gene in Large White Yorkshire (LWY) and native Ankamali pigs of Kerala, India. Blood samples were collected from 100 pigs and genomic DNA was isolated using phenol chloroform method. The quantity of DNA was assessed in a spectrophotometer and quality by gel electrophoresis. Exon-1 and exon-2 regions of PBD-1 gene were amplified by polymerase chain reaction (PCR) and the products were subjected to single strand conformation polymorphism (SSCP) analysis. Subsequent silver staining of the polyacrylamide gels revealed three unique SSCP banding patterns in each of the two exons. The presence of single nucleotide polymorphisms (SNPs) was confirmed by nucleotide sequencing of the PCR products. A novel SNP was found in the 5′-UTR region of exon-1 and a SNP was detected in the mature peptide coding region of exon-2. In exon-1, the pooled population frequencies of GG, GT, and TT genotypes were 0.67, 0.30, and 0.03, respectively. GG genotype was predominant in both the breeds whereas TT genotype was not detected in LWY breed. Similarly, in exon-2, the pooled population frequencies of AA, AG, and GG genotypes were 0.50, 0.27, and 0.23, respectively. AA genotype was predominant in LWY pigs whereas GG genotype was predominant in native pigs. These results suggest that there exists a considerable genetic variation at PBD-1 locus and further association studies may help in development of a PCR based genotyping test to select pigs with better immunity. PMID:26950860

  20. Single nucleotide polymorphism isolated from a novel EST dataset in garden asparagus (Asparagus officinalis L.).

    PubMed

    Mercati, Francesco; Riccardi, Paolo; Leebens-Mack, Jim; Abenavoli, Maria Rosa; Falavigna, Agostino; Sunseri, Francesco

    2013-04-01

    Single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSR) are abundant and evenly distributed co-dominant molecular markers in plant genomes. SSRs are valuable for marker assisted breeding and positional cloning of genes associated traits of interest. Although several high throughput platforms have been developed to identify SNP and SSR markers for analysis of segregant plant populations, breeding in garden asparagus (Asparagus officinalis L.) has been limited by a low content of such markers. In this study massively parallel GS-FLX pyro-sequencing technology (454 Life Sciences) has been used to sequence and compare transcriptome from two genotypes: a rust tolerant male (1770) and a susceptible female (G190). A total of 122,963 and 99,368 sequence reads, with an average length of 245.7bp, have been recovered from accessions 1770 and 190 respectively. A computational pipeline has been used to predict and visually inspect putative SNPs and SSR sequences. Analysis of Gene Ontology (GO) slim annotation assignments for all assembled uniscripts indicated that the 24,403 assemblies represent genes from a broad array of functions. Further, over 1800 putative SNPs and 1000 SSRs were detected. One hundred forty-four SNPs together with 60 selected SSRs were validated and used to develop a preliminary genetic map by using a large BC(1) population, derived from 1770 and G190. The abundance of SNPs and SSRs provides a foundation for the development of saturated genetic maps and their utilization in assisted asparagus breeding programs. PMID:23415335

  1. Epidemic population structure of extraintestinal pathogenic Escherichia coli determined by single nucleotide polymorphism pyrosequencing.

    PubMed

    Fernández-Romero, Natalia; Romero-Gómez, María Pilar; Gómez-Gil, María Rosa; Mingorance, Jesús

    2011-10-01

    We have developed an MLST-based scheme for typing Escherichia coli isolates using pyrosequencing of single nucleotide polymorphic positions (SNP). The SNP sequences are converted into allelic patterns and analyzed using the same approach used for MLST analyses. We have tested the method in two unselected collections of clinical isolates of E. coli obtained from blood and urine cultures. The two collections had a similar structure, 25% of the profiles (representing 68% of the isolates) were common to both, and 62% of the profiles (nearly 20% of the isolates) were unique. The four major profiles accounted for 44% of the isolates, and among these the most frequent one was related to the pandemic ST131 clone. The method is easy to implement and might be useful for typing large microbial collections. PMID:21723423

  2. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    PubMed Central

    Zhang, Jing; Wu, Huizhe; Chen, Qiuchen; Zhao, Pengfei; Zhao, Haishan; Yao, Weifan; Wei, Minjie

    2015-01-01

    Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A) from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature. PMID:26347880

  3. Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients.

    PubMed

    Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier

    2016-06-01

    We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. PMID:27174795

  4. Pyrosequencing with di-base addition for single nucleotide polymorphism genotyping.

    PubMed

    Pu, Dan; Mao, Chengguang; Cui, Lunbiao; Shi, Zhiyang; Xiao, Pengfeng

    2016-05-01

    We develop color code-based pyrosequencing with di-base addition for analysis of single nucleotide polymorphisms (SNPs). When a di-base is added into the polymerization, one or several two-color code(s) containing the type and the number of incorporated nucleotides will be produced. The code information obtained in a single run is useful to genotype SNPs as each allelic variant will give a specific pattern compared to the two other variants. Special care has to be taken while designing the di-base dispensation order. Here, we present a detailed protocol for establishing sequence-specific di-base addition to avoid nonsynchronous extension at the SNP sites. By using this technology, as few as 50 copies of DNA templates were accurately sequenced. Higher signals were produced and thus a relatively lower sample amount was required. Furthermore, the read length of per flow was increased, making simultaneous identification of multiple SNPs in a single sequencing run possible. Validation of the method was performed by using templates with two SNPs covering 37 bp and with three SNPs covering 58 bp as well as 82 bp. These SNPs were successfully genotyped by using only a sequencing primer in a single PCR/sequencing run. Our results demonstrated that this technology could be potentially developed into a powerful methodology to accurately determine SNPs so as to diagnose clinical settings. Graphical Abstract Conventional pyrosequencing adds one base (A, G, C, or T) at a time to determine the SNP site (left). Pyrosequencing with di-base addition adds di-base AG, AC, AT, CT, GC or GT at a time to determine the SNP site (right). Higher signals at SNP site will be produced due to the addition of di-bases. PMID:26935928

  5. Single Nucleotide Polymorphisms in Pediatric Idiopathic Nephrotic Syndrome

    PubMed Central

    Suvanto, Maija; Jahnukainen, Timo; Kestilä, Marjo; Jalanko, Hannu

    2016-01-01

    Polymorphic variants in several molecules involved in the glomerular function and drug metabolism have been implicated in the pathophysiology of pediatric idiopathic nephrotic syndrome (INS), but the results remain inconsistent. We analyzed the association of eleven allelic variants in eight genes (angiopoietin-like 4 (ANGPTL4), glypican 5 (GPC5), interleukin-13 (IL-13), macrophage migration inhibitory factor (MIF), neural nitric oxide synthetase (nNOS), multidrug resistance-1 (MDR1), glucocorticoid-induced transcript-1 (GLCCI1), and nuclear receptor subfamily-3 (NR3C1)) in 100 INS patients followed up till adulthood. We genotyped variants using PCR and direct sequencing and evaluated estimated haplotypes of MDR1 variants. The analysis revealed few differences in SNP genotype frequencies between patients and controls, or in clinical parameters among the patients. Genotype distribution of MDR1 SNPs rs1236, rs2677, and rs3435 showed significant (p < 0.05) association with different medication regimes (glucocorticoids only versus glucocorticoids plus additional immunosuppressives). Some marginal association was detected between ANGPTL4, GPC5, GLCCI1, and NR3C1 variants and different medication regimes, number of relapses, and age of onset. Conclusion. While MDR1 variant genotype distribution associated with different medication regimes, the other analyzed gene variants showed only little or marginal clinical relevance in INS. PMID:27247801

  6. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm

    PubMed Central

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. ‘Cayenne’, ‘Spanish’, ‘Queen’) was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops. PMID:26640697

  7. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm.

    PubMed

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops. PMID:26640697

  8. Estimating a nucleotide substitution rate for maize from polymorphism at a major domestication locus.

    PubMed

    Clark, Richard M; Tavaré, Simon; Doebley, John

    2005-11-01

    To estimate a rate for single nucleotide substitutions for maize (Zea mays ssp. mays), we have taken advantage of data from genetic and archaeological studies of the domestication of maize from its wild ancestor, teosinte (Z. mays ssp. parviglumis). Genetic studies have shown that the teosinte branched1 (tb1) gene was a major target of human selection during maize domestication, and sequence diversity in the intergenic region 5' to the tb1-coding sequence is extraordinarily low. We show that polymorphism in this region is consistent with new mutation following fixation for a small number of tb1 haplotypes during domestication. Archeological studies suggest that maize was domesticated approximately 6,250-10,000 years ago and subsequently the size of the maize population is thought to have expanded rapidly. Using the observed number of mutations within the region of selection at tb1, the approximate age of maize domestication, and approximations for the maize genealogy, we have derived estimates for the nucleotide substitution rate for the tb1 intergenic region. Using two approaches, one of which is a coalescent approach, we obtain rate estimates of approximately 2.9 x 10(-8) and 3.3 x 10(-8) substitutions per site per year. We also show that the pattern of polymorphism in the tb1 intergenic region appears to have been strongly affected by the mutagenic effect of DNA methylation. Excluding target sites of symmetric DNA methylation (CG and CNG sites) from analysis, the mutation rate estimates are reduced by approximately 50%-60%, while the rates for CG and CNG sites are nearly an order of magnitude higher. We use rate estimates from the tb1 region to estimate the timing of expansion of transposable elements in the maize genome and suggest that this expansion occurred primarily within the last million years. PMID:16079248

  9. DNA sequence representation by trianders and determinative degree of nucleotides

    PubMed Central

    Duplij, Diana; Duplij, Steven

    2005-01-01

    A new version of DNA walks, where nucleotides are regarded unequal in their contribution to a walk is introduced, which allows us to study thoroughly the “fine structure” of nucleotide sequences. The approach is based on the assumption that nucleotides have an inner abstract characteristic, the determinative degree, which reflects genetic code phenomenological properties and is adjusted to nucleotides physical properties. We consider each codon position independently, which gives three separate walks characterized by different angles and lengths, and that such an object is called triander which reflects the “strength” of branch. A general method for identifying DNA sequence “by triander” which can be treated as a unique “genogram” (or “gene passport”) is proposed. The two- and three-dimensional trianders are considered. The difference of sequences fine structure in genes and the intergenic space is shown. A clear triplet signal in coding sequences was found which is absent in the intergenic space and is independent from the sequence length. This paper presents the topological classification of trianders which can allow us to provide a detailed working out signatures of functionally different genomic regions. PMID:16052707

  10. Moss Phylogeny Reconstruction Using Nucleotide Pangenome of Complete Mitogenome Sequences.

    PubMed

    Goryunov, D V; Nagaev, B E; Nikolaev, M Yu; Alexeevski, A V; Troitsky, A V

    2015-11-01

    Stability of composition and sequence of genes was shown earlier in 13 mitochondrial genomes of mosses (Rensing, S. A., et al. (2008) Science, 319, 64-69). It is of interest to study the evolution of mitochondrial genomes not only at the gene level, but also on the level of nucleotide sequences. To do this, we have constructed a "nucleotide pangenome" for mitochondrial genomes of 24 moss species. The nucleotide pangenome is a set of aligned nucleotide sequences of orthologous genome fragments covering the totality of all genomes. The nucleotide pangenome was constructed using specially developed new software, NPG-explorer (NPGe). The stable part of the mitochondrial genome (232 stable blocks) is shown to be, on average, 45% of its length. In the joint alignment of stable blocks, 82% of positions are conserved. The phylogenetic tree constructed with the NPGe program is in good correlation with other phylogenetic reconstructions. With the NPGe program, 30 blocks have been identified with repeats no shorter than 50 bp. The maximal length of a block with repeats is 140 bp. Duplications in the mitochondrial genomes of mosses are rare. On average, the genome contains about 500 bp in large duplications. The total length of insertions and deletions was determined in each genome. The losses and gains of DNA regions are rather active in mitochondrial genomes of mosses, and such rearrangements presumably can be used as additional markers in the reconstruction of phylogeny. PMID:26615445

  11. High volume molecular genetic identification of single nucleotide polymorphisms using Genetic Bit Analysis Application to human genetic diagnosis

    SciTech Connect

    Boyce-Jacino, M.T.; Reynolds, J.; Nikiforov, T.

    1994-09-01

    The most common type of genetic disease-associated mutation is the single nucleotide polymorphism (SNP). Because most genetic diseases can be caused by multiple SNPs in the same gene, effective routine diagnosis of complex genetic diseases is dependent on a simple and reliable method of interrogating SNP sites. Molecular Tool`s solid phase assay capable of direct genotyping (single base sequencing) of SNP sites, Genetic Bit Analysis (GBA), involves hybridization-capture of a single-stranded PCR product to a sequence-specific, microtiter plate-bound oligonucleotide primer. The captured PCR product then acts as template for single-base extension of the capture primer across the polymorphic site, enabling direct determination of the base composition of the polymorphism through a simple colormetric assay. Genotyping in a high volume, semi-automated, processing system with a current capacity of 100 SNP interrogations per technician per day enables the screening of candidate mutations rapidly and cost-effectively, critically important to comprehensive genetic diagnosis. Using this gel-free technology, we have developed prototype diagnostic tests for CFTR and ApoE polymorphisms which enable direct sequencing of the polymorphic base at each site of interest. Routine clinical diagnosis of genetically complex diseases such as cystic fibrosis is dependent on this combination of robust biochemistry and simple format. Additionally, the ability to transfer the format and biochemistry to any disease gene of interest enables the broad application of this technology to clinical diagnostics, especially for genetically complex diseases.

  12. The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms

    PubMed Central

    Emmert, Steffen; Schneider, Thomas D.; Khan, Sikandar G.; Kraemer, Kenneth H.

    2001-01-01

    Defects in the XPG DNA repair endonuclease gene can result in the cancer-prone disorders xeroderma pigmentosum (XP) or the XP–Cockayne syndrome complex. While the XPG cDNA sequence was known, determination of the genomic sequence was required to understand its different functions. In cells from normal donors, we found that the genomic sequence of the human XPG gene spans 30 kb, contains 15 exons that range from 61 to 1074 bp and 14 introns that range from 250 to 5763 bp. Analysis of the splice donor and acceptor sites using an information theory-based approach revealed three splice sites with low information content, which are components of the minor (U12) spliceosome. We identified six alternatively spliced XPG mRNA isoforms in cells from normal donors and from XPG patients: partial deletion of exon 8, partial retention of intron 8, two with alternative exons (in introns 1 and 6) and two that retained complete introns (introns 3 and 9). The amount of alternatively spliced XPG mRNA isoforms varied in different tissues. Most alternative splice donor and acceptor sites had a relatively high information content, but one has the U12 spliceosome sequence. A single nucleotide polymorphism has allele frequencies of 0.74 for 3507G and 0.26 for 3507C in 91 donors. The human XPG gene contains multiple splice sites with low information content in association with multiple alternatively spliced isoforms of XPG mRNA. PMID:11266544

  13. Identification of single nucleotide polymorphisms from the transcriptome of an organism with a whole genome duplication

    PubMed Central

    2013-01-01

    Background The common ancestor of salmonid fishes, including rainbow trout (Oncorhynchus mykiss), experienced a whole genome duplication between 20 and 100 million years ago, and many of the duplicated genes have been retained in the trout genome. This retention complicates efforts to detect allelic variation in salmonid fishes. Specifically, single nucleotide polymorphism (SNP) detection is problematic because nucleotide variation can be found between the duplicate copies (paralogs) of a gene as well as between alleles. Results We present a method of differentiating between allelic and paralogous (gene copy) sequence variants, allowing identification of SNPs in organisms with multiple copies of a gene or set of genes. The basic strategy is to: 1) identify windows of unique cDNA sequences with homology to each other, 2) compare these unique cDNAs if they are not shared between individuals (i.e. the cDNA is homozygous in one individual and homozygous for another cDNA in the other individual), and 3) give a “SNP score” value between zero and one to each candidate sequence variant based on six criteria. Using this strategy we were able to detect about seven thousand potential SNPs from the transcriptomes of several clonal lines of rainbow trout. When directly compared to a pre-validated set of SNPs in polyploid wheat, we were also able to estimate the false-positive rate of this strategy as 0 to 28% depending on parameters used. Conclusions This strategy has an advantage over traditional techniques of SNP identification because another dimension of sequencing information is utilized. This method is especially well suited for identifying SNPs in polyploids, both outbred and inbred, but would tend to be conservative for diploid organisms. PMID:24237905

  14. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  15. Development of a single nucleotide polymorphism barcode to genotype Plasmodium vivax infections.

    PubMed

    Baniecki, Mary Lynn; Faust, Aubrey L; Schaffner, Stephen F; Park, Daniel J; Galinsky, Kevin; Daniels, Rachel F; Hamilton, Elizabeth; Ferreira, Marcelo U; Karunaweera, Nadira D; Serre, David; Zimmerman, Peter A; Sá, Juliana M; Wellems, Thomas E; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E; Volkman, Sarah K; Wirth, Dyann F; Sabeti, Pardis C

    2015-03-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25-40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  16. Complete nucleotide sequence of Nootka lupine vein-clearing virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome sequence of Nootka lupine vein-clearing virus (NLVCV) was determined to be 4,172 nucleotides in length containing four open reading frames ORFs with a similar genetic organization and conceptual translations of virus species in the genus Carmovirus, family Tombusviridae. The orde...

  17. Alu-associated enhancement of single nucleotide polymorphisms in the human genome.

    PubMed

    Ng, Siu-Kin; Xue, Hong

    2006-03-01

    Identifying features shaping the architecture of sequence variations is important for understanding genome evolution and mapping disease loci. In this study, high-resolution scanning of Alu-centered alignments of the human genome sequences has revealed a striking elevation of the frequency of single nucleotide polymorphisms (SNP) in the body and tail of Alu sequences compared to flanking regions. This enhancement in SNP density is evident for all twenty-four chromosomes, and in both the Alu-body and Alu-tail, which together may be referred to as the Alu-SNPs. Reduced levels of Alu-SNPs in the sex chromosomes, especially in the non-recombining NRY region of the Y chromosome, are consistent with recombination events playing an important role in the enhancement. The Alu elements are unstable recombination-mutation hotspots in the human genome, and it is suggested that the Alu-SNPs represent a key manifestation of this instability. Variations in Alu-SNPs among the HapMap populations of northern and western European ancestry (CEU), Han Chinese from Beijing (CHB), Japanese from Tokyo (JPT), and Yoruba from Ibadan, Nigeria (YRI) indicate that the Alu-SNPs provide useful sequence markers, in addition to the Alu-insertion polymorphisms themselves, for the delineation of human genome evolution. That Alu-SNP levels are highest in the youngest Alu-Y, intermediate in the Alu-S of intermediate age, and lowest in the oldest Alu-J is consistent with the occurrence of not only genetic drift but also natural selection on the Alu-SNPs. Such evolutionary selection in turn suggests that Alu-SNPs might include potential sites of disease association, and therefore deserve detailed investigation. PMID:16380220

  18. Identification of novel single nucleotide polymorphisms in the DGAT1 gene of buffaloes by PCR-SSCP

    PubMed Central

    Raut, Ashwin A.; Kumar, Anil; Kala, Sheo N.; Chhokar, Vinod; Rana, Neeraj; Beniwal, Vikas; Jaglan, Sundeep; Samuchiwal, Sachin K.; Singh, Jitender K.; Mishra, Anamika

    2012-01-01

    Diacylglycerol O-acyltransferase 1 (DGAT1) is a microsomal enzyme that catalyzes the final step of triglyceride synthesis. The DGAT1 gene is a strong functional candidate for determining milk fat content in cattle. In this work, we used PCR-SSCP (polymerase chain reaction-single-strand conformation polymorphism) and DNA sequencing to examine polymorphism in the region spanning exon 7 to exon 9 of the DGAT1 gene in Murrah and Pandharpuri buffaloes. Three alleles (A, B and C) and four novel single-nucleotide polymorphisms were identified in the buffalo DGAT1 gene. The frequencies of the alleles differed between the two buffalo breeds, with allele C being present in Murrah but not in Pandharpuri buffalo. The allele variation detected in this work may influence DGAT1 expression and function. The results described here could be useful in examining the association between the DGAT1 gene and milk traits in buffalo. PMID:23055800

  19. Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens

    PubMed Central

    Molee, A.; Kongroi, K.; Kuadsantia, P.; Poompramun, C.; Likitdecharote, B.

    2016-01-01

    The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study. PMID:26732325

  20. Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean

    PubMed Central

    2012-01-01

    Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron

  1. Method for the detection of specific nucleic acid sequences by polymerase nucleotide incorporation

    DOEpatents

    Castro, Alonso

    2004-06-01

    A method for rapid and efficient detection of a target DNA or RNA sequence is provided. A primer having a 3'-hydroxyl group at one end and having a sequence of nucleotides sufficiently homologous with an identifying sequence of nucleotides in the target DNA is selected. The primer is hybridized to the identifying sequence of nucleotides on the DNA or RNA sequence and a reporter molecule is synthesized on the target sequence by progressively binding complementary nucleotides to the primer, where the complementary nucleotides include nucleotides labeled with a fluorophore. Fluorescence emitted by fluorophores on single reporter molecules is detected to identify the target DNA or RNA sequence.

  2. [Correlation analysis between single nucleotide polymorphism of FGF5 gene and wool yield in rabbits].

    PubMed

    Li, Chun-Xiao; Jiang, Mei-Shan; Chen, Shi-Yi; Lai, Song-Jia

    2008-07-01

    Single nucleotide polymorphism (SNP) in exon 1 and 3 of fibroblast growth factor (FGF5) gene was studied by DNA sequencing in Yingjing angora rabbit, Tianfu black rabbit and California rabbit. A frameshift mutation (TCT insert) at base position 217 (site A) of exon 1 and a T/C missense mutation at base position 59 (site B) of exon 3 were found in Yingjing angora rabbit with a high frequency; a T/C same-sense mutation at base position 3 (site C) of exon 3 was found with similar frequency in three rabbit breeds. Least square analysis showed that different genotypes had no significant association with wool yield in site A, and had high significant association with wool yield in site B (P<0.01) and significant association with wool yield in site C (P<0.05). It was concluded from the results that FGF5 gene could be the potential major gene affecting wool yield or link with the major gene, and polymorphic loci B and C may be used as molecular markers for im-proving wool yield in angora rabbits. PMID:18779133

  3. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    PubMed

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained. PMID:24128588

  4. Single nucleotide polymorphism of FSHβ gene associated with reproductive traits in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping

    2010-12-01

    Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.

  5. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing.

    PubMed

    Tejedor, J Ramón; Tilgner, Hagen; Iannone, Camilla; Guigó, Roderic; Valcárcel, Juan

    2015-06-01

    The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease. PMID:25904137

  6. Nucleotide Sequencing and Identification of Some Wild Mushrooms

    PubMed Central

    Das, Sudip Kumar; Mandal, Aninda; Datta, Animesh K.; Gupta, Sudha; Paul, Rita; Saha, Aditi; Sengupta, Sonali; Dubey, Priyanka Kumari

    2013-01-01

    The rDNA-ITS (Ribosomal DNA Internal Transcribed Spacers) fragment of the genomic DNA of 8 wild edible mushrooms (collected from Eastern Chota Nagpur Plateau of West Bengal, India) was amplified using ITS1 (Internal Transcribed Spacers 1) and ITS2 primers and subjected to nucleotide sequence determination for identification of mushrooms as mentioned. The sequences were aligned using ClustalW software program. The aligned sequences revealed identity (homology percentage from GenBank data base) of Amanita hemibapha [CN (Chota Nagpur) 1, % identity 99 (JX844716.1)], Amanita sp. [CN 2, % identity 98 (JX844763.1)], Astraeus hygrometricus [CN 3, % identity 87 (FJ536664.1)], Termitomyces sp. [CN 4, % identity 90 (JF746992.1)], Termitomyces sp. [CN 5, % identity 99 (GU001667.1)], T. microcarpus [CN 6, % identity 82 (EF421077.1)], Termitomyces sp. [CN 7, % identity 76 (JF746993.1)], and Volvariella volvacea [CN 8, % identity 100 (JN086680.1)]. Although out of 8 mushrooms 4 could be identified up to species level, the nucleotide sequences of the rest may be relevant to further characterization. A phylogenetic tree is constructed using Neighbor-Joining method showing interrelationship between/among the mushrooms. The determined nucleotide sequences of the mushrooms may provide additional information enriching GenBank database aiding to molecular taxonomy and facilitating its domestication and characterization for human benefits. PMID:24489501

  7. Nucleotide sequencing and identification of some wild mushrooms.

    PubMed

    Das, Sudip Kumar; Mandal, Aninda; Datta, Animesh K; Gupta, Sudha; Paul, Rita; Saha, Aditi; Sengupta, Sonali; Dubey, Priyanka Kumari

    2013-01-01

    The rDNA-ITS (Ribosomal DNA Internal Transcribed Spacers) fragment of the genomic DNA of 8 wild edible mushrooms (collected from Eastern Chota Nagpur Plateau of West Bengal, India) was amplified using ITS1 (Internal Transcribed Spacers 1) and ITS2 primers and subjected to nucleotide sequence determination for identification of mushrooms as mentioned. The sequences were aligned using ClustalW software program. The aligned sequences revealed identity (homology percentage from GenBank data base) of Amanita hemibapha [CN (Chota Nagpur) 1, % identity 99 (JX844716.1)], Amanita sp. [CN 2, % identity 98 (JX844763.1)], Astraeus hygrometricus [CN 3, % identity 87 (FJ536664.1)], Termitomyces sp. [CN 4, % identity 90 (JF746992.1)], Termitomyces sp. [CN 5, % identity 99 (GU001667.1)], T. microcarpus [CN 6, % identity 82 (EF421077.1)], Termitomyces sp. [CN 7, % identity 76 (JF746993.1)], and Volvariella volvacea [CN 8, % identity 100 (JN086680.1)]. Although out of 8 mushrooms 4 could be identified up to species level, the nucleotide sequences of the rest may be relevant to further characterization. A phylogenetic tree is constructed using Neighbor-Joining method showing interrelationship between/among the mushrooms. The determined nucleotide sequences of the mushrooms may provide additional information enriching GenBank database aiding to molecular taxonomy and facilitating its domestication and characterization for human benefits. PMID:24489501

  8. Nucleotide sequence and genome organization of tomato leaf curl geminivirus.

    PubMed

    Dry, I B; Rigden, J E; Krake, L R; Mullineaux, P M; Rezaian, M A

    1993-01-01

    The genome of tomato leaf curl virus (TLCV) from Australia was cloned and its complete nucleotide sequence determined. It is a single circular ssDNA of 2766 nucleotides containing the consensus nonanucleotide sequence present in all geminiviruses. It has six open reading frames with an organization resembling that of certain other dicotyledonous plant-infecting monopartite geminiviruses, i.e. tomato yellow leaf curl and beet curly top viruses. The regulatory sequences present indicate a bidirectional mode of transcription. A dimeric TLCV DNA clone was constructed in a binary vector and used to agroinoculate three different host species. Typical virus infections were produced, confirming that the single DNA component is sufficient for infectivity. PMID:8423446

  9. High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing

    PubMed Central

    2012-01-01

    Background The complex genome of rapeseed (Brassica napus) is not well understood despite the economic importance of the species. Good knowledge of sequence variation is needed for genetics approaches and breeding purposes. We used a diversity set of B. napus representing eight different germplasm types to sequence genome-wide distributed restriction-site associated DNA (RAD) fragments for polymorphism detection and genotyping. Results More than 113,000 RAD clusters with more than 20,000 single nucleotide polymorphisms (SNPs) and 125 insertions/deletions were detected and characterized. About one third of the RAD clusters and polymorphisms mapped to the Brassica rapa reference sequence. An even distribution of RAD clusters and polymorphisms was observed across the B. rapa chromosomes, which suggests that there might be an equal distribution over the Brassica oleracea chromosomes, too. The representation of Gene Ontology (GO) terms for unigenes with RAD clusters and polymorphisms revealed no signature of selection with respect to the distribution of polymorphisms within genes belonging to a specific GO category. Conclusions Considering the decreasing costs for next-generation sequencing, the results of our study suggest that RAD sequencing is not only a simple and cost-effective method for high-density polymorphism detection but also an alternative to SNP genotyping from transcriptome sequencing or SNP arrays, even for species with complex genomes such as B. napus. PMID:22726880

  10. A novel MALDI-TOF based methodology for genotyping single nucleotide polymorphisms.

    PubMed

    Blondal, Thorarinn; Waage, Benedikt G; Smarason, Sigurdur V; Jonsson, Frosti; Fjalldal, Sigridur B; Stefansson, Kari; Gulcher, Jeffery; Smith, Albert V

    2003-12-15

    A new MALDI-TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3'-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis. PMID:14654708

  11. PERB11 (MIC): a polymorphic MHC gene is expressed in skin and single nucleotide polymorphisms are associated with psoriasis

    PubMed Central

    Tay, G K; Hui, J; Gaudieri, S; Schmitt-Egenolf, M; Martinez, O P; Leelayuwat, C; Williamson, J F; Eiermann, T H; Dawkins, R L

    2000-01-01

    The susceptibility genes for psoriasis remain to be identified. At least one of these must be in the major histocompatibility complex (MHC) to explain associations with alleles at human leucocyte antigen (HLA)-A, -B, -C, -DR, -DQ and C4. In fact, most of these alleles are components of just two ancestral haplotypes (AHs) designated 13.1 and 57.1. Although relevant MHC gene(s) could be within a region of at least 4 Mb, most studies have favoured the area near HLA-B and -C. This region contains a large number of non-HLA genes, many of which are duplicated and polymorphic. Members of one such gene family, PERB11.1 and PERB11.2, are expressed in the skin and are encoded in the region between tumour necrosis factor and HLA-B. To investigate the relationship of PERB11.1 alleles to psoriasis, sequence based typing was performed on 97 patients classified according to age of onset and family history. The frequency of the PERB11.1*06 allele is 44% in type I psoriasis but only 7% in controls (Pc = 0.003 by Fisher's exact test, two-tailed). The major determinant of this association is a single nucleotide polymorphism (SNP) within intron 4. In normal and affected skin, expression of PERB11 is mainly in the basal layer of the epidermis including ducts and follicles. PERB11 is also present in the upper keratin layers but there is relative deficiency in the intermediate layers. These findings suggest a possible role for PERB11 and other MHC genes in the pathogenesis of psoriasis. PMID:10691930

  12. Bulk segregant analysis using single nucleotide polymorphism microarrays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bulk segregant analysis using microarrays, and extreme array mapping have recently been used to rapidly identify genomic regions associated with phenotypes in multiple species. These experiments, however require the identification of single feature polymorphisms between the cross parents for each ne...

  13. The primary nucleotide sequence of U4 RNA.

    PubMed

    Reddy, R; Henning, D; Busch, H

    1981-04-10

    U4 RNA is one of the "capped" nuclear snRNAs recently found to be precipitable by anti-Sm antibodies as ribonucleoprotein particles. U4 RNA, along with other snRNAs, has been implicated in hnRNA processing, mRNA transport, or both (Lerner, M. R., Boyle, J., Mount, S., Wolin, S., and Steitz, J. A. (1980) Nature 283, 220-224). Since the proteins bound to different snRNAs appear to be the same, the functions of different snRNPs might be dependent on the RNA components. To help understand the function of U4 RNP, the nucleotide sequence of U4 RNA was determined. The sequence is (formula see text) In addition to the modified nucleotides in the "cap," U4 RNA contains Am at position 63 and m6A at position 98. It also exhibited A-C microheterogeneity at position 97. PMID:6162848

  14. Nucleotide-Specific Contrast for DNA Sequencing by Electron Spectroscopy

    PubMed Central

    Schmid, Andreas K.; Davis, Ronald W.

    2016-01-01

    DNA sequencing by imaging in an electron microscope is an approach that holds promise to deliver long reads with low error rates and without the need for amplification. Earlier work using transmission electron microscopes, which use high electron energies on the order of 100 keV, has shown that low contrast and radiation damage necessitates the use of heavy atom labeling of individual nucleotides, which increases the read error rates. Other prior work using scattering electrons with much lower energy has shown to suppress beam damage on DNA. Here we explore possibilities to increase contrast by employing two methods, X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with monomers of each base, both methods are shown to provide contrast mechanisms that can distinguish individual nucleotides without labels. Both spectroscopic techniques can be readily implemented in a low energy electron microscope, which may enable label-free DNA sequencing by direct imaging. PMID:27149617

  15. 77 FR 65537 - Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... Amino Acid Sequence Disclosures ACTION: Proposed collection; comment request. SUMMARY: The United States....'' SUPPLEMENTARY INFORMATION: I. Abstract Patent applications that contain nucleotide and/or amino acid sequence disclosures must include a copy of the sequence listing in accordance with the requirements in 37 CFR...

  16. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: Current and developing technologies

    PubMed Central

    Chorley, Brian N.; Wang, Xuting; Campbell, Michelle R.; Pittman, Gary S.; Noureddine, Maher A.; Bell, Douglas A.

    2008-01-01

    The most common form of genetic variation, single nucleotide polymorphisms or SNPs, can affect the way an individual responds to the environment and modify disease risk. Although most of the millions of SNPs have little or no effect on gene regulation and protein activity, there are many circumstances where base changes can have deleterious effects. Non-synonymous SNPs that result in amino acid changes in proteins have been studied because of their obvious impact on protein activity. It is well known that SNPs within regulatory regions of the genome can result in disregulation of gene transcription. However, the impact of SNPs located in putative regulatory regions, or rSNPs, is harder to predict for two primary reasons. First, the mechanistic roles of non-coding genomic sequence remain poorly defined. Second, experimental validation of the functional consequences of rSNPs is often slow and laborious. In this review, we summarize traditional and novel methodologies for candidate rSNPs selection, in particular in silico techniques that aid in candidate rSNP selection. Additionally we will discuss molecular biological techniques that assess the impact of rSNPs on binding of regulatory machinery, as well as functional consequences on transcription. Standard techniques such as EMSA and luciferase reporter constructs are still widely used to assess effects of rSNPs on binding and gene transcription; however, these protocols are often bottlenecks in the discovery process. Therefore, we highlight novel and developing high-throughput protocols that promise to aid in shortening the process of rSNP validation. Given the large amount of genomic information generated from a multitude of re-sequencing and genome-wide SNP array efforts, future focus should be to develop validation techniques that will allow greater understanding of the impact these polymorphisms have on human health and disease. PMID:18565787

  17. Complete nucleotide sequence of Saccharomyces cerevisiae chromosome X.

    PubMed Central

    Galibert, F; Alexandraki, D; Baur, A; Boles, E; Chalwatzis, N; Chuat, J C; Coster, F; Cziepluch, C; De Haan, M; Domdey, H; Durand, P; Entian, K D; Gatius, M; Goffeau, A; Grivell, L A; Hennemann, A; Herbert, C J; Heumann, K; Hilger, F; Hollenberg, C P; Huang, M E; Jacq, C; Jauniaux, J C; Katsoulou, C; Karpfinger-Hartl, L

    1996-01-01

    The complete nucleotide sequence of Saccharomyces cerevisiae chromosome X (745 442 bp) reveals a total of 379 open reading frames (ORFs), the coding region covering approximately 75% of the entire sequence. One hundred and eighteen ORFs (31%) correspond to genes previously identified in S. cerevisiae. All other ORFs represent novel putative yeast genes, whose function will have to be determined experimentally. However, 57 of the latter subset (another 15% of the total) encode proteins that show significant analogy to proteins of known function from yeast or other organisms. The remaining ORFs, exhibiting no significant similarity to any known sequence, amount to 54% of the total. General features of chromosome X are also reported, with emphasis on the nucleotide frequency distribution in the environment of the ATG and stop codons, the possible coding capacity of at least some of the small ORFs (<100 codons) and the significance of 46 non-canonical or unpaired nucleotides in the stems of some of the 24 tRNA genes recognized on this chromosome. Images PMID:8641269

  18. Haplotype of single nucleotide polymorphisms in exon 6 of the MZF-1 gene and Alzheimer's disease.

    PubMed

    Porcellini, Elisa; Carbone, Ilaria; Martelli, Pier Luigi; Ianni, Manuela; Casadio, Rita; Pession, Annalisa; Licastro, Federico

    2013-01-01

    Our previous works showed that single nucleotide polymorphisms (SNPs) in genes with regulatory function upon inflammatory response and cholesterol metabolism were associated with Alzheimer's disease (AD) risk. The list comprises SNPs located on the promoters of alpha 1 antichymotrypsin (rs1884082), hydroxy methyl glutaryl coenzime A reductase (rs376140), tumor necrosis factor alpha (rs1800629), and interleukin 10 (rs1800869). Here we investigated the effect of these SNPs on the binding for transcription factors. We computationally detected putative binding sites for transcription factors located in the SNP regions. To this aim, the TESS program for scanning the promoter sequences against the binding-site models available at TRANSFACT and JASPAR databases was adopted. All the analyzed SNPs appeared to affect the binding of myeloid zinc finger protein 1 (MZF-1) to the promoter sequence of the above reported genes. Therefore 16 SNPs in MZF-1 gene were tested in 120 AD cases and 88 controls to asses a possible association between MZF-1 and AD. 14 SNPs showed no variability in AD and control populations, while two SNPs rs4756 and rs2228162 showed the three genotypes. Genotype distributions and allele frequencies of these two SNPs were comparable between AD and controls. On the other hand, the haplotype distribution of rs4756 and rs2228162 was different between AD and controls; being the AG haplotype associated with a decreased AD risk. In conclusion, selected SNPs in MZF-1 gene exert a minor effect on AD risk. PMID:23241556

  19. Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution.

    PubMed

    Zhao, Zhongming; Fu, Yun-Xin; Hewett-Emmett, David; Boerwinkle, Eric

    2003-07-17

    We investigated the single nucleotide polymorphism (SNP) density across the human genome and in different genic categories using two SNP databases: Celera's CgsSNP, which includes SNPs identified by comparing genomic sequences, and Celera's RefSNP, which includes SNPs from a variety of sources and is biased toward disease-associated genes. Based on CgsSNP, the average numbers of SNPs per 10 kb was 8.33, 8.44, and 8.09 in the human genome, in intergenic regions, and in genic regions, respectively. In genic regions, the SNP density in intronic, exonic and adjoining untranslated regions was 8.21, 5.28, and 7.51 SNPs per 10 kb, respectively. The pattern of SNP density based on RefSNP was different from that based on CgsSNP, emphasizing its utility for genotype-phenotype association studies but not for most population genetic studies. The number of SNPs per chromosome was correlated with chromosome length, but the density of SNPs estimated by CgsSNP was not significantly correlated with the GC content of the chromosome. Based on CgsSNP, the ratio of nonsense to missense mutations (0.027), the ratio of missense to silent mutations (1.15), and the ratio of non-synonymous to synonymous mutations (1.18) was less than half of that expected in a human protein coding sequence under the neutral mutation theory, reflecting a role for natural selection, especially purifying selection. PMID:12909357

  20. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates.

    PubMed

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-07-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains. PMID:26130851

  1. Identification of new aquaporin genes and single nucleotide polymorphism in bread wheat.

    PubMed

    Pandey, B; Sharma, P; Pandey, D M; Sharma, I; Chatrath, R

    2013-01-01

    Major facilitators of water movement through plant cell membranes include aquaporin proteins. Wheat is among the largest and most important cereal crops worldwide; however, unlike other model plants such as rice, maize and Arabidopsis, little has been reported on wheat major intrinsic proteins (MIPs). This study presents a comprehensive computational identification of 349 new wheat expressed sequence tags (ESTs), encoding 13 wheat aquaporin genes. Identified aquaporins consist of 6 plasma membrane intrinsic proteins (PIP) and 1 TIP showing high sequence similarity with rice aquaporins. We also identified 4 NOD26-like intrinsic proteins (NIP) and 2 SIP members that showed more divergence. Further, expression analysis of the aquaporin genes using the available EST information in UniGene revealed their transcripts were differentially regulated in various stress- and tissue-specific libraries. Allele specific Polymerase chain reaction (PCR) primers based on single nucleotide polymorphism (SNP) were designed using PIP as the target gene and validated on a core set of Indian wheat genotypes. A 3D theoretical model of the wheat aquaporin protein was built by homology modeling and could prove to be useful in the further functional characterization of this protein. Collectively with expression and bioinformatics analysis, our results support the idea that the genes identified in this study signify an important genetic resource providing potential targets to modify the water use properties of wheat. PMID:24250219

  2. Bioinformatics of varicella-zoster virus: Single nucleotide polymorphisms define clades and attenuated vaccine genotypes

    PubMed Central

    Chow, Vincent T.; Tipples, Graham A.; Grose, Charles

    2012-01-01

    Varicella zoster virus (VZV) is one of the human herpesviruses. To date, over 40 complete VZV genomes have been sequenced and analyzed. The VZV genome contains around 125,000 base pairs including 70 open reading frames (ORFs). Enumeration of single nucleotide polymorphisms (SNPs) has determined that the following ORFs are the most variable (in descending order): 62, 22, 29, 28, 37, 21, 54, 31, 1 and 55. ORF 62 is the major immediate early regulatory VZV gene. Further SNP analysis across the entire genome has led to the observation that VZV strains can be broadly grouped into clades within a phylogenetic tree. VZV strains collected in Singapore provided important sequence data for construction of the phylogenetic tree. Currently 5 VZV clades are recognized; they have been designated clades 1 through 5. Clades 1 and 3 include European/North American strains; clade 2 includes Asian strains, especially from Japan; and clade 5 includes strains from India. Clade 4 includes some strains from Europe, but its geographic origins need further documentation.. Within clade 1, five variant viruses have been isolated with a missense mutation in the gE (ORF 68) glycoprotein; these strains have an altered increased cell spread phenotype. Bioinformatics analyses of the attenuated vaccine strains have also been performed, with a subsequent discovery of a stop-codon SNP in ORFO as a likely attenuation determinant. Taken together, these VZV bioinformatics analyses have provided enormous insights into VZV phylogenetics as well as VZV SNPs associated with attenuation. PMID:23183312

  3. The Application and Performance of Single Nucleotide Polymorphism Markers for Population Genetic Analyses of Lepidoptera

    PubMed Central

    Coates, Brad Steven; Bayles, Darrell O.; Wanner, Kevin W.; Robertson, Hugh M.; Hellmich, Richard L.; Sappington, Thomas W.

    2011-01-01

    Microsatellite markers are difficult to apply within lepidopteran studies due to the lack of locus-specific PCR amplification and the high proportion of “null” alleles, such that erroneous estimations of population genetic parameters often result. Herein single nucleotide polymorphism (SNP) markers are developed from Ostrinia nubilalis (Lepidoptera: Crambidae) using next generation expressed sequence tag (EST) data. A total of 2742 SNPs were predicted within a reference assembly of 7414 EST contigs, and a subset of 763 were incorporated into 24 multiplex PCR reactions. To validate this pipeline, 5 European and North American sample sites were genotyped at 178 SNP loci, which indicated 84 (47.2%) were in Hardy–Weinberg equilibrium. Locus-by-locus FST, analysis of molecular variance, and STRUCTURE analyses indicate significant genetic differentiation may exist between European and North American O. nubilalis. The observed genetic diversity was significantly lower among European sites, which may result from genetic drift, natural selection, a genetic bottleneck, or ascertainment bias due to North American origin of EST sequence data. SNPs are an abundant source of mutation data for molecular genetic marker development in non-model species, with shared ancestral SNPs showing application within closely related species. These markers offer advantages over microsatellite markers for genetic and genomic analyses of Lepidoptera, but the source of mutation data may affect the estimation of population parameters and likely need to be considered in the interpretation of empirical data. PMID:22303334

  4. Nucleotide sequence of the hypervariable region of the human C2 gene

    SciTech Connect

    Zhu, Z.B.; Volanakis, J.V. )

    1991-03-15

    It has been previously suggested that the multiallelic Bam H1/Sst I RFLPs of the human C2 gene arose through deletion/insertion of a tandemly-repeated minisatellite region. In this study the authors subcloned and sequenced the Sst I polymorphic fragment of the b haplotype of the C2 gene. This restriction fragment is 2,450 bp long and maps 1,550 bp 3{prime} of exon 3. Its nucleotide sequence is characterized by the presence of at least 4 different repeated regions varying in size from 18 to 58 bp. One of these regions starting at position 1,413 is 48 bp long and is repeated five times. The first 3 repeats are in tandem and are separated by 72 bp from two additional tandem repeats. Sequence homology among the 5 repeats ranges between 93 and 98%. Eighty three percent of the nucleotides of the repeated-region are G or C. It seems likely that this nucleotide repeat resulted in the multiallelic RFLPs through a mechanism of unequal recombination or replication slippage.

  5. The complete nucleotide sequence of pelargonium leaf curl virus.

    PubMed

    McGavin, Wendy J; MacFarlane, Stuart A

    2016-05-01

    Investigation of a tombusvirus isolated from tulip plants in Scotland revealed that it was pelargonium leaf curl virus (PLCV) rather than the originally suggested tomato bushy stunt virus. The complete sequence of the PLCV genome was determined for the first time, revealing it to be 4789 nucleotides in size and to have an organization similar to that of the other, previously described tombusviruses. Primers derived from the sequence were used to construct a full-length infectious clone of PLCV that recapitulates the disease symptoms of leaf curling in systemically infected pelargonium plants. PMID:26906694

  6. Nucleotide sequences of five anti-lysozyme monoclonal antibodies.

    PubMed Central

    Darsley, M J; Rees, A R

    1985-01-01

    The nucleotide sequences of the heavy and light chain immunoglobulin mRNAs derived from five hybridomas (Gloop 1-5) secreting IgGs specific for the loop region of hen egg lysozyme were determined. These monoclonal antibodies recognise three distinct but overlapping epitopes within the loop region. The sequences of two pairs of antibodies with indistinguishable fine specificities were similar in both chains whereas the sequences of antibodies of non-identical specificities were very different. It is proposed that the D-segments expressed in two of the antibodies (Gloop3 and Gloop4) are the products of one, or perhaps two, previously unidentified germ line D-genes. Gloop1 and Gloop2 use a D-segment previously identified in antibodies specific for the hapten 2-phenyloxazolone; however it is recombined in a different reading frame in the anti-lysozyme antibodies, producing a different amino acid sequence. PMID:2410256

  7. Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide association studies (GWAS) may benefit from using haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on the genetic architecture of traits, patter...

  8. Increasing the number of single nucleotide polymorphisms used in genomic evaluation of dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GeneSeek designed a new version of the GeneSeek Genomic Profiler HD BeadChip for Dairy Cattle, which had >77,000 single nucleotide polymorphisms (SNPs). A set of >140,000 SNPs was selected that included all SNPs on the existing GeneSeek chip, all SNPs used in U.S. national genomic evaluations, SNPs ...

  9. Association of a single nucleotide polymorphism of calpain 1 gene with meat tenderness of the yak

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association of a single nucleotide polymorphism (SNP) of calpain 1 (CAPN1) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n = 181) was studied. The experimental design was a repeated measures with the main unit in a completely randomized design...

  10. Short communication: Relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...

  11. Using 90,113 single nucleotide polymorphisms in genomic evaluation of dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accuracy of genomic evaluation is expected to increase when more markers are used because of better tracking of causative genetic variants. However, Illumina BovineHD genotypes based on 777,962 single nucleotide polymorphisms (SNP) have not been used for US genomic evaluation because the small relia...

  12. ASSOCIATION OF RESISTANCE TO AVIAN COCCIDIOSIS WITH SINGLE NUCLEOTIDE POLYMORPHISMS IN THE ZYXIN GENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous genetic studies demonstrated that resistance to avian coccidiosis was linked with microsatellite markers LEI0071 and LEI0101 on chromosome 1. In this study, the associations between parameters of resistance to coccidiosis and single nucleotide polymorphisms (SNPs) in 3 candidate genes ...

  13. The effects of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene on meat tenderness of yak.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n=181) was studied. Yaks were harvested at 2, 3, and 4 yr of age (n=51, 59, and 71, respectively), and samples of each ya...

  14. Development of a web services based system for dissemination of single nucleotide polymorphism data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single nucleotide polymorphisms (SNPs) can be used to generate DNA-based fingerprints for individual identification. The efficiency of DNA fingerprinting is greatest when the frequency of both SNP alleles is near 0.50. A number of SNPs have been identified in cattle populations with minor allele f...

  15. Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a destructive disease that reduces wheat grain yield and quality. To date, the quantitative trait locus on 3BS (Fhb1) from Sumai 3 has shown the largest effect on FHB resistance. Single nucleotide polymorphism (SNP) is the most common form of genetic variation and suita...

  16. Association of Single Nucleotide Polymorphisms in the CAST Gene Associated with Longissimus Tenderness in Beef Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to assess the association of single nucleotide polymorphisms (SNP) developed on the CAST gene, with longissimus tenderness. Forty one SNP were identified in the CAST gene and assays were developed. Markers were scattered throughout the gene. These markers, in conjunction with a com...

  17. Relationships among calpastatin single nucleotide polymorphisms, calpastatin expression and tenderness in pork longissimus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome scans in the pig have identified a region on chromosome 2 (SSC2) associated with tenderness. Calpastatin is a likely positional candidate gene in this region because of its inhibitory role in the calpain system that is involved in postmortem tenderization. Novel single nucleotide polymorphism...

  18. Single nucleotide polymorphisms in sheep varying in tolerance to elevated dietary nitrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Discovery of single nucleotide polymorphisms (SNPs) may lead to development of marker panels predictive of tolerance to high dietary nitrate (NO3-). The aims of this research were to identify SNPs in Arginiosuccinate Lyase (ASL), determine the relationship of ASL SNP genotypes on NO3- tolerance, an...

  19. Association of single nucleotide polymorphisms in candidate genes residing under quantitative trait loci in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to assess the association of single nucleotide polymorphisms (SNP) developed on candidate genes residing under previously identified quantitative trait loci for marbling score and meat tenderness. Two hundred five SNP were identified on twenty candidate genes. Genes selected under ...

  20. Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila.

    PubMed Central

    Navarro, A; Barbadilla, A; Ruiz, A

    2000-01-01

    Recombination is a main factor determining nucleotide variability in different regions of the genome. Chromosomal inversions, which are ubiquitous in the genus Drosophila, are known to reduce and redistribute recombination, and thus their specific effect on nucleotide variation may be of major importance as an explanatory factor for levels of DNA variation. Here, we use the coalescent approach to study this effect. First, we develop analytical expressions to predict nucleotide variability in old inversion polymorphisms that have reached mutation-drift-flux equilibrium. The effects on nucleotide variability of a new arrangement appearing in the population and reaching a stable polymorphism are then studied by computer simulation. We show that inversions modulate nucleotide variability in a complex way. The establishment of an inversion polymorphism involves a partial selective sweep that eliminates part of the variability in the population. This is followed by a slow convergence to the equilibrium values. During this convergence, regions close to the breakpoints exhibit much lower variability than central regions. However, at equilibrium, regions close to the breakpoints have higher levels of variability and differentiation between arrangements than regions in the middle of the inverted segment. The implications of these findings for overall variability levels during the evolution of Drosophila species are discussed. PMID:10835391

  1. Association of Nitric Oxide Synthase and Matrix Metalloprotease Single Nucleotide Polymorphisms with Preeclampsia and Its Complications

    PubMed Central

    Leonardo, Daniela P.; Albuquerque, Dulcinéia M.; Lanaro, Carolina; Baptista, Letícia C.; Cecatti, José G.; Surita, Fernanda G.; Parpinelli, Mary A.; Costa, Fernando F.; Franco-Penteado, Carla F.; Fertrin, Kleber Y.; Costa, Maria Laura

    2015-01-01

    Background Preeclampsia is one of the leading causes of maternal and neonatal morbidity and mortality in the world, but its appearance is still unpredictable and its pathophysiology has not been entirely elucidated. Genetic studies have associated single nucleotide polymorphisms in genes encoding nitric oxide synthase and matrix metalloproteases with preeclampsia, but the results are largely inconclusive across different populations. Objectives To investigate the association of single nucleotide polymorphisms (SNPs) in NOS3 (G894T, T-786C, and a variable number of tandem repetitions VNTR in intron 4), MMP2 (C-1306T), and MMP9 (C-1562T) genes with preeclampsia in patients from Southeastern Brazil. Methods This prospective case-control study enrolled 77 women with preeclampsia and 266 control pregnant women. Clinical data were collected to assess risk factors and the presence of severe complications, such as eclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Results We found a significant association between the single nucleotide polymorphism NOS3 T-786C and preeclampsia, independently from age, height, weight, or the other SNPs studied, and no association was found with the other polymorphisms. Age and history of preeclampsia were also identified as risk factors. The presence of at least one polymorphic allele for NOS3 T-786C was also associated with the occurrence of eclampsia or HELLP syndrome among preeclamptic women. Conclusions Our data support that the NOS3 T-786C SNP is associated with preeclampsia and the severity of its complications. PMID:26317342

  2. Evidence for Balancing Selection from Nucleotide Sequence Analyses of Human G6PD

    PubMed Central

    Verrelli, Brian C.; McDonald, John H.; Argyropoulos, George; Destro-Bisol, Giovanni; Froment, Alain; Drousiotou, Anthi; Lefranc, Gerard; Helal, Ahmed N.; Loiselet, Jacques; Tishkoff, Sarah A.

    2002-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) mutations that result in reduced enzyme activity have been implicated in malarial resistance and constitute one of the best examples of selection in the human genome. In the present study, we characterize the nucleotide diversity across a 5.2-kb region of G6PD in a sample of 160 Africans and 56 non-Africans, to determine how selection has shaped patterns of DNA variation at this gene. Our global sample of enzymatically normal B alleles and A, A−, and Med alleles with reduced enzyme activities reveals many previously uncharacterized silent-site polymorphisms. In comparison with the absence of amino acid divergence between human and chimpanzee G6PD sequences, we find that the number of G6PD amino acid polymorphisms in human populations is significantly high. Unlike many other G6PD-activity alleles with reduced activity, we find that the age of the A variant, which is common in Africa, may not be consistent with the recent emergence of severe malaria and therefore may have originally had a historically different adaptive function. Overall, our observations strongly support previous genotype-phenotype association studies that proposed that balancing selection maintains G6PD deficiencies within human populations. The present study demonstrates that nucleotide sequence analyses can reveal signatures of both historical and recent selection in the genome and may elucidate the impact that infectious disease has had during human evolution. PMID:12378426

  3. Comparing compressed sequences for faster nucleotide BLAST searches.

    PubMed

    Cameron, Michael; Williams, Hugh E

    2007-01-01

    Molecular biologists, geneticists, and other life scientists use the BLAST homology search package as their first step for discovery of information about unknown or poorly annotated genomic sequences. There are two main variants of BLAST: BLASTP for searching protein collections and BLASTN for nucleotide collections. Surprisingly, BLASTN has had very little attention; for example, the algorithms it uses do not follow those described in the 1997 BLAST paper and no exact description has been published. It is important that BLASTN is state-of-the-art: Nucleotide collections such as GenBank dwarf the protein collections in size, they double in size almost yearly, and they take many minutes to search on modern general purpose workstations. This paper proposes significant improvements to the BLASTN algorithms. Each of our schemes is based on compressed bytepacked formats that allow queries and collection sequences to be compared four bases at a time, permitting very fast query evaluation using lookup tables and numeric comparisons. Our most significant innovations are two new, fast gapped alignment schemes that allow accurate sequence alignment without decompression of the collection sequences. Overall, our innovations more than double the speed of BLASTN with no effect on accuracy and have been integrated into our new version of BLAST that is freely available for download from http://www.fsa-blast.org/. PMID:17666756

  4. Bioinformatics comparison of sulfate-reducing metabolism nucleotide sequences

    NASA Astrophysics Data System (ADS)

    Tremberger, G.; Dehipawala, Sunil; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.

    2015-09-01

    The sulfate-reducing bacteria can be traced back to 3.5 billion years ago. The thermodynamics details of the sulfur cycle have been well documented. A recent sulfate-reducing bacteria report (Robator, Jungbluth, et al , 2015 Jan, Front. Microbiol) with Genbank nucleotide data has been analyzed in terms of the sulfite reductase (dsrAB) via fractal dimension and entropy values. Comparison to oil field sulfate-reducing sequences was included. The AUCG translational mass fractal dimension versus ATCG transcriptional mass fractal dimension for the low temperature dsrB and dsrA sequences reported in Reference Thirteen shows correlation R-sq ~ 0.79 , with a probably of about 3% in simulation. A recent report of using Cystathionine gamma-lyase sequence to produce CdS quantum dot in a biological method, where the sulfur is reduced just like in the H2S production process, was included for comparison. The AUCG mass fractal dimension versus ATCG mass fractal dimension for the Cystathionine gamma-lyase sequences was found to have R-sq of 0.72, similar to the low temperature dissimilatory sulfite reductase dsr group with 3% probability, in contrary to the oil field group having R-sq ~ 0.94, a high probable outcome in the simulation. The other two simulation histograms, namely, fractal dimension versus entropy R-sq outcome values, and di-nucleotide entropy versus mono-nucleotide entropy R-sq outcome values are also discussed in the data analysis focusing on low probability outcomes.

  5. Tetra Primer ARMS PCR Optimization to Detect Single Nucleotide Polymorphisms of the CYP2E1 Gene.

    PubMed

    Suhda, Saihas; Paramita, Dewi Kartikawati; Fachiroh, Jajah

    2016-01-01

    Single nucleotide polymorphism (SNP) detection has been used extensively for genetic association studies of diseases including cancer. For mass, yet accurate and more economic SNP detection we have optimized tetra primer amplification refractory mutation system polymerase chain reaction (ARMS PCR) to detect three SNPs in the cytochrome P450 2E1 (CYP2E1) gene locus; i.e. rs3813865, rs2070672 and rs3813867. The optimization system strategies used were (1) designing inner and outer primers; (2) determining of their optimum primer concentration ratios; and (3) determining of the optimum PCR annealing temperature. The tetra primer ARMS PCR result could be directly observed using agarose gel electrophoresis. The method succesfully determined three SNPs in CYP2E1 locus, the results being consistent with validation using DNA sequencing and restriction fragment length polymorphisms (RFLP). PMID:27509930

  6. Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis.

    PubMed

    Ramaswamy, Srinivas V; Reich, Robert; Dou, Shu-Jun; Jasperse, Linda; Pan, Xi; Wanger, Audrey; Quitugua, Teresa; Graviss, Edward A

    2003-04-01

    Isoniazid (INH) is a central component of drug regimens used worldwide to treat tuberculosis. Previous studies have identified resistance-associated mutations in katG, inhA, kasA, ndh, and the oxyR-ahpC intergenic region. DNA microarray-based experiments have shown that INH induces several genes in Mycobacterium tuberculosis that encode proteins physiologically relevant to the drug's mode of action. To gain further insight into the molecular genetic basis of INH resistance, 20 genes implicated in INH resistance were sequenced for INH resistance-associated mutations. Thirty-eight INH-monoresistant clinical isolates and 86 INH-susceptible isolates of M. tuberculosis were obtained from the Texas Department of Health and the Houston Tuberculosis Initiative. Epidemiologic independence was established for all isolates by IS6110 restriction fragment length polymorphism analysis. Susceptible isolates were matched with resistant isolates by molecular genetic group and IS6110 profiles. Spoligotyping was done with isolates with five or fewer IS6110 copies. A major genetic group was established on the basis of the polymorphisms in katG codon 463 and gyrA codon 95. MICs were determined by the E-test. Semiquantitative catalase assays were performed with isolates with mutations in the katG gene. When the 20 genes were sequenced, it was found that 17 (44.7%) INH-resistant isolates had a single-locus, resistance-associated mutation in the katG, mabA, or Rv1772 gene. Seventeen (44.7%) INH-resistant isolates had resistance-associated mutations in two or more genes, and 76% of all INH-resistant isolates had a mutation in the katG gene. Mutations were also identified in the fadE24, Rv1592c, Rv1772, Rv0340, and iniBAC genes, recently shown by DNA-based microarray experiments to be upregulated in response to INH. In general, the MICs were higher for isolates with mutations in katG and the isolates had reduced catalase activities. The results show that a variety of single nucleotide

  7. On-chip detection of a single nucleotide polymorphism without polymerase amplification

    PubMed Central

    Han, Jinhee; Tan, Matthew; Sudheendra, Lakshmana; Weiss, Robert H.; Kennedy, Ian M.

    2014-01-01

    A nanoparticle-assembled photonic crystal (PC) array was used to detect single nucleotide polymorphism (SNP). The assay platform with PC nanostructure enhanced the fluorescent signal from nanoparticle-hybridized DNA complexes due to phase matching of excitation and emission. Nanoparticles coupled with probe DNA were trapped into nanowells in an array by using an electrophoretic particle entrapment system. The PC/DNA assay platform was able to identify a 1 base pair (bp) difference in synthesized nucleotide sequences that mimicked the mutation seen in a feline model of human autosomal dominant polycystic kidney disease (PKD) with a sensitivity of 0.9 fg/mL (50 aM)-sensitivity, which corresponds to 30 oligos/array. The reliability of the PC/DNA assay platform to detect SNP in a real sample was demonstrated by using genomic DNA (gDNA) extracted from the urine and blood of two PKD− wild type and three PKD positive cats. The standard curves for PKD positive (PKD+) and negative (PKD−) DNA were created using two feline-urine samples. An additional three urine samples were analyzed in a similar fashion and showed satisfactory agreement with the standard curve, confirming the presence of the mutation in affected urine. The limit of detection (LOD) was 0.005 ng/mL which corresponds to 6 fg per array for gDNA in urine and blood. The PC system demonstrated the ability to detect a number of genome equivalents for the PKD SNP that was very similar to the results reported with real time polymerase chain reaction (PCR). The favorable comparison with quantitative PCR suggests that the PC technology may find application well beyond the detection of the PKD SNP, into areas where a simple, cheap and portable nucleic acid analysis is desirable. PMID:25580203

  8. Cytochrome b nucleotide sequence variation among the Atlantic Alcidae.

    PubMed

    Friesen, V L; Montevecchi, W A; Davidson, W S

    1993-01-01

    Analysis of cytochrome b nucleotide sequences of the six extant species of Atlantic alcids and a gull revealed an excess of adenines and cytosines and a deficit of guanines at silent sites on the coding strand. Phylogenetic analyses grouped the sequences of the common (Uria aalge) and Brünnich's (U. lomvia) guillemots, followed by the razorbill (Alca torda) and little auk (Alle alle). The black guillemot (Cepphus grylle) sequence formed a sister taxon, and the puffin (Fratercula arctica) fell outside the other alcids. Phylogenetic comparisons of substitutions indicated that mutabilities of bases did not differ, but that C was much more likely to be incorporated than was G. Imbalances in base composition appear to result from a strand bias in replication errors, which may result from selection on secondary RNA structure and/or the energetics of codon-anticodon interactions. PMID:7916741

  9. The nucleotide sequence of the bacteriophage T5 ltf gene.

    PubMed

    Kaliman, A V; Kulshin, V E; Shlyapnikov, M G; Ksenzenko, V N; Kryukov, V M

    1995-06-01

    The nucleotide sequence of the bacteriophage T5 Bg/II-BamHI fragment (4,835 bp in length) known to carry a gene encoding the LTF protein which forms the phage L-shaped tail fibers was determined. It was shown to contain an open reading frame for 1,396 amino acid residues that corresponds to a protein of 147.8 kDa. The coding region of ltf gene is preceded by a typical Shine-Dalgarno sequence. Downstream from the ltf gene there is a strong transcription terminator. Data bank analysis of the LTF protein sequence reveals 55.1% identity to the hypothetical protein ORF 401 of bacteriophage lambda in a segment of 118 amino acids overlap. PMID:7789514

  10. A single nucleotide polymorphism in NEUROD1 is associated with production traits in Nelore beef cattle.

    PubMed

    de Oliveira, P S N; Tizioto, P C; Malago, W; do Nascimento, M L; Cesar, A S M; Diniz, W J S; de Souza, M M; Lanna, D P D; Tullio, R R; Mourão, G B; de A Mudadu, M; Coutinho, L L; de A Regitano, L C

    2016-01-01

    Feed efficiency and carcass characteristics are late-measured traits. The detection of molecular markers associated with them can help breeding programs to select animals early in life, and to predict breeding values with high accuracy. The objective of this study was to identify polymorphisms in the functional and positional candidate gene NEUROD1 (neurogenic differentiation 1), and investigate their associations with production traits in reference families of Nelore cattle. A total of 585 steers were used, from 34 sires chosen to represent the variability of this breed. By sequencing 14 animals with extreme residual feed intake (RFI) values, seven single nucleotide polymorphisms (SNPs) in NEUROD1 were identified. The investigation of marker effects on the target traits RFI, backfat thickness (BFT), ribeye area (REA), average body weight (ABW), and metabolic body weight (MBW) was performed with a mixed model using the restricted maximum likelihood method. SNP1062, which changes cytosine for guanine, had no significant association with RFI or REA. However, we found an additive effect on ABW (P ≤ 0.05) and MBW (P ≤ 0.05), with an estimated allele substitution effect of -1.59 and -0.93 kg0.75, respectively. A dominant effect of this SNP for BFT was also found (P ≤ 0.010). Our results are the first that identify NEUROD1 as a candidate that affects BFT, ABW, and MBW. Once confirmed, the inclusion of this SNP in dense panels may improve the accuracy of genomic selection for these traits in Nelore beef cattle as this SNP is not currently represented on SNP chips. PMID:27420997

  11. Single nucleotide polymorphisms concordant with the horned/polled trait in Holsteins

    PubMed Central

    Cargill, Edward J; Nissing, Nick J; Grosz, Michael D

    2008-01-01

    Background Cattle that naturally do not grow horns are referred to as polled, a trait inherited in a dominant Mendelian fashion. Previous studies have localized the polled mutation (which is unknown) to the proximal end of bovine chromosome 1 in a region approximately 3 Mb in size. While a polled genetic test, Tru-Polled™, is commercially available from MetaMorphix Inc., Holsteins are not a validated breed for this test. Findings Approximately 160 kb were sequenced within the known polled region from 12 polled and 12 horned Holsteins. Analysis of the polymorphisms identified 13 novel single nucleotide polymorphisms (SNPs) that are concordant with the horned/polled trait. Three of the 13 SNPs are located in gene coding or regulatory regions (e.g., the untranslated region, or UTR) where one is located in the 3'UTR of a gene and the other two are located in the 5'UTR and coding region (synonymous SNP) of another gene. The 3'UTR of genes have been shown to be targets of microRNAs regulating gene expression. In silico analysis indicates the 3'UTR SNP may disrupt a microRNA target site. Conclusion These 13 novel SNPs concordant with the horned/polled trait in Holsteins represent a test panel for the breed and this is the first report to the authors' knowledge of SNPs within gene coding or regulatory regions concordant with the horned/polled trait in cattle. These SNPs will require further testing for verification and further study to determine if the 3'UTR SNP may have a functional effect on the polled trait in Holsteins. PMID:19063733

  12. Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?

    PubMed

    Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F

    2006-06-01

    Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs. PMID:16706918

  13. Nucleotide sequence and expression of a Drosophila metallothionein.

    PubMed

    Lastowski-Perry, D; Otto, E; Maroni, G

    1985-02-10

    A Drosophila melanogaster cDNA clone was isolated based on its more intense hybridization to RNA sequences from copper-fed larvae than from control larval RNA. This clone showed strong hybridization to mouse metallothionein I cDNA at reduced stringency. Its nucleotide sequence includes an open reading segment which codes for a 40-amino acid protein; this protein is identified as metallothionein based on its similarity to the amino-terminal portion of mammalian and crab metalloproteins. The 10 cysteine residues present occur in five pairs of near vicinal cysteines (Cys-X-Cys). This cDNA sequence hybridized to a 400-nucleotide polyadenylated RNA whose presence in the cells of the alimentary canal of larvae was stimulated by ingestion of cadmium or copper; in other tissues this RNA was present at much lower levels. Mercury, silver, and zinc induced metallothionein to a lesser extent. The level of metallothionein RNA increased very soon after the initiation of metal treatment and reached a maximum after approximately 36 h. PMID:2578462

  14. Nucleotide sequence corresponding to five chemotaxis genes in Escherichia coli.

    PubMed Central

    Mutoh, N; Simon, M I

    1986-01-01

    The nucleotide sequence of DNA which contains five chemotaxis-related genes of Escherichia coli, cheW, cheR, cheB, cheY, and cheZ, and part of the cheA gene was determined. Molecular weights of the polypeptides encoded by these genes were calculated from translated amino acid sequences, and they were 18,100 for cheW, 32,700 for cheR, 37,500 for cheB, 14,100 for cheY, and 24,000 for cheZ. Nucleotide sequences which could act as ribosome-binding sites were found in the upstream region of each gene. After the termination codon of the cheW gene, a typical rho-independent transcription termination signal was observed. There are no other open reading frames long enough to encode polypeptides in this region except those which code for the two previously reported genes tar and tap. PMID:3510184

  15. Mouse SNP Miner: an annotated database of mouse functional single nucleotide polymorphisms

    PubMed Central

    Reuveni, Eli; Ramensky, Vasily E; Gross, Cornelius

    2007-01-01

    Background The mapping of quantitative trait loci in rat and mouse has been extremely successful in identifying chromosomal regions associated with human disease-related phenotypes. However, identifying the specific phenotype-causing DNA sequence variations within a quantitative trait locus has been much more difficult. The recent availability of genomic sequence from several mouse inbred strains (including C57BL/6J, 129X1/SvJ, 129S1/SvImJ, A/J, and DBA/2J) has made it possible to catalog DNA sequence differences within a quantitative trait locus derived from crosses between these strains. However, even for well-defined quantitative trait loci (<10 Mb) the identification of candidate functional DNA sequence changes remains challenging due to the high density of sequence variation between strains. Description To help identify functional DNA sequence variations within quantitative trait loci we have used the Ensembl annotated genome sequence to compile a database of mouse single nucleotide polymorphisms (SNPs) that are predicted to cause missense, nonsense, frameshift, or splice site mutations (available at ). For missense mutations we have used the PolyPhen and PANTHER algorithms to predict whether amino acid changes are likely to disrupt protein function. Conclusion We have developed a database of mouse SNPs predicted to cause missense, nonsense, frameshift, and splice-site mutations. Our analysis revealed that 20% and 14% of missense SNPs are likely to be deleterious according to PolyPhen and PANTHER, respectively, and 6% are considered deleterious by both algorithms. The database also provides gene expression and functional annotations from the Symatlas, Gene Ontology, and OMIM databases to further assess candidate phenotype-causing mutations. To demonstrate its utility, we show that Mouse SNP Miner successfully finds a previously identified candidate SNP in the taste receptor, Tas1r3, that underlies sucrose preference in the C57BL/6J strain. We also use Mouse

  16. Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals

    PubMed Central

    Baral, Aradhita; Kumar, Pankaj; Halder, Rashi; Mani, Prithvi; Yadav, Vinod Kumar; Singh, Ankita; Das, Swapan K.; Chowdhury, Shantanu

    2012-01-01

    Non-canonical guanine quadruplex structures are not only predominant but also conserved among bacterial and mammalian promoters. Moreover recent findings directly implicate quadruplex structures in transcription. These argue for an intrinsic role of the structural motif and thereby posit that single nucleotide polymorphisms (SNP) that compromise the quadruplex architecture could influence function. To test this, we analysed SNPs within quadruplex motifs (Quad-SNP) and gene expression in 270 individuals across four populations (HapMap) representing more than 14 500 genotypes. Findings reveal significant association between quadruplex-SNPs and expression of the corresponding gene in individuals (P < 0.0001). Furthermore, analysis of Quad-SNPs obtained from population-scale sequencing of 1000 human genomes showed relative selection bias against alteration of the structural motif. To directly test the quadruplex-SNP-transcription connection, we constructed a reporter system using the RPS3 promoter—remarkable difference in promoter activity in the ‘quadruplex-destabilized’ versus ‘quadruplex-intact’ promoter was noticed. As a further test, we incorporated a quadruplex motif or its disrupted counterpart within a synthetic promoter reporter construct. The quadruplex motif, and not the disrupted-motif, enhanced transcription in human cell lines of different origin. Together, these findings build direct support for quadruplex-mediated transcription and suggest quadruplex-SNPs may play significant role in mechanistically understanding variations in gene expression among individuals. PMID:22238381

  17. Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detectiona)

    PubMed Central

    Li, Kan-Chien; Ding, Shih-Torng; Lin, En-Chung; Wang, Lon (Alex); Lu, Yen-Wen

    2014-01-01

    A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production. PMID:25553186

  18. Genetic Diversity of Eurycoma longifolia Inferred from Single Nucleotide Polymorphisms1[w

    PubMed Central

    Osman, Asiah; Jordan, Barbara; Lessard, Philip A.; Muhammad, Norwati; Haron, M. Rosli; Riffin, Norifiza Mat; Sinskey, Anthony J.; Rha, ChoKyun; Housman, David E.

    2003-01-01

    Eurycoma longifolia Jack. is a treelet that grows in the forests of Southeast Asia and is widely used throughout the region because of its reported medicinal properties. Widespread harvesting of wild-grown trees has led to rapid thinning of natural populations, causing a potential decrease in genetic diversity among E. longifolia. Suitable genetic markers would be very useful for propagation and breeding programs to support conservation of this species, although no such markers currently exist. To meet this need, we have applied a genome complexity reduction strategy to identify a series of single nucleotide polymorphisms (SNPs) within the genomes of several E. longifolia accessions. We have found that the occurrence of these SNPs reflects the geographic origins of individual plants and can distinguish different natural populations. This work demonstrates the rapid development of molecular genetic markers in species for which little or no genomic sequence information is available. The SNP markers that we have developed in this study will also be useful for identifying genetic fingerprints that correlate with other properties of E. longifolia, such as high regenerability or the appearance of bioactive metabolites. PMID:12644679

  19. Mining the transcriptomes of four commercially important shellfish species for single nucleotide polymorphisms within biomineralization genes.

    PubMed

    Vendrami, David L J; Shah, Abhijeet; Telesca, Luca; Hoffman, Joseph I

    2016-06-01

    Transcriptional profiling not only provides insights into patterns of gene expression, but also generates sequences that can be mined for molecular markers, which in turn can be used for population genetic studies. As part of a large-scale effort to better understand how commercially important European shellfish species may respond to ocean acidification, we therefore mined the transcriptomes of four species (the Pacific oyster Crassostrea gigas, the blue mussel Mytilus edulis, the great scallop Pecten maximus and the blunt gaper Mya truncata) for single nucleotide polymorphisms (SNPs). Illumina data for C. gigas, M. edulis and P. maximus and 454 data for M. truncata were interrogated using GATK and SWAP454 respectively to identify between 8267 and 47,159 high quality SNPs per species (total=121,053 SNPs residing within 34,716 different contigs). We then annotated the transcripts containing SNPs to reveal homology to diverse genes. Finally, as oceanic pH affects the ability of organisms to incorporate calcium carbonate, we honed in on genes implicated in the biomineralization process to identify a total of 1899 SNPs in 157 genes. These provide good candidates for biomarkers with which to study patterns of selection in natural or experimental populations. PMID:26806806

  20. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    PubMed

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. PMID:26397421

  1. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure.

    PubMed

    Albaina, A; Iriondo, M; Velado, I; Laconcha, U; Zarraonaindia, I; Arrizabalaga, H; Pardo, M A; Lutcavage, M; Grant, W S; Estonba, A

    2013-12-01

    The optimal management of the commercially important, but mostly over-exploited, pelagic tunas, albacore (Thunnus alalunga Bonn., 1788) and Atlantic bluefin tuna (BFT; Thunnus thynnus L., 1758), requires a better understanding of population structure than has been provided by previous molecular methods. Despite numerous studies of both species, their population structures remain controversial. This study reports the development of single nucleotide polymorphisms (SNPs) in albacore and BFT and the application of these SNPs to survey genetic variability across the geographic ranges of these tunas. A total of 616 SNPs were discovered in 35 albacore tuna by comparing sequences of 54 nuclear DNA fragments. A panel of 53 SNPs yielded FST values ranging from 0.0 to 0.050 between samples after genotyping 460 albacore collected throughout the distribution of this species. No significant heterogeneity was detected within oceans, but between-ocean comparisons (Atlantic, Pacific and Indian oceans along with Mediterranean Sea) were significant. Additionally, a 17-SNP panel was developed in Atlantic BFT by cross-species amplification in 107 fish. This limited number of SNPs discriminated between samples from the two major spawning areas of Atlantic BFT (FST  = 0.116). The SNP markers developed in this study can be used to genotype large numbers of fish without the need for standardizing alleles among laboratories. PMID:23668670

  2. SNPer: An R Library for Quantitative Variant Analysis on Single Nucleotide Polymorphisms among Influenza Virus Populations

    PubMed Central

    Sangket, Unitsa; Vijasika, Sukanya; Noh, Hasnee; Chantratita, Wasun; Klungthong, Chonticha; Yoon, In Kyu; Fernandez, Stefan; Rutvisuttinunt, Wiriya

    2015-01-01

    Influenza virus (IFV) can evolve rapidly leading to genetic drifts and shifts resulting in human and animal influenza epidemics and pandemics. The genetic shift that gave rise to the 2009 influenza A/H1N1 pandemic originated from a triple gene reassortment of avian, swine and human IFVs. More minor genetic alterations in genetic drift can lead to influenza drug resistance such as the H274Y mutation associated with oseltamivir resistance. Hence, a rapid tool to detect IFV mutations and the potential emergence of new virulent strains can better prepare us for seasonal influenza outbreaks as well as potential pandemics. Furthermore, identification of specific mutations by closely examining single nucleotide polymorphisms (SNPs) in IFV sequences is essential to classify potential genetic markers associated with potentially dangerous IFV phenotypes. In this study, we developed a novel R library called “SNPer” to analyze quantitative variants in SNPs among IFV subpopulations. The computational SNPer program was applied to three different subpopulations of published IFV genomic information. SNPer queried SNPs data and grouped the SNPs into (1) universal SNPs, (2) likely common SNPs, and (3) unique SNPs. SNPer outperformed manual visualization in terms of time and labor. SNPer took only three seconds with no errors in SNP comparison events compared with 40 hours with errors using manual visualization. The SNPer tool can accelerate the capacity to capture new and potentially dangerous IFV strains to mitigate future influenza outbreaks. PMID:25876137

  3. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers

    PubMed Central

    Fang, Wan-Ping; Meinhardt, Lyndel W; Tan, Hua-Wei; Zhou, Lin; Mischke, Sue; Zhang, Dapeng

    2014-01-01

    Apart from water, tea is the world’s most widely consumed beverage. Tea is produced in more than 50 countries with an annual production of approximately 4.7 million tons. The market segment for specialty tea has been expanding rapidly owing to increased demand, resulting in higher revenues and profits for tea growers and the industry. Accurate varietal identification is critically important to ensure traceability and authentication of premium tea products, which in turn contribute to on-farm conservation of tea genetic diversity. Using a set of single nucleotide polymorphism (SNP) markers developed from the expressed sequence tag (EST) database of Camilla senensis, we genotyped deoxyribonucleic acid (DNA) samples extracted from a diverse group of tea varieties, including both fresh and processed commercial loose-leaf teas. The validation led to the designation of 60 SNPs that unambiguously identified all 40 tested tea varieties with high statistical rigor (p<0.0001). Varietal authenticity and genetic relationships among the analyzed cultivars were further characterized by ordination and Bayesian clustering analysis. These SNP markers, in combination with a high-throughput genotyping protocol, effectively established and verified specific DNA fingerprints for all tested tea varieties. This method provides a powerful tool for variety authentication and quality control for the tea industry. It is also highly useful for the management of tea genetic resources and breeding, where accurate and efficient genotype identification is essential. PMID:26504544

  4. Discovering All Transcriptome Single-Nucleotide Polymorphisms and Scanning for Selection Signatures in Ducks (Anas platyrhynchos)

    PubMed Central

    Lin, Ruiyi; Du, Xiaoyong; Peng, Sixue; Yang, Liubin; Ma, Yunlong; Gong, Yanzhang; Li, Shijun

    2015-01-01

    The duck is one of the most economically important waterfowl as a source of meat, eggs, and feathers. Characterizing the genetic variation in duck species is an important step toward linking genes or genomic regions with phenotypes. Human-driven selection during duck domestication and subsequent breed formation has likely left detectable signatures in duck genome. In this study, we employed a panel of >1.4 million single-nucleotide polymorphisms (SNPs) identified from the RNA sequencing (RNA-seq) data of 15 duck individuals. The density of the resulting SNPs is significantly positively correlated with the density of genes across the duck genome, which demonstrates that the usage of the RNA-seq data allowed us to enrich variant functional categories, such as coding exons, untranslated regions (UTRs), introns, and downstream/upstream. We performed a complete scan of selection signatures in the ducks using the composite likelihood ratio (CLR) and found 76 candidate regions of selection, many of which harbor genes related to phenotypes relevant to the function of the digestive system and fat metabolism, including TCF7L2, EIF2AK3, ELOVL2, and fatty acid-binding protein family. This study illustrates the potential of population genetic approaches for identifying genomic regions affecting domestication-related phenotypes and further helps to increase the known genetic information about this economically important animal. PMID:26819540

  5. Reverse random amplified microsatellite polymorphism reveals enhanced polymorphisms in the 3' end of simple sequence repeats in the pepper genome.

    PubMed

    Min, Woong-Ki; Han, Jung-Heon; Kang, Won-Hee; Lee, Heung-Ryul; Kim, Byung-Dong

    2008-09-30

    Microsatellites or simple sequence repeats (SSR) are widely distributed in eukaryotic genomes and are informative genetic markers. Despite many advantages of SSR markers such as a high degree of allelic polymorphisms, co-dominant inheritance, multi-allelism, and genome-wide coverage in various plant species, they also have shortcomings such as low polymorphic rates between genetically close lines, especially in Capsicum annuum. We developed an alternative technique to SSR by normalizing and alternating anchored primers in random amplified microsatellite polymorphisms (RAMP). This technique, designated reverse random amplified microsatellite polymorphism (rRAMP), allows the detection of nucleotide variation in the 3' region flanking an SSR using normalized anchored and random primer combinations. The reproducibility and frequency of polymorphic loci in rRAMP was vigorously enhanced by translocation of the 5' anchor of repeat sequences to the 3' end position and selective use of moderate arbitrary primers. In our study, the PCR banding pattern of rRAMP was highly dependent on the frequency of repeat motifs and primer combinations with random primers. Linkage analysis showed that rRAMP markers were well scattered on an intra-specific pepper map. Based on these results, we suggest that this technique is useful for studying genetic diversity, molecular fingerprinting, and rapidly constructing molecular maps for diverse plant species. PMID:18483466

  6. Nucleotide polymorphisms and protein structure changes in the Fg16 gene of Fusarium graminearum sensu stricto.

    PubMed

    Abedi-Tizaki, Mostafa; Zafari, Doustmorad

    2016-09-01

    Fusarium graminearum is one of the most important causes of wheat scab in different parts of the world. This fungus is able to produce widespread trichothecene mycotoxins such as nivalenol (NIV) and deoxynivalenol (DON) which are harmful for both human and animals. The Fg16 target is located in chromosome 1 of the F. graminearum genome coding for a hypothetical protein whose function is not yet known. The Fg16 gene is involved in lipid biosynthesis and leads to sexual development during colonization in wheat stalks. This gene is used to detect F. graminearum and determine the lineage of F. graminearum complex species. In the present study, polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) and DNA sequencing methods were employed in screening for genetic variation in 172 F. graminearum s.s. isolates. The PCR reaction forced the amplification of 410-bp fragments of Fg16. Two single nucleotide polymorphisms (T82C and A352T) and one amino acid exchange (C65S) with three patterns (TA/TA, CT/CT and TA/CT genotypes) were found in the Fg16 gene fragment. Two haplotypes, 1A and 1B, were identified within F. graminearum s.s. populations in northern and western regions of Iran. Two different secondary structures of protein were predicted for CT/CT and TA/CT genotypes of Fg16 gene. The average diversity levels detected were relatively high (He: 0.3238; Heu: 0.334; Ho: 0.2894; mean PIC: 0.514; mean Shannon's information index: 0.4132; mean number of alleles per locus: 1.473). On the basis of the obtained results, it was revealed that the Fg16 gene had a high degree of polymorphism that can be considered for future control programming strategies and thus the associations between the SSCP patterns with different traits of F. graminearum such as wheat colonization, perithecium formation on stalk tissues and lineage discrimination should be investigated. PMID:27222818

  7. Nucleotide polymorphisms and protein structure changes in the Fg16 gene of Fusarium graminearum sensu stricto

    PubMed Central

    Abedi-Tizaki, Mostafa; Zafari, Doustmorad

    2016-01-01

    Fusarium graminearum is one of the most important causes of wheat scab in different parts of the world. This fungus is able to produce widespread trichothecene mycotoxins such as nivalenol (NIV) and deoxynivalenol (DON) which are harmful for both human and animals. The Fg16 target is located in chromosome 1 of the F. graminearum genome coding for a hypothetical protein whose function is not yet known. The Fg16 gene is involved in lipid biosynthesis and leads to sexual development during colonization in wheat stalks. This gene is used to detect F. graminearum and determine the lineage of F. graminearum complex species. In the present study, polymerase chain reaction–single strand conformational polymorphism (PCR–SSCP) and DNA sequencing methods were employed in screening for genetic variation in 172 F.graminearum s.s. isolates. The PCR reaction forced the amplification of 410-bp fragments of Fg16. Two single nucleotide polymorphisms (T82C and A352T) and one amino acid exchange (C65S) with three patterns (TA/TA, CT/CT and TA/CT genotypes) were found in the Fg16 gene fragment. Two haplotypes, 1A and 1B, were identified within F. graminearum s.s. populations in northern and western regions of Iran. Two different secondary structures of protein were predicted for CT/CT and TA/CT genotypes of Fg16 gene. The average diversity levels detected were relatively high (He: 0.3238; Heu: 0.334; Ho: 0.2894; mean PIC: 0.514; mean Shannon's information index: 0.4132; mean number of alleles per locus: 1.473). On the basis of the obtained results, it was revealed that the Fg16 gene had a high degree of polymorphism that can be considered for future control programming strategies and thus the associations between the SSCP patterns with different traits of F. graminearum such as wheat colonization, perithecium formation on stalk tissues and lineage discrimination should be investigated. PMID:27222818

  8. Nucleotide sequence of Bacillus phage Nf terminal protein gene.

    PubMed Central

    Leavitt, M C; Ito, J

    1987-01-01

    The nucleotide sequence of Bacillus phage Nf gene E has been determined. Gene E codes for phage terminal protein which is the primer necessary for the initiation of DNA replication. The deduced amino acid sequence of Nf terminal protein is approximately 66% homologous with the terminal proteins of Bacillus phages PZA and luminal diameter 29, and shows similar hydropathy and secondary structure predictions. A serine which has been identified as the residue which covalently links the protein to the 5' end of the genome in luminal diameter 29, is conserved in all three phages. The hydropathic and secondary structural environment of this serine is similar in these phage terminal proteins and also similar to the linking serine of adenovirus terminal protein. PMID:3601672

  9. Allele-specific polymerase chain reaction for the detection of Alzheimer’s disease-related single nucleotide polymorphisms

    PubMed Central

    2013-01-01

    Background The incidence of Alzheimer’s disease, particularly in developing countries, is expected to increase exponentially as the population ages. Continuing research in this area is essential in order to better understand this disease and develop strategies for treatment and prevention. Genome-wide association studies have identified several loci as genetic risk factors of AD aside from apolipoprotein E such as bridging integrator (BIN1), clusterin (CLU), ATP-binding cassette sub-family A member 7 (ABCA7), complement receptor 1 (CR1) and phosphatidylinositol binding clathrin assembly protein (PICALM). However genetic research in developing countries is often limited by lack of funding and expertise. This study therefore developed and validated a simple, cost effective polymerase chain reaction based technique to determine these single nucleotide polymorphisms. Methods An allele-specific PCR method was developed to detect single nucleotide polymorphisms of BIN1 rs744373, CLU rs11136000, ABCA7 rs3764650, CR1 rs3818361 and PICALM rs3851179 in human DNA samples. Allele-specific primers were designed by using appropriate software to permit the PCR amplification only if the nucleotide at the 3’-end of the primer complemented the base at the wild-type or variant-type DNA sample. The primers were then searched for uniqueness using the Basic Local Alignment Search Tool search engine. Results The assay was tested on a hundred samples and accurately detected the homozygous wild-type, homozygous variant-type and heterozygous of each SNP. Validation was by direct DNA sequencing. Conclusion This method will enable researchers to carry out genetic polymorphism studies for genetic risk factors associated with late-onset Alzheimer’s disease (BIN1, CLU, ABCA7, CR1 and PICALM) without the use of expensive instrumentation and reagents. PMID:23419238

  10. Nucleotide sequences specific to Brucella and methods for the detection of Brucella

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.

    2009-02-24

    Nucleotide sequences specific to Brucella that serves as a marker or signature for identification of this bacterium were identified. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  11. Nucleotide sequences specific to Francisella tularensis and methods for the detection of Francisella tularensis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Vitalis, Elizabeth A

    2007-02-06

    Described herein is the identification of nucleotide sequences specific to Francisella tularensis that serves as a marker or signature for identification of this bacterium. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  12. Nucleotide sequences specific to Francisella tularensis and methods for the detection of Francisella tularensis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Vitalis, Elizabeth A

    2009-02-24

    Described herein is the identification of nucleotide sequences specific to Francisella tularensis that serves as a marker or signature for identification of this bacterium. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  13. Nucleotide sequences specific to Yersinia pestis and methods for the detection of Yersinia pestis

    DOEpatents

    McCready, Paula M.; Radnedge, Lyndsay; Andersen, Gary L.; Ott, Linda L.; Slezak, Thomas R.; Kuczmarski, Thomas A.; Motin, Vladinir L.

    2009-02-24

    Nucleotide sequences specific to Yersinia pestis that serve as markers or signatures for identification of this bacterium were identified. In addition, forward and reverse primers and hybridization probes derived from these nucleotide sequences that are used in nucleotide detection methods to detect the presence of the bacterium are disclosed.

  14. Identification of Single Nucleotide Polymorphism Marker and Association Analysis of Marbling Score in Fas Gene of Hanwoo

    PubMed Central

    Kim, Seung-Chang; Lee, Seung-Hwan; Lee, Ji-Woong; Kim, Tae-Hun; Choi, Bong-Hwan

    2016-01-01

    The Fas (APO-1, TNFRSF6) gene known as a member of the tumor necrosis factor receptor superfamily was selected for DNA marker development in Korean cattle. It is a cell membrane protein and mediates programmed cell death (apoptosis). We discovered single nucleotide polymorphisms (SNPs) within Fas gene in order to develop novel DNA markers related to economical traits at the genomic level. The sequences of whole exon and 1 kb range of both front and back of the gene were determined by direct-sequencing methods using 24 cattle. A total of 55 SNPs were discovered and we selected 31 common polymorphic sites considering their allele frequencies, haplotype-tagging status and linkage disequilibrium (LD) for genotyping in larger-scale subjects. The SNPs were confirmed genotype through the SNaPshot method (n = 274) and were examined for a possible genetic association between Fas polymorphisms and marbling score. So, the SNPs that were identified significant are g.30256G>C, g.31474C>A, g.31940A>G, and g.32982G>A. These results suggest that SNPs of Fas gene were associated with intramuscular fat content of meat quality traits in Korean cattle. PMID:26732324

  15. Molecular Epidemiology of Mycoplasma pneumoniae: Genotyping Using Single Nucleotide Polymorphisms and SNaPshot Technology.

    PubMed

    Touati, A; Blouin, Y; Sirand-Pugnet, P; Renaudin, H; Oishi, T; Vergnaud, G; Bébéar, C; Pereyre, S

    2015-10-01

    Molecular typing of Mycoplasma pneumoniae is an important tool for identifying grouped cases and investigating outbreaks. In the present study, we developed a new genotyping method based on single nucleotide polymorphisms (SNPs) selected from the whole-genome sequencing of eight M. pneumoniae strains, using the SNaPshot minisequencing assay. Eight SNPs, localized in housekeeping genes, predicted lipoproteins, and adhesin P1 genes were selected for genotyping. These SNPs were evaluated on 140 M. pneumoniae clinical isolates previously genotyped by multilocus variable-number tandem-repeat analysis (MLVA-5) and adhesin P1 typing. This method was also adapted for direct use with clinical samples and evaluated on 51 clinical specimens. The analysis of the clinical isolates using the SNP typing method showed nine distinct SNP types with a Hunter and Gaston diversity index (HGDI) of 0.836, which is higher than the HGDI of 0.583 retrieved for the MLVA-4 typing method, where the nonstable Mpn1 marker was removed. A strong correlation with the P1 adhesin gene typing results was observed. The congruence was poor between MLVA-5 and SNP typing, indicating distinct genotyping schemes. Combining the results increased the discriminatory power. This new typing method based on SNPs and the SNaPshot technology is a method for rapid M. pneumoniae typing directly from clinical specimens, which does not require any sequencing step. This method is based on stable markers and provides information distinct from but complementary to MLVA typing. The combined use of SNPs and MLVA typing provides powerful discrimination of strains. PMID:26202117

  16. Molecular Epidemiology of Mycoplasma pneumoniae: Genotyping Using Single Nucleotide Polymorphisms and SNaPshot Technology

    PubMed Central

    Touati, A.; Blouin, Y.; Sirand-Pugnet, P.; Renaudin, H.; Oishi, T.; Vergnaud, G.; Bébéar, C.

    2015-01-01

    Molecular typing of Mycoplasma pneumoniae is an important tool for identifying grouped cases and investigating outbreaks. In the present study, we developed a new genotyping method based on single nucleotide polymorphisms (SNPs) selected from the whole-genome sequencing of eight M. pneumoniae strains, using the SNaPshot minisequencing assay. Eight SNPs, localized in housekeeping genes, predicted lipoproteins, and adhesin P1 genes were selected for genotyping. These SNPs were evaluated on 140 M. pneumoniae clinical isolates previously genotyped by multilocus variable-number tandem-repeat analysis (MLVA-5) and adhesin P1 typing. This method was also adapted for direct use with clinical samples and evaluated on 51 clinical specimens. The analysis of the clinical isolates using the SNP typing method showed nine distinct SNP types with a Hunter and Gaston diversity index (HGDI) of 0.836, which is higher than the HGDI of 0.583 retrieved for the MLVA-4 typing method, where the nonstable Mpn1 marker was removed. A strong correlation with the P1 adhesin gene typing results was observed. The congruence was poor between MLVA-5 and SNP typing, indicating distinct genotyping schemes. Combining the results increased the discriminatory power. This new typing method based on SNPs and the SNaPshot technology is a method for rapid M. pneumoniae typing directly from clinical specimens, which does not require any sequencing step. This method is based on stable markers and provides information distinct from but complementary to MLVA typing. The combined use of SNPs and MLVA typing provides powerful discrimination of strains. PMID:26202117

  17. Association of Notch3 single-nucleotide polymorphisms and lacunar infarctions in patients

    PubMed Central

    LI, YING; LIU, NAN; CHEN, HUI; HUANG, YONGHUA; ZHANG, WEIWEI

    2016-01-01

    Cerebrovascular disease is a leading cause of morbidity and mortality worldwide, which is influenced by genetic and environmental factors. The aim of the present study was to examine the association between single-nucleotide polymorphisms (SNPs) in Notch3 exons 3–6 and lacunar infarction by comparing SNPs between control subjects and those with lacunar infarction. A single-center case-control study was conducted to investigate the association between Notch3 SNPs and risk of stroke. A total of 140 patients were included in the study, 30 of whom had no infarction (control) and 110 had lacunar infarction. Lacunar patients were divided into the ‘pure lacunar’ and ‘lacunar + leukoarasis’ groups based on brain imaging. All the patients were of Chinese Han ethnicity, and the male to female ratio was 84:56. Patient clinical histories included hypertension, diabetes mellitus (DM), hyperlipidemia, and heart disease were recorded. The Notch3 sequence was obtained from the National Centser for Biotechnology Information database. Notch3 was amplified by polymerase chain reaction from whole blood samples, and exons 3–6 were sequenced to identify SNPs. The result showed that there was no significant difference in the prevalence of hypertension, DM, hyperlipidemia, and heart disease between the control and lacunar infarction patients. Notabley, the age of the lacunar + leukoarasis patients was significantly higher than that of the control and pure lacunar patients (P<0.05). Eight SNPs were detected at low frequencies, and only rs3815388 and rs1043994 exhibited slightly higher frequencies. A χ2 test indicated that Notch3 SNPs, particularly rs1043994, were associated with lacunar infarction (P<0.05). In conclusion, the result of the present study have shown that Notch3 SNPs, particularly rs1043994, are associated with lacunar infarction. PMID:26889213

  18. Sequencing mitochondrial DNA polymorphisms by hybridization

    SciTech Connect

    Chee, M.S.; Lockhart, D.J.; Hubbell, E.

    1994-09-01

    We have investigated the use of DNA chips for genetic analysis, using human mitochondrial DNA (mtDNA) as a model. The DNA chips are made up of ordered arrays of DNA oligonucleotide probes, synthesized on a glass substrate using photolithographic techniques. The synthesis site for each different probe is specifically addressed by illumination of the substrate through a photolithographic mask, achieving selective deprotection Nucleoside phosphoramidites bearing photolabile protecting groups are coupled only to exposed sites. Repeated cycles of deprotection and coupling generate all the probes in parallel. The set of 4{sup N} N-mer probes can be synthesized in only 4N steps. Any subset can be synthesized in 4N steps. Any subset can be synthesized in 4N or fewer steps. Sequences amplified from the D-loop region of human mitochondrial DNA (mtDNA) were fluorescently labelled and hybridized to DNA chips containing probes specific for mtDNA. Each nucleotide of a 1.3 kb region spanning the D loop is represented by four probes on the chip. Each probe has a different base at the position of interest: together they comprise a set of A, C, G and T probes which are otherwise identical. In principle, only one probe-target hybrid will be a perfect match. The other three will be single base mismatches. Fluorescence imaging of the hybridized chip allows quantification of hybridization signals. Heterozygous mixtures of sequences can also be characterized. We have developed software to quantitate and interpret the hybridization signals, and to call the sequence automatically. Results of sequence analysis of human mtDNAs will be presented.

  19. Identification and association of the single nucleotide polymorphisms in calpain3 (CAPN3) gene with carcass traits in chickens

    PubMed Central

    Zhang, Zeng-Rong; Liu, Yi-Ping; Yao, Yong-Gang; Jiang, Xiao-Song; Du, Hua-Rui; Zhu, Qing

    2009-01-01

    Background The aim of this study is to screen single nucleotide polymorphisms (SNP) of chicken Calpain3 (CAPN3) gene and to analyze the potential association between CAPN3 gene polymorphisms and carcass traits in chickens. We screened CAPN3 single nucleotide polymorphisms (SNP) in 307 meat-type quality chicken from 5 commercial pure lines (S01, S02, S03, S05, and D99) and 4 native breeds from Guangdong Province (Huiyang Huxu chicken and Qingyuan Ma chicken) and Sichuan Province (Caoke chicken and Shandi Black-bone chicken), China. Results Two SNPs (11818T>A and 12814T>G) were detected by single strand conformation polymorphism (SSCP) method and were verified by DNA sequencing. Association analysis showed that the 12814T>G genotypes were significantly associated with body weight (BW), carcass weight (CW), breast muscle weight (BMW), and leg muscle weight (LMW). Haplotypes constructed on the two SNPs (H1, TG; H2, TT; H3, AG; and H4, AT) were associated with BW, CW (P < 0.05), eviscerated percentage (EP), semi-eviscerated percentage (SEP), breast muscle percentage (BMP), and leg muscle percentage (LMP) (P < 0.01). Diplotype H1H2 was dominant for BW, CW, and LMP, and H2H2 was dominant for EP, SEP, and BMP. Conclusion We speculated that the CAPN3 gene was a major gene affecting chicken muscle growth and carcass traits or it was linked with the major gene(s). Diplotypes H1H2 and H2H2 might be advantageous for carcass traits. PMID:19265533

  20. Generalized Levy-walk model for DNA nucleotide sequences

    NASA Technical Reports Server (NTRS)

    Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Simons, M.; Stanley, H. E.

    1993-01-01

    We propose a generalized Levy walk to model fractal landscapes observed in noncoding DNA sequences. We find that this model provides a very close approximation to the empirical data and explains a number of statistical properties of genomic DNA sequences such as the distribution of strand-biased regions (those with an excess of one type of nucleotide) as well as local changes in the slope of the correlation exponent alpha. The generalized Levy-walk model simultaneously accounts for the long-range correlations in noncoding DNA sequences and for the apparently paradoxical finding of long subregions of biased random walks (length lj) within these correlated sequences. In the generalized Levy-walk model, the lj are chosen from a power-law distribution P(lj) varies as lj(-mu). The correlation exponent alpha is related to mu through alpha = 2-mu/2 if 2 < mu < 3. The model is consistent with the finding of "repetitive elements" of variable length interspersed within noncoding DNA.

  1. Prediction of Unobserved Single Nucleotide Polymorphism Genotypes of Jersey Cattle Using Reference Panels and Population-Based Imputation Algorithms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The availability of dense single nucleotide polymorphism (SNP) genotypes for dairy cattle has created exciting research opportunities and revolutionized practical breeding programs. Broader application of this technology will lead to situations in which genotypes from different low-, medium-, or hig...

  2. Multilocus patterns of nucleotide polymorphism and demographic change in Taxodium distichum (Cupressaceae) in the lower Mississippi River alluvial valley

    USGS Publications Warehouse

    Kusumi, Junko; Zidong, Li; Kado, Tomoyuki; Tsumura, Yoshihiko; Middleton, Beth A.; Tachida, Hidenori

    2010-01-01

    Conclusions: Taxodium distichum had significantly higher nucleotide variation than C. japonica, and its patterns of polymorphism contrasted strikingly with those of the latter, which previously has been inferred to have experienced a reduction in population size.

  3. mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities

    PubMed Central

    2014-01-01

    Background Although our microbial community and genomes (the human microbiome) outnumber our genome by several orders of magnitude, to what extent the human host genetic complement informs the microbiota composition is not clear. The Human Microbiome Project (HMP) Consortium established a unique population-scale framework with which to characterize the relationship of microbial community structure with their human hosts. A wide variety of taxa and metabolic pathways have been shown to be differentially distributed by virtue of race/ethnicity in the HMP. Given that mtDNA haplogroups are the maternally derived ancestral genomic markers and mitochondria’s role as the generator for cellular ATP, characterizing the relationship between human mtDNA genomic variants and microbiome profiles becomes of potential marked biologic and clinical interest. Results We leveraged sequencing data from the HMP to investigate the association between microbiome community structures with its own host mtDNA variants. 15 haplogroups and 631 mtDNA nucleotide polymorphisms (mean sequencing depth of 280X on the mitochondria genome) from 89 individuals participating in the HMP were accurately identified. 16S rRNA (V3-V5 region) sequencing generated microbiome taxonomy profiles and whole genome shotgun sequencing generated metabolic profiles from various body sites were treated as traits to conduct association analysis between haplogroups and host clinical metadata through linear regression. The mtSNPs of individuals with European haplogroups were associated with microbiome profiles using PLINK quantitative trait associations with permutation and adjusted for multiple comparisons. We observe that among 139 stool and 59 vaginal posterior fornix samples, several haplogroups show significant association with specific microbiota (q-value < 0.05) as well as their aggregate community structure (Chi-square with Monte Carlo, p < 0.005), which confirmed and expanded previous research on the

  4. An expanded sequence context model broadly explains variability in polymorphism levels across the human genome.

    PubMed

    Aggarwala, Varun; Voight, Benjamin F

    2016-04-01

    The rate of single-nucleotide polymorphism varies substantially across the human genome and fundamentally influences evolution and incidence of genetic disease. Previous studies have only considered the immediately flanking nucleotides around a polymorphic site-the site's trinucleotide sequence context-to study polymorphism levels across the genome. Moreover, the impact of larger sequence contexts has not been fully clarified, even though context substantially influences rates of polymorphism. Using a new statistical framework and data from the 1000 Genomes Project, we demonstrate that a heptanucleotide context explains >81% of variability in substitution probabilities, highlighting new mutation-promoting motifs at ApT dinucleotide, CAAT and TACG sequences. Our approach also identifies previously undocumented variability in C-to-T substitutions at CpG sites, which is not immediately explained by differential methylation intensity. Using our model, we present informative substitution intolerance scores for genes and a new intolerance score for amino acids, and we demonstrate clinical use of the model in neuropsychiatric diseases. PMID:26878723

  5. Empirical Bayes Estimation of Coalescence Times from Nucleotide Sequence Data.

    PubMed

    King, Leandra; Wakeley, John

    2016-09-01

    We demonstrate the advantages of using information at many unlinked loci to better calibrate estimates of the time to the most recent common ancestor (TMRCA) at a given locus. To this end, we apply a simple empirical Bayes method to estimate the TMRCA. This method is both asymptotically optimal, in the sense that the estimator converges to the true value when the number of unlinked loci for which we have information is large, and has the advantage of not making any assumptions about demographic history. The algorithm works as follows: we first split the sample at each locus into inferred left and right clades to obtain many estimates of the TMRCA, which we can average to obtain an initial estimate of the TMRCA. We then use nucleotide sequence data from other unlinked loci to form an empirical distribution that we can use to improve this initial estimate. PMID:27440864

  6. Single nucleotide polymorphism analysis of the endopolygalacturonase gene in peach and its potential use in crossbreeding programs.

    PubMed

    Jiao, Y; Ma, R; Yu, M

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are the most abundant sequence variations found in plant genomes and are widely used as molecular genetic markers in genetic diversity studies and crossbreeding programs. In this study, we examined 113 DNA sequences of the endopolygalacturonase (endo-PG) gene from 67 peach accessions and found a total of 56 SNPs and 6 insertion/deletions (indels), with a frequency of 3, 1, and 3% for the transitions, transversions, and indels, respectively. Meanwhile, the majority of the observed SNPs were found in the intron regions, while only 2 variable sites and a single indel were detected in the exon regions. A dendrogram was obtained using neighbor-joining cluster analysis and divided into 2 main groups, providing evidence that most of the accessions of the clingstone nonmelting flesh phenotypes generally clustered together and were comparatively nonrelated to the "stony hard" peach cultivars, which were in a different branch altogether. Furthermore, 4 major haplotypes were formed and 3 cleaved amplified polymorphic sequence primer sets were mined according to fruit texture and stone adhesion, displaying their potential as candidate molecular markers for discriminating genotypes. This research will assist peach genetic enhancement by introducing a novel crossbreeding strategy. PMID:25966181

  7. Complete nucleotide sequence of Nootka lupine vein-clearing virus.

    PubMed

    Robertson, Nancy L; Côté, Fabien; Paré, Christine; Leblanc, Eric; Bergeron, Michel G; Leclerc, Denis

    2007-12-01

    The complete genome sequence of Nootka lupine vein-clearing virus (NLVCV) was determined to be 4,172 nucleotides in length containing four open reading frames (ORFs) with a similar genetic organization of virus species in the genus Carmovirus, family Tombusviridae. The order and gene product size, starting from the 5'-proximal ORF consisted of: (1) polymerase/replicase gene, ORF1 (p27) and ORF1RT (readthrough) (p87), (2) movement proteins ORF2 (p7) and ORF3 (p9), and, (3) the 3'-proximal coat protein ORF4, (p37). The genomic 5'- and 3'-proximal termini contained a short (59 nt) and a relatively longer 405 nt untranslated region, respectively. The longer replicase gene product contained the GDD motif common to RNA-dependent RNA polymerases. Phylogenetically, NLVCV formed a subgroup with the following four carmoviruses when separately comparing the amino acids of the coat protein or replicase protein: Angelonia flower break virus (AnFBV), Carnation mottle virus (CarMV), Pelargonium flower break virus (PFBV), and Saguaro cactus virus (SgCV). Whole genome nucleotide analysis (percent identities) among the carmoviruses with NLVCV suggested a similar pattern. The species demarcation criteria in the genus Carmovirus for the amino acid sequence identity of the polymerase (<52%) and coat (<41%) protein genes restricted NLVCV as a distinct species, and instead, placed it as a tentative strain of CarMV, PFBV, or SgCV when both the polymerase and CP were used as the determining factors. In contrast, the species criteria that included different host ranges with no overlap and lack of serology relatedness between NLVCV and the carmoviruses, suggested that NLVCV was a distinct species. The relatively low cutoff percentages allowed for the polymerase and CP genes to dictate the inclusion/exclusion of a distinct carmovirus species should be reevaluated. Therefore, at this time we have concluded that NLVCV should be classified as a tentative new species in the genus Carmovirus

  8. Mapping Nucleotide Sequences that Encode Complex Binary Disease Traits with HapMap

    PubMed Central

    Cui, Yuehua; Fu, Wenjiang; Sun, Kelian; Romero, Roberto; Wu, Rongling

    2007-01-01

    Detecting the patterns of DNA sequence variants across the human genome is a crucial step for unraveling the genetic basis of complex human diseases. The human HapMap constructed by single nucleotide polymorphisms (SNPs) provides efficient sequence variation information that can speed up the discovery of genes related to common diseases. In this article, we present a generalized linear model for identifying specific nucleotide variants that encode complex human diseases. A novel approach is derived to group haplotypes to form composite diplotypes, which largely reduces the model degrees of freedom for an association test and hence increases the power when multiple SNP markers are involved. An efficient two-stage estimation procedure based on the expectation-maximization (EM) algorithm is derived to estimate parameters. Non-genetic environmental or clinical risk factors can also be fitted into the model. Computer simulations show that our model has reasonable power and type I error rate with appropriate sample size. It is also suggested through simulations that a balanced design with approximately equal number of cases and controls should be preferred to maintain small estimation bias and reasonable testing power. To illustrate the utility, we apply the method to a genetic association study of large for gestational age (LGA) neonates. The model provides a powerful tool for elucidating the genetic basis of complex binary diseases. PMID:19384427

  9. Characterization and identification of cis-regulatory elements in Arabidopsis based on single-nucleotide polymorphism information.

    PubMed

    Korkuc, Paula; Schippers, Jos H M; Walther, Dirk

    2014-01-01

    Identifying regulatory elements and revealing their role in gene expression regulation remains a central goal of plant genome research. We exploited the detailed genomic sequencing information of a large number of Arabidopsis (Arabidopsis thaliana) accessions to characterize known and to identify novel cis-regulatory elements in gene promoter regions of Arabidopsis by relying on conservation as the hallmark signal of functional relevance. Based on the genomic layout and the obtained density profiles of single-nucleotide polymorphisms (SNPs) in sequence regions upstream of transcription start sites, the average length of promoter regions in Arabidopsis could be established at 500 bp. Genes associated with high degrees of variability of their respective upstream regions are preferentially involved in environmental response and signaling processes, while low levels of promoter SNP density are common among housekeeping genes. Known cis-elements were found to exhibit a decreased SNP density than sequence regions not associated with known motifs. For 15 known cis-element motifs, strong positional preferences relative to the transcription start site were detected based on their promoter SNP density profiles. Five novel candidate cis-element motifs were identified as consensus motifs of 17 sequence hexamers exhibiting increased sequence conservation combined with evidence of positional preferences, annotation information, and functional relevance for inducing correlated gene expression. Our study demonstrates that the currently available resolution of SNP data offers novel ways for the identification of functional genomic elements and the characterization of gene promoter sequences. PMID:24204023

  10. Identification of Novel Single Nucleotide Polymorphisms Associated with Acute Respiratory Distress Syndrome by Exome-Seq

    PubMed Central

    Shortt, Katherine; Chaudhary, Suman; Grigoryev, Dmitry; Heruth, Daniel P.; Venkitachalam, Lakshmi; Zhang, Li Q.; Ye, Shui Q.

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a lung condition characterized by impaired gas exchange with systemic release of inflammatory mediators, causing pulmonary inflammation, vascular leak and hypoxemia. Existing biomarkers have limited effectiveness as diagnostic and therapeutic targets. To identify disease-associating variants in ARDS patients, whole-exome sequencing was performed on 96 ARDS patients, detecting 1,382,399 SNPs. By comparing these exome data to those of the 1000 Genomes Project, we identified a number of single nucleotide polymorphisms (SNP) which are potentially associated with ARDS. 50,190SNPs were found in all case subgroups and controls, of which89 SNPs were associated with susceptibility. We validated three SNPs (rs78142040, rs9605146 and rs3848719) in additional ARDS patients to substantiate their associations with susceptibility, severity and outcome of ARDS. rs78142040 (C>T) occurs within a histone mark (intron 6) of the Arylsulfatase D gene. rs9605146 (G>A) causes a deleterious coding change (proline to leucine) in the XK, Kell blood group complex subunit-related family, member 3 gene. rs3848719 (G>A) is a synonymous SNP in the Zinc-Finger/Leucine-Zipper Co-Transducer NIF1 gene. rs78142040, rs9605146, and rs3848719 are associated significantly with susceptibility to ARDS. rs3848719 is associated with APACHE II score quartile. rs78142040 is associated with 60-day mortality in the overall ARDS patient population. Exome-seq is a powerful tool to identify potential new biomarkers for ARDS. We selectively validated three SNPs which have not been previously associated with ARDS and represent potential new genetic biomarkers for ARDS. Additional validation in larger patient populations and further exploration of underlying molecular mechanisms are warranted. PMID:25372662

  11. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms.

    PubMed

    Pujolar, J M; Jacobsen, M W; Als, T D; Frydenberg, J; Magnussen, E; Jónsson, B; Jiang, X; Cheng, L; Bekkevold, D; Maes, G E; Bernatchez, L; Hansen, M M

    2014-06-01

    The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization. PMID:24424165

  12. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis)

    PubMed Central

    2010-01-01

    Background Castor bean (Ricinus communis) is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale). We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs) at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74%) followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p < 0.01). Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity. PMID:20082707

  13. Association of the FCN2 Gene Single Nucleotide Polymorphisms with Susceptibility to Pulmonary Tuberculosis

    PubMed Central

    Jiang, Feng; Wei, Li-Liang; Shi, Li-Ying; Yu, Xiao-Mei; Liu, Chang-Ming; Liu, Xue-Hong; Feng, Xian-Min; Ping, Ze-Peng; Jiang, Ting-Ting; Chen, Zhong-Liang; Li, Zhong-Jie; Li, Ji-Cheng

    2015-01-01

    Ficolin-2 (FCN2) is an innate immune pattern recognition molecule that can activate the complement pathway, opsonophagocytosis, and elimination of the pathogens. The present study aimed to investigate the association of the FCN2 gene single nucleotide polymorphisms (SNPs) with susceptibility to pulmonary tuberculosis (TB). A total of seven SNPs in exon 8 (+6359 C>T and +6424 G>T) and in the promoter region (-986 G>A, -602 G>A, -557 A>G, -64 A>C and -4 A>G) of the FCN2 gene were genotyped using the PCR amplification and DNA sequencing methods in the healthy controls group (n = 254) and the pulmonary TB group (n = 282). The correlation between SNPs and pulmonary TB was analyzed using the logistic regression method. The results showed that there were no significant differences in the distribution of allelic frequencies of seven SNPs between the pulmonary TB group and the healthy controls group. However, the frequency of the variant homozygous genotype (P = 0.037, -557 A>G; P = 0.038, -64 A>C; P = 0.024, +6424 G>T) in the TB group was significantly lower than the control group. After adjustment for age and gender, these variant homozygous genotypes were found to be recessive models in association with pulmonary TB. In addition, -64 A>C (P = 0.047) and +6424 G>T (P = 0.03) were found to be codominant models in association with pulmonary TB. There was strong linkage disequilibrium (r2 > 0.80, P < 0.0001) between 7 SNPs except the -602 G>A site. Therefore, -557 A>G, -64 A>C and +6424 G>T SNPs of the FCN2 gene were correlated with pulmonary TB, and may be protective factors for TB. This study provides a novel idea for the prevention and control of TB transmission from a genetics perspective. PMID:26379154

  14. Exploring the efficacy of paternity and kinship testing based on single nucleotide polymorphisms.

    PubMed

    Mo, Shao-Kang; Liu, Ya-Cheng; Wang, Sheng-qi; Bo, Xiao-Chen; Li, Zhen; Chen, Ying; Ni, Ming

    2016-05-01

    Short tandem repeats (STRs) are conventional genetic markers typically used for paternity and kinship testing. As supplementary markers of STRs, single nucleotide polymorphisms (SNPs) have less discrimination power but broader applicability to degraded samples. The rapid improvement of next-generation sequencing (NGS) and multiplex amplification technologies also make it possible now to simultaneously identify dozens or even hundreds of SNP loci in a single pool. However, few studies have been endeavored to kinship testing based on SNP loci. In this study, we genotyped 90 autosomal human identity SNP loci with NGS, and investigated their testing efficacies based on the likelihood ratio model in eight pedigree scenarios involving paternity, half/full-sibling, uncle/nephew, and first-cousin relationships. We found that these SNPs might be sufficient to discriminate paternity and full-sibling, but impractical for more distant relatives such as uncle and cousin. Furthermore, we conducted an in silico study to obtain the theoretical tendency of how testing efficacy varied with increasing number of SNP loci. For each testing battery in a given pedigree scenario, we obtained distributions of logarithmic likelihood ratio for both simulated relatives and unrelated controls. The proportion of the overlapping area between the two distributions was defined as a false testing level (FTL) to evaluate the testing efficacy. We estimated that 85, 127, 491, and 1,858 putative SNP loci were required to discriminate paternity, full-sibling, half-sibling/uncle-nephew, and first-cousin (FTL, 0.1%), respectively. To test a half-sibling or nephew, an additional uncle relative could be included to decrease the required number of putative SNP loci to ∼320 (FTL, 0.1%). As a systematic computation of paternity and kinship testing based only on SNPs, our results could be informative for further studies and applications on paternity and kinship testing using SNP loci. PMID:26952733

  15. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms

    PubMed Central

    Pujolar, J M; Jacobsen, M W; Als, T D; Frydenberg, J; Magnussen, E; Jónsson, B; Jiang, X; Cheng, L; Bekkevold, D; Maes, G E; Bernatchez, L; Hansen, M M

    2014-01-01

    The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization. PMID:24424165

  16. Association of single nucleotide polymorphisms in the MVP gene with platinum resistance and survival in patients with epithelial ovarian cancer

    PubMed Central

    ZHAO, YA-NAN; HE, DONG-NING; WANG, YA-DI; LI, JUN-JIE; HA, MIN-WEN

    2016-01-01

    The human major vault protein (MVP) has been linked to the development of multidrug resistance in cancer cells, and overexpression of MVP has been observed in ovarian cancer tissues. The aim of the present study was to investigate the association between single nucleotide polymorphisms (SNPs) in the MVP gene and the tumor response to platinum-based chemotherapy and survival of patients affected by epithelial ovarian cancer (EOC), in addition to confirm whether tetra-primer amplification-refractory mutation system (ARMS)-polymerase chain reaction (PCR) is an accurate genotyping method. For this purpose, two polymorphisms in the MVP gene, namely reference SNP (rs)1057451 and rs4788186, were selected from the data obtained by the International haplotype map (HapMap) Project regarding Chinese Han population, and were evaluated by tetra-primer ARMS-PCR. Upon validation by DNA sequencing, the association of these polymorphisms with platinum resistance, progression-free survival (PFS) and overall survival (OS) in patients with EOC was assessed. The results of tetra-primer ARMS-PCR were in agreement with those derived from DNA sequencing. No significant differences were observed between platinum-sensitive and platinum-resistant cohorts in terms of allele and genotype distribution of these two polymorphisms in the MVP gene, which were not associated with PFS or OS. However, a trend toward prolonged PFS was observed in patients carrying the heterozygous AG allele at the rs4788186 locus. These results suggest that rs1057451 and rs4788186 variants in the MVP gene are not associated with favorable therapeutic response to platinum or longer survival in Chinese Han patients affected by EOC. In addition, the data of the present study confirm that tetra-primer ARMS-PCR is a trustworthy and economical genotyping method. PMID:27073578

  17. Occurrence, sequence polymorphism and population structure of Circulifer tenellus virus 1 in a field population of the beet leafhopper

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of Circulifer tenellus virus 1 (CiTV1) as a surrogate marker to determine population structure of the beet leafhopper (BLH; Circulifer tenellus [Baker]) was assessed. Prevalence, incidence, and nucleotide sequence polymorphism of CiTV1 present in BLH adults collected from the southern...

  18. A single-nucleotide polymorphism in the EAP1 gene is associated with amenorrhea/oligomenorrhea in nonhuman primates.

    PubMed

    Lomniczi, Alejandro; Garcia-Rudaz, Cecilia; Ramakrishnan, Ranjani; Wilmot, Beth; Khouangsathiene, Samone; Ferguson, Betsy; Dissen, Gregory A; Ojeda, Sergio R

    2012-01-01

    Current evidence suggests that the acquisition of female reproductive capacity and the maintenance of mature reproductive function are related processes transcriptionally regulated by gene networks operating within the neuroendocrine brain. One of these genes, termed enhanced at puberty 1 (EAP1), encodes an upstream regulator of these processes. Selective inhibition of EAP1 expression in discrete regions of the rat and nonhuman primate (NHP) hypothalamus, via targeted delivery of RNA interference, either disrupts (rats) or abolishes (monkeys) reproductive cycles. The striking loss of menstrual cyclicity resulting from knocking down hypothalamic EAP1 expression suggests that diminished EAP1 function may contribute to disorders of the menstrual cycle of neuroendocrine origin. Here we show that a single-nucleotide polymorphism in the 5'-flanking region of EAP1 gene is associated with increased incidence of amenorrhea/oligomenorrhea in NHP. In the presence of the risk allele, binding of the transcription factor mothers against decapentaplegic homolog 3 (SMAD3) to its recognition site contained within the polymorphic sequence in the monkey EAP1 promoter is reduced. The risk allele also diminishes the increase in EAP1 promoter activity elicited by TGFβ1, a peptide that activates a SMAD3/4-mediated signaling pathway to regulate gene transcription. These findings indicate that common genetic variation in the EAP1 locus increases the susceptibility of NHP to loss/disruption of menstrual cyclicity. They also raise the possibility that polymorphisms in EAP1 may increase the risk of functional hypothalamic amenorrhea in humans. PMID:22128021

  19. Development of in vitro atovaquone-resistant Babesia gibsoni with a single-nucleotide polymorphism in cytb.

    PubMed

    Iguchi, Aiko; Matsuu, Aya; Ikadai, Hiromi; Talukder, Md Hasanuzzaman; Hikasa, Yoshiaki

    2012-04-30

    An atovaquone (ATV)-resistant Babesia gibsoni was developed by in vitro exposure of uncloned wild type (WT) B. gibsoni to 800 nM ATV for 6 days. Sequence analysis of mitochondrial genes showed a single-nucleotide polymorphism (SNP) at cytb nt363 (G to T) that resulted in the substitution of methionine with isoleucine (M121I), which is one of the SNPs reported in a previous in vivo study. 363T or 363G allele-specific real-time polymerase chain reaction (PCR) revealed that an M121I variant was present in over 99% of the ATV-resistant population. As neither ATV resistance nor gene polymorphisms appeared in the B. gibsoni WT sibling clones, the expression of ATV resistance in this study was suspected to be because of selective multiplication of the B. gibsoni M121I variant. This ATV-resistant B. gibsoni displayed the same sensitivity as the WT B. gibsoni against 5 other drugs, including diminazene aceturate, azithromycin, doxycycline, clindamycin, and proguanil. This is the first report on the in vitro establishment of an ATV-resistant B. gibsoni with gene polymorphisms. PMID:21996003

  20. A combination of single nucleotide polymorphisms in the 3′ untranslated region of HLA-G is associated with preeclampsia

    PubMed Central

    Quach, K.; Grover, S.A.; Kenigsberg, S.; Librach, C.L.

    2016-01-01

    Reduced expression of human leukocyte antigen-G (HLA-G) has been linked to onset of preeclampsia. Associations have also been reported between preeclampsia and single nucleotide polymorphisms (SNP) in the 3′-untranslated region (UTR) of the HLA-G gene. However, there are conflicting results between studies. This studied examined whether a SNP, by itself or in combination with other SNPs, in the 3′UTR of the HLA-G gene is associated with an increased risk of preeclampsia. Placenta samples were obtained from 47 preeclamptic and 68 control cases. DNA was extracted, and the 3′UTR was sequenced and analyzed for nine polymorphisms using different genetic models of inheritance. Four of these polymorphisms have never been analyzed for an association with preeclampsia. Disputing existing reports, preeclamptic cases were suggestively associated with a G/G-genotype at SNP +3187 (p < 0.05). Several SNP combinations were more prevalent in preeclampsia cases. Following corrections for multiple testing, one SNP combination (+3027C/C and +3187G/G) was significantly more prevalent in preeclampsia cases using co-dominant, additive, and dominant models (p < 0.001). Taken together with the current literature, the data suggests that HLA-G 3′UTR SNP-pair associations, and not individual SNPs, could be useful in a predictive test for the susceptibility to preeclampsia. PMID:25454622

  1. [Nucleotide polymorphism in the drought induced transcription factor CBF4 region of Arabidopsis thaliana and its molecular evolution analyses].

    PubMed

    Hao, Gang-Ping; Wu, Zhong-Yi; Cao, Ming-Qing; Pelletier, Georges; Brunel, Dominique; Huang, Cong-Lin; Yang, Qing

    2004-12-01

    Intraspecific nucleotide polymorphism in the drought induced transcription factor CBF4 region of Arabidopsis thaliana was analyzed with 17 core accessions growing in different ecoclimate. High density of single nucleotide polymorphism (SNP) and insertion/deletion (Indel) were found, on average 1 SNP per 35.8 bp and 1 Indel per 143 bp. Nucleotide polymorphism in non-coding region was three times higher than that in coding region. In coding region of CBF4, SNP frequency is one SNP per 96.4 bp, one nonsynonymous mutation was detected from 25 av, 203 av and 244 av accessions, which is the 205th site amino acid variation: gly <--> val caused by the 1034th site (corresponding to 19,696 site nucleotide of GenBank No. AB015478 as 1) nucleotide variation: G <--> T. Statistical result of nucleotide diversity showed that linkage disequilibrium (LD) existed in large-scale region of CBF4 and recombination event was also detected in 5' non-coding region. Identical to the results of other genes of Arabidopsis, different regions of the gene were seemingly under different selective pressures. Balancing selection resulted in high nucleotide diversity in 3' non-coding region, and the neutral mutation hypothesis can explain the DNA polymorphism in coding region, whereas, nature positive selection in the population affected nucleotide variation in 5' non-coding region of gene. PMID:15633649

  2. Selecting a Maximally Informative Set of Single-Nucleotide Polymorphisms for Association Analyses Using Linkage Disequilibrium

    PubMed Central

    Carlson, Christopher S.; Eberle, Michael A.; Rieder, Mark J.; Yi, Qian; Kruglyak, Leonid; Nickerson, Deborah A.

    2004-01-01

    Common genetic polymorphisms may explain a portion of the heritable risk for common diseases. Within candidate genes, the number of common polymorphisms is finite, but direct assay of all existing common polymorphism is inefficient, because genotypes at many of these sites are strongly correlated. Thus, it is not necessary to assay all common variants if the patterns of allelic association between common variants can be described. We have developed an algorithm to select the maximally informative set of common single-nucleotide polymorphisms (tagSNPs) to assay in candidate-gene association studies, such that all known common polymorphisms either are directly assayed or exceed a threshold level of association with a tagSNP. The algorithm is based on the r2 linkage disequilibrium (LD) statistic, because r2 is directly related to statistical power to detect disease associations with unassayed sites. We show that, at a relatively stringent r2 threshold (r2>0.8), the LD-selected tagSNPs resolve >80% of all haplotypes across a set of 100 candidate genes, regardless of recombination, and tag specific haplotypes and clades of related haplotypes in nonrecombinant regions. Thus, if the patterns of common variation are described for a candidate gene, analysis of the tagSNP set can comprehensively interrogate for main effects from common functional variation. We demonstrate that, although common variation tends to be shared between populations, tagSNPs should be selected separately for populations with different ancestries. PMID:14681826

  3. Single nucleotide polymorphism profiling across the methotrexate pathway in normal subjects and patients with rheumatoid arthritis.

    PubMed

    Ranganathan, Prabha; Culverhouse, Robert; Marsh, Sharon; Ahluwalia, Ranjeet; Shannon, William D; Eisen, Seth; McLeod, Howard L

    2004-07-01

    Methotrexate (MTX) is a commonly used disease-modifying antirheumatic drug in rheumatoid arthritis (RA). Polymorphisms occur in several genes encoding key enzymes in the folic acid pathway, which is influenced by MTX, but have not been evaluated in patients with RA. The effect of race on allele frequency has also not been evaluated. In this study, the allele frequencies of polymorphisms in six key enzymes in the MTX-folate pathway in patients with RA and healthy controls, including several common racial groups were studied. European- and African-American patients with RA and European and African healthy controls were genotyped for 22 genetic loci in six genes in the MTX cellular pathway. Differences in genotype distributions between the different racial groups were evaluated using chi(2) tests. Allele frequencies were significantly different (p < 0.001) for eight single nucleotide polymorphisms between the European and African controls. The allele frequencies of two polymorphisms showed significant differences (p < 0.001) between the African- and European-American patients with RA. Thus, racial differences exist between the allele frequencies of several polymorphisms in enzymes in the MTX-folate pathway in patients with RA and healthy controls. Whether such differences contribute to a differential response to MTX in patients with RA deserves to be investigated. PMID:15212592

  4. The nucleotide sequence of the uvrD gene of E. coli.

    PubMed Central

    Finch, P W; Emmerson, P T

    1984-01-01

    The nucleotide sequence of a cloned section of the E. coli chromosome containing the uvrD gene has been determined. The coding region for the UvrD protein consists of 2,160 nucleotides which would direct the synthesis of a polypeptide 720 amino acids long with a calculated molecular weight of 82 kd. The predicted amino acid sequence of the UvrD protein has been compared with the amino acid sequences of other known adenine nucleotide binding proteins and a common sequence has been identified, thought to contribute towards adenine nucleotide binding. PMID:6379604

  5. Spatially localized generation of nucleotide sequence-specific DNA damage

    PubMed Central

    Oh, Dennis H.; King, Brett A.; Boxer, Steven G.; Hanawalt, Philip C.

    2001-01-01

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen–DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for conventional one-photon excitation, as used in psoralen + UV A radiation (320–400 nm) therapy. Target DNA acquired strand-specific psoralen monoadducts in a light dose-dependent fashion. To localize DNA damage in a model tissue-like medium, a DNA–psoTFO mixture was prepared in a polyacrylamide gel and then irradiated with a converging laser beam targeting the rear of the gel. The highest number of photoadducts formed at the rear while relatively sparing DNA at the front of the gel, demonstrating spatial localization of sequence-specific DNA damage by TPE. To assess whether TPE treatment could be extended to cells without significant toxicity, cultured monolayers of normal human dermal fibroblasts were incubated with tritium-labeled psoralen without TFO to maximize detectable damage and irradiated by TPE. DNA from irradiated cells treated with psoralen exhibited a 4- to 7-fold increase in tritium activity relative to untreated controls. Functional survival assays indicated that the psoralen–TPE treatment was not toxic to cells. These results demonstrate that DNA damage can be simultaneously manipulated at the nucleotide level and in three dimensions. This approach for targeting photochemical DNA damage may have photochemotherapeutic applications in skin and other optically accessible tissues. PMID:11572980

  6. Spatially localized generation of nucleotide sequence-specific DNA damage.

    PubMed

    Oh, D H; King, B A; Boxer, S G; Hanawalt, P C

    2001-09-25

    Psoralens linked to triplex-forming oligonucleotides (psoTFOs) have been used in conjunction with laser-induced two-photon excitation (TPE) to damage a specific DNA target sequence. To demonstrate that TPE can initiate photochemistry resulting in psoralen-DNA photoadducts, target DNA sequences were incubated with psoTFOs to form triple-helical complexes and then irradiated in liquid solution with pulsed 765-nm laser light, which is half the quantum energy required for conventional one-photon excitation, as used in psoralen + UV A radiation (320-400 nm) therapy. Target DNA acquired strand-specific psoralen monoadducts in a light dose-dependent fashion. To localize DNA damage in a model tissue-like medium, a DNA-psoTFO mixture was prepared in a polyacrylamide gel and then irradiated with a converging laser beam targeting the rear of the gel. The highest number of photoadducts formed at the rear while relatively sparing DNA at the front of the gel, demonstrating spatial localization of sequence-specific DNA damage by TPE. To assess whether TPE treatment could be extended to cells without significant toxicity, cultured monolayers of normal human dermal fibroblasts were incubated with tritium-labeled psoralen without TFO to maximize detectable damage and irradiated by TPE. DNA from irradiated cells treated with psoralen exhibited a 4- to 7-fold increase in tritium activity relative to untreated controls. Functional survival assays indicated that the psoralen-TPE treatment was not toxic to cells. These results demonstrate that DNA damage can be simultaneously manipulated at the nucleotide level and in three dimensions. This approach for targeting photochemical DNA damage may have photochemotherapeutic applications in skin and other optically accessible tissues. PMID:11572980

  7. A gold nanoparticles-based colorimetric test to detect single nucleotide polymorphisms for improvement of personalized therapy of psoriasis

    NASA Astrophysics Data System (ADS)

    Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo

    2016-04-01

    We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.

  8. In Silico Model-Driven Assessment of the Effects of Single Nucleotide Polymorphisms (SNPs) on Human Red Blood Cell Metabolism

    PubMed Central

    Jamshidi, Neema; Wiback, Sharon J.; Palsson, Bernhard Ø.

    2002-01-01

    The completion of the human genome project and the construction of single nucleotide polymorphism (SNP) maps have lead to significant efforts to find SNPs that can be linked to pathophysiology. In silico models of complete biochemical reaction networks relate a cell's individual reactions to the function of the entire network. Sequence variations can in turn be related to kinetic properties of individual enzymes, thus allowing an in silico model-driven assessment of the effects of defined SNPs on overall cellular functions. This process is applied to defined SNPs in two key enzymes of human red blood cell metabolism: glucose-6-phosphate dehydrogenase and pyruvate kinase. The results demonstrate the utility of in silico models in providing insight into differences between red cell function in patients with chronic and nonchronic anemia. In silico models of complex cellular processes are thus likely to aid in defining and understanding key SNPs in human pathophysiology. PMID:12421755

  9. DigiPINS: a database for vertebrate exonic single nucleotide polymorphisms and its application to cancer association studies.

    PubMed

    Navratil, Vincent; Penel, Simon; Delmotte, Stéphane; Mouchiroud, Dominique; Gautier, Christian; Aouacheria, Abdel

    2008-04-01

    Single nucleotide polymorphisms (SNPs), which are the most abundant form of genetic variations in numerous organisms, have emerged as important tools for the study of complex genetic traits and deciphering of genome evolution. High-throughput genome sequencing projects worldwide provide an unprecedented opportunity for whole-genome SNP analysis in a variety of species. To facilitate SNP discovery in vertebrates, we have developed a web-based, user-friendly, and fully automated application, DigiPINS, for genome-wide identification of exonic SNPs from EST data. Currently, the database can be used to the mining of exonic SNPs in six complete genomes (Homo sapiens, Mus musculus, Rattus norvegicus, Canis familiaris, Gallus gallus and Danio rerio). In addition to providing information on sequence conservation, DigiPINS allows compilation of comprehensive sets of polymorphisms within cancer candidate genes or identification of novel cancer markers, making it potentially useful for cancer association studies. The DigiPINS server is available via the internet at http://pbil.univ-lyon1.fr/gem/DigiPINS/query_DigiPINS.php. PMID:17988782

  10. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot.

    PubMed

    Robledo, Diego; Fernández, Carlos; Hermida, Miguel; Sciara, Andrés; Álvarez-Dios, José Antonio; Cabaleiro, Santiago; Caamaño, Rubén; Martínez, Paulino; Bouza, Carmen

    2016-01-01

    Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species. PMID:26901189

  11. Associations between Single-Nucleotide Polymorphisms in Corticotropin-Releasing Hormone-Related Genes and Irritable Bowel Syndrome

    PubMed Central

    Sasaki, Ayaka; Sato, Naoko; Suzuki, Naoki; Kano, Michiko; Tanaka, Yukari; Kanazawa, Motoyori; Aoki, Masashi; Fukudo, Shin

    2016-01-01

    Irritable bowel syndrome (IBS) is a common functional disorder with distinct features of stress-related pathophysiology. A key mediator of the stress response is corticotropin-releasing hormone (CRH). Although some candidate genes have been identified in stress-related disorders, few studies have examined CRH-related gene polymorphisms. Therefore, we tested our hypothesis that single-nucleotide polymorphisms (SNPs) in CRH-related genes influence the features of IBS. Methods: In total, 253 individuals (123 men and 130 women) participated in this study. They comprised 111 IBS individuals and 142 healthy controls. The SNP genotypes in CRH (rs28364015 and rs6472258) and CRH-binding protein (CRH-BP) (rs10474485) were determined by direct sequencing and real-time polymerase chain reaction. The emotional states of the subjects were evaluated using the State-Trait Anxiety Inventory, Perceived Stress Scale, and the Self-rating Depression Scale. Results: Direct sequencing of the rs28364015 SNP of CRH revealed no genetic variation among the study subjects. There was no difference in the genotype distributions and allele frequencies of rs6472258 and rs10474485 between IBS individuals and controls. However, IBS subjects with diarrhea symptoms without the rs10474485 A allele showed a significantly higher emotional state score than carriers. Conclusions: These results suggest that the CRH and CRH-BP genes have no direct effect on IBS status. However, the CRH-BP SNP rs10474485 has some effect on IBS-related emotional abnormalities and resistance to psychosocial stress. PMID:26882083

  12. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot

    PubMed Central

    Robledo, Diego; Fernández, Carlos; Hermida, Miguel; Sciara, Andrés; Álvarez-Dios, José Antonio; Cabaleiro, Santiago; Caamaño, Rubén; Martínez, Paulino; Bouza, Carmen

    2016-01-01

    Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species. PMID:26901189

  13. Prioritizing sequence polymorphisms for potential association with phenotype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The millions of SNP, insertions and deletions revealed by next generation sequencing (NGS), are certain to include polymorphisms responsible for phenotypic variation. Distinguishing causal from benign variants may allow genomic predictions that are robust across populations. While variants underly...

  14. Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms

    PubMed Central

    Clawson, Michael L; Keen, James E; Smith, Timothy PL; Durso, Lisa M; McDaneld, Tara G; Mandrell, Robert E; Davis, Margaret A; Bono, James L

    2009-01-01

    Background Cattle are a reservoir of Shiga toxin-producing Escherichia coli O157:H7 (STEC O157), and are known to harbor subtypes not typically found in clinically ill humans. Consequently, nucleotide polymorphisms previously discovered via strains originating from human outbreaks may be restricted in their ability to distinguish STEC O157 genetic subtypes present in cattle. The objectives of this study were firstly to identify nucleotide polymorphisms in a diverse sampling of human and bovine STEC O157 strains, secondly to classify strains of either bovine or human origin by polymorphism-derived genotypes, and finally to compare the genotype diversity with pulsed-field gel electrophoresis (PFGE), a method currently used for assessing STEC O157 diversity. Results High-throughput 454 sequencing of pooled STEC O157 strain DNAs from human clinical cases (n = 91) and cattle (n = 102) identified 16,218 putative polymorphisms. From those, 178 were selected primarily within genomic regions conserved across E. coli serotypes and genotyped in 261 STEC O157 strains. Forty-two unique genotypes were observed that are tagged by a minimal set of 32 polymorphisms. Phylogenetic trees of the genotypes are divided into clades that represent strains of cattle origin, or cattle and human origin. Although PFGE diversity surpassed genotype diversity overall, ten PFGE patterns each occurred with multiple strains having different genotypes. Conclusions Deep sequencing of pooled STEC O157 DNAs proved highly effective in polymorphism discovery. A polymorphism set has been identified that characterizes genetic diversity within STEC O157 strains of bovine origin, and a subset observed in human strains. The set may complement current techniques used to classify strains implicated in disease outbreaks. PMID:19463166

  15. Nucleotide sequence and proposed secondary structure of Columnea latent viroid: a natural mosaic of viroid sequences.

    PubMed Central

    Hammond, R; Smith, D R; Diener, T O

    1989-01-01

    The Columnea latent viroid (CLV) occurs latently in certain Columnea erythrophae plants grown commercially. In potato and tomato, CLV causes potato spindle tuber viroid (PSTV)-like symptoms. Its nucleotide sequence and proposed secondary structure reveal that CLV consists of a single-stranded circular RNA of 370 nucleotides which can assume a rod-like structure with extensive base-pairing characteristic of all known viroids. The electrophoretic mobility of circular CLV under nondenaturing conditions suggests a potential tertiary structure. CLV contains extensive sequence homologies to the PSTV group of viroids but contains a central conserved region identical to that of hop stunt viroid (HSV). CLV also shares some biological properties with each of the two types of viroids. Most probably, CLV is the result of intracellular RNA recombination between an HSV-type and one or more PSTV-type viroids replicating in the same plant. Images PMID:2602114

  16. Candidate single-nucleotide polymorphisms and cerebral palsy: A case-control study

    PubMed Central

    HE, XIAO-GUANG; PENG, QI; CHEN, YAN-HUA; HE, TING; HUANG, HUI; MA, ZE-KE; FAN, XUE-JIN; LUO, LING; LIU, SHAO-JI; LU, XIAO-MEI

    2015-01-01

    Certain genetic polymorphisms have been suggested to be associated with cerebral palsy; the candidate genes are involved in thrombophilia, inflammation and preterm labor, but the mechanism remains to be elucidated. The aim of the present study was to investigate the associations between selected single-nucleotide polymorphisms (SNPs) and cerebral palsy among children. A case-control study was conducted, including 74 infants with cerebral palsy (case group) and 99 healthy infants (control group). The distributions of the allele and genotype frequencies were examined for the total cerebral palsy patient population in addition to subgroups divided according to gestational age (preterm versus full-term). The results showed that the rs1042714 variant in adrenergic receptor β-2 (ADRB2) and heterozygosity for ADRB2 were associated with the cerebral palsy risk among the preterm infants. No significant differences in the allele or genotype frequencies were observed between the total cerebral palsy patient population and controls for the eight SNPs investigated. PMID:26623029

  17. Simple sequence repeat polymorphisms in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic mapping, forward genetic analyses, and marker-assisted selection (MAS) have been intractable in intraspecific populations of cultivated peanut (Arachis hypogaea), primarily because domestication and breeding bottlenecks have narrowed genetic diversity and depleted DNA polymorphisms. The DNA...

  18. Contribution of protein Z gene single-nucleotide polymorphism to systemic lupus erythematosus in Egyptian patients.

    PubMed

    Yousry, Sherif M; Shahin, Rasha M H; El Refai, Rasha M

    2016-09-01

    Protein Z has been reported to exert an important role in inhibiting coagulation. Polymorphisms in the protein Z gene (PROZ) may affect protein Z levels and thus play a role in thrombosis. This study aimed to investigate the prevalence and clinical significance of protein Z gene G79A polymorphism in Egyptian patients with systemic lupus erythematosus (SLE). We studied the distribution of the protein Z gene (rs17882561) (G79A) single-nucleotide polymorphism by PCR-restriction fragment length polymorphism in 100 Egyptian patients with SLE and 100 age, sex, and ethnically matched controls. There was no statistically significant difference in the distribution of the genotypes between SLE patients and the control group in our study (P = 0.103). But a statistically significant difference in the frequency of the alleles between SLE patients and controls was observed (P = 0.024). Also a significant association was detected between protein Z genotypes (and also A allele) and thrombosis, which is one of the manifestations of SLE (P = 0.004 and P = 0.001, respectively). Moreover, we observed a significant association between the protein Z AA and GA genotypes (and also A allele) and the presence of anticardiolipin antibodies (P = 0.016 and P = 0.004, respectively). The minor A allele of the G79A polymorphism in the protein Z gene might contribute to the genetic susceptibility of SLE in Egyptian patients. Also, an influence for this polymorphism on some of the disease manifestations has been elucidated, so protein Z G79A AG/AA may be a risk factor for thrombosis. PMID:26761586

  19. Nucleotide sequence of a cloned woodchuck hepatitis virus genome: comparison with the hepatitis B virus sequence.

    PubMed Central

    Galibert, F; Chen, T N; Mandart, E

    1982-01-01

    The complete nucleotide sequence of a woodchuck hepatitis virus genome cloned in Escherichia coli was determined by the method of Maxam and Gilbert. This sequence was found to be 3,308 nucleotides long. Potential ATG initiator triplets and nonsense codons were identified and used to locate regions with a substantial coding capacity. A striking similarity was observed between the organization of human hepatitis B virus and woodchuck hepatitis virus. Nucleotide sequences of these open regions in the woodchuck virus were compared with corresponding regions present in hepatitis B virus. This allowed the location of four viral genes on the L strand and indicated the absence of protein coded by the S strand. Evolution rates of the various parts of the genome as well as of the four different proteins coded by hepatitis B virus and woodchuck hepatitis virus were compared. These results indicated that: (i) the core protein has evolved slightly less rapidly than the other proteins; and (ii) when a region of DNA codes for two different proteins, there is less freedom for the DNA to evolve and, moreover, one of the proteins can evolve more rapidly than the other. A hairpin structure, very well conserved in the two genomes, was located in the only region devoid of coding function, suggesting the location of the origin of replication of the viral DNA. Images PMID:7086958

  20. Associations of immunity-related single nucleotide polymorphisms with overall survival among prostate cancer patients

    PubMed Central

    Miles, Fayth L; Rao, Jian-Yu; Eckhert, Curtis; Chang, Shen-Chih; Pantuck, Allan; Zhang, Zuo-Feng

    2015-01-01

    The progression of prostate cancer is influenced by systemic inflammation, and may be attributed, in part, to genetic predisposition. Single nucleotide polymorphisms associated with the immune response may help mediate prostate cancer progression. We analyzed data from a hospital-based case-control study of 164 prostate cancer patients and 157 healthy male controls from the Memorial Sloan Kettering Cancer Center. We evaluated associations between six immunity-related polymorphisms (CRP rs1205 and rs1800947, FGFR2 rs1219648 and rs2981582, IFNGR1 rs11914, and IL10 rs1800871) and overall survival among prostate cancer patients, calculating adjusted hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards regression. FGFR2 rs1219648 (GG vs. AA) and rs2981582 (TT vs. CC) polymorphisms were associated with more favorable overall survival (HR: 0.13, 95% CI: 0.03-0.62 and HR: 0.13, 95% CI: 0.03-0.53, respectively) in patients with primary prostate cancer. These observations highlight the need to validate and identify these and other immunity-related polymorphisms in larger studies examining survival of prostate cancer patients. PMID:26379965

  1. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array.

    PubMed

    Rubinstein, Mor; Katzenellenbogen, Mark; Eshed, Ravit; Rozen, Ada; Katzir, Nurit; Colle, Marivi; Yang, Luming; Grumet, Rebecca; Weng, Yiqun; Sherman, Amir; Ophir, Ron

    2015-01-01

    Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs) or on combinations of SSRs and sequence-related amplified polymorphism (SRAP). In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs). These markers cover the cucumber genome with a median interval of ~2 Kb and have expected genotype calls in parents/F1 hybridizations as a training set. The training set was validated with Fluidigm technology and showed 96% concordance with the genotype calls in the parents/F1 hybridizations. Application of the genotyping array was illustrated by constructing a 598.7 cM genetic map based on a '9930' × 'Gy14' recombinant inbred line (RIL) population comprised of 11,156 SNPs. Marker collinearity between the genetic map and reference genomes of the two parents was estimated at R2 = 0.97. We also used the array-derived genetic map to investigate chromosomal rearrangements, regional recombination rate, and specific regions with segregation distortions. Finally, 82% of the linkage-map bins were polymorphic in other cucumber variants, suggesting that the array can be applied for genotyping in other lines. The genotyping array presented here, together with the genotype calls of the parents/F1 hybridizations as a training set, should be a powerful tool in future studies with high-throughput cucumber genotyping. An ultrahigh-density linkage map constructed by this genotyping array on RIL population may be invaluable for assembly improvement, and for mapping important cucumber QTLs. PMID:25874931

  2. Ultrahigh-Density Linkage Map for Cultivated Cucumber (Cucumis sativus L.) Using a Single-Nucleotide Polymorphism Genotyping Array

    PubMed Central

    Rubinstein, Mor; Katzenellenbogen, Mark; Eshed, Ravit; Rozen, Ada; Katzir, Nurit; Colle, Marivi; Yang, Luming; Grumet, Rebecca; Weng, Yiqun; Sherman, Amir; Ophir, Ron

    2015-01-01

    Genotyping arrays are tools for high-throughput genotyping, which is beneficial in constructing saturated genetic maps and therefore high-resolution mapping of complex traits. Since the report of the first cucumber genome draft, genetic maps have been constructed mainly based on simple-sequence repeats (SSRs) or on combinations of SSRs and sequence-related amplified polymorphism (SRAP). In this study, we developed the first cucumber genotyping array consisting of 32,864 single-nucleotide polymorphisms (SNPs). These markers cover the cucumber genome with a median interval of ~2 Kb and have expected genotype calls in parents/F1 hybridizations as a training set. The training set was validated with Fluidigm technology and showed 96% concordance with the genotype calls in the parents/F1 hybridizations. Application of the genotyping array was illustrated by constructing a 598.7 cM genetic map based on a ‘9930’ × ‘Gy14’ recombinant inbred line (RIL) population comprised of 11,156 SNPs. Marker collinearity between the genetic map and reference genomes of the two parents was estimated at R2 = 0.97. We also used the array-derived genetic map to investigate chromosomal rearrangements, regional recombination rate, and specific regions with segregation distortions. Finally, 82% of the linkage-map bins were polymorphic in other cucumber variants, suggesting that the array can be applied for genotyping in other lines. The genotyping array presented here, together with the genotype calls of the parents/F1 hybridizations as a training set, should be a powerful tool in future studies with high-throughput cucumber genotyping. An ultrahigh-density linkage map constructed by this genotyping array on RIL population may be invaluable for assembly improvement, and for mapping important cucumber QTLs. PMID:25874931

  3. Single nucleotide polymorphisms of the tenomodulin gene (TNMD) in age-related macular degeneration

    PubMed Central

    Nevalainen, Tanja; Kolehmainen, Marjukka; Seitsonen, Sanna; Immonen, Ilkka; Uusitupa, Matti; Kaarniranta, Kai; Pulkkinen, Leena

    2009-01-01

    Purpose Tenomodulin (TNMD) is located in the X-chromosome encoding a putative angiogenesis inhibitor which is expressed in retina. Associations of single nucleotide polymorphisms of TNMD with the prevalence of age-related macular degeneration (AMD) were examined. Methods Six markers covering 75% of the common sequence variation in the coding region of TNMD and 10 kb up- and downstream were genotyped in a sample consisting of 89 men and 175 women with exudative AMD, 18 men and 25 women with atrophic AMD, and 55 men and 113 women without AMD. All participants were over 65 years old and did not have diabetes mellitus. Due to the chromosomal locus, the association of genotypes with AMD was assessed genderwise. Results Three markers, rs1155974, rs2073163, and rs7890586, were associated with a risk of AMD in women. In comparison to women with other genotypes, the women who were homozygous for the minor allele (genotypes rs1155974-TT or rs2073163-CC) had 2.6 fold (p=0.021) or 1.9 fold (p=0.067) risk for having AMD, respectively. These differences were due to the unequal prevalence of exudative AMD. In comparison to women who were homozygous for the major alleles, the women with rs1155974-TT genotype had a 2.8 fold risk (p=0.021 in additive model; p=0.022 in recessive model) for exudative AMD, and the women with rs2073163-CC genotype had a 1.8 fold risk (p=0.09 in additive model; p=0.038 in recessive model). Furthermore, women carrying the rare rs7890586-AA genotype had a significantly smaller risk for having AMD than women with the other genotypes (odds ratio 0.083; p=0.001 in recessive model), but due to the low frequency of this genotype, this finding must be interpreted cautiously. The false discovery rate was <10% for all of the aforementioned results. Conclusions On the basis of the putative antiangiogenic role of TNMD and the present genetic associations of TNMD with AMD in women, we suggest that TNMD could be a novel candidate gene for AMD. These results should be

  4. Silicon Based System for Single-Nucleotide-Polymorphism Detection: Chip Fabrication and Thermal Characterization of Polymerase Chain Reaction Microchamber

    NASA Astrophysics Data System (ADS)

    Majeed, Bivragh; Jones, Ben; Tezcan, Deniz S.; Tutunjyan, Nina; Haspeslagh, Luc; Peeters, Sara; Fiorini, Paolo; de Beeck, Maaike Op; Van Hoof, Chris; Hiraoka, Maki; Tanaka, Hiroyuki; Yamashita, Ichiro

    2012-04-01

    A single nucleotide polymorphism (SNP) is a difference in the DNA sequence of one nucleotide only. We recently proposed a lab-on-a-chip (LoC) system which has the potentiality of fast, sensitive and highly specific SNP detection. Most of the chip components are silicon based and fabricated within a single process. In this paper, the newly developed fabrication method for the silicon chip is presented. The robust and reliable process allows etching structures on the same chip with very different aspect ratios. The characterization of a crucial component to the LoC SNP detector, the microreactor where DNA amplification is performed, is also detailed. Thanks to innovative design and fabrication methodologies, the microreactor has an excellent thermal isolation from the surrounding silicon substrate. This allows for highly localized temperature control. Furthermore, the microreactor is demonstrated to have rapid heating and cooling rates, allowing for rapid amplification of the target DNA fragments. Successful DNA amplification in the microreactor is demonstrated.

  5. Complete nucleotide sequence of the temperate bacteriophage LBR48, a new member of the family Myoviridae.

    PubMed

    Jang, Se Hwan; Yoon, Bo Hyun; Chang, Hyo Ihl

    2011-02-01

    The complete genomic sequence of LBR48, a temperate bacteriophage induced from a lysogenic strain of Lactobacillus brevis, was found to be 48,211 nucleotides long and to contain 90 putative open reading frames. Based on structural characteristics obtained from microscopic analysis and nucleic acid sequence determination, phage LBR48 can be classified as a member of the family Myoviridae. Analysis of the genome showed the conserved gene order of previously reported phages of the family Siphoviridae from lactic acid bacteria, despite low nucleotide sequence similarity. Analysis of the attachment sites revealed 15-nucleotide-long core sequences. PMID:20976608

  6. Genetic association of single nucleotide polymorphisms in dystrobrevin binding protein 1 gene with schizophrenia in a Malaysian population

    PubMed Central

    Tan, Grace Kang Ning; Tee, Shiau Foon; Tang, Pek Yee

    2015-01-01

    Dystrobrevin binding protein 1 (DTNBP1) gene is pivotal in regulating the glutamatergic system. Genetic variants of the DTNBP1 affect cognition and thus may be particularly relevant to schizophrenia. We therefore evaluated the association of six single nucleotide polymorphisms (SNPs) with schizophrenia in a Malaysian population (171 cases; 171 controls). Associations between these six SNPs and schizophrenia were tested in two stages. Association signals with p < 0.05 and minor allele frequency > 0.05 in stage 1 were followed by genotyping the SNPs in a replication phase (stage 2). Genotyping was performed with sequenced specific primer (PCR-SSP) and restriction fragment length polymorphism (PCR-RFLP). In our sample, we found significant associations between rs2619522 (allele p = 0.002, OR = 1.902, 95%CI = 1.266 – 2.859; genotype p = 0.002) and rs2619528 (allele p = 0.008, OR = 1.606, 95%CI = 1.130 – 2.281; genotype p = 6.18 × 10−5) and schizophrenia. Given that these two SNPs may be associated with the pathophysiology of schizophrenia, further studies on the other DTNBP1 variants are warranted. PMID:26273215

  7. Analysis of Horse Myostatin Gene and Identification of Single Nucleotide Polymorphisms in Breeds of Different Morphological Types

    PubMed Central

    Dall'Olio, Stefania; Fontanesi, Luca; Nanni Costa, Leonardo; Tassinari, Marco; Minieri, Laura; Falaschini, Adalberto

    2010-01-01

    Myostatin (MSTN) is a negative modulator of muscle mass. We characterized the horse (Equus caballus) MSTN gene and identified and analysed single nucleotide polymorphisms (SNPs) in breeds of different morphological types. Sequencing of coding, untranslated, intronic, and regulatory regions of MSTN gene in 12 horses from 10 breeds revealed seven SNPs: two in the promoter, four in intron 1, and one in intron 2. The SNPs of the promoter (GQ183900:g.26T>C and GQ183900:g.156T>C, the latter located within a conserved TATA-box like motif) were screened in 396 horses from 16 breeds. The g.26C and the g.156C alleles presented higher frequency in heavy (brachymorphic type) than in light breeds (dolichomorphic type such as Italian Trotter breed). The significant difference of allele frequencies for the SNPs at the promoter and analysis of molecular variance (AMOVA) on haplotypes indicates that these polymorphisms could be associated with variability of morphology traits in horse breeds. PMID:20706663

  8. A single nucleotide polymorphism in suppressor of cytokine signalling-2 is associated with growth and feed conversion efficiency in pigs.

    PubMed

    Chen, Y; Piper, E; Zhang, Y; Tier, B; Graser, H U; Luxford, B G; Moran, C

    2011-04-01

    Feed efficiency and growth are the most important traits in pig production, and very few genetic markers have been reported to be associated with feed efficiency. The suppressor of cytokine signalling-2 (encoded by SOCS2) is the main negative regulator of somatic growth, and the knockout of SOCS2 and naturally mutant mice have high-growth phenotypes. Porcine SOCS2 was selected as a primary positional candidate for feed efficiency, because it is located on chromosome 5q, in the vicinity of a Quantitative Trait Locus (QTL) region for food conversion ratio in pigs. Here, we report five single nucleotide polymorphisms identified by sequencing of the promoter region and exon 1. One PCR-RFLP assay was designed for genotyping the polymorphism c.1667A > G (GenBank Accession No AY312266). Association analyses were performed in an Australian mapping resource pedigree population (PRDC-US43) for food conversion ratio, backfat, IGF1 level and growth traits and showed significant effects on average daily gain on test (ADG2) (P < 0.01) and marginal association with food conversion ratio (FCR) (P < 0.08). PMID:24725230

  9. Association study of interleukin-1 family and interleukin-6 gene single nucleotide polymorphisms in recurrent aphthous stomatitis.

    PubMed

    Najafi, S; Yousefi, H; Mohammadzadeh, M; Bidoki, A Z; Firouze Moqadam, I; Farhadi, E; Amirzargar, A A; Rezaei, N

    2015-12-01

    Recurrent aphthous stomatitis (RAS) is a common painful, ulcerative oral inflammatory disorder with unknown aetiology. Immune system and aberrant cytokine cascade deemed to be critical in outbreaks of RAS ulcers. Interleukin-1 (IL-1) and IL-6 are the most potent pro-inflammatory cytokines. Single nucleotide polymorphisms (SNPs) of IL-1 and IL-6 genes can affect the secretion of these cytokines. The aim of this study was to investigate the association between RAS and IL-6 and IL-1 in Iranian subjects with minor RAS. Genomic DNA was obtained from 64 Iranian patients with RAS. IL-1α C -889 T, IL-1β C -511 T, IL-1β C +3962 T, IL-1R C pst-I 1970 T, IL-1Ra C Mspa-I11100 T, IL-6 C -174 G and IL-6 A nt +565 G polymorphisms were determined using polymerase chain reaction with sequence-specific primers (PCR-SSP). The frequency of C -174 C genotype in the patients group was significantly different from the healthy control. No other significant differences were found in genotype and alleles frequencies between the two groups. These results indicate that certain SNPs of IL-6 gene at position -174 which located in promoter have association with predisposition of individuals to RAS. PMID:26385127

  10. Regulatory single nucleotide polymorphisms at the beginning of intron 2 of the human KRAS gene.

    PubMed

    Antontseva, Elena V; Matveeva, Marina Yu; Bondar, Natalia P; Kashina, Elena V; Leberfarb, Elena Yu; Bryzgalov, Leonid O; Gervas, Polina A; Ponomareva, Anastasia A; Cherdyntseva, Nadezhda V; Orlov, Yury L; Merkulova, Tatiana I

    2015-12-01

    There are two regulatory single nucleotide polymorphisms (rSNPs) at the beginning of the second intron of the mouse K-ras gene that are strongly associated with lung cancer susceptibility. We performed functional analysis of three SNPs (rs12228277: T greater than A, rs12226937: G greater than A, and rs61761074: T greater than G) located in the same region of human KRAS. We found that rs12228277 and rs61761074 result in differential binding patterns of lung nuclear proteins to oligonucleotide probes corresponding two alternative alleles; in both cases, the transcription factor NF-Y is involved. G greater than A substitution (rs12226937) had no effect on the binding of lung nuclear proteins. However, all the nucleotide substitutions under study showed functional effects in a luciferase reporter assay. Among them, rs61761074 demonstrated a significant correlation with allele frequency in non-small-cell lung cancer (NSCLC). Taken together, the results of our study suggest that a T greater than G substitution at nucleotide position 615 in the second intron of the KRAS gene (rs61761074) may represent a promising genetic marker of NSCLC. PMID:26648033

  11. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition

    PubMed Central

    Ulpinnis, Chris; Scholz, Uwe; Altmann, Thomas

    2015-01-01

    A major goal of maize genomic research is to identify sequence polymorphisms responsible for phenotypic variation in traits of economic importance. Large-scale detection of sequence variation is critical for linking genes, or genomic regions, to phenotypes. However, due to its size and complexity, it remains expensive to generate whole genome sequences of sufficient coverage for divergent maize lines, even with access to next generation sequencing (NGS) technology. Because methods involving reduction of genome complexity, such as genotyping-by-sequencing (GBS), assess only a limited fraction of sequence variation, targeted sequencing of selected genomic loci offers an attractive alternative. We therefore designed a sequence capture assay to target 29 Mb genomic regions and surveyed a total of 4,648 genes possibly affecting biomass production in 21 diverse inbred maize lines (7 flints, 14 dents). Captured and enriched genomic DNA was sequenced using the 454 NGS platform to 19.6-fold average depth coverage, and a broad evaluation of read alignment and variant calling methods was performed to select optimal procedures for variant discovery. Sequence alignment with the B73 reference and de novo assembly identified 383,145 putative single nucleotide polymorphisms (SNPs), of which 42,685 were non-synonymous alterations and 7,139 caused frameshifts. Presence/absence variation (PAV) of genes was also detected. We found that substantial sequence variation exists among genomic regions targeted in this study, which was particularly evident within coding regions. This diversification has the potential to broaden functional diversity and generate phenotypic variation that may lead to new adaptations and the modification of important agronomic traits. Further, annotated SNPs identified here will serve as useful genetic tools and as candidates in searches for phenotype-altering DNA variation. In summary, we demonstrated that sequencing of captured DNA is a powerful approach for

  12. Association of single nucleotide polymorphisms in MPO and COX genes with oral lichen planus.

    PubMed

    Wu, D; Chen, X; Dong, C; Liu, Q; Yang, Y; He, C; Wang, J; Sun, M; Wu, Y

    2015-06-01

    Oral lichen planus (OLP) is an intractable, chronic inflammatory disorder, and its pathogenesis is still largely unknown. Some literatures supported that genes involved in both oxidative stress and prostaglandin metabolism play an important role in the process of inflammation. To explore their association with OLP, we investigated four single nucleotide polymorphisms (SNPs) from myeloperoxidase (MPO) and cyclooxygenase (COX) genes in 475 Chinese individuals (242 case and 233 controls) by MassArray. Although the genotype distributions had no significant differences between the patients and controls, we found that in different gender, rs2243828 from MPO displayed the statistically significant variance genotype frequencies between patients and controls (P = 0.018 in females, P = 0.035 in males). Moreover, for the major allele recessive model, this SNP also showed a significant difference between case and control groups in males (P = 0.015). In this study, we first observed significant association with MPO polymorphism and OLP risk in different gender groups in Chinese, suggesting MPO polymorphism is a gender-specific risk factor of OLP probably by influencing sex hormone-sensitive elements to regulate inflammatory gene expression networks, and we further revealed that oxidative stress was actually involved in the pathogenesis of this disease. Moreover, these findings inspire us some constructive solutions to the treatment of this disease. PMID:25823564

  13. The human BARX2 gene: genomic structure, chromosomal localization, and single nucleotide polymorphisms.

    PubMed

    Hjalt, T A; Murray, J C

    1999-12-15

    The BARX genes 1 and 2 are Bar class homeobox genes expressed in craniofacial structures during development. In this report, we present the genomic structure, chromosomal localization, and polymorphic markers in BARX2. The gene has four exons, ranging in size from 85 to 1099 bp. BARX2 is localized on human chromosome 11q25, as determined by radiation hybrid mapping. In the mouse, Barx2 is coexpressed with Pitx2 in several tissues. Based on the coexpression, BARX2 was assumed to be a candidate gene for those cases of Rieger syndrome that cannot be associated with mutations of PITX2. Mutations in PITX2 cause some cases of Rieger syndrome, an autosomal dominant disorder affecting eyes, teeth, and umbilicus. DNA from Rieger patients was subjected to single-strand conformation polymorphism screening of the BARX2 coding region. Three single nucleotide polymorphisms were found in a normal population, although no etiologic mutations were detectable in over 100 cases of Rieger syndrome or in individuals with related ocular disorders. PMID:10644443

  14.  Monozygotic twins with NASH cirrhosis: cumulative effect of multiple single nucleotide polymorphisms?

    PubMed

    Grove, Jane I; Austin, Mark; Tibble, Jeremy; Aithal, Guruprasad P; Verma, Sumita

    2016-01-01

     Multiple genetic and environmental factors interact to determine an individual's predisposition to non-alcoholic fatty liver disease and its phenotypic characteristics. Association studies have found a number of alleles associated with the development of non-alcoholic steatohepatitis. Our aim was to investigate whether multiple risk-associated alleles may be present in affected monozygotic twins, indicating underlying genetic predisposition to non-alcoholic steatohepatitis. We determined the genotype of 14 candidate gene polymorphisms (at 11 unlinked loci) in a set of monozygotic twins who presented with cirrhosis within 18 months of each other. Genotyping revealed multiple single nucleotide polymorphisms at 9 independent loci in genes PNPLA3, APOC3, GCKR, TRIB1, LYPLAL1, PPP1R3B, COL13A1, and EFCAB4B, previously implicated in contributing to non-alcoholic steatohepatitis pathogenesis. In conclusion, this case series illustrates the potential cumulative effect of multiple polymorphisms in the development and potential progression of a complex trait such as NASH cirrhosis. PMID:26845607

  15. Single-nucleotide polymorphisms in porcine mannan-binding lectin A.

    PubMed

    Lillie, Brandon N; Keirstead, Natalie D; Squires, E James; Hayes, M Anthony

    2006-12-01

    The MBL1 and MBL2 genes encode mannan-binding lectins (MBL) A and C, respectively, that are collagenous lectins (collectins) produced mainly by the liver. Several single-nucleotide polymorphisms (SNPs) in the human MBL2 gene are responsible for various innate immune dysfunctions due to abnormal structure or expression of human MBL-C. The MBL1 gene encodes MBL-A, which has bacteria-binding properties in pigs and rodents but is mutated to a pseudogene in humans and chimpanzees. In these studies, we surveyed both porcine MBL genes for SNPs that might impair disease resistance. Single-strand conformational polymorphism (SSCP) analysis of MBL cDNAs from porcine liver revealed three SNPs within the coding region of MBL1 in various breeds of pigs. One nonsynonymous SNP that substituted cysteine for glycine in the collagen-like domain of pig MBL-A was found by a multiplex PCR test in all European pig breeds examined, with allele frequencies ranging from 1.4 to 46.4%. No SNPs were identified in the coding region of porcine MBL2 but the expression of MBL-C in the liver was widely variable in comparison to the expression of MBL-A, GAPDH, PigMAP, and haptoglobin. These results indicate that some pigs have a miscoding defect in MBL-A and a possible expression defect in MBL-C, which are analogous to coding and promoter polymorphisms that affect human MBL-C. PMID:17089118

  16. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... acids are not intended to be embraced by this definition. Any amino acid sequence that contains post-translationally modified amino acids may be described as the amino acid sequence that is initially translated... sequence of four or more amino acids or an unbranched sequence of ten or more nucleotides....

  17. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... acids are not intended to be embraced by this definition. Any amino acid sequence that contains post-translationally modified amino acids may be described as the amino acid sequence that is initially translated... sequence of four or more amino acids or an unbranched sequence of ten or more nucleotides....

  18. 37 CFR 1.821 - Nucleotide and/or amino acid sequence disclosures in patent applications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acids are not intended to be embraced by this definition. Any amino acid sequence that contains post-translationally modified amino acids may be described as the amino acid sequence that is initially translated... sequence of four or more amino acids or an unbranched sequence of ten or more nucleotides....

  19. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.

    PubMed

    Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu

    2016-01-01

    Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs

  20. A single nucleotide polymorphism in an exon dictates allele dependent differential splicing of episialin mRNA.

    PubMed Central

    Ligtenberg, M J; Gennissen, A M; Vos, H L; Hilkens, J

    1991-01-01

    The episialin gene (MUC1) encodes an epithelial mucin containing a variable number of repeats with a length of twenty amino acids, resulting in many different alleles that can be subdivided into two size classes. The episialin pre-mRNA uses either one of two neighbouring splice acceptor sites for exon 2, which mainly encodes the repeats. Using the genetic polymorphism of the episialin gene to identify different alleles, we show here that the splice site recognition is allele dependent and is based on a single A/G nucleotide difference in exon 2 eight nucleotides downstream of the second splice acceptor site. Transfection experiments confirm that this polymorphic nucleotide regulates the splice site selection. The identity of this nucleotide is in most cases correlated with one of the size classes of the alleles, indicating that mutations altering the number of repeats seldom arise by unequal cross-over between the repeat regions. Images PMID:2014168

  1. Nucleotide sequence analysis with polynucleotide kinase and nucleotide `mapping' methods. 5′-Terminal sequence of deoxyribonucleic acid from bacteriophages λ and 424

    PubMed Central

    Murray, Kenneth

    1973-01-01

    The polynucleotide kinase reaction was used in analyses of complex mixtures of oligodeoxynucleotides which were fractionated by various two-dimensional nucleotide `mapping' procedures. Parallel ionophoretic analyses on DEAE-cellulose paper, pH2, and AE-cellulose paper, pH3.5, of venom phosphodiesterase partial digests of 5′-terminally labelled oligonucleotides enabled the sequence of the nucleotides to be deduced uniquely. A `diagonal ionophoresis' method has been used with mixtures of nucleotides. Application of these methods to 5′-terminally labelled DNA from bacteriophage λ gave the terminal sequences pA-G-G-T-C-G and pG-G-G-C-G. Identical 5′-terminal sequences were found with DNA from bacteriophage 424. ImagesPLATE 5PLATE 1PLATE 2PLATE 3PLATE 4 PMID:4352720

  2. The nucleotide sequence of the mouse immunoglobulin epsilon gene: comparison with the human epsilon gene sequence.

    PubMed Central

    Ishida, N; Ueda, S; Hayashida, H; Miyata, T; Honjo, T

    1982-01-01

    We have determined the nucleotide sequence of the immunoglobulin epsilon gene cloned from newborn mouse DNA. The epsilon gene sequence allows prediction of the amino acid sequence of the constant region of the epsilon chain and comparison of it with sequences of the human epsilon and other mouse immunoglobulin genes. The epsilon gene was shown to be under the weakest selection pressure at the protein level among the immunoglobulin genes although the divergence at the synonymous position is similar. Our results suggest that the epsilon gene may be dispensable, which is in accord with the fact that IgE has only obscure roles in the immune defense system but has an undesirable role as a mediator of hypersensitivity. The sequence data suggest that the human and murine epsilon genes were derived from different ancestors duplicated a long time ago. The amino acid sequence of the epsilon chain is more homologous to those of the gamma chains than the other mouse heavy chains. Two membrane exons, separated by an 80-base intron, were identified 1.7 kb 3' to the CH4 domain of the epsilon gene and shown to conserve a hydrophobic portion similar to those of other heavy chain genes. RNA blot hybridization showed that the epsilon membrane exons are transcribed into two species of mRNA in an IgE hybridoma. Images Fig. 4. PMID:6329728

  3. Single nucleotide polymorphisms in G protein signaling pathway genes in preeclampsia.

    PubMed

    Kvehaugen, Anne Stine; Melien, Oyvind; Holmen, Oddgeir Lingaas; Laivuori, Hannele; Oian, Pål; Andersgaard, Alice Beathe; Dechend, Ralf; Staff, Anne Cathrine

    2013-03-01

    Preeclampsia is a pregnancy specific disorder and a risk factor for later cardiovascular disease. The cause and detailed pathophysiology remains unknown. G protein signaling is involved in a variety of physiological processes, including blood pressure regulation. We assessed whether distributions of 3 single nucleotide polymorphisms in genes coding for components of G protein signaling pathways that have been associated with hypertension differ between women with preeclampsia and normotensive pregnant women; the G protein β3 subunit gene (GNB3) C825T polymorphism (rs5443), the angiotensin II type 1 receptor gene (AGTR1) 3'UTR A1166C polymorphism (rs5186), and the regulator of G protein signaling 2 gene (RGS2) 3'UTR C1114G polymorphism (rs4606). Two separate Norwegian study populations were used; a large population based study and a smaller, but clinically well-described pregnancy biobank. A descriptive study of 43 women with eclampsia was additionally included. In the population-based study, an increased odds of preeclampsia (odds ratio, 1.21; [95% confidence interval, 1.05-1.40]; P=0.009) and recurrent preeclampsia (odds ratio, 1.43; [95% confidence interval, 1.06-1.92];, P=0.017) was found in women carrying the rs4606 CG or GG genotype. In early-onset preeclamptic patients with decidual spiral artery biopsies available (n=24), the rs4606 CG or GG genotype was more frequent in those with acute atherosis (resembling early stage of atherosclerosis) compared with those without: odds ratio, 15.0; (95% confidence interval, 2.02-111.2); P=0.004. No association was found between preeclampsia and the rs5443 or the rs5186. The genotype distribution in eclamptic women was not different from preeclamptic women. In conclusion, RGS2 rs4606 may affect the risk and progression of preeclampsia. PMID:23339167

  4. Completion of the nucleotide sequence of sunn-hemp mosaic virus: a tobamovirus pathogenic to legumes.

    PubMed

    Silver, S; Quan, S; Deom, C M

    1996-01-01

    Sunn-hemp mosaic virus (SHMV) is a member of the tobamovirus group of plant viruses. The nucleotide sequence of the 5'-untranslated region, the 129 kD protein gene, and a portion of the 186 kD protein gene of SHMV was determined. The 4,683 nucleotides (nts) reported here completes the sequence of the SHMV genome and complements previous work (Meshi, Ohno, and Okada, Nucleic Acids Res. 10, 6111-6117 [1982]; Mol. Gen. Genet. 184, 20-25 [1981]) to provide the first complete nucleotide sequence for a tobamovirus that is pathogenic to leguminous plants. PMID:8938983

  5. Complete nucleotide sequence of the genomic RNA of tobacco mosaic virus strain Cg.

    PubMed

    Yamanaka, T; Komatani, H; Meshi, T; Naito, S; Ishikawa, M; Ohno, T

    1998-01-01

    Tobacco mosaic virus (TMV)-Cg is a crucifer-infecting tobamovirus that was isolated from field-grown garlic. We determined the complete nucleotide sequence of the genomic RNA of TMV-Cg. The genomic RNA of TMV-Cg consists of 6303 nucleotides and encodes four large open reading frames, organized basically in the same way as that of other tobamoviruses. The nucleotide and deduced amino acid sequences are very similar to those of the other crucifer-infecting tobamoviruses that have been sequenced so far. PMID:9608662

  6. Matrix genes of measles virus and canine distemper virus: cloning, nucleotide sequences, and deduced amino acid sequences.

    PubMed Central

    Bellini, W J; Englund, G; Richardson, C D; Rozenblatt, S; Lazzarini, R A

    1986-01-01

    The nucleotide sequences encoding the matrix (M) proteins of measles virus (MV) and canine distemper virus (CDV) were determined from cDNA clones containing these genes in their entirety. In both cases, single open reading frames specifying basic proteins of 335 amino acid residues were predicted from the nucleotide sequences. Both viral messages were composed of approximately 1,450 nucleotides and contained 400 nucleotides of presumptive noncoding sequences at their respective 3' ends. MV and CDV M-protein-coding regions were 67% homologous at the nucleotide level and 76% homologous at the amino acid level. Only chance homology was observed in the 400-nucleotide trailer sequences. Comparisons of the M protein sequences of MV and CDV with the sequence reported for Sendai virus (B. M. Blumberg, K. Rose, M. G. Simona, L. Roux, C. Giorgi, and D. Kolakofsky, J. Virol. 52:656-663; Y. Hidaka, T. Kanda, K. Iwasaki, A. Nomoto, T. Shioda, and H. Shibuta, Nucleic Acids Res. 12:7965-7973) indicated the greatest homology among these M proteins in the carboxyterminal third of the molecule. Secondary-structure analyses of this shared region indicated a structurally conserved, hydrophobic sequence which possibly interacted with the lipid bilayer. Images PMID:3754588

  7. Single Nucleotide Polymorphism of SREBF-1 Gene Associated with an Increased Risk of Endometrial Cancer in Chinese Women

    PubMed Central

    Dongol, Samina; Wang, Chenguang; Jiang, Jie

    2014-01-01

    Aim Elevated levels of sterol regulatory element-binding protein-1 (SREBP-1) have been found in endometrial cancer (EC), suggesting that it is essential to the development of EC. Obesity and diabetes have been established as known risk factors of EC, while SREBF-1 gene polymorphisms have also been found to be associated with obesity and type II diabetes. Therefore, we hypothesize that single nucleotide polymorphism (SNP) in SREBF-1 gene may be associated with increased risk of EC. Method We analyzed the sequence of SREBF-1 in tissue samples from 30 EC cases and 6 benign controls using high throughput method. Based on the primary results, we selected one SNP (rs2297508) as a genetic marker to conduct a hospital-based case-control study with 139 EC cases and 129 benign controls. The samples were examined under the microscope to determine their histopathology prior to the SNP analysis using RT-PCR. Results Through sequence analysis, we found 10 SNPs of SREBF-1 associated with EC, including 3 new SNPs. Fourteen percent of EC showed the rs2297508 SNP with C allele, while only 7% had the C allele was present in benign controls (p = 0.027, OR = 1.983). Additionally, the C allele was associated with cancer differentiation (p<0.05) and the depth of myometrial invasion (p<0.05). Conclusion Our study indicates that SNP (rs2297508) of SREBF-1 may serve as a genetic predisposition factor for the development of EC and screening of such genetic marker may be helpful in its early detection. PMID:24614076

  8. Association of a single nucleotide polymorphism in akirin 2 gene with marbling in Japanese Black beef cattle

    PubMed Central

    Sasaki, Seiki; Yamada, Takahisa; Sukegawa, Shin; Miyake, Takeshi; Fujita, Tatsuo; Morita, Mitsuo; Ohta, Takeshi; Takahagi, Youichi; Murakami, Hiroshi; Morimatsu, Fumiki; Sasaki, Yoshiyuki

    2009-01-01

    Background Marbling defined by the amount and distribution of intramuscular fat, so-called Shimofuri, is an economically important trait of beef cattle in Japan. The c17-25 expressed sequence tag (EST) has been previously shown to possess expression difference in musculus longissimus muscle between low-marbled and high-marbled steer groups, and to be located within genomic region of a quantitative trait locus for marbling. Thus, the akirin 2 (AKIRIN2) gene containing the c17-25 EST sequence was considered as a positional functional candidate for the gene responsible for marbling. In this study, we explored single nucleotide polymorphism (SNP) in the AKIRIN2 and analyzed association of the SNP with marbling. Findings A SNP in the 3' untranslated region of the AKIRIN2, referred to as c.*188G>A, was the only difference detected between high- and low-marbled steer groups. The SNP was associated with marbling in 3 experiments using 100 sires (P = 0.041), 753 paternal half-sib progeny steers from 4 sires heterozygous for the c.*188G>A (P = 0.005), and 730 paternal half-sib progeny steers from 3 sires homozygous for the A allele at the c.*188G>A (P = 0.047), in Japanese Black beef cattle. The effect of genotypes of the SNP on subcutaneous fat thickness was not statistically significant (P > 0.05). Conclusion These findings suggest that the AKIRIN2 SNP polymorphism is associated with marbling and may be useful for effective marker-assisted selection to increase the levels of marbling in Japanese Black beef cattle. PMID:19594944

  9. Genetic Diversity and Relatedness of Sweet Cherry (Prunus Avium L.) Cultivars Based on Single Nucleotide Polymorphic Markers

    PubMed Central

    Fernandez i Marti, Angel; Athanson, Blessing; Koepke, Tyson; Font i Forcada, Carolina; Dhingra, Amit; Oraguzie, Nnadozie

    2012-01-01

    Most previous studies on genetic fingerprinting and cultivar relatedness in sweet cherry were based on isoenzyme, RAPD, and simple sequence repeat (SSR) markers. This study was carried out to assess the utility of single nucleotide polymorphism (SNP) markers generated from 3′ untranslated regions (UTR) for genetic fingerprinting in sweet cherry. A total of 114 sweet cherry germplasm representing advanced selections, commercial cultivars, and old cultivars imported from different parts of the world were screened with seven SSR markers developed from other Prunus species and with 40 SNPs obtained from 3′ UTR sequences of Rainier and Bing sweet cherry cultivars. Both types of marker study had 99 accessions in common. The SSR data was used to validate the SNP results. Results showed that the average number of alleles per locus, mean observed heterozygosity, expected heterozygosity, and polymorphic information content values were higher in SSRs than in SNPs although both set of markers were similar in their grouping of the sweet cherry accessions as shown in the dendrogram. SNPs were able to distinguish sport mutants from their wild type germplasm. For example, “Stella” was separated from “Compact Stella.” This demonstrates the greater power of SNPs for discriminating mutants from their original parents than SSRs. In addition, SNP markers confirmed parentage and also determined relationships of the accessions in a manner consistent with their pedigree relationships. We would recommend the use of 3′ UTR SNPs for genetic fingerprinting, parentage verification, gene mapping, and study of genetic diversity in sweet cherry. PMID:22737155

  10. The complete nucleotide sequence and genome organization of Red clover vein mosaic virus (genus Carlavirus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover vein mosaic virus (RCVMV) is a serious pathogen of legume crops including pea, chickpea and lentil. The complete nucleotide sequence was generated from an isolate obtained from chickpea in Washington State. The complete genome of RCVMV consists of 8605 nucleotides excluding the poly(A) ...

  11. Analysis of single nucleotide polymorphism among Varicella-Zoster Virus and identification of vaccine-specific sites.

    PubMed

    Jeon, Jeong Seon; Won, Youn Hee; Kim, In Kyo; Ahn, Jin Hyun; Shin, Ok Sarah; Kim, Jung Hwan; Lee, Chan Hee

    2016-09-01

    Varicella-zoster virus (VZV) is a causative agent for chickenpox and zoster. Live attenuated vaccines have been developed based on Oka and MAV/06 strains. In order to understand the molecular mechanisms of attenuation, complete genome sequences of vaccine and wild-type strains were compared and single nucleotide polymorphism (SNP) was analyzed. ORF22 and ORF62 contained the highest number of SNPs. The detailed analysis of the SNPs suggested 24 potential vaccine-specific sites. All the mutational events found in vaccine-specific sites were transitional, and most of them were substitution of AT to GC pair. Interestingly, 18 of the vaccine-specific sites of the vaccine strains appeared to be genetically heterogeneous. The probability of a single genome of vaccine strain to contain all 24 vaccine-type sequences was calculated to be less than 4%. The average codon adaptation index (CAI) value of the vaccine strains was significantly lower than the CAI value of the clinical strains. PMID:27376245

  12. Prediction by Graph Theoretic Measures of Structural Effects in Proteins Arising from Non-Synonymous Single Nucleotide Polymorphisms

    PubMed Central

    Cheng, Tammy M. K.; Lu, Yu-En; Vendruscolo, Michele; Lio', Pietro; Blundell, Tom L.

    2008-01-01

    Recent analyses of human genome sequences have given rise to impressive advances in identifying non-synonymous single nucleotide polymorphisms (nsSNPs). By contrast, the annotation of nsSNPs and their links to diseases are progressing at a much slower pace. Many of the current approaches to analysing disease-associated nsSNPs use primarily sequence and evolutionary information, while structural information is relatively less exploited. In order to explore the potential of such information, we developed a structure-based approach, Bongo (Bonds ON Graph), to predict structural effects of nsSNPs. Bongo considers protein structures as residue–residue interaction networks and applies graph theoretical measures to identify the residues that are critical for maintaining structural stability by assessing the consequences on the interaction network of single point mutations. Our results show that Bongo is able to identify mutations that cause both local and global structural effects, with a remarkably low false positive rate. Application of the Bongo method to the prediction of 506 disease-associated nsSNPs resulted in a performance (positive predictive value, PPV, 78.5%) similar to that of PolyPhen (PPV, 77.2%) and PANTHER (PPV, 72.2%). As the Bongo method is solely structure-based, our results indicate that the structural changes resulting from nsSNPs are closely associated to their pathological consequences. PMID:18654622

  13. Larva-mediated chalkbrood resistance-associated single nucleotide polymorphism markers in the honey bee Apis mellifera.

    PubMed

    Liu, Y; Yan, L; Li, Z; Huang, W-F; Pokhrel, S; Liu, X; Su, S

    2016-06-01

    Chalkbrood is a disease affecting honey bees that seriously impairs brood growth and productivity of diseased colonies. Although honey bees can develop chalkbrood resistance naturally, the details underlying the mechanisms of resistance are not fully understood, and no easy method is currently available for selecting and breeding resistant bees. Finding the genes involved in the development of resistance and identifying single nucleotide polymorphisms (SNPs) that can be used as molecular markers of resistance is therefore a high priority. We conducted genome resequencing to compare resistant (Res) and susceptible (Sus) larvae that were selected following in vitro chalkbrood inoculation. Twelve genomic libraries, including 14.4 Gb of sequence data, were analysed using SNP-finding algorithms. Unique SNPs derived from chromosomes 2 and 11 were analysed in this study. SNPs from resistant individuals were confirmed by PCR and Sanger sequencing using in vitro reared larvae and resistant colonies. We found strong support for an association between the C allele at SNP C2587245T and chalkbrood resistance. SNP C2587245T may be useful as a genetic marker for the selection of chalkbrood resistance and high royal jelly production honey bee lines, thereby helping to minimize the negative effects of chalkbrood on managed honey bees. PMID:26991518

  14. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases

    PubMed Central

    Skevaki, C; Pararas, M; Kostelidou, K; Tsakris, A; Routsias, J G

    2015-01-01

    Toll-like receptors (TLRs) are the best-studied family of pattern-recognition receptors (PRRs), whose task is to rapidly recognize evolutionarily conserved structures on the invading microorganisms. Through binding to these patterns, TLRs trigger a number of proinflammatory and anti-microbial responses, playing a key role in the first line of defence against the pathogens also promoting adaptive immunity responses. Growing amounts of data suggest that single nucleotide polymorphisms (SNPs) on the various human TLR proteins are associated with altered susceptibility to infection. This review summarizes the role of TLRs in innate immunity, their ligands and signalling and focuses on the TLR SNPs which have been linked to infectious disease susceptibility. PMID:25560985

  15. Chemical Gradient-mediated Melting Curve Analysis for Genotyping of Single Nucleotide Polymorphisms

    PubMed Central

    Russom, Aman; Irimia, Daniel; Toner, Mehmet

    2009-01-01

    This report describes a microfluidic solid-phase Chemical Gradient-mediated Melting Curve Analysis (CGMCA) method for single nucleotide polymorphism (SNP) analysis. The method is based on allele-specific denaturation to discriminate mismatched (MM) from perfectly matched (PM) DNA duplexes upon exposure to linear chemical gradient. PM and MM DNA duplexes conjugated on beads are captured in a microfluidic gradient generator device designed with dams, keeping the beads trapped perpendicular to a gradient generating channel. Two denaturants, formamide and urea, were tested for their ability to destabilize the DNA duplex by competing with Watson-Crick pairing. Upon exposure to the chemical gradient, rapid denaturing profile was monitored in real time using fluorescence microscopy. The results show that the two duplexes exhibit different kinetics of denaturation profiles, enabling discrimination of MM from PM DNA duplexes to score SNP. PMID:19593749

  16. Multiplex single-nucleotide polymorphism typing of the human Y chromosome using TaqMan probes

    PubMed Central

    2011-01-01

    Background The analysis of human Y-chromosome variation in the context of population genetics and forensics requires the genotyping of dozens to hundreds of selected single-nucleotide polymorphisms (SNPs). In the present study, we developed a 121-plex (121 SNPs in a single array) TaqMan array capable of distinguishing most haplogroups and subhaplogroups on the Y-chromosome human phylogeny in Europe. Results We present data from 264 samples from several European areas and ethnic groups. The array developed in this study shows >99% accuracy of assignation to the Y human phylogeny (with an average call rate of genotypes >96%). Conclusions We have created and evaluated a robust and accurate Y-chromosome multiplex which minimises the possible errors due to mixup when typing the same sample in several independent reactions. PMID:21627798

  17. Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder.

    PubMed

    Tortajada-Genaro, Luis A; Mena, Salvador; Niñoles, Regina; Puigmule, Marta; Viladevall, Laia; Maquieira, Ángel

    2016-03-01

    Pharmacological treatment of several diseases, such as attention-deficit hyperactivity disorder (ADHD), presents marked variability in efficiency and its adverse effects. The genotyping of specific single nucleotide polymorphisms (SNPs) can support the prediction of responses to drugs and the genetic risk of presenting comorbidities associated with ADHD. This study presents two rapid and affordable microarray-based strategies to discriminate three clinically important SNPs in genes ADRA2A, SL6CA2, and OPRM1 (rs1800544, rs5569, and rs1799971, respectively). These approaches are allele-specific oligonucleotide hybridization (ASO) and a combination of allele-specific amplification (ASA) and solid-phase hybridization. Buccal swab and blood samples taken from ADHD patients and controls were analyzed by ASO, ASA, and a gold-reference method. The results indicated that ASA is superior in genotyping capability and analytical performance. PMID:26832728

  18. Single Nucleotide Polymorphism Genotyping and Distribution of Coxiella burnetii Strains from Field Samples in Belgium

    PubMed Central

    Dal Pozzo, Fabiana; Renaville, Bénédicte; Martinelle, Ludovic; Renaville, Robert; Thys, Christine; Smeets, François; Kirschvink, Nathalie; Grégoire, Fabien; Delooz, Laurent; Czaplicki, Guy

    2015-01-01

    The genotypic characterization of Coxiella burnetii provides useful information about the strains circulating at the farm, region, or country level and may be used to identify the source of infection for animals and humans. The aim of the present study was to investigate the strains of C. burnetii circulating in caprine and bovine Belgian farms using a single nucleotide polymorphism (SNP) technique. Direct genotyping was applied to different samples (bulk tank milk, individual milk, vaginal swab, fetal product, and air sample). Besides the well-known SNP genotypes, unreported ones were found in bovine and caprine samples, increasing the variability of the strains found in the two species in Belgium. Moreover, multiple genotypes were detected contemporarily in caprine farms at different years of sampling and by using different samples. Interestingly, certain SNP genotypes were detected in both bovine and caprine samples, raising the question of interspecies transmission of the pathogen. PMID:26475104

  19. Estimating population size using single-nucleotide polymorphism-based pedigree data.

    PubMed

    Spitzer, Robert; Norman, Anita J; Schneider, Michael; Spong, Göran

    2016-05-01

    Reliable population estimates are an important aspect of sustainable wildlife management and conservation but can be difficult to obtain for rare and elusive species. Here, we test a new census method based on pedigree reconstruction recently developed by Creel and Rosenblatt (2013). Using a panel of 96 single-nucleotide polymorphisms (SNPs), we genotyped fecal samples from two Swedish brown bear populations for pedigree reconstruction. Based on 433 genotypes from central Sweden (CS) and 265 from northern Sweden (NS), the population estimates (N = 630 for CS, N = 408 for NS) fell within the 95% CI of the official estimates. The precision and accuracy improved with increasing sampling intensity. Like genetic capture-mark-recapture methods, this method can be applied to data from a single sampling session. Pedigree reconstruction combined with noninvasive genetic sampling may thus augment population estimates, particularly for rare and elusive species for which sampling may be challenging. PMID:27096081

  20. Genetic Aberrations in Childhood Acute Lymphoblastic Leukaemia: Application of High-Density Single Nucleotide Polymorphism Array

    PubMed Central

    Sulong, Sarina

    2010-01-01

    Screening of the entire human genome using high-density single nucleotide polymorphism array (SNPA) has become a powerful technique used in cancer genetics and population genetics studies. The GeneChip® Mapping Array, introduced by Affymetrix, is one SNPA platform utilised for genotyping studies. This GeneChip system allows researchers to gain a comprehensive view of cancer biology on a single platform for the quantification of chromosomal amplifications, deletions, and loss of heterozygosity or for allelic imbalance studies. Importantly, this array analysis has the potential to reveal novel genetic findings involved in the multistep development of cancer. Given the importance of genetic factors in leukaemogenesis and the usefulness of screening the whole genome, SNPA analysis has been utilised in many studies to characterise genetic aberrations in childhood acute lymphoblastic leukaemia. PMID:22135543

  1. Microarray study of single nucleotide polymorphisms and expression of ATP-binding cassette genes in breast tumors

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.

    2015-11-01

    Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.

  2. Single nucleotide polymorphisms in toll-like receptor 6 are associated with altered lipopeptide- and mycobacteria-induced IL-6 secretion

    PubMed Central

    Shehu Shey, Muki; Randhawa, April Kaur; Bowmaker, Mark; Smith, Elizabeth; Jens Scriba, Thomas; de Kock, Marwou; Mahomed, Hassan; Hussey, Gregory; Richard Hawn, Thomas; Albert Hanekom, Willem

    2010-01-01

    Toll-like receptors (TLRs) are critical mediators of the immune response to pathogens. The influence of human TLR6 polymorphisms on susceptibility to infection is only partially understood. Most microbes contain lipopeptides recognized by TLR2/1 or TLR2/6 heterodimers. Our aim was to determine whether single nucleotide polymorphisms (SNPs) in TLR6 are associated with altered immune responses to lipopeptides and whole mycobacteria. We sequenced the TLR6 coding region in 100 healthy South African adults to assess genetic variation and determined associations between polymorphisms and lipopeptide- and mycobacteria-induced IL-6 production in whole blood. We found 2 polymorphisms, C745T and G1083C that were associated with altered IL-6 secretion. G1083C was associated with altered IL-6 levels in response to lipopeptides, Mycobacterium tuberculosis lysate (Mtb, P = 0.018) and BCG (P = 0.039). The 745T allele was also associated with lower NF-κB signaling in response to di-acylated lipopeptide, PAM2 (P = 0.019) or Mtb (P = 0.026) in a HEK293 cell line reconstitution assay, compared with the 745C allele. We conclude that TLR6 polymorphisms may be associated with altered lipopeptide-induced cytokine responses and recognition of Mtb. These studies provide new insight into the role of TLR6 variation and the innate immune response to human infection. PMID:20445564

  3. Nucleotide Excision Repair Pathway Polymorphisms and Pancreatic Cancer Risk: Evidence for role of MMS19L

    PubMed Central

    McWilliams, Robert R.; Bamlet, William R.; de Andrade, Mariza; Rider, David N.; Cunningham, Julie M.; Petersen, Gloria M.

    2009-01-01

    Background Nucleotide excision repair (NER) is a vital response to DNA damage, including damage from tobacco exposure. Single nucleotide polymorphisms (SNPs) in the NER pathway may encode alterations that affect DNA repair function and therefore influence risk for pancreatic cancer development. Methods A clinic based case-control study in non-Hispanic white persons compared 1,143 patients with pancreatic adenocarcinoma with 1,097 healthy controls. Twenty-seven genes directly and indirectly involved in the NER pathway were identified and 236 tag-SNPs were selected from 26 of these (one had no SNPs identified). Association studies were performed at the gene level by principal components analysis, while recursive partitioning analysis was utilized to identify potential gene-gene and gene-environment interactions within the pathway. At the individual SNP level, adjusted additive, dominant, and recessive models were investigated, and gene-environment interactions were also assessed. Results Gene level analyses showed an association of MMS19L genotype (chromosome 10q24.1) with altered pancreatic cancer risk (p=0.023). Haplotype analysis of MMS19L also showed a significant association (p=0.0132). Analyses of 7 individual SNPs in this gene showed both protective and risk associations for minor alleles, broadly distributed across patient subgroups defined by smoking status, sex, and age. Conclusion In a candidate pathway SNP association study analysis, common variation in a NER gene, MMS19L, was associated with risk for pancreatic cancer. PMID:19318433

  4. Investigation of single nucleotide polymorphism loci susceptible to degradation by ultraviolet light.

    PubMed

    Machida, Mitsuyo; Taki, Takashi; Shimada, Ryo; Kibayashi, Kazuhiko

    2016-10-01

    DNA in biological fluids is often degraded by environmental factors. Given that single nucleotide polymorphism (SNP) analyses require shorter amplicons than short tandem repeat (STR) analyses do, their use in human identification using degraded samples has recently attracted attention. Although various SNP loci are used to analyze degraded samples, it is unclear which ones are more appropriate. To characterize and identify SNP loci that are susceptible or resistant to degradation, we artificially degraded DNA, obtained from buccal swabs from 11 volunteers, by exposure to ultraviolet (UV) light for different durations (254 nm for 5, 15, 30, 60, or 120 min) and analyzed the resulting SNP loci. DNA degradation was assessed using gel electrophoresis, STR, and SNP profiling. DNA fragmentation occurred within 5 min of UV irradiation, and successful STR and SNP profiling decreased with increasing duration. However, 73% of SNP loci were still detected correctly in DNA samples irradiated for 120 min, a dose that rendered STR loci undetectable. The unsuccessful SNP typing and the base call failure of nucleotides neighboring the SNPs were traced to rs1031825, and we found that this SNP was susceptible to UV light. When comparing the detection efficiencies of STR and SNP loci, SNP typing was more successful than STR typing, making it effective when using degraded DNA. However, it is important to use rs1031825 with caution when interpreting SNP analyses of degraded DNA. PMID:27570235

  5. Assessing the association of single nucleotide polymorphisms at the thyroglobulin gene with carcass traits in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to assess the association of single nucleotide polymorphisms in the thyroglobulin gene, including a previously reported marker in current industry use, with marbling score in beef cattle. Three populations, designated GPE6, GPE7, and GPE8, were studied. The GPE6 pop...

  6. Association of a single nucleotide polymorphism (SNP) of calpain 1 (CAPN1) gene with meat tenderness of yak.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association of a single nucleotide polymorphism (SNP) of calpain 1 (CAPN1) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n=181) was studied. Yaks were harvested at 2, 3, and 4 yr of age (n=51, 59, and 71, respectively), and samples of each yak...

  7. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  8. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low- heritability traits. Semen from 550 Holstein bulls of high (>= 1.7; n=288) or low (<= -2; n = 262) daughter pregnancy rate (DPR) was geno...

  9. Single Nucleotide Polymorphisms in ABCG5 and ABCG8 are associated with changes in cholestrol metabolism during weight loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine whether changes in cholesterol lowering and metabolism after weight loss were affected by single nucleotide polymorphisms (SNPs) in ABCG5 and ABCG8 genes. Methods and Results: Thirty-five hypercholesterolemic women lost 11.7 +/- 2.5 kg (P<0.001). Cholesterol kinetics were ass...

  10. Use of the Illumina GoldenGate assay for single nucleotide polymorphism (SNP) genotyping in cereal crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly parallel genotyping assay, such as the GoldenGate assay developed by Illumina, capable of interrogating up to 3,072 single nucleotide polymorphisms (SNPs) simultaneously, has greatly facilitated the genome-wide studies particularly for crops with large and complex genome structures. In th...

  11. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...

  12. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the low cost of single nucleotide polymorphism (SNP) discovery, use of SNP markers for SNP array development is becoming more affordable. The SNP array is a very useful tool for high throughput genotyping and has a number of applications such as genome-wide association studies (GWAS). Since the...

  13. Single nucleotide polymorphisms in uracil-processing genes, intake of one-carbon nutrients and breast cancer risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Objectives: The misincorporation of uracil into DNA leads to genomic instability. In a previous study, some of us identified four common single nucleotide polymorphisms (SNPs) in uracil-processing genes (rs2029166 and rs7296239 in SMUG1, rs34259 in UNG and rs4775748 in DUT) that were asso...

  14. Effects of bovine cytochrome P450 single nucleotide polymorphism, forage type, and body condition on production traits in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relating single nucleotide polymorphisms (SNP) to cows with acceptable productivity could benefit cattle breeders especially in areas where tall fescue is the predominant forage. This study aimed to 1) identify SNPs in bovine cytochrome P450 3A28 (CYP3A28) and 2) determine associations between SNP g...

  15. Selection of single nucleotide polymorphisms and genotype quality for genomic prediction of genetic merit in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A process to prepare high-density genotypic data for use in genomic prediction of genetic merit was developed. Marker genotypes from over 51,000 single nucleotide polymorphisms (SNP) were generated for 3,139 Holstein bulls on the Illumina Bovine SNP50™ chip. The SNP were categorized by minor allele ...

  16. Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...

  17. A ferrofluid-based homogeneous assay for highly sensitive and selective detection of single-nucleotide polymorphisms.

    PubMed

    Shen, Wei; Lim, Cai Le; Gao, Zhiqiang

    2013-09-21

    A simple and low-cost colorimetric assay utilizing ferrofluidic nanoparticulate probes (FNPs) and a ligase for single-nucleotide polymorphism genotyping is described. Excellent sensitivity and selectivity were accomplished through the engagement of the FNPs and a ligase chain reaction. PMID:23923128

  18. Molecular cloning and sequencing of a novel human P2 nucleotide receptor.

    PubMed

    Southey, M C; Hammet, F; Hutchins, A M; Paidhungat, M; Somers, G R; Venter, D J

    1996-11-11

    A novel human P2 nucleotide receptor has been cloned from a T-cell cDNA library. The predicted amino acid sequence shows characteristics of a G-protein-coupled receptor, and shares 88% homology with a recently characterised rat P2 nucleotide receptor sequence. Distinctive features include an extremely short cytoplasmic tail with only one putative protein kinase C phosphorylation site. Northern blot analysis revealed a 1.9 kb transcript expressed in the placenta. PMID:8950181

  19. Potential impact of a single nucleotide polymorphism in the hyaluronan synthase 1 gene in Waldenstrom's macroglobulinemia.

    PubMed

    Adamia, Sophia; Treon, Steven P; Reiman, Tony; Tournilhac, Olivier; McQuarrie, Carrie; Mant, Michael J; Belch, Andrew R; Pilarski, Linda M

    2005-03-01

    The hyaluronan synthase 1 (HAS1) gene encodes a plasma membrane protein that synthesizes hyaluronan, an extracellular matrix molecule. Previously, in patients with Waldenstrom's macroglobulinemia (WM), we detected upregulation of HAS1 transcripts and identified aberrant splice variants of this gene. Aberrant splicing of HAS1 results from activation of cryptic splice sites. In turn, activation of cryptic donor and acceptor splice sites can be promoted by mutations occurring upstream of these sites and/or at the branch point of slicing. We measured the frequency of the HAS1 833A/G polymorphism (ie, single-nucleotide polymorphism; SNP) in patients with WM and healthy donors. Additionally, HAS1 gene expression was evaluated in the same group of patients. Our observations so far suggest that HAS1 833A/G SNPs contribute to aberrant splicing of this gene; this idea is supported by the fact that 833A/G SNP is located on an exonic splicing enhancer motif. Based on the results obtained thus far, we speculate that individuals with HAS1 833G/G genotype are predisposed toward aberrant HAS1 splicing and expression of HAS1 variants, resulting in an enhanced risk of developing WM. Study of a larger group of patients and healthy donors is needed to confirm these speculations and to evaluate the prognostic significance of these findings. PMID:15794859

  20. Quantitative genotyping of single-nucleotide polymorphisms by allele-specific oligonucleotide hybridization on DNA microarrays.

    PubMed

    Rickert, Andreas M; Ballvora, Agim; Matzner, Ulrich; Klemm, Manfred; Gebhardt, Christiane

    2005-08-01

    Genotyping of SNPs (single-nucleotide polymorphisms) has challenged the development of several novel techniques. Most of these methods have been introduced to discriminate binary SNPs in diploid species. In the present study, the quantitative genotyping of SNPs in natural DNA pools of a polyploid organism via DNA microarrays was analysed. Three randomly selected SNP loci were genotyped in the tetraploid species potato (Solanum tuberosum). For each SNP, 24 oligomers were designed, 12 with forward and 12 with reverse orientation. They contained the polymorphic site at one of the positions 11, 14 and 17. Several steps of optimizations were performed, including the 'materials' used and the establishment of hybridization conditions. Glass surfaces were either epoxy- or aldehyde-modified, and allele-specific oligonucleotides contained either SH or NH2 groups. Hybridization stringency conditions were established by varying the concentration of formamide in the hybridization buffer. For SNP BA213c14t7/403, the quantitative discrimination between all four different naturally occurring genotypes could be demonstrated. PMID:15847606

  1. Association of single nucleotide polymorphism rs3803662 with the risk of breast cancer

    PubMed Central

    Yang, Yuan; Wang, Wenjing; Liu, Guiyou; Yu, Yingcui; Liao, Mingzhi

    2016-01-01

    Large scale association studies have identified the single nucleotide polymorphism rs3803662 associated with breast cancer risk. However, the sample size of most studies is too small. Here, we performed this meta-analysis to make the result more convincing. Relevant articles published up to 2016 were identified by searching the PubMed database. 13 studies, involving a total of 29405 participants, were included in the meta-analysis. Odds Ratios (ORs) with 95% confidence intervals (CIs) was calculated with random or fixed effects model. All data analyses were analyzed by Review Manger 5.3 software. In Caucasian subgroup: Dominant model (TT + CT vs CC): OR = 1.17 (1.06, 1.29), Recessive model (TT vs CT + CC): OR = 1.25 (1.13, 1.39) and Allele frequency (T vs C): OR = 1.15 (1.08, 1.22). The present meta-analysis suggests that rs3803662 polymorphism is significantly associated with breast cancer risk in Caucasian women, and we did not find the association in Asian women. PMID:27350156

  2. Association of SCNN1A Single Nucleotide Polymorphisms with neonatal respiratory distress syndrome.

    PubMed

    Li, Wang; Long, Chen; Renjun, Li; Zhangxue, Hu; Yin, Hu; Wanwei, Li; Juan, Ma; Yuan, Shi

    2015-01-01

    Increasing evidence has demonstrated that lung fluid absorption disorders might be an important cause of neonatal respiratory distress syndrome (RDS) by influencing gas exchange or surfactant function. The SCNN1A gene, which encodes the α-ENaC, might predispose infants to RDS. To explore whether the single-nucleotide polymorphisms (SNPs) of SCNN1A are associated with RDS, we conducted a case-control study to investigate the RDS-associated loci in Han Chinese infants. Seven target SNPs were selected from the SCNN1A gene and were genotyped using the improved multiplex ligase detection reaction (iMLDR). In the total sample, only rs4149570 was associated with NRDS; this association was further confirmed in logistic regression analysis after adjusting for birth weight, gestational age and sex. In the subgroup of infants whose gestational age was 37 weeks and older, in addition to rs4149570, rs7956915 also showed a significant association with RDS. Interestingly, these associations were only observed in term infants. No significant association was observed between the target SNPs and the risk of RDS in preterm infants. We report for the first time that the rs4149570 and rs7956915 polymorphisms of SCNN1A might play important roles in the susceptibility to RDS, particularly in term infants. PMID:26611714

  3. Single nucleotide polymorphisms in Brahman steers and their association with carcass and tenderness traits.

    PubMed

    Smith, T; Thomas, M G; Bidner, T D; Paschal, J C; Franke, D E

    2009-01-01

    Data from purebred Brahman steers (N = 467) were used to study the association of single nucleotide polymorphisms (SNP) with carcass traits and measures of tenderness. Fall weaned calves were grazed and fed in a subtropical environment and then harvested for processing in a commercial facility. Carcass data were recorded 24 h postmortem. Muscle samples and primal ribs were obtained to measure calpastatin activity and shear force. DNA was used to determine genotypes of thyroglobulin (TG5), calpastatin (CAST) and mu-calpain (CAPN 316 and CAPN 4751) SNP. Minor allele frequencies for CAST, CAPN 316 and CAPN 4751 were 0.342, 0.031, and 0.051, respectively. CAST genotypes were associated with calpastatin enzyme activity (P < 0.01) and shear force of steaks aged for 14-day postmortem (P < 0.05). CAPN 316 genotypes were also associated with variation in shear force of steaks aged for 14 days (P < 0.05). CAPN 4751 genotypes approached significance for association with shear force of steaks after 7 and 14 days (P < 0.08). Genotypes for TG5 were non-polymorphic (i.e., minor allele frequency = 0.004) and omitted from further analyses. Neither CAST nor CAPN SNP was associated with variation in other carcass traits. PMID:19224465

  4. Association of IL-13 single nucleotide polymorphisms in Iranian patients to multiple sclerosis

    PubMed Central

    Seyfizadeh, Narges; Kazemi, Tohid; Farhoudi, Mehdi; Aliparasti, Mohammad Reza; Sadeghi-Bazargani, Homayoun; Almasi, Shohreh; Babaloo, Zohreh

    2014-01-01

    MS is an autoimmune disease and interleukin 13 (IL-13) has been proposed to be an important neuroprotective mediator in MS. Because of plausible effect of single nucleotide polymorphisms (SNPs) in expression level or biological activity of any cytokine, we sought to investigate association of IL-13 SNPs, C-1112T, A-1512C and G+2044A, with risk to MS. Sixty-eight RRMS patients and 110 healthy controls were involved in this study. After extraction of genomic DNA, frequency of genotypes and alleles were determined by PCR-RFLP and data were analyzed statistically. Results showed significant higher frequency of CC, CC, and AA genotypes and C, C, and A alleles of -1112CT, -1512AC and +2044GA SNPs respectively, in patients group. There was significant association between -1112C allele with onset age of MS. No significant association was seen between any of genotypes or alleles with expanded disability status scale (EDSS) of patients. Our findings showed significant association between three studied SNPs of IL-13 with susceptibility to MS in Iranian patients. More studies should be done on other IL-13 SNPs, and also polymorphisms of IL-13 receptor and other cytokines to determine the exact role of SNPs in protecting or predisposing of individuals for MS. PMID:25628961

  5. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    PubMed Central

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M.; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-01-01

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity. PMID:23538839

  6. A STAT6 Intronic Single-Nucleotide Polymorphism is Associated with Clinical Malaria in Ghanaian Children

    PubMed Central

    Amoako-Sakyi, Daniel; Adukpo, Selorme; Kusi, Kwadwo A.; Dodoo, Daniel; Ofori, Michael F.; Adjei, George O.; Edoh, Dominic E.; Asmah, Richard H.; Brown, Charles; Adu, Bright; Obiri-Yeboah, Dorcas; Futagbi, Godfred; Abubakari, Sharif Buari; Troye-Blomberg, Marita; Akanmori, Bartholomew D.; Goka, Bamenla Q.; Arko-Mensah, John; Gyan, Ben A.

    2016-01-01

    Malaria pathogenesis may be influenced by IgE responses and cytokine cross-regulation. Several mutations in the IL-4/STAT6 signaling pathway can alter cytokine cross-regulation and IgE responses during a Plasmodium falciparum malarial infection. This study investigated the relationship between a STAT6 intronic single-nucleotide polymorphism (rs3024974), total IgE, cytokines, and malaria severity in 238 Ghanaian children aged between 0.5 and 13 years. Total IgE and cytokine levels were measured by ELISA, while genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (RFLP). Compared with healthy controls, heterozygosity protected against clinical malaria: uncomplicated malaria (odds ratios [OR] = 0.13, P < 0.001), severe malarial anemia (OR = 0.18, P < 0.001), and cerebral malaria (OR = 0.39, P = 0.022). Levels of total IgE significantly differed among malaria phenotypes (P = 0.044) and rs3024974 genotypes (P = 0.037). Neither cytokine levels nor IL-6/IL-10 ratios were associated with malaria phenotypes or rs3024974 genotypes. This study suggests a role for rs3024974 in malaria pathogenesis and offers further insights into an IL-4/STAT6 pathway mutation in malaria pathogenesis. PMID:27279750

  7. Human Aldo-Keto Reductases: Function, Gene Regulation, and Single Nucleotide Polymorphisms

    PubMed Central

    Penning, Trevor M.; Drury, Jason E.

    2007-01-01

    Aldo-Keto Reductases (AKRs) are a superfamily of NAD(P)H linked oxidoreductases that are generally monomeric 34- 37 kDa proteins present in all phyla. The superfamily consists of 15 families, which contains 151 members (www.med.upenn.edu/akr). Thirteen human AKRs exist that use endogenous substrates (sugar and lipid aldehydes, prostaglandins, retinals and steroid hormones), and in many instances they regulate nuclear receptor signaling. Exogenous substrates include metabolites implicated in chemical carcinogenesis: NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone), polycyclic aromatic hydrocarbon trans-dihydrodiols, and aflatoxin dialdehyde. Promoter analysis of the human genes identifies common elements involved in their regulation which include osmotic response elements, antioxidant response elements, xenobiotic response elements, AP-1 sites and steroid response elements. The human AKRs are highly polymorphic, and in some instances single nucleotide polymorphisms (SNPs) of high penetrance exist. This suggests that there will be inter-individual variation in endogenous and xenobiotic metabolism which in turn affect susceptibility to nuclear receptor signaling and chemical carcinogenesis. PMID:17537398

  8. CASP3 gene single-nucleotide polymorphism (rs72689236) and Kawasaki disease in Taiwanese children.

    PubMed

    Kuo, Ho-Chang; Yu, Hong-Ren; Juo, Suh-Hang Hank; Yang, Kuender D; Wang, Yu-Shiuan; Liang, Chi-Di; Chen, Wei-Chiao; Chang, Wei-Pin; Huang, Chien-Fu; Lee, Chiu-Ping; Lin, Li-Yan; Liu, Yu-Chen; Guo, Yuh-Cherng; Chiu, Chien-Chih; Chang, Wei-Chiao

    2011-02-01

    Kawasaki disease (KD) is characterized by systemic vasculitis of unknown etiology. A study from Japan reported that G to A substitution of a single-nucleotide polymorphism (SNP) located in the 5'-untranslated region of caspase 3 (CASP3) (rs72689236), which was associated with nuclear factor of activated T cell-mediated T-cell activation, is responsible for susceptibility to KD. This study was conducted to investigate whether the polymorphism of CASP3 is responsible for susceptibility and coronary artery lesion (CAL) formation in KD in the Taiwanese population. A total of 1092 subjects (341 KD patients and 751 controls) were investigated to identify an SNP of rs72689236 using Invader assays (Third Wave Technologies). Our data provided a borderline significant association between the genotypes and allele frequency of rs72689236 in control subjects and KD patients (P=0.0535 under the dominant model; P=0.0575 under the allelic model). The A allele of rs72689236 in KD patients and in patients with CAL and intravenous immunoglobulin resistance was seen in a higher frequency. Importantly, a significant association was obtained between rs72689236 and KD patients with aneurysm formation (P=0.009, under the recessive model). The A allele of rs72689236 is very likely to be a risk allele in the development of aneurysm in patients with KD. PMID:21160486

  9. Single nucleotide polymorphism in the neuroplastin locus associates with cortical thickness and intellectual ability in adolescents

    PubMed Central

    Desrivières, S; Lourdusamy, A; Tao, C; Toro, R; Jia, T; Loth, E; Medina, L M; Kepa, A; Fernandes, A; Ruggeri, B; Carvalho, F M; Cocks, G; Banaschewski, T; Barker, G J; Bokde, A L W; Büchel, C; Conrod, P J; Flor, H; Heinz, A; Gallinat, J; Garavan, H; Gowland, P; Brühl, R; Lawrence, C; Mann, K; Martinot, M L P; Nees, F; Lathrop, M; Poline, J-B; Rietschel, M; Thompson, P; Fauth-Bühler, M; Smolka, M N; Pausova, Z; Paus, T; Feng, J; Schumann, G

    2015-01-01

    Despite the recognition that cortical thickness is heritable and correlates with intellectual ability in children and adolescents, the genes contributing to individual differences in these traits remain unknown. We conducted a large-scale association study in 1583 adolescents to identify genes affecting cortical thickness. Single-nucleotide polymorphisms (SNPs; n=54 837) within genes whose expression changed between stages of growth and differentiation of a human neural stem cell line were selected for association analyses with average cortical thickness. We identified a variant, rs7171755, associating with thinner cortex in the left hemisphere (P=1.12 × 10−7), particularly in the frontal and temporal lobes. Localized effects of this SNP on cortical thickness differently affected verbal and nonverbal intellectual abilities. The rs7171755 polymorphism acted in cis to affect expression in the human brain of the synaptic cell adhesion glycoprotein-encoding gene NPTN. We also found that cortical thickness and NPTN expression were on average higher in the right hemisphere, suggesting that asymmetric NPTN expression may render the left hemisphere more sensitive to the effects of NPTN mutations, accounting for the lateralized effect of rs7171755 found in our study. Altogether, our findings support a potential role for regional synaptic dysfunctions in forms of intellectual deficits. PMID:24514566

  10. Single nucleotide polymorphisms of TNFAIP3 are associated with systemic lupus erythematosus in Han Chinese population.

    PubMed

    Han, J-W; Wang, Y; Li, H-B; Alateng, C; Bai, Y-H; Sun, Z-Q; Lv, X-X; Wu, R-N

    2016-04-01

    The polymorphisms of tumour necrosis factor alpha-induced protein 3 (TNFAIP3) have been found to associate with several autoimmune diseases. This study aimed to explore the association of single nucleotide polymorphisms (SNPs) of TNFAIP3 gene with systemic lupus erythematosus (SLE) in Han Chinese. Thirty-two SNPs were genotyped in 284 patients with SLE and 630 controls using the ligation detection reaction (LDR) method. The quality control steps and statistical analyses were performed using the plink 1.07 package and haploview software. We found that 13 SNPs in TNFAIP3 showed significant association with SLE (P < 1.85 × 10(-3) ), and all of them were in high linkage disequilibrium (LD). After conditioning on the SNP rs2230926, other 12 SNPs did not show association (P > 0.27). All 13 SNPs showed most significant association in the dominant model. In haplotype analysis, a long risk SNP haplotype (GCCCGTGTCATGG) showed most significant association (P = 1.00 × 10(-4) ). In conclusion, our data suggest that TNFAIP3 is a susceptible gene for SLE in the Han Chinese population. PMID:26846592

  11. Association of single nucleotide polymorphism rs3803662 with the risk of breast cancer.

    PubMed

    Yang, Yuan; Wang, Wenjing; Liu, Guiyou; Yu, Yingcui; Liao, Mingzhi

    2016-01-01

    Large scale association studies have identified the single nucleotide polymorphism rs3803662 associated with breast cancer risk. However, the sample size of most studies is too small. Here, we performed this meta-analysis to make the result more convincing. Relevant articles published up to 2016 were identified by searching the PubMed database. 13 studies, involving a total of 29405 participants, were included in the meta-analysis. Odds Ratios (ORs) with 95% confidence intervals (CIs) was calculated with random or fixed effects model. All data analyses were analyzed by Review Manger 5.3 software. In Caucasian subgroup: Dominant model (TT + CT vs CC): OR = 1.17 (1.06, 1.29), Recessive model (TT vs CT + CC): OR = 1.25 (1.13, 1.39) and Allele frequency (T vs C): OR = 1.15 (1.08, 1.22). The present meta-analysis suggests that rs3803662 polymorphism is significantly associated with breast cancer risk in Caucasian women, and we did not find the association in Asian women. PMID:27350156

  12. Differentiation of drug and non-drug Cannabis using a single nucleotide polymorphism (SNP) assay.

    PubMed

    Rotherham, D; Harbison, S A

    2011-04-15

    Cannabis sativa is both an illegal drug and a legitimate crop. The differentiation of illegal drug Cannabis from non-drug forms of Cannabis is relevant in the context of the growth of fibre and seed oil varieties of Cannabis for commercial purposes. This differentiation is currently determined based on the levels of tetrahydrocannabinol (THC) in adult plants. DNA based methods have the potential to assay Cannabis material unsuitable for analysis using conventional means including seeds, pollen and severely degraded material. The purpose of this research was to develop a single nucleotide polymorphism (SNP) assay for the differentiation of "drug" and "non-drug"Cannabis plants. An assay was developed based on four polymorphisms within a 399 bp fragment of the tetrahydrocannabinolic acid (THCA) synthase gene, utilising the snapshot multiplex kit. This SNP assay was tested on 94 Cannabis plants, which included 10 blind samples, and was able to differentiate between "drug" and "non-drug"Cannabis in all cases, while also differentiating between Cannabis and other species. Non-drug plants were found to be homozygous at the four sites assayed while drug Cannabis plants were either homozygous or heterozygous. PMID:21036496

  13. Single nucleotide polymorphism in the neuroplastin locus associates with cortical thickness and intellectual ability in adolescents.

    PubMed

    Desrivières, S; Lourdusamy, A; Tao, C; Toro, R; Jia, T; Loth, E; Medina, L M; Kepa, A; Fernandes, A; Ruggeri, B; Carvalho, F M; Cocks, G; Banaschewski, T; Barker, G J; Bokde, A L W; Büchel, C; Conrod, P J; Flor, H; Heinz, A; Gallinat, J; Garavan, H; Gowland, P; Brühl, R; Lawrence, C; Mann, K; Martinot, M L P; Nees, F; Lathrop, M; Poline, J-B; Rietschel, M; Thompson, P; Fauth-Bühler, M; Smolka, M N; Pausova, Z; Paus, T; Feng, J; Schumann, G

    2015-02-01

    Despite the recognition that cortical thickness is heritable and correlates with intellectual ability in children and adolescents, the genes contributing to individual differences in these traits remain unknown. We conducted a large-scale association study in 1583 adolescents to identify genes affecting cortical thickness. Single-nucleotide polymorphisms (SNPs; n=54,837) within genes whose expression changed between stages of growth and differentiation of a human neural stem cell line were selected for association analyses with average cortical thickness. We identified a variant, rs7171755, associating with thinner cortex in the left hemisphere (P=1.12 × 10(-)(7)), particularly in the frontal and temporal lobes. Localized effects of this SNP on cortical thickness differently affected verbal and nonverbal intellectual abilities. The rs7171755 polymorphism acted in cis to affect expression in the human brain of the synaptic cell adhesion glycoprotein-encoding gene NPTN. We also found that cortical thickness and NPTN expression were on average higher in the right hemisphere, suggesting that asymmetric NPTN expression may render the left hemisphere more sensitive to the effects of NPTN mutations, accounting for the lateralized effect of rs7171755 found in our study. Altogether, our findings support a potential role for regional synaptic dysfunctions in forms of intellectual deficits. PMID:24514566

  14. Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeonpea and comparative mapping in legumes.

    PubMed

    Saxena, Rachit K; Penmetsa, R Varma; Upadhyaya, Hari D; Kumar, Ashish; Carrasquilla-Garcia, Noelia; Schlueter, Jessica A; Farmer, Andrew; Whaley, Adam M; Sarma, Birinchi K; May, Gregory D; Cook, Douglas R; Varshney, Rajeev K

    2012-12-01

    Single-nucleotide polymorphisms (SNPs, >2000) were discovered by using RNA-seq and allele-specific sequencing approaches in pigeonpea (Cajanus cajan). For making the SNP genotyping cost-effective, successful competitive allele-specific polymerase chain reaction (KASPar) assays were developed for 1616 SNPs and referred to as PKAMs (pigeonpea KASPar assay markers). Screening of PKAMs on 24 genotypes [23 from cultivated species and 1 wild species (Cajanus scarabaeoides)] defined a set of 1154 polymorphic markers (77.4%) with a polymorphism information content (PIC) value from 0.04 to 0.38. One thousand and ninety-four PKAMs showed polymorphisms between parental lines of the reference mapping population (C. cajan ICP 28 × C. scarabaeoides ICPW 94). By using high-quality marker genotyping data on 167 F(2) lines from the population, a comprehensive genetic map comprising 875 PKAMs with an average inter-marker distance of 1.11 cM was developed. Previously mapped 35 simple sequence repeat markers were integrated into the PKAM map and an integrated genetic map of 996.21 cM was constructed. Mapped PKAMs showed a higher degree of synteny with the genome of Glycine max followed by Medicago truncatula and Lotus japonicus and least with Vigna unguiculata. These PKAMs will be useful for genetics research and breeding applications in pigeonpea and for utilizing genome information from other legume species. PMID:23103470

  15. Nucleotide Sequencing and SNP Detection of Toll-Like Receptor-4 Gene in Murrah Buffalo (Bubalus bubalis)

    PubMed Central

    Mitra, M.; Taraphder, S.; Sonawane, G. S.; Verma, A.

    2012-01-01

    Toll-like receptor-4 (TLR-4) has an important pattern recognition receptor that recognizes endotoxins associated with gram negative bacterial infections. The present investigation was carried out to study nucleotide sequencing and SNP detection by PCR-RFLP analysis of the TLR-4 gene in Murrah buffalo. Genomic DNA was isolated from 102 lactating Murrah buffalo from NDRI herd. The amplified PCR fragments of TLR-4 comprised of exon 1, exon 2, exon 3.1, and exon 3.2 were examined to RFLP. PCR products were obtained with sizes of 165, 300, 478, and 409 bp. TLR-4 gene of investigated Murrah buffaloes was highly polymorphic with AA, AB, and BB genotypes as revealed by PCR-RFLP analysis using Dra I, Hae III, and Hinf I REs. Nucleotide sequencing of the amplified fragment of TLR-4 gene of Murrah buffalo was done. Twelve SNPs were identified. Six SNPs were nonsynonymous resulting in change in amino acids. Murrah is an indigenous Buffalo breed and the presence of the nonsynonymous SNP is indicative of its unique genomic architecture. Sequence alignment and homology across species using BLAST analysis revealed 97%, 97%, 99%, 98%, and 80% sequence homology with Bos taurus, Bos indicus, Ovis aries, Capra hircus, and Homo sapiens, respectively.

  16. Distribution of cytokine gene single nucleotide polymorphisms among a multi-ethnic Iranian population

    PubMed Central

    Kurdistani, Zana Karimi; Saberi, Samaneh; Talebkhan, Yeganeh; Oghalaie, Akbar; Esmaeili, Maryam; Mohajerani, Nazanin; Bababeik, Maryam; Hassanpour, Parisa; Barani, Shaghik; Farjaddoost, Ameneh; Ebrahimzadeh, Fatemeh; Trejaut, Jean; Mohammadi, Marjan

    2015-01-01

    Background: Cytokine gene single nucleotide polymorphisms (SNPs) are widely used to study susceptibility to complex diseases and as a tool for anthropological studies. Materials and Methods: To investigate cytokine SNPs in an Iranian multi-ethnic population, we have investigated 10 interleukin (IL) SNPs (IL-1β (C-511T, T-31C), IL-2 (G-384T), IL-4 (C-590T), IL-6 (G-174C), IL-8 (T-251A), IL-10 (G-1082A, C-819T, C-592A) and tumor necrosis factor-alpha (TNF-α) (G-308A) in 415 Iranian subjects comprising of 6 different ethnicities. Allelic and genotypic frequencies as well as Hardy-Weinberg equilibrium (HWE) were calculated by PyPop software. Population genetic indices including observed heterozygosity (Ho), expected heterozygosity (He), fixation index (FIS), the effective number of alleles (Ne) and polymorphism information content (PIC) were derived using Popgene 32 software. Multidimensional scaling (MDS) was constructed using Reynold's genetic distance obtained from the frequencies of cytokine gene polymorphism. Results: Genotypic distributions were consistent with the HWE assumptions, except for 3 loci (IL-4-590, IL-8-251 and IL-10-819) in Fars and 4 loci (IL-4-590, IL-6-174, IL-10-1082 and TNF-α-308) in Turks. Pairwise assessment of allelic frequencies, detected differences at the IL-4-590 locus in Gilakis versus Kurds (P = 0.028) and Lurs (P = 0.022). Mazanis and Gilakis displayed the highest (Ho= 0.50 ± 0.24) and lowest (Ho= 0.34 ± 0.16) mean observed heterozygosity, respectively. Conclusions: MDS analysis of our study population, in comparison with others, revealed that Iranian ethnicities except Kurds and Mazanis were tightly located within a single cluster with closest genetic affinity to Europeans. PMID:26436076

  17. Single nucleotide polymorphisms in the MATP gene are associated with normal human pigmentation variation.

    PubMed

    Graf, Justin; Hodgson, Richard; van Daal, Angela

    2005-03-01

    Human physical pigmentation is determined by the type and amount of melanin and the process of pigmentation production probably involves more than 100 genes. A failure to synthesize melanin results in oculocutaneous albinism (OCA). A recently identified form of OCA results from mutations in the Membrane Associated Transporter Protein (MATP) gene. The role of MATP in human pigmentation is not clear. We investigated the role of two nonpathogenic nonsynonymous single nucleotide polymorphisms (SNPs) in the MATP gene to determine if they are associated with normal human skin, hair, and eye color variation. A total of 608 individuals from four different population groups (456 Caucasians, 31 Asians, 70 African-Americans, and 51 Australian Aborigines) were genotyped for c.814G>A (p.Glu272Lys) and c.1122C>G (p.Phe374Leu). Results indicate that the allele frequencies of both polymorphisms are significantly different between population groups. The two alleles, 374Leu and 272Lys, are significantly associated with dark hair, skin, and eye color in Caucasians. The odds ratios (ORs) of the LeuLeu genotype for black hair and olive skin are 25.63 and 28.65, respectively, and for the LysLys genotype are 43.23 and 8.27, respectively. The OR for eye color is lower at 3.48 for the LeuLeu and 6.57 for LysLys genotypes. This is the first report of this highly significant association of MATP polymorphisms with normal human pigmentation variation. PMID:15714523

  18. Complete sequence and polymorphisms of female Ruditapes philippinarum (Mollusca: Bivalvia) mitochondria genome.

    PubMed

    Hwang, Jae Yeon; Han, Geon Goo; Park, Jung Youn; Kim, Eun-Mi; An, Cheul Min; Kang, Jung-Ha; Choi, Yun-Jaie; Kim, Eun Bae

    2016-09-01

    Mitogenome of female Ruditapes philippinarum organism was sequenced, and genomic variation and phylogeny were examined in this study. Length of the mitogenome was 22 089 bp showing 94.28% of sequence identity with previously reported sequence. Total 707 single nucleotide polymorphisms, SNPs, were detected and 50 residues were non-synonymous SNPs among the 202 SNPs in protein-coding genes. Deleted genomic fragments with of 265 bp and 322 bp were observed in non-coding regions, ND2 to ND4L and ND4L to tRNA(Ile), respectively. Phylogenic analysis confirmed that used organisms were female R. philippinarum, and the species has closer evolutionary distance with genus Paphia rather than genus Meretrix. Our finding will be help to set an insight for population and evolutionary genomics of Veneroida clams as well as application to marine industry. PMID:26248000

  19. Single nucleotide polymorphisms in premature ovarian failure-associated genes in a Chinese Hui population

    PubMed Central

    MA, LILI; CHEN, YAN; MEI, SI; LIU, CHUNLIAN; MA, XIAOHONG; LI, YONGLI; JIANG, YINZHI; HA, LINGXIA; XU, XIAN

    2015-01-01

    Premature ovarian failure (POF) is an ovarian defect characterized by the premature depletion of ovarian follicles in individuals <40 years old, and is a major cause of infertility in females. Genetic factors are considered to be responsible for the development of POF, however, the exact pathogenesis remains to be elucidated in the majority of cases. In the present study, the single nucleotide polymorphisms (SNPs) of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), inhibin βB (INHBB) and follicle stimulating hormone receptor (FSHR) genes were investigated, and their association with POF in a Chinese Hui population of the Ningxia Hui Autonomous Region in western China was evaluated. Peripheral blood samples were collected from 63 patients diagnosed with POF (POF group) and 58 normal control individuals (control group), from which the genomic DNA was isolated. The GDF9, BMP15, INHBB and FSHR genes were amplified using polymerase chain reaction assays, and their SNPs were determined by sequencing. In the four SNPs identified across the GDF9 loci, D57Y (169G>T), rs1049127 (546G>A), rs254286 (447C>T) and rs254285 (969C>G), the frequencies of the 546G>A genotype and allele A were significantly higher in the POF group, compared with the normal control group (34.92, vs. 6.90%; P<0.05 and 19.05, vs. 3.23%; P<0.05, repsectively), while no significant differences were observed in the occur rence of the c.447C>T and c.969C>G mutations between the two groups (60.32, vs. 50% and 50.79, vs. 55.17%, repsectively). The c.169G>T mutation within the GDF9 gene was only detected in two patients with POF, and the mutation did not occur in the normal control group. A total of three SNPs were detected within the BMP15 gene, including rs3810682 (−9C>G), rs79377927 (788_789insTCT) and rs17003221 (852C>T), and no significant differences were observed in the frequencies of the 9C>G and 852C>T genotypes between the POF and control groups (7.94, vs. 6.90% and 4

  20. Complete nucleotide sequence of a new isolate of passion fruit woodiness virus from Western Australia.

    PubMed

    Fukumoto, Tomohiro; Nakamura, Masayuki; Wylie, Stephen J; Chiaki, Yuya; Iwai, Hisashi

    2013-08-01

    We determined the complete genome sequence of the passion fruit woodiness virus Gld-1 isolate (PWV-Gld-1) from Australia and compared it with that of PWV-MU-2, another Australian isolate of PWV. The genomes shared high sequence identity in both the complete nucleotide sequence and the ORF amino acid sequence. All of the cleavage sites of each protein were identical to those of MU-2, and the sequence identity for the individual proteins ranged from 97.2 % to 100.0 %. However, the 5' untranslated region (5'UTR) of the Gld-1 isolate shared only 46.8 % sequence identity with that of PWV-MU-2 and was 177 nucleotides shorter. Re-sequencing of the 5'UTR of MU-2 revealed that the 5' end of the original sequence includes an artifact generated by deep sequencing. PMID:23508550

  1. Evaluation of intra- and interspecific divergence of satellite DNA sequences by nucleotide frequency calculation and pairwise sequence comparison

    PubMed Central

    2003-01-01

    Satellite DNA sequences are known to be highly variable and to have been subjected to concerted evolution that homogenizes member sequences within species. We have analyzed the mode of evolution of satellite DNA sequences in four fishes from the genus Diplodus by calculating the nucleotide frequency of the sequence array and the phylogenetic distances between member sequences. Calculation of nucleotide frequency and pairwise sequence comparison enabled us to characterize the divergence among member sequences in this satellite DNA family. The results suggest that the evolutionary rate of satellite DNA in D. bellottii is about two-fold greater than the average of the other three fishes, and that the sequence homogenization event occurred in D. puntazzo more recently than in the others. The procedures described here are effective to characterize mode of evolution of satellite DNA. PMID:12734555

  2. Evaluation of intra- and interspecific divergence of satellite DNA sequences by nucleotide frequency calculation and pairwise sequence comparison.

    PubMed

    Kato, Mikio

    2003-01-01

    Satellite DNA sequences are known to be highly variable and to have been subjected to concerted evolution that homogenizes member sequences within species. We have analyzed the mode of evolution of satellite DNA sequences in four fishes from the genus Diplodus by calculating the nucleotide frequency of the sequence array and the phylogenetic distances between member sequences. Calculation of nucleotide frequency and pairwise sequence comparison enabled us to characterize the divergence among member sequences in this satellite DNA family. The results suggest that the evolutionary rate of satellite DNA in D. bellottii is about two-fold greater than the average of the other three fishes, and that the sequence homogenization event occurred in D. puntazzo more recently than in the others. The procedures described here are effective to characterize mode of evolution of satellite DNA. PMID:12734555

  3. Detection of sequence polymorphisms in red junglefowl and White Leghorn ESTs.

    PubMed

    Fitzsimmons, C J; Savolainen, P; Amini, B; Hjälm, G; Lundeberg, J; Andersson, L

    2004-10-01

    Over 16,000 high quality expressed sequence tags (ESTs) from red junglefowl (RJ) and White Leghorn (WL) brain and testis cDNA libraries were generated. Here, we have used this resource for detection of single nucleotide polymorphisms (SNPs), and also completed full-length sequencing of 46 pairs of clones, representing the same gene from both the RJ and WL libraries. From the main set of ESTs, which were assembled using Phrap, 746 putative SNPs were identified, of which 76% were transitions and 24% were transversions. A subset of SNPs was evaluated by sequence analysis of five RJ and five WL birds. Nine of 12 SNPs were verified in this limited sample, suggesting that a majority of the putative polymorphisms documented in this study represent real SNPs. During full-length sequencing of the 46 RJ/WL clones 100 SNPs were identified, which translated to a frequency of 1.90 SNPs/1000 bp. The number of transitions and transversions were 77% and 23%, respectively, and the proportion of non-synonymous vs. synonymous SNPs was 20% and 80%, respectively. Four large insertions/deletions were identified between the RJ and WL full-length sequences, and they appear to represent different splice variants. PMID:15373743

  4. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.)

    PubMed Central

    Tenaillon, Maud I.; Sawkins, Mark C.; Long, Anthony D.; Gaut, Rebecca L.; Doebley, John F.; Gaut, Brandon S.

    2001-01-01

    We measured sequence diversity in 21 loci distributed along chromosome 1 of maize (Zea mays ssp. mays L.). For each locus, we sequenced a common sample of 25 individuals representing 16 exotic landraces and nine U.S. inbred lines. The data indicated that maize has an average of one single nucleotide polymorphism (SNP) every 104 bp between two randomly sampled sequences, a level of diversity higher than that of either humans or Drosophila melanogaster. A comparison of genetic diversity between the landrace and inbred samples showed that inbreds retained 77% of the level of diversity of landraces, on average. In addition, Tajima's D values suggest that the frequency distribution of polymorphisms in inbreds was skewed toward fewer rare variants. Tests for selection were applied to all loci, and deviations from neutrality were detected in three loci. Sequence diversity was heterogeneous among loci, but there was no pattern of diversity along the genetic map of chromosome 1. Nonetheless, diversity was correlated (r = 0.65) with sequence-based estimates of the recombination rate. Recombination in our sample was sufficient to break down linkage disequilibrium among SNPs. Intragenic linkage disequilibrium declines within 100–200 bp on average, suggesting that genome-wide surveys for association analyses require SNPs every 100–200 bp. PMID:11470895

  5. StructMAn: annotation of single-nucleotide polymorphisms in the structural context

    PubMed Central

    Gress, Alexander; Ramensky, Vasily; Büch, Joachim; Keller, Andreas; Kalinina, Olga V.

    2016-01-01

    The next generation sequencing technologies produce unprecedented amounts of data on the genetic sequence of individual organisms. These sequences carry a substantial amount of variation that may or may be not related to a phenotype. Phenotypically important part of this variation often comes in form of protein-sequence altering (non-synonymous) single nucleotide variants (nsSNVs). Here we present StructMAn, a Web-based tool for annotation of human and non-human nsSNVs in the structural context. StructMAn analyzes the spatial location of the amino acid residue corresponding to nsSNVs in the three-dimensional (3D) protein structure relative to other proteins, nucleic acids and low molecular-weight ligands. We make use of all experimentally available 3D structures of query proteins, and also, unlike other tools in the field, of structures of proteins with detectable sequence identity to them. This allows us to provide a structural context for around 20% of all nsSNVs in a typical human sequencing sample, for up to 60% of nsSNVs in genes related to human diseases and for around 35% of nsSNVs in a typical bacterial sample. Each nsSNV can be visualized and inspected by the user in the corresponding 3D structure of a protein or protein complex. The StructMAn server is available at http://structman.mpi-inf.mpg.de. PMID:27150811

  6. StructMAn: annotation of single-nucleotide polymorphisms in the structural context.

    PubMed

    Gress, Alexander; Ramensky, Vasily; Büch, Joachim; Keller, Andreas; Kalinina, Olga V

    2016-07-01

    The next generation sequencing technologies produce unprecedented amounts of data on the genetic sequence of individual organisms. These sequences carry a substantial amount of variation that may or may be not related to a phenotype. Phenotypically important part of this variation often comes in form of protein-sequence altering (non-synonymous) single nucleotide variants (nsSNVs). Here we present StructMAn, a Web-based tool for annotation of human and non-human nsSNVs in the structural context. StructMAn analyzes the spatial location of the amino acid residue corresponding to nsSNVs in the three-dimensional (3D) protein structure relative to other proteins, nucleic acids and low molecular-weight ligands. We make use of all experimentally available 3D structures of query proteins, and also, unlike other tools in the field, of structures of proteins with detectable sequence identity to them. This allows us to provide a structural context for around 20% of all nsSNVs in a typical human sequencing sample, for up to 60% of nsSNVs in genes related to human diseases and for around 35% of nsSNVs in a typical bacterial sample. Each nsSNV can be visualized and inspected by the user in the corresponding 3D structure of a protein or protein complex. The StructMAn server is available at http://structman.mpi-inf.mpg.de. PMID:27150811

  7. Sequence polymorphism of the predicted human metapneumovirus G glycoprotein.

    PubMed

    Peret, Teresa C T; Abed, Yacine; Anderson, Larry J; Erdman, Dean D; Boivin, Guy

    2004-03-01

    The putative G glycoprotein genes of 25 human metapneumovirus (hMPV) field isolates obtained during five consecutive epidemic seasons (1997 to 2002) were sequenced. Sequence alignments identified two major genetic groups, designated groups 1 and 2, and two minor genetic clusters within each major group, designated subgroups A and B. Extensive nucleotide and deduced amino acid sequence variability was observed, consisting of high rates of nucleotide substitutions, use of alternative transcription-termination codons and insertions that retained the reading frame. Deduced amino acid sequences showed the greatest variability, with most differences located in the extracellular domain of the protein: nucleotide and amino acid sequence identities for the entire open reading frame ranged from 52 to 58 % and 31 to 35 %, respectively, between the two major groups. Like the closely related avian pneumovirus and human and bovine respiratory syncytial viruses, the predicted G protein of hMPV shared the basic features of a type II mucin-like glycosylated protein. However, differences from these related viruses were also observed, e.g. lack of conserved cysteine clusters as seen in human respiratory syncytial virus and avian pneumovirus. The displacement of genetic groups of hMPV observed during the study period suggests that potential antigenic differences in the G glycoprotein, which have evolved in response to immune-mediated pressure, may influence the circulation patterns of hMPV strains. PMID:14993653

  8. Nucleotide sequence of Neurospora crassa cytoplasmic initiator tRNA.

    PubMed Central

    Gillum, A M; Hecker, L I; Silberklang, M; Schwartzbach, S D; RajBhandary, U L; Barnett, W E

    1977-01-01

    Initiator methionine tRNA from the cytoplasm of Neurospora crassa has been purified and sequenced. The sequence is: pAGCUGCAUm1GGCGCAGCGGAAGCGCM22GCY*GGGCUCAUt6AACCCGGAGm7GU (or D) - CACUCGAUCGm1AAACGAG*UUGCAGCUACCAOH. Similar to initiator tRNAs from the cytoplasm of other eukaryotes, this tRNA also contains the sequence -AUCG- instead of the usual -TphiCG (or A)- found in loop IV of other tRNAs. The sequence of the N. crassa cytoplasmic initiator tRNA is quite different from that of the corresponding mitochondrial initiator tRNA. Comparison of the sequence of N. crassa cytoplasmic initiator tRNA to those of yeast, wheat germ and vertebrate cytoplasmic initiator tRNA indicates that the sequences of the two fungal tRNAs are no more similar to each other than they are to those of other initiator tRNAs. Images PMID:146192

  9. Identification and genotyping of feline infectious peritonitis-associated single nucleotide polymorphisms in the feline interferon-γ gene.

    PubMed

    Hsieh, Li-En; Chueh, Ling-Ling

    2014-01-01

    Feline infectious peritonitis (FIP) is an immune-mediated, highly lethal disease caused by feline coronavirus (FCoV) infection. Currently, no protective vaccine or effective treatment for the disease is available. Studies have found that some cats survive the challenge of virulent FCoV isolates. Since cellular immunity is thought to be critical in preventing FIP and because diseased cats often show a significant decrease in interferon-γ (IFN-γ) production, we investigated whether single nucleotide polymorphisms (SNP) in the feline IFN-γ gene (fIFNG) are associated with the outcome of infection. A total of 82 asymptomatic and 63 FIP cats were analyzed, and 16 SNP were identified in intron 1 of fIFNG. Among these SNP, the fFING + 428 T allele was shown to be a FIP-resistant allele (p = 0.03), and the heterozygous genotypes 01C/T and +408C/T were found to be FIP-susceptible factors (p = 0.004). Furthermore, an fIFNG + 428 resistant allele also showed a clear correlation with the plasma level of IFN-γ in FIP cats. For the identification of these three FIP-related SNP, genotyping methods were established using amplification refractory mutation system PCR (ARMS-PCR) and restriction fragment length polymorphisms (RFLP), and the different genotypes could easily be identified without sequencing. The identification of additional FIP-related SNP will allow the selection of resistant cats and decrease the morbidity of the cat population to FIP. PMID:24886103

  10. Single-Nucleotide Polymorphism Markers from De-Novo Assembly of the Pomegranate Transcriptome Reveal Germplasm Genetic Diversity

    PubMed Central

    Ophir, Ron; Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Sharabi Schwager, Michal; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Holland, Doron

    2014-01-01

    Pomegranate is a valuable crop that is grown commercially in many parts of the world. Wild species have been reported from India, Turkmenistan and Socotra. Pomegranate fruit has a variety of health-beneficial qualities. However, despite this crop's importance, only moderate effort has been invested in studying its biochemical or physiological properties or in establishing genomic and genetic infrastructures. In this study, we reconstructed a transcriptome from two phenotypically different accessions using 454-GS-FLX Titanium technology. These data were used to explore the functional annotation of 45,187 fully annotated contigs. We further compiled a genetic-variation resource of 7,155 simple-sequence repeats (SSRs) and 6,500 single-nucleotide polymorphisms (SNPs). A subset of 480 SNPs was sampled to investigate the genetic structure of the broad pomegranate germplasm collection at the Agricultural Research Organization (ARO), which includes accessions from different geographical areas worldwide. This subset of SNPs was found to be polymorphic, with 10.7% loci with minor allele frequencies of (MAF<0.05). These SNPs were successfully used to classify the ARO pomegranate collection into two major groups of accessions: one from India, China and Iran, composed of mainly unknown country origin and which was more of an admixture than the other major group, composed of accessions mainly from the Mediterranean basin, Central Asia and California. This study establishes a high-throughput transcriptome and genetic-marker infrastructure. Moreover, it sheds new light on the genetic interrelations between pomegranate species worldwide and more accurately defines their genetic nature. PMID:24558460

  11. Single-nucleotide polymorphism markers from de-novo assembly of the pomegranate transcriptome reveal germplasm genetic diversity.

    PubMed

    Ophir, Ron; Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Sharabi Schwager, Michal; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Holland, Doron

    2014-01-01

    Pomegranate is a valuable crop that is grown commercially in many parts of the world. Wild species have been reported from India, Turkmenistan and Socotra. Pomegranate fruit has a variety of health-beneficial qualities. However, despite this crop's importance, only moderate effort has been invested in studying its biochemical or physiological properties or in establishing genomic and genetic infrastructures. In this study, we reconstructed a transcriptome from two phenotypically different accessions using 454-GS-FLX Titanium technology. These data were used to explore the functional annotation of 45,187 fully annotated contigs. We further compiled a genetic-variation resource of 7,155 simple-sequence repeats (SSRs) and 6,500 single-nucleotide polymorphisms (SNPs). A subset of 480 SNPs was sampled to investigate the genetic structure of the broad pomegranate germplasm collection at the Agricultural Research Organization (ARO), which includes accessions from different geographical areas worldwide. This subset of SNPs was found to be polymorphic, with 10.7% loci with minor allele frequencies of (MAF<0.05). These SNPs were successfully used to classify the ARO pomegranate collection into two major groups of accessions: one from India, China and Iran, composed of mainly unknown country origin and which was more of an admixture than the other major group, composed of accessions mainly from the Mediterranean basin, Central Asia and California. This study establishes a high-throughput transcriptome and genetic-marker infrastructure. Moreover, it sheds new light on the genetic interrelations between pomegranate species worldwide and more accurately defines their genetic nature. PMID:24558460

  12. Interleukin-6 and rs1800796 locus single nucleotide polymorphisms in response to hypoxia/reoxygenation in hepatocytes

    PubMed Central

    WANG, ZHAOWEN; WU, SHAOHAN; LIAO, JIANHUA; ZHONG, LIN; XING, TONGHAI; FAN, JUNWEI; PENG, ZHIHAI

    2016-01-01

    Ischemia-reperfusion injury due to hypoxia/reoxygenation (H/R) is one of the main causes of liver damage during liver surgery. Donor interleukin-6 (IL-6) rs1800796 single nucleotide polymorphisms (SNPs) affect the metabolism of tacrolimus following liver transplantation-related hepatic H/R. This study investigated the response of IL-6 and its promoter polymorphisms to hepatic H/R in liver parenchymal cells. The association between IL-6 rs1800796 SNPs and IL-6 expression was measured in 84 disease-free liver tissues using tissue microarrays and immunohistochemistry. Subsequently, LO2G, LO2C and NC-LO2 cells were successfully constructed via stable lentivirus-mediated transfection. The effects of IL-6 and its SNPs on the biological function of LO2 cells were examined using a cell model of H/R. Our results revealed that IL-6 was mainly expressed in hepatocytes. The intermediate IL-6 expression rate in genotype CC carriers was higher than that in genotype CG/GG carriers (P=0.006), which was subsequently verified at the IL-6 mRNA level (P=0.002). The concentrations of alanine aminotransferase in the LO2G cells were significantly higher than those in the LO2C cells following H/R for 6 h and H/R for 24 h (P<0.05). The viability of the LO2C cells was higher than that of the LO2G cells (P<0.05). Furthermore, the expression of IL-6 and its downstream molecules was significantly increased in the LO2C cells compared with the LO2G cells (P<0.05). Therefore, the sequence variants of rs1800796 SNPs (G→C) exhibit an increased IL-6 transcription efficiency in liver parenchymal cells. In addition, the increased expression of IL-6 protects the hepatocytes following hepatic H/R injury. PMID:27221654

  13. Single nucleotide polymorphism discovery in TBX1 in individuals with and without 22q11.2 deletion syndrome

    PubMed Central

    Heike, Carrie L.; Starr, Jacqueline R.; Rieder, Mark J.; Cunningham, Michael L.; Edwards, Karen L.; Stanaway, Ian; Crawford, Dana C.

    2015-01-01

    BACKGROUND Children with 22q11.2 deletion syndrome (22q11.2DS) have a wide range of clinical features. TBX1 has been proposed as a candidate gene for some of the features in this condition. Polymorphisms in the non-deleted TBX1, which may affect the function of the sole TBX1 gene in individuals with the 22q11.2DS, may be a key to understanding the phenotypic variability among individuals with a shared deletion. Comprehensive single nucleotide polymorphism (SNP) discovery by resequencing candidate genes can identify genetic variants that influence a given phenotype. The purpose of this study was to further characterize the sequence variability in TBX1 by identifying all common SNPs in this gene. METHODS We resequenced TBX1 in 29 children with a documented 22q11.2 deletion and 95 non-deleted, healthy individuals. We estimated allele frequencies, performed tagSNP selection, and inferred haplotypes. We also compared SNP frequencies between 22q11.2DS and control samples. RESULTS We identified 355 biallelic markers among the 190 chromosomes resequenced in the control panel. The vast majority of the markers identified were SNPs (n=331), and the remainder indels (n=24). We did not identify SNPs or indels in the cis- regulatory element (FOX–binding site) upstream of TBX1. In children with 22q11.2DS we detected 187 biallelic markers, six of which were indels. Four of the seven coding SNPs identified in the controls were identified in children with 22q11.2DS. CONCLUSIONS This comprehensive SNP discovery data can be used to select SNPs to genotype for future association studies assessing the role of TBX1 and phenotypic variability in individuals with 22q11.2DS. PMID:19645056

  14. Single nucleotide polymorphisms in interleukin-6 and their association with venous thromboembolism.

    PubMed

    Yadav, Umesh; Mahemuti, Ailiman; Hu, Xuemei; Abudureheman, Kailibinure; Xia, Yuning; Tang, Baopeng; Upur, Halmurat

    2015-06-01

    The aim of the present study was to reveal the contribution of single nucleotide polymorphisms of the interleukin‑6 (IL‑6) gene and the progression of venous thromboembolism (VTE). A case‑control study composed of 246 VTE patients, including 160 from the Han population (76 males and 84 females, mean age 57.41±13.25 years), 86 from the Uyghur population (41 males and 45 females, mean age 51.61±13.73 years) and 292 gender and ethnicity‑matched control participants, including 170 from the Han population (91 males and 79 females, mean age 55.82±11.83 years) and 122 from the Uyghur population (64 males and 58 females, mean age 53.52±13.64 years) were enrolled in the present study. The results demonstrated that the serum levels of IL‑6, C‑reactive protein (CRP), D‑dimer, fibrinogen, plasminogen activator inhibitor‑1 and leptin were significantly higher in the VTE group compared with the control group (P<0.05). The frequencies of the ‑572C/G promoter polymorphisms of the IL‑6 genotypes CC, CG and GG were identified to be 34, 48 and 18% in the Han population and 33, 47 and 20% in the Uyghur population, respectively. The allele frequency distributions of the C and G alleles were 58 and 42% in the Han population and 56 and 43% in the Uyghur population, respectively. Significant differences were identified in the ‑572C/G promoter polymorphisms between the VTE group and the control group (P<0.05). For the ‑597G/A polymorphism, all individuals carried the GG and GA genotype; AA genotypes were not detected. Logistic regression analysis was used to identify the risk factors for VTE, adjusting by confounding factors, the results of which demonstrated that the CC homozygote of the IL‑6 ‑572G/C, CRP, IL‑6 and high‑density lipoprotein‑cholesterol were independent risk factors of VTE (P<0.05). In conclusion, the ‑572G/C genotype of IL‑6 may be a genetic marker of VTE in the Han and Uyghur populations. PMID:25625484

  15. Nucleotide sequence of the gene for human prothrombin

    SciTech Connect

    Degen, S.J.F.; Davie, E.W.

    1987-09-22

    A human genomic DNA library was screened for the gene coding for human prothrombin with a cDNA coding for the human protein. Eighty-one positive lambda phage were identified, and three were chosen for further characterization. These three phage hybridized with 5' and/or 3' probes prepared from the prothrombin cDNA. The complete DNA sequence of 21 kilobases of the human prothrombin gene was determined and included a 4.9-kilobase region that was previously sequenced. The gene for human prothrombin contains 14 exons separated by 13 intervening sequences. The exons range in size from 25 to 315 base pairs, while the introns range from 84 to 9447 base pairs. Ninety percent of the gene is composed of intervening sequence. All the intron splice junctions are consistent with sequences found in other eukaryotic genes, except for the presence of GC rather than GT on the 5' end of intervening sequence L. Thirty copies of Alu repetitive DNA and two copies of partial KpnI repeats were identified in clusters within several of the intervening sequences, and these repeats represent 40% of the DNA sequence of the gene. The size, distribution, and sequence homology of the introns within the gene were the compared to those of the genes for the other vitamin K dependent proteins and several other serine proteases.

  16. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    PubMed Central

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  17. Nucleotide sequences of 5S ribosomal RNA from four oomycete and chytrid water molds.

    PubMed

    Walker, W F; Doolittle, W F

    1982-09-25

    The nucleotide sequences of the 5S rRNAs of the oomycete water molds Saprolegnia ferax and Pythium hydnosporum and of the chytrid water molds Blastocladiella simplex and Phlyctochytrium irregulare were determined by chemical and enzymatic partial degradation of 3' and 5' end-labelled molecules, followed by gel sequence analysis. The two oomycete sequences differed in 24 positions and the two chytrid sequences differed in 27 positions. These pairs differed in a mean of 44 positions. The chytrid sequences clearly most resemble the sequence from the zygomycete Phycomyces, while the oomycete sequences appear to be allied with those from protozoa and slime molds. PMID:6890670

  18. The Effect of Single-Nucleotide Polymorphism Marker Selection on Patterns of Haplotype Blocks and Haplotype Frequency Estimates

    PubMed Central

    Nothnagel, Michael; Rohde, Klaus

    2005-01-01

    The definition of haplotype blocks of single-nucleotide polymorphisms (SNPs) has been proposed so that the haplotypes can be used as markers in association studies and to efficiently describe human genetic variation. The International Haplotype Map (HapMap) project to construct a comprehensive catalog of haplotypic variation in humans is underway. However, a number of factors have already been shown to influence the definition of blocks, including the population studied and the sample SNP density. Here, we examine the effect that marker selection has on the definition of blocks and the pattern of haplotypes by using comparable but complementary SNP sets and a number of block definition methods in various genomic regions and populations that were provided by the Encyclopedia of DNA Elements (ENCODE) project. We find that the chosen SNP set has a profound effect on the block-covered sequence and block borders, even at high marker densities. Our results question the very concept of discrete haplotype blocks and the possibility of generalizing block findings from the HapMap project. We comparatively apply the block-free tagging-SNP approach and discuss both the haplotype approach and the tagging-SNP approach as means to efficiently catalog genetic variation. PMID:16380910

  19. Impact of viral activators and epigenetic regulators on HIV-1 LTRs containing naturally occurring single nucleotide polymorphisms.

    PubMed

    Shah, Sonia; Pirrone, Vanessa; Alexaki, Aikaterini; Nonnemacher, Michael R; Wigdahl, Brian

    2015-01-01

    Following human immunodeficiency virus type 1 (HIV-1) integration into host cell DNA, the viral promoter can become transcriptionally silent in the absence of appropriate signals and factors. HIV-1 gene expression is dependent on regulatory elements contained within the long terminal repeat (LTR) that drive the synthesis of viral RNAs and proteins through interaction with multiple host and viral factors. Previous studies identified single nucleotide polymorphisms (SNPs) within CCAAT/enhancer binding protein (C/EBP) site I and Sp site III (3T, C-to-T change at position 3, and 5T, C-to-T change at position 5 of the binding site, respectively, when compared to the consensus B sequence) that are low affinity binding sites and correlate with more advanced stages of HIV-1 disease. Stably transfected cell lines containing the wild type, 3T, 5T, and 3T5T LTRs were developed utilizing bone marrow progenitor, T, and monocytic cell lines to explore the LTR phenotypes associated with these genotypic changes from an integrated chromatin-based microenvironment. Results suggest that in nonexpressing cell clones LTR-driven gene expression occurs in a SNP-specific manner in response to LTR activation or treatment with trichostatin A treatment, indicating a possible cell type and SNP-specific mechanism behind the epigenetic control of LTR activation. PMID:25629043

  20. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes.

    PubMed

    McGraw, Kathy L; Cluzeau, Thomas; Sallman, David A; Basiorka, Ashley A; Irvine, Brittany A; Zhang, Ling; Epling-Burnette, P K; Rollison, Dana E; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F

    2015-10-27

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to -2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  1. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    PubMed Central

    Wang, Shichen; Wong, Debbie; Forrest, Kerrie; Allen, Alexandra; Chao, Shiaoman; Huang, Bevan E; Maccaferri, Marco; Salvi, Silvio; Milner, Sara G; Cattivelli, Luigi; Mastrangelo, Anna M; Whan, Alex; Stephen, Stuart; Barker, Gary; Wieseke, Ralf; Plieske, Joerg; International Wheat Genome Sequencing Consortium; Lillemo, Morten; Mather, Diane; Appels, Rudi; Dolferus, Rudy; Brown-Guedira, Gina; Korol, Abraham; Akhunova, Alina R; Feuillet, Catherine; Salse, Jerome; Morgante, Michele; Pozniak, Curtis; Luo, Ming-Cheng; Dvorak, Jan; Morell, Matthew; Dubcovsky, Jorge; Ganal, Martin; Tuberosa, Roberto; Lawley, Cindy; Mikoulitch, Ivan; Cavanagh, Colin; Edwards, Keith J; Hayden, Matthew; Akhunov, Eduard

    2014-01-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat. PMID:24646323

  2. Genomewide single nucleotide polymorphism discovery in Atlantic salmon (Salmo salar): validation in wild and farmed American and European populations.

    PubMed

    Yáñez, J M; Naswa, S; López, M E; Bassini, L; Correa, K; Gilbey, J; Bernatchez, L; Norris, A; Neira, R; Lhorente, J P; Schnable, P S; Newman, S; Mileham, A; Deeb, N; Di Genova, A; Maass, A

    2016-07-01

    A considerable number of single nucleotide polymorphisms (SNPs) are required to elucidate genotype-phenotype associations and determine the molecular basis of important traits. In this work, we carried out de novo SNP discovery accounting for both genome duplication and genetic variation from American and European salmon populations. A total of 9 736 473 nonredundant SNPs were identified across a set of 20 fish by whole-genome sequencing. After applying six bioinformatic filtering steps, 200 K SNPs were selected to develop an Affymetrix Axiom(®) myDesign Custom Array. This array was used to genotype 480 fish representing wild and farmed salmon from Europe, North America and Chile. A total of 159 099 (79.6%) SNPs were validated as high quality based on clustering properties. A total of 151 509 validated SNPs showed a unique position in the genome. When comparing these SNPs against 238 572 markers currently available in two other Atlantic salmon arrays, only 4.6% of the SNP overlapped with the panel developed in this study. This novel high-density SNP panel will be very useful for the dissection of economically and ecologically relevant traits, enhancing breeding programmes through genomic selection as well as supporting genetic studies in both wild and farmed populations of Atlantic salmon using high-resolution genomewide information. PMID:26849107

  3. A common IL-13 Arg130Gln single nucleotide polymorphism among Chinese atopy patients with allergic rhinitis.

    PubMed

    Wang, Min; Xing, Zhi-Min; Lu, Chao; Ma, You-Xiang; Yu, De-Lin; Yan, Zheng; Wang, Shen-Wu; Yu, Li-Sheng

    2003-10-01

    Allergic rhinitis is a major public health problem and has seen its prevalence increase during the past few decades. Interleukin 13 (IL-13) has been implicated in the pathogenesis and in the regulation of immunoglobulin E (IgE) production. Single nucleotide polymorphisms (SNPs) have been found in both the coding sequence and the promoter region of IL-13, and such SNPs have been associated with allergic asthma. We have investigated whether IL-13 SNPs are associated with allergic rhinitis. Among 188 Chinese adult patients with allergic rhinitis and 87 normal controls, no significant difference was found in either allele or haplotype frequency of the SNPs between the two groups. Within patients, there was a significant association of the IL-13 Arg130Gln SNP, but not of the IL-13 promoter -1112(C/T) SNP, with serum total IgE levels. Patients with a Gln/Gln genotype showed much higher serum total IgE than those with an Arg/Arg genotype. When tested for serum-specific IgE, patients allergic to Derp 1, but not those allergic to Artemisia pollen, showed a significant association with the IL-13 promoter SNP. Thus, our results suggest a possible involvement of IL-13 SNPs in the regulation of IgE production in response to allergens in this Chinese population. PMID:12928861

  4. CLEANUP: a fast computer program for removing redundancies from nucleotide sequence databases.

    PubMed

    Grillo, G; Attimonelli, M; Liuni, S; Pesole, G

    1996-02-01

    A key concept in comparing sequence collections is the issue of redundancy. The production of sequence collections free from redundancy is undoubtedly very useful, both in performing statistical analyses and accelerating extensive database searching on nucleotide sequences. Indeed, publicly available databases contain multiple entries of identical or almost identical sequences. Performing statistical analysis on such biased data makes the risk of assigning high significance to non-significant patterns very high. In order to carry out unbiased statistical analysis as well as more efficient database searching it is thus necessary to analyse sequence data that have been purged of redundancy. Given that a unambiguous definition of redundancy is impracticable for biological sequence data, in the present program a quantitative description of redundancy will be used, based on the measure of sequence similarity. A sequence is considered redundant if it shows a degree of similarity and overlapping with a longer sequence in the database greater than a threshold fixed by the user. In this paper we present a new algorithm based on an "approximate string matching' procedure, which is able to determine the overall degree of similarity between each pair of sequences contained in a nucleotide sequence database and to generate automatically nucleotide sequence collections free from redundancies. PMID:8670613

  5. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    SciTech Connect

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne; Nadanaciva, Sashi

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.

  6. Genomic organisation of the chicken ghrelin gene and its single nucleotide polymorphisms detected by denaturing high-performance liquid chromatography.

    PubMed

    Nie, Q; Zeng, H; Lei, M; Ishag, N A; Fang, M; Sun, B; Yang, G; Zhang, X

    2004-10-01

    (1) Ghrelin is a novel endogenous ligand for the growth hormone secretagogue receptor (GHS-R) and is expressed primarily in the stomach and hypothalamus with the probable function of stimulating GH secretion and food intake both in mammals and poultry. The complete sequences of ghrelin gene have been reported in humans and mice; however, that of chickens remains unclear. (2) Here, we report the complete sequence of chicken ghrelin gene (submitted to Genbank; accession number AY303688), which consists of 5 exons and 4 introns. As in mice, the first exon of chicken ghrelin gene does not encode any amino acid. (3) Scanning point mutations with denaturing high-performance liquid chromatography (DHPLC) using WAVE DNA Fragment Analysis Systems and confirmed with direct sequencing for polymerase chain reaction (PCR) products, we analysed the single nucleotide polymorphisms (SNPs) in the entire gene of chicken ghrelin. (4) Results showed that there were 19 SNPs in chicken ghrelin gene, and most of these SNPs were scattered in the 4 introns. In these SNPs, one mutation in exon 5 (A2355G) led to the change of amino acid from glutamine to arginine (Gln 113 Arg): as a result a different ghrelin precursor instead of a mature peptide was produced. In addition, one SNP in 5'UTR (C223G) determined the presence or absence of a potential binding site of transcription factor serum response factor (SRF), which might affect the expression of chicken ghrelin gene. Some of the SNPs detected in the present study could be used in quantitative trait loci (QTL) mapping for growth characters in chickens. (5) Because one SNP is located in a polymorphic site of restriction enzyme PagI of intron 4, it was possible to design a PCR-RFLP procedure and analyse the diversity of 10 chicken populations. Results showed the allelic frequencies of C2100T differ among these breeds, however, no significant difference was observed between imported breeds and Chinese native ones, nor between egg layers and

  7. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus

    PubMed Central

    2012-01-01

    Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic

  8. Kelvin probe force microscopy of DNA-capped nanoparticles for single-nucleotide polymorphism detection

    NASA Astrophysics Data System (ADS)

    Lee, Hyungbeen; Lee, Sang Won; Lee, Gyudo; Lee, Wonseok; Lee, Jeong Hoon; Hwang, Kyo Seon; Yang, Jaemoon; Lee, Sang Woo; Yoon, Dae Sung

    2016-07-01

    Kelvin probe force microscopy (KPFM) is a robust toolkit for profiling the surface potential (SP) of biomolecular interactions between DNAs and/or proteins at the single molecule level. However, it has often suffered from background noise and low throughput due to instrumental or environmental constraints, which is regarded as limiting KPFM applications for detection of minute changes in the molecular structures such as single-nucleotide polymorphism (SNP). Here, we show KPFM imaging of DNA-capped nanoparticles (DCNP) that enables SNP detection of the BRCA1 gene owing to sterically well-adjusted DNA-DNA interactions that take place within the confined spaces of DCNP. The average SP values of DCNP interacting with BRCA1 SNP were found to be lower than the DCNP reacting with normal (non-mutant) BRCA1 gene. We also demonstrate that SP characteristics of DCNP with different substrates (e.g., Au, Si, SiO2, and Fe) provide us with a chance to attenuate or augment the SP signal of DCNP without additional enhancement of instrumentation capabilities.Kelvin probe force microscopy (KPFM) is a robust toolkit for profiling the surface potential (SP) of biomolecular interactions between DNAs and/or proteins at the single molecule level. However, it has often suffered from background noise and low throughput due to instrumental or environmental constraints, which is regarded as limiting KPFM applications for detection of minute changes in the molecular structures such as single-nucleotide polymorphism (SNP). Here, we show KPFM imaging of DNA-capped nanoparticles (DCNP) that enables SNP detection of the BRCA1 gene owing to sterically well-adjusted DNA-DNA interactions that take place within the confined spaces of DCNP. The average SP values of DCNP interacting with BRCA1 SNP were found to be lower than the DCNP reacting with normal (non-mutant) BRCA1 gene. We also demonstrate that SP characteristics of DCNP with different substrates (e.g., Au, Si, SiO2, and Fe) provide us with a

  9. Deep resequencing of Trichinella spiralis reveals previously un-described single nucleotide polymorphisms and intra-isolate variation within the mitochondrial genome.

    PubMed

    Webb, Kristen M; Rosenthal, Benjamin M

    2010-03-01

    The phylogeny and historical dispersal of Trichinella spp. have been studied, in part, by sequencing portions of the mitochondrial genome. Such studies rely on two untested beliefs: that variation in a portion is representative of the entire mitochondrial genome, and that each isolate is characterized by only one mitochondrial haplotype. We have used next generation DNA sequencing technology to obtain the complete mitochondrial genome sequence from a second isolate of T. spiralis. By aligning it to the only previously sequenced genome, we sought to establish whether the exceptionally deep sequencing coverage provided by such an approach could detect regions of the genome which had been misassembled, or nucleotide positions which may vary within an isolate. The new data broadly confirm the gene order and sequence assembly for protein-coding regions. However, in the repetitive non-coding region, alignment to the previously published genome sequence proved difficult. Such discrepancies may represent true biological variation, but may rather result from methodological or algorithmic sources. Within the 13,902bp protein-coding region, 7 polymorphisms were identified. Six of these polymorphisms occurred within protein-coding genes and three alter an amino acid sequence, one occurred in a tRNA-Ile sequence, and four were found to vary within our isolate. Thus, comparing only two isolates of T. spiralis has enabled the discovery of previously unrecognized variation within the species. Characterizing diversity within and among the mitochondrial genomes of additional species of Trichinella would undoubtedly yield further insights into the diversification history of the genus. Our study affirms that next generation DNA sequencing technology can reliably characterize a complete mitochondrial genome. PMID:20083232

  10. Nucleotide sequences of 5S rRNAs from four jellyfishes.

    PubMed

    Hori, H; Ohama, T; Kumazaki, T; Osawa, S

    1982-11-25

    The nucleotide sequences of 5S rRNAs from four jellyfishes, Spirocodon saltatrix, Nemopsis dofleini, Aurelia aurita and Chrysaora quinquecirrha have been determined. The sequences are highly similar to each other. A fairly high similarity was also found between these jellyfishes and a sea anemone, Anthopleura japonica. PMID:6130512

  11. Functional and Structural Consequences of Damaging Single Nucleotide Polymorphisms in Human Prostate Cancer Predisposition Gene RNASEL

    PubMed Central

    Datta, Amit; Mazumder, Md. Habibul Hasan; Chowdhury, Afrin Sultana; Hasan, Md. Anayet

    2015-01-01

    A commonly diagnosed cancer, prostate cancer (PrCa), is being regulated by the gene RNASEL previously known as PRCA1 codes for ribonuclease L which is an integral part of interferon regulated system that mediates antiviral and antiproliferative role of the interferons. Both somatic and germline mutations have been implicated to cause prostate cancer. With an array of available Single Nucleotide Polymorphism data on dbSNP this study is designed to sort out functional SNPs in RNASEL by implementing different authentic computational tools such as SIFT, PolyPhen, SNPs&GO, Fathmm, ConSurf, UTRScan, PDBsum, Tm-Align, I-Mutant, and Project HOPE for functional and structural assessment, solvent accessibility, molecular dynamics, and energy minimization study. Among 794 RNASEL SNP entries 124 SNPs were found nonsynonymous from which SIFT predicted 13 nsSNPs as nontolerable whereas PolyPhen-2 predicted 28. SNPs found on the 3′ and 5′ UTR were also assessed. By analyzing six tools having different perspectives an aggregate result was produced where nine nsSNPs were found to be most likely to exert deleterious effect. 3D models of mutated proteins were generated to determine the functional and structural effect of the mutations on ribonuclease L. The initial findings were reinforced by the results from I-Mutant and Project HOPE as these tools predicted significant structural and functional instability of the mutated proteins. Expasy-ProSit tool defined the mutations to be situated in the functional domains of the protein. Considering previous analysis this study revealed a conclusive result deducing the available SNP data on the database by identifying the most damaging three nsSNP rs151296858 (G59S), rs145415894 (A276V), and rs35896902 (R592H). As such studies involving polymorphisms of RNASEL were none to be found, the results of the current study would certainly be helpful in future prospects concerning prostate cancer in males. PMID:26236721

  12. Association of a single nucleotide polymorphism in titin gene with marbling in Japanese Black beef cattle

    PubMed Central

    Yamada, Takahisa; Sasaki, Seiki; Sukegawa, Shin; Yoshioka, Sachiyo; Takahagi, Youichi; Morita, Mitsuo; Murakami, Hiroshi; Morimatsu, Fumiki; Fujita, Tatsuo; Miyake, Takeshi; Sasaki, Yoshiyuki

    2009-01-01

    Background Marbling defined by the amount and distribution of intramuscular fat is an economically important trait of beef cattle in Japan. We have recently reported that single nucleotide polymorphisms (SNPs) in the endothelial differentiation, sphingolipid G-protein-coupled receptor, 1 (EDG1) gene were associated with marbling in Japanese Black beef cattle. As well as EDG1, the titin (TTN) gene, involved in myofibrillogenesis, has been previously shown to possess expression difference in musculus longissimus muscle between low-marbled and high-marbled steer groups, and to be located within genomic region of a quantitative trait locus for marbling. Thus TTN was considered as a positional functional candidate for the gene responsible for marbling. In this study, we explored SNP in TTN and analyzed association of the SNP with marbling. Findings A SNP in the promoter region of TTN, referred to as g.231054C>T, was the only difference detected between high- and low-marbled steer groups. The SNP was associated with marbling in 3 experiments using 101 sires (P = 0.004), 848 paternal half-sib progeny steers from 5 sires heterozygous for the g.231054C>T (P = 0.046), and 820 paternal half-sib progeny steers from 3 sires homozygous for C allele at the g.231054C>T (P = 0.051), in Japanese Black beef cattle. The effect of genotypes of the SNP on subcutaneous fat thickness was not statistically significant (P > 0.05). Conclusion These findings suggest that in addition to the EDG1 SNPs, the TTN SNP polymorphism is associated with marbling and may be useful for effective marker-assisted selection to increase the levels of marbling in Japanese Black beef cattle. Further replicate studies will be needed to confirm the allelic association observed here, and to expand the results to evaluate all possible genotypic combinations of alleles. PMID:19419586

  13. Host nucleotide polymorphism in hepatitis B virus-associated hepatocellular carcinoma.

    PubMed

    Mathew, Shilu; Abdel-Hafiz, Hany; Raza, Abbas; Fatima, Kaneez; Qadri, Ishtiaq

    2016-04-01

    Hepatocellular carcinoma (HCC) is etiologically linked with hepatitis B virus (HBV) and is the leading cause of death amongst 80% of HBV patients. Among HBV affected patients, genetic factors are also involved in modifying the risk factors of HCC. However, the genetic factors that regulate progression to HCC still remain to be determined. In this review, we discuss several single nucleotide polymorphisms (SNPs) which were reportedly associated with increased or reduced risk of HCC occurrence in patients with chronic HBV infection such as cyclooxygenase (COX)-2 expression specifically at COX-2 -1195G/A in Chinese, Turkish and Egyptian populations, tumor necrosis factor α and the three most commonly studied SNPs: PAT-/+, Lys939Gln (A33512C, rs2228001) and Ala499Val (C21151T, rs2228000). In genome-wide association studies, strong associations have also been found at loci 1p36.22, 11q22.3, 6p21 (rs1419881, rs3997872, rs7453920 and rs7768538), 8p12 (rs2275959 and rs37821974) and 22q11.21. The genes implicated in these studies include HLA-DQB2, HLA-DQA1, TCF19, HLA-C, UBE2L3, LTL, FDX1, MICA, UBE4B and PG. The SNPs found to be associated with the above-mentioned genes still require validation in association studies in order to be considered good prognostic candidates for HCC. Screening of these polymorphisms is very beneficial in clinical experiments to stratify the higher or lower risk for HCC and may help in designing effective and efficient HCC surveillance programs for chronic HBV-infected patients if further genetic vulnerabilities are detected. PMID:27057306

  14. Host nucleotide polymorphism in hepatitis B virus-associated hepatocellular carcinoma

    PubMed Central

    Mathew, Shilu; Abdel-Hafiz, Hany; Raza, Abbas; Fatima, Kaneez; Qadri, Ishtiaq

    2016-01-01

    Hepatocellular carcinoma (HCC) is etiologically linked with hepatitis B virus (HBV) and is the leading cause of death amongst 80% of HBV patients. Among HBV affected patients, genetic factors are also involved in modifying the risk factors of HCC. However, the genetic factors that regulate progression to HCC still remain to be determined. In this review, we discuss several single nucleotide polymorphisms (SNPs) which were reportedly associated with increased or reduced risk of HCC occurrence in patients with chronic HBV infection such as cyclooxygenase (COX)-2 expression specifically at COX-2 -1195G/A in Chinese, Turkish and Egyptian populations, tumor necrosis factor α and the three most commonly studied SNPs: PAT-/+, Lys939Gln (A33512C, rs2228001) and Ala499Val (C21151T, rs2228000). In genome-wide association studies, strong associations have also been found at loci 1p36.22, 11q22.3, 6p21 (rs1419881, rs3997872, rs7453920 and rs7768538), 8p12 (rs2275959 and rs37821974) and 22q11.21. The genes implicated in these studies include HLA-DQB2, HLA-DQA1, TCF19, HLA-C, UBE2L3, LTL, FDX1, MICA, UBE4B and PG. The SNPs found to be associated with the above-mentioned genes still require validation in association studies in order to be considered good prognostic candidates for HCC. Screening of these polymorphisms is very beneficial in clinical experiments to stratify the higher or lower risk for HCC and may help in designing effective and efficient HCC surveillance programs for chronic HBV-infected patients if further genetic vulnerabilities are detected. PMID:27057306

  15. Functional analysis of non-synonymous single nucleotide polymorphisms in human SLC26A9

    PubMed Central

    Chen, An-Ping; Chang, Min-Hwang; Romero, Michael F.

    2012-01-01

    Slc26 anion transporters play crucial roles in transepithelial Cl− absorption and HCO3− secretion; Slc26 protein mutations lead to several diseases. Slc26a9 functions as a Cl− channel and electrogenic Cl−-HCO3− exchanger, and can interact with CFTR. Slc26a9(−/−) mice have reduced gastric acid secretion, yet no human disease is currently associated with SLC26A9 coding mutations. Therefore, we tested the function of non-synonymous, coding, single nucleotide polymorphisms (cSNPs) of SLC26A9. Presently, eight cSNPs are NCBI-documented: Y70N, T127N, I384T, R575W, P606L, V622L, V744M and H748R. Using two-electrode voltage-clamp and anion selective electrodes, we measured the biophysical consequences of these cSNPs. Y70N (cytoplasmic N-terminus) displays higher channel activity and enhanced Cl−-HCO3− exchange. T127N (transmembrane) results in smaller halide currents but not for SCN−. V622L (STAS domain) and V744M (STAS adjacent) decreased plasma membrane expression which partially accounts for decreased whole cell currents. Nevertheless, V622L transport is reduced to ~50%. SLC26A9 polymorphisms lead to several function modifications (increased activity, decreased activity, altered protein expression) which could lead to a spectrum of pathophysiologies. Thus, knowing an individual’s SLC26A9 genetics becomes important for understanding disease potentially caused by SLC26A9 mutations or modifying diseases, e.g., cystic fibrosis. Our results also provide a framework to understand SLC26A9 transport modalities and structure-function relationships. PMID:22544634

  16. Functional and Structural Consequences of Damaging Single Nucleotide Polymorphisms in Human Prostate Cancer Predisposition Gene RNASEL.

    PubMed

    Datta, Amit; Mazumder, Md Habibul Hasan; Chowdhury, Afrin Sultana; Hasan, Md Anayet

    2015-01-01

    A commonly diagnosed cancer, prostate cancer (PrCa), is being regulated by the gene RNASEL previously known as PRCA1 codes for ribonuclease L which is an integral part of interferon regulated system that mediates antiviral and antiproliferative role of the interferons. Both somatic and germline mutations have been implicated to cause prostate cancer. With an array of available Single Nucleotide Polymorphism data on dbSNP this study is designed to sort out functional SNPs in RNASEL by implementing different authentic computational tools such as SIFT, PolyPhen, SNPs&GO, Fathmm, ConSurf, UTRScan, PDBsum, Tm-Align, I-Mutant, and Project HOPE for functional and structural assessment, solvent accessibility, molecular dynamics, and energy minimization study. Among 794 RNASEL SNP entries 124 SNPs were found nonsynonymous from which SIFT predicted 13 nsSNPs as nontolerable whereas PolyPhen-2 predicted 28. SNPs found on the 3' and 5' UTR were also assessed. By analyzing six tools having different perspectives an aggregate result was produced where nine nsSNPs were found to be most likely to exert deleterious effect. 3D models of mutated proteins were generated to determine the functional and structural effect of the mutations on ribonuclease L. The initial findings were reinforced by the results from I-Mutant and Project HOPE as these tools predicted significant structural and functional instability of the mutated proteins. Expasy-ProSit tool defined the mutations to be situated in the functional domains of the protein. Considering previous analysis this study revealed a conclusive result deducing the available SNP data on the database by identifying the most damaging three nsSNP rs151296858 (G59S), rs145415894 (A276V), and rs35896902 (R592H). As such studies involving polymorphisms of RNASEL were none to be found, the results of the current study would certainly be helpful in future prospects concerning prostate cancer in males. PMID:26236721

  17. POLYMORPHISM IN THE CODING REGION SEQUENCE OF GDF8 GENE IN INDIAN SHEEP.

    PubMed

    Pothuraju, M; Mishra, S K; Kumar, S N; Mohamed, N F; Kataria, R S; Yadav, D K; Arora, R

    2015-11-01

    The present study was undertaken to identify polymorphism in the coding sequence of GDF8gene across indigenous meat type sheep breeds. A 1647 bp sequence was generated, encompassing 208 bp of the 5'UTR, 1128 bp of coding region (exon1, 2 and 3) as well as 311 bp of 3'UTR. The sheep and goat GDF8 gene sequences were observed to be highly conserved as compared to cattle, buffalo, horse and pig. Several nucleotide variations were observed across coding sequence of GDF8 gene in Indian sheep. Three polymorphic sites were identified in the 5'UTR, one in exon 1 and one in the exon 2 regions. Both SNPs in the exonic region were found to be non-synonymous. The mutations c.539T > G and c.821T > A discovered in this study in the exon 1 and exon 2, respectively, have not been previously reported. The information generated provides preliminary indication of the functional diversity present in Indian sheep at the coding region of GDF8gene. The novel as well as the previously reported SNPs discovered in the Indian sheep warrant further analysis to see whether they affect the phenotype. Future studies will need to establish the affect of reported SNPs in the expression of the GDF8 gene in Indian sheep population. PMID:26845859

  18. Polymorphic amplified typing sequences (PATS) and pulsed-field gel electrophoresis (PFGE) yield comparable results in the strain typing of a diverse set of bovine Escherichia coli O157 isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The PCR-based Escherichia coli O157 (O157) strain typing system, Polymorphic Amplified Typing Sequences (PATS), targets insertions-deletions (Indels) and single nucleotide polymorphisms (SNPs) at the XbaI and AvrII(BlnI) restriction enzyme sites, respectively, besides amplifying four known virulenc...

  19. The nucleotide sequence of the tnpA gene completes the sequence of the Pseudomonas transposon Tn501.

    PubMed Central

    Brown, N L; Winnie, J N; Fritzinger, D; Pridmore, R D

    1985-01-01

    The nucleotide sequence of the gene (tnpA) which codes for the transposase of transposon Tn501 has been determined. It contains an open reading frame for a polypeptide of Mr = 111,500, which terminates within the inverted repeat sequence of the transposon. The reading frame would be transcribed in the same direction as the mercury-resistance genes and the tnpR gene. The amino acid sequence predicted from this reading frame shows 32% identity with that of the transposase of the related transposon Tn3. The C-terminal regions of these two polypeptides show slightly greater homology than the N-terminal regions when conservative amino acid substitutions are considered. With this sequence determination, the nucleotide sequence of Tn501 is fully defined. The main features of the sequence are briefly presented. PMID:2994007

  20. Diverse nucleotide compositions and sequence fluctuation in Rubisco protein genes

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, S.; Cheung, E.; Bienaime, R.; Ye, J.; Tremberger, G., Jr.; Schneider, P.; Lieberman, D.; Cheung, T.

    2011-10-01

    The Rubisco protein-enzyme is arguably the most abundance protein on Earth. The biology dogma of transcription and translation necessitates the study of the Rubisco genes and Rubisco-like genes in various species. Stronger correlation of fractal dimension of the atomic number fluctuation along a DNA sequence with Shannon entropy has been observed in the studied Rubisco-like gene sequences, suggesting a more diverse evolutionary pressure and constraints in the Rubisco sequences. The strategy of using metal for structural stabilization appears to be an ancient mechanism, with data from the porphobilinogen deaminase gene in Capsaspora owczarzaki and Monosiga brevicollis. Using the chi-square distance probability, our analysis supports the conjecture that the more ancient Rubisco-like sequence in Microcystis aeruginosa would have experienced very different evolutionary pressure and bio-chemical constraint as compared to Bordetella bronchiseptica, the two microbes occupying either end of the correlation graph. Our exploratory study would indicate that high fractal dimension Rubisco sequence would support high carbon dioxide rate via the Michaelis- Menten coefficient; with implication for the control of the whooping cough pathogen Bordetella bronchiseptica, a microbe containing a high fractal dimension Rubisco-like sequence (2.07). Using the internal comparison of chi-square distance probability for 16S rRNA (~ E-22) versus radiation repair Rec-A gene (~ E-05) in high GC content Deinococcus radiodurans, our analysis supports the conjecture that high GC content microbes containing Rubisco-like sequence are likely to include an extra-terrestrial origin, relative to Deinococcus radiodurans. Similar photosynthesis process that could utilize host star radiation would not compete with radiation resistant process from the biology dogma perspective in environments such as Mars and exoplanets.

  1. Association Between Single Nucleotide Polymorphism +276G > T (rs1501299) in ADIPOQ and Endometrial Cancer.

    PubMed

    Bieńkiewicz, Jan; Smolarz, Beata; Malinowski, Andrzej

    2016-01-01

    Current literature gives evidence of an indisputable role adiponectin plays in adipose tissue metabolism and obesity-related diseases. Moreover, latest research efforts focus on linking genetic markers of this adipocytokine's gene (ADIPOQ) with cancer. Aim of this study was to determine the genotype distribution of single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ and an attempt to identify the impact this polymorphism exerts on endometrial cancer risk in obese females. The test group comprised 90 women treated surgically for endometrial cancer between 2000 and 2012 in the Department of Surgical & Endoscopic Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital - Research Institute, Lodz, Poland. 90 individuals treated in the parallel period for uterine fibroids constituted the control group. Patients within both groups were stratified according to BMI into: lean, overweight and obese subjects. Statistical analysis was performed between two major groups and, furthermore, within the abovementioned subgroups. The analysis revealed that allele G of the investigated polymorphism in obese women with endometrial cancer is significantly more frequent, and allele T is significantly less frequent than in lean controls. However, no significant correlation was observed between the polymorphism and endometrial cancer in lean and overweight females. Single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ may be considered to be a risk factor of endometrial cancer. Further research on SNP in EC is warranted to obtain more conclusive outcomes. PMID:26386690

  2. Single nucleotide polymorphism in the tumor necrosis factor-alpha gene affects inflammatory bowel diseases risk

    PubMed Central

    Ferguson, Lynnette R; Huebner, Claudia; Petermann, Ivonne; Gearry, Richard B; Barclay, Murray L; Demmers, Pieter; McCulloch, Alan; Han, Dug Yeo

    2008-01-01

    AIM: To investigate the role that single nucleotide polymorphisms (SNPs) in the promoter of the tumour necrosis factor-alpha (TNF-α) gene play in the risk of inflammatory bowel diseases (IBDs) in a New Zealand population, in the context of international studies. METHODS: DNA samples from 388 patients with Crohn’s disease (CD), 405 ulcerative colitis (UC), 27 indeterminate colitis (IC) and 201 randomly selected controls, from Canterbury, New Zealand were screened for 3 common polymorphisms in the TNF-α receptor: -238 G→A, -308 G→A and -857C→T, using a TaqmanR assay. A meta-analysis was performed on the data obtained on these polymorphisms combined with that from other published studies. RESULTS: Individuals carrying the -308 G/A allele had a significantly (OR = 1.91, χ2 = 17.36, P < 0.0001) increased risk of pancolitis, and a 1.57-fold increased risk (OR = 1.57, χ2 = 4.34, P = 0.037) of requiring a bowel resection in UC. Carrying the -857 C/T variant decreased the risk of ileocolonic CD (OR = 0.56, χ2 = 4.32, P = 0.037), and the need for a bowel resection (OR = 0.59, χ2 = 4.85, P = 0.028). The risk of UC was reduced in individuals who were smokers at diagnosis, (OR = 0.48, χ2 = 4.86, P = 0.028). CONCLUSION: TNF-α is a key cytokine known to play a role in inflammatory response, and the locus for the gene is found in the IBD3 region on chromosome 6p21, known to be associated with an increased risk for IBD. The -308 G/A SNP in the TNF-α promoter is functional, and may account in part for the increased UC risk associated with the IBD3 genomic region. The -857 C/T SNP may decrease IBD risk in certain groups. Pharmaco- or nutrigenomic approaches may be desirable for individuals with such affected genotypes. PMID:18698679

  3. The missing story behind Genome Wide Association Studies: single nucleotide polymorphisms in gene deserts have a story to tell

    PubMed Central

    Schierding, William; Cutfield, Wayne S.; O'Sullivan, Justin M.

    2014-01-01

    Genome wide association studies are central to the evolution of personalized medicine. However, the propensity for single nucleotide polymorphisms (SNPs) to fall outside of genes means that understanding how these polymorphisms alter cellular function requires an expanded view of human genetics. Integrating the study of genome structure (chromosome conformation capture) into its function opens up new avenues of exploration. Changes in the epigenome associated with SNPs in gene deserts will allow us to define complex diseases in a much clearer manner, and usher in a new era of disease pathway exploration. PMID:24600475

  4. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly. PMID:18211817

  5. Phenotype Prediction of Pathogenic Nonsynonymous Single Nucleotide Polymorphisms in WFS1

    PubMed Central

    Qian, Xuli; Qin, Luyang; Xing, Guangqian; Cao, Xin

    2015-01-01

    Wolfram syndrome (WS) is a rare, progressive, neurodegenerative disorder that has an autosomal recessive pattern of inheritance. The gene for WS, wolfram syndrome 1 gene (WFS1), is located on human chromosome 4p16.1 and encodes a transmembrane protein. To date, approximately 230 mutations in WFS1 have been confirmed, in which nonsynonymous single nucleotide polymorphisms (nsSNPs) are the most common forms of genetic variation. Nonetheless, there is poor knowledge on the relationship between SNP genotype and phenotype in other nsSNPs of the WFS1 gene. Here, we analysed 395 nsSNPs associated with the WFS1 gene using different computational methods and identified 20 nsSNPs to be potentially pathogenic. Furthermore, to identify the amino acid distributions and significances of pathogenic nsSNPs in the protein of WFS1, its transmembrane domain was constructed by the TMHMM server, which suggested that mutations outside of the TMhelix could have more effects on protein function. The predicted pathogenic mutations for the nsSNPs of the WFS1 gene provide an excellent guide for screening pathogenic mutations. PMID:26435059

  6. Polymorphisms within base and nucleotide excision repair pathways and risk of differentiated thyroid carcinoma.

    PubMed

    Cipollini, Monica; Figlioli, Gisella; Maccari, Giuseppe; Garritano, Sonia; De Santi, Chiara; Melaiu, Ombretta; Barone, Elisa; Bambi, Franco; Ermini, Stefano; Pellegrini, Giovanni; Cristaudo, Alfonso; Foddis, Rudy; Bonotti, Alessandra; Romei, Cristina; Vivaldi, Agnese; Agate, Laura; Molinari, Eleonora; Barale, Roberto; Forsti, Asta; Hemminki, Kari; Elisei, Rossella; Gemignani, Federica; Landi, Stefano

    2016-05-01

    The thyrocytes are exposed to high levels of oxidative stress which could induce DNA damages. Base excision repair (BER) is one of the principal mechanisms of defense against oxidative DNA damage, however recent evidences suggest that also nucleotide excision repair (NER) could be involved. The aim of present work was to identify novel differentiated thyroid cancer (DTC) risk variants in BER and NER genes. For this purpose, the most strongly associated SNPs within NER and BER genes found in our previous GWAS on DTC were selected and replicated in an independent series of samples for a new case-control study. Although a positive signal was detected at the nominal level of 0.05 for rs7689099 (encoding for an aminoacid change proline to arginine at codon 117 within NEIL3), none of the considered SNPs (i.e. rs7990340 and rs690860 within RFC3, rs3744767 and rs1131636 within RPA1, rs16962916 and rs3136166 in ERCC4, and rs17739370 and rs7689099 in NEIL3) was associated with the risk of DTC when the correction of multiple testing was applied. In conclusion, a role of NER and BER pathways was evoked in the susceptibility to DTC. However, this seemed to be limited to few polymorphic genes and the overall effect size appeared weak. PMID:27062014

  7. A study of single nucleotide polymorphisms of GRIN2B in schizophrenia from Chinese Han population.

    PubMed

    Guo, Zhenming; Niu, Weibo; Bi, Yan; Zhang, Rui; Ren, Decheng; Hu, Jiaxin; Huang, Xiaoye; Wu, Xi; Cao, Yanfei; Yang, Fengping; Wang, Lu; Li, Weidong; Li, Xingwang; Xu, Yifeng; He, Lin; Yu, Tao; He, Guang

    2016-09-01

    Schizophrenia is a severe and complex mental disorder with high heritability. There is evidence that mutations in the gene of Nmethyl-d-aspartate-type glutamate receptors (NMDAR) are associated with schizophrenia. GRIN2B encodes a subunit of NMDARs, and has been identified as a candidate gene for many psychiatric disorders, especially schizophrenia. In this study, we investigated whether single nucleotide polymorphisms (SNPs) in GRIN2B were associated with schizophrenia. Four SNPs (rs890, rs1806191, rs219872, rs172677) were genotyped in 752 schizophrenic patients and 846 healthy controls of the Chinese Han population. Our results indicate differences in allele and genotype frequencies of rs890 between case and control. These results were assessed by adapting different genetic models (codominant, dominant, recessive, overdominant, log-additive models). After controlling for confounding factors including sex and age, rs890 remained associated with schizophrenia. In addition, rs890 and rs1806191 were found to form a haplotype associated with schizophrenia. In summary, our results indicate that the GRIN2B SNP rs890 might be associated with schizophrenia in the Chinese Han population. PMID:27453061

  8. Functional Implications of the CLOCK 3111T/C Single-Nucleotide Polymorphism.

    PubMed

    Ozburn, Angela R; Purohit, Kush; Parekh, Puja K; Kaplan, Gabrielle N; Falcon, Edgardo; Mukherjee, Shibani; Cates, Hannah M; McClung, Colleen A

    2016-01-01

    Circadian rhythm disruptions are prominently associated with bipolar disorder (BD). Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional-translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (1). The CLOCK 3111T/C single-nucleotide polymorphism (SNP; rs1801260) is a genetic variation of the human CLOCK gene that is significantly associated with increased frequency of manic episodes in BD patients (2). The 3111T/C SNP is located in the 3'-untranslated region of the CLOCK gene. In this study, we sought to examine the functional implications of the human CLOCK 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock(-/-) knockout mice) with pcDNA plasmids containing the human CLOCK gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24-h time period. We found that the CLOCK3111C SNP resulted in higher mRNA levels than the CLOCK 3111T SNP. Furthermore, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with CLOCK 3111C expression, indicating that the 3'-UTR SNP affects the expression, function, and stability of CLOCK mRNA. PMID:27148095

  9. Kelvin probe force microscopy of DNA-capped nanoparticles for single-nucleotide polymorphism detection.

    PubMed

    Lee, Hyungbeen; Lee, Sang Won; Lee, Gyudo; Lee, Wonseok; Lee, Jeong Hoon; Hwang, Kyo Seon; Yang, Jaemoon; Lee, Sang Woo; Yoon, Dae Sung

    2016-07-14

    Kelvin probe force microscopy (KPFM) is a robust toolkit for profiling the surface potential (SP) of biomolecular interactions between DNAs and/or proteins at the single molecule level. However, it has often suffered from background noise and low throughput due to instrumental or environmental constraints, which is regarded as limiting KPFM applications for detection of minute changes in the molecular structures such as single-nucleotide polymorphism (SNP). Here, we show KPFM imaging of DNA-capped nanoparticles (DCNP) that enables SNP detection of the BRCA1 gene owing to sterically well-adjusted DNA-DNA interactions that take place within the confined spaces of DCNP. The average SP values of DCNP interacting with BRCA1 SNP were found to be lower than the DCNP reacting with normal (non-mutant) BRCA1 gene. We also demonstrate that SP characteristics of DCNP with different substrates (e.g., Au, Si, SiO2, and Fe) provide us with a chance to attenuate or augment the SP signal of DCNP without additional enhancement of instrumentation capabilities. PMID:27127876

  10. Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation.

    PubMed

    Anderson, Eric C; Ng, Thomas C

    2016-02-01

    We develop a computational framework for addressing pedigree inference problems using small numbers (80-400) of single nucleotide polymorphisms (SNPs). Our approach relaxes the assumptions, which are commonly made, that sampling is complete with respect to the pedigree and that there is no genotyping error. It relies on representing the inferred pedigree as a factor graph and invoking the Sum-Product algorithm to compute and store quantities that allow the joint probability of the data to be rapidly computed under a large class of rearrangements of the pedigree structure. This allows efficient MCMC sampling over the space of pedigrees, and, hence, Bayesian inference of pedigree structure. In this paper we restrict ourselves to inference of pedigrees without loops using SNPs assumed to be unlinked. We present the methodology in general for multigenerational inference, and we illustrate the method by applying it to the inference of full sibling groups in a large sample (n=1157) of Chinook salmon typed at 95 SNPs. The results show that our method provides a better point estimate and estimate of uncertainty than the currently best-available maximum-likelihood sibling reconstruction method. Extensions of this work to more complex scenarios are briefly discussed. PMID:26450523

  11. Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry.

    PubMed

    Sauer, Sascha; Gelfand, David H; Boussicault, Francis; Bauer, Keith; Reichert, Fred; Gut, Ivo G

    2002-03-01

    In the future, analysis of single nucleotide polymorphisms (SNPs) should become a powerful tool for many genetic applications in areas such as association studies, pharmacogenetics and traceability in the agro-alimentary sector. A number of technologies have been developed for high-throughput genotyping of SNPs. Here we present the simplified GOOD assay for SNP genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI). The simplified GOOD assay is a single-tube, purification-free, three-step procedure consisting of PCR, primer extension and phosphodiesterase II digestion followed by mass spectrometric analysis. Due to the application of charge-tag technology, no sample purification is required prior to the otherwise very impurity-sensitive MALDI analysis. The use of methylphosphonate containing primers and ddNTPs or alpha-S-ddNTPs together with a novel DNA polymerase derived from Thermotoga maritima for primer extension allow the fluent preparation of negatively charge-tagged, allele-specific products. A key feature of this polymerase is its preference for ddNTPs and alpha-S-ddNTPs over dNTPs. The simplified GOOD assay was run with automatic liquid handling at the lowest manageable volumes, automatic data acquisition and interpretation. We applied this novel procedure to genotyping SNPs of candidate genes for hypertension and cardiovascular disease. PMID:11861927

  12. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Hayakari, Ryo; Yoshida, Hidemi; Kawaguchi, Shogo; Takahashi, Ippei; Nakaji, Shigeyuki; Imaizumi, Tadaatsu

    2016-01-01

    Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases. PMID:26954674

  13. Further development of multiplex single nucleotide polymorphism typing method, the DigiTag2 assay.

    PubMed

    Nishida, Nao; Tanabe, Tetsuya; Takasu, Miwa; Suyama, Akira; Tokunaga, Katsushi

    2007-05-01

    A number of single nucleotide polymorphisms (SNPs) are considered to be candidate susceptibility or resistance genetic factors for multifactorial disease. Genome-wide searches for disease susceptibility regions followed by high-resolution mapping of primary genes require cost-effective and highly reliable technology. To accomplish successful and low-cost typing for candidate SNPs, new technologies must be developed. We previously reported a multiplex SNP typing method, designated the DigiTag assay, that has the potential to analyze nearly any SNP with high accuracy and reproducibility. However, the DigiTag assay requires multiple washing steps in manipulation and uses genotyping probes modified with biotin for each target SNP. Here we describe the next version of the assay, DigiTag2, which works with simple protocols and uses unmodified genotyping probes. We investigated the feasibility of the DigiTag2 assay by genotyping 96 target SNPs spanning a 610-kb region of human chromosome 5. The DigiTag2 assay is suitable for genotyping an intermediate number of SNPs (tens to hundreds of sites) with a high conversion rate (>90%), high accuracy, and low cost. PMID:17359929

  14. The role of TNXB single-nucleotide polymorphisms in recurrent shoulder dislocation.

    PubMed

    Geiger, Emanuel V; Henrich, Dirk; Wutzler, Sebastian; Schneidmüller, Dorien; Jakob, Heike; Frank, Johannes M; Marzi, Ingo

    2013-02-01

    Tenascin-X (TNX) is an extra-cellular matrix glycoprotein associated with collagen fibril deposition. Recent reports have linked truncated TNX mutations (TNXB) to generalized joint hypermobility and most importantly recurrent joint dislocation. In the present study, we investigated whether there is an association between joint dislocation recurrence rate and the frequency of TNXB single-nucleotide polymorphisms (SNPs). Seventy-eight patients treated for post-traumatic shoulder instability and 82 healthy controls were genotyped for selected TNXB SNP using TaqMan® Genotyping Assays. At a mean follow-up of 24 months recurrence rate and clinical outcomes were evaluated using the Constant and Murley, Rowe, and DASH scores. The association between genotypes and joint dislocation was tested using the dominant, recessive and additive models, and the model-free approach. Genotype distribution of the examined SNPs did not significantly deviate from the Hardy-Weinberg equilibrium (HWE) neither in patients nor in the controls. Moreover, there was no significant difference in genotype and allele distribution between patients and controls. Finally, no difference in genotype frequency was detected between patients who experienced a re-dislocation after the initial surgery and patients who did not sustain a re-dislocation. The SNPs investigated in this study have no clinically relevant influence on TNXB gene expression and/or TNX function. Therefore, these SNPs could not be used for predicting individual risk of recurrent shoulder dislocation. PMID:22991340

  15. Single nucleotide polymorphism-based microarray analysis for the diagnosis of hydatidiform moles

    PubMed Central

    XIE, YINGJUN; PEI, XIAOJUAN; DONG, YU; WU, HUIQUN; WU, JIANZHU; SHI, HUIJUAN; ZHUANG, XUYING; SUN, XIAOFANG; HE, JIALING

    2016-01-01

    In clinical diagnostics, single nucleotide polymorphism (SNP)-based microarray analysis enables the detection of copy number variations (CNVs), as well as copy number neutral regions, that are absent of heterozygosity throughout the genome. The aim of the present study was to evaluate the effectiveness and sensitivity of SNP-based microarray analysis in the diagnosis of hydatidiform mole (HM). By using whole-genome SNP microarray analysis, villous genotypes were detected, and the ploidy of villous tissue was determined to identify HMs. A total of 66 villous tissues and two twin tissues were assessed in the present study. Among these samples, 11 were triploid, one was tetraploid, 23 were abnormal aneuploidy, three were complete genome homozygosity, and the remaining ones were normal ploidy. The most noteworthy finding of the present study was the identification of six partial HMs and three complete HMs from those samples that were not identified as being HMs on the basis of the initial diagnosis of experienced obstetricians. This study has demonstrated that the application of an SNP-based microarray analysis was able to increase the sensitivity of diagnosis for HMs with partial and complete HMs, which makes the identification of these diseases at an early gestational age possible. PMID:27151252

  16. Relationships among calpastatin single nucleotide polymorphisms, calpastatin expression and tenderness in pork longissimus.

    PubMed

    Lindholm-Perry, A K; Rohrer, G A; Holl, J W; Shackelford, S D; Wheeler, T L; Koohmaraie, M; Nonneman, D

    2009-10-01

    Genome scans in the pig have identified a region on chromosome 2 (SSC2) associated with tenderness. Calpastatin is a likely positional candidate gene in this region because of its inhibitory role in the calpain system that is involved in postmortem tenderization. Novel single nucleotide polymorphisms (SNP) in calpastatin were identified and used to genotype a population (n = 1042) of Duroc-Landrace-Yorkshire swine for association with longissimus lumborum slice shear force (SSF) measured at days 7 and 14 postmortem. Three genetic markers residing in the calpastatin gene were significantly associated with SSF (P < 0.0005). Haplotypes constructed from markers in the calpastatin gene were significantly associated with SSF (F-ratio = 3.93; P-value = 0.002). The levels of normalized mRNA expression of calpastatin in the longissimus lumborum of 162 animals also were evaluated by real-time RT-PCR and were associated with the genotype of the most significant marker for SSF (P < 0.02). This evidence suggests that the causative variation alters expression of calpastatin, thus affecting tenderness. In summary, these data provide evidence of several significant, publicly available SNP markers associated with SSF that may be useful to the swine industry for marker assisted selection of animals that have more tender meat. PMID:19422367

  17. Single nucleotide polymorphisms across a species' range: implications for conservation studies of Pacific salmon.

    PubMed

    Seeb, L W; Templin, W D; Sato, S; Abe, S; Warheit, K; Park, J Y; Seeb, J E

    2011-03-01

    Studies of the oceanic and near-shore distributions of Pacific salmon, whose migrations typically span thousands of kilometres, have become increasingly valuable in the presence of climate change, increasing hatchery production and potentially high rates of bycatch in offshore fisheries. Genetics data offer considerable insights into both the migratory routes as well as the evolutionary histories of the species. However, these types of studies require extensive data sets from spawning populations originating from across the species' range. Single nucleotide polymorphisms (SNPs) have been particularly amenable for multinational applications because they are easily shared, require little interlaboratory standardization and can be assayed through increasingly efficient technologies. Here, we discuss the development of a data set for 114 populations of chum salmon through a collaboration among North American and Asian researchers, termed PacSNP. PacSNP is focused on developing the database and applying it to problems of international interest. A data set spanning the entire range of species provides a unique opportunity to examine patterns of variability, and we review issues associated with SNP development. We found evidence of ascertainment bias within the data set, variable linkage relationships between SNPs associated with ancestral groupings and outlier loci with alleles associated with latitude. PMID:21429175

  18. From Single Nucleotide Polymorphisms to Constant Immunosuppression: Mesenchymal Stem Cell Therapy for Autoimmune Diseases

    PubMed Central

    Galipeau, Jacques; Nooka, Ajay K.

    2013-01-01

    The regenerative abilities and the immunosuppressive properties of mesenchymal stromal cells (MSCs) make them potentially the ideal cellular product of choice for treatment of autoimmune and other immune mediated disorders. Although the usefulness of MSCs for therapeutic applications is in early phases, their potential clinical use remains of great interest. Current clinical evidence of use of MSCs from both autologous and allogeneic sources to treat autoimmune disorders confers conflicting clinical benefit outcomes. These varied results may possibly be due to MSC use across wide range of autoimmune disorders with clinical heterogeneity or due to variability of the cellular product. In the light of recent genome wide association studies (GWAS), linking predisposition of autoimmune diseases to single nucleotide polymorphisms (SNPs) in the susceptible genetic loci, the clinical relevance of MSCs possessing SNPs in the critical effector molecules of immunosuppression is largely undiscussed. It is of further interest in the allogeneic setting, where SNPs in the target pathway of MSC's intervention may also modulate clinical outcome. In the present review, we have discussed the known critical SNPs predisposing to disease susceptibility in various autoimmune diseases and their significance in the immunomodulatory properties of MSCs. PMID:24350294

  19. High-density single-nucleotide polymorphism maps of the human genome

    PubMed Central

    Miller, Raymond D.; Phillips, Michael S.; Jo, Inho; Donaldson, Miriam A.; Studebaker, Joel F.; Addleman, Nicholas; Alfisi, Steven V.; Ankener, Wendy M.; Bhatti, Hamid A.; Callahan, Chad E.; Carey, Benjamin J.; Conley, Cheryl L.; Cyr, Justin M.; Derohannessian, Vram; Donaldson, Rachel A.; Elosua, Carolina; Ford, Stacey E.; Forman, Angela M.; Gelfand, Craig A.; Grecco, Nicole M.; Gutendorf, Susan M.; Hock, Cricket R.; Hozza, Mark J.; Hur, Soyoung; In, Sun Mi; Jackson, Diana L.; Jo, Sangmee Ahn; Jung, Sung-Chul; Kim, Sook; Kimm, Kuchan; Kloss, Ellen F.; Koboldt, Daniel C.; Kuebler, Jennifer M.; Kuo, Feng-Shen; Lathrop, Jessica A.; Lee, Jong-Keuk; Leis, Kathy L.; Livingston, Stephanie A.; Lovins, Elizabeth G.; Lundy, Maria L.; Maggan, Sima; Minton, Matthew; Mockler, Michael A.; Morris, David W.; Nachtman, Eric P.; Oh, Bermseok; Park, Chan; Park, Chang-Wook; Pavelka, Nicholas; Perkins, Adrienne B.; Restine, Stephanie L.; Sachidanandam, Ravi; Reinhart, Andrew J.; Scott, Kathryn E.; Shah, Gira J.; Tate, Jatana M.; Varde, Shobha A.; Walters, Amy; White, J. Rebecca; Yoo, Yeon-Kyeong; Lee, Jong-Eun; Boyce-Jacino, Michael T.; Kwok, Pui-Yan

    2007-01-01

    Here we report a large, extensively characterized set of single-nucleotide polymorphisms (SNPs) covering the human genome. We determined the allele frequencies of 55,018 SNPs in African Americans, Asians (Japanese–Chinese), and European Americans as part of The SNP Consortium’s Allele Frequency Project. A subset of 8333 SNPs was also characterized in Koreans. Because these SNPs were ascertained in the same way, the data set is particularly useful for modeling. Our results document that much genetic variation is shared among populations. For autosomes, some 44% of these SNPs have a minor allele frequency ≥10% in each population, and the average allele frequency differences between populations with different continental origins are less than 19%. However, the several percentage point allele frequency differences among the closely related Korean, Japanese, and Chinese populations suggest caution in using mixtures of well-established populations for case–control genetic studies of complex traits. We estimate that ~7% of these SNPs are private SNPs with minor allele frequencies <1%. A useful set of characterized SNPs with large allele frequency differences between populations (>60%) can be used for admixture studies. High-density maps of high-quality, characterized SNPs produced by this project are freely available. PMID:15961272

  20. Study of single-nucleotide polymorphisms by means of electrical conductance measurements

    PubMed Central

    Hihath, Joshua; Xu, Bingqian; Zhang, Peiming; Tao, Nongjian

    2005-01-01

    Understanding the complexities of DNA has been a hallmark of science for over a half century, and one of the important topics in DNA research is recognizing the occurrence of mutations in the base-stack. In this article, we present a study of SNPs by direct-contact electrical measurements to a single DNA duplex. We have used short, 11- and 12-bp dsDNA to investigate the change in conductance that occurs if a single base pair, a single base, or two separate bases in the stack are modified. All measurements are carried out in aqueous solution with the DNA chemically bound to the electrodes. These measurements demonstrate that the presence of a single base pair mismatch can be identified by the conductance of the molecule and can cause a change in the conductance of dsDNA by as much as an order of magnitude, depending on the specific details of the double helix and the single nucleotide polymorphism. PMID:16284253

  1. Single nucleotide polymorphisms to discriminate different classes of hybrid between wild Atlantic salmon and aquaculture escapees.

    PubMed

    Pritchard, Victoria L; Erkinaro, Jaakko; Kent, Matthew P; Niemelä, Eero; Orell, Panu; Lien, Sigbjørn; Primmer, Craig R

    2016-09-01

    Many wild Atlantic salmon (Salmo salar) populations are threatened by introgressive hybridization from domesticated fish that have escaped from aquaculture facilities. A detailed understanding of the hybridization dynamics between wild salmon and aquaculture escapees requires discrimination of different hybrid classes; however, markers currently available to discriminate the two types of parental genome have limited power to do this. Using a high-density Atlantic salmon single nucleotide polymorphism (SNP) array, in combination with pooled-sample allelotyping and an Fst outlier approach, we identified 200 SNPs that differentiated an important Atlantic salmon stock from the escapees potentially hybridizing with it. By simulating multiple generations of wild-escapee hybridization, involving wild populations in two major phylogeographic lineages and a genetically diverse set of escapees, we showed that both the complete set of SNPs and smaller subsets could reliably assign individuals to different hybrid classes up to the third hybrid (F3) generation. This set of markers will be a useful tool for investigating the genetic interactions between native wild fish and aquaculture escapees in many Atlantic salmon populations. PMID:27606009

  2. Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms

    PubMed Central

    Holmans, PA; Riley, B; Pulver, AE; Owen, MJ; Wildenauer, DB; Gejman, PV; Mowry, BJ; Laurent, C; Kendler, KS; Nestadt, G; Williams, NM; Schwab, SG; Sanders, AR; Nertney, D; Mallet, J; Wormley, B; Lasseter, VK; O’Donovan, MC; Duan, J; Albus, M; Alexander, M; Godard, S; Ribble, R; Liang, KY; Norton, N; Maier, W; Papadimitriou, G; Walsh, D; Jay, M; O’Neill, A; Lerer, FB; Dikeos, D; Crowe, RR; Silverman, JM; Levinson, DF

    2008-01-01

    A genomewide linkage scan was carried out in eight clinical samples of informative schizophrenia families. After all quality control checks, the analysis of 707 European-ancestry families included 1,615 affected and 1,602 unaffected genotyped individuals, and the analysis of all 807 families included 1900 affected and 1839 unaffected individuals. Multipoint linkage analysis with correction for marker-marker linkage disequilibrium was carried out with 5,861 single nucleotide polymorphisms (SNPs; Illumina 4.0 linkage map). Suggestive evidence for linkage (European families) was observed on chromosomes 8p21, 8q24.1, 9q34 and 12q24.1 in non-parametric and/or parametric analyses. In a logistic regression allele-sharing analysis of linkage allowing for intersite heterogeneity, genomewide significant evidence for linkage was observed on chromosome 10p12. Significant heterogeneity was also observed on chromosome 22q11.1. Evidence for linkage across family sets and analyses was most consistent on chromosome 8p21, with a one-lod support interval that does not include the candidate gene NRG1, suggesting that one or more other susceptibility loci might exist in the region. In this era of genomewide association and deep resequencing studies, consensus linkage regions deserve continued attention, given that linkage signals can be produced by many types of genomic variation, including any combination of multiple common or rare SNPs or copy number variants in a region. PMID:19223858

  3. Development of a cassava core collection based on single nucleotide polymorphism markers.

    PubMed

    Oliveira, E J; Ferreira, C F; Santos, V S; Oliveira, G A F

    2014-01-01

    Single nucleotide polymorphism (SNP) markers were used in the largest cassava (Manihot esculenta Crantz) germplasm collection from Brazil to develop core collections based on the maximization strategy. Subsets with 61, 64, 84, 128, 256, and 384 cassava accessions were selected and named PoHEU, MST64, PoRAN, MST128, MST256, and MST384, respectively. All the 798 alleles identified by 402 SNP markers in the entire collection were captured in all core collections. Only small alterations in the diversity parameters were observed for the different core collections compared with the complete collection. Because of the optimal adjustment of the validation parameters representative of the complete collection, the absence of genotypes with high genetic similarity and the maximization of the genetic distances between accessions of the PoHEU core collection, which contained 4.7% of the accessions of the complete collection, maximized the genetic conservation of this important cassava collection. Furthermore, the development of this core collection will allow concentrated efforts toward future characterization and agronomic evaluation of accessions to maximize the diversity and genetic gains in cassava breeding programs. PMID:25158266

  4. Single nucleotide polymorphism-based microarray analysis for the diagnosis of hydatidiform moles.

    PubMed

    Xie, Yingjun; Pei, Xiaojuan; Dong, Yu; Wu, Huiqun; Wu, Jianzhu; Shi, Huijuan; Zhuang, Xuying; Sun, Xiaofang; He, Jialing

    2016-07-01

    In clinical diagnostics, single nucleotide polymorphism (SNP)-based microarray analysis enables the detection of copy number variations (CNVs), as well as copy number neutral regions, that are absent of heterozygosity throughout the genome. The aim of the present study was to evaluate the effectiveness and sensitivity of SNP‑based microarray analysis in the diagnosis of hydatidiform mole (HM). By using whole‑genome SNP microarray analysis, villous genotypes were detected, and the ploidy of villous tissue was determined to identify HMs. A total of 66 villous tissues and two twin tissues were assessed in the present study. Among these samples, 11 were triploid, one was tetraploid, 23 were abnormal aneuploidy, three were complete genome homozygosity, and the remaining ones were normal ploidy. The most noteworthy finding of the present study was the identification of six partial HMs and three complete HMs from those samples that were not identified as being HMs on the basis of the initial diagnosis of experienced obstetricians. This study has demonstrated that the application of an SNP‑based microarray analysis was able to increase the sensitivity of diagnosis for HMs with partial and complete HMs, which makes the identification of these diseases at an early gestational age possible. PMID:27151252

  5. Functional Implications of the CLOCK 3111T/C Single-Nucleotide Polymorphism

    PubMed Central

    Ozburn, Angela R.; Purohit, Kush; Parekh, Puja K.; Kaplan, Gabrielle N.; Falcon, Edgardo; Mukherjee, Shibani; Cates, Hannah M.; McClung, Colleen A.

    2016-01-01

    Circadian rhythm disruptions are prominently associated with bipolar disorder (BD). Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional–translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (1). The CLOCK 3111T/C single-nucleotide polymorphism (SNP; rs1801260) is a genetic variation of the human CLOCK gene that is significantly associated with increased frequency of manic episodes in BD patients (2). The 3111T/C SNP is located in the 3′-untranslated region of the CLOCK gene. In this study, we sought to examine the functional implications of the human CLOCK 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock−/− knockout mice) with pcDNA plasmids containing the human CLOCK gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24-h time period. We found that the CLOCK3111C SNP resulted in higher mRNA levels than the CLOCK 3111T SNP. Furthermore, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with CLOCK 3111C expression, indicating that the 3′-UTR SNP affects the expression, function, and stability of CLOCK mRNA. PMID:27148095

  6. HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity

    PubMed Central

    Feng, Rui; Moldover, Brian; Passic, Shendra; Aiamkitsumrit, Benjamas; Dampier, Will; Wojno, Adam; Kilareski, Evelyn; Blakey, Brandon; Ku, Tse-Sheun Jade; Shah, Sonia; Sullivan, Neil T.; Jacobson, Jeffrey M.; Wigdahl, Brian

    2016-01-01

    The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter)/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count). PMID:27100290

  7. Nano-enabled bioanalytical approaches to ultrasensitive detection of low abundance single nucleotide polymorphisms

    PubMed Central

    Lapitan Jr., Lorico D. S.; Guo, Yuan

    2015-01-01

    Single nucleotide polymorphisms (SNPs) constitute the most common types of genetic variations in the human genome. A number of SNPs have been linked to the development of life threatening diseases including cancer, cardiovascular diseases and neurodegenerative diseases. The ability for ultrasensitive and accurate detection of low abundant disease-related SNPs in bodily fluids (e.g. blood, serum, etc.) holds a significant value in the development of non-invasive future biodiagnostic tools. Over the past two decades, nanomaterials have been utilized in a myriad of biosensing applications due to their ability of detecting extremely low quantities of biologically important biomarkers with high sensitivity and accuracy. Of particular interest is the application of such technologies in the detection of SNPs. The use of various nanomaterials, coupled with different powerful signal amplification strategies, has paved the way for a new generation of ultrasensitive SNP biodiagnostic assays. Over the past few years, several ultrasensitive SNP biosensors capable of detecting specific targets down to the ultra-low regimes (ca. aM and below) and therefore holding great promises for early clinical diagnosis of diseases have been developed. This mini review will highlight some of the most recent, significant advances in nanomaterial-based ultrasensitive SNP sensing technologies capable of detecting specific targets on the attomolar (10–18 M) regime or below. In particular, the design of novel, powerful signal amplification strategies that hold the key to the ultrasensitivity is highlighted. PMID:25785914

  8. A microarray system for Y chromosomal and mitochondrial single nucleotide polymorphism analysis in chimpanzee populations.

    PubMed

    Andrés, Olga; Rönn, Ann-Charlotte; Bonhomme, Maxime; Kellermann, Thomas; Crouau-Roy, Brigitte; Doxiadis, Gaby; Verschoor, Ernst J; Goossens, Benoît; Domingo-Roura, Xavier; Bruford, Michael W; Bosch, Montserrat; Syvänen, Ann-Christine

    2008-05-01

    Chimpanzee populations are diminishing as a consequence of human activities, and as a result this species is now endangered. In the context of conservation programmes, genetic data can add vital information, for instance on the genetic diversity and structure of threatened populations. Single nucleotide polymorphisms (SNP) are biallelic markers that are widely used in human molecular studies and can be implemented in efficient microarray systems. This technology offers the potential of robust, multiplexed SNP genotyping at low reagent cost in other organisms than humans, but it is not commonly used yet in wild population studies. Here, we describe the characterization of new SNPs in Y-chromosomal intronic regions in chimpanzees and also identify SNPs from mitochondrial genes, with the aim of developing a microarray system that permits the simultaneous study of both paternal and maternal lineages. Our system consists of 42 SNPs for the Y chromosome and 45 SNPs for the mitochondrial genome. We demonstrate the applicability of this microarray in a captive population where genotypes accurately reflected its large pedigree. Two wild-living populations were also analysed and the results show that the microarray will be a useful tool alongside microsatellite markers, since it supplies complementary information about population structure and ecology. SNP genotyping using microarray technology, therefore, is a promising approach and may become an essential tool in conservation genetics to help in the management and study of captive and wild-living populations. Moreover, microarrays that combine SNPs from different genomic regions could replace microsatellite typing in the future. PMID:21585830

  9. A Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes.

    PubMed

    Alipoor, Behnam; Ghaedi, Hamid; Omrani, Mir Davood; Bastami, Milad; Meshkani, Reza; Golmohammadi, Taghi

    2016-01-01

    It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences of SNPs in TLRs network. The consequences of non-synonymous coding SNPs (nsSNPs) were predicted by SIFT, PolyPhen, PANTHER, SNPs&GO, I-Mutant, ConSurf and NetSurf tools. Structural visualization of wild type and mutant protein was performed using the project HOPE and Swiss PDB viewer. The influence of 5'-UTR and 3'- UTR SNPs were analyzed by appropriate computational approaches. Nineteen nsSNPs in TLRs pathway genes were found to have deleterious consequences as predicted by the combination of different algorithms. Moreover, our results suggested that SNPs located at UTRs of TLRs pathway genes may potentially influence binding of transcription factors or microRNAs. By applying a pathway-based bioinformatics analysis of genetic variations, we provided a prioritized list of potentially deleterious variants. These findings may facilitate the selection of proper variants for future functional and/or association studies. PMID:27478803

  10. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification

    PubMed Central

    Faruqi, A Fawad; Hosono, Seiyu; Driscoll, Mark D; Dean, Frank B; Alsmadi, Osama; Bandaru, Rajanikanta; Kumar, Gyanendra; Grimwade, Brian; Zong, Qiuling; Sun, Zhenyu; Du, Yuefen; Kingsmore, Stephen; Knott, Tim; Lasken, Roger S

    2001-01-01

    Background Single nucleotide polymorphisms (SNPs) are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simplicity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation. Results SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe. Conclusions Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring. PMID:11511324

  11. Associations between single nucleotide polymorphisms in 33 candidate genes and meat quality traits in commercial pigs.

    PubMed

    Zhang, C Y; Wang, Z; Bruce, H L; Janz, J; Goddard, E; Moore, S; Plastow, G S

    2014-08-01

    This study aimed to evaluate the effects of single nucleotide polymorphisms (SNPs) in candidate genes for meat quality using a custom 96-SNP panel (Illumina Vera Code GoldenGate Assay) on 15 traits collected from 400 commercial pigs. Meat quality measurements included muscle pH, color (L*, a* and b*), drip loss, cooking loss, peak shear force and six sensory traits including appearance (outside and inside), tenderness, juiciness, flavor and overall liking as well as carcass weight and probe yield. Thirty-five SNPs with minor allele frequencies > 0.10 remained for the multimarker association using the GLM procedure of sas 9.2. Results showed that 20 SNPs were significantly associated with at least one of the traits with either additive or dominance or both effects (P < 0.05). Among these significant SNPs, five of them in ADIPOQ, FTO, TNF, LEPR and AMPD1 had an effect on more than three traits simultaneously; those in MC4R, CAST, DGAT1 and MYF6 had an effect on two traits, while the others were associated with one trait. The results suggest that these markers could be incorporated into commercial pigs for marker-assisted selection and breeding programs for carcass and meat quality trait improvement. PMID:24707962

  12. HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity.

    PubMed

    Nonnemacher, Michael R; Pirrone, Vanessa; Feng, Rui; Moldover, Brian; Passic, Shendra; Aiamkitsumrit, Benjamas; Dampier, Will; Wojno, Adam; Kilareski, Evelyn; Blakey, Brandon; Ku, Tse-Sheun Jade; Shah, Sonia; Sullivan, Neil T; Jacobson, Jeffrey M; Wigdahl, Brian

    2016-01-01

    The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter)/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count). PMID:27100290

  13. Single-nucleotide polymorphisms in pigment genes and nonmelanoma skin cancer predisposition: a systematic review.

    PubMed

    Binstock, M; Hafeez, F; Metchnikoff, C; Arron, S T

    2014-10-01

    Nonmelanoma skin cancer (NMSC) is the most common cancer in the U.S.A. The two most common NMSCs are basal cell carcinoma and squamous cell carcinoma. The associations of single-nucleotide polymorphisms (SNPs) in pigmentation pathway genes with NMSC are not well characterized. There is a series of epidemiological studies that have tested these relationships, but there is no recent summary of these findings. To explain overarching trends, we undertook a systematic review of published studies. The summarized data support the concept that specific SNPs in the pigmentation pathway are of importance for the pathogenesis of NMSC. The SNPs with the most promising evidence include MC1R rs1805007(T) (Arg151Cys) and rs1805008(T) (Arg160Trp), and ASIP AH haplotype [rs4911414(T) and rs1015362(G)]. There are a few other SNPs found in TYR, OCA2 and SLC45A2 that may show additional correlation after future research. With additional research there is potential for the translation of future findings to the clinic in the form of SNP screenings, where patients at high risk for NMSC can be identified beyond their phenotype by genotypically screening for predisposing SNPs. PMID:25319428

  14. Pairwise Kinship Analysis by the Index of Chromosome Sharing Using High-Density Single Nucleotide Polymorphisms

    PubMed Central

    Morimoto, Chie; Manabe, Sho; Kawaguchi, Takahisa; Kawai, Chihiro; Fujimoto, Shuntaro; Hamano, Yuya; Yamada, Ryo; Matsuda, Fumihiko; Tamaki, Keiji

    2016-01-01

    We developed a new approach for pairwise kinship analysis in forensic genetics based on chromosomal sharing between two individuals. Here, we defined “index of chromosome sharing” (ICS) calculated using 174,254 single nucleotide polymorphism (SNP) loci typed by SNP microarray and genetic length of the shared segments from the genotypes of two individuals. To investigate the expected ICS distributions from first- to fifth-degree relatives and unrelated pairs, we used computationally generated genotypes to consider the effect of linkage disequilibrium and recombination. The distributions were used for probabilistic evaluation of the pairwise kinship analysis, such as likelihood ratio (LR) or posterior probability, without allele frequencies and haplotype frequencies. Using our method, all actual sample pairs from volunteers showed significantly high LR values (i.e., ≥ 108); therefore, we can distinguish distant relationships (up to the fifth-degree) from unrelated pairs based on LR. Moreover, we can determine accurate degrees of kinship in up to third-degree relationships with a probability of > 80% using the criterion of posterior probability ≥ 0.90, even if the kinship of the pair is totally unpredictable. This approach greatly improves pairwise kinship analysis of distant relationships, specifically in cases involving identification of disaster victims or missing persons. PMID:27472558

  15. Wireless electrochemiluminescence bipolar electrode array for visualized genotyping of single nucleotide polymorphism.

    PubMed

    Khoshfetrat, Seyyed Mehdi; Ranjbari, Mitra; Shayan, Mohsen; Mehrgardi, Masoud A; Kiani, Abolfazl

    2015-08-18

    The development of simple, inexpensive, hand-held, user-friendly biosensor for high throughput and multiplexed genotyping of various single nucleotide polymorphisms (SNPs) in a single run experiment by a nonspecialist user is the main challenge in the analysis of DNA. Visualizing the signal and possibility to monitor SNPs by a digital camera opens a new horizon for the routine applications. In the present manuscript, a novel wireless electrochemiluminescence (ECL) DNA array is introduced for the visualized genotyping of different SNPs on the basis of ECL of luminol/hydrogen peroxide system on a bipolar electrode (BPE) array platform. After modification of anodic poles of the array with the DNA probe and its hybridization with the targets, genotyping of various SNPs is carried out by exposing the array to different monobase modified luminol-platinum nanoparticles (M-L-PtNPs). Upon the hybridization of M-L-PtNPs to mismatch sites, the ECL of luminol is followed using a photomultiplier tube (PMT) or digital camera and the images are analyzed by ImageJ software. This biosensor can detect even thermodynamically stable SNP (G-T mismatches) in the range of 2-600 pM. Also, by combining the advantages of BPE and the high visual sensitivity of ECL, it could be easily expected to achieve sensitive screening of different SNPs. The present biosensor demonstrates the capability for the discrimination between PCR products of normal, heterozygous, and homozygous beta thalassemia genetic disorders. PMID:26176414

  16. Complete nucleotide sequence of Alfalfa mosaic virus isolated from alfalfa (Medicago sativa L.) in Argentina.

    PubMed

    Trucco, Verónica; de Breuil, Soledad; Bejerman, Nicolás; Lenardon, Sergio; Giolitti, Fabián

    2014-06-01

    The complete nucleotide sequence of an Alfalfa mosaic virus (AMV) isolate infecting alfalfa (Medicago sativa L.) in Argentina, AMV-Arg, was determined. The virus genome has the typical organization described for AMV, and comprises 3,643, 2,593, and 2,038 nucleotides for RNA1, 2 and 3, respectively. The whole genome sequence and each encoding region were compared with those of other four isolates that have been completely sequenced from China, Italy, Spain and USA. The nucleotide identity percentages ranged from 95.9 to 99.1 % for the three RNAs and from 93.7 to 99 % for the protein 1 (P1), protein 2 (P2), movement protein and coat protein (CP) encoding regions, whereas the amino acid identity percentages of these proteins ranged from 93.4 to 99.5 %, the lowest value corresponding to P2. CP sequences of AMV-Arg were compared with those of other 25 available isolates, and the phylogenetic analysis based on the CP gene was carried out. The highest percentage of nucleotide sequence identity of the CP gene was 98.3 % with a Chinese isolate and 98.6 % at the amino acid level with four isolates, two from Italy, one from Brazil and the remaining one from China. The phylogenetic analysis showed that AMV-Arg is closely related to subgroup I of AMV isolates. To our knowledge, this is the first report of a complete nucleotide sequence of AMV from South America and the first worldwide report of complete nucleotide sequence of AMV isolated from alfalfa as natural host. PMID:24510307

  17. Unexpectedly Severe Acute Radiotherapy Side Effects Are Associated With Single Nucleotide Polymorphisms of the Melanocortin-1 Receptor

    SciTech Connect

    Fogarty, Gerald B.; Muddle, Rory; Sprung, Carl N.

    2010-08-01

    Purpose: The melanocortin-1 receptor (MC1R) regulates melanin biogenesis. Deoxyribonucleic acid sequence variants in the form of single nucleotide polymorphisms (SNPs) of MC1R affect melanin expression and are linked to skin phenotype. We aimed to determine whether SNPs of MC1R were associated with unexpectedly severe ionizing radiation reactions. Methods and Materials: The MC1R genotype of a cohort of Australians with unexpectedly severe acute and/or late reactions (Common Terminology Criteria Version 3 (CTCv3) Grade 3 or 4) to radiotherapy (RT) for cancer (n = 30) was analyzed. The findings were compared with control data from our previous study of MC1R representative of the general Australian population (n = 1,787). Results: The difference in frequency of alleles encoding a 'red hair color' phenotype in the cohort of patients with unexpectedly severe acute radiation reactions (n = 12) was significantly increased compared with the control population (p = 0.003). Acute radiosensitivity was especially associated with the R160W variant allele (odds ratio, 3.64 [95% confidence interval, 1.3-10.27]). The corresponding comparison of MC1R controls with unexpectedly severe late radiation reactions (n = 18) was not significant. It was also found that R160W as a part of the genotype in the patients with unexpectedly severe acute RT side effects as compared with the control group was also significant (p = 0.043). Conclusions: In this small cohort of cancer patients, deoxyribonucleic acid sequence variants of the MC1R gene, especially the R160W variant, have been associated with unexpectedly severe acute reactions to RT. This result needs to be verified in a larger cohort of patients.

  18. Nucleotide sequence of a human tRNA gene heterocluster

    SciTech Connect

    Chang, Y.N.; Pirtle, I.L.; Pirtle, R.M.

    1986-05-01

    Leucine tRNA from bovine liver was used as a hybridization probe to screen a human gene library harbored in Charon-4A of bacteriophage lambda. The human DNA inserts from plaque-pure clones were characterized by restriction endonuclease mapping and Southern hybridization techniques, using both (3'-/sup 32/P)-labeled bovine liver leucine tRNA and total tRNA as hybridization probes. An 8-kb Hind III fragment of one of these ..gamma..-clones was subcloned into the Hind III site of pBR322. Subsequent fine restriction mapping and DNA sequence analysis of this plasmid DNA indicated the presence of four tRNA genes within the 8-kb DNA fragment. A leucine tRNA gene with an anticodon of AAG and a proline tRNA gene with an anticodon of AGG are in a 1.6-kb subfragment. A threonine tRNA gene with an anticodon of UGU and an as yet unidentified tRNA gene are located in a 1.1-kb subfragment. These two different subfragments are separated by 2.8 kb. The coding regions of the three sequenced genes contain characteristic internal split promoter sequences and do not have intervening sequences. The 3'-flanking region of these three genes have typical RNA polymerase III termination sites of at least four consecutive T residues.

  19. Methods for making nucleotide probes for sequencing and synthesis

    DOEpatents

    Church, George M; Zhang, Kun; Chou, Joseph

    2014-07-08

    Compositions and methods for making a plurality of probes for analyzing a plurality of nucleic acid samples are provided. Compositions and methods for analyzing a plurality of nucleic acid samples to obtain sequence information in each nucleic acid sample are also provided.

  20. Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene

    SciTech Connect

    Diaz-De-Leon, F.; Klotz, K.L.; Lagrimini, L.M. )

    1993-03-01

    Peroxidases have been implicated in numerous physiological processes including lignification (Grisebach, 1981), wound-healing (Espelie et al., 1986), phenol oxidation (Lagrimini, 1991), pathogen defense (Ye et al., 1990), and the regulation of cell elongation through the formation of interchain covalent bonds between various cell wall polymers (Fry, 1986; Goldberg et al., 1986; Bradley et al., 1992). However, a complete description of peroxidase action in vivo is not available because of the vast number of potential substrates and the existence of multiple isoenzymes. The tobacco anionic peroxidase is one of the better-characterized isoenzymes. This enzyme has been shown to oxidize a number of significant plant secondary compounds in vitro including cinnamyl alcohols, phenolic acids, and indole-3-acetic acid (Maeder, 1980; Lagrimini, 1991). A cDNA encoding the enzyme has been obtained, and this enzyme was shown to be expressed at the highest levels in lignifying tissues (xylem and tracheary elements) and also in epidermal tissue (Lagrimini et al., 1987). It was shown at this time that there were four distinct copies of the anionic peroxidase gene in tobacco (Nicotiana tabacum). A tobacco genomic DNA library was constructed in the [lambda]-phase EMBL3, from which two unique peroxidase genes were sequenced. One of these clones, [lambda]POD1, was designated as a pseudogene when the exonic sequences were found to differ from the cDNA sequences by 1%, and several frame shifts in the coding sequences indicated a dysfunctional gene (the authors' unpublished results). The other clone, [lambda]POD3, described in this manuscript, was designated as the functional tobacco anionic peroxidase gene because of 100% homology with the cDNA. Significant structural elements include an AS-2 box indicated in shoot-specific expression (Lam and Chua, 1989), a TATA box, and two intervening sequences. 10 refs., 1 tab.

  1. Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene.

    PubMed Central

    Kim, S F; Baek, S J; Pack, M Y

    1991-01-01

    An allosteric L-(+)-lactate dehydrogenase gene of Lactobacillus casei ATCC 393 was cloned in Escherichia coli, and the nucleotide sequence of the gene was determined. The gene was composed of an open reading frame of 981 bp, starting with a GTG codon and ending with a TAA codon. The sequences for the promoter and ribosome binding site were identified, and a sequence for a structure resembling a rho-independent transcription terminator was also found. Images PMID:1768113

  2. Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes.

    PubMed Central

    Waye, J S; Willard, H F

    1987-01-01

    The human alpha satellite DNA family is composed of diverse, tandemly reiterated monomer units of approximately 171 basepairs localized to the centromeric region of each chromosome. These sequences are organized in a highly chromosome-specific manner with many, if not all human chromosomes being characterized by individually distinct alphoid subsets. Here, we compare the nucleotide sequences of 153 monomer units, representing alphoid components of at least 12 different human chromosomes. Based on the analysis of sequence variation at each position within the 171 basepair monomer, we have derived a consensus sequence for the monomer unit of human alpha satellite DNA which we suggest may reflect the monomer sequence from which different chromosomal subsets have evolved. Sequence heterogeneity is evident at each position within the consensus monomer unit and there are no positions of strict nucleotide sequence conservation, although some regions are more variable than others. A substantial proportion of the overall sequence variation may be accounted for by nucleotide changes which are characteristic of monomer components of individual chromosomal subsets or groups of subsets which have a common evolutionary history. PMID:3658703

  3. Genome-Wide Single-Nucleotide Polymorphism Array Analysis Improves Prognostication of Acute Lymphoblastic Leukemia/Lymphoma.

    PubMed

    Wang, Yunhong; Miller, Sue; Roulston, Diane; Bixby, Dale; Shao, Lina

    2016-07-01

    Chromosomal abnormalities are important for the risk stratification of acute lymphoblastic leukemia/lymphoma (ALL). However, approximately 30% of pediatric and 50% of adult patients lack abnormalities with clinical relevance by traditional cytogenetic analysis. We integrated cytogenetic, fluorescence in situ hybridization, and whole-genome single-nucleotide polymorphism array results from 60 consecutive clinical ALL cases. By cytogenetic and/or fluorescence in situ hybridization analyses, recurring abnormalities with clinical relevance were observed in 33 B-cell ALL (B-ALL), including t(9;22), hyperdiploidy, KMT2A translocation, ETV6-RUNX1, intrachromosomal amplification of chromosome 21, near haploidy or low hypodiploidy, and t(8;22). Single-nucleotide polymorphism array analysis found additional aberrations with prognostic or therapeutic implication in 21 B-ALL and two T-cell ALL, including IKZF1 deletion, intrachromosomal amplification of chromosome 21 (one case with a normal karyotype), low hypodiploidy (two cases with a normal karyotype), and one case each with fusion genes ETV6-NTRK3, CRLF2-P2RY8, NUP214-ABL1, and SET-NUP214. IKZF1 deletion was noted in nine B-ALL with t(9;22), one B-ALL with t(4;11), five B-ALL with a normal karyotype, and three B-ALL with nonrecurring karyotypic abnormalities. Combining single-nucleotide polymorphism array with chromosome and fluorescence in situ hybridization assays, the detection rate for clinically significant abnormal results increased from 56% to 75%. Whole-genome single-nucleotide polymorphism array analysis detects cytogenetically undetectable clinically significant aberrations and should be routinely applied at diagnosis of ALL. PMID:27161658

  4. Use of the Illumina GoldenGate assay for single nucleotide polymorphism (SNP) genotyping in cereal crops.

    PubMed

    Chao, Shiaoman; Lawley, Cindy

    2015-01-01

    Highly parallel genotyping assays, such as the GoldenGate assay developed by Illumina, capable of interrogating up to 3,072 single nucleotide polymorphisms (SNPs) simultaneously, have greatly facilitated genome-wide studies, particularly for crops with large and complex genome structures. In this report, we provide detailed information and guidelines regarding genomic DNA preparation, SNP assay design, SNP assay protocols, and genotype calling using Illumina's GenomeStudio software. PMID:25373766

  5. Ancient, highly polymorphic human major histocompatibility complex DQA1 intron sequence

    SciTech Connect

    McGinnis, M.D.; Quinn, D.L.; Lebo, R.V.; Simons, M.J.

    1994-10-01

    A 438 basepair intron 1 sequence adjacent to exon 2 in the human major histocompatibility complex DQA1 gene defined 16 allelic variants in 69 individuals from wide ethnic backgrounds. In contrast, the most variable coding region spanned by the 247 basepair exon 2 defined 11 allelic variants. Our phylogenetic human intron 1 tree derived by the Bootstrap algorithm reflects the same relative allelic relationships as the reported DQA1 exon 2 have cosegregated since divergence of the human races. Comparison of human alleles to a Rhesus monkey DQA1 first intron sequence found only 10 nucleotide substitutions unique to Rhesus, with the other 428 positions (98%) found in at least one human allele. This high degree of homology reflects the evolutionary stability of intron sequences since these two species diverged over 20 million years ago. Because more intron 1 alleles exist than exon 2 alleles, these polymorphic introns can be used to improve tissue typing for transplantation, paternity testing, and forensics and to derive more complete phylogenetic trees. These results suggest that introns represent a previously underutilized polymorphic resource. 42 refs., 3 figs., 1 tab.

  6. An Integrated System for DNA Sequencing by Synthesis Using Novel Nucleotide Analogues

    PubMed Central

    Guo, Jia; Yu, Lin; Turro, Nicholas J.; Ju, Jingyue

    2010-01-01

    Conspectus The Human Genome Project has concluded, but its successful completion has increased, rather than decreased, the need for high-throughput DNA sequencing technologies. The possibility of clinically screening a full genome for an individual's mutations offers tremendous benefits, both for pursuing personalized medicine as well as uncovering the genomic contributions to diseases. The Sanger sequencing method—although enormously productive for more than 30 years—requires an electrophoretic separation step that, unfortunately, remains a key technical obstacle for achieving economically acceptable full-genome results. Alternative sequencing approaches thus focus on innovations that can reduce costs. The DNA sequencing by synthesis (SBS) approach has shown great promise as a new sequencing platform, with particular progress reported recently. The general fluorescent SBS approach involves (i) incorporation of nucleotide analogs bearing fluorescent reporters, (ii) identification of the incorporated nucleotide by its fluorescent emissions, and (iii) cleavage of the fluorophore, along with the reinitiation of the polymerase reaction for continuing sequence determination. In this Account, we review the construction of a DNA-immobilized chip and the development of novel nucleotide reporters for the SBS sequencing platform. Click chemistry, with its high selectivity and coupling efficiency, was explored for surface immobilization of DNA. The first generation (G-1) modified nucleotides for SBS feature a small chemical moiety capping the 3′-OH and a fluorophore tethered to the base through a chemically cleavable linker; the design ensures that the nucleotide reporters are good substrates for the polymerase. The 3′-capping moiety and the fluorophore on the DNA extension products, generated by the incorporation of the G-1 modified nucleotides, are cleaved simultaneously to reinitiate the polymerase reaction. The sequence of a DNA template immobilized on a surface

  7. Inferring Multiple Refugia and Phylogeographical Patterns in Pinus massoniana Based on Nucleotide Sequence Variation and DNA Fingerprinting

    PubMed Central

    Lin, Chung-Jian; Huang, Chi-Chung; Huang, Chao-Ching; Chiang, Yu-Chung; Chiang, Tzen-Yuh

    2012-01-01

    Background Pinus massoniana, an ecologically and economically important conifer, is widespread across central and southern mainland China and Taiwan. In this study, we tested the central–marginal paradigm that predicts that the marginal populations tend to be less polymorphic than the central ones in their genetic composition, and examined a founders' effect in the island population. Methodology/Principal Findings We examined the phylogeography and population structuring of the P. massoniana based on nucleotide sequences of cpDNA atpB-rbcL intergenic spacer, intron regions of the AdhC2 locus, and microsatellite fingerprints. SAMOVA analysis of nucleotide sequences indicated that most genetic variants resided among geographical regions. High levels of genetic diversity in the marginal populations in the south region, a pattern seemingly contradicting the central–marginal paradigm, and the fixation of private haplotypes in most populations indicate that multiple refugia may have existed over the glacial maxima. STRUCTURE analyses on microsatellites revealed that genetic structure of mainland populations was mediated with recent genetic exchanges mostly via pollen flow, and that the genetic composition in east region was intermixed between south and west regions, a pattern likely shaped by gene introgression and maintenance of ancestral polymorphisms. As expected, the small island population in Taiwan was genetically differentiated from mainland populations. Conclusions/Significance The marginal populations in south region possessed divergent gene pools, suggesting that the past glaciations might have low impacts on these populations at low latitudes. Estimates of ancestral population sizes interestingly reflect a recent expansion in mainland from a rather smaller population, a pattern that seemingly agrees with the pollen record. PMID:22952747

  8. Complete nucleotide sequence of the human corticotropin-beta-lipotropin precursor gene.

    PubMed Central

    Takahashi, H; Hakamata, Y; Watanabe, Y; Kikuno, R; Miyata, T; Numa, S

    1983-01-01

    The nucleotide sequence of an 8658-base-pair human genomic DNA segment containing the entire corticotropin-beta-lipotropin precursor gene has been determined, and some sequence features of the gene and its flanking regions have been analysed. The gene is composed of 7665 base pairs including two introns of 3708 and 2886 base pairs. Comparison of the 5'-flanking sequences of the human, bovine and mouse corticotropin-beta-lipotropin precursor genes reveals the presence of a highly conserved region, which contains sequences of 14-15 base pairs homologous with sequences located upstream of the mRNA start site of other glucocorticoid-regulated genes. PMID:6314261

  9. Nucleotide sequence of a small cryptic plasmid from Acidithiobacillus ferrooxidans strain A-6

    SciTech Connect

    F. Roberto

    2003-10-01

    A 2.1 kb cryptic plasmid from Acidithiobacillus ferrooxidans strain A-6 was isolated and cloned into the E. coli vector plasmid, pUC128. The cloned plasmid was mapped by restriction enzyme fragment analysis and subsequently sequenced. At this time over half the plasmid sequence has been determined and compared to sequences in the GenBank nucleotide and protein sequence databases. Much of the plasmid remains cryptic, but substantial nucleotide and protein sequence similarities have been observed to the putative replication protein, RepA, of the small cryptic plasmids pAYS and pAYL found in the ammonia-oxidizing Nitrosomonas sp. Strain ENI-11. These results suggest an entirely new class of plasmid is maintained in at least one strain of Acidithiobacillus ferrooxidans and other acidophilic bacteria, and raises interesting questions about the origin of this plasmid in acidic environments.

  10. The complete nucleotide sequence and genomic characterization of tropical soda apple mosaic virus.

    PubMed

    Fillmer, Kornelia; Adkins, Scott; Pongam, Patchara; D'Elia, Tom

    2016-08-01

    We report the first complete genome sequence of tropical soda apple mosaic virus (TSAMV), a tobamovirus originally isolated from tropical soda apple (Solanum viarum) collected in Okeechobee, Florida. The complete genome of TSAMV is 6,350 nucleotides long and contains four open reading frames encoding the following proteins: i) 126-kDa methyltransferase/helicase (3354 nt), ii) 183-kDa polymerase (4839 nt), iii) movement protein (771 nt) and iv) coat protein (483 nt). The complete genome sequence of TSAMV shares 80.4 % nucleotide sequence identity with pepper mild mottle virus (PMMoV) and 71.2-74.2 % identity with other tobamoviruses naturally infecting members of the Solanaceae plant family. Phylogenetic analysis of the deduced amino acid sequences of the 126-kDa and 183-kDa proteins and the complete genome sequence place TSAMV in a subcluster with PMMoV within the Solanaceae-infecting subgroup of tobamoviruses. PMID:27169599

  11. Complete nucleotide sequence and transcriptional analysis of snakehead fish retrovirus.

    PubMed Central

    Hart, D; Frerichs, G N; Rambaut, A; Onions, D E

    1996-01-01

    The complete genome of the snakehead fish retrovirus has been cloned and sequenced, and its transcriptional profile in cell culture has been determined. The 11.2-kb provirus displays a complex expression pattern capable of encoding accessory proteins and is unique in the predicted location of the env initiation codon and signal peptide upstream of gag and the common splice donor site. The virus is distinguishable from all known retrovirus groups by the presence of an arginine tRNA primer binding site. The coding regions are highly divergent and show a number of unusual characteristics, including a large Gag coiled-coil region, a Pol domain of unknown function, and a long, lentiviral-like, Env cytoplasmic domain. Phylogenetic analysis of the Pol sequence emphasizes the divergent nature of the virus from the avian and mammalian retroviruses. The snakehead virus is also distinct from a previously characterized complex fish retrovirus, suggesting that discrete groups of these viruses have yet to be identified in the lower vertebrates. PMID:8648695

  12. Nucleotide polymorphism at the RpII215 gene in Drosophila subobscura. Weak selection on synonymous mutations.

    PubMed Central

    Llopart, A; Aguadé, M

    2000-01-01

    Nucleotide variation in an 8.1-kb fragment encompassing the RpII215 gene, which encodes the largest subunit of the RNA polymerase II complex, is analyzed in a sample of 11 chromosomes from a natural population of Drosophila subobscura. No amino acid polymorphism was detected among the 157 segregating sites. The observed numbers of preferred and unpreferred derived synonymous mutations can be explained by neutral mutational processes. In contrast, preferred mutations segregate at significantly higher frequency than unpreferred mutations, suggesting the action of natural selection. The polymorphism to divergence ratio is different for preferred and unpreferred changes, in agreement with their beneficial and deleterious effects on fitness, respectively. Preferred and unpreferred codons are nonrandomly distributed in the RpII215 gene, leading to a heterogeneous distribution of polymorphic to fixed synonymous differences across this coding region. This intragenic variation of the polymorphism/divergence ratio cannot be explained by different patterns of gene expression, mutation, or recombination rates, and therefore it indicates that selection coefficients for synonymous mutations can vary extensively across a coding region. The application of nucleotide composition stationarity tests in coding and flanking noncoding regions, assumed to behave neutrally, allows the detection of the action of natural selection when stationarity holds in the noncoding region. PMID:10880485

  13. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle

    PubMed Central

    2013-01-01

    Background General, breed- and diet-dependent associations between feed efficiency in beef cattle and single nucleotide polymorphisms (SNPs) or haplotypes were identified on a population of 1321 steers using a 50 K SNP panel. Genomic associations with traditional two-step indicators of feed efficiency – residual feed intake (RFI), residual average daily gain (RADG), and residual intake gain (RIG) – were compared to associations with two complementary one-step indicators of feed efficiency: efficiency of intake (EI) and efficiency of gain (EG). Associations uncovered in a training data set were evaluated on independent validation data set. A multi-SNP model was developed to predict feed efficiency. Functional analysis of genes harboring SNPs significantly associated with feed efficiency and network visualization aided in the interpretation of the results. Results For the five feed efficiency indicators, the numbers of general, breed-dependent, and diet-dependent associations with SNPs (P-value < 0.0001) were 31, 40, and 25, and with haplotypes were six, ten, and nine, respectively. Of these, 20 SNP and six haplotype associations overlapped between RFI and EI, and five SNP and one haplotype associations overlapped between RADG and EG. This result confirms the complementary value of the one and two-step indicators. The multi-SNP models included 89 SNPs and offered a precise prediction of the five feed efficiency indicators. The associations of 17 SNPs and 7 haplotypes with feed efficiency were confirmed on the validation data set. Nine clusters of Gene Ontology and KEGG pathway categories (mean P-value < 0.001) including, 9nucleotide binding; ion transport, phosphorous metabolic process, and the MAPK signaling pathway were overrepresented among the genes harboring the SNPs associated with feed efficiency. Conclusions The general SNP associations suggest that a single panel of genomic variants can be used regardless of breed and diet. The breed- and diet

  14. Single nucleotide polymorphisms of multidrug resistance gene 1 (MDR1) and risk of chronic myeloid leukemia.

    PubMed

    Yaya, Kassogue; Hind, Dehbi; Meryem, Quachouh; Asma, Quessar; Said, Benchekroun; Sellama, Nadifi

    2014-11-01

    Multidrug resistance gene 1 (MDR1) is known for its involvement in the detoxification through the active transport of toxic compounds from diverse origins outside the cells. These compounds could cause injury to cell DNA, which might lead in cancer like chronic myeloid leukemia (CML). Individual inherited genetic differences related to polymorphism in detoxification enzymes could be an important factor not only in carcinogen metabolism but also in susceptibility of cancer. The present study aimed to investigate the association of three single nucleotide polymorphisms (SNPs) of the MDR1 gene in the susceptibility of CML. We successively have determined the genotype profiles of 1236 C>T (exon 12); 2677 G>T (exon 21), and 3435 C>T (exon 26) SNPs by PCR-RFLP in 89 patients and 99 unrelated healthy controls. Logistic regression was used to assess the effect of each SNP on the development of CML. Interestingly, in exon 12, the 1236 TT was significantly associated with the susceptibility of CML when compared to the wild type 1236 CC (OR 2.7; 95% CI 1-7.32, p = 0.041). Additionally, the recessive model 1236 TT vs. 1236 CC/CT showed a risk of 3.3 fold (p = 0.011) with CML. In exon 26, the 3435 CT genotype was associated with a reduced risk of CML (OR 0.5; 95% CI 0.3-1, p = 0.042). In exon 21, the 2677 GT genotype seems to have a protective effect (OR 0.6; 95% CI 0.32-1.1, p = 0.074). Diplolotypes analysis has demonstrated no effect in susceptibility of CML, but 1236 CT/3435 CC and 1236 CC/2677 GT were associated with a protective effect. The haplotypes analysis showed no particular trend (global association p = 0.33). Our findings demonstrate that 1236 TT in exon 12 might contribute in the susceptibility of CML, while the 3435 CT in exon 26 as well as 1236 CT/3435 CC and 1236 CC/2677 GT combinations might be protective factors. PMID:25087925

  15. Spatial distribution of single-nucleotide polymorphisms related to fungicide resistance and implications for sampling.

    PubMed

    Van der Heyden, H; Dutilleul, P; Brodeur, L; Carisse, O

    2014-06-01

    Spatial distribution of single-nucleotide polymorphisms (SNPs) related to fungicide resistance was studied for Botrytis cinerea populations in vineyards and for B. squamosa populations in onion fields. Heterogeneity in this distribution was characterized by performing geostatistical analyses based on semivariograms and through the fitting of discrete probability distributions. Two SNPs known to be responsible for boscalid resistance (H272R and H272Y), both located on the B subunit of the succinate dehydrogenase gene, and one SNP known to be responsible for dicarboximide resistance (I365S) were chosen for B. cinerea in grape. For B. squamosa in onion, one SNP responsible for dicarboximide resistance (I365S homologous) was chosen. One onion field was sampled in 2009 and another one was sampled in 2010 for B. squamosa, and two vineyards were sampled in 2011 for B. cinerea, for a total of four sampled sites. Cluster sampling was carried on a 10-by-10 grid, each of the 100 nodes being the center of a 10-by-10-m quadrat. In each quadrat, 10 samples were collected and analyzed by restriction fragment length polymorphism polymerase chain reaction (PCR) or allele specific PCR. Mean SNP incidence varied from 16 to 68%, with an overall mean incidence of 43%. In the geostatistical analyses, omnidirectional variograms showed spatial autocorrelation characterized by ranges of 21 to 1 m. Various levels of anisotropy were detected, however, with variograms computed in four directions (at 0°, 45°, 90°, and 135° from the within-row direction used as reference), indicating that spatial autocorrelation was prevalent or characterized by a longer range in one direction. For all eight data sets, the β-binomial distribution was found to fit the data better than the binomial distribution. This indicates local aggregation of fungicide resistance among sampling units, as supported by estimates of the parameter θ of the β-binomial distribution of 0.09 to 0.23 (overall median value = 0

  16. Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements.

    PubMed

    Arabi, Juliette; Judson, Mark L I; Deharveng, Louis; Lourenço, Wilson R; Cruaud, Corinne; Hassanin, Alexandre

    2012-02-01

    Here we study the evolution of nucleotide composition in third codon-positions of CO1 sequences of Chelicerata, using a phylogenetic framework, based on 180 taxa and three markers (CO1, 18S, and 28S rRNA; 5,218 nt). The analyses of nucleotide composition were also extended to all CO1 sequences of Chelicerata found in GenBank (1,701 taxa). The results show that most species of Chelicerata have a positive strand bias in CO1, i.e., in favor of C nucleotides, including all Amblypygi, Palpigradi, Ricinulei, Solifugae, Uropygi, and Xiphosura. However, several taxa show a negative strand bias, i.e., in favor of G nucleotides: all Scorpiones, Opisthothelae spiders and several taxa within Acari, Opiliones, Pseudoscorpiones, and Pycnogonida. Several reversals of strand-specific bias can be attributed to either a rearrangement of the control region or an inversion of a fragment containing the CO1 gene. Key taxa for which sequencing of complete mitochondrial genomes will be necessary to determine the origin and nature of mtDNA rearrangements involved in the reversals are identified. Acari, Opiliones, Pseudoscorpiones, and Pycnogonida were found to show a strong variability in nucleotide composition. In addition, both mitochondrial and nuclear genomes have been affected by higher substitution rates in Acari and Pseudoscorpiones. The results therefore indicate that these two orders are more liable to fix mutations of all types, including base substitutions, indels, and genomic rearrangements. PMID:22362465

  17. [Nucleotide sequence determination of yeast mitochondrial phenylalanine-tRNA].

    PubMed

    Martin, R; Sibler, A P; Schneller, J M; Keith, G; Stahl, A J; Dirheimer, G

    1978-10-01

    The primary structure of mitochondrial tRNAPhe from Saccharomyces cerevisiae, purified by two-dimensional polyacrylamide gel electrophoresis, was determined using, standard procedures on in vivo 32P-labeled tRNA, as well as the new 5'-end postlabeling techniques. We propose a cloverleaf model which allows for tertiary interaction between cytosine in position 46 and guanine in position 15 and maximizes base pairing in the psi C stem, thus excluding the uracile in position 50 from base pairing in the psi C stem. Comparison of the primary structure of this tRNA with all other known procaryotic, chloroplastic or cytoplasmic tRNAsPhe sequences does not lead to any conclusion about the endosymbiotic theory of mitochondria evolution. PMID:103657

  18. Nucleotide sequences of the HLA-DRw12 and DRw8 B1 chains from an Australian aborigine.

    PubMed

    O'Brien, R M; Cram, D S; Russ, G R; Starr, R; Tait, B D

    1992-06-01

    To gain a more detailed understanding of the molecular structure of the HLA genes in Australian aborigines, the polymorphic first-domain sequences of the DR B alleles were determined in an aborigine who was tissue typed as HLA-DRw8 and a probable DRw12; DRw52; DQw1,7. Both peripheral blood leukocytes and a lymphoblastoid cell line were reactive with the majority of DRw12-specific sera, but also with half of the DRw11-specific sera. With the use of primers specific for the conserved regions flanking the first domain, the polymerase chain reaction technique was used to amplify first-strand synthesis products prepared from the cell line. Two distinct DRB1 sequences were obtained. One was virtually identical to the reported DRw8,Dw8.3 sequence present in an Asian haplotype, differing only by a single silent nucleotide substitution at the third position of codon 36 (A to G). A second DRB allele was closely related to two recently published and nearly identical sequences for DRw12, with amino acid differences at positions 67 and 85 of the first domain. DRB RFLP studies on this cell line using the Taq I restriction enzyme indicated bands previously described for the DRw8 and DRw12 haplotypes. PMID:1358866

  19. A biocompatible open-surface droplet manipulation platform for detection of multi-nucleotide polymorphism.

    PubMed

    Huang, C J; Fang, W F; Ke, M S; Chou, H Y E; Yang, J T

    2014-06-21

    We present a novel and simple method to manipulate droplets applicable to an open-surface microfluidic platform. The platform comprised a control module for pneumatic droplets and a superhydrophobic polydimethylsiloxane (PDMS) membrane. With pneumatic suction to cause deflection of the flexible PDMS-based superhydrophobic membrane, the sample and reagent droplets on the membrane become transported and mixed. A facile one-step laser micromachining technique serves to fabricate a superhydrophobic surface; a contact angle of 150° and a hysteresis angle of 4° were achieved without chemical modification. Relative to previous open-surface microfluidic systems, this platform is capable of simultaneous and precise delivery of droplets in two-dimensional (2D) manipulation. Droplets were manipulated with suction, which avoided interference from an external driving energy (e.g. heat, light, electricity) to affect the bio-sample inside the droplets. Two common bio-samples, namely protein and DNA, verified the performance of the platform. Based on the experimental results, operations on protein can be implemented without adsorption on the surface of the platform. Another striking result is the visual screening for multi-nucleotide polymorphism with hybridization-mediated growth of gold-nanoparticle (AuNP) probes. The detection results are observable with the naked eye, without the aid of advanced instruments. The entire procedure only takes 5 min from the addition of the sample and reagent to obtaining the results, which is much quicker than the traditional method. The total sample volume consumed in each operation is only 10 μL, which is significantly less than what is required in a large system. According to this approach, the proposed platform is suitable for biological and chemical applications. PMID:24789224

  20. Functional Impact of 14 Single Nucleotide Polymorphisms Causing Missense Mutations of Human α7 Nicotinic Receptor

    PubMed Central

    Zhang, Qinhui; Du, Yingjie; Zhang, Jianliang; Xu, Xiaojun; Xue, Fenqin; Guo, Cong; Huang, Yao; Lukas, Ronald J.; Chang, Yongchang

    2015-01-01

    The α7nicotinic receptor (nAChR) is a major subtype of the nAChRs in the central nervous system, and the receptor plays an important role in brain function. In the dbSNP database, there are 55 single nucleotide polymorphisms (SNPs) that cause missense mutations of the human α7nAChR in the coding region. In this study, we tested the impact of 14 SNPs that cause missense mutations in the agonist binding site or the coupling region between binding site and channel gate on the receptor function. The wild type or mutant receptors were expressed or co-expressed in Xenopus oocytes, and the agonist-induced currents were tested using two-electrode voltage clamp. Our results demonstrated that 6 mutants were nonfunctional, 4 mutants had reduced current expression, and 1 mutants altered ACh and nicotine efficacy in the opposite direction, and one additional mutant had slightly reduced agonist sensitivity. Interestingly, the function of most of these nonfunctional mutants could be rescued by α7nAChR positive allosteric modulator PNU-120596 and agonist-PAM 4BP-TQS. Finally, when coexpressed with the wild type, the nonfunctional mutants could also influence the receptor function. These changes of the receptor properties by the mutations could potentially have an impact on the physiological function of the α7nAChR-mediated cholinergic synaptic transmission and anti-inflammatory effects in the human SNP carriers. Rescuing the nonfunctional mutants could provide a novel way to treat the related disorders. PMID:26340537

  1. The cardiovascular implication of single nucleotide polymorphisms of chromosome 9p21 locus among Arab population

    PubMed Central

    El-Menyar, Ayman A.; Rizk, Nasser M.; Al-Qahtani, Awad; AlKindi, Fahad; Elyas, Ahmed; Farag, Fathi; Bakhsh, Fadheela Dad; Ebrahim, Samah; Ahmed, Emad; Al-khinji, Mooza; Al-Thani, Hassan; Suwaidi, Jassim Al

    2015-01-01

    Background: Based on several reports including genome-wide association studies, genetic variability has been linked with higher (nearly half) susceptibility toward coronary artery disease (CAD). We aimed to evaluate the association of chromosome 9p21 single nucleotide polymorphisms (SNPs): rs2383207, rs10757278, and rs10757274 with the risk and severity of CAD among Arab population. Materials and Methods: A prospective observational case-control study was conducted between 2011 and 2012, in which 236 patients with CAD were recruited from the Heart Hospital in Qatar. Patients were categorized according to their coronary angiographic findings. Also, 152 healthy volunteers were studied to determine if SNPs are associated with risk of CAD. All subjects were genotyped for SNPs (rs2383207, rs2383206, rs10757274 and rs10757278) using allele-specific real-time polymerase chain reaction. Results: Patients with CAD had a mean age of 57 ± 10; of them 77% were males, 54% diabetics, and 25% had family history of CAD. All SNPs were in Hardy-Weinberg equilibrium except rs2383206, with call rate >97%. After adjusting for age, sex and body mass index, the carriers of GG genotype for rs2383207 have increased the risk of having CAD with odds ratio (OR) of 1.52 (95% confidence interval [CI] = 1.01-2.961, P = 0.046). Also, rs2383207 contributed to CAD severity with adjusted OR 1.80 (95% CI = 1.04-3.12, P = 0.035) based on the dominant genetic model. The other SNPs (rs10757274 and rs10757278) showed no significant association with the risk of CAD or its severity. Conclusion: Among Arab population in Qatar, only G allele of rs2483207 SNP is significantly associated with risk of CAD and its severity. PMID:26109989

  2. Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea

    PubMed Central

    Choi, J. S.; Jin, S. K.; Jeong, Y. H.; Jung, Y. C.; Jung, J. H.; Shim, K. S.; Choi, Y. I.

    2016-01-01

    This study was conducted to determine the relationships of five intragenic single nucleotide polymorphism (SNP) markers (protein kinase adenosine monophosphate-activated γ3 subunit [PRKAG3], fatty acid synthase [FASN], calpastatin [CAST], high mobility group AT-hook 1 [HMGA1], and melanocortin-4 receptor [MC4R]) and meat quality traits of Duroc breeding stocks in Korea. A total of 200 purebred Duroc gilts from 8 sires and 40 dams at 4 pig breeding farms from 2010 to 2011 reaching market weight (110 kg) were slaughtered and their carcasses were chilled overnight. Longissimus dorsi muscles were removed from the carcass after 24 h of slaughter and used to determine pork properties including carcass weight, backfat thickness, moisture, intramuscular fat, pH24h, shear force, redness, texture, and fatty acid composition. The PRKAG3, FASN, CAST, and MC4R gene SNPs were significantly associated with the meat quality traits (p<0.003). The meats of PRKAG3 (A 0.024/G 0.976) AA genotype had higher pH, redness and texture than those from PRKAG3 GG genotype. Meats of FASN (C 0.301/A 0.699) AA genotype had higher backfat thickness, texture, stearic acid, oleic acid and polyunsaturated fatty acid than FASN CC genotype. While the carcasses of CAST (A 0.373/G 0.627) AA genotype had thicker backfat, and lower shear force, palmitoleic acid and oleic acid content, they had higher stearic acid content than those from the CAST GG genotype. The MC4R (G 0.208/A 0.792) AA genotype were involved in increasing backfat thickness, carcass weight, moisture and saturated fatty acid content, and decreasing unsaturated fatty acid content in Duroc meat. These results indicated that the five SNP markers tested can be a help to select Duroc breed to improve carcass and meat quality properties in crossbred pigs. PMID:27507182

  3. Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea.

    PubMed

    Choi, J S; Jin, S K; Jeong, Y H; Jung, Y C; Jung, J H; Shim, K S; Choi, Y I

    2016-09-01

    This study was conducted to determine the relationships of five intragenic single nucleotide polymorphism (SNP) markers (protein kinase adenosine monophosphate-activated γ3 subunit [PRKAG3], fatty acid synthase [FASN], calpastatin [CAST], high mobility group AT-hook 1 [HMGA1], and melanocortin-4 receptor [MC4R]) and meat quality traits of Duroc breeding stocks in Korea. A total of 200 purebred Duroc gilts from 8 sires and 40 dams at 4 pig breeding farms from 2010 to 2011 reaching market weight (110 kg) were slaughtered and their carcasses were chilled overnight. Longissimus dorsi muscles were removed from the carcass after 24 h of slaughter and used to determine pork properties including carcass weight, backfat thickness, moisture, intramuscular fat, pH24h, shear force, redness, texture, and fatty acid composition. The PRKAG3, FASN, CAST, and MC4R gene SNPs were significantly associated with the meat quality traits (p<0.003). The meats of PRKAG3 (A 0.024/G 0.976) AA genotype had higher pH, redness and texture than those from PRKAG3 GG genotype. Meats of FASN (C 0.301/A 0.699) AA genotype had higher backfat thickness, texture, stearic acid, oleic acid and polyunsaturated fatty acid than FASN CC genotype. While the carcasses of CAST (A 0.373/G 0.627) AA genotype had thicker backfat, and lower shear force, palmitoleic acid and oleic acid content, they had higher stearic acid content than those from the CAST GG genotype. The MC4R (G 0.208/A 0.792) AA genotype were involved in increasing backfat thickness, carcass weight, moisture and saturated fatty acid content, and decreasing unsaturated fatty acid content in Duroc meat. These results indicated that the five SNP markers tested can be a help to select Duroc breed to improve carcass and meat quality properties in crossbred pigs. PMID:27507182

  4. Association of Wilms' tumor 1 gene single-nucleotide polymorphism rs16754 with colorectal cancer

    PubMed Central

    SANGKHATHAT, SURASAK; MANEECHAY, WANWISA; CHAIYAPAN, WELAWEE; KANNGERN, SAMORNMAS; BOONPIPATTANAPONG, TEERANUT

    2015-01-01

    Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide. Our recent study demonstrated that the expression of Wilms' tumor 1 gene (WT1) is associated with surgical outcome in CRC patients. The present study aimed to investigate the genetic association of the single-nucleotide polymorphism rs16754 in the WT1 gene with the occurrence of CRC, using an age-matched case-control study design. In addition, the correlation between genotype and WT1 expression was investigated. Genomic DNA samples from 104 CRC cases, aged 15–65 years, and 208 healthy controls, were genotyped for rs16754 using the TaqMan genotyping method. The genotype distribution conformed to the Hardy-Weinberg equilibrium (P=0.80). The overall minor allele frequency (MAF) of rs16754 (allele A) was 0.33. The MAF among CRC cases was significantly higher compared with that in controls (0.39 vs. 0.31, respectively; P=0.03). The AA genotype was significantly associated with the disease (odds ratio = 2.51, 95% confidence interval: 1.24–5.07, P=0.01). Cases with the AA genotype exhibited a significantly poorer 3-year overall survival (60%), compared with those with the GG or GA genotypes (80%) (log-rank test, P<0.01). Reverse transcription quantitative polymerase chain reaction analysis demonstrated that the expression of WT1 in tumor tissues was higher compared with that in normal tissue; however, there were no significant differences in its expression among different genotypes. Therefore, rs16754 was found to be associated with the occurrence and prognosis of CRC in our subjects. PMID:26807256

  5. NEDD4 single nucleotide polymorphism rs2271289 is associated with keloids in Chinese Han population.

    PubMed

    Zhao, Ying; Liu, Sheng-Li; Xie, Jian; Ding, Mao-Qian; Lu, Meng-Zhu; Zhang, Lan-Fang; Yao, Xiu-Hua; Hu, Bai; Lu, Wen-Sheng; Zheng, Xiao-Dong

    2016-01-01

    Keloids are abnormally raised fibroproliferative lesions that usually occur following cutaneous traumas. Recently, a large-scale genome-wide association study (GWAS) has identified multiple single nucleotide polymorphisms (SNPs) in three genetic loci that are associated with keloids in Japanese population. Subsequently, two reported loci 1q41 (rs873549 and rs1442440) and 15q21.3 (rs2271289) for keloids were confirmed in selected Chinese population. The association of these SNPs with clinical features of keloids, has not yet been studied. To explore the role of these SNPs in the pathogenesis of keloids, we performed a case-controlled study in another independent Chinese Han population to analyze the correlation between 4 SNPs (rs873549, rs2118610, rs1511412, rs2271289) and keloids phenotypes. 309 keloids patients and 1080 control subjects were included. The results showed that, in the dominant mode of inheritance, the minor allele T of SNP rs2271289 had significantly higher odd ratios (ORs) in the severe keloid group compared with both the controls and the mild keloid group. The ORs were maintained after Bonferroni's correction (OR: 4.09, 95% CI: 1.78-9.37, P-value 3.25E-04). The ratio of the severe: mild OR for rs2271289 (dominant model) is (4.73/1.84=2.57). Similar associations in SNP rs2271289 were seen for groups with no family history and multiplesite compared with the control groups. No associations between keloid number, family history or severity relative to the controls were observed for the other three SNPs. Our data support that rs2271289 is strongly associated with severe keloids and might contribute to the complexity of clinical features of keloids. PMID:27158346

  6. Analysis of the association of HOTAIR single nucleotide polymorphism (rs920778) and risk of cervical cancer.

    PubMed

    Qiu, Haifeng; Liu, Qiuli; Li, Juan; Wang, Xiujuan; Wang, Yuan; Yuan, Zhongfu; Li, Jing; Pei, Dong-Sheng

    2016-07-01

    We recently demonstrated that overexpression of HOTAIR (Hox transcript antisense intergenic RNA) was associated with tumor progression and radio-resistance in human cervical cancer. Considering the single nucleotide polymorphism (SNP) rs920778 (C>T) could influence HOTAIR expression and cancer predisposition in other malignancies, we herein investigated the association between rs920778 status and cervical cancer susceptibility in a Chinese population. Using the specific TaqMan PCR assay, we genotyped rs920778 in 215 cervical cancer patients and 430 age-matched healthy controls. As shown in our data, TT genotype of rs920778 was significantly correlated with the upregulation of HOTAIR (p = 0.008). Compared with the healthy control, TT genotype and T allele notably indicated a much higher risk of cervical cancer [TT genotype: odds ratio (OR) = 2.186, 95% confidence interval (CI) = 1.378-3.466, p = 0.003; T allele: OR = 1.556, 95% CI = 1.221-1.981]. In addition, we also found that the TT genotype of rs920778 was correlated with advanced tumor stage (p = 0.039), highly histological grade (p = 0.013), lympho node metastasis (p < 0.001) and positive infection of high risk HPV (p < 0.001). Among the patients who underwent concurrent chemo-radiotherapy, TT genotype carriers present notably resistance to the combination of EBRT + ICBT + cisplatin (p = 0.023). In conclusion, we firstly reported that TT genotype of HOTAIR rs920778 was significantly associated with the cervical cancer susceptibility. Moreover, the TT genotype of rs920778 might be a potent prognostic marker in cervical cancer patients. PMID:27229487

  7. Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms.

    PubMed

    Palle, Sreenath R; Seeve, Candace M; Eckert, Andrew J; Wegrzyn, Jill L; Neale, David B; Loopstra, Carol A

    2013-07-01

    Variation in the expression of genes with putative roles in wood development was associated with single-nucleotide polymorphisms (SNPs) using a population of loblolly pine (Pinus taeda L.) that included individuals from much of the native range. Association studies were performed using 3938 SNPs and expression data obtained using quantitative real-time polymerase chain reaction (PCR) (qRT-PCR) for 106 xylem development genes in 400 clonally replicated loblolly pine individuals. A general linear model (GLM) approach, which takes the underlying population structure into consideration, was used to discover significant associations. After adjustment for multiple testing using a false discovery rate correction, 88 statistically significant associations (Q<0.05) were observed for 80 SNPs with the expression data of 33 xylem development genes. Thirty SNPs caused nonsynonymous mutations, 18 resulted in synonymous mutations, 11 were in 3' untranslated regions (UTRs), 1 was in a 5' UTR and 20 were in introns. Using AraNet, we found that Arabidopsis genes with high similarity to the loblolly pine genes involved in 21 of the 88 statistically significant associations are connected in functional gene networks. Comparisons of gene expression values revealed that in most cases the average expression in plants homozygous for the rare SNP allele was lower than that of plants that were heterozygous or homozygous for the abundant allele. Although there are association studies of SNPs and expression profiles for humans, Arabidopsis and white spruce, to the best of our knowledge, this is the first example of such an association genetic study in pines. Functional validation of these associations will lead to a deeper understanding of the molecular basis of phenotypic differences in wood development among individuals in conifer populations. PMID:23933831

  8. Incorporating epistasis interaction of genetic susceptibility single nucleotide polymorphisms in a lung cancer risk prediction model.

    PubMed

    Marcus, Michael W; Raji, Olaide Y; Duffy, Stephen W; Young, Robert P; Hopkins, Raewyn J; Field, John K

    2016-07-01

    Incorporation of genetic variants such as single nucleotide polymorphisms (SNPs) into risk prediction models may account for a substantial fraction of attributable disease risk. Genetic data, from 2385 subjects recruited into the Liverpool Lung Project (LLP) between 2000 and 2008, consisting of 20 SNPs independently validated in a candidate-gene discovery study was used. Multifactor dimensionality reduction (MDR) and random forest (RF) were used to explore evidence of epistasis among 20 replicated SNPs. Multivariable logistic regression was used to identify similar risk predictors for lung cancer in the LLP risk model for the epidemiological model and extended model with SNPs. Both models were internally validated using the bootstrap method and model performance was assessed using area under the curve (AUC) and net reclassification improvement (NRI). Using MDR and RF, the overall best classifier of lung cancer status were SNPs rs1799732 (DRD2), rs5744256 (IL-18), rs2306022 (ITGA11) with training accuracy of 0.6592 and a testing accuracy of 0.6572 and a cross-validation consistency of 10/10 with permutation testing P<0.0001. The apparent AUC of the epidemiological model was 0.75 (95% CI 0.73-0.77). When epistatic data were incorporated in the extended model, the AUC increased to 0.81 (95% CI 0.79-0.83) which corresponds to 8% increase in AUC (DeLong's test P=2.2e-16); 17.5% by NRI. After correction for optimism, the AUC was 0.73 for the epidemiological model and 0.79 for the extended model. Our results showed modest improvement in lung cancer risk prediction when the SNP epistasis factor was added. PMID:27121382

  9. Estimating single nucleotide polymorphism associations using pedigree data: applications to breast cancer

    PubMed Central

    Barnes, D R; Barrowdale, D; Beesley, J; Chen, X; James, P A; Hopper, J L; Goldgar, D; Chenevix-Trench, G; Antoniou, A C; Mitchell, G

    2013-01-01

    Background: Pedigrees with multiple genotyped family members have been underutilised in breast cancer (BC) genetic-association studies. We developed a pedigree-based analytical framework to characterise single-nucleotide polymorphism (SNP) associations with BC risk using data from 736 BC families ascertained through multiple affected individuals. On average, eight family members had been genotyped for 24 SNPs previously associated with BC. Methods: Breast cancer incidence was modelled on the basis of SNP effects and residual polygenic effects. Relative risk (RR) estimates were obtained by maximising the retrospective likelihood (RL) of observing the family genotypes conditional on all disease phenotypes. Models were extended to assess parent-of-origin effects (POEs). Results: Thirteen SNPs were significantly associated with BC under the pedigree RL approach. This approach yielded estimates consistent with those from large population-based studies. Logistic regression models ignoring pedigree structure generally gave larger RRs and association P-values. SNP rs3817198 in LSP1, previously shown to exhibit POE, yielded maternal and paternal RR estimates that were similar to those previously reported (paternal RR=1.12 (95% confidence interval (CI): 0.99–1.27), P=0.081, one-sided P=0.04; maternal RR=0.94 (95% CI: 0.84–1.06), P=0.33). No other SNP exhibited POE. Conclusion: Our pedigree-based methods provide a valuable and efficient tool for characterising genetic associations with BC risk or other diseases and can complement population-based studies. PMID:23756864

  10. Empirically derived subgroups in rheumatoid arthritis: association with single-nucleotide polymorphisms on chromosome 6

    PubMed Central

    Wilcox, Marsha A; McAfee, Andrew T

    2007-01-01

    Rheumatoid arthritis (RA) is a disorder with important public health implications. It is possible that there are clinically distinctive subtypes of the disorder with different genetic etiologies. We used the data provided to the participants in the Genetic Analysis Workshop 15 to evaluate and describe clinically based subgroups and their genetic associations with single-nucleotide polymorphisms (SNPs) on chromosome 6, which harbors the HLA region. Detailed two- and three-SNP haplotype analyses were conducted in the HLA region. We used demographic, clinical self-report, and biomarker data from the entire sample (n = 8477) to identify and characterize the subgroups. We did not use the RA diagnosis itself in the identification of the subgroups. Nuclear families (715 families, 1998 individuals) were used to examine the genetic association with the HLA region. We found five distinct subgroups in the data. The first comprised unaffected family members. Cluster 2 was a mix of affected and unaffected in which patients endorsed symptoms not corroborated by physicians. Clusters 3 through 5 represented a severity continuum in RA. Cluster 5 was characterized by early onset severe disease. Cluster 2 showed no association on chromosome 6. Clusters 3 through 5 showed association with 17 SNPs on chromosome 6. In the HLA region, Cluster 3 showed single-, two-, and three-SNP association with the centromeric side of the region in an area of linkage disequilibrium. Cluster 5 showed both single- and two-SNP association with the telomeric side of the region in a second area of linkage disequilibrium. It will be important to replicate the subgroup structure and the association findings in an independent sample. PMID:18466517

  11. How valid is single nucleotide polymorphism (SNP) diagnosis for the individual risk assessment of breast cancer?

    PubMed

    Tempfer, Clemens B; Hefler, Lukas A; Schneeberger, Christian; Huber, Johannes C

    2006-03-01

    The number of reports investigating disease susceptibility based on the carriage of low-penetrance, high-frequency single nucleotide polymorphisms (SNPs) has increased in recent years. Evidence is accumulating defining specific individual variations in breast cancer susceptibility. Genetic variations of estradiol and xenobiotics metabolisms as well as genes involved in cell-cycle control have been described as significant contributors to breast cancer susceptibility, with variations depending on ethnic background and co-factors such as smoking and family history of breast cancer. In sum, the highest level of evidence to date linking SNPs and breast cancer comes from nested case-control studies within the prospective Nurses' Health Study. These data establish seven SNPs - hPRB +331G/A, AR CAG repeat, CYP19 (TTTA)10, CYP1A1 MspI, VDR FOK1, XRCC1 Arg194Trp and XRCC2 Arg188His - as small but significant risk factors for spontaneous, non-hereditary breast cancer. In addition, meta-analysis of data in the literature establishes the TGFBR1*6A, HRAS1, GSTP Ile105Val and GSTM1 SNPs as low-penetrance genetic risk factors of sporadic breast cancer. The clinical consequences of such a risk elevation may be detailed instruction of the patient as to general measures of breast cancer prevention such as a low-fat diet, optimization of body mass index, physical exercise, avoidance of alcohol and long-term hormone replacement therapy, and participation in a breast cancer screening program between the ages of 50 and 70 years. Specific surgical or drug interventions such as prophylactic mastectomy and oophorectomy or prophylactic intake of tamoxifen are not indicated based on SNP analysis at this time. PMID:16835078

  12. INCORPORATING SINGLE NUCLEOTIDE POLYMORPHISMS INTO THE LYMAN MODEL TO IMPROVE PREDICTION OF RADIATION PNEUMONITIS

    PubMed Central

    Tucker, Susan L.; Li, Minghuan; Xu, Ting; Gomez, Daniel; Yuan, Xianglin; Yu, Jinming; Liu, Zhensheng; Yin, Ming; Guan, Xiaoxiang; Wang, Li-E; Wei, Qingyi; Mohan, Radhe; Vinogradskiy, Yevgeniy; Martel, Mary; Liao, Zhongxing

    2012-01-01

    Purpose To determine whether single nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor beta, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGFβ, TNFα, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiotherapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (Grade ≥3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate (MV) analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGFβ, VEGF, TNFα, XRCC1 and APEX1. With smoking status included in the MV model, the SNPs significantly associated with increased risk of RP were in genes for TGFβ, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk versus <10% risk of RP when exposed to high MLDs. PMID:22541966

  13. Incorporating epistasis interaction of genetic susceptibility single nucleotide polymorphisms in a lung cancer risk prediction model

    PubMed Central

    MARCUS, MICHAEL W.; RAJI, OLAIDE Y.; DUFFY, STEPHEN W.; YOUNG, ROBERT P.; HOPKINS, RAEWYN J.; FIELD, JOHN K.

    2016-01-01

    Incorporation of genetic variants such as single nucleotide polymorphisms (SNPs) into risk prediction models may account for a substantial fraction of attributable disease risk. Genetic data, from 2385 subjects recruited into the Liverpool Lung Project (LLP) between 2000 and 2008, consisting of 20 SNPs independently validated in a candidate-gene discovery study was used. Multifactor dimensionality reduction (MDR) and random forest (RF) were used to explore evidence of epistasis among 20 replicated SNPs. Multivariable logistic regression was used to identify similar risk predictors for lung cancer in the LLP risk model for the epidemiological model and extended model with SNPs. Both models were internally validated using the bootstrap method and model performance was assessed using area under the curve (AUC) and net reclassification improvement (NRI). Using MDR and RF, the overall best classifier of lung cancer status were SNPs rs1799732 (DRD2), rs5744256 (IL-18), rs2306022 (ITGA11) with training accuracy of 0.6592 and a testing accuracy of 0.6572 and a cross-validation consistency of 10/10 with permutation testing P<0.0001. The apparent AUC of the epidemiological model was 0.75 (95% CI 0.73–0.77). When epistatic data were incorporated in the extended model, the AUC increased to 0.81 (95% CI 0.79–0.83) which corresponds to 8% increase in AUC (DeLong's test P=2.2e-16); 17.5% by NRI. After correction for optimism, the AUC was 0.73 for the epidemiological model and 0.79 for the extended model. Our results showed modest improvement in lung cancer risk prediction when the SNP epistasis factor was added. PMID:27121382

  14. Functional and Structural Consequence of Rare Exonic Single Nucleotide Polymorphisms: One Story, Two Tales

    PubMed Central

    Gu, Wanjun; Gurguis, Christopher I.; Zhou, Jin J.; Zhu, Yihua; Ko, Eun-A.; Ko, Jae-Hong; Wang, Ting; Zhou, Tong

    2015-01-01

    Genetic variation arising from single nucl