Science.gov

Sample records for nutrient sensing nuclear

  1. Mechanism of nutrient sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term nutrient sensing has emerged to describe the molecular mechanisms by which nutrients and their metabolites interact with various cell surface receptors, intracellular signaling proteins, and nuclear receptors, and modulate the activity of a complex network of signaling pathways that regulat...

  2. Duodenal luminal nutrient sensing

    PubMed Central

    Rønnestad, Ivar; Akiba, Yasutada; Kaji, Izumi; Kaunitz, Jonathan D

    2016-01-01

    The gastrointestinal mucosa is exposed to numerous chemical substances and microorganisms, including macronutrients, micronutrients, bacteria, endogenous ions, and proteins. The regulation of mucosal protection, digestion, absorption and motility is signaled in part by luminal solutes. Therefore, luminal chemosensing is an important mechanism enabling the mucosa to monitor luminal conditions, such as pH, ion concentrations, nutrient quantity, and microflora. The duodenal mucosa shares luminal nutrient receptors with lingual taste receptors in order to detect the five basic tastes, in addition to essential nutrients, and unwanted chemicals. The recent ‘de-orphanization’ of nutrient sensing G protein-coupled receptors provides an essential component of the mechanism by which the mucosa senses luminal nutrients. In this review, we will update the mechanisms of and underlying physiological and pathological roles in luminal nutrient sensing, with a main focus on the duodenal mucosa. PMID:25113991

  3. Nutrient Sensing Mechanisms Across Evolution

    PubMed Central

    Chantranupong, Lynne; Wolfson, Rachel L.; Sabatini, David M.

    2015-01-01

    For organisms to coordinate their growth and development with nutrient availability they must be able to sense nutrient levels in their environment. Here, we review select nutrient sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes. PMID:25815986

  4. Nutrient Sensing Mechanisms and Pathways

    PubMed Central

    Efeyan, Alejo; Comb, William C.; Sabatini, David M.

    2015-01-01

    PREFACE The ability to sense and respond to fluctuations in environmental nutrient levels is a requisite for life. Nutrient scarcity is a selective pressure that has shaped the evolution of most cellular processes. Different pathways that detect intracellular and extracellular levels of sugars, amino acids and lipids, and surrogate metabolites, are then integrated and coordinated at the organismal level via hormonal signals. During food abundance, nutrient sensing pathways engage anabolism and storage, and scarcity triggers homeostatic mechanisms, like the mobilization of internal stores through mechanisms such as autophagy. Nutrient sensing pathways are commonly deregulated in human metabolic diseases. PMID:25592535

  5. Nutrient-sensing mechanisms across evolution.

    PubMed

    Chantranupong, Lynne; Wolfson, Rachel L; Sabatini, David M

    2015-03-26

    For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes. PMID:25815986

  6. TOR Signaling and Nutrient Sensing.

    PubMed

    Dobrenel, Thomas; Caldana, Camila; Hanson, Johannes; Robaglia, Christophe; Vincentz, Michel; Veit, Bruce; Meyer, Christian

    2016-04-29

    All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth. PMID:26905651

  7. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae

    PubMed Central

    Conrad, Michaela; Schothorst, Joep; Kankipati, Harish Nag; Van Zeebroeck, Griet; Rubio-Texeira, Marta; Thevelein, Johan M

    2014-01-01

    The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth. PMID:24483210

  8. INCORPORATING NUTRIENT SENSING TECHNOLOGY IN PRODUCTION AGRICULTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greatest impediment to using manual soil sampling followed by laboratory measurement for crop nutrient management is the time and expense associated with sampling, transportation, and analysis of the sample. While improvements in fertilizer nutrient use efficiency have been made relying on these...

  9. Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency.

    PubMed

    Reddy, Kavya; Cusack, Corey L; Nnah, Israel C; Khayati, Khoosheh; Saqcena, Chaitali; Huynh, Tuong B; Noggle, Scott A; Ballabio, Andrea; Dobrowolski, Radek

    2016-03-01

    Attenuated auto-lysosomal system has been associated with Alzheimer disease (AD), yet all underlying molecular mechanisms leading to this impairment are unknown. We show that the amino acid sensing of mechanistic target of rapamycin complex 1 (mTORC1) is dysregulated in cells deficient in presenilin, a protein associated with AD. In these cells, mTORC1 is constitutively tethered to lysosomal membranes, unresponsive to starvation, and inhibitory to TFEB-mediated clearance due to a reduction in Sestrin2 expression. Normalization of Sestrin2 levels through overexpression or elevation of nuclear calcium rescued mTORC1 tethering and initiated clearance. While CLEAR network attenuation in vivo results in buildup of amyloid, phospho-Tau, and neurodegeneration, presenilin-knockout fibroblasts and iPSC-derived AD human neurons fail to effectively initiate autophagy. These results propose an altered mechanism for nutrient sensing in presenilin deficiency and underline an importance of clearance pathways in the onset of AD. PMID:26923592

  10. Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency

    PubMed Central

    Reddy, Kavya; Cusack, Corey L.; Nnah, Israel C.; Khayati, Khoosheh; Saqcena, Chaitali; Huynh, Tuong B.; Noggle, Scott A.; Ballabio, Andrea; Dobrowolski, Radek

    2016-01-01

    Summary Attenuated auto-lysosomal system has been associated with Alzheimer disease (AD), yet all underlying molecular mechanisms leading to this impairment are unknown. We show that the amino acid sensing of mechanistic target of rapamycin complex 1 (mTORC1) is dysregulated in cells deficient in presenilin, a protein associated with AD. In these cells, mTORC1 is constitutively tethered to lysosomal membranes, unresponsive to starvation, and inhibitory to TFEB-mediated clearance due to a reduction in Sestrin2 expression. Normalization of Sestrin2 levels through overexpression or elevation of nuclear calcium rescued mTORC1 tethering and initiated clearance. While CLEAR network attenuation in vivo results in buildup of amyloid, phospho-Tau, and neurodegeneration, presenilin-knockout fibroblasts and iPSC-derived AD human neurons fail to effectively initiate autophagy. These results propose an altered mechanism for nutrient sensing in presenilin deficiency and underline an importance of clearance pathways in the onset of AD. PMID:26923592

  11. Nutrient Estimation Using Subsurface Sensing Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report investigates the use of precision management techniques for measuring soil conductivity on feedlot surfaces to estimate nutrient value for crop production. An electromagnetic induction soil conductivity meter was used to collect apparent soil electrical conductivity (ECa) from feedlot p...

  12. Nutrient Sensing and the Circadian Clock

    PubMed Central

    Peek, Clara B.; Ramsey, Kathryn M.; Marcheva, Biliana; Bass, Joseph

    2012-01-01

    The circadian system synchronizes behavioral and physiologic processes with daily changes in the external light-dark cycle, optimizing energetic cycles with the rising and setting of the sun. Molecular clocks are organized hierarchically, with neural clocks orchestrating the daily switch between periods of feeding and fasting, and peripheral clocks generating 24hr oscillations of energy storage and utilization. Recent studies indicate that clocks respond to nutrient signals, and that high-fat diet influences the period of locomotor activity under free-running conditions, a core property of the clock. A major goal is to identify the molecular basis for the reciprocal relationship between metabolic and circadian pathways. Here, we highlight the role of peptidergic hormones and macromolecules as nutrient signals integrating circadian and metabolic systems. PMID:22424658

  13. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion

    PubMed Central

    Zietek, Tamara; Rath, Eva; Haller, Dirk; Daniel, Hannelore

    2015-01-01

    Intestinal nutrient transport and sensing are of emerging interest in research on obesity and diabetes and as drug targets. Appropriate in vitro models are lacking that allow both, studies on transport processes as well as sensing and subsequent incretin hormone secretion including intracellular signaling. We here demonstrate that murine small-intestinal organoids are the first in vitro model system enabling concurrent investigations of nutrient and drug transport, sensing and incretin hormone secretion as well as fluorescent live-cell imaging of intracellular signaling processes. By generating organoid cultures from wild type mice and animals lacking different nutrient transporters, we show that organoids preserve the main phenotypic features and functional characteristics of the intestine. This turns them into the best in vitro model currently available and opens new avenues for basic as well as medical research. PMID:26582215

  14. Quantitative Nutrient Limitation Analysis of Global Forests by Remote Sensing

    NASA Astrophysics Data System (ADS)

    Lopez, A. M.; Badgley, G. M.; Field, C. B.

    2015-12-01

    Nutrient availability in terrestrial ecosystems may be the primary determinant of the long-term carbon storage capacity of vegetation. Both nutrient availability and carbon storage capacity are highly uncertain and limit our ability to predict atmospheric CO2 concentrations. Terrestrial vegetation, especially forests, play a critical role in regulating the global carbon cycle and Earth's climate by sequestering carbon from the atmosphere. The broad relationship between nutrient availability and increased biomass production can be captured using remotely-sensed spectral information. We develop an approach to estimate total nutrient availability in 848 global forest sites at 1-km spatial resolution by combining the ecological principle of functional convergence with MODIS gross primary productivity (GPP) and evapotranspiration (ET) products from 2000-2013. Convergence in the relationship between maximum GPP and ET of nutrient-rich forests indicate that any sites deviating from this upper-limit are associated with a lower availability of nutrients. This method offers a way to examine the severity, as well as the spatial extent of nutrient limitation at the global scale. We find that the degree to which forests are nutrient limited range between 0% and 81% with an average limitation of 16 ± 17%. Our method agrees with regional nutrient gradients (i.e. SW-NE Amazon), but does not tightly correspond with recently published nutrient limitation classification standards (Fernandez-Martinez et al., 2014). A global terrestrial nutrient limitation map can assist in diagnosing the health of vegetation while removing the necessity for extensive field sampling or local nutrient addition experiments. Further research will expand the study sites to obtain a complete global terrestrial nutrient limitation map.

  15. Common sense in nuclear energy

    SciTech Connect

    Hoyle, F.; Hoyle, G.

    1980-01-01

    Public concern about energy resource exhaustion is noted to have developed only after the means (nuclear power) for avoiding this disaster became available and the negative implications of a nuclear society became a focus for anxiety. Ironically, collapse of conventional energy supplies could lead to the nuclear confrontation which anti-nuclear forces claim as the inevitable outcome of nuclear power. A review of the risks, environmental impacts, and political implications of the major energy sources concludes that emotion, not common sense, has made nuclear energy an unpopular option. While the problems of proliferation, radiation protection, waste management, and accident prevention are far from trivial, they will respond to technological improvements and responsible control policies. An historical tradition of fearing new, poorly understood technologies is seen in the reaction to railroads during the early 19th Century. (DCK)

  16. A new insight into root responses to external cues: Paradigm shift in nutrient sensing

    PubMed Central

    Bhardwaj, Deepak; Medici, Anna; Gojon, Alain; Lacombe, Benoît; Tuteja, Narendra

    2015-01-01

    Higher plants are sessile and their growth relies on nutrients present in the soil. The acquisition of nutrients is challenging for plants. Phosphate and nitrate sensing and signaling cascades play significant role during adverse conditions of nutrient unavailability. Therefore, it is important to dissect the mechanism by which plant roots acquire nutrients from the soil. Root system architecture (RSA) exhibits extensive developmental flexibility and changes during nutrient stress conditions. Growth of root system in response to external concentration of nutrients is a joint operation of sensor or receptor proteins along with several other cytoplasmic accessory proteins. After nutrient sensing, sensor proteins start the cellular relay involving transcription factors, kinases, ubiquitin ligases and miRNA. The complexity of nutrient sensing is still nebulous and many new players need to be better studied. This review presents a survey of recent paradigm shift in the advancements in nutrient sensing in relation to plant roots. PMID:26146897

  17. A new insight into root responses to external cues: Paradigm shift in nutrient sensing.

    PubMed

    Bhardwaj, Deepak; Medici, Anna; Gojon, Alain; Lacombe, Benoît; Tuteja, Narendra

    2015-01-01

    Higher plants are sessile and their growth relies on nutrients present in the soil. The acquisition of nutrients is challenging for plants. Phosphate and nitrate sensing and signaling cascades play significant role during adverse conditions of nutrient unavailability. Therefore, it is important to dissect the mechanism by which plant roots acquire nutrients from the soil. Root system architecture (RSA) exhibits extensive developmental flexibility and changes during nutrient stress conditions. Growth of root system in response to external concentration of nutrients is a joint operation of sensor or receptor proteins along with several other cytoplasmic accessory proteins. After nutrient sensing, sensor proteins start the cellular relay involving transcription factors, kinases, ubiquitin ligases and miRNA. The complexity of nutrient sensing is still nebulous and many new players need to be better studied. This review presents a survey of recent paradigm shift in the advancements in nutrient sensing in relation to plant roots. PMID:26146897

  18. Nutrient-sensing pathways and metabolic regulation in stem cells.

    PubMed

    Ochocki, Joshua D; Simon, M Celeste

    2013-10-14

    Stem cells exert precise regulation to maintain a balance of self-renewal and differentiation programs to sustain tissue homeostasis throughout the life of an organism. Recent evidence suggests that this regulation is modulated, in part, via metabolic changes and modifications of nutrient-sensing pathways such as mTOR and AMPK. It is becoming increasingly clear that stem cells inhibit oxidative phosphorylation in favor of aerobic glycolysis for energy production. Recent progress has detailed the molecular mechanisms of this metabolic phenotype and has offered insight into new metabolic pathways that may be involved in stem cell homeostasis. PMID:24127214

  19. Compressive sensing for nuclear security.

    SciTech Connect

    Gestner, Brian Joseph

    2013-12-01

    Special nuclear material (SNM) detection has applications in nuclear material control, treaty verification, and national security. The neutron and gamma-ray radiation signature of SNMs can be indirectly observed in scintillator materials, which fluoresce when exposed to this radiation. A photomultiplier tube (PMT) coupled to the scintillator material is often used to convert this weak fluorescence to an electrical output signal. The fluorescence produced by a neutron interaction event differs from that of a gamma-ray interaction event, leading to a slightly different pulse in the PMT output signal. The ability to distinguish between these pulse types, i.e., pulse shape discrimination (PSD), has enabled applications such as neutron spectroscopy, neutron scatter cameras, and dual-mode neutron/gamma-ray imagers. In this research, we explore the use of compressive sensing to guide the development of novel mixed-signal hardware for PMT output signal acquisition. Effectively, we explore smart digitizers that extract sufficient information for PSD while requiring a considerably lower sample rate than conventional digitizers. Given that we determine the feasibility of realizing these designs in custom low-power analog integrated circuits, this research enables the incorporation of SNM detection into wireless sensor networks.

  20. Adding Remote Sensing Data Products to the Nutrient Management Decision Support Toolbox

    NASA Technical Reports Server (NTRS)

    Lehrter, John; Schaeffer, Blake; Hagy, Jim; Spiering, Bruce; Blonski, Slawek; Underwood, Lauren; Ellis, Chris

    2011-01-01

    Some of the primary issues that manifest from nutrient enrichment and eutrophication (Figure 1) may be observed from satellites. For example, remotely sensed estimates of chlorophyll a (chla), total suspended solids (TSS), and light attenuation (Kd) or water clarity, which are often associated with elevated nutrient inputs, are data products collected daily and globally for coastal systems from satellites such as NASA s MODIS (Figure 2). The objective of this project is to inform water quality decision making activities using remotely sensed water quality data. In particular, we seek to inform the development of numeric nutrient criteria. In this poster we demonstrate an approach for developing nutrient criteria based on remotely sensed chla.

  1. Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation.

    PubMed

    Liu, Lijun; Nam, Minwoo; Fan, Wei; Akie, Thomas E; Hoaglin, David C; Gao, Guangping; Keaney, John F; Cooper, Marcus P

    2014-02-01

    Sirtuin 3 (SIRT3), an important regulator of energy metabolism and lipid oxidation, is induced in fasted liver mitochondria and implicated in metabolic syndrome. In fasted liver, SIRT3-mediated increases in substrate flux depend on oxidative phosphorylation (OXPHOS), but precisely how OXPHOS meets the challenge of increased substrate oxidation in fasted liver remains unclear. Here, we show that liver mitochondria in fasting mice adapt to the demand of increased substrate oxidation by increasing their OXPHOS efficiency. In response to cAMP signaling, SIRT3 deacetylated and activated leucine-rich protein 130 (LRP130; official symbol, LRPPRC), promoting a mitochondrial transcriptional program that enhanced hepatic OXPHOS. Using mass spectrometry, we identified SIRT3-regulated lysine residues in LRP130 that generated a lysine-to-arginine (KR) mutant of LRP130 that mimics deacetylated protein. Compared with wild-type LRP130 protein, expression of the KR mutant increased mitochondrial transcription and OXPHOS in vitro. Indeed, even when SIRT3 activity was abolished, activation of mitochondrial transcription and OXPHOS by the KR mutant remained robust, further highlighting the contribution of LRP130 deacetylation to increased OXPHOS in fasted liver. These data establish a link between nutrient sensing and mitochondrial transcription that regulates OXPHOS in fasted liver and may explain how fasted liver adapts to increased substrate oxidation. PMID:24430182

  2. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.

    PubMed

    Nath, Manoj; Tuteja, Narendra

    2016-05-01

    Sessile nature of higher plants consequently makes it highly adaptable for nutrient absorption and acquisition from soil. Plants require 17 essential elements for their growth and development which include 14 minerals (macronutrients: N, P, K, Mg, Ca, S; micronutrients: Cl, Fe, B, Mn, Zn, Cu, Ni, Mo) and 3 non-mineral (C, H, O) elements. The roots of higher plants must acquire these macronutrients and micronutrients from rhizosphere and further allocate to other plant parts for completing their life cycle. Plants evolved an intricate series of signaling and sensing cascades to maintain nutrient homeostasis and to cope with nutrient stress/availability. The specific receptors for nutrients in root, root system architecture, and internal signaling pathways help to develop plasticity in response to the nutrient starvation. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) are essential for various metabolic processes, and their deficiency negatively effects the plant growth and yield. Genes coding for transporters and receptors for nutrients as well as some small non-coding RNAs have been implicated in nutrient uptake and signaling. This review summarizes the N, P, K, and S uptake, sensing and signaling events in nutrient stress condition especially in model plant Arabidopsis thaliana and involvement of microRNAs in nutrient deficiency. This article also provides a framework of uptake, sensing, signaling and to highlight the microRNA as an emerging major players in nutrient stress condition. Nutrient-plant-miRNA cross talk may help plant to cope up nutrient stress, and understanding their precise mechanism(s) will be necessary to develop high yielding smart crop with low nutrient input. PMID:26085375

  3. Inferring nutrient loading of estuarine systems by remote sensing of aquatic vegetation

    NASA Technical Reports Server (NTRS)

    Anderson, R. R.

    1978-01-01

    THe use of remote sensing to record algal and vascular aquatic plant growths in estuarine waters is discussed. A technique is proposed that uses a combination of data to hierarchically classify watersheds with regard to severity of potential pollution. Specific nonpoint sources of nutrients in tributaries of the watershed are identified with lower altitude photography of vegetation and selected ground sampling. It is concluded that excessive growths of some aquatic plants may be related to nutrient pollution.

  4. Minireview: Nutrient Sensing by G Protein-Coupled Receptors

    PubMed Central

    Wauson, Eric M.; Lorente-Rodríguez, Andrés

    2013-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that recognize molecules in the extracellular milieu and transmit signals inside cells to regulate their behaviors. Ligands for many GPCRs are hormones or neurotransmitters that direct coordinated, stereotyped adaptive responses. Ligands for other GPCRs provide information to cells about the extracellular environment. Such information facilitates context-specific decision making that may be cell autonomous. Among ligands that are important for cellular decisions are amino acids, required for continued protein synthesis, as metabolic starting materials and energy sources. Amino acids are detected by a number of class C GPCRs. One cluster of amino acid-sensing class C GPCRs includes umami and sweet taste receptors, GPRC6A, and the calcium-sensing receptor. We have recently found that the umami taste receptor heterodimer T1R1/T1R3 is a sensor of amino acid availability that regulates the activity of the mammalian target of rapamycin. This review focuses on an array of findings on sensing amino acids and sweet molecules outside of neurons by this cluster of class C GPCRs and some of the physiologic processes regulated by them. PMID:23820899

  5. G-protein coupled receptor-mediated nutrient sensing and developmental control in Aspergillus nidulans.

    PubMed

    Brown, Neil Andrew; Dos Reis, Thaila Fernanda; Ries, Laure Nicolas Annick; Caldana, Camila; Mah, Jae-Hyung; Yu, Jae-Hyuk; Macdonald, Jeffrey M; Goldman, Gustavo Henrique

    2015-10-01

    Nutrient sensing and utilisation are fundamental for all life forms. As heterotrophs, fungi have evolved a diverse range of mechanisms for sensing and taking up various nutrients. Despite its importance, only a limited number of nutrient receptors and their corresponding ligands have been identified in fungi. G-protein coupled receptors (GPCRs) are the largest family of transmembrane receptors. The Aspergillus nidulans genome encodes 16 putative GPCRs, but only a few have been functionally characterised. Our previous study showed the increased expression of an uncharacterised putative GPCR, gprH, during carbon starvation. GprH appears conserved throughout numerous filamentous fungi. Here, we reveal that GprH is a putative receptor involved in glucose and tryptophan sensing. The absence of GprH results in a reduction in cAMP levels and PKA activity upon adding glucose or tryptophan to starved cells. GprH is pre-formed in conidia and is increasingly active during carbon starvation, where it plays a role in glucose uptake and the recovery of hyphal growth. GprH also represses sexual development under conditions favouring sexual fruiting and during carbon starvation in submerged cultures. In summary, the GprH nutrient-sensing system functions upstream of the cAMP-PKA pathway, influences primary metabolism and hyphal growth, while represses sexual development in A. nidulans. PMID:26179439

  6. Remote sensing of moisture and nutrient stress in turfgrass systems

    NASA Astrophysics Data System (ADS)

    Kruse, Jason Keith

    Management of irrigation and fertility on a golf course or other large turfgrass area requires a significant amount of time scouting for and identifying problem areas to maintain optimum turfgrass quality. The objectives of these studies were to evaluate the relationship between remotely sensed reflectance data collected from a turfgrass canopy and the associated phosphorus and nitrogen content of turfgrass tissue, and to determine the relationship between reflectance data and soil moisture content as determined by time domain reflectometry (TDR). Phosphorus deficiency symptoms decreased and biomass production increased at P rates above 1.0 g m-2 with a single application while no increase in soil-P was observed. Reflectance measurements were taken in increments from 400 to 1050 nm and correlated with plant tissue P concentration, chlorophyll content, plant biomass and visual quality. Stepwise regression identified a model utilizing reflectance in the blue, yellow, orange, and red regions of the spectrum that explained 73% of the variability in plant tissue P concentration for all sampling dates in 2002 and 2003. Few correlations were found between vegetative indices such as the normalized difference vegetation index (NDVI) and plant response. Results indicate that P deficiencies of creeping bentgrass can be detected through the use of remote sensing. P deficiencies were corrected with a single foliar application of P at rates above 1.5 g m-2. Using partial least-squares regression, our results indicate a weak relationship between the actual and predicted values for turfgrass quality, biomass production, and chlorophyll content under varying rates of N fertilization. However, a strong relationship was observed between actual and predicted values for N concentration of the plant tissue during 2002 and 2003 (r2 = 0.90 and 0.74 respectively). Similarly, no correlation was observed between visual drought stress ratings and the associated soil moisture content for

  7. The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance.

    PubMed

    Avci, Dönem; Fuchs, Shai; Schrul, Bianca; Fukumori, Akio; Breker, Michal; Frumkin, Idan; Chen, Chia-Yi; Biniossek, Martin L; Kremmer, Elisabeth; Schilling, Oliver; Steiner, Harald; Schuldiner, Maya; Lemberg, Marius K

    2014-12-01

    Proteolysis by aspartyl intramembrane proteases such as presenilin and signal peptide peptidase (SPP) underlies many cellular processes in health and disease. Saccharomyces cerevisiae encodes a homolog that we named yeast presenilin fold 1 (Ypf1), which we verify to be an SPP-type protease that localizes to the endoplasmic reticulum (ER). Our work shows that Ypf1 functionally interacts with the ER-associated degradation (ERAD) factors Dfm1 and Doa10 to regulate the abundance of nutrient transporters by degradation. We demonstrate how this noncanonical branch of the ERAD pathway, which we termed "ERAD regulatory" (ERAD-R), responds to ligand-mediated sensing as a trigger. More generally, we show that Ypf1-mediated posttranslational regulation of plasma membrane transporters is indispensible for early sensing and adaptation to nutrient depletion. The combination of systematic analysis alongside mechanistic details uncovers a broad role of intramembrane proteolysis in regulating secretome dynamics. PMID:25454947

  8. Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition

    PubMed Central

    Xiao, Weidong; Feng, Yongjia; Holst, Jens J.; Hartmann, Bolette; Yang, Hua; Teitelbaum, Daniel H.

    2014-01-01

    Small intestine luminal nutrient sensing may be crucial for modulating physiological functions. However, its mechanism of action is incompletely understood. We used a model of enteral nutrient deprivation, or total parenteral nutrition (TPN), resulting in intestinal mucosal atrophy and decreased epithelial barrier function (EBF). We examined how a single amino acid, glutamate (GLM), modulates intestinal epithelial cell (IEC) growth and EBF. Controls were chow-fed mice, T1 receptor-3 (T1R3)-knockout (KO) mice, and treatment with the metabotropic glutamate receptor (mGluR)-5 antagonist MTEP. TPN significantly changed the amount of T1Rs, GLM receptors, and transporters, and GLM prevented these changes. GLM significantly prevented TPN-associated intestinal atrophy (2.5-fold increase in IEC proliferation) and was dependent on up-regulation of the protein kinase pAkt, but independent of T1R3 and mGluR5 signaling. GLM led to a loss of EBF with TPN (60% increase in FITC-dextran permeability, 40% decline in transepithelial resistance); via T1R3, it protected EBF, whereas mGluR5 was associated with EBF loss. GLM led to a decline in circulating glucagon-like peptide 2 (GLP-2) during TPN. The decline was regulated by T1R3 and mGluR5, suggesting a novel negative regulator pathway for IEC proliferation not previously described. Loss of luminal nutrients with TPN administration may widely affect intestinal taste sensing. GLM has previously unrecognized actions on IEC growth and EBF. Restoring luminal sensing via GLM could be a strategy for patients on TPN.—Xiao, W., Feng, Y., Holst, J. J., Hartmann, B., Yang, H., Teitelbaum, D. H. Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition. PMID:24497581

  9. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding.

    PubMed

    Blouet, Clemence; Schwartz, Gary J

    2012-11-01

    Direct detection of circulating nutrients by the central nervous system has been implicated in the regulation of energy balance, and the mediobasal hypothalamus is considered as the primary sensing site mediating these effects. Neurons sensitive to energyrelated signals have also been identified outside the hypothalamus, particularly within the caudomedial nucleus of the solitary tract (cmNTS) in brainstem, but the consequences of direct cmNTS nutrient detection on energy balance remain poorly characterized. Here we determined the behavioral and metabolic consequences of direct L-leucine detection by the cmNTS and investigated the intracellular signaling and neurochemical pathways implicated in cmNTS L-leucine sensing in rats. Our results support the distributed nature of central nutrient detection, evidence a role for the cmNTS S6K1 pathway in the regulation of meal size and body weight, and suggest that the cmNTS integrates direct cmNTS nutrient detection with gut-derived, descending forebrain, and adiposity signals of energy availability to regulate food intake. PMID:23123165

  10. Nutrient Sensing via mTOR in T Cells Maintains a Tolerogenic Microenvironment

    PubMed Central

    Howie, Duncan; Waldmann, Herman; Cobbold, Stephen

    2014-01-01

    We have proposed that tolerance can be maintained through the induction, by Treg cells, of a tolerogenic microenvironment within tolerated tissues that inhibits effector cell activity but which supports the generation of further Treg cells by “infectious tolerance.” Two important components of this tolerogenic microenvironment depend on metabolism and nutrient sensing. The first is due to the up-regulation of multiple enzymes that consume essential amino acids, which are sensed in naïve T cells primarily via inhibition of the mechanistic target of rapamycin (mTOR) pathway, which in turn encourages their further differentiation into FOXP3+ Treg cells. The second mechanism is the metabolism of extracellular ATP to adenosine by the ectoenzymes CD39 and CD73. These two enzymes are constitutively co-expressed on Treg cells, but can also be induced on a wide variety of cell types by TGFβ and the adenosine generated can be shown to be a potent inhibitor of T cell proliferation. This review will focus on mechanisms of nutrient sensing in T cells, how these are integrated with TCR and cytokine signals via the mTOR pathway, and what impact this has on intracellular metabolism and subsequently the control of differentiation into different effector or regulatory T cell subsets. PMID:25221554

  11. Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments

    SciTech Connect

    Im, Jungho; Jensen, John R.; Coleman, Mark; Nelson, Eric

    2009-08-01

    Abstract - Hyperspectral remote sensing research was conducted to document the biophysical and biochemical characteristics of controlled forest plots subjected to various nutrient and irrigation treatments. The experimental plots were located on the Savannah River Site near Aiken, SC. AISA hyperspectral imagery were analysed using three approaches, including: (1) normalized difference vegetation index based simple linear regression (NSLR), (2) partial least squares regression (PLSR) and (3) machine-learning regression trees (MLRT) to predict the biophysical and biochemical characteristics of the crops (leaf area index, stem biomass and five leaf nutrients concentrations). The calibration and cross-validation results were compared between the three techniques. The PLSR approach generally resulted in good predictive performance. The MLRT approach appeared to be a useful method to predict characteristics in a complex environment (i.e. many tree species and numerous fertilization and/or irrigation treatments) due to its powerful adaptability.

  12. Cellular Oxygen and Nutrient Sensing in Microgravity Using Time-Resolved Fluorescence Microscopy

    NASA Technical Reports Server (NTRS)

    Szmacinski, Henryk

    2003-01-01

    Oxygen and nutrient sensing is fundamental to the understanding of cell growth and metabolism. This requires identification of optical probes and suitable detection technology without complex calibration procedures. Under this project Microcosm developed an experimental technique that allows for simultaneous imaging of intra- and inter-cellular events. The technique consists of frequency-domain Fluorescence Lifetime Imaging Microscopy (FLIM), a set of identified oxygen and pH probes, and methods for fabrication of microsensors. Specifications for electronic and optical components of FLIM instrumentation are provided. Hardware and software were developed for data acquisition and analysis. Principles, procedures, and representative images are demonstrated. Suitable lifetime sensitive oxygen, pH, and glucose probes for intra- and extra-cellular measurements of analyte concentrations have been identified and tested. Lifetime sensing and imaging have been performed using PBS buffer, culture media, and yeast cells as a model systems. Spectral specifications, calibration curves, and probes availability are also provided in the report.

  13. Carbon and Nutrient Transfer due to Selective Logging in the Amazon Using Remote Sensing Data.

    NASA Astrophysics Data System (ADS)

    Olander, L. P.; Asner, G. P.; Bustamante, M. M.

    2003-12-01

    Until recently it was thought that remotely sensed data was not sensitive enough to detect and quantify selective logging damage in tropical forests. Spectral mixture analysis of multispectral remote sensing data resolves fractions of surface covered by photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV = litter and woody debris), and bare soil. We have successfully applied this method to detect selective logging in the Amazon and have developed an equation to estimate canopy gap fraction in selectively logged areas using a combination of field and satellite data. The Tapajos National Forest in Para is the site of a controlled logging experiment where reduced impact logging (RIL) has been measured and monitored. In RIL, vines and lianas are cut before trees are felled. This practice should reduce damage to surrounding areas and thus may result in logging damage that correlates to the size and number of trees removed. We tested how well an estimate of gap fraction from EO-1 Advanced Land Imager data correlated with harvested wood volume in logging blocks. Percent gap ranged from 9-22%, while volume harvested ranged from 26-54 m3/ha. Remote sensing derived canopy gap fraction data can also be used to quantify green canopy biomass and nutrients transferred to the ground during logging. Canopy biomass transferred averaged 25.07 kg/ha for 5 logging blocks immediately following timber harvests in 2001. Canopy carbon and nitrogen transfers were estimated at 12.56 kg C/ha and 0.44 kg N/ha for the same year. Our results suggest that remotely sensed data can provide valuable information about the spatial characteristics and quantity of C and nutrients altered by selective logging.

  14. Detecting nutrients deficiencies of oil palm trees using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Marzukhi, Faradina; Liyana Elahami, Aina; Norashikin Bohari, Sharifah

    2016-06-01

    Oil palm plantation management involve crucial role for the farmers. The remote sensing imagery has widely used nowadays in order to monitor oil palm tree in plantation. To pact with the problem, the use of vegetation indices analysis on satellite image on plantation will examine the ability of spectral data in determining the greenness of the trees. Vegetation Indices are used for estimating the crops and vegetation variables by using visible and nearinfrared region (NIR) from the electromagnetic spectrum. The healthy tree will display very low reflectance and transmitted in visible region and very high reflectance transmitted in NIR. The chlorophyll absorption in reflectance and normalizes pigment chlorophyll vegetation indexes will show a loss of chlorophyll pigment compared to healthy oil palm trees. Besides, pH. value and soil nutrient will be examined to determine their effect towards the trees. In addition, the laboratory test sample is done to analyse the pH. value and major nutrient status of nitrogen (N), phosphorus (P) and potassium (K) together with their relationship with the remotely sensed data.

  15. The effect of diet interventions on hypothalamic nutrient sensing pathways in rodents.

    PubMed

    Rijnsburger, Merel; Belegri, Evita; Eggels, Leslie; Unmehopa, Unga A; Boelen, Anita; Serlie, Mireille J; la Fleur, Susanne E

    2016-08-01

    The hypothalamus plays a fundamental role in regulating homeostatic processes including regulation of food intake. Food intake is driven in part by energy balance, which is sensed by specific brain structures through signaling molecules such as nutrients and hormones. Both circulating glucose and fatty acids decrease food intake via a central mechanism involving the hypothalamus and brain stem. Besides playing a role in signaling energy status, glucose and fatty acids serve as fuel for neurons. This review focuses on the effects of glucose and fatty acids on hypothalamic pathways involved in regulation of energy metabolism as well as on the role of the family of peroxisome proliferator activated receptors (PPARs) which are implicated in regulation of central energy homeostasis. We further discuss the effects of different hypercaloric diets on these pathways. PMID:27083123

  16. The Governor has a sweet tooth - mouth sensing of nutrients to enhance sports performance.

    PubMed

    Burke, Louise M; Maughan, Ronald J

    2015-01-01

    The oral-pharyngeal cavity and the gastrointestinal tract are richly endowed with receptors that respond to taste, temperature and to a wide range of specific nutrient and non-nutritive food components. Ingestion of carbohydrate-containing drinks has been shown to enhance endurance exercise performance, and these responses have been attributed to post-absorptive effects. It is increasingly recognised, though, that the response to ingested carbohydrate begins in the mouth via specific carbohydrate receptors and continues in the gut via the release of a range of hormones that influence substrate metabolism. Cold drinks can also enhance performance, especially in conditions of thermal stress, and part of the mechanism underlying this effect may be the response to cold fluids in the mouth. There is also some, albeit not entirely consistent, evidence for effects of caffeine, quinine, menthol and acetic acid on performance or other relevant effects. This review summarises current knowledge of responses to mouth sensing of temperature, carbohydrate and other food components, with the goal of assisting athletes to implement practical strategies that make best use of its effects. It also examines the evidence that oral intake of other nutrients or characteristics associated with food/fluid intake during exercise can enhance performance via communication between the mouth/gut and the brain. PMID:25345670

  17. Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.).

    PubMed

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei

    2016-02-14

    In this study, we chose a carnivorous fish, turbot (Scophthalmus maximus L.), to examine its nutrient-sensing and metabolic responses after ingestion of diets with fishmeal (FM), or 45% of FM replaced by soyabean meal (34·6% dry diet) balanced with or without essential amino acids (EAA) to match the amino acid profile of FM diet for 30 d. After a 1-month feeding trial, fish growth, feed efficiency and nutrient retention were markedly reduced by soyabean meal-incorporated (SMI) diets. Compared with the FM diet, SMI led to a reduction of postprandial influx of free amino acids, hypoactivated target of rapamycin signalling and a hyperactivated amino acid response pathway after refeeding, a status associated with reduced protein synthesis, impaired postprandial glycolysis and lipogenesis. These differential effects were not ameliorated by matching an EAA profile of soyabean meal to that of the FM diet through dietary amino acid supplementation. Therefore, this study demonstrated that the FM diet and SMI diets led to distinct nutrient-sensing responses, which in turn modulated metabolism and determined the utilisation efficiency of diets. Our results provide a new molecular explanation for the role of nutrient sensing in the inferior performance of aquafeeds in which FM is replaced by soyabean meal. PMID:26586314

  18. Microsensors to the Model Forecasts: Multiscale Embedded Networked Sensing of Nutrients in the Watershed

    NASA Astrophysics Data System (ADS)

    Harmon, T. C.

    2005-12-01

    Hydrologic and water quality observatories are being planned with a vision of enhancing our ability to better understand, forecast and adaptively manage both water quantity and quality. To adequately cover these spatially and temporally variable systems, distributed, embedded sensor networks must be designed with the proper mix (multimodality) of sensors to quantify key system properties, including temperature and chemical distributions, as well as mass and energy fluxes, and to do so across multiple scales. Given resource limitations, process models need to be coupled to the sensor network to interpolate between sensor data. This work focuses on the spatially distributed flux of nutrients, specifically nitrate, in surface-subsurface environments. It begins at the sensor level, describing the development and testing of nitrate microsensors that are scaleable to large, dense sensor networks required to cover heterogeneous watersheds, including associated soil and sediment systems. First and second generation miniature and inexpensive nitrate sensors (ion selective electrodes) fabricated by depositing conducting polymers on carbon substrates are presented in the context of laboratory and field tests. While these sensors are limited to relatively short deployments (4-8 weeks), there are potential strategies for overcoming this problem. Scale-up to one- and three-dimensional soil/sediment sensor arrays is discussed in the context of two deployments: (1) a groundwater quality protection network, where recycled wastewater that is potentially high in nitrate is being used for agricultural irrigation, and (2) nonpoint source nitrate pollution in rivers and groundwater in agricultural watersheds. Recent hardware (wireless transceivers) and software advancements (e.g., network topology design and debugging, energy management) intended for networks spanning 100s of m in space are outlined in these examples. The discussion extends to sensor form factor, in situ calibration

  19. Foregut exclusion disrupts intestinal glucose sensing and alters portal nutrient and hormonal milieu.

    PubMed

    Pal, Atanu; Rhoads, David B; Tavakkoli, Ali

    2015-06-01

    The antidiabetes effects of Roux-en-Y gastric bypass (RYGB) are well-known, but the underlying mechanisms remain unclear. Isolating the proximal small intestine, and in particular its luminal glucose sensors, from the nutrient stream has been proposed as a critical change, but the pathways involved are unclear. In a rodent model, we tested the effects of isolating and then stimulating a segment of proximal intestine using glucose analogs to examine their impact on glucose absorption (Gabsorp) and hormone secretion after a glucose bolus into the distal jejunum. Analogs selective for sodium-glucose cotransporter (SGLT) family members and the sweet taste receptor were tested, and measurements of the portosystemic gradient were used to determine Gabsorp and hormone secretion, including GLP-1. Proximal intestinal isolation reduced Gabsorp and GLP-1 secretion. Stimulation of the glucose-sensing protein SGLT3 increased Gabsorp and GLP-1 secretion. These effects were abolished by vagotomy. Sweet taste receptor stimulation only increased GLP-1 secretion. This study suggests a novel role for SGLT3 in coordinating intestinal function, as reflected by the concomitant modulation of Gabsorp and GLP-1 secretion, with these effects being mediated by the vagus nerve. Our findings provide potential mechanistic insights into foregut exclusion in RYGB and identify SGLT3 as a possible antidiabetes therapeutic target. PMID:25576062

  20. Foregut Exclusion Disrupts Intestinal Glucose Sensing and Alters Portal Nutrient and Hormonal Milieu

    PubMed Central

    Pal, Atanu; Rhoads, David B.

    2015-01-01

    The antidiabetes effects of Roux-en-Y gastric bypass (RYGB) are well-known, but the underlying mechanisms remain unclear. Isolating the proximal small intestine, and in particular its luminal glucose sensors, from the nutrient stream has been proposed as a critical change, but the pathways involved are unclear. In a rodent model, we tested the effects of isolating and then stimulating a segment of proximal intestine using glucose analogs to examine their impact on glucose absorption (Gabsorp) and hormone secretion after a glucose bolus into the distal jejunum. Analogs selective for sodium-glucose cotransporter (SGLT) family members and the sweet taste receptor were tested, and measurements of the portosystemic gradient were used to determine Gabsorp and hormone secretion, including GLP-1. Proximal intestinal isolation reduced Gabsorp and GLP-1 secretion. Stimulation of the glucose-sensing protein SGLT3 increased Gabsorp and GLP-1 secretion. These effects were abolished by vagotomy. Sweet taste receptor stimulation only increased GLP-1 secretion. This study suggests a novel role for SGLT3 in coordinating intestinal function, as reflected by the concomitant modulation of Gabsorp and GLP-1 secretion, with these effects being mediated by the vagus nerve. Our findings provide potential mechanistic insights into foregut exclusion in RYGB and identify SGLT3 as a possible antidiabetes therapeutic target. PMID:25576062

  1. EVALUATION OF PHOSPHATE ION-SELECTIVE MEMBRANES AND COBALT-BASED ELECTRODES FOR SOIL NUTRIENT SENSING

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A real-time soil nutrient sensor would allow efficient collection of data with a fine spatial resolution to accurately characterize within-field variability for site-specific nutrient application. Ion-selective electrodes are a promising approach because they have rapid response, directly measure th...

  2. Nutritional Programming in the Rat Is Linked to Long-Lasting Changes in Nutrient Sensing and Energy Homeostasis in the Hypothalamus

    PubMed Central

    Orozco-Solís, Ricardo; Matos, Rhowena J. B.; Guzmán-Quevedo, Omar; Lopes de Souza, Sandra; Bihouée, Audrey; Houlgatte, Rémi; Manhães de Castro, Raul; Bolaños-Jiménez, Francisco

    2010-01-01

    Background Nutrient deficiency during perinatal development is associated with an increased risk to develop obesity, diabetes and hypertension in the adulthood. However, the molecular mechanisms underlying the developmental programming of the metabolic syndrome remain largely unknown. Methodology/Principal Findings Given the essential role of the hypothalamus in the integration of nutritional, endocrine and neuronal cues, here we have analyzed the profile of the hypothalamus transcriptome in 180 days-old rats born to dams fed either a control (200 g/kg) or a low-protein (80 g/kg) diet through pregnancy and lactation. From a total of 26 209 examined genes, 688 were up-regulated and 309 down-regulated (P<0.003) by early protein restriction. Further bioinformatic analysis of the data revealed that perinatal protein restriction permanently alters the expression of two gene clusters regulating common cellular processes. The first one includes several gate keeper genes regulating insulin signaling and nutrient sensing. The second cluster encompasses a functional network of nuclear receptors and co-regulators of transcription involved in the detection and use of lipid nutrients as fuel which, in addition, link temporal and nutritional cues to metabolism through their tight interaction with the circadian clock. Conclusions/Significance Collectively, these results indicate that the programming of the hypothalamic circuits regulating energy homeostasis is a key step in the development of obesity associated with malnutrition in early life and provide a valuable resource for further investigating the role of the hypothalamus in the programming of the metabolic syndrome. PMID:20975839

  3. Computer-implemented remote sensing techniques for measuring coastal productivity and nutrient transport systems

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1981-01-01

    An automatic technique has been developed to measure marsh plant production by inference from a species classification derived from Landsat MSS data. A separate computer technique has been developed to calculate the transport path length of detritus and nutrients from their point of origin in the marsh to the shoreline from Landsat data. A nutrient availability indicator, the ratio of production to transport path length, was derived for each marsh-identified Landsat cell. The use of a data base compatible with the Landsat format facilitated data handling and computations.

  4. N-Acetylglucosamine-Induced Cell Death in Candida albicans and Its Implications for Adaptive Mechanisms of Nutrient Sensing in Yeasts

    PubMed Central

    Du, Han; Guan, Guobo; Li, Xiaoling; Gulati, Megha; Tao, Li; Cao, Chengjun; Johnson, Alexander D.; Nobile, Clarissa J.

    2015-01-01

    ABSTRACT Single-celled organisms have different strategies to sense and utilize nutrients in their ever-changing environments. The opportunistic fungal pathogen Candida albicans is a common member of the human microbiota, especially that of the gastrointestinal (GI) tract. An important question concerns how C. albicans gained a competitive advantage over other microbes to become a successful commensal and opportunistic pathogen. Here, we report that C. albicans uses N-acetylglucosamine (GlcNAc), an abundant carbon source present in the GI tract, as a signal for nutrient availability. When placed in water, C. albicans cells normally enter the G0 phase and remain viable for weeks. However, they quickly lose viability when cultured in water containing only GlcNAc. We term this phenomenon GlcNAc-induced cell death (GICD). GlcNAc triggers the upregulation of ribosomal biogenesis genes, alterations of mitochondrial metabolism, and the accumulation of reactive oxygen species (ROS), followed by rapid cell death via both apoptotic and necrotic mechanisms. Multiple pathways, including the conserved cyclic AMP (cAMP) signaling and GlcNAc catabolic pathways, are involved in GICD. GlcNAc acts as a signaling molecule to regulate multiple cellular programs in a coordinated manner and therefore maximizes the efficiency of nutrient use. This adaptive behavior allows C. albicans’ more efficient colonization of the gut. PMID:26350972

  5. Remote Sensing of Cover Crop Nutrient Uptake on Maryland's Eastern Shore

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover cropping is recognized as an important agricultural best management practice with great promise for reducing nutrient inputs to the Chesapeake Bay. Accordingly, state-run cost share programs have been established to promote cover cropping on farms throughout Maryland. However, current estimate...

  6. The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in Nematodes

    PubMed Central

    Wang, Zhu; Stoltzfus, Jonathan; You, Young-jai; Ranjit, Najju; Tang, Hao; Xie, Yang; Lok, James B.; Mangelsdorf, David J.; Kliewer, Steven A.

    2015-01-01

    Appropriate nutrient response is essential for growth and reproduction. Under favorable nutrient conditions, the C. elegans nuclear receptor DAF-12 is activated by dafachronic acids, hormones that commit larvae to reproductive growth. Here, we report that in addition to its well-studied role in controlling developmental gene expression, the DAF-12 endocrine system governs expression of a gene network that stimulates the aerobic catabolism of fatty acids. Thus, activation of the DAF-12 transcriptome coordinately mobilizes energy stores to permit reproductive growth. DAF-12 regulation of this metabolic gene network is conserved in the human parasite, Strongyloides stercoralis, and inhibition of specific steps in this network blocks reproductive growth in both of the nematodes. Our study provides a molecular understanding for metabolic adaptation of nematodes to their environment, and suggests a new therapeutic strategy for treating parasitic diseases. PMID:25774872

  7. Remote sensing analysis of foliar water and nutrient content in subtropical wetland tree islands

    NASA Astrophysics Data System (ADS)

    Wang, X.; Fuller, D. O.; Sternberg, L. O.; Miralles-Wilhelm, F. R.

    2010-12-01

    We examined the relationships between two satellite-derived vegetation indices and foliar δ15N values obtained from dominant canopy species in a set of tree islands located in the Everglades National Park in South Florida, USA. These tree islands constitute important nutrient hotspots in an otherwise P-limited wetland environment. Based on the chemohydrodynamic nutrient accumulation model, tree islands’ ability of nutrient accumulation is closely related to water level and hydroperiod, previous work showed that tree islands with less water deficits during the dry season can accumulate more P than tree islands that suffer from drought stress. In this study, foliar δ15N values obtained from 17 tree islands in both slough (perennially wet) and prairie (seasonally wet) locations served as a proxy of P availability at the stand level. We utilized five cloud-free SPOT 4 multispectral images (20m spatial resolution) representing wet season (16-Nov-2007, 28-Oct-2008), beginning of dry season (29-Jan-2007, 5-Feb-2009) and end of dry season (23-Apr-2009) during the three-year-span when the ground measurements were taken, and derived two atmospherically corrected vegetation indices: the normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI), averaged for each tree island. NDWI, which incorporates a shortwave infrared (SWIR) band that provides information on leaf water content, showed consistently higher linear fits with island foliar δ15N values than did NDVI, which provides a measure of absorbed photosynthetically active radiation. R2 values for NDWI-δ15N relationships ranged from 0.69 (p < 0.05) for February (early-to-middle dry season) to 0.32 (p < 0.05) for October (late wet season). In addition, NDWI showed greater variation throughout the seasonal cycle than did NDVI, which suggests that the SWIR band captures important information on seasonally variable water status. Tree islands in slough locations showed higher NDWI than

  8. Liquid fructose down-regulates liver insulin receptor substrate 2 and gluconeogenic enzymes by modifying nutrient sensing factors in rats.

    PubMed

    Rebollo, Alba; Roglans, Núria; Baena, Miguel; Padrosa, Anna; Sánchez, Rosa M; Merlos, Manuel; Alegret, Marta; Laguna, Juan C

    2014-02-01

    High consumption of fructose-sweetened beverages has been linked to a high prevalence of chronic metabolic diseases. We have previously shown that a short course of fructose supplementation as a liquid solution induces glucose intolerance in female rats. In the present work, we characterized the fructose-driven changes in the liver and the molecular pathways involved. To this end, female rats were supplemented or not with liquid fructose (10%, w/v) for 7 or 14 days. Glucose and pyruvate tolerance tests were performed, and the expression of genes related to insulin signaling, gluconeogenesis and nutrient sensing pathways was evaluated. Fructose-supplemented rats showed increased plasma glucose excursions in glucose and pyruvate tolerance tests and reduced hepatic expression of several genes related to insulin signaling, including insulin receptor substrate 2 (IRS-2). However, the expression of key gluconeogenic enzymes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, was reduced. These effects were caused by an inactivation of hepatic forkhead box O1 (FoxO1) due to an increase in its acetylation state driven by a reduced expression and activity of sirtuin 1 (SIRT1). Further contributing to FoxO1 inactivation, fructose consumption elevated liver expression of the spliced form of X-box-binding-protein-1 as a consequence of an increase in the activity of the mammalian target of rapamycin 1 and protein 38-mitogen activated protein kinase (p38-MAPK). Liquid fructose affects both insulin signaling (IRS-2 and FoxO1) and nutrient sensing pathways (p38-MAPK, mTOR and SIRT1), thus disrupting hepatic insulin signaling without increasing the expression of key gluconeogenic enzymes. PMID:24445051

  9. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model

    SciTech Connect

    Ledee, Dolena R.; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Olson, Aaron; Isern, Nancy G.; Robillard Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A.

    2015-07-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO, although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we closely examined the role of prolonged systemic pyruvate supplementation in modifying metabolic parameters during the unique conditions of ventricular unloading provided by ECMO. Twelve male mixed breed Yorkshire piglets (age 30-49 days) received systemic infusion of either normal saline (Group C) or pyruvate (Group P) during ECMO for 8 hours. Over the final hour piglets received [2-13C] pyruvate, and [13C6]-L-leucine, as an indicator for oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of all measured CAC intermediates. Group P showed greater anaplerotic flux through pyruvate carboxylation although pyruvate oxidation relative to citrate synthase flux was similar to Group C. The groups demonstrated similar leucine fractional contributions to acetyl-CoA and fractional protein synthesis rates. Pyruvate also promoted an increase in the phosphorylation state of several nutrient sensitive enzymes, such as AMPK and ACC, and promoted O-GlcNAcylation through the hexosamine biosynthetic pathway (HBP). In conclusion, prolonged pyruvate supplementation during ECMO modified anaplerotic pyruvate flux and elicited changes in important nutrient and energy sensitive pathways, while preserving protein synthesis. Therefore, the observed results support the further study of nutritional supplementation and its downstream effects on cardiac adaptation during ventricular unloading.

  10. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model

    PubMed Central

    Ledee, Dolena R.; Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Olson, Aaron K.; Isern, Nancy; Robillard-Frayne, Isabelle; Des Rosiers, Christine

    2015-01-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we tested the hypothesis that prolonged systemic pyruvate supplementation activates pyruvate oxidation in an immature swine model in vivo. Twelve male mixed-breed Yorkshire piglets (age 30–49 days) received systemic infusion of either normal saline (group C) or pyruvate (group P) during the final 6 h of 8 h of ECMO. Over the final hour, piglets received [2-13C] pyruvate, as a reference substrate for oxidation, and [13C6]-l-leucine, as an indicator for amino acid oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of the citric acid cycle intermediates. An increase in anaplerotic flux through pyruvate carboxylation in group P occurred compared with no change in pyruvate oxidation. Additionally, pyruvate promoted an increase in the phosphorylation state of several nutrient-sensitive enzymes, like AMP-activated protein kinase and acetyl CoA carboxylase, suggesting activation for fatty acid oxidation. Pyruvate also promoted O-GlcNAcylation through the hexosamine biosynthetic pathway. In conclusion, although prolonged pyruvate supplementation did not alter pyruvate oxidation, it did elicit changes in nutrient- and energy-sensitive pathways. Therefore, the observed results support the further study of pyruvate and its downstream effect on cardiac function. PMID:25910802

  11. Expression, Regulation and Putative Nutrient-Sensing Function of Taste GPCRs in the Heart

    PubMed Central

    Foster, Simon R.; Porrello, Enzo R.; Purdue, Brooke; Chan, Hsiu-Wen; Voigt, Anja; Frenzel, Sabine; Hannan, Ross D.; Moritz, Karen M.; Simmons, David G.; Molenaar, Peter; Roura, Eugeni; Boehm, Ulrich; Meyerhof, Wolfgang; Thomas, Walter G.

    2013-01-01

    G protein-coupled receptors (GPCRs) are critical for cardiovascular physiology. Cardiac cells express >100 nonchemosensory GPCRs, indicating that important physiological and potential therapeutic targets remain to be discovered. Moreover, there is a growing appreciation that members of the large, distinct taste and odorant GPCR families have specific functions in tissues beyond the oronasal cavity, including in the brain, gastrointestinal tract and respiratory system. To date, these chemosensory GPCRs have not been systematically studied in the heart. We performed RT-qPCR taste receptor screens in rodent and human heart tissues that revealed discrete subsets of type 2 taste receptors (TAS2/Tas2) as well as Tas1r1 and Tas1r3 (comprising the umami receptor) are expressed. These taste GPCRs are present in cultured cardiac myocytes and fibroblasts, and by in situ hybridization can be visualized across the myocardium in isolated cardiac cells. Tas1r1 gene-targeted mice (Tas1r1Cre/Rosa26tdRFP) strikingly recapitulated these data. In vivo taste receptor expression levels were developmentally regulated in the postnatal period. Intriguingly, several Tas2rs were upregulated in cultured rat myocytes and in mouse heart in vivo following starvation. The discovery of taste GPCRs in the heart opens an exciting new field of cardiac research. We predict that these taste receptors may function as nutrient sensors in the heart. PMID:23696900

  12. A potential to monitor nutrients as an indicator of rangeland quality using space borne remote sensing

    NASA Astrophysics Data System (ADS)

    Ramoelo, A.; Cho, M. A.; Madonsela, S.; Mathieu, R.; van der Korchove, R.; Kaszta, Z.; Wolf, E.

    2014-02-01

    Global change consisting of land use and climate change could have huge impacts on food security and the health of various ecosystems. Leaf nitrogen (N) is one of the key factors limiting agricultural production and ecosystem functioning. Leaf N can be used as an indicator of rangeland quality which could provide information for the farmers, decision makers, land planners and managers. Leaf N plays a crucial role in understanding the feeding patterns and distribution of wildlife and livestock. Assessment of this vegetation parameter using conventional methods at landscape scale level is time consuming and tedious. Remote sensing provides a synoptic view of the landscape, which engenders an opportunity to assess leaf N over wider rangeland areas from protected to communal areas. Estimation of leaf N has been successful during peak productivity or high biomass and limited studies estimated leaf N in dry season. The objective of this study is to monitor leaf N as an indicator of rangeland quality using WorldView 2 satellite images in the north-eastern part of South Africa. Series of field work to collect samples for leaf N were undertaken in the beginning of May (end of wet season) and July (dry season). Several conventional and red edge based vegetation indices were computed. Simple regression was used to develop prediction model for leaf N. Using bootstrapping, indicator of precision and accuracy were analyzed to select a best model for the combined data sets (May and July). The may model for red edge based simple ratio explained over 90% of leaf N variations. The model developed from the combined data sets with normalized difference vegetation index explained 62% of leaf N variation, and this is a model used to estimate and map leaf N for two seasons. The study demonstrated that leaf N could be monitored using high spatial resolution with the red edge band capability.

  13. Caloric Restriction and the Nutrient-Sensing PGC-1α in Mitochondrial Homeostasis: New Perspectives in Neurodegeneration

    PubMed Central

    Lettieri Barbato, Daniele; Baldelli, Sara; Pagliei, Beatrice; Aquilano, Katia; Ciriolo, Maria Rosa

    2012-01-01

    Mitochondrial activity progressively declines during ageing and in many neurodegenerative diseases. Caloric restriction (CR) has been suggested as a dietary intervention that is able to postpone the detrimental aspects of aging as it ameliorates mitochondrial performance. This effect is partially due to increased mitochondrial biogenesis. The nutrient-sensing PGC-1α is a transcriptional coactivator that promotes the expression of mitochondrial genes and is induced by CR. It is believed that many of the mitochondrial and metabolic benefits of CR are due to increased PGC-1α activity. The increase of PGC-1α is also positively linked to neuroprotection and its decrement has been involved in the pathogenesis of many neurodegenerative diseases. This paper aims to summarize the current knowledge about the role of PGC-1α in neuronal homeostasis and the beneficial effects of CR on mitochondrial biogenesis and function. We also discuss how PGC-1α-governed pathways could be used as target for nutritional intervention to prevent neurodegeneration. PMID:22829833

  14. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation

    PubMed Central

    Tao, Jun; Ma, Yi-Cheng; Yang, Zhong-Shan; Zou, Cheng-Gang; Zhang, Ke-Qin

    2016-01-01

    Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms. PMID:27386520

  15. Detection of wine grape nutrient levels using visible and near infrared 1nm spectral resolution remote sensing

    NASA Astrophysics Data System (ADS)

    Anderson, Grant; van Aardt, Jan; Bajorski, Peter; Vanden Heuvel, Justine

    2016-05-01

    The grape industry relies on regular crop assessment to aid in the day-to-day and seasonal management of their crop. More specifically, there are six key nutrients of interest to viticulturists in the growing of wine grapes, namely nitrogen, potassium, phosphorous, magnesium, zinc and boron. Traditional methods of determining the levels of these nutrients are through collection and chemical analysis of petiole samples from the grape vines themselves. We collected ground-level observations of the spectra of the grape vines, using a hyperspectral spectrometer (0.4-2.5um), at the same time that petioles samples were harvested. We then interpolated the data into a consistent 1 nm spectral resolution before comparing it to the nutrient data collected. This nutrient data came from both the industry standard petiole analysis, as well as an additional leaf-level analysis. The data were collected for two different grape cultivars, both during bloom and veraison periods to provide variability, while also considering the impact of temporal/seasonal change. A narrow-band NDI (Normalized Difference Index) approach, as well as a simple ratio index, was used to determine the correlation of the reflectance data to the nutrient data. This analysis was limited to the silicon photodiode range to increase the utility of our approach for wavelength-specific cameras (via spectral filters) in a low cost drone platform. The NDI generated correlation coefficients were as high as 0.80 and 0.88 for bloom and veraison, respectively. The ratio index produced correlation coefficient results that are the same at two decimal places with 0.80 and 0.88. These results bode well for eventual non-destructive, accurate and precise assessment of vineyard nutrient status.

  16. Sensing Site-Specific Variability in Soil and Plant Phosphorus and Other Mineral Nutrients by X-Ray Fluorescence Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Detection and rapid response to in-season changes of soil nutrient availability and plant needs with weather conditions and site-specific characteristics are essential to the optimal performance of an agronomic crop production system. With recent advances in material science, detector design and se...

  17. High-fat feeding impairs nutrient sensing and gut brain integration in the caudomedial nucleus of the solitary tract in mice.

    PubMed

    Cavanaugh, Althea R; Schwartz, Gary J; Blouet, Clémence

    2015-01-01

    Hyperphagic obesity is characterized in part by a specific increase in meal size that contributes to increased daily energy intake, but the mechanisms underlying impaired activity of meal size regulatory circuits, particularly those converging at the caudomedial nucleus of the solitary tract in the hindbrain (cmNTS), remain poorly understood. In this paper, we assessed the consequences of high-fat (HF) feeding and diet-induced obesity (DIO) on cmNTS nutrient sensing and metabolic integration in the control of meal size. Mice maintained on a standard chow diet, low-fat (LF) diet or HF diet for 2 weeks or 6 months were implanted with a bilateral brain cannula targeting the cmNTS. Feeding behavior was assessed using behavioral chambers and meal-pattern analysis following cmNTS L-leucine injections alone or together with ip CCK. Molecular mechanisms implicated in the feeding responses were assessed using western blot, immunofluorescence and pharmacological inhibition of the amino acid sensing mTORC1 pathway (mammalian target of rapamycin complex 1). We found that HF feeding blunts the anorectic consequences of cmNTS L-leucine administration. Increased baseline activity of the L-leucine sensor P70 S6 kinase 1 and impaired L-leucine-induced activation of this pathway in the cmNTS of HF-fed mice indicate that HF feeding is associated with an impairment in cmNTS mTOR nutritional and hormonal sensing. Interestingly, the acute orexigenic effect of the mTORC1 inhibitor rapamycin was preserved in HF-fed mice, supporting the assertion that HF-induced increase in baseline cmNTS mTORC1 activity underlies the defect in L-leucine sensing. Last, the synergistic feeding-suppressive effect of CCK and cmNTS L-leucine was abrogated in DIO mice. These results indicate that HF feeding leads to an impairment in cmNTS nutrient sensing and metabolic integration in the regulation of meal size. PMID:25774780

  18. High-Fat Feeding Impairs Nutrient Sensing and Gut Brain Integration in the Caudomedial Nucleus of the Solitary Tract in Mice

    PubMed Central

    Cavanaugh, Althea R.; Schwartz, Gary J.; Blouet, Clémence

    2015-01-01

    Hyperphagic obesity is characterized in part by a specific increase in meal size that contributes to increased daily energy intake, but the mechanisms underlying impaired activity of meal size regulatory circuits, particularly those converging at the caudomedial nucleus of the solitary tract in the hindbrain (cmNTS), remain poorly understood. In this paper, we assessed the consequences of high-fat (HF) feeding and diet-induced obesity (DIO) on cmNTS nutrient sensing and metabolic integration in the control of meal size. Mice maintained on a standard chow diet, low-fat (LF) diet or HF diet for 2 weeks or 6 months were implanted with a bilateral brain cannula targeting the cmNTS. Feeding behavior was assessed using behavioral chambers and meal-pattern analysis following cmNTS L-leucine injections alone or together with ip CCK. Molecular mechanisms implicated in the feeding responses were assessed using western blot, immunofluorescence and pharmacological inhibition of the amino acid sensing mTORC1 pathway (mammalian target of rapamycin complex 1). We found that HF feeding blunts the anorectic consequences of cmNTS L-leucine administration. Increased baseline activity of the L-leucine sensor P70 S6 kinase 1 and impaired L-leucine-induced activation of this pathway in the cmNTS of HF-fed mice indicate that HF feeding is associated with an impairment in cmNTS mTOR nutritional and hormonal sensing. Interestingly, the acute orexigenic effect of the mTORC1 inhibitor rapamycin was preserved in HF-fed mice, supporting the assertion that HF-induced increase in baseline cmNTS mTORC1 activity underlies the defect in L-leucine sensing. Last, the synergistic feeding-suppressive effect of CCK and cmNTS L-leucine was abrogated in DIO mice. These results indicate that HF feeding leads to an impairment in cmNTS nutrient sensing and metabolic integration in the regulation of meal size. PMID:25774780

  19. Experiment of monitoring thermal discharge drained from nuclear plant through airborne infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Wang, Difeng; Pan, Delu; Li, Ning

    2009-07-01

    The State Development and Planning Commission has approved nuclear power projects with the total capacity of 23,000 MW. The plants will be built in Zhejiang, Jiangsu, Guangdong, Shandong, Liaoning and Fujian Province before 2020. However, along with the nuclear power policy of accelerated development in our country, the quantity of nuclear plants and machine sets increases quickly. As a result the environment influence of thermal discharge will be a problem that can't be slid over. So evaluation of the environment influence and engineering simulation must be performed before station design and construction. Further more real-time monitoring of water temperature need to be arranged after fulfillment, reflecting variety of water temperature in time and provided to related managing department. Which will help to ensure the operation of nuclear plant would not result in excess environment breakage. At the end of 2007, an airborne thermal discharge monitoring experiment has been carried out by making use of MAMS, a marine multi-spectral scanner equipped on the China Marine Surveillance Force airplane. And experimental subject was sea area near Qin Shan nuclear plant. This paper introduces the related specification and function of MAMS instrument, and decrypts design and process of the airborne remote sensing experiment. Experiment showed that applying MAMS to monitoring thermal discharge is viable. The remote sensing on a base of thermal infrared monitoring technique told us that thermal discharge of Qin Shan nuclear plant was controlled in a small scope, never breaching national water quality standard.

  20. Use of remote sensing to monitor nutrient uptake by winter cover crops in the Choptank River Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops are recognized as an important agricultural conservation practice for reducing nitrogen (N) losses to groundwater, and state cost-share programs have been established to promote winter cover crops on farms throughout the Chesapeake Bay watershed. Remote sensing provides a tool for...

  1. Assessment of fiber optic sensors and other advanced sensing technologies for nuclear power plants

    SciTech Connect

    Hashemian, H.M.

    1996-03-01

    As a result of problems such as calibration drift in nuclear plant pressure sensors and the recent oil loss syndrome in some models of Rosemount pressure transmitters, the nuclear industry has become interested in fiber optic pressure sensors. Fiber optic sensing technologies have been considered for the development of advanced instrumentation and control (I&C) systems for the next generation of reactors and in older plants which are retrofitted with new I&C systems. This paper presents the results of a six-month Phase I study to establish the state-of-the-art in fiber optic pressure sensing. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. This initial Phase I study has recently been granted a two-year extension by the U.S. Nuclear Regulatory Commission (NRC). The next phase will evaluate fiber optic pressure sensors in specific nuclear plant applications in addition to other advanced methods for monitoring critical nuclear plant equipment.

  2. Effects of a NBC (nuclear, biological, and chemical) nutrient solution on physiological and psychological status during sustained activity in the heat. Final report, February-March 1987

    SciTech Connect

    Rose, M.S.; Francesconi, R.P.; Levine, L.; Shukitt, B.; Munro, I.

    1987-07-17

    Soldiers involved in nuclear, biological, and chemical (NBC) warfare may be encapsulated in MOPP4 ensemble for up to 24 hours. In that configuration the soldier is in a fasting state unless he can move to a decontaminated area to eat. The purpose of this study was to determine if a nutrient solution containing 2.34% carbohydrate and 24.1 mEq sodium per liter (NBC nutrient solution) would be more effective than a control solution of colored and flavored water in maintaining the physiological and psychological status of a person under thermal conditions that simulate MOPP4 encapsulation. Fluid intake was encouraged and the subjects maintained hydration fairly well. The results of this study indicated that water and the NBC Nutrient solution were equally effective in maintaining hydration and physiological status under hot dry conditions. The NBC Nutrient solution was more palatable, lowered symptom intensity, and improves mood; cognitive performance was not improved.

  3. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    PubMed

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. PMID:23180608

  4. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective

    PubMed Central

    Wallace, Bret D.; Redinbo, Matthew R.

    2016-01-01

    Xenobiotic compounds undergo a critical range of biotransformations performed by the phase I, II, and III drug-metabolizing enzymes. The oxidation, conjugation, and transportation of potentially harmful xenobiotic and endobiotic compounds achieved by these catalytic systems are significantly regulated, at the gene expression level, by members of the nuclear receptor (NR) family of ligand-modulated transcription factors. Activation of NRs by a variety of endo- and exogenous chemicals are elemental to induction and repression of drug-metabolism pathways. The master xenobiotic sensing NRs, the promiscuous pregnane X receptor and less-promiscuous constitutive androstane receptor are crucial to initial ligand recognition, jump-starting the metabolic process. Other receptors, including farnesoid X receptor, vitamin D receptor, hepatocyte nuclear factor 4 alpha, peroxisome proliferator activated receptor, glucocorticoid receptor, liver X receptor, and RAR-related orphan receptor, are not directly linked to promiscuous xenobiotic binding, but clearly play important roles in the modulation of metabolic gene expression. Crystallographic studies of the ligand-binding domains of nine NRs involved in drug metabolism provide key insights into ligand-based and constitutive activity, coregulator recruitment, and gene regulation. Structures of other, noncanonical transcription factors also shed light on secondary, but important, pathways of control. Pharmacological targeting of some of these nuclear and atypical receptors has been instituted as a means to treat metabolic and developmental disorders and provides a future avenue to be explored for other members of the xenobiotic-sensing NRs. PMID:23210723

  5. Sun-induced Chlorophyll fluorescence and PRI improve remote sensing GPP estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-07-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different Nitrogen (N) and Phosphorous (P) availability. Sun-induced chlorophyll Fluorescence yield computed at 760 nm (Fy760), scaled-photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and Normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy-chambers on the same locations sampled by the spectrometers. We hypothesized that light-use efficiency (LUE) models driven by remote sensing quantities (RSM) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as proxy for LUE and NDVI or MTCI as fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed significantly higher GPP in the N fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was tightly related to plant N content (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments but it is affected by N availability. Results from a cross validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv = 140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However, residual analyses

  6. Sun-induced chlorophyll fluorescence and photochemical reflectance index improve remote-sensing gross primary production estimates under varying nutrient availability in a typical Mediterranean savanna ecosystem

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Rossini, M.; Fava, F.; Wutzler, T.; Moreno, G.; Carvalhais, N.; Carrara, A.; Kolle, O.; Julitta, T.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2015-11-01

    This study investigates the performances of different optical indices to estimate gross primary production (GPP) of herbaceous stratum in a Mediterranean savanna with different nitrogen (N) and phosphorous (P) availability. Sun-induced chlorophyll fluorescence yield computed at 760 nm (Fy760), scaled photochemical reflectance index (sPRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI) were computed from near-surface field spectroscopy measurements collected using high spectral resolution spectrometers covering the visible near-infrared regions. GPP was measured using canopy chambers on the same locations sampled by the spectrometers. We tested whether light-use efficiency (LUE) models driven by remote-sensing quantities (RSMs) can better track changes in GPP caused by nutrient supplies compared to those driven exclusively by meteorological data (MM). Particularly, we compared the performances of different RSM formulations - relying on the use of Fy760 or sPRI as a proxy for LUE and NDVI or MTCI as a fraction of absorbed photosynthetically active radiation (fAPAR) - with those of classical MM. Results showed higher GPP in the N-fertilized experimental plots during the growing period. These differences in GPP disappeared in the drying period when senescence effects masked out potential differences due to plant N content. Consequently, although MTCI was closely related to the mean of plant N content across treatments (r2 = 0.86, p < 0.01), it was poorly related to GPP (r2 = 0.45, p < 0.05). On the contrary sPRI and Fy760 correlated well with GPP during the whole measurement period. Results revealed that the relationship between GPP and Fy760 is not unique across treatments, but it is affected by N availability. Results from a cross-validation analysis showed that MM (AICcv = 127, MEcv = 0.879) outperformed RSM (AICcv =140, MEcv = 0.8737) when soil moisture was used to constrain the seasonal dynamic of LUE. However

  7. Coherent manipulation of an ensemble of nuclear spins in diamond for high precision rotation sensing

    NASA Astrophysics Data System (ADS)

    Jaskula, Jean-Christophe; Saha, Kasturi; Ajoy, Ashok; Cappellaro, Paola

    2016-05-01

    Gyroscopes find wide applications in everyday life from navigation and inertial sensing to rotation sensors in hand-held devices and automobiles. Current devices, based on either atomic or solid-state systems, impose a choice between long-time stability and high sensitivity in a miniaturized system. We are building a solid-state spin gyroscope associated with the Nitrogen-Vacancy (NV) centers in diamond take advantage of the efficient optical initialization and measurement offered by the NV electronic spin and the stability and long coherence time of the nuclear spin, which is preserved even at high defect density. In addition, we also investigate electro-magnetic noise monitoring and feedback schemes based on the coupling between the NV electronic and nuclear spin to achieve higher stability.

  8. Remote sensing of nutrient deficiency in Lactuca sativa using neural networks for terrestrial and advanced life support applications

    NASA Astrophysics Data System (ADS)

    Sears, Edie Seldon

    2000-12-01

    A remote sensing study using reflectance and fluorescence spectra of hydroponically grown Lactuca sativa (lettuce) canopies was conducted. An optical receiver was designed and constructed to interface with a commercial fiber optic spectrometer for data acquisition. Optical parameters were varied to determine effects of field of view and distance to target on vegetation stress assessment over the test plant growth cycle. Feedforward backpropagation neural networks (NN) were implemented to predict the presence of canopy stress. Effects of spatial and spectral resolutions on stress predictions of the neural network were also examined. Visual inspection and fresh mass values failed to differentiate among controls, plants cultivated with 25% of the recommended concentration of phosphorous (P), and those cultivated with 25% nitrogen (N) based on fresh mass and visual inspection. The NN's were trained on input vectors created using reflectance and test day, fluorescence and test day, and reflectance, fluorescence, and test day. Four networks were created representing four levels of spectral resolution: 100-nm NN, 10-nm NN, 1-nm NN, and 0.1-nm NN. The 10-nm resolution was found to be sufficient for classifying extreme nitrogen deficiency in freestanding hydroponic lettuce. As a result of leaf angle and canopy structure broadband scattering intensity in the 700-nm to 1000-nm range was found to be the most useful portion of the spectrum in this study. More subtle effects of "greenness" and fluorescence emission were believed to be obscured by canopy structure and leaf orientation. As field of view was not as found to be as significant as originally believed, systems implementing higher repetitions over more uniformly oriented, i.e. smaller, flatter, target areas would provide for more discernible neural network input vectors. It is believed that this technique holds considerable promise for early detection of extreme nitrogen deficiency. Further research is recommended using

  9. Spatial Resolution Effects of Remote Sensing Informed Soil Nutrient Models Based on Landsat 8, RapidEye, WorldView-2 and GeoEye-1 Images

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Grunwald, S.; Smith, S. E.; Abd-Elrahman, A.; Clingensmith, C. M.; Wani, S.

    2015-12-01

    Soil nutrient storage is essential and important to maintain food security and soil security in smallholder farm settings. The objective of this research was to analyze the spatial resolution effects of different remote sensing images on soil prediction models in Kothapally, India. We utilized Bayesian kriging (BK) to characterize the spatial pattern of total nitrogen (TN) and exchangeable potassium (Kex) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30m), RapidEye (5m) and WorldView-2/GeoEye-1 images (2m). The band ratio of red to green, red to blue and green to blue, Crust Index and Atmospherically Resistant Vegetation Index from multiple images generally had high linear correlations with TN and Kex. The BK model of TN based on WorldView-2 and GeoEye-1 attained the highest model fit (R2=0.41) and lowest prediction error (RMSE=171.35 mg kg-1) compared with the BK models of TN based on Landsat 8 (R2=0.30; RMSE=182.26 mg kg-1) and RapidEye (R2=0.28; RMSE=183.52 mg kg-1). The BK model of Kex based on Landsat 8 had the highest model fit (R2=0.55) and the second lowest prediction error (RMSE=79.57 mg kg-1) compared with the BK models of Kex based on WorldView-2 and GeoEye-1 (R2=0.52; RMSE=79.42 mg kg-1) and RapidEye (R2=0.47; RMSE=83.91 mg kg-1). The lowest prediction fit and highest prediction error of soil TN and Kex models based on RapidEye suggest that the effect of fine spatial remote sensing spectral data inputs do not always lead to an increase of model fit. Soil maps based on WorldView-2 and GeoEye-1 have significant advantages in characterizing the variation of soil TN and Kex spatial pattern in smallholder farm settings compared with coarser maps. This research suggests that Digital Soil Mapping utilizing remote sensing spectral data from WorldView-2 and GeoEye-1 has high potential to be widely applied in smallholder farm settings and help smallholder farmers manage their soils and attain soil

  10. Xenobiotic-sensing nuclear receptors CAR and PXR as drug targets in cholestatic liver disease.

    PubMed

    Kakizaki, Satoru; Takizawa, Daichi; Tojima, Hiroki; Yamazaki, Yuichi; Mori, Masatomo

    2009-11-01

    Cholestasis results in the intrahepatic retention of cytotoxic bile acid and it can thus lead to liver injury and/or liver fibrosis. Cholestatic liver damage is counteracted by a variety of intrinsic hepatoprotective mechanisms including a complex network of drug metabolizing enzymes and transporters. During the last decade, much progress has been made in dissecting the mechanisms which regulate the hepatic xeno- and endobiotic metabolism by nuclear receptors. The xenobiotic receptors CAR and PXR are two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from the endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. Ligands for both receptors, including phenobarbital, have already been used to treat cholestatic liver diseases before the mechanisms of these receptors were revealed. Furthermore, Yin Zhi Huang, a traditional Chinese herbal medicine, which has been used to prevent and treat neonatal jaundice, was identified to be a CAR ligand which also accelerates bilirubin clearance. Therefore, CAR and PXR have a protective effect on cholestasis by activating both detoxification enzymes and transporters. As a result, novel compounds targeting CAR and PXR with specific effects and fewer side effects will therefore be useful for the treatment of cholestatic liver diseases. This article will review the current knowledge on xenobiotic-sensing nuclear receptors CAR and PXR, while also discussing their potential role in the treatment of cholestatic liver diseases. PMID:19925451

  11. Sensing actin dynamics: Structural basis for G-actin-sensitive nuclear import of MAL

    SciTech Connect

    Hirano, Hidemi; Matsuura, Yoshiyuki

    2011-10-22

    Highlights: {yields} MAL has a bipartite NLS that binds to Imp{alpha} in an extended conformation. {yields} Mutational analyses verified the functional significance of MAL-Imp{alpha} interactions. {yields} Induced folding and NLS-masking by G-actins inhibit nuclear import of MAL. -- Abstract: The coordination of cytoskeletal actin dynamics with gene expression reprogramming is emerging as a crucial mechanism to control diverse cellular processes, including cell migration, differentiation and neuronal circuit assembly. The actin-binding transcriptional coactivator MAL (also known as MRTF-A/MKL1/BSAC) senses G-actin concentration and transduces Rho GTPase signals to serum response factor (SRF). MAL rapidly shuttles between the cytoplasm and the nucleus in unstimulated cells but Rho-induced depletion of G-actin leads to MAL nuclear accumulation and activation of transcription of SRF:MAL-target genes. Although the molecular and structural basis of actin-regulated nucleocytoplasmic shuttling of MAL is not understood fully, it is proposed that nuclear import of MAL is mediated by importin {alpha}/{beta} heterodimer, and that G-actin competes with importin {alpha}/{beta} for the binding to MAL. Here we present structural, biochemical and cell biological evidence that MAL has a classical bipartite nuclear localization signal (NLS) in the N-terminal 'RPEL' domain containing Arg-Pro-X-X-X-Glu-Leu (RPEL) motifs. The NLS residues of MAL adopt an extended conformation and bind along the surface groove of importin-{alpha}, interacting with the major- and minor-NLS binding sites. We also present a crystal structure of wild-type MAL RPEL domain in complex with five G-actins. Comparison of the importin-{alpha}- and actin-complexes revealed that the binding of G-actins to MAL is associated with folding of NLS residues into a helical conformation that is inappropriate for importin-{alpha} recognition.

  12. Geophysics, Remote Sensing, and the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Macleod, G.; Labak, P.; Malich, G.; Rowlands, A. P.; Craven, J.; Sweeney, J. J.; Chiappini, M.; Tuckwell, G.; Sankey, P.

    2015-12-01

    The Integrated Field Exercise of 2014 (IFE14) was an event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of an on-site inspection (OSI) within the CTBT verification regime. During an OSI, up to 40 international inspectors will search an area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of a real OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams (which executed the scenario in which the exercise was played) and those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test and integrate Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, suites of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, in addition to other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection using other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials, and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of the goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  13. Sensing of single nuclear spins in random thermal motion with proximate nitrogen-vacancy centers

    NASA Astrophysics Data System (ADS)

    Bruderer, M.; Fernández-Acebal, P.; Aurich, R.; Plenio, M. B.

    2016-03-01

    Nitrogen-vacancy (NV) centers in diamond have emerged as valuable tools for sensing and polarizing spins. Motivated by potential applications in chemistry, biology, and medicine, we show that NV-based sensors are capable of detecting single spin targets even if they undergo diffusive motion in an ambient thermal environment. Focusing on experimentally relevant diffusion regimes, we derive an effective model for the NV-target interaction, where parameters entering the model are obtained from numerical simulations of the target motion. The practicality of our approach is demonstrated by analyzing two realistic experimental scenarios: (i) time-resolved sensing of a fluorine nuclear spin bound to an N-heterocyclic carbene-ruthenium (NHC-Ru) catalyst that is immobilized on the diamond surface and (ii) detection of an electron spin label by an NV center in a nanodiamond, both attached to a vibrating chemokine receptor in thermal motion. We find in particular that the detachment of a fluorine target from the NHC-Ru carrier molecule can be monitored with a time resolution of a few seconds.

  14. A framework for the systematic realisation of phenomena for enhanced sensing of radiological and nuclear materials, and radiation.

    PubMed

    Healy, M J F

    2015-09-01

    The quest for new sensing phenomena continues because detecting, discriminating, identifying, measuring and monitoring nuclear materials and their radiation from greater range, at lower concentrations, and in a more timely fashion brings greater safety, security and efficiency. The potential phenomena are diverse, and those that have been realised can be found in disparate fields of science, engineering and medicine, which makes the full range difficult to realise and record. The framework presented here offers a means to systematically and comprehensively explore nuclear sensing phenomena. The approach is based on the fundamental concepts of matter and energy, where the sequence starts with the original nuclear material and its emissions, and progressively considers signatures arising from secondary effects and the emissions from associated materials and the environment. Concepts of operations such as active and passive interrogation, and networked sensing are considered. In this operational light, unpacking nuclear signatures forces a fresh look at the sensing concept. It also exposes how some phenomena that exist in established technology may be considered novel based on how they could be exploited rather than what they fundamentally are. This article selects phenomena purely to illustrate the framework and how it can be best used to foster creativity in the quest for novel phenomena rather than exhaustively listing, categorising or comparing any practical aspects of candidate phenomena. PMID:26270745

  15. Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Zoran, M. A.; Nicolae, D. N.; Talianu, C. L.; Ciobanu, M.; Ciuciu, J. G.

    2005-10-01

    The synergistic use of multi-temporal and multi-spectral remote sensing data offers the possibility of monitoring of environment quality in the vicinity of nuclear power plants (NPP). Advanced digital processing techniques applied to several LANDSAT, MODIS and ASTER data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air for NPP Cernavoda , Romania . Cernavoda Unit 1 power plant, using CANDU technology, having 706.5 MW power, is successfully in operation since 1996. Cernavoda Unit 2 which is currently under construction will be operational in 2007. Thermal discharge from nuclear reactor cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube river. Water temperature distributions captured in thermal IR imagery are correlated with meteorological parameters. Additional information regarding flooding events and earthquake risks is considered . During the winter, the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 oC. During the summer and fall, there is a larger thermal plume extending 5-6 km far along Danube Black Sea Canal, and the temperature change is about 1.0 oC. Variation of surface water temperature in the thermal plume is analyzed. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and to stratification in summer. Hydrodynamic simulation leads to better understanding of the mechanisms by which waste heat from NPP Cernavoda is dissipated in the environment.

  16. Analyzing and sense making of human factors in the Malaysian radiation and nuclear emergency planning framework

    NASA Astrophysics Data System (ADS)

    Hamid, A. H. A.; Rozan, M. Z. A.; Deris, S.; Ibrahim, R.; Abdullah, W. S. W.; Rahman, A. A.; Yunus, M. N. M.

    2016-01-01

    The evolution of current Radiation and Nuclear Emergency Planning Framework (RANEPF) simulator emphasizes on the human factors to be analyzed and interpreted according to the stakeholder's tacit and explicit knowledge. These human factor criteria are analyzed and interpreted according to the "sense making theory" and Disaster Emergency Response Management Information System (DERMIS) design premises. These criteria are corroborated by the statistical criteria. In recent findings, there were no differences of distributions among the stakeholders according to gender and organizational expertise. These criteria are incrementally accepted and agreed the research elements indicated in the respective emergency planning frameworks and simulator (i.e. 78.18 to 84.32, p-value <0.05). This paper suggested these human factors criteria in the associated analyses and theoretical perspectives to be further acomodated in the future simulator development. This development is in conjunction with the proposed hypothesis building of the process factors and responses diagram. We proposed that future work which implies the additional functionality of the simulator, as strategized, condensed and concise, comprehensive public disaster preparedness and intervention guidelines, to be a useful and efficient computer simulation.

  17. Uranium and nitrate remote sensing in the nuclear fuel cycle by time-resolved laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Moulin, Christophe; Couston, Laurent; Decambox, Pierre; Mauchien, Patrick; Pouyat, Dominique

    1994-12-01

    Time-Resolved Laser-Induced Fluorescence has been used for uranium and nitrate remote sensing in the nuclear fuel cycle. Advantages of this technique are aside sensitivity and selectivity, its ability to perform remote measurements via fiber optics and optode. Uranium is usually determined by the standard addition method but by applying a fluorescence model taking into account complexation and absorption phenomena, it is possible to directly determine uranium concentration. Nitrate concentration is determined after spectral deconvolution of the uranium fluorescence spectrum.

  18. Ocean nutrients

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Hurd, Catriona L.

    Nutrients provide the chemical life-support system for phytoplankton in the ocean. Together with the carbon fixed during photosynthesis, nutrients provide the other elements, such as N and P, needed to synthesize macromolecules to build cellular constituents such as ribosomes. The makeup of these various biochemicals, such as proteins, pigments, and nucleic acids, together determine the elemental stoichiometry of an individual phytoplankton cell. The stoichiometry of different phytoplankton species or groups will vary depending on the proportions of distinct cellular machinery, such as for growth or resource acquisition, they require for their life strategies. The uptake of nutrients by phytoplankton helps to set the primary productivity, and drives the biological pump, of the global ocean. In the case of nitrogen, the supply of nutrients is categorized as either new or regenerated. The supply of new nitrogen, such as nitrate upwelled from the ocean' interior or biological nitrogen fixation, is equal to the vertical export of particular organic matter from the upper ocean on a timescale of years. Nutrients such as silica can also play a structural role in some phytoplankton groups, such as diatoms, where they are used to synthesize a siliceous frustule that offers some mechanical protection from grazers. In this chapter, we also explore nutrient uptake kinetics, patterns in nutrient distributions in space and time, the biogeochemical cycle of nitrogen, the atmospheric supply of nutrients, departures from the Redfield ratio, and whether nutrient distributions and cycling will be altered in the future

  19. Remote sensing monitoring of thermal discharge in Daya Bay Nuclear Power Station based on HJ-1 infrared camera

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Yin, Shoujing; Wu, Chuanqing; Ma, Wandong; Hou, Haiqian; Xu, Jing

    2014-11-01

    In this paper, the method of monitoring coastal areas affected by thermal discharge of nuclear plant by using remote sensing techniques was introduced. The proposed approach was demonstrated in Daya Bay nuclear plant based on HJ-B IRS data. A single channel water temperature inversion algorithm was detailed, considering the satellite zenith angle and water vapor. Moreover the reference background temperature was obtained using the average environmental temperature method. In the case study of Daya Bay nuclear plant, the spatial distribution of thermal pollution was analyzed by taking into account the influence of tidal, wind and so on. According to the findings of this study, the speed and direction of the ebb tide, is not conducive to the diffusion of thermal discharge of DNNP. The vertically thermal diffusion was limited by the shallow water depth near the outlet.

  20. Nutrient cycling.

    PubMed

    Bormann, F H; Likens, G E

    1967-01-27

    The small-watershed approach to problems of nutrient cycling has these advantages. (i) The small watershed is a natural unit of suitable size for intensive study of nutrient cycling at the ecosystem level. (ii) It provides a means of reducing to a minimum, or virtually eliminating, the effect of the difficult-to-measure variables of geologic input and nutrient losses in deep seepage. Control of these variables makes possible accurate measurement of nutrient input and output (erosion) and therefore establishes the relationship of the smaller ecosystem to the larger biospheric cycles. (iii) The small-watershed approach provides a method whereby such important parameters as nutrient release from minerals (weathering) and annual nutrient budgets may be calculated. (iv) It provides a means of studying the interrelationships between the biota and the hydrologic cycle, various nutrient cycles, and energy flow in a single system. (v) Finally, with the small-watershed system we can test the effect of various land-management practices or environmental pollutants on nutrient cycling in natural systems. PMID:17737551

  1. Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  2. Nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  3. Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells.

    PubMed

    Portilho, Débora M; Fernandez, Juliette; Ringeard, Mathieu; Machado, Anthony K; Boulay, Aude; Mayer, Martha; Müller-Trutwin, Michaela; Beignon, Anne-Sophie; Kirchhoff, Frank; Nisole, Sébastien; Arhel, Nathalie J

    2016-01-12

    During retroviral infection, viral capsids are subject to restriction by the cellular factor TRIM5α. Here, we show that dendritic cells (DCs) derived from human and non-human primate species lack efficient TRIM5α-mediated retroviral restriction. In DCs, endogenous TRIM5α accumulates in nuclear bodies (NB) that partly co-localize with Cajal bodies in a SUMOylation-dependent manner. Nuclear sequestration of TRIM5α allowed potent induction of type I interferon (IFN) responses during infection, mediated by sensing of reverse transcribed DNA by cGAS. Overexpression of TRIM5α or treatment with the SUMOylation inhibitor ginkgolic acid (GA) resulted in enforced cytoplasmic TRIM5α expression and restored efficient viral restriction but abrogated type I IFN production following infection. Our results suggest that there is an evolutionary trade-off specific to DCs in which restriction is minimized to maximize sensing. TRIM5α regulation via SUMOylation-dependent nuclear sequestration adds to our understanding of how restriction factors are regulated. PMID:26748714

  4. Endogenous TRIM5α Function Is Regulated by SUMOylation and Nuclear Sequestration for Efficient Innate Sensing in Dendritic Cells

    PubMed Central

    Portilho, Débora M.; Fernandez, Juliette; Ringeard, Mathieu; Machado, Anthony K.; Boulay, Aude; Mayer, Martha; Müller-Trutwin, Michaela; Beignon, Anne-Sophie; Kirchhoff, Frank; Nisole, Sébastien; Arhel, Nathalie J.

    2015-01-01

    Summary During retroviral infection, viral capsids are subject to restriction by the cellular factor TRIM5α. Here, we show that dendritic cells (DCs) derived from human and non-human primate species lack efficient TRIM5α-mediated retroviral restriction. In DCs, endogenous TRIM5α accumulates in nuclear bodies (NB) that partly co-localize with Cajal bodies in a SUMOylation-dependent manner. Nuclear sequestration of TRIM5α allowed potent induction of type I interferon (IFN) responses during infection, mediated by sensing of reverse transcribed DNA by cGAS. Overexpression of TRIM5α or treatment with the SUMOylation inhibitor ginkgolic acid (GA) resulted in enforced cytoplasmic TRIM5α expression and restored efficient viral restriction but abrogated type I IFN production following infection. Our results suggest that there is an evolutionary trade-off specific to DCs in which restriction is minimized to maximize sensing. TRIM5α regulation via SUMOylation-dependent nuclear sequestration adds to our understanding of how restriction factors are regulated. PMID:26748714

  5. Nuclear Power Plant environment`s surveillance by satellite remote sensing and in-situ monitoring data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    The main environmental issues affecting the broad acceptability of nuclear power plant are the emission of radioactive materials, the generation of radioactive waste, and the potential for nuclear accidents. All nuclear fission reactors, regardless of design, location, operator or regulator, have the potential to undergo catastrophic accidents involving loss of control of the reactor core, failure of safety systems and subsequent widespread fallout of hazardous fission products. Risk is the mathematical product of probability and consequences, so lowprobability and high-consequence accidents, by definition, have a high risk. NPP environment surveillance is a very important task in frame of risk assessment. Satellite remote sensing data had been applied for dosimeter levels first time for Chernobyl NPP accident in 1986. Just for a normal functioning of a nuclear power plant, multitemporal and multispectral satellite data in complementarily with field data are very useful tools for NPP environment surveillance and risk assessment. Satellite remote sensing is used as an important technology to help environmental research to support research analysis of spatio-temporal dynamics of environmental features nearby nuclear facilities. Digital processing techniques applied to several LANDSAT, MODIS and QuickBird data in synergy with in-situ data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air. As a test case the methodology was applied for for Nuclear Power Plant (NPP) Cernavoda, Romania. Thermal discharge from nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube River. Water temperatures captured in thermal IR imagery are correlated with meteorological parameters. If during the winter thermal plume is localized to an area of a few km of NPP, the temperature difference between the plume and non-plume areas being about 1.5 oC, during summer and fall , is

  6. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity

    SciTech Connect

    Knipe, David M.

    2015-05-15

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. HSV viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. - Highlights: • HSV lytic and latent gene expression is regulated differentially by epigenetic processes. • The sensors of foreign DNA have not been defined fully. • IFI16 and cGAS cooperate to sense viral DNA in HSV-infected cells. • IFI16 plays a role in both innate sensing of HSV DNA and in restricting its expression.

  7. [Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling, and validation].

    PubMed

    Zhu, Li; Zhao, Li-Min; Wang, Qiao; Zhang, Ai-Ling; Wu, Chuan-Qing; Li, Jia-Guo; Shi, Ji-Xiang

    2014-11-01

    Thermal plume from coastal nuclear power plant is a small-scale human activity, mornitoring of which requires high-frequency and high-spatial remote sensing data. The infrared scanner (IRS), on board of HJ-1B, has an infrared channel IRS4 with 300 m and 4-days as its spatial and temporal resolution. Remote sensing data aquired using IRS4 is an available source for mornitoring thermal plume. Retrieval pattern for coastal sea surface temperature (SST) was built to monitor the thermal plume from nuclear power plant. The research area is located near Guangdong Daya Bay Nuclear Power Station (GNPS), where synchronized validations were also implemented. The National Centers for Environmental Prediction (NCEP) data was interpolated spatially and temporally. The interpolated data as well as surface weather conditions were subsequently employed into radiative transfer model for the atmospheric correction of IRS4 thermal image. A look-up-table (LUT) was built for the inversion between IRS4 channel radiance and radiometric temperature, and a fitted function was also built from the LUT data for the same purpose. The SST was finally retrieved based on those preprocessing procedures mentioned above. The bulk temperature (BT) of 84 samples distributed near GNPS was shipboard collected synchronically using salinity-temperature-deepness (CTD) instruments. The discrete sample data was surface interpolated and compared with the satellite retrieved SST. Results show that the average BT over the study area is 0.47 degrees C higher than the retrieved skin temperature (ST). For areas far away from outfall, the ST is higher than BT, with differences less than 1.0 degrees C. The main driving force for temperature variations in these regions is solar radiation. For areas near outfall, on the contrary, the retrieved ST is lower than BT, and greater differences between the two (meaning > 1.0 degrees C) happen when it gets closer to the outfall. Unlike the former case, the convective heat

  8. Nuclear Sensing of Viral DNA, Epigenetic Regulation of Herpes Simplex Virus Infection, and Innate Immunity

    PubMed Central

    Knipe, David M.

    2015-01-01

    Herpes simplex virus (HSV) undergoes a lytic infection in epithelial cells and a latent infection in neuronal cells, and epigenetic mechanisms play a major role in the differential gene expression under the two conditions. Herpes viron DNA is not associated with histones but is rapidly loaded with heterochromatin upon entry into the cell. Viral proteins promote reversal of the epigenetic silencing in epithelial cells while the viral latency-associated transcript promotes additional heterochromatin in neuronal cells. The cellular sensors that initiate the chromatinization of foreign DNA have not been fully defined. IFI16 and cGAS are both essential for innate sensing of HSV DNA, and new evidence shows how they work together to initiate innate signaling. IFI16 also plays a role in the heterochromatinization of HSV DNA, and this review will examine how IFI16 integrates epigenetic regulation and innate sensing of foreign viral DNA to show how these two responses are related. PMID:25742715

  9. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  10. Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells

    PubMed Central

    Abedin, S. Asad; Thorne, James L.; Battaglia, Sebastiano; Maguire, Orla; Hornung, Laura B.; Doherty, Alan P.; Mills, Ian G.; Campbell, Moray J.

    2009-01-01

    Increasingly invasive bladder cancer cells lines displayed insensitivity toward a panel of dietary-derived ligands for members of the nuclear receptor superfamily. Insensitivity was defined through altered gene regulatory actions and cell proliferation and reflected both reduced receptor expression and elevated nuclear receptor corepressor 1 (NCOR1) expression. Stable overexpression of NCOR1 in sensitive cells (RT4) resulted in a panel of clones that recapitulated the resistant phenotype in terms of gene regulatory actions and proliferative responses toward ligand. Similarly, silencing RNA approaches to NCOR1 in resistant cells (EJ28) enhanced ligand gene regulatory and proliferation responses, including those mediated by peroxisome proliferator-activated receptor (PPAR) γ and vitamin D receptor (VDR) receptors. Elevated NCOR1 levels generate an epigenetic lesion to target in resistant cells using the histone deacetylase inhibitor vorinostat, in combination with nuclear receptor ligands. Such treatments revealed strong-additive interactions toward the PPARγ, VDR and Farnesoid X-activated receptors. Genome-wide microarray and microfluidic quantitative real-time, reverse transcription–polymerase chain reaction approaches, following the targeting of NCOR1 activity and expression, revealed the selective capacity of this corepressor to govern common transcriptional events of underlying networks. Combined these findings suggest that NCOR1 is a selective regulator of nuclear receptors, notably PPARγ and VDR, and contributes to their loss of sensitivity. Combinations of epigenetic therapies that target NCOR1 may prove effective, even when receptor expression is reduced. PMID:19126649

  11. Optical detection of special nuclear materials: an alternative approach for standoff and remote sensing

    NASA Astrophysics Data System (ADS)

    Johnson, J. Bruce; Reeve, S. W.; Burns, W. A.; Allen, Susan D.

    2010-04-01

    Termed Special Nuclear Material (SNM) by the Atomic Energy Act of 1954, fissile materials, such as 235U and 239Pu, are the primary components used to construct modern nuclear weapons. Detecting the clandestine presence of SNM represents an important capability for Homeland Security. An ideal SNM sensor must be able to detect fissile materials present at ppb levels, be able to distinguish between the source of the detected fissile material, i.e., 235U, 239Pu, 233U or other fission source, and be able to perform the discrimination in near real time. A sensor with such capabilities would provide not only rapid identification of a threat but, ultimately, information on the potential source of the threat. For example, current detection schemes for monitoring clandestine nuclear testing and nuclear fuel reprocessing to provide weapons grade fissile material rely largely on passive air sampling combined with a subsequent instrumental analysis or some type of wet chemical analysis of the collected material. It would be highly useful to have a noncontact method of measuring isotopes capable of providing forensic information rapidly at ppb levels of detection. Here we compare the use of Kr, Xe and I as "canary" species for distinguishing between 235U and 239Pu fission sources by spectroscopic methods.

  12. New functionality of chalcogenide glasses for radiation sensing of nuclear wastes.

    PubMed

    Ailavajhala, M S; Gonzalez-Velo, Y; Poweleit, C D; Barnaby, H J; Kozicki, M N; Butt, D P; Mitkova, M

    2014-03-30

    Data about gamma radiation induced effects in Ge40Se60 chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray diffraction, current vs. voltage (I-V) and impedance measurements expound the behavior of Ge40Se60 glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag2Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I-V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films. PMID:24332317

  13. Self-actuated nuclear reactor shutdown system using induction pump to facilitate sensing of core coolant temperature

    DOEpatents

    Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.

    1987-01-01

    A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly

  14. Develop an piezoelectric sensing based on SHM system for nuclear dry storage system

    NASA Astrophysics Data System (ADS)

    Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu

    2016-04-01

    In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.

  15. Review of the Neuroanatomic Landscape Implicated in Glucose Sensing and Regulation of Nutrient Signaling: Immunophenotypic Localization of Diabetes Gene Tcf7l2 in the Developing Murine Brain

    PubMed Central

    Weaver, Cyprian; Turner, Nolan; Hall, Jennifer

    2012-01-01

    Genetic variants in the transcription factor 7-like 2(Tcf7l2) gene have been found to confer a significant risk of type 2 diabetes and attenuated insulin secretion. Based on its genomic wide association Tcf7l2 is considered the single most important predictor of diabetes to date. Previous studies of Tcf7l2 mRNA localization in the adult brain suggest a putative role of Tcf7l2 in the CNS regulation of energy homeostasis. The present study further characterizes the immunophenotypic distribution of peptide expression in the brains of Tcf7l2 progeny during developmental time periods between E12.5 and P1. Tcf7l2 −/− is lethal beyond P1. Results show that while negligible TCF7L2 expression is found in the developing brains of Tcf7l2−/−mice, TCF7L2 protein is relatively widespread and robustly expressed in the brain by E18.5 and exhibits specific expression within neuronal populations and regions of the brain in Tcf7l2+/- and Tcf7l2+/+ progeny. Strong immunophenotypic labeling was found in the diencephalic structure of the thalamus that suggests a role of Tcf7l2 in the development and maintenance of thalamic activity. Strongly expressed TCF7L2 was localized in select hypothalamic and preoptic nuclei indicative of Tcf7l2 function within neurons controlling energy balance. Definitive neuronal staining for TCF7L2 within nuclei of the brain stem and circumventricular organs extends TCF7L2 localization within autonomic neurons and its potential integration with autonomic function. In addition robust TCF7L2 expression was found in the tectal and tegmental structures of the superior and inferior colliculi as well as transient expression in neuroepithelium of the cerebral and hippocampal cortices of E16 and E18.5. Patterns of TCF7L2 peptide localization when compared to the adult protein synthetic chemical/anatomical landscape of glucose sensing exhibit a good correlational fit between its expression and regions, nuclei, and pathways regulating energy homeostasis via

  16. Satellite Remote Sensing of the Thermal Plume from the Daya Bay Nuclear Power Station, China

    NASA Astrophysics Data System (ADS)

    Tang, D.; Kester, D.; Wang, Z.; Lian, J.

    The 1800 megawatt Daya Bay Nuclear Power Station (DBNPS), China's first nuclear power station, is located on the coast of the South China Sea. DBNPS discharges 29 million m3 y -1 of warm water from its cooling system into Daya Bay, which could have ecological consequences. This study examines satellite sea surface temperature data and shipboard water column measure ments from Daya Bay. Sea surface temperatures were derived from the Advanced Very High Resolution Radiometer (AVHRR) onboard National Oceanic and Atmospheric Administration (NOAA) polar orbiting satellites during November 1997 to February 1999. A total of 2,905 images were examined. Among those images, 342 have sufficient quality for quantitative analysis. Water temperature, salinity, dissolved oxygen, ammonia, and chlorophyll data from ship surveys were also examined. The AVHRR data show a seasonal pattern of thermal plumes in Daya Bay. During the winter months (December to March), the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 oC. During the summer and fall months (May to November), there is a larger thermal plume extending 8 10 km south along the coast from DBNPS, and the temperature- change is about 1.0 oC. These results are consistent with field observations at 12 sampling stations in Daya Bay. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and stratification in summer. Further investigations are needed to determine if there are biological effects of the Daya Bay thermal plume.

  17. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL

    PubMed Central

    di Masi, A; Cilli, D; Berardinelli, F; Talarico, A; Pallavicini, I; Pennisi, R; Leone, S; Antoccia, A; Noguera, N I; Lo-Coco, F; Ascenzi, P; Minucci, S; Nervi, C

    2016-01-01

    Proteins involved in DNA double-strand break (DSB) repair localize within the promyelocytic leukemia nuclear bodies (PML-NBs), whose disruption is at the root of the acute promyelocytic leukemia (APL) pathogenesis. All-trans-retinoic acid (RA) treatment induces PML-RARα degradation, restores PML-NB functions, and causes terminal cell differentiation of APL blasts. However, the precise role of the APL-associated PML-RARα oncoprotein and PML-NB integrity in the DSB response in APL leukemogenesis and tumor suppression is still lacking. Primary leukemia blasts isolated from APL patients showed high phosphorylation levels of H2AX (γ-H2AX), an initial DSBs sensor. By addressing the consequences of ionizing radiation (IR)-induced DSB response in primary APL blasts and RA-responsive and -resistant myeloid cell lines carrying endogenous or ectopically expressed PML-RARα, before and after treatment with RA, we found that the disruption of PML-NBs is associated with delayed DSB response, as revealed by the impaired kinetic of disappearance of γ-H2AX and 53BP1 foci and activation of ATM and of its substrates H2AX, NBN, and CHK2. The disruption of PML-NB integrity by PML-RARα also affects the IR-induced DSB response in a preleukemic mouse model of APL in vivo. We propose the oncoprotein-dependent PML-NB disruption and DDR impairment as relevant early events in APL tumorigenesis. PMID:27468685

  18. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration

    PubMed Central

    Li, Guodong; L. Guo, Grace

    2015-01-01

    The liver is unique in regenerative potential, which could recover the lost mass and function after injury from ischemia and resection. The underlying molecular mechanisms of liver regeneration have been extensively studied in the past using the partial hepatectomy (PH) model in rodents, where 2/3 PH is carried out by removing two lobes. The whole process of liver regeneration is complicated, orchestrated event involving a network of connected interactions, which still remain fully elusive. Bile acids (BAs) are ligands of farnesoid X receptor (FXR), a nuclear receptor of ligand-activated transcription factor. FXR has been shown to be highly involved in liver regeneration. BAs and FXR not only interact with each other but also regulate various downstream targets independently during liver regeneration. Moreover, recent findings suggest that tissue-specific FXR also contributes to liver regeneration significantly. These novel findings suggest that FXR has much broader role than regulating BA, cholesterol, lipid and glucose metabolism. Therefore, these researches highlight FXR as an important pharmaceutical target for potential use of FXR ligands to regulate liver regeneration in clinic. This review focuses on the roles of BAs and FXR in liver regeneration and the current underlying molecular mechanisms which contribute to liver regeneration. PMID:26579433

  19. Identification of Farnesoid X Receptor β as a Novel Mammalian Nuclear Receptor Sensing Lanosterol

    PubMed Central

    Otte, Kerstin; Kranz, Harald; Kober, Ingo; Thompson, Paul; Hoefer, Michael; Haubold, Bernhard; Remmel, Bettina; Voss, Hartmut; Kaiser, Carmen; Albers, Michael; Cheruvallath, Zaccharias; Jackson, David; Casari, Georg; Koegl, Manfred; Pääbo, Svante; Mous, Jan; Kremoser, Claus; Deuschle, Ulrich

    2003-01-01

    Nuclear receptors are ligand-modulated transcription factors. On the basis of the completed human genome sequence, this family was thought to contain 48 functional members. However, by mining human and mouse genomic sequences, we identified FXRβ as a novel family member. It is a functional receptor in mice, rats, rabbits, and dogs but constitutes a pseudogene in humans and primates. Murine FXRβ is widely coexpressed with FXR in embryonic and adult tissues. It heterodimerizes with RXRα and stimulates transcription through specific DNA response elements upon addition of 9-cis-retinoic acid. Finally, we identified lanosterol as a candidate endogenous ligand that induces coactivator recruitment and transcriptional activation by mFXRβ. Lanosterol is an intermediate of cholesterol biosynthesis, which suggests a direct role in the control of cholesterol biosynthesis in nonprimates. The identification of FXRβ as a novel functional receptor in nonprimate animals sheds new light on the species differences in cholesterol metabolism and has strong implications for the interpretation of genetic and pharmacological studies of FXR-directed physiologies and drug discovery programs. PMID:12529392

  20. PML nuclear body disruption impairs DNA double-strand break sensing and repair in APL.

    PubMed

    di Masi, A; Cilli, D; Berardinelli, F; Talarico, A; Pallavicini, I; Pennisi, R; Leone, S; Antoccia, A; Noguera, N I; Lo-Coco, F; Ascenzi, P; Minucci, S; Nervi, C

    2016-01-01

    Proteins involved in DNA double-strand break (DSB) repair localize within the promyelocytic leukemia nuclear bodies (PML-NBs), whose disruption is at the root of the acute promyelocytic leukemia (APL) pathogenesis. All-trans-retinoic acid (RA) treatment induces PML-RARα degradation, restores PML-NB functions, and causes terminal cell differentiation of APL blasts. However, the precise role of the APL-associated PML-RARα oncoprotein and PML-NB integrity in the DSB response in APL leukemogenesis and tumor suppression is still lacking. Primary leukemia blasts isolated from APL patients showed high phosphorylation levels of H2AX (γ-H2AX), an initial DSBs sensor. By addressing the consequences of ionizing radiation (IR)-induced DSB response in primary APL blasts and RA-responsive and -resistant myeloid cell lines carrying endogenous or ectopically expressed PML-RARα, before and after treatment with RA, we found that the disruption of PML-NBs is associated with delayed DSB response, as revealed by the impaired kinetic of disappearance of γ-H2AX and 53BP1 foci and activation of ATM and of its substrates H2AX, NBN, and CHK2. The disruption of PML-NB integrity by PML-RARα also affects the IR-induced DSB response in a preleukemic mouse model of APL in vivo. We propose the oncoprotein-dependent PML-NB disruption and DDR impairment as relevant early events in APL tumorigenesis. PMID:27468685

  1. Non-destructive ripeness sensing by using proton NMR (Nuclear Magnetic Resonance)

    SciTech Connect

    Cho, Seong In; Krutz, G.W.; Stroshine, R.L. . Dept. of Agricultural Engineering); Bellon, V. , 34 - Montpellier )

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz). 7 refs., 4 figs.

  2. Non-destructive Ripeness Sensing by Using Proton NMR [Nuclear Magnetic Resonance

    DOE R&D Accomplishments Database

    Cho, Seong In; Krutz, G. W.; Stroshine, R. L.; Bellon, V.

    1990-01-01

    More than 80 kinds of fruits and vegetables are available in the United States. But only about 6 of them have their quality standards (Dull, 1986). In the 1990 Fresh Trends survey (Zind, 1990), consumers were asked to rate 16 characteristics important to their decision to purchase fresh produce. The four top ranking factors were ripeness/freshness, taste/flavor, appearance/condition and nutritional value. Of these surveyed, 96% rated ripeness/freshness as extremely important or very important. Therefore, the development of reliable grading or sorting techniques for fresh commodities is essential. Determination of fruit quality often involves cutting and tasting. Non-destructive quality control in fruit and vegetables is a goal of growers and distributors, as well as the food processing industry. Many nondestructive techniques have been evaluated including soft x-ray, optical transmission, near infrared radiation, and machine vision. However, there are few reports of successful non-destructive measurement of sugar content directly in fruit. Higher quality fruit could be harvested and available to consumers if a nondestructive sensor that detects ripeness level directly by measuring sugar content were available. Using proton Nuclear Magnetic Resonance (NMR) principle is the possibility. A nondestructive ripeness (or sweetness) sensor for fruit quality control can be developed with the proton NMR principle (Cho, 1989). Several feasibility studies were necessary for the ripeness sensor development. Main objectives in this paper was to investigate the feasibilities (1) to detect ripeness (or sweetness level) of raw fruit tissue with an high resolution proton NMR spectroscopy (200 MHz) and (2) to measure sugar content of intact fruit with a low resolution proton NMR spectroscopy (10 MHz).

  3. Global nutrient limitation in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Fisher, Joshua B.; Badgley, Grayson; Blyth, Eleanor

    2012-09-01

    Most vegetation is limited in productivity by nutrient availability, but the magnitude of limitation globally is not known. Nutrient limitation is directly relevant not only to ecology and agriculture, but also to the global carbon cycle by regulating how much atmospheric CO2the terrestrial biosphere can sequester. We attempt to identify total nutrient limitation in terrestrial plant productivity globally using ecophysiological theory and new developments in remote sensing for evapotranspiration and plant productivity. Our map of nutrient limitation qualitatively reproduces known regional nutrient gradients (e.g., across Amazonia), highlights differences in nutrient addition to croplands (e.g., between "developed" and "developing" countries), identifies the role of nutrients on the distribution of major biomes (e.g., tree line migration in boreal North America), and compares similarly to a ground-based test along the Long Substrate Age Gradient in Hawaii, U.S.A. (e.g., foliar and soil nutrients, litter decomposition). Nonetheless, challenges in representing light and water use efficiencies, disturbance, and comparison to ground data with multiple interacting nutrients provide avenues for further progress on refining such a global map. Global average reduction in terrestrial plant productivity was within 16-28%, depending on treatment of disturbance; these values can be compared to global carbon cycle model estimates of carbon uptake reduction with nutrient cycle inclusion.

  4. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  5. Nutrient Density Scores.

    ERIC Educational Resources Information Center

    Dickinson, Annette; Thompson, William T.

    1979-01-01

    Announces a nutrient density food scoring system called the Index of Nutritional Quality (INQ). It expresses the ratio between the percent RDA of a nutrient and the percent daily allowance of calories in a food. (Author/SA)

  6. NATIONAL NUTRIENTS DATABASE

    EPA Science Inventory

    Resource Purpose:The Nutrient Criteria Program has initiated development of a National relational database application that will be used to store and analyze nutrient data. The ultimate use of these data will be to derive ecoregion- and waterbody-specific numeric nutrient...

  7. Inhibitors of oxygen sensing prolyl hydroxylases regulate nuclear localization of the transcription factors Smad2 and YAP/TAZ involved in CTGF synthesis.

    PubMed

    Preisser, Felix; Giehl, Klaudia; Rehm, Margot; Goppelt-Struebe, Margarete

    2016-08-01

    Pharmacological inhibition of oxygen sensing prolyl hydroxylase domain enzymes (PHDs) has been shown to preserve renal structure and function in various models of kidney disease. Since transforming growth factor β-1 (TGFβ-1) is one of the major mediators of kidney injury, we investigated if inhibition of PHDs with subsequent stabilization of hypoxia inducible transcription factors (HIF) might interfere with TGFβ-1 signaling with special emphasis on its target gene connective tissue growth factor (CTGF). Overnight incubation of human renal tubular cells, primary cells and cell lines, with the PDH inhibitor DMOG increased Smad3 expression, but barely affected Smad2. Both Smads were translocated into the nucleus upon activation of the cells with TGFβ-1. Interestingly, Smad3 nuclear localization was enhanced upon pretreatment of the cells with DMOG for several hours, whereas nuclear Smad2 was reduced. This differential localization was independent of Smad2/3 phosphorylation. Reduced nuclear Smad2 correlated with impaired CTGF secretion in DMOG-treated cells and transient downregulation of Smad2 interfered with TGFβ-1-induced CTGF synthesis. Furthermore, YAP was confirmed as indispensable transcription factor involved in CTGF synthesis. Nuclear localization of YAP and TAZ was reduced in DMOG-treated cells. Our data thus provide evidence for DMOG-mediated reduction of CTGF expression by regulating the nuclear localization of the transcription factors Smad2, YAP and TAZ. Prolonged inhibition of PHDs was necessary to achieve alterations in cellular localization suggesting an indirect HIF-mediated effect. This mechanism might be extended to other transcription factors and target genes, and may thus represent a novel mechanism of negative regulation of gene expression by PHD inhibition. PMID:27155083

  8. Recent Advances in Gut Nutrient Chemosensing

    PubMed Central

    Nguyen, C.A.; Akiba, Y.; Kaunitz, J.D.

    2016-01-01

    The field of gut nutrient chemosensing is evolving rapidly. Recent advances have uncovered the mechanism by which specific nutrient components evoke multiple metabolic responses. Deorphanization of G protein-coupled receptors (GPCRs) in the gut has helped identify previously unliganded receptors and their cognate ligands. In this review, we discuss nutrient receptors, their ligand preferences, and the evoked neurohormonal responses. Family A GPCRs includes receptor GPR93, which senses protein and proteolytic degradation products, and free fatty acid-sensing receptors. Short-chain free fatty acids are ligands for FFA2, previously GPR43, and FFA3, previously GPR41. FFA1, previously GPR40, is activated by long-chain fatty acids with GPR120 activated by medium- and long-chain fatty acids. The GPR119 agonist ethanolamide oleoylethanolamide (OEA) and bile acid GPR131 agonists have also been identified. Family C receptors ligand preferences include L-amino acids, carbohydrate, and tastants. The metabotropic glutamate receptor (mGluR), calcium-sensing receptor (CaR), and GPCR family C, group 6, subtype A receptor (GPRC6A) mediate L-amino acid-sensing. Taste receptors have a proposed role in intestinal chemosensing; sweet, bitter, and umami evoke responses in the gut via GPCRs. The mechanism of carbohydrate-sensing remains controversial: the heterodimeric taste receptor T1R2/T1R3 and sodium glucose cotransporter 1 (SGLT-1) expressed in L cells are the two leading candidates. Identification of specific nutrient receptors and their respective ligands can provide novel therapeutic targets for the treatment of diabetes, acid reflux, foregut mucosal injury, and obesity. PMID:22300073

  9. Deuterated carbohydrate probes as ‘label-free’ substrates for probing nutrient uptake in mycobacteria by nuclear reaction analysis† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cc09588j Click here for additional data file.

    PubMed Central

    Lowery, R.; Gibson, M. I.; Thompson, R. L.

    2015-01-01

    Understanding and probing small molecule uptake in cells is challenging, requiring sterically large chemical labels, or radioactive isotopes. Here, the uptake of deuterated sugars by Mycobacterium smegmatis, a non-pathogenic model of Mycobacterium tuberculosis, has been investigated using ion-beam (nuclear reaction) analysis demonstrating a new technique for label-free nutrient acquisition measurement. PMID:25695462

  10. Nutritional Applications of the Chemical Senses.

    ERIC Educational Resources Information Center

    Naim, Michael; Kare, Morley R.

    1984-01-01

    Discusses the relationship of taste and smell to ingestion, digestion, and metabolism. Indicates that the response of these physiological systems can be chemical specific and that chemical senses may play different roles in regulating diet during nutrient deficiency and during nutrient surplus situations. (JN)

  11. Measuring and modeling intraocular light scatter with Shack-Hartmann wavefront sensing and the effects of nuclear cataract on the measurement of wavefront error

    NASA Astrophysics Data System (ADS)

    Donnelly, William J., III

    Purpose. The purpose of this research is to determine if Shack/Hartmann (S/H) wavefront sensing (SHWS) can be used to objectively quantify ocular forward scatter. Methods. Patient S/H images from an study of nuclear cataract were analyzed to extract scattering data by examining characteristics of the lenslet point spread functions. Physical and computer eye models with simulated cataract were developed to control variables and to test the underlying assumptions for using SHWS to measure aberrations and light scatter from nuclear cataract. Results. (1) For patients with nuclear opalescence (NO) >=2.5, forward scatter metrics in a multiple regression analysis account for 33% of variance in Mesopic Low Contrast acuity. Prediction of visual acuity was improved by employing a multiple regression analysis that included both backscatter and forward scatter metrics (R2 = 51%) for Mesopic High Contrast acuity. (2) The physical and computer models identified areas of instrument noise (e.g., stray light and unwanted reflections) improving the design of a second generation SHWS for measuring both wavefront error and scatter. (3) Exposure time had the most influence on, and pupil size had negligible influence on forward scatter metrics. Scatter metric MAX_SD predicted changes in simulated cataract up to R2 = 92%. There were small but significant differences (alpha = 0.05) between 1.5-pass and 1-pass wavefront measurements inclusive of variable simulated nuclear cataract and exposure; however, these differences were not visually significant. Improvements to the SHWS imaging hardware, software, and test protocol were implemented in a second generation SHWS to be used in a longitudinal cataract study. Conclusions. Forward light scatter in real eyes can be quantified using a SHWS. In the presence of clinically significant nuclear opalescence, forward scatter metrics predicted acuity better than the LOCS III NO backscatter metric. The superiority of forward scatter metrics over back

  12. Remote Sensing Laboratory - RSL

    ScienceCinema

    None

    2015-01-09

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  13. Remote Sensing Laboratory - RSL

    SciTech Connect

    2014-11-06

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  14. Why Model-Based Engineering and Manufacturing Makes Sense for the Plants and Laboratories of the Nuclear Weapon Complex

    SciTech Connect

    Franklin, K W; Howell, L N; Lewis, D G; Neugebauer, C A; O'Brien, D W; Schilling, S A

    2001-05-15

    The purpose of this White Paper is to outline the benefits we expect to receive from Model-Based Engineering and Manufacturing (MBE/M) for the design, analysis, fabrication, and assembly of nuclear weapons for upcoming Life Extension Programs (LEPs). Industry experiences with model-based approaches and the NNSA/DP investments and experiences, discussed in this paper, indicate that model-based methods can achieve reliable refurbished weapons for the stockpile with less cost and time. In this the paper, we list both general and specific benefits of MBE/M for the upcoming LEPs and the metrics for determining the success of model-based approaches. We also present some outstanding issues and challenges to deploying and achieving long-term benefit from the MBE/M. In conclusion, we argue that successful completion of the upcoming LEPs--with very aggressive schedule and funding restrictions--will depend on electronic model-based methods. We ask for a strong commitment from LEP managers throughout the Nuclear Weapons Complex to support deployment and use of MBE/M systems to meet their program needs.

  15. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    SciTech Connect

    Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  16. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories. PMID:26133876

  17. Food Components Modulate Obesity and Energy Metabolism via the Transcriptional Regulation of Lipid-Sensing Nuclear Receptors.

    PubMed

    Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo

    2015-01-01

    Obesity is a major risk factor for chronic diseases such as diabetes, cardiovascular diseases, and hypertension. Many modern people have a tendency to overeat owing to stress and loosening of self-control. Moreover, energy expenditure varies greatly among individuals. Scientific reduction of obesity is important under these circumstances. Furthermore, recent research on molecular levels has clarified the differentiation of adipocytes, the level of subsequent fat accumulation, and the secretion of the biologically active adipokines by adipocytes. Adipose tissues and obesity have become the most important target for the prevention and treatment of many chronic diseases. We have identified various food-derived compounds modulating nuclear receptors, especially peroxisome proliferators-activated receptor(PPAR), in the regulation of energy metabolism and obesity. In this review, we discuss the PPARs that are most important in obesity and energy metabolism. PMID:26598824

  18. BRCA1 Regulates IFI16 Mediated Nuclear Innate Sensing of Herpes Viral DNA and Subsequent Induction of the Innate Inflammasome and Interferon-β Responses

    PubMed Central

    Veettil, Mohanan Valiya; Roy, Arunava; Ansari, Mairaj Ahmed; Iqbal, Jawed; Chikoti, Leela; Kumar, Binod; Johnson, Karen E.; Chandran, Bala

    2015-01-01

    The innate immune system pattern recognition receptors (PRR) are the first line of host defenses recognizing the various pathogen- or danger-associated molecular patterns and eliciting defenses by regulating the production of pro-inflammatory cytokines such as IL-1β, IL-18 or interferon β (IFN-β). NOD-like receptors (NLRs) and AIM2-like receptors (ALRs) are cytoplasmic inflammasome sensors of foreign molecules, including DNA. IFI16, a sequence-independent nuclear innate sensor ALR, recognizes episomal dsDNA genomes of herpes viruses such as KSHV, EBV, and HSV-1 in the infected cell nuclei, forms an inflammasome complex with ASC and procaspase1, and relocates into the cytoplasm leading into Caspase-1 and IL-1β generation. IFI16 also induces IFN-β during HSV-1 infection via the cytoplasmic STING-TBK1-IRF3 pathway. Thus far, whether IFI16 recognizes foreign DNA directly or utilizes other host protein(s) is unknown. Here, we demonstrate that BRCA1, a DNA damage repair sensor and transcription regulator, is in complex with IFI16 in the host cell nucleus, and their association increases in the presence of nuclear viral genomes during de novo KSHV, EBV and HSV-1 infection, and in latent KSHV or EBV infection, but not by DNA damage responses (DDR) induced by bleomycin and vaccinia virus cytoplasmic dsDNA. BRCA1 is a constituent of the triggered IFI16-inflammasome and is translocated into the cytoplasm after genome recognition along with the IFI16-inflammasome. The absence of BRCA1 abrogated IFI16-viral genome association, inflammasome assembly, IFI16 cytoplasmic localization, and Caspase-1 and IL-1β production. The absence of BRCA1 also abolished the cytoplasmic IFI16-STING interaction, downstream IRF3 phosphorylation, nuclear translocation of pIRF3 and IFN-β production during de novo KSHV and HSV-1 infection. These findings highlight that BRCA1 plays a hitherto unidentified innate immunomodulatory role by facilitating nuclear foreign DNA sensing by IFI16

  19. Nutrient Control Design Manual

    EPA Science Inventory

    The Nutrient Control Design Manual will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). This manual will present ...

  20. Nutrient Control Seminars

    EPA Science Inventory

    These Nutrient Control Seminars will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). These seminars will present ...

  1. "Chiron": A Proposed Remote Sensing Prompt Gamma Ray Activation Analysis Instrument for a Nuclear Powered Prometheus Mission

    NASA Technical Reports Server (NTRS)

    Floyd, Samuel R.; Keller, John W.; Dworkin, Jason P.; Mildner, David F. R.

    2004-01-01

    Prompt Gamma Ray Activation Analysis (PGAA) from neutron capture is an important experimental method that yields information on the elemental abundance of target materials. Gamma ray analysis has been used in planetary exploration missions by taking advantage of the production of neutrons as a result of Galactic Cosmic Ray interaction within the planetary surfaces. The .gamma ray signal that can be obtained from the GCR production of neutrons is very low, so we seek a superior neutron source. NASA s Project Prometheus and the Dept. of Energy aim to develop a nuclear power system for planetary exploration. This provides us with a tremendous opportunity to harness the reactor as a source of neutrons that can be used for PGAA. We envision a narrow stream of neutrons from the reactor directed toward the surface of an asteroid or comet producing the prompt gamma ray signal for analysis. Under ideal conditions of neutron flux and spacecraft orbit, both the signal strength and the spatial resolution will improved by several orders of magnitude over previously missions.

  2. Nuclear receptors in bile acid metabolism

    PubMed Central

    Li, Tiangang; Chiang, John Y. L.

    2013-01-01

    Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid–based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease. PMID:23330546

  3. Integrated Urban Nutrient Management

    NASA Astrophysics Data System (ADS)

    Nhapi, I.; Veenstra, S.; Siebel, M. A.; Gijzen, H. J.

    Most cities, especially from the developing countries, are facing serious problems with the management of nutrients, necessitating an urgent review of current waste management systems. Whilst highly efficient technologies are available, the inclusion of these in a well-thought out and systematic approach is necessary to contain the nutrient influxes and outfluxes from towns. Five intervention measures are proposed in this paper. The first is to manage the use and generation of nutrients by drastically minimising water consumption and employing other cleaner production approaches. The second deals with the optimal reuse of nutrients and water at the smallest possible level, like at the household and on-plot level. The second option is to covert the waste into something useful for reuse, and, where not possible, to something which is envi- ronmentally neutral. This involves treatment, but applying technologies that makes the best use of side products via reuse. Where the first three options will have failed, two least preferred options could be used. Waste can be dispersed or diluted to enhance self-purification capacities of downstream water bodies. The last option is to store the wastewater for some parts of the year when there is water shortage to allow for polishing during the standing period. The success of urban nutrient planning requires an integrated approach, proving specific solutions to specific situations. This, in turn, requires appropriate institutional responses.

  4. Small Heterodimer Partner (NR0B2) Coordinates Nutrient Signaling and the Circadian Clock in Mice.

    PubMed

    Wu, Nan; Kim, Kang Ho; Zhou, Ying; Lee, Jae Man; Kettner, Nicole M; Mamrosh, Jennifer L; Choi, Sungwoo; Fu, Loning; Moore, David D

    2016-09-01

    Circadian rhythm regulates multiple metabolic processes and in turn is readily entrained by feeding-fasting cycles. However, the molecular mechanisms by which the peripheral clock senses nutrition availability remain largely unknown. Bile acids are under circadian control and also increase postprandially, serving as regulators of the fed state in the liver. Here, we show that nuclear receptor Small Heterodimer Partner (SHP), a regulator of bile acid metabolism, impacts the endogenous peripheral clock by directly regulating Bmal1. Bmal1-dependent gene expression is altered in Shp knockout mice, and liver clock adaptation is delayed in Shp knockout mice upon restricted feeding. These results identify SHP as a potential mediator connecting nutrient signaling with the circadian clock. PMID:27427832

  5. Automated lettuce nutrient solution management using an array of ion-selective electrodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated sensing and control of macronutrients in hydroponic solutions would allow more efficient management of nutrients for crop growth in closed systems. This paper describes the development and evaluation of a computer-controlled nutrient management system with an array of ion-selective electro...

  6. Nutrient element interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of overall tree physiological processes for optimization of either orchard yield or profitability is an annual challenge facing orchard managers. Optimization of chemical nutrient element concentrations within this context is often far more challenging than first appears. Tree or or...

  7. SPARROW REGIONAL NUTRIENT MODEL

    EPA Science Inventory

    This is the second year of funding for the New England SPARROW (Spatially Referenced Regressions on Watershed Attributes) model. Funds in the first year (along with funds allocated for projects supporting Nutrient-Criteria development) were used to analyze regional results ...

  8. Nutrient Criteria Research

    EPA Science Inventory

    EPA has developed methodologies for deriving nutrient criteria, default criteria for the variety of waters and eco-regions found in the U.S., and a strategy for implementing the criteria including guidance on the use and development of biocriteria. Whereas preliminary research ha...

  9. Nutrient Requirements in Adolescence.

    ERIC Educational Resources Information Center

    McKigney, John I,; Munro, Hamish N.

    It is important to understand the nutrient requirements and the significance of nutrition both in pubescence and adolescence. The pubescent growth spurt is characterized by an increase in body size and a change in proportion of different tissues. Both of these factors are of great nutritional importance, since there is reason to believe that the…

  10. Estimation of stream nutrient uptake from nutrient addition experiments

    SciTech Connect

    Payn, Robert

    2005-09-01

    Nutrient uptake in streams is often quantified by determining nutrient uptake length. However, current methods for measuring nutrient uptake length are often impractical, expensive, or demonstrably incorrect. We have developed a new method to estimate ambient nutrient uptake lengths using field experiments involving several levels of nutrient addition. Data analysis involves plotting nutrient addition uptake lengths versus added concentration and extrapolating to the negative ambient concentration. This method is relatively easy, inexpensive, and based on sound theoretical development. It is more accurate than the commonly used method involving a single nutrient addition. The utility of the method is supported by field studies directly comparing our new method with isotopic tracer methods for determining uptake lengths of phosphorus, ammonium, and nitrate. Our method also provides parameters for comparing potential nutrient limitation among streams.

  11. Nutrient profiling: the new environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2005 Dietary Guidelines for Americans (DGA) recommends that individuals choose nutrient-dense foods to help meet nutrient needs without consuming excess calories, a concept that is supported by health professionals and nutrition organizations. With an increased emphasis on nutrient density, the ...

  12. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. PMID:24898231

  13. National Nutrient Database for Standard Reference - Find Nutrient Value of Common Foods by Nutrient

    MedlinePlus

    ... Department of Agriculture Agricultural Research Service National Nutrient Database for Standard Reference Release 28 NDL Home Food ... Sort by: Measure by: * required field ​ National Nutrient Database for Standard Reference Release 28 slightly revised May, ...

  14. Sensing Nitrate and Potassium Ions in Soil Extracts Using Ion-selective Electrodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automated sensing of soil macronutrients would allow more efficient mapping of soil nutrient variability for variable-rate nutrient management. The capabilities of ion-selective electrodes for sensing macronutrients in soil extracts can be affected by the presence of other ions in the soil itself a...

  15. Remote Sensing of Cover Crop Production on Maryland's Eastern Shore

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of winter cover crops is being promoted throughout Maryland as an effective agricultural best management practice with great promise for reducing nutrient inputs to the Chesapeake Bay. Remote sensing provides a tool for real-time estimation of cover crop productivity and nutrient uptake effi...

  16. Electrochemical sensing of nuclear matrix protein 22 in urine with molecularly imprinted poly(ethylene-co-vinyl alcohol) coated zinc oxide nanorod arrays for clinical studies of bladder cancer diagnosis.

    PubMed

    Lee, Mei-Hwa; Thomas, James L; Chang, Yu-Chia; Tsai, Yuh-Shyan; Liu, Bin-Da; Lin, Hung-Yin

    2016-05-15

    In 1996 and 2000, the US Food and Drug Administration (FDA) approved the use of Nuclear matrix protein 22 (NMP22) as a monitoring tool for predicting the recurrence/clearing of bladder cancer, and for screening undiagnosed individuals who have symptoms of, or are at risk for, that disease. The fabrication of electrodes for sensing NMP22 and their integration with a portable potentiostat in a homecare system may have great value. This work describes a sensing element comprised of molecularly imprinted polymers (MIPs) for the specific recognition of NMP22 target molecules. Zinc oxide (ZnO) nanorods (214 ± 45 nm in diameter and 1.08 ± 0.11 μm long) were hydrothermally grown on the sensing electrodes to increase the surface area to be coated with MIPs. A portable potentiostat was assembled and a data acquisition (DAQ) card and the Labview program were utilized to monitor electrochemical reaction to sense NMP22 in urine samples. Finally, in phase 0 clinical trials, measurements were made of samples from a few patients with bladder cancer using the NMP22 MIP-coated ZnO nanorods electrodes that were integrated into a portable potentiostat, revealing NMP 22 concentrations in the range 128 ± 19 to 588 ± 53 ng/mL. PMID:26774095

  17. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  18. Remote Sensing.

    ERIC Educational Resources Information Center

    Williams, Richard S., Jr.; Southworth, C. Scott

    1983-01-01

    The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)

  19. Load sensing system

    DOEpatents

    Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

    1999-05-04

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

  20. Load sensing system

    DOEpatents

    Sohns, Carl W.; Nodine, Robert N.; Wallace, Steven Allen

    1999-01-01

    A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

  1. Nutrient dynamics: Chapter 3

    USGS Publications Warehouse

    Likens, Gene E.; LaBaugh, James W.; Buso, Donald C.; Bade, Darren

    2009-01-01

    This chapter focuses on the variability and trends in chemical concentrations and fluxes at Mirror Lake during the period 1981–2000. It examines the water and chemical budgets of Mirror Lake to identify and understand better long-term trends in the chemical characteristics of the lake. It also identifies the causes of changes in nutrient concentrations and examines the contribution of hydrologic pathways to the contamination of Mirror Lake by road salt. The role of groundwater and precipitation on water and chemical budgets of the lake are also examined.

  2. The xenobiotic-sensing nuclear receptors pregnane X receptor, constitutive androstane receptor, and orphan nuclear receptor hepatocyte nuclear factor 4alpha in the regulation of human steroid-/bile acid-sulfotransferase.

    PubMed

    Echchgadda, Ibtissam; Song, Chung S; Oh, Taesung; Ahmed, Mohamed; De La Cruz, Isidro John; Chatterjee, Bandana

    2007-09-01

    The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are the primary transcription factors coordinating induced expression of the enzymes and proteins directing oxidative, conjugative, and transport phases of endobiotic and xenobiotic metabolism, whereas hepatocyte nuclear factor 4alpha (HNF4alpha), a regulator of hepatic lipid homeostasis, can modify the PXR/CAR response. Steroid- and bile acid-sulfotransferase (SULT2A1) promotes phase II metabolism through its sulfonating action on certain endobiotics, including steroids and bile acids, and on diverse xenobiotics, including therapeutic drugs. This study describes characterization of a PXR- and CAR-inducible composite element in the human SULT2A1 promoter and its synergistic interaction with HNF4alpha. Inverted and direct repeats of AG(G/T)TCA (IR2 and DR4), both binding to PXR and CAR, define the composite element. Differential recognition of the composite element by PXR and CAR is evident because single-site mutation at either IR2 or DR4 in the natural gene abolished the PXR response, whereas mutations at both repeats were necessary to abrogate completely the CAR response. The composite element conferred xenobiotic response to a heterologous promoter, and the cognate ligands induced PXR and CAR recruitment to the chromatin-associated response region. An HNF4alpha element adjacent to the -30 position enhanced basal promoter activity. Although functioning as a synergizer, the HNF4alpha element was not essential for the PXR/CAR response. An emerging role of SULT2A1 in lipid and caloric homeostasis suggests that illumination on the regulatory interactions driving human SULT2A1 expression may reveal new avenues to control certain metabolic disorders. PMID:17595319

  3. It's time to make changes: modulation of root system architecture by nutrient signals.

    PubMed

    Giehl, Ricardo F H; Gruber, Benjamin D; von Wirén, Nicolaus

    2014-03-01

    Root growth and development are of outstanding importance for the plant's ability to acquire water and nutrients from different soil horizons. To cope with fluctuating nutrient availabilities, plants integrate systemic signals pertaining to their nutritional status into developmental pathways that regulate the spatial arrangement of roots. Changes in the plant nutritional status and external nutrient supply modulate root system architecture (RSA) over time and determine the degree of root plasticity which is based on variations in the number, extension, placement, and growth direction of individual components of the root system. Roots also sense the local availability of some nutrients, thereby leading to nutrient-specific modifications in RSA, that result from the integration of systemic and local signals into the root developmental programme at specific steps. An in silico analysis of nutrient-responsive genes involved in root development showed that the majority of these specifically responded to the deficiency of individual nutrients while a minority responded to more than one nutrient deficiency. Such an analysis provides an interesting starting point for the identification of the molecular players underlying the sensing and transduction of the nutrient signals that mediate changes in the development and architecture of root systems. PMID:24353245

  4. Groundwater - the underestimated component in lake nutrient balances

    NASA Astrophysics Data System (ADS)

    Lewandowski, Joerg; Nuetzmann, Gunnar

    2010-05-01

    Eutrophication is one of the most important threats to lakes in temperate climatic zones. It is necessary to determine the relevance of different nutrient sources to conduct effective management measures, to understand in-lake processes and to model future scenarios. A prerequisite for nutrient balances are water balances. Surface inflows from streams, rivers and ditches can be precisely quantified and based on local weather data precipitation and evaporation can be calculated. Quantifications of groundwater infiltration and exfiltration are more difficult. Often they are determined as residual in the water balance equation or estimated based on groundwater flow models. For nutrient balances some additional input paths have to be taken into account, for example, dry deposition, waterfowl, swimmer and anglers. Furthermore, concentration fluctuations of the different inflows have to be considered. The determination of nutrient imports via the groundwater paths is quite complex and often disregarded in nutrient balances or based on dubious assumptions. Nevertheless, groundwater might be an important nutrient source in several lakes. There are three major reasons for neglecting the groundwater path: (1) The groundwater-lake interface is difficult to access, especially in deeper lakes. (2) The size of the interface gives much space for spatial heterogeneity and requires an enormous amount of measurements for reliable determinations. (3) The lake sediment is a reactive interface, i. e., there might be some processing of the nutrients at the immediate groundwater-lake interface. In the present study we suggest a combined approach of localization of major water infiltration zones with distributed temperature sensing, quantification of water infiltration at some locations based on temperature gradients at the groundwater-lake interface and determination of nutrient concentrations with seepage meters at the same locations.

  5. Interactive Effects of Nutrient and Mechanical Stresses on Plant Morphology

    PubMed Central

    Puijalon, Sara; Lena, Jean-Paul; Bornette, Gudrun

    2007-01-01

    Background and Aims Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. Methods An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. Key Results Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. Conclusions These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species. PMID:17913725

  6. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. PMID:27606648

  7. Nutrient Cycling Study

    SciTech Connect

    Peter A. Pryfogle

    2005-09-01

    The particular goal of this study is to develop measurement techniques for understanding how consortia of organisms from geothermal facilities utilize sulfur and iron for metabolic activity; and in turn, what role that activity plays in initiating or promoting the development of a biofilm on plant substrates. Sulfur cycling is of interest because sulfur is produced in the resource. Iron is found in some of the steel formulations used in plant components and is also added as chemical treatment for reducing sulfide emissions from the plants. This report describes the set-up and operation of a bioreactor for evaluating the response of colonies of geothermal organisms to changes in nutrient and environmental conditions. Data from initial experiments are presented and plans for future testing is discussed.

  8. Bile acids are nutrient signaling hormones.

    PubMed

    Zhou, Huiping; Hylemon, Phillip B

    2014-08-01

    Bile salts play crucial roles in allowing the gastrointestinal system to digest, transport and metabolize nutrients. They function as nutrient signaling hormones by activating specific nuclear receptors (FXR, PXR, Vitamin D) and G-protein coupled receptors [TGR5, sphingosine-1 phosphate receptor 2 (S1PR2), muscarinic receptors]. Bile acids and insulin appear to collaborate in regulating the metabolism of nutrients in the liver. They both activate the AKT and ERK1/2 signaling pathways. Bile acid induction of the FXR-α target gene, small heterodimer partner (SHP), is highly dependent on the activation PKCζ, a branch of the insulin signaling pathway. SHP is an important regulator of glucose and lipid metabolism in the liver. One might hypothesize that chronic low grade inflammation which is associated with insulin resistance, may inhibit bile acid signaling and disrupt lipid metabolism. The disruption of these signaling pathways may increase the risk of fatty liver and non-alcoholic fatty liver disease (NAFLD). Finally, conjugated bile acids appear to promote cholangiocarcinoma growth via the activation of S1PR2. PMID:24819989

  9. Nutrient loading alters the performance of key nutrient exchange mutualisms.

    PubMed

    Shantz, Andrew A; Lemoine, Nathan P; Burkepile, Deron E

    2016-01-01

    Nutrient exchange mutualisms between phototrophs and heterotrophs, such as plants and mycorrhizal fungi or symbiotic algae and corals, underpin the functioning of many ecosystems. These relationships structure communities, promote biodiversity and help maintain food security. Nutrient loading may destabilise these mutualisms by altering the costs and benefits each partner incurs from interacting. Using meta-analyses, we show a near ubiquitous decoupling in mutualism performance across terrestrial and marine environments in which phototrophs benefit from enrichment at the expense of their heterotrophic partners. Importantly, heterotroph identity, their dependence on phototroph-derived C and the type of nutrient enrichment (e.g. nitrogen vs. phosphorus) mediated the responses of different mutualisms to enrichment. Nutrient-driven changes in mutualism performance may alter community organisation and ecosystem processes and increase costs of food production. Consequently, the decoupling of nutrient exchange mutualisms via alterations of the world's nitrogen and phosphorus cycles may represent an emerging threat of global change. PMID:26549314

  10. Relating watershed nutrient loads to satellite derived estuarine water quality

    NASA Astrophysics Data System (ADS)

    Lehrter, J. C.; Le, C.

    2015-12-01

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems. This is partially due to a lack of observations. In many systems, satellite remote sensing of water quality variables may be used to supplement limited field observations and improve understanding of linkages to nutrients. Here, we present the results from a field and satellite ocean color study that quantitatively links nutrients to variations in estuarine water quality endpoints. The study was conducted in Pensacola Bay, Florida, an estuary in the northern Gulf of Mexico that is impacted by watershed nutrients. We developed new empirical band ratio algorithms to retrieve phytoplankton biomass as chlorophyll a (chla), colored dissolved organic matter (CDOM), and suspended particulate matter (SPM) from the MEdium Resolution Imaging Spectrometer (MERIS). MERIS had suitable spatial resolution (300-m) for the scale of Pensacola Bay (area = 370 km2, mean depth = 3.4 m) and a spectral band centered at wavelength 709 nm that was used to minimize the effect of organic matter on chla retrieval. The algorithms were applied to daily MERIS remote sensing reflectance (level 2) data acquired from 2003 to 2011 to calculate nine-year time-series of mean monthly chla, CDOM, and SPM concentrations. The MERIS derived time-series were then analyzed for statistical relations with time-series of mean monthly river discharge and river loads of nitrogen, phosphorus, dissolved organic carbon, and SPM. Regression analyses revealed significant relationships between river loads and MERIS water quality variables. The simple regression models provide quantitative predictions about how much chla, CDOM, and SPM concentrations in Pensacola Bay will increase with increased river loading, which is necessary information

  11. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  12. Nutrient biofortification of food crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, b...

  13. Nutrient Needs of Young Athletes.

    ERIC Educational Resources Information Center

    Willenberg, Barbara; Hemmelgarn, Melinda

    1991-01-01

    Explains the nutritional requirements of children and adolescents, and the physiological roles of the major nutrients. Details the nutrient needs of young athletes, including pre- and postgame meals and fluid replacement. Discusses eating disorders and obesity. Advocates a diet rich in complex carbohydrates. (BC)

  14. Use of Select Nutrients to Foster Wellness.

    ERIC Educational Resources Information Center

    Cassel, Russell N.

    1987-01-01

    Discusses how to be healthy through one's diet. Lists 20 nutrients necessary for one's well being and explains role of each nutrient. Describes how nutrients complement one another and asserts that the right combination of nutrients can sometimes substitute for medication. Also lists 20 diagnostic categories of problems and suggests nutrients to…

  15. Pervasive sensing

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  16. Numbers Sense

    ERIC Educational Resources Information Center

    Kathotia, Vinay

    2009-01-01

    This article reports on work undertaken by schools as part of Qualifications and Curriculum Authority's (QCA's) "Engaging mathematics for all learners" project. The goal was to use in the classroom, materials and approaches from a Royal Institution (Ri) Year 10 master-class, "Number Sense", which was inspired by examples from Michael Blastland and…

  17. Energy and Nutrient Intake Monitoring

    NASA Technical Reports Server (NTRS)

    Luckey, T. D.; Venugopal, B.; Hutcheson, D. P.

    1975-01-01

    A passive system to determine the in-flight intake of nutrients is developed. Nonabsorbed markers placed in all foods in proportion to the nutrients selected for study are analyzed by neutron activation analysis. Fecal analysis for each market indicates how much of the nutrients were eaten and apparent digestibility. Results of feasibility tests in rats, mice, and monkeys indicate the diurnal variation of several markers, the transit time for markers in the alimentary tract, the recovery of several markers, and satisfactory use of selected markers to provide indirect measurement of apparent digestibility. Recommendations are provided for human feasibility studies.

  18. Environmental sensing by African trypanosomes.

    PubMed

    Roditi, Isabel; Schumann, Gabriela; Naguleswaran, Arunasalam

    2016-08-01

    African trypanosomes, which divide their life cycle between mammals and tsetse flies, are confronted with environments that differ widely in temperature, nutrient availability and host responses to infection. In particular, since trypanosomes cannot predict when they will be transmitted between hosts, it is vital for them to be able to sense and adapt to their milieu. Thanks to technical advances, significant progress has been made in understanding how the parasites perceive external stimuli and react to them. There is also a growing awareness that trypanosomes use a variety of mechanisms to exchange information with each other, thereby enhancing their chances of survival. PMID:27131101

  19. HORIZON SENSING

    SciTech Connect

    Larry G. Stolarczyk, Sc.D.

    2002-07-31

    Real-time horizon sensing (HS) on continuous mining (CM) machines is becoming an industry tool. Installation and testing of production-grade HS systems has been ongoing this quarter at Oxbow Mining Company, Monterey Coal Company (EXXON), FMC Trona, Twentymile Coal Company (RAG America), and SASOL Coal. Detailed monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (United States) and IEC (International) certification.

  20. Conversational sensing

    NASA Astrophysics Data System (ADS)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  1. Collective sensing and collective responses in quorum-sensing bacteria

    PubMed Central

    Popat, R.; Cornforth, D. M.; McNally, L.; Brown, S. P.

    2015-01-01

    Bacteria often face fluctuating environments, and in response many species have evolved complex decision-making mechanisms to match their behaviour to the prevailing conditions. Some environmental cues provide direct and reliable information (such as nutrient concentrations) and can be responded to individually. Other environmental parameters are harder to infer and require a collective mechanism of sensing. In addition, some environmental challenges are best faced by a group of cells rather than an individual. In this review, we discuss how bacteria sense and overcome environmental challenges as a group using collective mechanisms of sensing, known as ‘quorum sensing’ (QS). QS is characterized by the release and detection of small molecules, potentially allowing individuals to infer environmental parameters such as density and mass transfer. While a great deal of the molecular mechanisms of QS have been described, there is still controversy over its functional role. We discuss what QS senses and how, what it controls and why, and how social dilemmas shape its evolution. Finally, there is a growing focus on the use of QS inhibitors as antibacterial chemotherapy. We discuss the claim that such a strategy could overcome the evolution of resistance. By linking existing theoretical approaches to data, we hope this review will spur greater collaboration between experimental and theoretical researchers. PMID:25505130

  2. Cycling and loss of nutrients in pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pastures are fundamentally different than croplands. When cropland is harvested, large amounts of plant nutrients are removed so relatively large rates of nutrients are often needed. In pasture, most of the nutrients harvested by livestock are returned. The proportion of nutrients returned by livest...

  3. Advanced laser remote sensing

    SciTech Connect

    Schultz, J.; Czuchlewski, S.; Karl, R.

    1996-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Remote measurement of wind velocities is critical to a wide variety of applications such as environmental studies, weather prediction, aircraft safety, the accuracy of projectiles, bombs, parachute drops, prediction of the dispersal of chemical and biological warfare agents, and the debris from nuclear explosions. Major programs to develop remote sensors for these applications currently exist in the DoD and NASA. At present, however, there are no real-time, three-dimensional wind measurement techniques that are practical for many of these applications and we report on two new promising techniques. The first new technique uses an elastic backscatter lidar to track aerosol patterns in the atmosphere and to calculate three dimensional wind velocities from changes in the positions of the aerosol patterns. This was first done by Professor Ed Eloranta of the University of Wisconsin using post processing techniques and we are adapting Professor Eloranta`s algorithms to a real-time data processor and installing it in an existing elastic backscatter lidar system at Los Alamos (the XM94 helicopter lidar), which has a compatible data processing and control system. The second novel wind sensing technique is based on radio-frequency (RF) modulation and spatial filtering of elastic backscatter lidars. Because of their compactness and reliability, solid state lasers are the lasers of choice for many remote sensing applications, including wind sensing.

  4. HORIZON SENSING

    SciTech Connect

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine appropriately. The Horizon Sensor

  5. Programming placental nutrient transport capacity

    PubMed Central

    Fowden, A L; Ward, J W; Wooding, F P B; Forhead, A J; Constancia, M

    2006-01-01

    Many animal studies and human epidemiological findings have shown that impaired growth in utero is associated with physiological abnormalities in later life and have linked this to tissue programming during suboptimal intrauterine conditions at critical periods of development. However, few of these studies have considered the contribution of the placenta to the ensuing adult phenotype. In mammals, the major determinant of intrauterine growth is the placental nutrient supply, which, in turn, depends on the size, morphology, blood supply and transporter abundance of the placenta and on synthesis and metabolism of nutrients and hormones by the uteroplacental tissues. This review examines the regulation of placental nutrient transfer capacity and the potential programming effects of nutrition and glucocorticoid over-exposure on placental phenotype with particular emphasis on the role of the Igf2 gene in these processes. PMID:16439433

  6. Photographic Remote Sensing of Sick Citrus Trees

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.

    1971-01-01

    Remote sensing with infrared color aerial photography (Kodak Ektachrome Infrared Aero 8443 film) for detecting citrus tree anomalies is described. Illustrations and discussions are given for detecting nutrient toxicity symptoms, for detecting foot rot and sooty mold fungal diseases, and for distinguishing among citrus species. Also, the influence of internal leaf structure on light reflectance, transmittance, and absorptance are considered; and physiological and environmental factors that affect citrus leaf light reflectance are reviewed briefly and illustrated.

  7. Hungry for Nutrient Data? Navigating the USDA Nutrient Database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA National Nutrient Database for Standard Reference (SR) is the major source of food composition data in the United States, providing the foundation for most food composition databases in the public and private sectors. Most nutrition professionals are familiar with the basics of the SR onlin...

  8. Systemic Nutrient and Stress Signaling via Myokines and Myometabolites.

    PubMed

    Rai, Mamta; Demontis, Fabio

    2016-01-01

    Homeostatic systems mount adaptive responses to meet the energy demands of the cell and to compensate for dysfunction in cellular compartments. Such surveillance systems are also active at the organismal level: Nutrient and stress sensing in one tissue can lead to changes in other tissues. Here, we review the emerging understanding of the role of skeletal muscle in regulating physiological homeostasis and disease progression in other tissues. Muscle-specific genetic interventions can induce systemic effects indirectly, via changes in the mass and metabolic demand of muscle, and directly, via the release of muscle-derived cytokines (myokines) and metabolites (myometabolites) in response to nutrients and stress. In turn, myokines and myometabolites signal to various target tissues in an autocrine, paracrine, and endocrine manner, thereby determining organismal resilience to aging, disease, and environmental challenges. We propose that tailoring muscle systemic signaling by modulating myokine and myometabolite levels may combat many degenerative diseases and delay aging. PMID:26527185

  9. REGIONAL CHARACTERISTICS OF NUTRIENT CONCENTRATIONS IN STREAMS AND THEIR APPLICATION TO NUTRIENT CRITERIA DEVELOPMENT

    EPA Science Inventory

    In order to establish meaningful nutrient criteria, consideration must be given to the spatial variations in geographic phenomena that cause or reflect differences in nutrient concentrations in streams. Regional differences in stream nutrient concentrations were illustrated usin...

  10. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  11. Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rickman, Douglas

    2008-01-01

    Remote sensing is measuring something without touching it. Most methods measure a portion of the electro-magnetic spectrum using energy reflected from or emitted by a material. Moving the instrument away makes it easier to see more at one time. Airplanes are good but satellites are much better. Many things can not be easily measured on the scale of an individual person. Example - measuring all the vegetation growing at one time in even the smallest country. A satellite can see things over large areas repeatedly and in a consistent way. Data from the detector is reported as digital values for a grid that covers some portion of the Earth. Because it is digital and consistent a computer can extract information or enhance the data for a specific purpose.

  12. Hydroball string sensing system

    DOEpatents

    Hurwitz, Michael J.; Ekeroth, Douglas E.; Squarer, David

    1991-01-01

    A hydroball string sensing system for a nuclear reactor that includes stainless tubes positioned to guide hydroball strings into and out of the nuclear reactor core. A sensor such as an ultrasonic transducer transmitter and receiver is positioned outside of the nuclear reactor core and adjacent to the tube. The presence of an object such a bullet member positioned at an end a hydroball string, or any one of the hydroballs interrupts the transmission of ultrasound from the transmitter to the receiver. Alternatively, if the bullet member and hydroballs include a ferritic material, either a Hall effect sensor or other magnetic field sensors such as a magnetic field rate of change sensor can be used to detect the location and position of a hydroball string. Placing two sensors along the tube with a known distance between the sensors enables the velocity of a hydroball string to be determined. This determined velocity can be used to control the flow rate of a fluid within the tube so as to control the velocity of the hydroball string.

  13. DEVELOPMENT OF NUMERICAL NUTRIENT CRITERIA

    EPA Science Inventory

    A major goal of the numeric nutrient criteria program is to develop waterbody-type technical guidance manuals for assessing trophic state. EPA has published guidance for lakes and for rivers. EPA Region 1 is publishing New England-specific guidance in 2001 for lakes, ponds and ...

  14. Regulating nutrient allocation in plants

    DOEpatents

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  15. Stillage processing for nutrient recovery

    SciTech Connect

    Sweeten, J.M.; Coble, C.G.; Egg, R.P.; Lawhon, J.T.; McBee, G.G.; Schelling, G.T.

    1983-06-01

    Stillage from fermentation of grain sorghum and sweet potatoes was processed for dry matter and nutrient recovery by combinations of screw press, vibrating screen, centrifugation, ultrafiltration, and reverse osmosis, yielding up to 98% dry matter removal. For most processes, protein removal equaled or exceeded dry matter removal.

  16. Rhizosphere priming: a nutrient perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizospher...

  17. [Use of Remote Sensing for Crop and Soil Analysis

    NASA Technical Reports Server (NTRS)

    Johannsen, Chris J.

    1997-01-01

    The primary agricultural objective of this research is to determine what soil and crop information can be verified from remotely sensed images during the growing season. Specifically: (1) Elements of crop stress due to drought, weeds, disease and nutrient deficiencies will be documented with ground truth over specific agricultural sites and (2) Use of remote sensing with GPS and GIS technology for providing a safe and environmentally friendly application of fertilizers and chemicals will be documented.

  18. Relating Nearshore Algal Blooms Determined Using Satellite Imagery to Nutrient Loading, Watershed Land Use, and Storm Events

    NASA Astrophysics Data System (ADS)

    Stevenson, R. J.; Hyndman, D. W.; Qi, J.; Esselman, P.; Novitski, L.; Kendall, A. D.; Martin, S. L.; Lin, S.

    2014-12-01

    The overarching goal of our project was to relate algal biomass in the coastal zone of the Great Lakes, nutrient concentrations, watershed land use, and storm events. Algal biomass was determined using MODIS and Landsat remote sensing images. Nutrient loading from rivers into coastal zones was estimated with watershed land use, soils, geology, size and precipitation records. Our models of chlorophyll a based on remote sensing images (RS inferred chl a) and nutrient loading in coastal zones were validated with measured chlorophyll concentrations in the Great Lakes and nutrients in rivers. RS-inferred chl a was related to nutrient loading from rivers, which was dependent upon recent storm events and land use in watersheds. RS-inferred chl a was more related to nutrient loads during the week preceeding measurement of chl a than other periods before or during chl measurement. This lag time is presumably related to algal growth following nutrient loading, and was non-linearly related to nutrient loading. Our results indicate that these tools will improve understanding of land use effects on algal blooms in coastal zones of the Great Lakes and will help identify priority watersheds for restoration.

  19. Proximate versus ultimate limiting nutrients in the Mississippi River Plume and Implications for Hypoxia Reductions through Nutrient Management

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Laurent, Arnaud

    2016-04-01

    A large hypoxic area (15,000 km2 on average) forms every summer over the Texas-Louisiana shelf in the northern Gulf of Mexico due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Efforts are underway to reduce the extent of hypoxic conditions through nutrient management in the watershed; for example, an interagency Hypoxia Task Force is developing Action Plans with input from various stakeholders that set out targets for hypoxia reduction. An open question is how far nutrient loads would have to be decreased in order to produce the desired reductions in hypoxia and when these would be measurable given significant natural variability. We have simulated a large number of multi-year nutrient load reduction scenarios with a regional biogeochemical model for the region. The model is based on the Regional Ocean Modeling System (ROMS), explicitly includes nitrogen (N) and phosphorus (P) species as inorganic nutrients, and has been shown to realistically reproduce the key processes responsible for hypoxia generation. We have quantified the effects of differential reductions in river N and P loads on hypoxic extent. An assessment of the effects of N versus P reductions is important because, thus far, nutrient management efforts have focused on N, yet P is known to limit primary production in spring and early summer. A debate is ongoing as to whether targets for P reductions should be set and whether nutrient reduction efforts should focus solely on P, which results primarily from urban and industrial point sources and is uncoupled from agricultural fertilizer application. Our results strongly indicate that N is the 'ultimate' limiting nutrient to primary production determining the areal extent and duration of hypoxic conditions in a cumulative sense, while P is temporarily limiting in spring. Although reductions in river P load would decrease hypoxic extent in early summer, they would have a much

  20. Weak leaf photosynthesis and nutrient content relationships from tropical vegetation

    NASA Astrophysics Data System (ADS)

    Domingues, T. F.; Ishida, F. Y.; Feldpaush, T.; Saiz, G.; Grace, J.; Meir, P.; Lloyd, J.

    2015-12-01

    Evergreen rain forests and savannas are the two major vegetations of tropical land ecosystems, in terms of land area, biomass, biodiversity, biogeochemical cycles and rates of land use change. Mechanistically understanding ecosystem functioning on such ecosystems is still far from complete, but important for generation of future vegetation scenarios in response to global changes. Leaf photosynthetic rates is a key processes usually represented on land surface-atmosphere models, although data from tropical ecosystems is scarce, considering the high biodiversity they contain. As a shortcut, models usually recur to relationships between leaf nutrient concentration and photosynthetic rates. Such strategy is convenient, given the possibility of global datasets on leave nutrients derived from hyperspectral remote sensing data. Given the importance of Nitrogen on enzyme composition, this nutrient is usually used to infer photosynthetic capacity of leaves. Our experience, based on individual measurements on 1809 individual leaves from 428 species of trees and shrubs naturally occurring on tropical forests and savannas from South America, Africa and Australia, indicates that the relationship between leaf nitrogen and its assimilation capacity is weak. Therefore, leaf Nitrogen alone is a poor predictor of photosynthetic rates of tropical vegetation. Phosphorus concentrations from tropical soils are usually low and is often implied that this nutrient limits primary productivity of tropical vegetation. Still, phosphorus (or other nutrients) did not exerted large influence over photosynthetic capacity, although potassium influenced vegetation structure and function. Such results draw attention to the risks of applying universal nitrogen-photosynthesis relationships on biogeochemical models. Moreover, our data suggests that affiliation of plant species within phylogenetic hierarchy is an important aspect in understanding leaf trait variation. The lack of a strong single

  1. Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth.

    PubMed

    Chrzanowski, T H; Sterner, R W; Elser, J J

    1995-05-01

    Bacterial abundance results from predatory losses of individuals and replacement of losses through growth. Growth depends on sustained input of organic substrates and mineral nutrients. In this work we tested the hypothesis that bacterial growth in two oligotrophic Canadian shield lakes was limited by nitrogen (N) or phosphorus (P). We also determined whether consumer-regenerated resources contributed substantially to net bacterial growth. Two types of dilution assays were conducted to determine the response of bacteria to nutrient enrichment: diluted whole water (DWW, 1:9 whole/filtered with 0.2 μm of filtered lake water) and diluted fractionated water (DFW, 1.0 μm prefiltered then diluted as above). Replicate bottles in each dilution assay received either N (50 μM), P (10 μM), or both N and P enrichments. Controls received no nutrients. Resource-saturated growth rates and grazing rates were estimated from a standard dilution-growth approach. Bacterial growth was stimulated by addition of P alone and in combination with N. Consumers regenerated sufficient resources to support up to half the bacterial growth rate, but the benefit derived from consumers was minor when compared to mortality. PMID:24185342

  2. NUTRIENT CRITERIA DEVELOPMENT FOR R10 ECOREGIONS.

    EPA Science Inventory

    Excess nutrients in waters of the northwest are one of the top contributors to water quality impairment. EPA, states and Tribes lack quantifiable targets for nutrients in the water quality standards. Water quality standards for nutrients usually use narrative language, such as ...

  3. Nutrient Data Bases--Considerations for Educators.

    ERIC Educational Resources Information Center

    Hoover, Loretta W.; Pelican, Suzanne

    1984-01-01

    Examines sources and limitations of nutrient data and databases, and discusses some educational issues surrounding their selection and use in nutrient analysis programs. Tables illustrating the state of development of methods for nutrients in food, and selected United States Department of Agriculture (USDA) databases. (JN)

  4. Nutrient quality of fast food kids meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of children to kids’ meals at fast food restaurants is high; however, the nutrient quality of such meals has not been systematically assessed. We assessed the nutrient quality of fast food meals marketed to young children, i.e., "kids meals". The nutrient quality of kids’ meals was assessed...

  5. Silage and whole-farm nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of forage-based livestock farms is complex. A selected silage system can affect nutrient management by influencing the type, amount, and nutrient content of feeds fed. Manure handling procedures used on a farm can also affect the yield and nutrient contents of the forages produced. So...

  6. Nutrient Management Behavior on Wisconsin Dairy Farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management plans for livestock operations should account for rates and timing of manure application to cropland, as well as how manure is integrated with other nutrient sources. Little is known, however, about actual farmer nutrient management practices and what changes may be needed for fa...

  7. Automated nutrient analyses in seawater

    SciTech Connect

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.

    1981-02-01

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)

  8. Spectral Quantitation Of Hydroponic Nutrients

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  9. Remote sensing of contrasting tillage practices in the Texas Panhandle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage information is crucial in environmental modeling as it has a direct impact on water holding capacity, evapotranspiration, carbon sequestration, and soil and nutrient losses due to wind and water erosion of agricultural soils. A remote sensing approach is promising for the rapid collection of...

  10. Rhizosphere priming: a nutrient perspective

    PubMed Central

    Dijkstra, Feike A.; Carrillo, Yolima; Pendall, Elise; Morgan, Jack A.

    2013-01-01

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N) through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P) limited. Under P limitation, rhizodeposition may be used for mobilization of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils. PMID:23908649

  11. Nutrient Cycling in Piermont Marsh

    NASA Astrophysics Data System (ADS)

    Diaz, K.; Reyes, N.; Gribbin, S.; Newton, R.; Laporte, N.; Trivino, G.; Ortega, J.; McKee, K.; Sambrotto, R.

    2011-12-01

    We investigate the cycling of nutrients through a brackish tidal wetland about 40 km north of Manhattan in the Hudson River estuary. As part of a long-term ecological study of Piermont Marsh, a NOAA reference wetland managed by the NY State DEC, we are measuring dissolved inorganic nutrients on the Marsh surface and its drainage channels. The marsh occupies 400 acres along the southwest corner of Haverstraw Bay with approximately 2 km frontage to the estuary. It is supplied with nutrient-rich water and drained primarily along several tidal creeks and the hundreds of rivulets that feed them. During most tidal cycles the silty berm bounding the marsh is not topped. Human influence in the marsh's surrounding area has had profound effects, one of the most fundamental of which has been the shift from native grass species, predominantly Spartina alterniflora, to an invasive genotype of common reed, Phragmites australis. Along with this shift there have been changes in the root bed, the effective marsh interior and berm heights, the hydroperiod and, as a result, the ability of the marsh to be utilized by various types of Hudson estuary fish. The vegetative shift is believed to be anthropogenic, but the connection is not well understood, and it is not known what role biogeochemical perturbations are playing. We present two field seasons of nitrate, phosphate and silicate measurements from Sparkill Creek, a freshwater stream draining the surrounding highlands constitutes the northern boundary, two tidally driven creeks transect the Marsh from West to East: the Crumkill and an unnamed creek we have dubbed the "Tidal", Ludlow Ditch, a no-longer-maintained drainage channel grading gently from the northern part of the marsh to the South terminates in a wide tidal outlet that is its southern boundary. Net tidal cycle fluxes and fluxes resulting from runoff events are presented. Deviations from Redfield ratios and limiting nutrients are analyzed. Piermont Marsh data is compared

  12. Inorganic nutrients, bacteria, and the microbial loop.

    PubMed

    Caron, D A

    1994-09-01

    The realization that natural assemblages of planktonic bacteria may acquire a significant fraction of their nitrogen and phosphorus via the uptake of dissolved inorganic nutrients has modified our traditional view of these microorganisms as nutrient remineralizers in plankton communities. Bacterial uptake of inorganic nitrogen and phosphorus may place bacteria and phytoplankton in competition for growth-limiting nutrients, rather than in their traditional roles as the respective "source" and "sink" for these nutrients in the plankton. Bacterial nutrient uptake also implies that bacterivorous protozoa may play a pivotal role in the remineralization of these elements in the microbial loop. The overall contribution of bacterial utilization of inorganic nutrients to total nutrient uptake in the ocean is still poorly understood, but some generalizations are emerging with respect to the geographical areas and community physiological conditions that might elicit this behavior. PMID:24186457

  13. Nutrient Management in Recirculating Hydroponic Culture

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  14. Generalized Nutrient Taxes Can Increase Consumer Welfare.

    PubMed

    Bishai, David

    2015-11-01

    Certain nutrients can stimulate appetite making them fattening in a way that is not fully conveyed by the calorie content on the label. For rational eaters, this information gap could be corrected by more labeling. As an alternative, this paper proposes a set of positive and negative taxes on the fattening and slimming nutrients in food rather than on the food itself. There are conditions under which this tax plus subsidy system could increase welfare by stopping unwanted weight gain while leaving the final retail price of food unchanged. A nutrient tax system could improve welfare if fattening nutrients, net of their effect on weight, are inferior goods and the fiscal cost of administering the tax is sufficiently low. More data on the price elasticity of demand for nutrients as well as data on how specific nutrients affect satiety and how total calorie intake would be necessary before one could be sure a nutrient tax would work in practice. PMID:25241653

  15. Portable system approach of monitoring plant nutrient deficiency using fiber optic spectrophotometry

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min; Liew, Oi Wah

    1999-11-01

    In this paper, a portable sensing system is developed using fiber optic spectroscopy principle for measuring and detecting of stresses induced in plants due to nutrient deficiencies. Chlorophyll fluorescence in plants is used to monitor the effects of nutrient stress in plants. As this method aims at providing an early detection and warning of nutrient deficiencies, it gives an alternative to argument current semi-quantitative and destructive methods of nutrient analysis. Our early papers had demonstrated significant differences in the color reflectance of plants' leaves when plants were subjected to various nutrient- deficient media. Developed using off-the-shelf components, this digital sensing optical system could measure and detect the slight variation in the plants' reflectance and hence its chlorophyll levels. These relative levels of chlorophyll are determined by measuring the plants' color reflectance of light while using the wavelength of the healthy plants as a reference for comparison. This system comprises of a miniature spectrometer containing 1024 CCD detectors covering a visible light spectrum of wavelength ranging from approximately 400 nm to 800 nm and a reflective probe. A laptop with a PCMCIA A/D data acquisition card is used in conjunction with a customized program.

  16. [Thematic Issue: Remote Sensing.

    ERIC Educational Resources Information Center

    Howkins, John, Ed.

    1978-01-01

    Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…

  17. Insects, infestations and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Michalzik, B.

    2012-04-01

    Forest ecosystems are characterized by a high temporal and spatial variability in the vertical transfer of energy and matter within the canopy and the soil compartment. The mechanisms and controlling factors behind canopy processes and system-internal transfer dynamics are imperfectly understood at the moment. Seasonal flux diversities and inhomogeneities in throughfall composition have been reported from coniferous and deciduous forests, and in most cases leaf leaching has been considered as principle driver for differences in the amount and quality of nutrients and organic compounds (Tukey and Morgan 1963). Since herbivorous insects and the processes they initiate received less attention in past times, ecologists now emphasize the need for linking biological processes occurring in different ecosystem strata to explain rates and variability of nutrient cycling (Bardgett et al. 1998, Wardle et al. 2004). Consequently, herbivore insects in the canopies of forests are increasingly identified to play an important role for the (re)cycling and availability of nutrients, or, more generally, for the functioning of ecosystems not only in outbreak situations but also at endemic (non-outbreak) density levels (Stadler et al. 2001, Hunter et al. 2003). Before, little attention was paid to insect herbivores when quantifying element and energy fluxes through ecosystems, although the numerous and different functions insects fulfill in ecosystems (e.g. as pollinators, herbivores or detritivores) were unanimously recognized (Schowalter 2000). Amongst the reasons for this restraint was the argument that the total biomass of insects tends to be relatively low compared to the biomass of trees or the pool of soil organic matter (Ohmart et al. 1983). A second argument which was put forward to justify the inferior role of insects in nutrient cycling were the supposed low defoliation losses between 5-10% of the annual leaf biomass, or net primary production, due to insect herbivory under

  18. Mio acts in the Drosophila brain to control nutrient storage and feeding.

    PubMed

    Docherty, James E B; Manno, Joseph E; McDermott, Jacqueline E; DiAngelo, Justin R

    2015-09-01

    Animals recognize the availability of nutrients and regulate the intake and storage of these nutrients accordingly. However, the molecular mechanisms underlying nutrient sensing and subsequent changes in behavior and metabolism are not fully understood. Mlx interactor (Mio), the Drosophila homolog of carbohydrate response element binding protein (ChREBP), functions as a transcription factor in the fat body of the fly to control triglyceride storage as well as feeding, suggesting that Mio may act in a nutrient-sensing pathway to coordinate food consumption and metabolism. Here, we show that Mio functions in neurons in Drosophila to regulate feeding and nutrient storage. Pan-neuronal disruption of Mio function leads to increased triglyceride and glycogen storage, and this phenotype is not due to increased food consumption. Interestingly, targeted disruption of Mio specifically in the insulin-producing cells (IPCs) has little effect on nutrient storage, but increases food consumption suggesting that Mio acts in these neurons to control feeding behavior. Since Mio is a transcription factor, one possible way Mio may act in the IPCs to control feeding is through regulating the expression of Drosophila insulin-like peptides (dilps) or drosulfakinin (dsk), neuropeptides produced in the IPCs. Consistent with this hypothesis, IPC-specific knockdown of Mio leads to an increase in dilp3 expression, while not affecting dilp2, 5 or dsk levels. Together, this study indicates a new function for Mio in the Drosophila brain and specifically in the IPCs, controlling neuropeptide gene expression, feeding and metabolism in accordance with nutrient availability. PMID:26024590

  19. Towards nanomolar nutrients sensors for the marine environment.

    NASA Astrophysics Data System (ADS)

    Legiret, F.-E.; Abi Kaed Bey, S. K.; Sieben, V. J.; Woodward, E. M. S.; Mowlem, M. C.; Connelly, D. P.; Achterberg, E. P.

    2012-04-01

    The warming of the oceans and consequent enhanced stratification will have significant consequences for ecosystem functioning and carbon sequestration. Nutrient supply will reduce as a result of stronger stratification, reducing its availability to microbial ecosystems. Oligotrophic ocean regions are therefore predicted to increase in size as a consequence of global warming. This strengthens the need for analytical techniques with low limits of detection for nitrate and phosphate. Conventional methods are unable to detect the nanomolar nutrient concentrations in the upper water column of oligotrophic ocean regions. In recent years, sensitive techniques with a high sample throughput have been developed for shipboard nutrient analysis at nanomolar levels. These techniques are however not suitable for autonomous deployment in oceans for long-term observations. The work presented focuses on the optimisation and miniaturisation of analytical systems for the determination of nutrient concentrations using novel Lab-on-a-chip devices. The aim is to develop systems that are small, low-power and can be used autonomously and remotely to provide in situ real-time data on processes with high temporal and spatial resolution. Microfluidic technology is being used as it enables minimization of reagent and power consumption through the use of micro-scale measuring channels. These systems allow the implementation of wet-chemical methods to meet the analytical requirements within the constraints of in situ deployments. A microfluidic analyzer was deployed in the marine environment and compared with reference methods. The micro-system was automated with an electronic package assembled on a chip milled into a polymer. LEDs and photodiodes have been integrated to allow direct phosphate detection using a conventional spectrophotometric technique. Analytical parameters can be adjusted depending on the conditions of deployment: the limit of detection to reach, the concentration range to

  20. Plant and pathogen nutrient acquisition strategies

    PubMed Central

    Fatima, Urooj; Senthil-Kumar, Muthappa

    2015-01-01

    Nutrients are indispensable elements required for the growth of all living organisms including plants and pathogens. Phyllosphere, rhizosphere, apoplast, phloem, xylem, and cell organelles are the nutrient niches in plants that are the target of bacterial pathogens. Depending upon nutrients availability, the pathogen adapts various acquisition strategies and inhabits the specific niche. In this review, we discuss the nutrient composition of different niches in plants, the mechanisms involved in the recognition of nutrient niche and the sophisticated strategies used by the bacterial pathogens for acquiring nutrients. We provide insight into various nutrient acquisition strategies used by necrotrophic, biotrophic, and hemibiotrophic bacteria. Specifically we discuss both modulation of bacterial machinery and manipulation of host machinery. In addition, we highlight the current status of our understanding about the nutrient acquisition strategies used by bacterial pathogens, namely targeting the sugar transporters that are dedicated for the plant’s growth and development. Bacterial strategies for altering the plant cell membrane permeability to enhance the release of nutrients are also enumerated along with in-depth analysis of molecular mechanisms behind these strategies. The information presented in this review will be useful to understand the plant–pathogen interaction in nutrient perspective. PMID:26442063

  1. Monitoring Phenology as Indicator for Timing of Nutrient Inputs in Northern Gulf Watersheds

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Spiering, Bruce A.; Kalcic, Maria T.

    2009-01-01

    Nutrient over-enrichment defined by the U.S. Environmental Protection Agency as the anthropogenic addition of nutrients, in addition to any natural processes, causing adverse effects or impairments to the beneficial uses of a water body has been identified as one of the most significant environmental problems facing sensitive estuaries and coastal waters. Understanding the timing of nutrient inputs into those waters through remote sensing observables helps define monitoring and mitigation strategies. Remotely sensed data products can trace both forcings and effects of the nutrient system from landscape to estuary. This project is focused on extracting nutrient information from the landscape. The timing of nutrients entering coastal waters from the land boundary is greatly influenced by hydrologic processes, but can also be affected by the timing of nutrient additions across the landscape through natural or anthropogenic means. Non-point source nutrient additions to watersheds are often associated with specific seasonal cycles, such as decomposition of organic materials in fall and winter or addition of fertilizers to crop lands in the spring. These seasonal cycles or phenology may in turn be observed through the use of satellite sensors. Characterization of the phenology of various land cover types may be of particular interest in Gulf of Mexico estuarine systems with relatively short pathways between intensively managed systems and the land/estuarine boundary. The objective of this study is to demonstrate the capability of monitoring phenology of specific classes of land, such as agriculture and managed timberlands, at a refined watershed level. The extraction of phenological information from the Moderate Resolution Imaging Spectroradiometer (MODIS) data record is accomplished using analytical tools developed for NASA at Stennis Space Center: the Time Series Product Tool and the Phenological Parameters Estimation Tool. MODIS reflectance data (product MOD09) were

  2. Protein: A nutrient in focus.

    PubMed

    Arentson-Lantz, Emily; Clairmont, Stephanie; Paddon-Jones, Douglas; Tremblay, Angelo; Elango, Rajavel

    2015-08-01

    Protein is an essential component of a healthy diet and is a focus of research programs seeking to optimize health at all stages of life. The focus on protein as a nutrient often centers on its thermogenic and satiating effect, and when included as part of a healthy diet, its potential to preserve lean body mass. A growing body of literature, including stable isotope based studies and longer term dietary interventions, suggests that current dietary protein recommendations may not be sufficient to promote optimal muscle health in all populations. A protein intake moderately higher than current recommendations has been widely endorsed by many experts and working groups and may provide health benefits for aging populations. Further, consuming moderate amounts of high-quality protein at each meal may optimally stimulate 24-h muscle protein synthesis and may provide a dietary platform that favors the maintenance of muscle mass and function while promoting successful weight management in overweight and obese individuals. Dietary protein has the potential to serve as a key nutrient for many health outcomes and benefits might be increased when combined with adequate physical activity. Future studies should focus on confirming these health benefits from dietary protein with long-term randomized controlled studies. PMID:26197807

  3. [Nutrient supplements - possibilities and limitations].

    PubMed

    Ströhle, Alexander; Hahn, Andreas

    2013-05-01

    The consumption of micronutrient-supplements by the general public has become widespread; between 25 and more than 40% of individuals questioned in western developed nations confirm to regularly consume such products. In principle, there are two product categories for micronutrient-supplements - medicinal products (drugs) and foodstuffs. The latter are marketed as food supplements (FS) and dietary foodstuffs for particular nutritional uses including foods for special medical purposes (FSMP). FS serve the general supplementation of any consumer whilst foodstuffs for particular nutritional uses are directed at consumers with special dietary requirements; FSMP are intended for the dietary management of patients. There are clearly defined legal frameworks for those product categories. Independently of their legal product status, six areas of application can be characterised for micronutrient-supplements: general and special supplementation, primary prevention, compensation of disease-related deficits, therapeutic function and containment of diseases or avoidance of subsequent damages (secondary and tertiary function). Gauged with the mean-intake, micro nutrient supply in Germany is sufficient (exception: folic acid and vitamin D; partially also iodine). However, the intake of vitamins E, C, B1 and B2 as well as the minerals calcium, magnesium, zinc and iodine could be improved in 20-50% of the general public. Micro nutrient preparations in physiological dose could contribute to closing this gap in supply. PMID:23758028

  4. Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading.

    PubMed

    Shriwastav, Amritanshu; Gupta, Sanjay Kumar; Ansari, Faiz Ahmad; Rawat, Ismail; Bux, Faizal

    2014-12-01

    Chlorella sorokiniana can sustain growth in conditions hostile to other species, and possesses good nutrient removal and lipid accumulation potentials. However, the effects of variable nutrient levels (N and P) in wastewaters on growth, productivity, and nutrient uptake by C. sorokiniana have not been studied in detail. This study demonstrates the ability of this alga to sustain uniform growth and productivity, while regulating the relative nutrient uptake in accordance to their availability in the bulk medium. These results highlight the potential of C. sorokiniana as a suitable candidate for fulfilling the coupled objectives of nutrient removal and biomass production for bio-fuel with wastewaters having great variability in nutrient levels. PMID:25463782

  5. Nutrient availability moderates transpiration in Ehrharta calycina.

    PubMed

    Cramer, Michael D; Hoffmann, Vera; Verboom, G Anthony

    2008-01-01

    Transpiration-driven 'mass-flow' of soil-water can increase nutrient flow to the root surface. Here it was investigated whether transpiration could be partially regulated by nutrient status. Seeds of Ehrharta calycina from nine sites across a rainfall gradient were supplied with slow-release fertilizer dibbled into the sand surrounding the roots and directly available through interception, mass-flow and diffusion (dubbed 'interception'), or sequestered behind a 40-microm mesh and not directly accessible by the roots, but from which nutrients could move by diffusion or mass-flow (dubbed 'mass-flow'). Although mass-flow plants were significantly smaller than interception plants as a consequence of nutrient limitation, they transpired 60% faster, had 90% higher photosynthesis relative to transpiration (A/E), and 40% higher tissue P, Ca and Na concentrations than plants allowed to intercept nutrients directly. Tissue N and K concentrations were similar for interception and mass-flow plants. Transpiration was thus higher in the nutrient-constrained 'mass-flow' plants, increasing the transport of nutrients to the roots by mass-flow. Transpiration may have been regulated by N availability, resulting in similar tissue concentration between treatments. It is concluded that, although transpiration is a necessary consequence of photosynthetic CO(2) uptake in C(3) plants, plants can respond to nutrient limitation by varying transpiration-driven mass-flow of nutrients. PMID:18537891

  6. Nutrient-Specific Foraging in Invertebrate Predators

    NASA Astrophysics Data System (ADS)

    Mayntz, David; Raubenheimer, David; Salomon, Mor; Toft, Søren; Simpson, Stephen J.

    2005-01-01

    Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.

  7. Nitrate Transport, Sensing, and Responses in Plants.

    PubMed

    O'Brien, José A; Vega, Andrea; Bouguyon, Eléonore; Krouk, Gabriel; Gojon, Alain; Coruzzi, Gloria; Gutiérrez, Rodrigo A

    2016-06-01

    Nitrogen (N) is an essential macronutrient that affects plant growth and development. N is an important component of chlorophyll, amino acids, nucleic acids, and secondary metabolites. Nitrate is one of the most abundant N sources in the soil. Because nitrate and other N nutrients are often limiting, plants have developed sophisticated mechanisms to ensure adequate supply of nutrients in a variable environment. Nitrate is absorbed in the root and mobilized to other organs by nitrate transporters. Nitrate sensing activates signaling pathways that impinge upon molecular, metabolic, physiological, and developmental responses locally and at the whole plant level. With the advent of genomics technologies and genetic tools, important advances in our understanding of nitrate and other N nutrient responses have been achieved in the past decade. Furthermore, techniques that take advantage of natural polymorphisms present in divergent individuals from a single species have been essential in uncovering new components. However, there are still gaps in our understanding of how nitrate signaling affects biological processes in plants. Moreover, we still lack an integrated view of how all the regulatory factors identified interact or crosstalk to orchestrate the myriad N responses plants typically exhibit. In this review, we provide an updated overview of mechanisms by which nitrate is sensed and transported throughout the plant. We discuss signaling components and how nitrate sensing crosstalks with hormonal pathways for developmental responses locally and globally in the plant. Understanding how nitrate impacts on plant metabolism, physiology, and growth and development in plants is key to improving crops for sustainable agriculture. PMID:27212387

  8. Mobile sensing systems.

    PubMed

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  9. Mobile Sensing Systems

    PubMed Central

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  10. Variable primary producer responses to nutrient and temperature manipulations in mesocosms: temperature usually trumps nutrient effects

    EPA Science Inventory

    Mesocosm experiments have been used to evaluate the impacts of nutrient loading on estuarine plant communities in order to develop nutrient response relationships. Mesocosm eutrophication studies tend to focus on long residence time systems. In the Pacific Northwest, many estuari...

  11. NUTRIENT UPTAKE: A Microcomputer Program to Predict Nutrient Absorption from Soil by Roots.

    ERIC Educational Resources Information Center

    Oates, Kenneth; Barber, S. A.

    1987-01-01

    Discusses the use of a computer program designed to solve the mathematical model associated with soil nutrient uptake by plant roots and to predict the nutrient uptake. Describes a user-friendly personal computer version of this program. (TW)

  12. Nutrient balance and body composition.

    PubMed

    Rolland-Cachera, M F; Deheeger, M; Bellisle, F

    1997-01-01

    The prevalence of obesity in industrialized countries is increasing in spite of decreased energy and fat intakes. This trend might be mainly a consequence of a decline in energy expenditure. It is suggested here that it might also be accounted for by the increasing proportion of protein in the diet, affecting the hormonal status. The nutrient imbalance is particularly apparent in early childhood, when a low fat and high protein diet is not justified because of high energy needs for growth and because it is the period of high rate of myelinization of the nervous system. At later ages, the proportion of fat exceeds the recommended level, and the protein intake remains high. A diet containing less animal and more vegetable products would reduce both protein and saturated fat excesses and could help decrease metabolic risk factors. PMID:9477439

  13. Nutrient Models Developments Using Runoff-Nutrient Relationships in an Agricultural Prairie Basin, Manitoba.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Elliott, J. A.; Baulch, H. M.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient export to streams and lakes from agricultural activities can result in significant deterioration of water quality and aquatic ecosystem health. In Western Canada, particular concerns arise for prairie agricultural systems, which are dominated by the effects of a cold climate. Insufficient attention has been given to understand the links between cold region watershed responses and nutrient concentration and a robust watershed-scale modeling framework is needed to simulate nutrient concentration and loads. Long-term, field observations of nutrient concentration-runoff relationships were used to develop nutrient concentration models for the Tobacco Creek Model Watershed (TCMW) which drains into the Red River basin. Field observations include streamflow concentrations of N and P at multiple scales from two headwater basins. Distinct nutrient concentration-runoff models for snowmelt, rain on snow (ROS) and rainfall runoff processes were developed from observed runoff-nutrient concentration relationships. Snowmelt runoff had a moderately positive correlation with particulate nutrient concentrations but no correlation with that of dissolved nutrients. ROS runoff had a weak relationship with both particulate and dissolved nutrient concentrations. Rainfall runoff had the strongest positive correlation with particulate nutrient concentrations but no association with that of dissolved nutrients. The modeling approach also identified a clear hysteretic behavior in the relationship between runoff and particulate nutrient concentration during the 2013 snowmelt runoff event at the basin outlet gauge. The models provide insight into the hydrological controls on nutrient export from cold regions watersheds and the strong effects of inter-annual climatic variability. Snowmelt runoff is a reliable exporter of large nutrient loads while nutrient export by rainfall runoff exceeded snowmelt runoff during hydrologically wet summers such as 2002, 2005, 2011 and 2013.

  14. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  15. SUPERFUND REMOTE SENSING SUPPORT

    EPA Science Inventory

    This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...

  16. Nutrient-dependent methylation of a membrane-associated protein of Escherichia coli

    SciTech Connect

    Young, C.C.; Alvarez, J.D.; Bernlohr, R.W. )

    1990-09-01

    Starvation of a mid-log-phase culture of Escherichia coli B/r for nitrogen, phosphate, or carbon resulted in methylation of a membrane-associated protein of about 43,000 daltons (P-43) in the presence of chloramphenicol and (methyl-3H)methionine. The in vivo methylation reaction occurred with a doubling time of 2 to 5 min and was followed by a slower demethylation process. Addition of the missing nutrient to a starving culture immediately prevented further methylation of P-43. P-43 methylation is not related to the methylated chemotaxis proteins because P-43 is methylated in response to a different spectrum of nutrients and because P-43 is methylated on lysine residues. The characteristics of P-43 are similar to those of a methylated protein previously described in Bacillus subtilis and B. licheniformis and are consistent with the proposal that methylation of this protein functions in nutrient sensing.

  17. Comprehensive, integrated, remote sensing at DOE sites

    SciTech Connect

    Lackey, J.G.; Burson, Z.G.

    1984-01-01

    The Department of Energy has established a program called Comprehensive, Integrated Remote Sensing (CIRS). The overall objective is to provide a state-of-the-art data base of remotely sensed data for all users of such information at large DOE sites. The primary types of remote sensing provided consist of the following: (1) large format aerial photography; (2) video from aerial platforms; (3) multispectral scanning; and (4) airborne nuclear radiometric surveys. Implementation of the CIRS Program began with field operations at the Savannah River Plant in 1982 and is continuing at that DOE site at a level of effort of about $1.5 m per year. Integrated remote sensing studies were subsequently extended to the West Valley Demonstration Project in the summer and fall of 1984. It is expected that the Program will eventually be extended to cover all large DOE sites on a continuing basis. 2 figures.

  18. Hypothalamic roles of mTOR complex I: Integration of nutrient and hormone signals to regulate energy homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight...

  19. Practice Paper of the American Dietetic Association: Nutrient Density: Meeting Nutrient Goals within Calorie Needs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although nutrient density is a core nutrition concept of the Dietary Guidelines for Americans 2005, there is currently no scientifically valid definition for either nutrient density or nutrient-dense food. The purposes of this American Dietetic Association Practice Paper are to summarize the current...

  20. Comparison of nutrient density and nutrient-to-cost between cooked and canned beans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of nutrient rich foods such as beans and peas is recommended because these foods provide key nutrients and relatively little energy. Many consumers are unfamiliar with dried beans or do not have the time to prepare them. The purpose of this study was to compare nutrient density and nutri...

  1. Enhanced Plant Nutrient use Efficiency with PGPR and AMF in an Integrated Nutrient Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-year field study was conducted with field corn from 2005 to 2007 to test the hypothesis that microbial inoculants that increase plant growth and yield will enhance nutrient uptake, and thereby remove more nutrients, especially N, P, and K from the field as part of an integrated nutrient mana...

  2. Remote sensing the phytoplankton seasonal succession of the Red Sea.

    PubMed

    Raitsos, Dionysios E; Pradhan, Yaswant; Brewin, Robert J W; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  3. Remote Sensing the Phytoplankton Seasonal Succession of the Red Sea

    PubMed Central

    Brewin, Robert J. W.; Stenchikov, Georgiy; Hoteit, Ibrahim

    2013-01-01

    The Red Sea holds one of the most diverse marine ecosystems, primarily due to coral reefs. However, knowledge on large-scale phytoplankton dynamics is limited. Analysis of a 10-year high resolution Chlorophyll-a (Chl-a) dataset, along with remotely-sensed sea surface temperature and wind, provided a detailed description of the spatiotemporal seasonal succession of phytoplankton biomass in the Red Sea. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) data, four distinct Red Sea provinces and seasons are suggested, covering the major patterns of surface phytoplankton production. The Red Sea Chl-a depicts a distinct seasonality with maximum concentrations seen during the winter time (attributed to vertical mixing in the north and wind-induced horizontal intrusion of nutrient-rich water in the south), and minimum concentrations during the summer (associated with strong seasonal stratification). The initiation of the seasonal succession occurs in autumn and lasts until early spring. However, weekly Chl-a seasonal succession data revealed that during the month of June, consistent anti-cyclonic eddies transfer nutrients and/or Chl-a to the open waters of the central Red Sea. This phenomenon occurs during the stratified nutrient depleted season, and thus could provide an important source of nutrients to the open waters. Remotely-sensed synoptic observations highlight that Chl-a does not increase regularly from north to south as previously thought. The Northern part of the Central Red Sea province appears to be the most oligotrophic area (opposed to southern and northern domains). This is likely due to the absence of strong mixing, which is apparent at the northern end of the Red Sea, and low nutrient intrusion in comparison with the southern end. Although the Red Sea is considered an oligotrophic sea, sporadic blooms occur that reach mesotrophic levels. The water temperature and the prevailing winds control the nutrient concentrations within the euphotic zone

  4. Math Sense: Placement Test.

    ERIC Educational Resources Information Center

    2003

    Math Sense consists of five books that develop from basic to more advanced math skills. This document contains a placement test used with Math Sense to help students and their teachers decide into which Math Sense book to begin working. The placement test is divided into six parts, each consisting of 10 to 22 problems, and is based on exit skill…

  5. Closed-Cycle Nutrient Supply For Hydroponics

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.

    1991-01-01

    Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.

  6. WASTEWATER TREATMENT WITH PLANTS IN NUTRIENT FILMS

    EPA Science Inventory

    The nutrient film technique (NFT) is a unique modification of a hydroponic plant growth system which utilizes plants growing on an impermeable surface. A thin film of water flowing through the extensive root system provides nutrients for plants and associated microbial growth. Ro...

  7. Grassland productivity limited by multiple nutrients.

    PubMed

    Fay, Philip A; Prober, Suzanne M; Harpole, W Stanley; Knops, Johannes M H; Bakker, Jonathan D; Borer, Elizabeth T; Lind, Eric M; MacDougall, Andrew S; Seabloom, Eric W; Wragg, Peter D; Adler, Peter B; Blumenthal, Dana M; Buckley, Yvonne M; Chu, Chengjin; Cleland, Elsa E; Collins, Scott L; Davies, Kendi F; Du, Guozhen; Feng, Xiaohui; Firn, Jennifer; Gruner, Daniel S; Hagenah, Nicole; Hautier, Yann; Heckman, Robert W; Jin, Virginia L; Kirkman, Kevin P; Klein, Julia; Ladwig, Laura M; Li, Qi; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John W; Risch, Anita C; Schütz, Martin; Stevens, Carly J; Wedin, David A; Yang, Louie H

    2015-01-01

    Terrestrial ecosystem productivity is widely accepted to be nutrient limited(1). Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)(2,3), the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized(4-8). However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment. PMID:27250253

  8. Crop nutrient recovery from applied fish coproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Alaska fishing industry produces over 1,000,000 metric tons of fish byproducts annually, and most of them are not used. Most food in Alaska is imported. Fish byproducts are rich in plant essential nutrients and can be used as nutrient sources for crop production. The objective of the study was t...

  9. Processes and patterns of oceanic nutrient limitation

    NASA Astrophysics Data System (ADS)

    Moore, C. M.; Mills, M. M.; Arrigo, K. R.; Berman-Frank, I.; Bopp, L.; Boyd, P. W.; Galbraith, E. D.; Geider, R. J.; Guieu, C.; Jaccard, S. L.; Jickells, T. D.; La Roche, J.; Lenton, T. M.; Mahowald, N. M.; Marañón, E.; Marinov, I.; Moore, J. K.; Nakatsuka, T.; Oschlies, A.; Saito, M. A.; Thingstad, T. F.; Tsuda, A.; Ulloa, O.

    2013-09-01

    Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry.

  10. UNDERSTANDING NUTRIENT VARIABILITY: IMPACT ON PUBLIC HEALTH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Information on the sources and magnitude of nutrient variability in U.S. foods is often lacking and may include differences due to cultivars, brands, growing or processing conditions, cooking practices, fortification, nutrient stability, and analytical methods. Accurate analytical determi...

  11. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  12. Nutrient Density: Making the Pyramid Come Alive

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2005 Dietary Guidelines for Americans (DGA’s) and MyPyramid, which accompanies it, emphasize nutrient density as a way to choose foods within food groups. Yet, nutrient density is a difficult concept for consumers to apply to individual foods. In addition, consensus is lacking on how to measur...

  13. 21 CFR 107.10 - Nutrient information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Nutrient information. 107.10 Section 107.10 Food... HUMAN CONSUMPTION INFANT FORMULA Labeling § 107.10 Nutrient information. (a) The labeling of infant... order given, in the units specified, and in tabular format, the following information regarding...

  14. Seasonal sediment and nutrients transport patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is essential to understand sediment and nutrient sources and their spatial and temporal patterns in order to design effective mitigation strategies. However, long-term data sets to determine sediment and nutrient loadings are scarce and expensive to collect. The goal of this study was to determin...

  15. Nutrient Management: Water Quality/Use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management programs must have a positive impact on water quality. The challenge for producers is to understand the nutrient balance in the soil and to reduce the risk of surface runoff of manure. The challenge for science is to increase our understanding of the value of manure in the soil a...

  16. Nutrient use efficiency in plants: an overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In modern agriculture use of essential plant nutrients in crop production is very important to increase productivity and maintain sustainability of the cropping system. Use of nutrients in crop production is influenced by climatic, soil, plant and social-economical condition of the farmers. Overall,...

  17. A Method for Developing a Nutrient Guide.

    ERIC Educational Resources Information Center

    Gillespie, Ardyth H.; Roderuck, Charlotte E.

    1982-01-01

    This paper proposes a new approach to developing a tool for teaching nutrition and food selection. It allows adjustments as new information becomes available and takes into account both dietary recommendations and food composition. Steps involve nutrient composition; nutrient density; and ratings for fat, cholesterol, and sodium. (Author/CT)

  18. Dairy Manure Nutrients: Variable, But Valuable

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowing the nutrient content of manure is essential for doing nutrient management planning for dairy farms. Summaries of over 14,000 dairy manure samples from Wisconsin and 2,300 from Vermont over a 10 to 15-year period showed average values that were consistent with UW-Extension book values but dif...

  19. NUTRIENTS IN WATERSHEDS; DEVELOPING ENHANCED MODELING TOOLS

    EPA Science Inventory

    Nutrient enrichment is one of the most detrimental stressors causing water-resource impairment. Of systems surveyed and reported as impaired, 40% of rivers, 51% of lakes, and 57% of estuaries listed nutrients as a primary cause of impairment (USEPA, 1996). In many cases, these ...

  20. 21 CFR 107.10 - Nutrient information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Nutrient information. 107.10 Section 107.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION INFANT FORMULA Labeling § 107.10 Nutrient information. (a) The labeling of infant formulas, as defined in section 201(aa) of...

  1. NUTRIENT-UPTAKE MODEL IN MARSH ECOSYSTEMS

    EPA Science Inventory

    Mechanistic models of nutrient dynamics in natural wetlands were developed and applied in a study of Kissimmee River (Florida) flood-plain marshes. The models describe hydrodynamics and transport diffusion in wetland basins and the ecological processes of nutrient uptake, convers...

  2. Variation in nutrient resorption by desert shrubs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant nutrient resorption prior to leaf senescence is an important nutrient conservation mechanism for aridland plant species. However, little is known regarding the phylogenetic and environmental factors influencing this trait. Our objective was to compare nitrogen and phosphorus resorption in a ...

  3. 21 CFR 107.10 - Nutrient information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Nutrient information. 107.10 Section 107.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION INFANT FORMULA Labeling § 107.10 Nutrient information. (a) The labeling of infant formulas, as defined in section 201(aa) of...

  4. Nutrient Content of Lettuce and its Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce is a popular leafy vegetable and plays an important role in American diet and nutrition. Crisphead lettuce has much lower nutrient content than leaf and romaine types. As the synthesis or absorption of many nutrients is light dependent, the lower nutritional value of crisphead lettuce is due...

  5. Environmental Detection of Clandestine Nuclear Weapon Programs

    NASA Astrophysics Data System (ADS)

    Kemp, R. Scott

    2016-06-01

    Environmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.

  6. Nuclear Terrorism.

    SciTech Connect

    Hecker, Siegfried S.

    2001-01-01

    As pointed out by several speakers, the level of violence and destruction in terrorist attacks has increased significantly during the past decade. Fortunately, few have involved weapons of mass destruction, and none have achieved mass casualties. The Aum Shinrikyo release of lethal nerve agent, sarin, in the Tokyo subway on March 20, 1995 clearly broke new ground by crossing the threshold in attempting mass casualties with chemical weapons. However, of all weapons of mass destruction, nuclear weapons still represent the most frightening threat to humankind. Nuclear weapons possess an enormous destructive force. The immediacy and scale of destruction are unmatched. In addition to destruction, terrorism also aims to create fear among the public and governments. Here also, nuclear weapons are unmatched. The public's fear of nuclear weapons or, for that matter, of all radioactivity is intense. To some extent, this fear arises from a sense of unlimited vulnerability. That is, radioactivity is seen as unbounded in three dimensions - distance, it is viewed as having unlimited reach; quantity, it is viewed as having deadly consequences in the smallest doses (the public is often told - incorrectly, of course - that one atom of plutonium will kill); and time, if it does not kill you immediately, then it will cause cancer decades hence.

  7. REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH

    EPA Science Inventory

    Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...

  8. Plant gravity sensing

    NASA Technical Reports Server (NTRS)

    Sack, F. D.

    1991-01-01

    This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.

  9. Plant sensing: gravity and touch

    NASA Astrophysics Data System (ADS)

    Gilroy, S.; Swanson, S.; Massa, G.

    Roots must integrate many stimuli in order to direct their growth as they explore the soil. Gravitropism leads to downward growth but other stimuli such as gradients in nutrients, water, biotic and abiotic stresses and physical obstacles such as rocks all act on the roots sensory systems to modify this gravitropic response. We have therefore investigated the interaction of gravity signaling and response to other stimuli such as a mechanical obstruction to downward growth. A gravitropically directed primary root of Arabidopsis thaliana (growing vertically) senses an obstacle such as a glass plate placed in its direction of growth and initiates an avoidance growth response upon contacting the barrier. This response appears to be caused by an interaction of gravitropic and thigmotropic sensory systems. The touch stimulation of the root cap leads to alteration in growth, initially in the central and later in the distal elongation zone of the root. These growth responses maintain the root tip at an angle of 136 degrees to the barrier as the root grows across the obstacle's surface. Removal of cells in the root cap by laser ablation indicate that all root cap cells are required for this growth response to the barrier. Once the end of the barrier is reached and the root can grow off the obstruciton, gravitropism appears to occur faster than in roots that did not interact with an obstacle, suggesting that the touch stimulation of the barrier may alter gravitropic signaling or response. Touch stimulation of the root cap inhibited the pH-dependent gravity signaling events that are known to be required for gravitropic response. These results imply a transient suppression of gravisensing or graviresponse by touch. Touch stimulation of root cap cells elicited an increase in cytosolic Ca2+ that appears to propagate from cell to cell throughout the cap, suggesting Ca2+ signaling may underlie the communication between gravity and touch sensing cells. Although the pgm1 -1 starch

  10. Pharyngeal sense organs drive robust sugar consumption in Drosophila

    PubMed Central

    LeDue, Emily E; Chen, Yu-Chieh; Jung, Aera Y; Dahanukar, Anupama; Gordon, Michael D

    2015-01-01

    The fly pharyngeal sense organs lie at the transition between external and internal nutrient sensing mechanisms. Here, we investigate the function of pharyngeal sweet gustatory receptor neurons (GRNs), demonstrating that they express a subset of the nine previously identified sweet receptors and respond to stimulation with a panel of sweet compounds. We show that pox-neuro (poxn) mutants lacking taste function in the legs and labial palps have intact pharyngeal sweet taste, which is both necessary and sufficient to drive preferred consumption of sweet compounds by prolonging ingestion. Moreover, flies putatively lacking all sweet taste show little preference for nutritive or non-nutritive sugars in a short-term feeding assay. Together, our data demonstrate that pharyngeal sense organs play an important role in directing sustained consumption of sweet compounds, and suggest that post-ingestive sugar sensing does not effectively drive food choice in a simple short-term feeding paradigm. PMID:25807033