Science.gov

Sample records for nutrient time-series analysis

  1. Permutations and time series analysis.

    PubMed

    Cánovas, Jose S; Guillamón, Antonio

    2009-12-01

    The main aim of this paper is to show how the use of permutations can be useful in the study of time series analysis. In particular, we introduce a test for checking the independence of a time series which is based on the number of admissible permutations on it. The main improvement in our tests is that we are able to give a theoretical distribution for independent time series. PMID:20059199

  2. Language time series analysis

    NASA Astrophysics Data System (ADS)

    Kosmidis, Kosmas; Kalampokis, Alkiviadis; Argyrakis, Panos

    2006-10-01

    We use the detrended fluctuation analysis (DFA) and the Grassberger-Proccacia analysis (GP) methods in order to study language characteristics. Despite that we construct our signals using only word lengths or word frequencies, excluding in this way huge amount of information from language, the application of GP analysis indicates that linguistic signals may be considered as the manifestation of a complex system of high dimensionality, different from random signals or systems of low dimensionality such as the Earth climate. The DFA method is additionally able to distinguish a natural language signal from a computer code signal. This last result may be useful in the field of cryptography.

  3. FROG: Time-series analysis

    NASA Astrophysics Data System (ADS)

    Allan, Alasdair

    2014-06-01

    FROG performs time series analysis and display. It provides a simple user interface for astronomers wanting to do time-domain astrophysics but still offers the powerful features found in packages such as PERIOD (ascl:1406.005). FROG includes a number of tools for manipulation of time series. Among other things, the user can combine individual time series, detrend series (multiple methods) and perform basic arithmetic functions. The data can also be exported directly into the TOPCAT (ascl:1101.010) application for further manipulation if needed.

  4. Time series analysis of monthly mean data of temperature, salinity, nutrients, suspended matter, phyto- and zooplankton at eight locations on the northwest european shelf

    NASA Astrophysics Data System (ADS)

    Visser, M.; Batten, S.; Becker, G.; Bot, P.; Colijn, F.; Damm, P.; Danielssen, D.; van den Eynde, D.; Føyn, L.; Frohse, A.; Groeneveld, G.; Laane, R.; van Raaphorst, W.; Radach, G.; Schultz, H.; Sündermann, J.

    1996-09-01

    In this study an overview is given of the time series analysis of monthly mean data of physical, chemical and biological parameters. The time series are available at eight locations on the Northwest European Shelf. The integrated evaluation of those time series gives the opportunity to look for connections between the different parts of the shelf. Temperature and salinity seem to be externally forced. For the nutrients and biological parameters the local forcing is dominating the time series. It is concluded that there are areas that are comparable to each other (freshwater dominated boxes along the Belgian and Dutch coasts and German Bight; Atlantic dominated boxes in the English Channel and off the Scottish coast), although significant cross-correlations are hardly found. The Irish Sea can be regarded as a separate ecosystem.

  5. Introduction to Time Series Analysis

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1986-01-01

    The field of time series analysis is explored from its logical foundations to the most modern data analysis techniques. The presentation is developed, as far as possible, for continuous data, so that the inevitable use of discrete mathematics is postponed until the reader has gained some familiarity with the concepts. The monograph seeks to provide the reader with both the theoretical overview and the practical details necessary to correctly apply the full range of these powerful techniques. In addition, the last chapter introduces many specialized areas where research is currently in progress.

  6. Analysis of time series from stochastic processes

    PubMed

    Gradisek; Siegert; Friedrich; Grabec

    2000-09-01

    Analysis of time series from stochastic processes governed by a Langevin equation is discussed. Several applications for the analysis are proposed based on estimates of drift and diffusion coefficients of the Fokker-Planck equation. The coefficients are estimated directly from a time series. The applications are illustrated by examples employing various synthetic time series and experimental time series from metal cutting. PMID:11088809

  7. Hydrodynamic analysis of time series

    NASA Astrophysics Data System (ADS)

    Suciu, N.; Vamos, C.; Vereecken, H.; Vanderborght, J.

    2003-04-01

    It was proved that balance equations for systems with corpuscular structure can be derived if a kinematic description by piece-wise analytic functions is available [1]. For example, the hydrodynamic equations for one-dimensional systems of inelastic particles, derived in [2], were used to prove the inconsistency of the Fourier law of heat with the microscopic structure of the system. The hydrodynamic description is also possible for single particle systems. In this case, averages of physical quantities associated with the particle, over a space-time window, generalizing the usual ``moving averages'' which are performed on time intervals only, were shown to be almost everywhere continuous space-time functions. Moreover, they obey balance partial differential equations (continuity equation for the 'concentration', Navier-Stokes equation, a. s. o.) [3]. Time series can be interpreted as trajectories in the space of the recorded parameter. Their hydrodynamic interpretation is expected to enable deterministic predictions, when closure relations can be obtained for the balance equations. For the time being, a first result is the estimation of the probability density for the occurrence of a given parameter value, by the normalized concentration field from the hydrodynamic description. The method is illustrated by hydrodynamic analysis of three types of time series: white noise, stock prices from financial markets and groundwater levels recorded at Krauthausen experimental field of Forschungszentrum Jülich (Germany). [1] C. Vamoş, A. Georgescu, N. Suciu, I. Turcu, Physica A 227, 81-92, 1996. [2] C. Vamoş, N. Suciu, A. Georgescu, Phys. Rev E 55, 5, 6277-6280, 1997. [3] C. Vamoş, N. Suciu, W. Blaj, Physica A, 287, 461-467, 2000.

  8. Nonlinear Analysis of Surface EMG Time Series

    NASA Astrophysics Data System (ADS)

    Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-04-01

    Applications of nonlinear analysis of surface electromyography time series of patients with and without low back pain are presented. Limitations of the standard methods based on the power spectrum are discussed.

  9. Entropic Analysis of Electromyography Time Series

    NASA Astrophysics Data System (ADS)

    Kaufman, Miron; Sung, Paul

    2005-03-01

    We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.

  10. Visibility Graph Based Time Series Analysis

    PubMed Central

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it’s microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks. PMID:26571115

  11. Climate Time Series Analysis and Forecasting

    NASA Astrophysics Data System (ADS)

    Young, P. C.; Fildes, R.

    2009-04-01

    This paper will discuss various aspects of climate time series data analysis, modelling and forecasting being carried out at Lancaster. This will include state-dependent parameter, nonlinear, stochastic modelling of globally averaged atmospheric carbon dioxide; the computation of emission strategies based on modern control theory; and extrapolative time series benchmark forecasts of annual average temperature, both global and local. The key to the forecasting evaluation will be the iterative estimation of forecast error based on rolling origin comparisons, as recommended in the forecasting research literature. The presentation will conclude with with a comparison of the time series forecasts with forecasts produced from global circulation models and a discussion of the implications for climate modelling research.

  12. Topological analysis of chaotic time series

    NASA Astrophysics Data System (ADS)

    Gilmore, Robert

    1997-10-01

    Topological methods have recently been developed for the classification, analysis, and synthesis of chaotic time series. These methods can be applied to time series with a Lyapunov dimension less than three. The procedure determines the stretching and squeezing mechanisms which operate to create a strange attractor and organize all the unstable periodic orbits in the attractor in a unique way. Strange attractors are identified by a set of integers. These are topological invariants for a two dimensional branched manifold, which is the infinite dissipation limit of the strange attractor. It is remarkable that this topological information can be extracted from chaotic time series. The data required for this analysis need not be extensive or exceptionally clean. The topological invariants: (1) are subject to validation/invalidation tests; (2) describe how to model the data; and (3) do not change as control parameters change. Topological analysis is the first step in a doubly discrete classification scheme for strange attractors. The second discrete classification involves specification of a 'basis set' set of periodic orbits whose presence forces the existence of all other periodic orbits in the strange attractor. The basis set of orbits does change as control parameters change. Quantitative models developed to describe time series data are tested by the methods of entrainment. This analysis procedure has been applied to analyze a number of data sets. Several analyses are described.

  13. Nonlinear time-series analysis revisited

    NASA Astrophysics Data System (ADS)

    Bradley, Elizabeth; Kantz, Holger

    2015-09-01

    In 1980 and 1981, two pioneering papers laid the foundation for what became known as nonlinear time-series analysis: the analysis of observed data—typically univariate—via dynamical systems theory. Based on the concept of state-space reconstruction, this set of methods allows us to compute characteristic quantities such as Lyapunov exponents and fractal dimensions, to predict the future course of the time series, and even to reconstruct the equations of motion in some cases. In practice, however, there are a number of issues that restrict the power of this approach: whether the signal accurately and thoroughly samples the dynamics, for instance, and whether it contains noise. Moreover, the numerical algorithms that we use to instantiate these ideas are not perfect; they involve approximations, scale parameters, and finite-precision arithmetic, among other things. Even so, nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements to assure full topological conjugacy, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems.

  14. Nonlinear time-series analysis revisited.

    PubMed

    Bradley, Elizabeth; Kantz, Holger

    2015-09-01

    In 1980 and 1981, two pioneering papers laid the foundation for what became known as nonlinear time-series analysis: the analysis of observed data-typically univariate-via dynamical systems theory. Based on the concept of state-space reconstruction, this set of methods allows us to compute characteristic quantities such as Lyapunov exponents and fractal dimensions, to predict the future course of the time series, and even to reconstruct the equations of motion in some cases. In practice, however, there are a number of issues that restrict the power of this approach: whether the signal accurately and thoroughly samples the dynamics, for instance, and whether it contains noise. Moreover, the numerical algorithms that we use to instantiate these ideas are not perfect; they involve approximations, scale parameters, and finite-precision arithmetic, among other things. Even so, nonlinear time-series analysis has been used to great advantage on thousands of real and synthetic data sets from a wide variety of systems ranging from roulette wheels to lasers to the human heart. Even in cases where the data do not meet the mathematical or algorithmic requirements to assure full topological conjugacy, the results of nonlinear time-series analysis can be helpful in understanding, characterizing, and predicting dynamical systems. PMID:26428563

  15. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, L.M.; Ng, E.G.

    1998-09-29

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.

  16. Integrated method for chaotic time series analysis

    DOEpatents

    Hively, Lee M.; Ng, Esmond G.

    1998-01-01

    Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.

  17. Nonlinear Time Series Analysis via Neural Networks

    NASA Astrophysics Data System (ADS)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  18. Multifractal Analysis of Sunspot Number Time Series

    NASA Astrophysics Data System (ADS)

    Kasde, Satish Kumar; Gwal, Ashok Kumar; Sondhiya, Deepak Kumar

    2016-07-01

    Multifractal analysis based approaches have been recently developed as an alternative framework to study the complex dynamical fluctuations in sunspot numbers data including solar cycles 20 to 23 and ascending phase of current solar cycle 24.To reveal the multifractal nature, the time series data of monthly sunspot number are analyzed by singularity spectrum and multi resolution wavelet analysis. Generally, the multifractility in sunspot number generate turbulence with the typical characteristics of the anomalous process governing the magnetosphere and interior of Sun. our analysis shows that singularities spectrum of sunspot data shows well Gaussian shape spectrum, which clearly establishes the fact that monthly sunspot number has multifractal character. The multifractal analysis is able to provide a local and adaptive description of the cyclic components of sunspot number time series, which are non-stationary and result of nonlinear processes. Keywords: Sunspot Numbers, Magnetic field, Multifractal analysis and wavelet Transform Techniques.

  19. Delay Differential Analysis of Time Series

    PubMed Central

    Lainscsek, Claudia; Sejnowski, Terrence J.

    2015-01-01

    Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time

  20. Time-Series Analysis: A Cautionary Tale

    NASA Technical Reports Server (NTRS)

    Damadeo, Robert

    2015-01-01

    Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.

  1. Analysis of Polyphonic Musical Time Series

    NASA Astrophysics Data System (ADS)

    Sommer, Katrin; Weihs, Claus

    A general model for pitch tracking of polyphonic musical time series will be introduced. Based on a model of Davy and Godsill (Bayesian harmonic models for musical pitch estimation and analysis, Technical Report 431, Cambridge University Engineering Department, 2002) Davy and Godsill (2002) the different pitches of the musical sound are estimated with MCMC methods simultaneously. Additionally a preprocessing step is designed to improve the estimation of the fundamental frequencies (A comparative study on polyphonic musical time series using MCMC methods. In C. Preisach et al., editors, Data Analysis, Machine Learning, and Applications, Springer, Berlin, 2008). The preprocessing step compares real audio data with an alphabet constructed from the McGill Master Samples (Opolko and Wapnick, McGill University Master Samples [Compact disc], McGill University, Montreal, 1987) and consists of tones of different instruments. The tones with minimal Itakura-Saito distortion (Gray et al., Transactions on Acoustics, Speech, and Signal Processing ASSP-28(4):367-376, 1980) are chosen as first estimates and as starting points for the MCMC algorithms. Furthermore the implementation of the alphabet is an approach for the recognition of the instruments generating the musical time series. Results are presented for mixed monophonic data from McGill and for self recorded polyphonic audio data.

  2. Sliced Inverse Regression for Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Li-Sue

    1995-11-01

    In this thesis, general nonlinear models for time series data are considered. A basic form is x _{t} = f(beta_sp{1} {T}X_{t-1},beta_sp {2}{T}X_{t-1},... , beta_sp{k}{T}X_ {t-1},varepsilon_{t}), where x_{t} is an observed time series data, X_{t } is the first d time lag vector, (x _{t},x_{t-1},... ,x _{t-d-1}), f is an unknown function, beta_{i}'s are unknown vectors, varepsilon_{t }'s are independent distributed. Special cases include AR and TAR models. We investigate the feasibility applying SIR/PHD (Li 1990, 1991) (the sliced inverse regression and principal Hessian methods) in estimating beta _{i}'s. PCA (Principal component analysis) is brought in to check one critical condition for SIR/PHD. Through simulation and a study on 3 well -known data sets of Canadian lynx, U.S. unemployment rate and sunspot numbers, we demonstrate how SIR/PHD can effectively retrieve the interesting low-dimension structures for time series data.

  3. Singular spectrum analysis for time series with missing data

    USGS Publications Warehouse

    Schoellhamer, D.H.

    2001-01-01

    Geophysical time series often contain missing data, which prevents analysis with many signal processing and multivariate tools. A modification of singular spectrum analysis for time series with missing data is developed and successfully tested with synthetic and actual incomplete time series of suspended-sediment concentration from San Francisco Bay. This method also can be used to low pass filter incomplete time series.

  4. Multifractal analysis of polyalanines time series

    NASA Astrophysics Data System (ADS)

    Figueirêdo, P. H.; Nogueira, E.; Moret, M. A.; Coutinho, Sérgio

    2010-05-01

    Multifractal properties of the energy time series of short α-helix structures, specifically from a polyalanine family, are investigated through the MF-DFA technique ( multifractal detrended fluctuation analysis). Estimates for the generalized Hurst exponent h(q) and its associated multifractal exponents τ(q) are obtained for several series generated by numerical simulations of molecular dynamics in different systems from distinct initial conformations. All simulations were performed using the GROMOS force field, implemented in the program THOR. The main results have shown that all series exhibit multifractal behavior depending on the number of residues and temperature. Moreover, the multifractal spectra reveal important aspects of the time evolution of the system and suggest that the nucleation process of the secondary structures during the visits on the energy hyper-surface is an essential feature of the folding process.

  5. Time series analysis of temporal networks

    NASA Astrophysics Data System (ADS)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  6. Three Analysis Examples for Time Series Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With improvements in instrumentation and the automation of data collection, plot level repeated measures and time series data are increasingly available to monitor and assess selected variables throughout the duration of an experiment or project. Records and metadata on variables of interest alone o...

  7. Time Series Analysis Using Geometric Template Matching.

    PubMed

    Frank, Jordan; Mannor, Shie; Pineau, Joelle; Precup, Doina

    2013-03-01

    We present a novel framework for analyzing univariate time series data. At the heart of the approach is a versatile algorithm for measuring the similarity of two segments of time series called geometric template matching (GeTeM). First, we use GeTeM to compute a similarity measure for clustering and nearest-neighbor classification. Next, we present a semi-supervised learning algorithm that uses the similarity measure with hierarchical clustering in order to improve classification performance when unlabeled training data are available. Finally, we present a boosting framework called TDEBOOST, which uses an ensemble of GeTeM classifiers. TDEBOOST augments the traditional boosting approach with an additional step in which the features used as inputs to the classifier are adapted at each step to improve the training error. We empirically evaluate the proposed approaches on several datasets, such as accelerometer data collected from wearable sensors and ECG data. PMID:22641699

  8. Singular spectrum analysis and forecasting of hydrological time series

    NASA Astrophysics Data System (ADS)

    Marques, C. A. F.; Ferreira, J. A.; Rocha, A.; Castanheira, J. M.; Melo-Gonçalves, P.; Vaz, N.; Dias, J. M.

    The singular spectrum analysis (SSA) technique is applied to some hydrological univariate time series to assess its ability to uncover important information from those series, and also its forecast skill. The SSA is carried out on annual precipitation, monthly runoff, and hourly water temperature time series. Information is obtained by extracting important components or, when possible, the whole signal from the time series. The extracted components are then subject to forecast by the SSA algorithm. It is illustrated the SSA ability to extract a slowly varying component (i.e. the trend) from the precipitation time series, the trend and oscillatory components from the runoff time series, and the whole signal from the water temperature time series. The SSA was also able to accurately forecast the extracted components of these time series.

  9. Evolutionary factor analysis of replicated time series.

    PubMed

    Motta, Giovanni; Ombao, Hernando

    2012-09-01

    In this article, we develop a novel method that explains the dynamic structure of multi-channel electroencephalograms (EEGs) recorded from several trials in a motor-visual task experiment. Preliminary analyses of our data suggest two statistical challenges. First, the variance at each channel and cross-covariance between each pair of channels evolve over time. Moreover, the cross-covariance profiles display a common structure across all pairs, and these features consistently appear across all trials. In the light of these features, we develop a novel evolutionary factor model (EFM) for multi-channel EEG data that systematically integrates information across replicated trials and allows for smoothly time-varying factor loadings. The individual EEGs series share common features across trials, thus, suggesting the need to pool information across trials, which motivates the use of the EFM for replicated time series. We explain the common co-movements of EEG signals through the existence of a small number of common factors. These latent factors are primarily responsible for processing the visual-motor task which, through the loadings, drive the behavior of the signals observed at different channels. The estimation of the time-varying loadings is based on the spectral decomposition of the estimated time-varying covariance matrix. PMID:22364516

  10. Apparatus for statistical time-series analysis of electrical signals

    NASA Technical Reports Server (NTRS)

    Stewart, C. H. (Inventor)

    1973-01-01

    An apparatus for performing statistical time-series analysis of complex electrical signal waveforms, permitting prompt and accurate determination of statistical characteristics of the signal is presented.

  11. Statistical Evaluation of Time Series Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Benignus, V. A.

    1973-01-01

    The performance of a modified version of NASA's multivariate spectrum analysis program is discussed. A multiple regression model was used to make the revisions. Performance improvements were documented and compared to the standard fast Fourier transform by Monte Carlo techniques.

  12. Multifractal Analysis of Aging and Complexity in Heartbeat Time Series

    NASA Astrophysics Data System (ADS)

    Muñoz D., Alejandro; Almanza V., Victor H.; del Río C., José L.

    2004-09-01

    Recently multifractal analysis has been used intensively in the analysis of physiological time series. In this work we apply the multifractal analysis to the study of heartbeat time series from healthy young subjects and other series obtained from old healthy subjects. We show that this multifractal formalism could be a useful tool to discriminate these two kinds of series. We used the algorithm proposed by Chhabra and Jensen that provides a highly accurate, practical and efficient method for the direct computation of the singularity spectrum. Aging causes loss of multifractality in the heartbeat time series, it means that heartbeat time series of elderly persons are less complex than the time series of young persons. This analysis reveals a new level of complexity characterized by the wide range of necessary exponents to characterize the dynamics of young people.

  13. Analysis of Time-Series Quasi-Experiments. Final Report.

    ERIC Educational Resources Information Center

    Glass, Gene V.; Maguire, Thomas O.

    The objective of this project was to investigate the adequacy of statistical models developed by G. E. P. Box and G. C. Tiao for the analysis of time-series quasi-experiments: (1) The basic model developed by Box and Tiao is applied to actual time-series experiment data from two separate experiments, one in psychology and one in educational…

  14. Time series data analysis using DFA

    NASA Astrophysics Data System (ADS)

    Okumoto, A.; Akiyama, T.; Sekino, H.; Sumi, T.

    2014-02-01

    Detrended fluctuation analysis (DFA) was originally developed for the evaluation of DNA sequence and interval for heart rate variability (HRV), but it is now used to obtain various biological information. In this study we perform DFA on artificially generated data where we already know the relationship between signal and the physical event causing the signal. We generate artificial data using molecular dynamics. The Brownian motion of a polymer under an external force is investigated. In order to generate artificial fluctuation in the physical properties, we introduce obstacle pillars fixed to nanostructures. Using different conditions such as presence or absence of obstacles, external field, and the polymer length, we perform DFA on energies and positions of the polymer.

  15. Time series analysis of air pollutants in Beirut, Lebanon.

    PubMed

    Farah, Wehbeh; Nakhlé, Myriam Mrad; Abboud, Maher; Annesi-Maesano, Isabella; Zaarour, Rita; Saliba, Nada; Germanos, Georges; Gerard, Jocelyne

    2014-12-01

    This study reports for the first time a time series analysis of daily urban air pollutant levels (CO, NO, NO2, O3, PM10, and SO2) in Beirut, Lebanon. The study examines data obtained between September 2005 and July 2006, and their descriptive analysis shows long-term variations of daily levels of air pollution concentrations. Strong persistence of these daily levels is identified in the time series using an autocorrelation function, except for SO2. Time series of standardized residual values (SRVs) are also calculated to compare fluctuations of the time series with different levels. Time series plots of the SRVs indicate that NO and NO2 had similar temporal fluctuations. However, NO2 and O3 had opposite temporal fluctuations, attributable to weather conditions and the accumulation of vehicular emissions. The effects of both desert dust storms and airborne particulate matter resulting from the Lebanon War in July 2006 are also discernible in the SRV plots. PMID:25150052

  16. Fractal and natural time analysis of geoelectrical time series

    NASA Astrophysics Data System (ADS)

    Ramirez Rojas, A.; Moreno-Torres, L. R.; Cervantes, F.

    2013-05-01

    In this work we show the analysis of geoelectric time series linked with two earthquakes of M=6.6 and M=7.4. That time series were monitored at the South Pacific Mexican coast, which is the most important active seismic subduction zone in México. The geolectric time series were analyzed by using two complementary methods: a fractal analysis, by means of the detrended fluctuation analysis (DFA) in the conventional time, and the power spectrum defined in natural time domain (NTD). In conventional time we found long-range correlations prior to the EQ-occurrences and simultaneously in NTD, the behavior of the power spectrum suggest the possible existence of seismo electric signals (SES) similar with the previously reported in equivalent time series monitored in Greece prior to earthquakes of relevant magnitude.

  17. Time Series Analysis of Insar Data: Methods and Trends

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique

    2015-01-01

    Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.

  18. Nonstationary time series prediction combined with slow feature analysis

    NASA Astrophysics Data System (ADS)

    Wang, G.; Chen, X.

    2015-07-01

    Almost all climate time series have some degree of nonstationarity due to external driving forces perturbing the observed system. Therefore, these external driving forces should be taken into account when constructing the climate dynamics. This paper presents a new technique of obtaining the driving forces of a time series from the slow feature analysis (SFA) approach, and then introduces them into a predictive model to predict nonstationary time series. The basic theory of the technique is to consider the driving forces as state variables and to incorporate them into the predictive model. Experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted to test the model. The results showed improved prediction skills.

  19. Predicting long-term catchment nutrient export: the use of nonlinear time series models

    NASA Astrophysics Data System (ADS)

    Valent, Peter; Howden, Nicholas J. K.; Szolgay, Jan; Komornikova, Magda

    2010-05-01

    After the Second World War the nitrate concentrations in European water bodies changed significantly as the result of increased nitrogen fertilizer use and changes in land use. However, in the last decades, as a consequence of the implementation of nitrate-reducing measures in Europe, the nitrate concentrations in water bodies slowly decrease. This causes that the mean and variance of the observed time series also changes with time (nonstationarity and heteroscedascity). In order to detect changes and properly describe the behaviour of such time series by time series analysis, linear models (such as autoregressive (AR), moving average (MA) and autoregressive moving average models (ARMA)), are no more suitable. Time series with sudden changes in statistical characteristics can cause various problems in the calibration of traditional water quality models and thus give biased predictions. Proper statistical analysis of these non-stationary and heteroscedastic time series with the aim of detecting and subsequently explaining the variations in their statistical characteristics requires the use of nonlinear time series models. This information can be then used to improve the model building and calibration of conceptual water quality model or to select right calibration periods in order to produce reliable predictions. The objective of this contribution is to analyze two long time series of nitrate concentrations of the rivers Ouse and Stour with advanced nonlinear statistical modelling techniques and compare their performance with traditional linear models of the ARMA class in order to identify changes in the time series characteristics. The time series were analysed with nonlinear models with multiple regimes represented by self-exciting threshold autoregressive (SETAR) and Markov-switching models (MSW). The analysis showed that, based on the value of residual sum of squares (RSS) in both datasets, SETAR and MSW models described the time-series better than models of the

  20. Wavelet analysis for non-stationary, nonlinear time series

    NASA Astrophysics Data System (ADS)

    Schulte, Justin A.

    2016-08-01

    Methods for detecting and quantifying nonlinearities in nonstationary time series are introduced and developed. In particular, higher-order wavelet analysis was applied to an ideal time series and the quasi-biennial oscillation (QBO) time series. Multiple-testing problems inherent in wavelet analysis were addressed by controlling the false discovery rate. A new local autobicoherence spectrum facilitated the detection of local nonlinearities and the quantification of cycle geometry. The local autobicoherence spectrum of the QBO time series showed that the QBO time series contained a mode with a period of 28 months that was phase coupled to a harmonic with a period of 14 months. An additional nonlinearly interacting triad was found among modes with periods of 10, 16 and 26 months. Local biphase spectra determined that the nonlinear interactions were not quadratic and that the effect of the nonlinearities was to produce non-smoothly varying oscillations. The oscillations were found to be skewed so that negative QBO regimes were preferred, and also asymmetric in the sense that phase transitions between the easterly and westerly phases occurred more rapidly than those from westerly to easterly regimes.

  1. Improvements in Accurate GPS Positioning Using Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Koyama, Yuichiro; Tanaka, Toshiyuki

    Although the Global Positioning System (GPS) is used widely in car navigation systems, cell phones, surveying, and other areas, several issues still exist. We focus on the continuous data received in public use of GPS, and propose a new positioning algorithm that uses time series analysis. By fitting an autoregressive model to the time series model of the pseudorange, we propose an appropriate state-space model. We apply the Kalman filter to the state-space model and use the pseudorange estimated by the filter in our positioning calculations. The results of the authors' positioning experiment show that the accuracy of the proposed method is much better than that of the standard method. In addition, as we can obtain valid values estimated by time series analysis using the state-space model, the proposed state-space model can be applied to several other fields.

  2. Multifractal Time Series Analysis Based on Detrended Fluctuation Analysis

    NASA Astrophysics Data System (ADS)

    Kantelhardt, Jan; Stanley, H. Eugene; Zschiegner, Stephan; Bunde, Armin; Koscielny-Bunde, Eva; Havlin, Shlomo

    2002-03-01

    In order to develop an easily applicable method for the multifractal characterization of non-stationary time series, we generalize the detrended fluctuation analysis (DFA), which is a well-established method for the determination of the monofractal scaling properties and the detection of long-range correlations. We relate the new multifractal DFA method to the standard partition function-based multifractal formalism, and compare it to the wavelet transform modulus maxima (WTMM) method which is a well-established, but more difficult procedure for this purpose. We employ the multifractal DFA method to determine if the heartrhythm during different sleep stages is characterized by different multifractal properties.

  3. Exploratory Causal Analysis in Bivariate Time Series Data

    NASA Astrophysics Data System (ADS)

    McCracken, James M.

    Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data

  4. Temporal variability of nutrient concentrations in the northwestern Mediterranean sea (DYFAMED time-series station)

    NASA Astrophysics Data System (ADS)

    Pasqueron de Fommervault, Orens; Migon, Christophe; D`Ortenzio, Fabrizio; Ribera d'Alcalà, Maurizio; Coppola, Laurent

    2015-06-01

    Nitrate, phosphate, and silicate concentration profiles were measured at monthly frequency at the DYFAMED time-series station (central Ligurian Sea) between 1991 and 2011. The resulting data set, which constitutes the longest open-ocean time-series in the Mediterranean Sea, underwent quality control. A reproducible climatological pattern was observed with an unprecedented resolution, confirming the typical seasonal cycle of mid-latitudes. In summer and autumn, when the water mass is well stratified, i.e. the mixed layer depth (MLD) is shallow, nutrient concentrations in surface are very low or under the detection limit. In winter, as a result of the MLD extent, nutrients are supplied to the surface layer. Then, nutrient concentrations progressively decrease during spring. MLD appears to play a key role in controlling nutrient availability in the surface layer, but a direct, quantitative relationship between MLD and nutrient concentrations is difficult to establish due to undersampling. Regarding nutrient molar ratios (N:P, Si:N, and Si:P), results show anomalous values compared to those of other oceanic regions, presumably due to strong influence of external sources. As a consequence, nutrient molar ratios exhibit a seasonal pattern, with, in particular, an increase of the N:P ratio in condition of stratification. Over the period 1991-2011, the DYFAMED data set reveals decadal trends in nitrate and phosphate concentrations in deep waters (+0.23% and -0.62%, respectively) resulting in increasing N:P and Si:P ratios (+1.14% and +0.85% per year, respectively). Such a long-term variability is presumably related to changes in water mass and/or changes in external sources, even if it is difficult to assess due to not enough concomitant data from atmospheric and riverine inputs.

  5. Scaling analysis of multi-variate intermittent time series

    NASA Astrophysics Data System (ADS)

    Kitt, Robert; Kalda, Jaan

    2005-08-01

    The scaling properties of the time series of asset prices and trading volumes of stock markets are analysed. It is shown that similar to the asset prices, the trading volume data obey multi-scaling length-distribution of low-variability periods. In the case of asset prices, such scaling behaviour can be used for risk forecasts: the probability of observing next day a large price movement is (super-universally) inversely proportional to the length of the ongoing low-variability period. Finally, a method is devised for a multi-factor scaling analysis. We apply the simplest, two-factor model to equity index and trading volume time series.

  6. Analysis of Complex Intervention Effects in Time-Series Experiments.

    ERIC Educational Resources Information Center

    Bower, Cathleen

    An iterative least squares procedure for analyzing the effect of various kinds of intervention in time-series data is described. There are numerous applications of this design in economics, education, and psychology, although until recently, no appropriate analysis techniques had been developed to deal with the model adequately. This paper…

  7. Time Series Analysis Based on Running Mann Whitney Z Statistics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...

  8. ADAPTIVE DATA ANALYSIS OF COMPLEX FLUCTUATIONS IN PHYSIOLOGIC TIME SERIES

    PubMed Central

    PENG, C.-K.; COSTA, MADALENA; GOLDBERGER, ARY L.

    2009-01-01

    We introduce a generic framework of dynamical complexity to understand and quantify fluctuations of physiologic time series. In particular, we discuss the importance of applying adaptive data analysis techniques, such as the empirical mode decomposition algorithm, to address the challenges of nonlinearity and nonstationarity that are typically exhibited in biological fluctuations. PMID:20041035

  9. Identification of human operator performance models utilizing time series analysis

    NASA Technical Reports Server (NTRS)

    Holden, F. M.; Shinners, S. M.

    1973-01-01

    The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.

  10. Nonlinear Analysis of Surface EMG Time Series of Back Muscles

    NASA Astrophysics Data System (ADS)

    Dolton, Donald C.; Zurcher, Ulrich; Kaufman, Miron; Sung, Paul

    2004-10-01

    A nonlinear analysis of surface electromyography time series of subjects with and without low back pain is presented. The mean-square displacement and entropy shows anomalous diffusive behavior on intermediate time range 10 ms < t < 1 s. This behavior implies the presence of correlations in the signal. We discuss the shape of the power spectrum of the signal.

  11. Mixed Spectrum Analysis on fMRI Time-Series.

    PubMed

    Kumar, Arun; Lin, Feng; Rajapakse, Jagath C

    2016-06-01

    Temporal autocorrelation present in functional magnetic resonance image (fMRI) data poses challenges to its analysis. The existing approaches handling autocorrelation in fMRI time-series often presume a specific model of autocorrelation such as an auto-regressive model. The main limitation here is that the correlation structure of voxels is generally unknown and varies in different brain regions because of different levels of neurogenic noises and pulsatile effects. Enforcing a universal model on all brain regions leads to bias and loss of efficiency in the analysis. In this paper, we propose the mixed spectrum analysis of the voxel time-series to separate the discrete component corresponding to input stimuli and the continuous component carrying temporal autocorrelation. A mixed spectral analysis technique based on M-spectral estimator is proposed, which effectively removes autocorrelation effects from voxel time-series and identify significant peaks of the spectrum. As the proposed method does not assume any prior model for the autocorrelation effect in voxel time-series, varying correlation structure among the brain regions does not affect its performance. We have modified the standard M-spectral method for an application on a spatial set of time-series by incorporating the contextual information related to the continuous spectrum of neighborhood voxels, thus reducing considerably the computation cost. Likelihood of the activation is predicted by comparing the amplitude of discrete component at stimulus frequency of voxels across the brain by using normal distribution and modeling spatial correlations among the likelihood with a conditional random field. We also demonstrate the application of the proposed method in detecting other desired frequencies. PMID:26800533

  12. Time Series Analysis of 3D Coordinates Using Nonstochastic Observations

    NASA Astrophysics Data System (ADS)

    Velsink, Hiddo

    2016-03-01

    Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on the unknown parameters of the adjustment problem. Thus they describe deformation patterns. If deformation is absent, the epochs of the time series are supposed to be related via affine, similarity or congruence transformations. S-basis invariant testing of deformation patterns is treated. The model is experimentally validated by showing the procedure for a point set of 3D coordinates, determined from total station measurements during five epochs. The modelling of two patterns, the movement of just one point in several epochs, and of several points, is shown. Full, rank deficient covariance matrices of the 3D coordinates, resulting from free network adjustments of the total station measurements of each epoch, are used in the analysis.

  13. Ensemble vs. time averages in financial time series analysis

    NASA Astrophysics Data System (ADS)

    Seemann, Lars; Hua, Jia-Chen; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2012-12-01

    Empirical analysis of financial time series suggests that the underlying stochastic dynamics are not only non-stationary, but also exhibit non-stationary increments. However, financial time series are commonly analyzed using the sliding interval technique that assumes stationary increments. We propose an alternative approach that is based on an ensemble over trading days. To determine the effects of time averaging techniques on analysis outcomes, we create an intraday activity model that exhibits periodic variable diffusion dynamics and we assess the model data using both ensemble and time averaging techniques. We find that ensemble averaging techniques detect the underlying dynamics correctly, whereas sliding intervals approaches fail. As many traded assets exhibit characteristic intraday volatility patterns, our work implies that ensemble averages approaches will yield new insight into the study of financial markets’ dynamics.

  14. Mode Analysis with Autocorrelation Method (Single Time Series) in Tokamak

    NASA Astrophysics Data System (ADS)

    Saadat, Shervin; Salem, Mohammad K.; Goranneviss, Mahmoud; Khorshid, Pejman

    2010-08-01

    In this paper plasma mode analyzed with statistical method that designated Autocorrelation function. Auto correlation function used from one time series, so for this purpose we need one Minov coil. After autocorrelation analysis on mirnov coil data, spectral density diagram is plotted. Spectral density diagram from symmetries and trends can analyzed plasma mode. RHF fields effects with this method ate investigated in IR-T1 tokamak and results corresponded with multichannel methods such as SVD and FFT.

  15. Performance of multifractal detrended fluctuation analysis on short time series

    NASA Astrophysics Data System (ADS)

    López, Juan Luis; Contreras, Jesús Guillermo

    2013-02-01

    The performance of the multifractal detrended analysis on short time series is evaluated for synthetic samples of several mono- and multifractal models. The reconstruction of the generalized Hurst exponents is used to determine the range of applicability of the method and the precision of its results as a function of the decreasing length of the series. As an application the series of the daily exchange rate between the U.S. dollar and the euro is studied.

  16. Satellite time series analysis using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Pannimpullath, R. Renosh; Doolaeghe, Diane; Loisel, Hubert; Vantrepotte, Vincent; Schmitt, Francois G.

    2016-04-01

    Geophysical fields possess large fluctuations over many spatial and temporal scales. Satellite successive images provide interesting sampling of this spatio-temporal multiscale variability. Here we propose to consider such variability by performing satellite time series analysis, pixel by pixel, using Empirical Mode Decomposition (EMD). EMD is a time series analysis technique able to decompose an original time series into a sum of modes, each one having a different mean frequency. It can be used to smooth signals, to extract trends. It is built in a data-adaptative way, and is able to extract information from nonlinear signals. Here we use MERIS Suspended Particulate Matter (SPM) data, on a weekly basis, during 10 years. There are 458 successive time steps. We have selected 5 different regions of coastal waters for the present study. They are Vietnam coastal waters, Brahmaputra region, St. Lawrence, English Channel and McKenzie. These regions have high SPM concentrations due to large scale river run off. Trend and Hurst exponents are derived for each pixel in each region. The energy also extracted using Hilberts Spectral Analysis (HSA) along with EMD method. Normalised energy computed for each mode for each region with the total energy. The total energy computed using all the modes are extracted using EMD method.

  17. The multiscale analysis between stock market time series

    NASA Astrophysics Data System (ADS)

    Shi, Wenbin; Shang, Pengjian

    2015-11-01

    This paper is devoted to multiscale cross-correlation analysis on stock market time series, where multiscale DCCA cross-correlation coefficient as well as multiscale cross-sample entropy (MSCE) is applied. Multiscale DCCA cross-correlation coefficient is a realization of DCCA cross-correlation coefficient on multiple scales. The results of this method present a good scaling characterization. More significantly, this method is able to group stock markets by areas. Compared to multiscale DCCA cross-correlation coefficient, MSCE presents a more remarkable scaling characterization and the value of each log return of financial time series decreases with the increasing of scale factor. But the results of grouping is not as good as multiscale DCCA cross-correlation coefficient.

  18. Time series analysis for psychological research: examining and forecasting change.

    PubMed

    Jebb, Andrew T; Tay, Louis; Wang, Wei; Huang, Qiming

    2015-01-01

    Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials. PMID:26106341

  19. Time series analysis for psychological research: examining and forecasting change

    PubMed Central

    Jebb, Andrew T.; Tay, Louis; Wang, Wei; Huang, Qiming

    2015-01-01

    Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials. PMID:26106341

  20. Stratospheric ozone time series analysis using dynamical linear models

    NASA Astrophysics Data System (ADS)

    Laine, Marko; Kyrölä, Erkki

    2013-04-01

    We describe a hierarchical statistical state space model for ozone profile time series. The time series are from satellite measurements by the SAGE II and GOMOS instruments spanning years 1984-2012. The original data sets are combined and gridded monthly using 10 degree latitude bands, and covering 20-60 km with 1 km vertical spacing. Model components include level, trend, seasonal effect with solar activity, and quasi biennial oscillations as proxy variables. A typical feature of an atmospheric time series is that they are not stationary but exhibit both slowly varying and abrupt changes in the distributional properties. These are caused by external forcing such as changes in the solar activity or volcanic eruptions. Further, the data sampling is often nonuniform, there are data gaps, and the uncertainty of the observations can vary. When observations are combined from various sources there will be instrument and retrieval method related biases. The differences in sampling lead also to uncertainties. Standard classical ARIMA type of statistical time series methods are mostly useless for atmospheric data. A more general approach makes use of dynamical linear models and Kalman filter type of sequential algorithms. These state space models assume a linear relationship between the unknown state of the system and the observations and for the process evolution of the hidden states. They are still flexible enough to model both smooth trends and sudden changes. The above mentioned methodological challenges are discussed, together with analysis of change points in trends related to recovery of stratospheric ozone. This work is part of the ESA SPIN and ozone CCI projects.

  1. Time series analysis using semiparametric regression on oil palm production

    NASA Astrophysics Data System (ADS)

    Yundari, Pasaribu, U. S.; Mukhaiyar, U.

    2016-04-01

    This paper presents semiparametric kernel regression method which has shown its flexibility and easiness in mathematical calculation, especially in estimating density and regression function. Kernel function is continuous and it produces a smooth estimation. The classical kernel density estimator is constructed by completely nonparametric analysis and it is well reasonable working for all form of function. Here, we discuss about parameter estimation in time series analysis. First, we consider the parameters are exist, then we use nonparametrical estimation which is called semiparametrical. The selection of optimum bandwidth is obtained by considering the approximation of Mean Integrated Square Root Error (MISE).

  2. Chaotic time series analysis in economics: Balance and perspectives

    SciTech Connect

    Faggini, Marisa

    2014-12-15

    The aim of the paper is not to review the large body of work concerning nonlinear time series analysis in economics, about which much has been written, but rather to focus on the new techniques developed to detect chaotic behaviours in economic data. More specifically, our attention will be devoted to reviewing some of these techniques and their application to economic and financial data in order to understand why chaos theory, after a period of growing interest, appears now not to be such an interesting and promising research area.

  3. Diagnosis of nonlinear systems using time series analysis

    SciTech Connect

    Hunter, N.F. Jr.

    1991-01-01

    Diagnosis and analysis techniques for linear systems have been developed and refined to a high degree of precision. In contrast, techniques for the analysis of data from nonlinear systems are in the early stages of development. This paper describes a time series technique for the analysis of data from nonlinear systems. The input and response time series resulting from excitation of the nonlinear system are embedded in a state space. The form of the embedding is optimized using local canonical variate analysis and singular value decomposition techniques. From the state space model, future system responses are estimated. The expected degree of predictability of the system is investigated using the state transition matrix. The degree of nonlinearity present is quantified using the geometry of the transfer function poles in the z plane. Examples of application to a linear single-degree-of-freedom system, a single-degree-of-freedom Duffing Oscillator, and linear and nonlinear three degree of freedom oscillators are presented. 11 refs., 9 figs.

  4. Analysis of Multipsectral Time Series for supporting Forest Management Plans

    NASA Astrophysics Data System (ADS)

    Simoniello, T.; Carone, M. T.; Costantini, G.; Frattegiani, M.; Lanfredi, M.; Macchiato, M.

    2010-05-01

    Adequate forest management requires specific plans based on updated and detailed mapping. Multispectral satellite time series have been largely applied to forest monitoring and studies at different scales tanks to their capability of providing synoptic information on some basic parameters descriptive of vegetation distribution and status. As a low expensive tool for supporting forest management plans in operative context, we tested the use of Landsat-TM/ETM time series (1987-2006) in the high Agri Valley (Southern Italy) for planning field surveys as well as for the integration of existing cartography. As preliminary activity to make all scenes radiometrically consistent the no-change regression normalization was applied to the time series; then all the data concerning available forest maps, municipal boundaries, water basins, rivers, and roads were overlapped in a GIS environment. From the 2006 image we elaborated the NDVI map and analyzed the distribution for each land cover class. To separate the physiological variability and identify the anomalous areas, a threshold on the distributions was applied. To label the non homogenous areas, a multitemporal analysis was performed by separating heterogeneity due to cover changes from that linked to basilar unit mapping and classification labelling aggregations. Then a map of priority areas was produced to support the field survey plan. To analyze the territorial evolution, the historical land cover maps were elaborated by adopting a hybrid classification approach based on a preliminary segmentation, the identification of training areas, and a subsequent maximum likelihood categorization. Such an analysis was fundamental for the general assessment of the territorial dynamics and in particular for the evaluation of the efficacy of past intervention activities.

  5. Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall

    2008-01-01

    The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify

  6. Time series clustering analysis of health-promoting behavior

    NASA Astrophysics Data System (ADS)

    Yang, Chi-Ta; Hung, Yu-Shiang; Deng, Guang-Feng

    2013-10-01

    Health promotion must be emphasized to achieve the World Health Organization goal of health for all. Since the global population is aging rapidly, ComCare elder health-promoting service was developed by the Taiwan Institute for Information Industry in 2011. Based on the Pender health promotion model, ComCare service offers five categories of health-promoting functions to address the everyday needs of seniors: nutrition management, social support, exercise management, health responsibility, stress management. To assess the overall ComCare service and to improve understanding of the health-promoting behavior of elders, this study analyzed health-promoting behavioral data automatically collected by the ComCare monitoring system. In the 30638 session records collected for 249 elders from January, 2012 to March, 2013, behavior patterns were identified by fuzzy c-mean time series clustering algorithm combined with autocorrelation-based representation schemes. The analysis showed that time series data for elder health-promoting behavior can be classified into four different clusters. Each type reveals different health-promoting needs, frequencies, function numbers and behaviors. The data analysis result can assist policymakers, health-care providers, and experts in medicine, public health, nursing and psychology and has been provided to Taiwan National Health Insurance Administration to assess the elder health-promoting behavior.

  7. Time series analysis of electron flux at geostationary orbit

    SciTech Connect

    Szita, S.; Rodgers, D.J.; Johnstone, A.D.

    1996-07-01

    Time series of energetic (42.9{endash}300 keV) electron flux data from the geostationary satellite Meteosat-3 shows variability over various timescales. Of particular interest are the strong local time dependence of the flux data and the large flux peaks associated with particle injection events which occur over a timescale of a few hours. Fourier analysis has shown that for this energy range, the average electron flux diurnal variation can be approximated by a combination of two sine waves with periods of 12 and 24 hours. The data have been further examined using wavelet analysis, which shows how the diurnal variation changes and where it appears most significant. The injection events have a characteristic appearance but do not occur in phase with one another and therefore do not show up in a Fourier spectrum. Wavelet analysis has been used to look for characteristic time scales for these events. {copyright} {ital 1996 American Institute of Physics.}

  8. Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James

    2013-01-01

    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks [Scargle 1998]-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piece- wise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by [Arias-Castro, Donoho and Huo 2003]. In the spirit of Reproducible Research [Donoho et al. (2008)] all of the code and data necessary to reproduce all of the figures in this paper are included as auxiliary material.

  9. A Multiscale Approach to InSAR Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Muse, P.; Simons, M.; Lin, N.; Dicaprio, C. J.

    2010-12-01

    We present a technique to constrain time-dependent deformation from repeated satellite-based InSAR observations of a given region. This approach, which we call MInTS (Multiscale InSAR Time Series analysis), relies on a spatial wavelet decomposition to permit the inclusion of distance based spatial correlations in the observations while maintaining computational tractability. As opposed to single pixel InSAR time series techniques, MInTS takes advantage of both spatial and temporal characteristics of the deformation field. We use a weighting scheme which accounts for the presence of localized holes due to decorrelation or unwrapping errors in any given interferogram. We represent time-dependent deformation using a dictionary of general basis functions, capable of detecting both steady and transient processes. The estimation is regularized using a model resolution based smoothing so as to be able to capture rapid deformation where there are temporally dense radar acquisitions and to avoid oscillations during time periods devoid of acquisitions. MInTS also has the flexibility to explicitly parametrize known time-dependent processes that are expected to contribute to a given set of observations (e.g., co-seismic steps and post-seismic transients, secular variations, seasonal oscillations, etc.). We use cross validation to choose the regularization penalty parameter in the inversion of for the time-dependent deformation field. We demonstrate MInTS using a set of 63 ERS-1/2 and 29 Envisat interferograms for Long Valley Caldera.

  10. Time series analysis of waterfowl species number change

    NASA Astrophysics Data System (ADS)

    Mengjung Chou, Caroline; Da-Wei Tsai, David; Honglay Chen, Paris

    2014-05-01

    The objective of this study is to analyze the time series of waterfowl species numbers in Da-du estuary which was set up as Important Bird Areas (IBAs) from birdlife international in 2004. The multiplicative decomposition method has been adapted to determine the species variations, including long-term (T), seasonal (S), circular (C), and irregular (I). The results indicated: (1) The long-term trend decreased with time from 1989 to 2012; (2) There were two seasonal high peaks in April and November each year with the lowest peak in June. Moreover, since the winter visitors had the dominant numbers in total species numbers, the seasonal changes were mainly depended on the winter birds' migration. (3) The waterfowl was gradually restored back from lowest point in 1996, but the difference between 1989 and 2003 indicated the irreversible effect existed already. (4) The irregular variation was proved as a random distribution by several statistical tests including normality test, homogeneity of variance, independence test and variation probability method to portray the characteristics of the distributions and to demonstrate its randomness. Consequently, this study exhibited the time series analysis methods were reasonable well to present the waterfowl species changes numerically. And those results could be the precious data for the researches of ecosystem succession and anthropogenic impacts in the estuary.

  11. Automatising the analysis of stochastic biochemical time-series

    PubMed Central

    2015-01-01

    Background Mathematical and computational modelling of biochemical systems has seen a lot of effort devoted to the definition and implementation of high-performance mechanistic simulation frameworks. Within these frameworks it is possible to analyse complex models under a variety of configurations, eventually selecting the best setting of, e.g., parameters for a target system. Motivation This operational pipeline relies on the ability to interpret the predictions of a model, often represented as simulation time-series. Thus, an efficient data analysis pipeline is crucial to automatise time-series analyses, bearing in mind that errors in this phase might mislead the modeller's conclusions. Results For this reason we have developed an intuitive framework-independent Python tool to automate analyses common to a variety of modelling approaches. These include assessment of useful non-trivial statistics for simulation ensembles, e.g., estimation of master equations. Intuitive and domain-independent batch scripts will allow the researcher to automatically prepare reports, thus speeding up the usual model-definition, testing and refinement pipeline. PMID:26051821

  12. STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS

    SciTech Connect

    Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James

    2013-02-20

    This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.

  13. Time-series analysis of Campylobacter incidence in Switzerland.

    PubMed

    Wei, W; Schüpbach, G; Held, L

    2015-07-01

    Campylobacteriosis has been the most common food-associated notifiable infectious disease in Switzerland since 1995. Contact with and ingestion of raw or undercooked broilers are considered the dominant risk factors for infection. In this study, we investigated the temporal relationship between the disease incidence in humans and the prevalence of Campylobacter in broilers in Switzerland from 2008 to 2012. We use a time-series approach to describe the pattern of the disease by incorporating seasonal effects and autocorrelation. The analysis shows that prevalence of Campylobacter in broilers, with a 2-week lag, has a significant impact on disease incidence in humans. Therefore Campylobacter cases in humans can be partly explained by contagion through broiler meat. We also found a strong autoregressive effect in human illness, and a significant increase of illness during Christmas and New Year's holidays. In a final analysis, we corrected for the sampling error of prevalence in broilers and the results gave similar conclusions. PMID:25400006

  14. Feature extraction for change analysis in SAR time series

    NASA Astrophysics Data System (ADS)

    Boldt, Markus; Thiele, Antje; Schulz, Karsten; Hinz, Stefan

    2015-10-01

    In remote sensing, the change detection topic represents a broad field of research. If time series data is available, change detection can be used for monitoring applications. These applications require regular image acquisitions at identical time of day along a defined period. Focusing on remote sensing sensors, radar is especially well-capable for applications requiring regularity, since it is independent from most weather and atmospheric influences. Furthermore, regarding the image acquisitions, the time of day plays no role due to the independence from daylight. Since 2007, the German SAR (Synthetic Aperture Radar) satellite TerraSAR-X (TSX) permits the acquisition of high resolution radar images capable for the analysis of dense built-up areas. In a former study, we presented the change analysis of the Stuttgart (Germany) airport. The aim of this study is the categorization of detected changes in the time series. This categorization is motivated by the fact that it is a poor statement only to describe where and when a specific area has changed. At least as important is the statement about what has caused the change. The focus is set on the analysis of so-called high activity areas (HAA) representing areas changing at least four times along the investigated period. As first step for categorizing these HAAs, the matching HAA changes (blobs) have to be identified. Afterwards, operating in this object-based blob level, several features are extracted which comprise shape-based, radiometric, statistic, morphological values and one context feature basing on a segmentation of the HAAs. This segmentation builds on the morphological differential attribute profiles (DAPs). Seven context classes are established: Urban, infrastructure, rural stable, rural unstable, natural, water and unclassified. A specific HA blob is assigned to one of these classes analyzing the CovAmCoh time series signature of the surrounding segments. In combination, also surrounding GIS information

  15. Geodetic Time Series: An Overview of UNAVCO Community Resources and Examples of Time Series Analysis Using GPS and Strainmeter Data

    NASA Astrophysics Data System (ADS)

    Phillips, D. A.; Meertens, C. M.; Hodgkinson, K. M.; Puskas, C. M.; Boler, F. M.; Snett, L.; Mattioli, G. S.

    2013-12-01

    We present an overview of time series data, tools and services available from UNAVCO along with two specific and compelling examples of geodetic time series analysis. UNAVCO provides a diverse suite of geodetic data products and cyberinfrastructure services to support community research and education. The UNAVCO archive includes data from 2500+ continuous GPS stations, borehole geophysics instruments (strainmeters, seismometers, tiltmeters, pore pressure sensors), and long baseline laser strainmeters. These data span temporal scales from seconds to decades and provide global spatial coverage with regionally focused networks including the EarthScope Plate Boundary Observatory (PBO) and COCONet. This rich, open access dataset is a tremendous resource that enables the exploration, identification and analysis of time varying signals associated with crustal deformation, reference frame determinations, isostatic adjustments, atmospheric phenomena, hydrologic processes and more. UNAVCO provides a suite of time series exploration and analysis resources including static plots, dynamic plotting tools, and data products and services designed to enhance time series analysis. The PBO GPS network allow for identification of ~1 mm level deformation signals. At some GPS stations seasonal signals and longer-term trends in both the vertical and horizontal components can be dominated by effects of hydrological loading from natural and anthropogenic sources. Modeling of hydrologic deformation using GLDAS and a variety of land surface models (NOAH, MOSAIC, VIC and CLM) shows promise for independently modeling hydrologic effects and separating them from tectonic deformation as well as anthropogenic loading sources. A major challenge is to identify where loading is dominant and corrections from GLDAS can apply and where pumping is the dominant signal and corrections are not possible without some other data. In another arena, the PBO strainmeter network was designed to capture small short

  16. Spectral Procedures Enhance the Analysis of Three Agricultural Time Series

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many agricultural and environmental variables are influenced by cyclic processes that occur naturally. Consequently their time series often have cyclic behavior. This study developed times series models for three different phenomenon: (1) a 60 year-long state average crop yield record, (2) a four ...

  17. Nonlinear times series analysis of epileptic human electroencephalogram (EEG)

    NASA Astrophysics Data System (ADS)

    Li, Dingzhou

    The problem of seizure anticipation in patients with epilepsy has attracted significant attention in the past few years. In this paper we discuss two approaches, using methods of nonlinear time series analysis applied to scalp electrode recordings, which is able to distinguish between epochs temporally distant from and just prior to, the onset of a seizure in patients with temporal lobe epilepsy. First we describe a method involving a comparison of recordings taken from electrodes adjacent to and remote from the site of the seizure focus. In particular, we define a nonlinear quantity which we call marginal predictability. This quantity is computed using data from remote and from adjacent electrodes. We find that the difference between the marginal predictabilities computed for the remote and adjacent electrodes decreases several tens of minutes prior to seizure onset, compared to its value interictally. We also show that these difl'crcnc es of marginal predictability intervals are independent of the behavior state of the patient. Next we examine the please coherence between different electrodes both in the long-range and the short-range. When time is distant from seizure onsets ("interictally"), epileptic patients have lower long-range phase coherence in the delta (1-4Hz) and beta (18-30Hz) frequency band compared to nonepileptic subjects. When seizures approach (''preictally"), we observe an increase in phase coherence in the beta band. However, interictally there is no difference in short-range phase coherence between this cohort of patients and non-epileptic subjects. Preictally short-range phase coherence also increases in the alpha (10-13Hz) and the beta band. Next we apply the quantity marginal predictability on the phase difference time series. Such marginal predictabilities are lower in the patients than in the non-epileptic subjects. However, when seizure approaches, the former moves asymptotically towards the latter.

  18. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  19. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  20. Wavelet analysis and scaling properties of time series.

    PubMed

    Manimaran, P; Panigrahi, Prasanta K; Parikh, Jitendra C

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior. PMID:16383481

  1. Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis

    NASA Technical Reports Server (NTRS)

    Eberhart, C. J.; Casiano, M. J.

    2015-01-01

    Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.

  2. Recurrence quantification analysis and state space divergence reconstruction for financial time series analysis

    NASA Astrophysics Data System (ADS)

    Strozzi, Fernanda; Zaldívar, José-Manuel; Zbilut, Joseph P.

    2007-03-01

    The application of recurrence quantification analysis (RQA) and state space divergence reconstruction for the analysis of financial time series in terms of cross-correlation and forecasting is illustrated using high-frequency time series and random heavy-tailed data sets. The results indicate that these techniques, able to deal with non-stationarity in the time series, may contribute to the understanding of the complex dynamics hidden in financial markets. The results demonstrate that financial time series are highly correlated. Finally, an on-line trading strategy is illustrated and the results shown using high-frequency foreign exchange time series.

  3. Time-series analysis of offshore-wind-wave groupiness

    SciTech Connect

    Liang, H.B.

    1988-01-01

    This research is to applies basic time-series-analysis techniques on the complex envelope function where the study of the offshore-wind-wave groupiness is a relevant interest. In constructing the complex envelope function, a phase-unwrapping technique is integrated into the algorithm for estimating the carrier frequency and preserving the phase information for further studies. The Gaussian random wave model forms the basis of the wave-group statistics by the envelope-amplitude crossings. Good agreement between the theory and the analysis of field records is found. Other linear models, such as the individual-waves approach and the energy approach, are compared to the envelope approach by analyzing the same set of records. It is found that the character of the filter used in each approach dominates the wave-group statistics. Analyses indicate that the deep offshore wind waves are weakly nonlinear and the Gaussian random assumption remains appropriate for describing the sea state. Wave groups statistics derived from the Gaussian random wave model thus become applicable.

  4. Interglacial climate dynamics and advanced time series analysis

    NASA Astrophysics Data System (ADS)

    Mudelsee, Manfred; Bermejo, Miguel; Köhler, Peter; Lohmann, Gerrit

    2013-04-01

    Studying the climate dynamics of past interglacials (IGs) helps to better assess the anthropogenically influenced dynamics of the current IG, the Holocene. We select the IG portions from the EPICA Dome C ice core archive, which covers the past 800 ka, to apply methods of statistical time series analysis (Mudelsee 2010). The analysed variables are deuterium/H (indicating temperature) (Jouzel et al. 2007), greenhouse gases (Siegenthaler et al. 2005, Loulergue et al. 2008, L¨ü thi et al. 2008) and a model-co-derived climate radiative forcing (Köhler et al. 2010). We select additionally high-resolution sea-surface-temperature records from the marine sedimentary archive. The first statistical method, persistence time estimation (Mudelsee 2002) lets us infer the 'climate memory' property of IGs. Second, linear regression informs about long-term climate trends during IGs. Third, ramp function regression (Mudelsee 2000) is adapted to look on abrupt climate changes during IGs. We compare the Holocene with previous IGs in terms of these mathematical approaches, interprete results in a climate context, assess uncertainties and the requirements to data from old IGs for yielding results of 'acceptable' accuracy. This work receives financial support from the Deutsche Forschungsgemeinschaft (Project ClimSens within the DFG Research Priority Program INTERDYNAMIK) and the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme). References Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793. Köhler P, Bintanja R

  5. Time series analysis of Monte Carlo neutron transport calculations

    NASA Astrophysics Data System (ADS)

    Nease, Brian Robert

    A time series based approach is applied to the Monte Carlo (MC) fission source distribution to calculate the non-fundamental mode eigenvalues of the system. The approach applies Principal Oscillation Patterns (POPs) to the fission source distribution, transforming the problem into a simple autoregressive order one (AR(1)) process. Proof is provided that the stationary MC process is linear to first order approximation, which is a requirement for the application of POPs. The autocorrelation coefficient of the resulting AR(1) process corresponds to the ratio of the desired mode eigenvalue to the fundamental mode eigenvalue. All modern k-eigenvalue MC codes calculate the fundamental mode eigenvalue, so the desired mode eigenvalue can be easily determined. The strength of this approach is contrasted against the Fission Matrix method (FMM) in terms of accuracy versus computer memory constraints. Multi-dimensional problems are considered since the approach has strong potential for use in reactor analysis, and the implementation of the method into production codes is discussed. Lastly, the appearance of complex eigenvalues is investigated and solutions are provided.

  6. Time Series Analysis of the Blazar OJ 287

    NASA Astrophysics Data System (ADS)

    Gamel, Ellen; Ryle, W. T.; Carini, M. T.

    2013-06-01

    Blazars are a subset of active galactic nuclei (AGN) where the light is viewed along the jet of radiation produced by the central supermassive black hole. These very luminous objects vary in brightness and are associated with the cores of distant galaxies. The blazar, OJ 287, has been monitored and its brightness tracked over time. From these light curves the relationship between the characteristic “break frequency” and black hole mass can be determined through the use of power density spectra. In order to obtain a well-sampled light curve, this blazar will be observed at a wide range of timescales. Long time scales will be obtained using archived light curves from published literature. Medium time scales were obtained through a combination of data provided by Western Kentucky University and data collected at The Bank of Kentucky Observatory. Short time scales were achieved via a single night of observation at the 72” Perkins Telescope at Lowell Observatory in Flagstaff, AZ. Using time series analysis, we present a revised mass estimate for the super massive black hole of OJ 287. This object is of particular interest because it may harbor a binary black hole at its center.

  7. Permutation Entropy Analysis of Geomagnetic Indices Time Series

    NASA Astrophysics Data System (ADS)

    De Michelis, Paola; Consolini, Giuseppe

    2013-04-01

    The Earth's magnetospheric dynamics displays a very complex nature in response to solar wind changes as widely documented in the scientific literature. This complex dynamics manifests in various physical processes occurring in different regions of the Earth's magnetosphere as clearly revealed by previous analyses on geomagnetic indices (AE-indices, Dst, Sym-H, ....., etc.). One of the most interesting features of the geomagnetic indices as proxies of the Earth's magnetospheric dynamics is the multifractional nature of the time series of such indices. This aspect has been interpreted as the occurrence of intermittence and dynamical phase transition in the Earth's magnetosphere. Here, we investigate the Markovian nature of different geomagnetic indices (AE-indices, Sym-H, Asy-H) and their fluctuations by means of Permutation Entropy Analysis. The results clearly show the non-Markovian and different nature of the distinct sets of geomagnetic indices, pointing towards diverse underlying physical processes. A discussion in connection with the nature of the physical processes responsible of each set of indices and their multifractional character is attempted.

  8. Chaotic time series analysis of vision evoked EEG

    NASA Astrophysics Data System (ADS)

    Zhang, Ningning; Wang, Hong

    2009-12-01

    To investigate the human brain activities for aesthetic processing, beautiful woman face picture and ugly buffoon face picture were applied. Twelve subjects were assigned the aesthetic processing task while the electroencephalogram (EEG) was recorded. Event-related brain potential (ERP) was required from the 32 scalp electrodes and the ugly buffoon picture produced larger amplitudes for the N1, P2, N2, and late slow wave components. Average ERP from the ugly buffoon picture were larger than that from the beautiful woman picture. The ERP signals shows that the ugly buffoon elite higher emotion waves than the beautiful woman face, because some expression is on the face of the buffoon. Then, chaos time series analysis was carried out to calculate the largest Lyapunov exponent using small data set method and the correlation dimension using G-P algorithm. The results show that the largest Lyapunov exponents of the ERP signals are greater than zero, which indicate that the ERP signals may be chaotic. The correlations dimensions coming from the beautiful woman picture are larger than that from the ugly buffoon picture. The comparison of the correlations dimensions shows that the beautiful face can excite the brain nerve cells. The research in the paper is a persuasive proof to the opinion that cerebrum's work is chaotic under some picture stimuli.

  9. Chaotic time series analysis of vision evoked EEG

    NASA Astrophysics Data System (ADS)

    Zhang, Ningning; Wang, Hong

    2010-01-01

    To investigate the human brain activities for aesthetic processing, beautiful woman face picture and ugly buffoon face picture were applied. Twelve subjects were assigned the aesthetic processing task while the electroencephalogram (EEG) was recorded. Event-related brain potential (ERP) was required from the 32 scalp electrodes and the ugly buffoon picture produced larger amplitudes for the N1, P2, N2, and late slow wave components. Average ERP from the ugly buffoon picture were larger than that from the beautiful woman picture. The ERP signals shows that the ugly buffoon elite higher emotion waves than the beautiful woman face, because some expression is on the face of the buffoon. Then, chaos time series analysis was carried out to calculate the largest Lyapunov exponent using small data set method and the correlation dimension using G-P algorithm. The results show that the largest Lyapunov exponents of the ERP signals are greater than zero, which indicate that the ERP signals may be chaotic. The correlations dimensions coming from the beautiful woman picture are larger than that from the ugly buffoon picture. The comparison of the correlations dimensions shows that the beautiful face can excite the brain nerve cells. The research in the paper is a persuasive proof to the opinion that cerebrum's work is chaotic under some picture stimuli.

  10. Time series analysis of the cataclysmic variable V1101 Aquilae

    NASA Astrophysics Data System (ADS)

    Spahn, Alexander C.

    This work reports on the application of various time series analysis techniques to a two month portion of the light curve of the cataclysmic variable V1101 Aquilae. The system is a Z Cam type dwarf nova with an orbital period of 4.089 hours and an active outburst cycle of 15.15 days due to a high mass transfer rate. The system's light curve also displays higher frequency variations, known as negative sumperhums, with a period of 3.891 hours and a period deficit of --5.1%. The amplitude of the negative superhumps varies as an inverse function of system brightness, with an amplitude of 0.70358 during outburst and 0.97718 during quiescence (relative flux units). These variations are believed to be caused by the contrast between the accretion disk and the bright spot. An O--?C diagram was constructed and reveals the system's evolution. In general, during the rise to outburst, the disk moment of inertia decreases as mass is lost from the disk, causing the precession period of the tilted disk to increase and with it the negative superhump period. The decline of outburst is associated with the opposite effects. While no standstills were observed in this data, they are present in the AAVSO data and the results agree with the conditions for Z Cam stars.

  11. Detrended fluctuation analysis of laser Doppler flowmetry time series.

    PubMed

    Esen, Ferhan; Aydin, Gülsün Sönmez; Esen, Hamza

    2009-12-01

    Detrended fluctuation analysis (DFA) of laser Doppler flow (LDF) time series appears to yield improved prognostic power in microvascular dysfunction, through calculation of the scaling exponent, alpha. In the present study the long lasting strenuous activity-induced change in microvascular function was evaluated by DFA in basketball players compared with sedentary control. Forearm skin blood flow was measured at rest and during local heating. Three scaling exponents, the slopes of the three regression lines, were identified corresponding to cardiac, cardio-respiratory and local factors. Local scaling exponent was always approximately one, alpha=1.01+/-0.15, in the control group and did not change with local heating. However, we found a broken line with two scaling exponents (alpha(1)=1.06+/-0.01 and alpha(2)=0.75+/-0.01) in basketball players. The broken line became a single line having one scaling exponent (alpha(T)=0.94+/-0.01) with local heating. The scaling exponents, alpha(2) and alpha(T), smaller than 1 indicate reduced long-range correlation in blood flow due to a loss of integration in local mechanisms and suggest endothelial dysfunction as the most likely candidate. Evaluation of microvascular function from a baseline LDF signal at rest is the superiority of DFA to other methods, spectral or not, that use the amplitude changes of evoked relative signal. PMID:19660479

  12. On the Fourier and Wavelet Analysis of Coronal Time Series

    NASA Astrophysics Data System (ADS)

    Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2016-07-01

    Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of the different components of the power spectra provides a strong argument against the common practice of data detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the white and red noise models built into the widely used wavelet code of Torrence & Compo cannot, in most cases, adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both effects suggest that several reports of periodic phenomena should be re-examined. The Torrence & Compo code nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the default confidence levels output from the code, and we propose new Monte-Carlo-derived levels that take into account the total number of degrees of freedom in the wavelet spectra. These improvements allow us to confirm that the power peaks that we detected have a very low probability of being caused by noise.

  13. Time series analysis and the analysis of aquatic and riparian ecosystems

    USGS Publications Warehouse

    Milhous, R.T.

    2003-01-01

    Time series analysis of physical instream habitat and the riparian zone is not done as frequently as would be beneficial in understanding the fisheries aspects of the aquatic ecosystem. This paper presents two case studies have how time series analysis may be accomplished. Time series analysis is the analysis of the variation of the physical habitat or the hydro-period in the riparian zone (in many situations, the floodplain).

  14. On fractal analysis of cardiac interbeat time series

    NASA Astrophysics Data System (ADS)

    Guzmán-Vargas, L.; Calleja-Quevedo, E.; Angulo-Brown, F.

    2003-09-01

    In recent years the complexity of a cardiac beat-to-beat time series has been taken as an auxiliary tool to identify the health status of human hearts. Several methods has been employed to characterize the time series complexity. In this work we calculate the fractal dimension of interbeat time series arising from three groups: 10 young healthy persons, 8 elderly healthy persons and 10 patients with congestive heart failures. Our numerical results reflect evident differences in the dynamic behavior corresponding to each group. We discuss these results within the context of the neuroautonomic control of heart rate dynamics. We also propose a numerical simulation which reproduce aging effects of heart rate behavior.

  15. Analytical framework for recurrence network analysis of time series

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Donner, Reik V.; Kurths, Jürgen

    2012-04-01

    Recurrence networks are a powerful nonlinear tool for time series analysis of complex dynamical systems. While there are already many successful applications ranging from medicine to paleoclimatology, a solid theoretical foundation of the method has still been missing so far. Here, we interpret an ɛ-recurrence network as a discrete subnetwork of a “continuous” graph with uncountably many vertices and edges corresponding to the system's attractor. This step allows us to show that various statistical measures commonly used in complex network analysis can be seen as discrete estimators of newly defined continuous measures of certain complex geometric properties of the attractor on the scale given by ɛ. In particular, we introduce local measures such as the ɛ-clustering coefficient, mesoscopic measures such as ɛ-motif density, path-based measures such as ɛ-betweennesses, and global measures such as ɛ-efficiency. This new analytical basis for the so far heuristically motivated network measures also provides an objective criterion for the choice of ɛ via a percolation threshold, and it shows that estimation can be improved by so-called node splitting invariant versions of the measures. We finally illustrate the framework for a number of archetypical chaotic attractors such as those of the Bernoulli and logistic maps, periodic and two-dimensional quasiperiodic motions, and for hyperballs and hypercubes by deriving analytical expressions for the novel measures and comparing them with data from numerical experiments. More generally, the theoretical framework put forward in this work describes random geometric graphs and other networks with spatial constraints, which appear frequently in disciplines ranging from biology to climate science.

  16. A multiscale approach to InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Simons, M.; Hetland, E. A.; Muse, P.; Lin, Y. N.; Dicaprio, C.; Rickerby, A.

    2008-12-01

    We describe a new technique to constrain time-dependent deformation from repeated satellite-based InSAR observations of a given region. This approach, which we call MInTS (Multiscale analysis of InSAR Time Series), relies on a spatial wavelet decomposition to permit the inclusion of distance based spatial correlations in the observations while maintaining computational tractability. This approach also permits a consistent treatment of all data independent of the presence of localized holes in any given interferogram. In essence, MInTS allows one to considers all data at the same time (as opposed to one pixel at a time), thereby taking advantage of both spatial and temporal characteristics of the deformation field. In terms of the temporal representation, we have the flexibility to explicitly parametrize known processes that are expected to contribute to a given set of observations (e.g., co-seismic steps and post-seismic transients, secular variations, seasonal oscillations, etc.). Our approach also allows for the temporal parametrization to includes a set of general functions (e.g., splines) in order to account for unexpected processes. We allow for various forms of model regularization using a cross-validation approach to select penalty parameters. The multiscale analysis allows us to consider various contributions (e.g., orbit errors) that may affect specific scales but not others. The methods described here are all embarrassingly parallel and suitable for implementation on a cluster computer. We demonstrate the use of MInTS using a large suite of ERS-1/2 and Envisat interferograms for Long Valley Caldera, and validate our results by comparing with ground-based observations.

  17. Multiscale entropy analysis of complex physiologic time series.

    PubMed

    Costa, Madalena; Goldberger, Ary L; Peng, C-K

    2002-08-01

    There has been considerable interest in quantifying the complexity of physiologic time series, such as heart rate. However, traditional algorithms indicate higher complexity for certain pathologic processes associated with random outputs than for healthy dynamics exhibiting long-range correlations. This paradox may be due to the fact that conventional algorithms fail to account for the multiple time scales inherent in healthy physiologic dynamics. We introduce a method to calculate multiscale entropy (MSE) for complex time series. We find that MSE robustly separates healthy and pathologic groups and consistently yields higher values for simulated long-range correlated noise compared to uncorrelated noise. PMID:12190613

  18. Minimum entropy density method for the time series analysis

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae

    2009-01-01

    The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.

  19. A Time-Series Analysis of Hispanic Unemployment.

    ERIC Educational Resources Information Center

    Defreitas, Gregory

    1986-01-01

    This study undertakes the first systematic time-series research on the cyclical patterns and principal determinants of Hispanic joblessness in the United States. The principal findings indicate that Hispanics tend to bear a disproportionate share of increases in unemployment during recessions. (Author/CT)

  20. Time Series Analysis for the Drac River Basin (france)

    NASA Astrophysics Data System (ADS)

    Parra-Castro, K.; Donado-Garzon, L. D.; Rodriguez, E.

    2013-12-01

    This research is based on analyzing of discharge time-series in four stream flow gage stations located in the Drac River basin in France: (i) Guinguette Naturelle, (ii) Infernet, (iii) Parassat and the stream flow gage (iv) Villard Loubière. In addition, time-series models as the linear regression (single and multiple) and the MORDOR model were implemented to analyze the behavior the Drac River from year 1969 until year 2010. Twelve different models were implemented to assess the daily and monthly discharge time-series for the four flow gage stations. Moreover, five selection criteria were use to analyze the models: average division, variance division, the coefficient R2, Kling-Gupta Efficiency (KGE) and the Nash Number. The selection of the models was made to have the strongest models with an important level confidence. In this case, according to the best correlation between the time-series of stream flow gage stations and the best fitting models. Four of the twelve models were selected: two models for the stream flow gage station Guinguette Naturel, one for the station Infernet and one model for the station Villard Loubière. The R2 coefficients achieved were 0.87, 0.95, 0.85 and 0.87 respectively. Consequently, both confidence levels (the modeled and the empirical) were tested in the selected model, leading to the best fitting of both discharge time-series and models with the empirical confidence interval. Additionally, a procedure for validation of the models was conducted using the data for the year 2011, where extreme hydrologic and changes in hydrologic regimes events were identified. Furthermore, two different forms of estimating uncertainty through the use of confidence levels were studied: the modeled and the empirical confidence levels. This research was useful to update the used procedures and validate time-series in the four stream flow gage stations for the use of the company Électricité de France. Additionally, coefficients for both the models and

  1. Complexity analysis of the turbulent environmental fluid flow time series

    NASA Astrophysics Data System (ADS)

    Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.

    2014-02-01

    We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.

  2. Time series analysis as a tool for karst water management

    NASA Astrophysics Data System (ADS)

    Fournier, Matthieu; Massei, Nicolas; Duran, Léa

    2015-04-01

    Karst hydrosystems are well known for their vulnerability to turbidity due to their complex and unique characteristics which make them very different from other aquifers. Moreover, many parameters can affect their functioning. It makes the characterization of their vulnerability difficult and needs the use of statistical analyses Time series analyses on turbidity, electrical conductivity and water discharge datasets, such as correlation and spectral analyses, have proven to be useful in improving our understanding of karst systems. However, the loss of information on time localization is a major drawback of those Fourier spectral methods; this problem has been overcome by the development of wavelet analysis (continuous or discrete) for hydrosystems offering the possibility to better characterize the complex modalities of variation inherent to non stationary processes. Nevertheless, from wavelet transform, signal is decomposed on several continuous wavelet signals which cannot be true with local-time processes frequently observed in karst aquifer. More recently, a new approach associating empirical mode decomposition and the Hilbert transform was presented for hydrosystems. It allows an orthogonal decomposition of the signal analyzed and provides a more accurate estimation of changing variability scales across time for highly transient signals. This study aims to identify the natural and anthropogenic parameters which control turbidity released at a well for drinking water supply. The well is located in the chalk karst aquifer near the Seine river at 40 km of the Seine estuary in western Paris Basin. At this location, tidal variations greatly affect the level of the water in the Seine. Continuous wavelet analysis on turbidity dataset have been used to decompose turbidity release at the well into three components i) the rain event periods, ii) the pumping periods and iii) the tidal range of Seine river. Time-domain reconstruction by inverse wavelet transform allows

  3. A Multiscale Approach to InSAR Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Simons, M.; Hetland, E. A.; Muse, P.; Lin, Y.; Dicaprio, C. J.

    2009-12-01

    We describe progress in the development of MInTS (Multiscale analysis of InSAR Time Series), an approach to constructed self-consistent time-dependent deformation observations from repeated satellite-based InSAR images of a given region. MInTS relies on a spatial wavelet decomposition to permit the inclusion of distance based spatial correlations in the observations while maintaining computational tractability. In essence, MInTS allows one to considers all data at the same time as opposed to one pixel at a time, thereby taking advantage of both spatial and temporal characteristics of the deformation field. This approach also permits a consistent treatment of all data independent of the presence of localized holes due to unwrapping issues in any given interferogram. Specifically, the presence of holes is accounted for through a weighting scheme that accounts for the extent of actual data versus the area of holes associated with any given wavelet. In terms of the temporal representation, we have the flexibility to explicitly parametrize known processes that are expected to contribute to a given set of observations (e.g., co-seismic steps and post-seismic transients, secular variations, seasonal oscillations, etc.). Our approach also allows for the temporal parametrization to include a set of general functions in order to account for unexpected processes. We allow for various forms of model regularization using a cross-validation approach to select penalty parameters. We also experiment with the use of sparsity inducing regularization as a way to select from a large dictionary of time functions. The multiscale analysis allows us to consider various contributions (e.g., orbit errors) that may affect specific scales but not others. The methods described here are all embarrassingly parallel and suitable for implementation on a cluster computer. We demonstrate the use of MInTS using a large suite of ERS-1/2 and Envisat interferograms for Long Valley Caldera, and validate

  4. Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.

    2015-06-01

    This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.

  5. Multifractal analysis of time series generated by discrete Ito equations

    SciTech Connect

    Telesca, Luciano; Czechowski, Zbigniew; Lovallo, Michele

    2015-06-15

    In this study, we show that discrete Ito equations with short-tail Gaussian marginal distribution function generate multifractal time series. The multifractality is due to the nonlinear correlations, which are hidden in Markov processes and are generated by the interrelation between the drift and the multiplicative stochastic forces in the Ito equation. A link between the range of the generalized Hurst exponents and the mean of the squares of all averaged net forces is suggested.

  6. Financial time series analysis based on information categorization method

    NASA Astrophysics Data System (ADS)

    Tian, Qiang; Shang, Pengjian; Feng, Guochen

    2014-12-01

    The paper mainly applies the information categorization method to analyze the financial time series. The method is used to examine the similarity of different sequences by calculating the distances between them. We apply this method to quantify the similarity of different stock markets. And we report the results of similarity in US and Chinese stock markets in periods 1991-1998 (before the Asian currency crisis), 1999-2006 (after the Asian currency crisis and before the global financial crisis), and 2007-2013 (during and after global financial crisis) by using this method. The results show the difference of similarity between different stock markets in different time periods and the similarity of the two stock markets become larger after these two crises. Also we acquire the results of similarity of 10 stock indices in three areas; it means the method can distinguish different areas' markets from the phylogenetic trees. The results show that we can get satisfactory information from financial markets by this method. The information categorization method can not only be used in physiologic time series, but also in financial time series.

  7. Dynamical Analysis and Visualization of Tornadoes Time Series

    PubMed Central

    2015-01-01

    In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns. PMID:25790281

  8. Dynamical analysis and visualization of tornadoes time series.

    PubMed

    Lopes, António M; Tenreiro Machado, J A

    2015-01-01

    In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns. PMID:25790281

  9. Time-Series Analysis of Supergranule Characterstics at Solar Minimum

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, W. Dean

    2013-01-01

    Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three to five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.

  10. Time series analysis of transient chaos: Theory and experiment

    SciTech Connect

    Janosi, I.M.; Tel, T.

    1996-06-01

    A simple method is described how nonattracting chaotic sets can be reconstructed from time series by gluing those pieces of many transiently chaotic signals together that come close to this invariant set. The method is illustrated by both a map of well known dynamics, the H{acute e}non map, and a signal obtained from an experiment, the NMR laser. The strange saddle responsible for the transient chaotic behavior is reconstructed and its characteristics like dimension, Lyapunov exponent, and correlation function are determined. {copyright} {ital 1996 American Institute of Physics.}

  11. Visibility graph network analysis of gold price time series

    NASA Astrophysics Data System (ADS)

    Long, Yu

    2013-08-01

    Mapping time series into a visibility graph network, the characteristics of the gold price time series and return temporal series, and the mechanism underlying the gold price fluctuation have been explored from the perspective of complex network theory. The network degree distribution characters, which change from power law to exponent law when the series was shuffled from original sequence, and the average path length characters, which change from L∼lnN into lnL∼lnN as the sequence was shuffled, demonstrate that price series and return series are both long-rang dependent fractal series. The relations of Hurst exponent to the power-law exponent of degree distribution demonstrate that the logarithmic price series is a fractal Brownian series and the logarithmic return series is a fractal Gaussian series. Power-law exponents of degree distribution in a time window changing with window moving demonstrates that a logarithmic gold price series is a multifractal series. The Power-law average clustering coefficient demonstrates that the gold price visibility graph is a hierarchy network. The hierarchy character, in light of the correspondence of graph to price fluctuation, means that gold price fluctuation is a hierarchy structure, which appears to be in agreement with Elliot’s experiential Wave Theory on stock price fluctuation, and the local-rule growth theory of a hierarchy network means that the hierarchy structure of gold price fluctuation originates from persistent, short term factors, such as short term speculation.

  12. A new complexity measure for time series analysis and classification

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin; Balasubramanian, Karthi; Dey, Sutirth

    2013-07-01

    Complexity measures are used in a number of applications including extraction of information from data such as ecological time series, detection of non-random structure in biomedical signals, testing of random number generators, language recognition and authorship attribution etc. Different complexity measures proposed in the literature like Shannon entropy, Relative entropy, Lempel-Ziv, Kolmogrov and Algorithmic complexity are mostly ineffective in analyzing short sequences that are further corrupted with noise. To address this problem, we propose a new complexity measure ETC and define it as the "Effort To Compress" the input sequence by a lossless compression algorithm. Here, we employ the lossless compression algorithm known as Non-Sequential Recursive Pair Substitution (NSRPS) and define ETC as the number of iterations needed for NSRPS to transform the input sequence to a constant sequence. We demonstrate the utility of ETC in two applications. ETC is shown to have better correlation with Lyapunov exponent than Shannon entropy even with relatively short and noisy time series. The measure also has a greater rate of success in automatic identification and classification of short noisy sequences, compared to entropy and a popular measure based on Lempel-Ziv compression (implemented by Gzip).

  13. Time series analysis of molecular dynamics simulation using wavelet

    NASA Astrophysics Data System (ADS)

    Toda, Mikito

    2012-08-01

    A new method is presented to extract nonstationary features of slow collective motion toward time series data of molecular dynamics simulation for proteins. The method consists of the following two steps: (1) the wavelet transformation and (2) the singular value decomposition (SVD). The wavelet transformation enables us to characterize time varying features of oscillatory motions and SVD enables us to reduce the degrees of freedom of the movement. We apply the method to molecular dynamics simulation of various proteins such as Adenylate Kinase from Escherichia coli (AKE) and Thermomyces lanuginosa lipase (TLL). Moreover, we introduce indexes to characterize collective motion of proteins. These indexes provide us with information of nonstationary deformation of protein structures. We discuss future prospects of our study involving "intrinsically disordered proteins".

  14. Feasibility of Estimating Relative Nutrient Contributions of Agriculture using MODIS Time Series

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Gasser, Gerald; Spiering, Bruce

    2008-01-01

    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring.

  15. Feasibility of Estimating Relative Nutrient Contributions of Agriculture and Forests Using MODIS Time Series

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Gasser, Gerald; Spiering, Bruce

    2010-01-01

    Around the Gulf of Mexico, high-input crops in several regions make a significant contribution to nutrient loading of small to medium estuaries and to the near-shore Gulf. Some crops cultivated near the coast include sorghum in Texas, rice in Texas and Louisiana, sugarcane in Florida and Louisiana, citrus orchards in Florida, pecan orchards in Mississippi and Alabama, and heavy sod and ornamental production around Mobile and Tampa Bay. In addition to crops, management of timberlands in proximity to the coasts also plays a role in nutrient loading. In the summer of 2008, a feasibility project is planned to explore the use of NASA data to enhance the spatial and temporal resolution of near-coast nutrient source information available to the coastal community. The purpose of this project is to demonstrate the viability of nutrient source information products applicable to small to medium watersheds surrounding the Gulf of Mexico. Conceptually, these products are intended to complement estuarine nutrient monitoring.

  16. A non linear analysis of human gait time series based on multifractal analysis and cross correlations

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, A.

    2005-01-01

    We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems.

  17. Presentations to Emergency Departments for COPD: A Time Series Analysis.

    PubMed

    Rosychuk, Rhonda J; Youngson, Erik; Rowe, Brian H

    2016-01-01

    Background. Chronic obstructive pulmonary disease (COPD) is a common respiratory condition characterized by progressive dyspnea and acute exacerbations which may result in emergency department (ED) presentations. This study examines monthly rates of presentations to EDs in one Canadian province. Methods. Presentations for COPD made by individuals aged ≥55 years during April 1999 to March 2011 were extracted from provincial databases. Data included age, sex, and health zone of residence (North, Central, South, and urban). Crude rates were calculated. Seasonal autoregressive integrated moving average (SARIMA) time series models were developed. Results. ED presentations for COPD totalled 188,824 and the monthly rate of presentation remained relatively stable (from 197.7 to 232.6 per 100,000). Males and seniors (≥65 years) comprised 52.2% and 73.7% of presentations, respectively. The ARIMA(1,0, 0) × (1,0, 1)12 model was appropriate for the overall rate of presentations and for each sex and seniors. Zone specific models showed relatively stable or decreasing rates; the North zone had an increasing trend. Conclusions. ED presentation rates for COPD have been relatively stable in Alberta during the past decade. However, their increases in northern regions deserve further exploration. The SARIMA models quantified the temporal patterns and can help planning future health care service needs. PMID:27445514

  18. Physiological time-series analysis: what does regularity quantify?

    NASA Technical Reports Server (NTRS)

    Pincus, S. M.; Goldberger, A. L.

    1994-01-01

    Approximate entropy (ApEn) is a recently developed statistic quantifying regularity and complexity that appears to have potential application to a wide variety of physiological and clinical time-series data. The focus here is to provide a better understanding of ApEn to facilitate its proper utilization, application, and interpretation. After giving the formal mathematical description of ApEn, we provide a multistep description of the algorithm as applied to two contrasting clinical heart rate data sets. We discuss algorithm implementation and interpretation and introduce a general mathematical hypothesis of the dynamics of a wide class of diseases, indicating the utility of ApEn to test this hypothesis. We indicate the relationship of ApEn to variability measures, the Fourier spectrum, and algorithms motivated by study of chaotic dynamics. We discuss further mathematical properties of ApEn, including the choice of input parameters, statistical issues, and modeling considerations, and we conclude with a section on caveats to ensure correct ApEn utilization.

  19. Presentations to Emergency Departments for COPD: A Time Series Analysis

    PubMed Central

    Youngson, Erik; Rowe, Brian H.

    2016-01-01

    Background. Chronic obstructive pulmonary disease (COPD) is a common respiratory condition characterized by progressive dyspnea and acute exacerbations which may result in emergency department (ED) presentations. This study examines monthly rates of presentations to EDs in one Canadian province. Methods. Presentations for COPD made by individuals aged ≥55 years during April 1999 to March 2011 were extracted from provincial databases. Data included age, sex, and health zone of residence (North, Central, South, and urban). Crude rates were calculated. Seasonal autoregressive integrated moving average (SARIMA) time series models were developed. Results. ED presentations for COPD totalled 188,824 and the monthly rate of presentation remained relatively stable (from 197.7 to 232.6 per 100,000). Males and seniors (≥65 years) comprised 52.2% and 73.7% of presentations, respectively. The ARIMA(1,0, 0) × (1,0, 1)12 model was appropriate for the overall rate of presentations and for each sex and seniors. Zone specific models showed relatively stable or decreasing rates; the North zone had an increasing trend. Conclusions. ED presentation rates for COPD have been relatively stable in Alberta during the past decade. However, their increases in northern regions deserve further exploration. The SARIMA models quantified the temporal patterns and can help planning future health care service needs. PMID:27445514

  20. Time series analysis of diverse extreme phenomena: universal features

    NASA Astrophysics Data System (ADS)

    Eftaxias, K.; Balasis, G.

    2012-04-01

    The field of study of complex systems holds that the dynamics of complex systems are founded on universal principles that may used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We suggest that earthquake, epileptic seizures, solar flares, and magnetic storms dynamics can be analyzed within similar mathematical frameworks. A central property of aforementioned extreme events generation is the occurrence of coherent large-scale collective behavior with very rich structure, resulting from repeated nonlinear interactions among the corresponding constituents. Consequently, we apply the Tsallis nonextensive statistical mechanics as it proves an appropriate framework in order to investigate universal principles of their generation. First, we examine the data in terms of Tsallis entropy aiming to discover common "pathological" symptoms of transition to a significant shock. By monitoring the temporal evolution of the degree of organization in time series we observe similar distinctive features revealing significant reduction of complexity during their emergence. Second, a model for earthquake dynamics coming from a nonextensive Tsallis formalism, starting from first principles, has been recently introduced. This approach leads to an energy distribution function (Gutenberg-Richter type law) for the magnitude distribution of earthquakes, providing an excellent fit to seismicities generated in various large geographic areas usually identified as seismic regions. We show that this function is able to describe the energy distribution (with similar non-extensive q-parameter) of solar flares, magnetic storms, epileptic and earthquake shocks. The above mentioned evidence of a universal statistical behavior suggests the possibility of a common approach for studying space weather, earthquakes and epileptic seizures.

  1. Nonlinear time series analysis of normal and pathological human walking

    NASA Astrophysics Data System (ADS)

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2000-12-01

    Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the

  2. New insights into time series analysis. I. Correlated observations

    NASA Astrophysics Data System (ADS)

    Ferreira Lopes, C. E.; Cross, N. J. G.

    2016-02-01

    Context. The first step when investigating time varying data is the detection of any reliable changes in star brightness. This step is crucial to decreasing the processing time by reducing the number of sources processed in later, slower steps. Variability indices and their combinations have been used to identify variability patterns and to select non-stochastic variations, but the separation of true variables is hindered because of wavelength-correlated systematics of instrumental and atmospheric origin or due to possible data reduction anomalies. Aims: The main aim is to review the current inventory of correlation variability indices and measure the efficiency for selecting non-stochastic variations in photometric data. Methods: We test new and standard data-mining methods for correlated data using public time-domain data from the WFCAM Science Archive (WSA). This archive contains multi-wavelength calibration data (WFCAMCAL) for 216,722 point sources, with at least ten unflagged epochs in any of five filters (YZJHK), which were used to test the different indices against. We improve the panchromatic variability indices and introduce a new set of variability indices for preselecting variable star candidates. Using the WFCAMCAL Variable Star Catalogue (WVSC1) we delimit the efficiency of each variability index. Moreover we test new insights about these indices to improve the efficiency of detection of time-series data dominated by correlated variations. Results: We propose five new variability indices that display high efficiency for the detection of variable stars. We determine the best way to select variable stars with these indices and the current tool inventory. In addition, we propose a universal analytical expression to select likely variables using the fraction of fluctuations on these indices (ffluc). The ffluc can be used as a universal way to analyse photometric data since it displays a only weak dependency with the instrument properties. The variability

  3. On-line analysis of reactor noise using time-series analysis

    SciTech Connect

    McGevna, V.G.

    1981-10-01

    A method to allow use of time series analysis for on-line noise analysis has been developed. On-line analysis of noise in nuclear power reactors has been limited primarily to spectral analysis and related frequency domain techniques. Time series analysis has many distinct advantages over spectral analysis in the automated processing of reactor noise. However, fitting an autoregressive-moving average (ARMA) model to time series data involves non-linear least squares estimation. Unless a high speed, general purpose computer is available, the calculations become too time consuming for on-line applications. To eliminate this problem, a special purpose algorithm was developed for fitting ARMA models. While it is based on a combination of steepest descent and Taylor series linearization, properties of the ARMA model are used so that the auto- and cross-correlation functions can be used to eliminate the need for estimating derivatives.

  4. On the Interpretation of Running Trends as Summary Statistics for Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Vigo, Isabel M.; Trottini, Mario; Belda, Santiago

    2016-04-01

    In recent years, running trends analysis (RTA) has been widely used in climate applied research as summary statistics for time series analysis. There is no doubt that RTA might be a useful descriptive tool, but despite its general use in applied research, precisely what it reveals about the underlying time series is unclear and, as a result, its interpretation is unclear too. This work contributes to such interpretation in two ways: 1) an explicit formula is obtained for the set of time series with a given series of running trends, making it possible to show that running trends, alone, perform very poorly as summary statistics for time series analysis; and 2) an equivalence is established between RTA and the estimation of a (possibly nonlinear) trend component of the underlying time series using a weighted moving average filter. Such equivalence provides a solid ground for RTA implementation and interpretation/validation.

  5. Spatiotemporal analysis of GPS time series in vertical direction using independent component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Dai, Wujiao; Peng, Wei; Meng, Xiaolin

    2015-11-01

    GPS has been widely used in the field of geodesy and geodynamics thanks to its technology development and the improvement of positioning accuracy. A time series observed by GPS in vertical direction usually contains tectonic signals, non-tectonic signals, residual atmospheric delay, measurement noise, etc. Analyzing these information is the basis of crustal deformation research. Furthermore, analyzing the GPS time series and extracting the non-tectonic information are helpful to study the effect of various geophysical events. Principal component analysis (PCA) is an effective tool for spatiotemporal filtering and GPS time series analysis. But as it is unable to extract statistically independent components, PCA is unfavorable for achieving the implicit information in time series. Independent component analysis (ICA) is a statistical method of blind source separation (BSS) and can separate original signals from mixed observations. In this paper, ICA is used as a spatiotemporal filtering method to analyze the spatial and temporal features of vertical GPS coordinate time series in the UK and Sichuan-Yunnan region in China. Meanwhile, the contributions from atmospheric and soil moisture mass loading are evaluated. The analysis of the relevance between the independent components and mass loading with their spatial distribution shows that the signals extracted by ICA have a strong correlation with the non-tectonic deformation, indicating that ICA has a better performance in spatiotemporal analysis.

  6. The Effectiveness of Blind Source Separation Using Independent Component Analysis for GNSS Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Dong, Danan; Chen, Wen

    2016-04-01

    Due to the development of GNSS technology and the improvement of its positioning accuracy, observational data obtained by GNSS is widely used in Earth space geodesy and geodynamics research. Whereas the GNSS time series data of observation stations contains a plenty of information. This includes geographical space changes, deformation of the Earth, the migration of subsurface material, instantaneous deformation of the Earth, weak deformation and other blind signals. In order to decompose some instantaneous deformation underground, weak deformation and other blind signals hided in GNSS time series, we apply Independent Component Analysis (ICA) to daily station coordinate time series of the Southern California Integrated GPS Network. As ICA is based on the statistical characteristics of the observed signal. It uses non-Gaussian and independence character to process time series to obtain the source signal of the basic geophysical events. In term of the post-processing procedure of precise time-series data by GNSS, this paper examines GNSS time series using the principal component analysis (PCA) module of QOCA and ICA algorithm to separate the source signal. Then we focus on taking into account of these two signal separation technologies, PCA and ICA, for separating original signal that related geophysical disturbance changes from the observed signals. After analyzing these separation process approaches, we demonstrate that in the case of multiple factors, PCA exists ambiguity in the separation of source signals, that is the result related is not clear, and ICA will be better than PCA, which means that dealing with GNSS time series that the combination of signal source is unknown is suitable to use ICA.

  7. GNSS Vertical Coordinate Time Series Analysis Using Single-Channel Independent Component Analysis Method

    NASA Astrophysics Data System (ADS)

    Peng, Wei; Dai, Wujiao; Santerre, Rock; Cai, Changsheng; Kuang, Cuilin

    2016-05-01

    Daily vertical coordinate time series of Global Navigation Satellite System (GNSS) stations usually contains tectonic and non-tectonic deformation signals, residual atmospheric delay signals, measurement noise, etc. In geophysical studies, it is very important to separate various geophysical signals from the GNSS time series to truthfully reflect the effect of mass loadings on crustal deformation. Based on the independence of mass loadings, we combine the Ensemble Empirical Mode Decomposition (EEMD) with the Phase Space Reconstruction-based Independent Component Analysis (PSR-ICA) method to analyze the vertical time series of GNSS reference stations. In the simulation experiment, the seasonal non-tectonic signal is simulated by the sum of the correction of atmospheric mass loading and soil moisture mass loading. The simulated seasonal non-tectonic signal can be separated into two independent signals using the PSR-ICA method, which strongly correlated with atmospheric mass loading and soil moisture mass loading, respectively. Likewise, in the analysis of the vertical time series of GNSS reference stations of Crustal Movement Observation Network of China (CMONOC), similar results have been obtained using the combined EEMD and PSR-ICA method. All these results indicate that the EEMD and PSR-ICA method can effectively separate the independent atmospheric and soil moisture mass loading signals and illustrate the significant cause of the seasonal variation of GNSS vertical time series in the mainland of China.

  8. Correlation between detrended fluctuation analysis and the Lempel-Ziv complexity in nonlinear time series analysis

    NASA Astrophysics Data System (ADS)

    Tang, You-Fu; Liu, Shu-Lin; Jiang, Rui-Hong; Liu, Ying-Hui

    2013-03-01

    We study the correlation between detrended fluctuation analysis (DFA) and the Lempel-Ziv complexity (LZC) in nonlinear time series analysis in this paper. Typical dynamic systems including a logistic map and a Duffing model are investigated. Moreover, the influence of Gaussian random noise on both the DFA and LZC are analyzed. The results show a high correlation between the DFA and LZC, which can quantify the non-stationarity and the nonlinearity of the time series, respectively. With the enhancement of the random component, the exponent a and the normalized complexity index C show increasing trends. In addition, C is found to be more sensitive to the fluctuation in the nonlinear time series than α. Finally, the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve, and an effective fault diagnosis result is obtained.

  9. Estimating Reliability of Disturbances in Satellite Time Series Data Based on Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Z.-G.; Tang, P.; Zhou, M.

    2016-06-01

    Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with "Change/ No change" by most of the present methods, while few methods focus on estimating reliability (or confidence level) of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1) Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST). (2) Forecasting and detecting disturbances in new time series data. (3) Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI) and Confidence Levels (CL). The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  10. Catchment classification based on a comparative analysis of time series of natural tracers

    NASA Astrophysics Data System (ADS)

    Lehr, Christian; Lischeid, Gunnar; Tetzlaff, Doerthe

    2014-05-01

    Catchments do not only smooth the precipitation signal into the discharge hydrograph, but transform also chemical signals (e.g. contaminations or nutrients) in a characteristic way. Under the assumption of an approximately homogeneous input signal of a conservative tracer in the catchment the transformation of the signal at different locations can be used to infer hydrological properties of the catchment. For this study comprehensive data on geology, soils, topography, land use, etc. as well as hydrological knowledge about transit times, mixing ratio of base flow, etc. is available for the catchment of the river Dee (1849 km2) in Scotland, UK. The Dee has its origin in the Cairngorm Mountains in Central Scotland and flows towards the eastern coast of Scotland where it ends in the Northern Sea at Aberdeen. From the source in the west to the coast in the east there is a distinct decrease in precipitation and altitude. For one year water quality in the Dee has been sampled biweekly at 59 sites along the main stem of the river and outflows of a number of tributaries. A nonlinear variant of Principal Component Analysis (Isometric Feature Mapping) has been applied on time series of different chemical parameters that were assumed to be relative conservative and applicable as natural tracers. Here, the information in the time series was not used to analyse the temporal development at the different sites, but in a snapshot kind of approach, the spatial expression of the different solutes at the 26 sampling dates. For all natural tracers the first component depicted > 89 % of the variance in the series. Subsequently, the spatial expression of the first component was related to the spatial patterns of the catchment characteristics. The presented approach allows to characterise a catchment in a spatial discrete way according to the hydrologically active properties of the catchment on the landscape scale, which is often the scale of interest for water managing purposes.

  11. CCD Observing and Dynamical Time Series Analysis of Active Galactic Nuclei.

    NASA Astrophysics Data System (ADS)

    Nair, Achotham Damodaran

    1995-01-01

    The properties, working and operations procedure of the Charge Coupled Device (CCD) at the 30" telescope at Rosemary Hill Observatory (RHO) are discussed together with the details of data reduction. Several nonlinear techniques of time series analysis, based on the behavior of the nearest neighbors, have been used to analyze the time series of the quasar 3C 345. A technique using Artificial Neural Networks based on prediction of the time series is used to study the dynamical properties of 3C 345. Finally, a heuristic model for variability of Active Galactic Nuclei is discussed.

  12. Trend Estimation and Regression Analysis in Climatological Time Series: An Application of Structural Time Series Models and the Kalman Filter.

    NASA Astrophysics Data System (ADS)

    Visser, H.; Molenaar, J.

    1995-05-01

    The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of

  13. Phase synchronization based minimum spanning trees for analysis of financial time series with nonlinear correlations

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar

    2016-02-01

    The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time

  14. Time series analysis of hydraulic head and strain of subsurface formations in the Kanto Plain, Japan

    NASA Astrophysics Data System (ADS)

    Aichi, Masaatsu

    2015-04-01

    The hydraulic head and strain of subsurface formations have been monitored more than several decades in the Kanto Plain, Japan. Time series analysis of these data revealed that the relation between hydraulic head and strain observed in some monitoring wells could be modeled by linear poroelasticity. Based on the relations of time series data, the poroelastic coefficients were estimated. The obtained values were consistent with those from laboratory experiments reported in literatures.

  15. Process fault detection and nonlinear time series analysis for anomaly detection in safeguards

    SciTech Connect

    Burr, T.L.; Mullen, M.F.; Wangen, L.E.

    1994-02-01

    In this paper we discuss two advanced techniques, process fault detection and nonlinear time series analysis, and apply them to the analysis of vector-valued and single-valued time-series data. We investigate model-based process fault detection methods for analyzing simulated, multivariate, time-series data from a three-tank system. The model-predictions are compared with simulated measurements of the same variables to form residual vectors that are tested for the presence of faults (possible diversions in safeguards terminology). We evaluate two methods, testing all individual residuals with a univariate z-score and testing all variables simultaneously with the Mahalanobis distance, for their ability to detect loss of material from two different leak scenarios from the three-tank system: a leak without and with replacement of the lost volume. Nonlinear time-series analysis tools were compared with the linear methods popularized by Box and Jenkins. We compare prediction results using three nonlinear and two linear modeling methods on each of six simulated time series: two nonlinear and four linear. The nonlinear methods performed better at predicting the nonlinear time series and did as well as the linear methods at predicting the linear values.

  16. Brief Communication: Earthquake sequencing: analysis of time series constructed from the Markov chain model

    NASA Astrophysics Data System (ADS)

    Cavers, M. S.; Vasudevan, K.

    2015-10-01

    Directed graph representation of a Markov chain model to study global earthquake sequencing leads to a time series of state-to-state transition probabilities that includes the spatio-temporally linked recurrent events in the record-breaking sense. A state refers to a configuration comprised of zones with either the occurrence or non-occurrence of an earthquake in each zone in a pre-determined time interval. Since the time series is derived from non-linear and non-stationary earthquake sequencing, we use known analysis methods to glean new information. We apply decomposition procedures such as ensemble empirical mode decomposition (EEMD) to study the state-to-state fluctuations in each of the intrinsic mode functions. We subject the intrinsic mode functions, derived from the time series using the EEMD, to a detailed analysis to draw information content of the time series. Also, we investigate the influence of random noise on the data-driven state-to-state transition probabilities. We consider a second aspect of earthquake sequencing that is closely tied to its time-correlative behaviour. Here, we extend the Fano factor and Allan factor analysis to the time series of state-to-state transition frequencies of a Markov chain. Our results support not only the usefulness of the intrinsic mode functions in understanding the time series but also the presence of power-law behaviour exemplified by the Fano factor and the Allan factor.

  17. Biological Time Series Analysis Using a Context Free Language: Applicability to Pulsatile Hormone Data

    PubMed Central

    Dean, Dennis A.; Adler, Gail K.; Nguyen, David P.; Klerman, Elizabeth B.

    2014-01-01

    We present a novel approach for analyzing biological time-series data using a context-free language (CFL) representation that allows the extraction and quantification of important features from the time-series. This representation results in Hierarchically AdaPtive (HAP) analysis, a suite of multiple complementary techniques that enable rapid analysis of data and does not require the user to set parameters. HAP analysis generates hierarchically organized parameter distributions that allow multi-scale components of the time-series to be quantified and includes a data analysis pipeline that applies recursive analyses to generate hierarchically organized results that extend traditional outcome measures such as pharmacokinetics and inter-pulse interval. Pulsicons, a novel text-based time-series representation also derived from the CFL approach, are introduced as an objective qualitative comparison nomenclature. We apply HAP to the analysis of 24 hours of frequently sampled pulsatile cortisol hormone data, which has known analysis challenges, from 14 healthy women. HAP analysis generated results in seconds and produced dozens of figures for each participant. The results quantify the observed qualitative features of cortisol data as a series of pulse clusters, each consisting of one or more embedded pulses, and identify two ultradian phenotypes in this dataset. HAP analysis is designed to be robust to individual differences and to missing data and may be applied to other pulsatile hormones. Future work can extend HAP analysis to other time-series data types, including oscillatory and other periodic physiological signals. PMID:25184442

  18. Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin

    NASA Astrophysics Data System (ADS)

    zhang, L.

    2011-12-01

    Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be

  19. Providing web-based tools for time series access and analysis

    NASA Astrophysics Data System (ADS)

    Eberle, Jonas; Hüttich, Christian; Schmullius, Christiane

    2014-05-01

    Time series information is widely used in environmental change analyses and is also an essential information for stakeholders and governmental agencies. However, a challenging issue is the processing of raw data and the execution of time series analysis. In most cases, data has to be found, downloaded, processed and even converted in the correct data format prior to executing time series analysis tools. Data has to be prepared to use it in different existing software packages. Several packages like TIMESAT (Jönnson & Eklundh, 2004) for phenological studies, BFAST (Verbesselt et al., 2010) for breakpoint detection, and GreenBrown (Forkel et al., 2013) for trend calculations are provided as open-source software and can be executed from the command line. This is needed if data pre-processing and time series analysis is being automated. To bring both parts, automated data access and data analysis, together, a web-based system was developed to provide access to satellite based time series data and access to above mentioned analysis tools. Users of the web portal are able to specify a point or a polygon and an available dataset (e.g., Vegetation Indices and Land Surface Temperature datasets from NASA MODIS). The data is then being processed and provided as a time series CSV file. Afterwards the user can select an analysis tool that is being executed on the server. The final data (CSV, plot images, GeoTIFFs) is visualized in the web portal and can be downloaded for further usage. As a first use case, we built up a complimentary web-based system with NASA MODIS products for Germany and parts of Siberia based on the Earth Observation Monitor (www.earth-observation-monitor.net). The aim of this work is to make time series analysis with existing tools as easy as possible that users can focus on the interpretation of the results. References: Jönnson, P. and L. Eklundh (2004). TIMESAT - a program for analysing time-series of satellite sensor data. Computers and Geosciences 30

  20. Filter-based multiscale entropy analysis of complex physiological time series.

    PubMed

    Xu, Yuesheng; Zhao, Liang

    2013-08-01

    Multiscale entropy (MSE) has been widely and successfully used in analyzing the complexity of physiological time series. We reinterpret the averaging process in MSE as filtering a time series by a filter of a piecewise constant type. From this viewpoint, we introduce filter-based multiscale entropy (FME), which filters a time series to generate multiple frequency components, and then we compute the blockwise entropy of the resulting components. By choosing filters adapted to the feature of a given time series, FME is able to better capture its multiscale information and to provide more flexibility for studying its complexity. Motivated by the heart rate turbulence theory, which suggests that the human heartbeat interval time series can be described in piecewise linear patterns, we propose piecewise linear filter multiscale entropy (PLFME) for the complexity analysis of the time series. Numerical results from PLFME are more robust to data of various lengths than those from MSE. The numerical performance of the adaptive piecewise constant filter multiscale entropy without prior information is comparable to that of PLFME, whose design takes prior information into account. PMID:24032873

  1. Detecting Anomaly Regions in Satellite Image Time Series Based on Sesaonal Autocorrelation Analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Z.-G.; Tang, P.; Zhou, M.

    2016-06-01

    Anomaly regions in satellite images can reflect unexpected changes of land cover caused by flood, fire, landslide, etc. Detecting anomaly regions in satellite image time series is important for studying the dynamic processes of land cover changes as well as for disaster monitoring. Although several methods have been developed to detect land cover changes using satellite image time series, they are generally designed for detecting inter-annual or abrupt land cover changes, but are not focusing on detecting spatial-temporal changes in continuous images. In order to identify spatial-temporal dynamic processes of unexpected changes of land cover, this study proposes a method for detecting anomaly regions in each image of satellite image time series based on seasonal autocorrelation analysis. The method was validated with a case study to detect spatial-temporal processes of a severe flooding using Terra/MODIS image time series. Experiments demonstrated the advantages of the method that (1) it can effectively detect anomaly regions in each of satellite image time series, showing spatial-temporal varying process of anomaly regions, (2) it is flexible to meet some requirement (e.g., z-value or significance level) of detection accuracies with overall accuracy being up to 89% and precision above than 90%, and (3) it does not need time series smoothing and can detect anomaly regions in noisy satellite images with a high reliability.

  2. Complexity analysis of the air temperature and the precipitation time series in Serbia

    NASA Astrophysics Data System (ADS)

    Mimić, G.; Mihailović, D. T.; Kapor, D.

    2015-11-01

    In this paper, we have analyzed the time series of daily values for three meteorological elements, two continuous and a discontinuous one, i.e., the maximum and minimum air temperature and the precipitation. The analysis was done based on the observations from seven stations in Serbia from the period 1951-2010. The main aim of this paper was to quantify the complexity of the annual values for the mentioned time series and to calculate the rate of its change. For that purpose, we have used the sample entropy and the Kolmogorov complexity as the measures which can indicate the variability and irregularity of a given time series. Results obtained show that the maximum temperature has increasing trends in the given period which points out a warming, ranged in the interval 1-2 °C. The increasing temperature indicates the higher internal energy of the atmosphere, changing the weather patterns, manifested in the time series. The Kolmogorov complexity of the maximum temperature time series has statistically significant increasing trends, while the sample entropy has increasing but statistically insignificant trend. The trends of complexity measures for the minimum temperature depend on the location. Both complexity measures for the precipitation time series have decreasing trends.

  3. The application of complex network time series analysis in turbulent heated jets

    NASA Astrophysics Data System (ADS)

    Charakopoulos, A. K.; Karakasidis, T. E.; Papanicolaou, P. N.; Liakopoulos, A.

    2014-06-01

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  4. The application of complex network time series analysis in turbulent heated jets

    SciTech Connect

    Charakopoulos, A. K.; Karakasidis, T. E. Liakopoulos, A.; Papanicolaou, P. N.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  5. Accuracy enhancement of GPS time series using principal component analysis and block spatial filtering

    NASA Astrophysics Data System (ADS)

    He, Xiaoxing; Hua, Xianghong; Yu, Kegen; Xuan, Wei; Lu, Tieding; Zhang, W.; Chen, X.

    2015-03-01

    This paper focuses on performance analysis and accuracy enhancement of long-term position time series of a regional network of GPS stations with two near sub-blocks, one block of 8 stations in Cascadia region and another block of 14 stations in Southern California. We have analyzed the seasonal variations of the 22 IGS site positions between 2004 and 2011. The Green's function is used to calculate the station-site displacements induced by the environmental loading due to atmospheric pressure, soil moisture, snow depth and nontidal ocean. The analysis has revealed that these loading factors can result in position shift of centimeter level, the displacement time series exhibit a periodic pattern, which can explain about 12.70-21.78% of the seasonal amplitude on vertical GPS time series, and the loading effect is significantly different among the two nearby geographical regions. After the loading effect is corrected, the principal component analysis (PCA)-based block spatial filtering is proposed to filter out the remaining common mode error (CME) of the GPS time series. The results show that the PCA-based block spatial filtering can extract the CME more accurately and effectively than the conventional overall filtering method, reducing more of the uncertainty. With the loading correction and block spatial filtering, about 68.34-73.20% of the vertical GPS seasonal power can be separated and removed, improving the reliability of the GPS time series and hence enabling better deformation analysis and higher precision geodetic applications.

  6. Mobile Visualization and Analysis Tools for Spatial Time-Series Data

    NASA Astrophysics Data System (ADS)

    Eberle, J.; Hüttich, C.; Schmullius, C.

    2013-12-01

    The Siberian Earth System Science Cluster (SIB-ESS-C) provides access and analysis services for spatial time-series data build on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and climate data from meteorological stations. Until now a webportal for data access, visualization and analysis with standard-compliant web services was developed for SIB-ESS-C. As a further enhancement a mobile app was developed to provide an easy access to these time-series data for field campaigns. The app sends the current position from the GPS receiver and a specific dataset (like land surface temperature or vegetation indices) - selected by the user - to our SIB-ESS-C web service and gets the requested time-series data for the identified pixel back in real-time. The data is then being plotted directly in the app. Furthermore the user has possibilities to analyze the time-series data for breaking points and other phenological values. These processings are executed on demand of the user on our SIB-ESS-C web server and results are transfered to the app. Any processing can also be done at the SIB-ESS-C webportal. The aim of this work is to make spatial time-series data and analysis functions available for end users without the need of data processing. In this presentation the author gives an overview on this new mobile app, the functionalities, the technical infrastructure as well as technological issues (how the app was developed, our made experiences).

  7. On statistical inference in time series analysis of the evolution of road safety.

    PubMed

    Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora

    2013-11-01

    Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. PMID:23260716

  8. Wavelet analysis for non-stationary, non-linear time series

    NASA Astrophysics Data System (ADS)

    Schulte, J. A.

    2015-12-01

    Methods for detecting and quantifying nonlinearities in nonstationary time series are introduced and developed. In particular, higher-order wavelet analysis was applied to an ideal time series and the Quasi-biennial Oscillation (QBO) time series. Multiple-testing problems inherent in wavelet analysis were addressed by controlling the false discovery rate. A new local autobicoherence spectrum facilitated the detection of local nonlinearities and the quantification of cycle geometry. The local autobicoherence spectrum of the QBO time series showed that the QBO time series contained a mode with a period of 28 months that was phase-coupled to a harmonic with a period of 14 months. An additional nonlinearly interacting triad was found among modes with periods of 10, 16, 26 months. Local biphase spectra determined that the nonlinear interactions were not quadratic and that the effect of the nonlinearities was to produce non-smoothly varying oscillations. The oscillations were found to be skewed so that negative QBO regimes were preferred, and also asymmetric in the sense that phase transitions between the easterly and westerly phases occurred more rapidly than those from westerly to easterly regimes.

  9. Complex networks approach to geophysical time series analysis: Detecting paleoclimate transitions via recurrence networks

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Zou, Y.; Donges, J. F.; Marwan, N.; Kurths, J.

    2009-12-01

    We present a new approach for analysing structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network which links different points in time if the evolution of the considered states is very similar. A critical comparison of these recurrence networks with similar existing techniques is presented, revealing strong conceptual benefits of the new approach which can be considered as a unifying framework for transforming time series into complex networks that also includes other methods as special cases. Based on different model systems, we demonstrate that there are fundamental interrelationships between the topological properties of recurrence networks and the statistical properties of the phase space density of the underlying dynamical system. Hence, the network description yields new quantitative characteristics of the dynamical complexity of a time series, which substantially complement existing measures of recurrence quantification analysis. Finally, we illustrate the potential of our approach for detecting hidden dynamical transitions from geoscientific time series by applying it to different paleoclimate records. In particular, we are able to resolve previously unknown climatic regime shifts in East Africa during the last about 4 million years, which might have had a considerable influence on the evolution of hominids in the area.

  10. Multifractal detrended cross-correlation analysis on gold, crude oil and foreign exchange rate time series

    NASA Astrophysics Data System (ADS)

    Pal, Mayukha; Madhusudana Rao, P.; Manimaran, P.

    2014-12-01

    We apply the recently developed multifractal detrended cross-correlation analysis method to investigate the cross-correlation behavior and fractal nature between two non-stationary time series. We analyze the daily return price of gold, West Texas Intermediate and Brent crude oil, foreign exchange rate data, over a period of 18 years. The cross correlation has been measured from the Hurst scaling exponents and the singularity spectrum quantitatively. From the results, the existence of multifractal cross-correlation between all of these time series is found. We also found that the cross correlation between gold and oil prices possess uncorrelated behavior and the remaining bivariate time series possess persistent behavior. It was observed for five bivariate series that the cross-correlation exponents are less than the calculated average generalized Hurst exponents (GHE) for q<0 and greater than GHE when q>0 and for one bivariate series the cross-correlation exponent is greater than GHE for all q values.

  11. Scalable Hyper-parameter Estimation for Gaussian Process Based Time Series Analysis

    SciTech Connect

    Chandola, Varun; Vatsavai, Raju

    2010-01-01

    Gaussian process (GP) is increasingly becoming popular as a kernel machine learning tool for non-parametric data analysis. Recently, GP has been applied to model non-linear dependencies in time series data. GP based analysis can be used to solve problems of time series prediction, forecasting, missing data imputation, change point detection, anomaly detection, etc. But the use of GP to handle massive scientific time series data sets has been limited, owing to its expensive computational complexity. The primary bottleneck is the handling of the covariance matrix whose size is quadratic in the length of the time series. In this paper we propose a scalable method that exploit the special structure of the covariance matrix for hyper-parameter estimation in GP based learning. The proposed method allows estimation of hyper parameters associated with GP in quadratic time, which is an order of magnitude improvement over standard methods with cubic complexity. Moreover, the proposed method does not require explicit computation of the covariance matrix and hence has memory requirement linear to the length of the time series as opposed to the quadratic memory requirement of standard methods. To further improve the computational complexity of the proposed method, we provide a parallel version to concurrently estimate the log likelihood for a set of time series which is the key step in the hyper-parameter estimation. Performance results on a multi-core system show that our proposed method provides significant speedups as high as 1000, even when running in serial mode, while maintaining a small memory footprint. The parallel version exploits the natural parallelization potential of the serial algorithm and is shown to perform significantly better than the serial faster algorithm, with speedups as high as 10.

  12. A Comparison of Alternative Approaches to the Analysis of Interrupted Time-Series.

    ERIC Educational Resources Information Center

    Harrop, John W.; Velicer, Wayne F.

    1985-01-01

    Computer generated data representative of 16 Auto Regressive Integrated Moving Averages (ARIMA) models were used to compare the results of interrupted time-series analysis using: (1) the known model identification, (2) an assumed (l,0,0) model, and (3) an assumed (3,0,0) model as an approximation to the General Transformation approach. (Author/BW)

  13. A Comparison of Missing-Data Procedures for Arima Time-Series Analysis

    ERIC Educational Resources Information Center

    Velicer, Wayne F.; Colby, Suzanne M.

    2005-01-01

    Missing data are a common practical problem for longitudinal designs. Time-series analysis is a longitudinal method that involves a large number of observations on a single unit. Four different missing-data methods (deletion, mean substitution, mean of adjacent observations, and maximum likelihood estimation) were evaluated. Computer-generated…

  14. Time Series in Education: The Analysis of Daily Attendance in Two High Schools

    ERIC Educational Resources Information Center

    Koopmans, Matthijs

    2011-01-01

    This presentation discusses the use of a time series approach to the analysis of daily attendance in two urban high schools over the course of one school year (2009-10). After establishing that the series for both schools were stationary, they were examined for moving average processes, autoregression, seasonal dependencies (weekly cycles),…

  15. Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces

    NASA Astrophysics Data System (ADS)

    Qian, Xi-Yuan; Liu, Ya-Min; Jiang, Zhi-Qiang; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene

    2015-06-01

    When common factors strongly influence two power-law cross-correlated time series recorded in complex natural or social systems, using detrended cross-correlation analysis (DCCA) without considering these common factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross correlations between two simultaneously recorded time series in the presence of nonstationarity after removing the effects of other time series acting as common forces. The DPXA method is a generalization of the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find that the DPXA is able to recover the analytical cross Hurst indices, and thus the multiscale DPXA coefficients are a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We calculate the DPXA coefficients and use them to extract the intrinsic cross correlation between crude oil and gold futures by taking into consideration the impact of the U.S. dollar index. We develop the multifractal DPXA (MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies the hidden multifractal nature while the multifractal DCCA method fails.

  16. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package.

    PubMed

    Donges, Jonathan F; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V; Marwan, Norbert; Dijkstra, Henk A; Kurths, Jürgen

    2015-11-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. PMID:26627561

  17. Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces.

    PubMed

    Qian, Xi-Yuan; Liu, Ya-Min; Jiang, Zhi-Qiang; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H Eugene

    2015-06-01

    When common factors strongly influence two power-law cross-correlated time series recorded in complex natural or social systems, using detrended cross-correlation analysis (DCCA) without considering these common factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross correlations between two simultaneously recorded time series in the presence of nonstationarity after removing the effects of other time series acting as common forces. The DPXA method is a generalization of the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find that the DPXA is able to recover the analytical cross Hurst indices, and thus the multiscale DPXA coefficients are a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We calculate the DPXA coefficients and use them to extract the intrinsic cross correlation between crude oil and gold futures by taking into consideration the impact of the U.S. dollar index. We develop the multifractal DPXA (MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies the hidden multifractal nature while the multifractal DCCA method fails. PMID:26172763

  18. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen

    2015-11-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.

  19. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen

    2016-04-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].

  20. Analysis of some meteorological variables time series relevant in urban environments by applying the multifractal analysis

    NASA Astrophysics Data System (ADS)

    Pavon-Dominguez, Pablo; Ariza-Villaverde, Ana B.; Jimenez-Hornero, Francisco J.; Gutierrez de Rave, Eduardo

    2010-05-01

    The time series corresponding to variables related with the climate have been frequently studied by using the descriptive statistics. However, as several works have suggested, other approaches such as the multifractal analysis can be taken into account to complete the information about some climatic and environmental phenomena obtained from the standard methods. As a consequence, the main aim of this work was to check whether some meteorological variables relevant in urban environments (i.e. air temperature, rainfall, relative humidity, solar radiation and surface wind velocity and direction) exhibited a multifractal nature. The analysis was extended to several time scales determining the multifractal parameters and exploring the existing relationships between them and those reported by the descriptive statistics. The daily time series studied in this work were recorded in Córdoba (37.85°N 4.85°W), southern Spain, from 2001 to 2006. The altitude of this location is 117 m and the climate of this location can be defined as a mixture of Mediterranean characteristics and Continental effects. The multifractal spectra showed convex shapes for all the considered variables, confirming the presence of a multifractal type of scaling that was kept for time resolutions ranging from one day to six years. In the case of rainfall, the observed range of time scales that exhibited a multifractal nature was more restrictive due to the presence of many zeros in the daily data that characterized the precipitation regime in some places of southern Spain. The multifractal spectra corresponding to surface wind velocity and rainfall showed longer left tails implying greater heterogeneity in the time series high values. However, the multifractal spectra obtained for the rest of meteorological variables exhibited the opposite behavior meaning that the low data in the time series had more influence in the distribution variability. The presence of rare low values was significant for

  1. Quantification and clustering of phenotypic screening data using time-series analysis for chemotherapy of schistosomiasis

    PubMed Central

    2012-01-01

    Background Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Development of techniques for automated, high-throughput drug screening against these diseases, especially in whole-organism settings, constitutes one of the great challenges of modern drug discovery. Method We present a method for enabling high-throughput phenotypic drug screening against diseases caused by helminths with a focus on schistosomiasis. The proposed method allows for a quantitative analysis of the systemic impact of a drug molecule on the pathogen as exhibited by the complex continuum of its phenotypic responses. This method consists of two key parts: first, biological image analysis is employed to automatically monitor and quantify shape-, appearance-, and motion-based phenotypes of the parasites. Next, we represent these phenotypes as time-series and show how to compare, cluster, and quantitatively reason about them using techniques of time-series analysis. Results We present results on a number of algorithmic issues pertinent to the time-series representation of phenotypes. These include results on appropriate representation of phenotypic time-series, analysis of different time-series similarity measures for comparing phenotypic responses over time, and techniques for clustering such responses by similarity. Finally, we show how these algorithmic techniques can be used for quantifying the complex continuum of phenotypic responses of parasites. An important corollary is the ability of our method to recognize and rigorously group parasites based on the variability of their phenotypic response to different drugs. Conclusions The methods and results presented in this paper enable automatic and quantitative scoring of high-throughput phenotypic screens focused on helmintic diseases. Furthermore, these methods allow us to analyze and stratify parasites based on their phenotypic response to drugs

  2. REDFIT-X: Cross-spectral analysis of unevenly spaced paleoclimate time series

    NASA Astrophysics Data System (ADS)

    Björg Ólafsdóttir, Kristín; Schulz, Michael; Mudelsee, Manfred

    2016-06-01

    Cross-spectral analysis is commonly used in climate research to identify joint variability between two variables and to assess the phase (lead/lag) between them. Here we present a Fortran 90 program (REDFIT-X) that is specially developed to perform cross-spectral analysis of unevenly spaced paleoclimate time series. The data properties of climate time series that are necessary to take into account are for example data spacing (unequal time scales and/or uneven spacing between time points) and the persistence in the data. Lomb-Scargle Fourier transform is used for the cross-spectral analyses between two time series with unequal and/or uneven time scale and the persistence in the data is taken into account when estimating the uncertainty associated with cross-spectral estimates. We use a Monte Carlo approach to estimate the uncertainty associated with coherency and phase. False-alarm level is estimated from empirical distribution of coherency estimates and confidence intervals for the phase angle are formed from the empirical distribution of the phase estimates. The method is validated by comparing the Monte Carlo uncertainty estimates with the traditionally used measures. Examples are given where the method is applied to paleoceanographic time series.

  3. Generalized Multiscale Entropy Analysis: Application to Quantifying the Complex Volatility of Human Heartbeat Time Series

    PubMed Central

    Costa, Madalena D.; Goldberger, Ary L.

    2016-01-01

    We introduce a generalization of multiscale entropy (MSE) analysis. The method is termed MSEn, where the subscript denotes the moment used to coarse-grain a time series. MSEμ, described previously, uses the mean value (first moment). Here, we focus on MSEσ2, which uses the second moment, i.e., the variance. MSEσ2 quantifies the dynamics of the volatility (variance) of a signal over multiple time scales. We use the method to analyze the structure of heartbeat time series. We find that the dynamics of the volatility of heartbeat time series obtained from healthy young subjects is highly complex. Furthermore, we find that the multiscale complexity of the volatility, not only the multiscale complexity of the mean heart rate, degrades with aging and pathology. The “bursty” behavior of the dynamics may be related to intermittency in energy and information flows, as part of multiscale cycles of activation and recovery. Generalized MSE may also be useful in quantifying the dynamical properties of other physiologic and of non-physiologic time series. PMID:27099455

  4. Application of the Allan Variance to Time Series Analysis in Astrometry and Geodesy: A Review.

    PubMed

    Malkin, Zinovy

    2016-04-01

    The Allan variance (AVAR) was introduced 50 years ago as a statistical tool for assessing the frequency standards deviations. For the past decades, AVAR has increasingly been used in geodesy and astrometry to assess the noise characteristics in geodetic and astrometric time series. A specific feature of astrometric and geodetic measurements, as compared with clock measurements, is that they are generally associated with uncertainties; thus, an appropriate weighting should be applied during data analysis. In addition, some physically connected scalar time series naturally form series of multidimensional vectors. For example, three station coordinates time series X, Y, and Z can be combined to analyze 3-D station position variations. The classical AVAR is not intended for processing unevenly weighted and/or multidimensional data. Therefore, AVAR modifications, namely weighted AVAR (WAVAR), multidimensional AVAR (MAVAR), and weighted multidimensional AVAR (WMAVAR), were introduced to overcome these deficiencies. In this paper, a brief review is given of the experience of using AVAR and its modifications in processing astrogeodetic time series. PMID:26540681

  5. Early detection of metabolic and energy disorders by thermal time series stochastic complexity analysis

    PubMed Central

    Lutaif, N.A.; Palazzo, R.; Gontijo, J.A.R.

    2014-01-01

    Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile. PMID:24519093

  6. Early detection of metabolic and energy disorders by thermal time series stochastic complexity analysis.

    PubMed

    Lutaif, N A; Palazzo, R; Gontijo, J A R

    2014-01-01

    Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile. PMID:24519093

  7. Effective low-order models for atmospheric dynamics and time series analysis

    NASA Astrophysics Data System (ADS)

    Gluhovsky, Alexander; Grady, Kevin

    2016-02-01

    The paper focuses on two interrelated problems: developing physically sound low-order models (LOMs) for atmospheric dynamics and employing them as novel time-series models to overcome deficiencies in current atmospheric time series analysis. The first problem is warranted since arbitrary truncations in the Galerkin method (commonly used to derive LOMs) may result in LOMs that violate fundamental conservation properties of the original equations, causing unphysical behaviors such as unbounded solutions. In contrast, the LOMs we offer (G-models) are energy conserving, and some retain the Hamiltonian structure of the original equations. This work examines LOMs from recent publications to show that all of them that are physically sound can be converted to G-models, while those that cannot lack energy conservation. Further, motivated by recent progress in statistical properties of dynamical systems, we explore G-models for a new role of atmospheric time series models as their data generating mechanisms are well in line with atmospheric dynamics. Currently used time series models, however, do not specifically utilize the physics of the governing equations and involve strong statistical assumptions rarely met in real data.

  8. Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach

    NASA Astrophysics Data System (ADS)

    Koeppen, W. C.; Pilger, E.; Wright, R.

    2011-07-01

    We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.

  9. Effective low-order models for atmospheric dynamics and time series analysis.

    PubMed

    Gluhovsky, Alexander; Grady, Kevin

    2016-02-01

    The paper focuses on two interrelated problems: developing physically sound low-order models (LOMs) for atmospheric dynamics and employing them as novel time-series models to overcome deficiencies in current atmospheric time series analysis. The first problem is warranted since arbitrary truncations in the Galerkin method (commonly used to derive LOMs) may result in LOMs that violate fundamental conservation properties of the original equations, causing unphysical behaviors such as unbounded solutions. In contrast, the LOMs we offer (G-models) are energy conserving, and some retain the Hamiltonian structure of the original equations. This work examines LOMs from recent publications to show that all of them that are physically sound can be converted to G-models, while those that cannot lack energy conservation. Further, motivated by recent progress in statistical properties of dynamical systems, we explore G-models for a new role of atmospheric time series models as their data generating mechanisms are well in line with atmospheric dynamics. Currently used time series models, however, do not specifically utilize the physics of the governing equations and involve strong statistical assumptions rarely met in real data. PMID:26931600

  10. Time series analysis of satellite derived surface temperature for Lake Garda

    NASA Astrophysics Data System (ADS)

    Pareeth, Sajid; Metz, Markus; Rocchini, Duccio; Salmaso, Nico; Neteler, Markus

    2014-05-01

    Remotely sensed satellite imageryis the most suitable tool for researchers around the globe in complementing in-situ observations. Nonetheless, it would be crucial to check for quality, validate and standardize methodologies to estimate the target variables from sensor data. Satellite imagery with thermal infrared bands provides opportunity to remotely measure the temperature in a very high spatio-temporal scale. Monitoring surface temperature of big lakes to understand the thermal fluctuations over time is considered crucial in the current status of global climate change scenario. The main disadvantage of remotely sensed data is the gaps due to presence of clouds and aerosols. In this study we use statistically reconstructed daily land surface temperature products from MODIS (MOD11A1 and MYD11A1) at a better spatial resolution of 250 m. The ability of remotely sensed datasets to capture the thermal variations over time is validated against historical monthly ground observation data collected for Lake Garda. The correlation between time series of satellite data LST (x,y,t) and the field measurements f (x,y,t) are found to be in acceptable range with a correlation coefficient of 0.94. We compared multiple time series analysis methods applied on the temperature maps recorded in the last ten years (2002 - 2012) and monthly field measurements in two sampling points in Lake Garda. The time series methods STL - Seasonal Time series decomposition based on Loess method, DTW - Dynamic Time Waping method, and BFAST - Breaks for Additive Season and Trend, are implemented and compared in their ability to derive changes in trends and seasonalities. These methods are mostly implemented on time series of vegetation indices from satellite data, but seldom used on thermal data because of the temporal incoherence of the data. The preliminary results show that time series methods applied on satellite data are able to reconstruct the seasons on an annual scale while giving us a

  11. Mining biomedical time series by combining structural analysis and temporal abstractions.

    PubMed Central

    Bellazzi, R.; Magni, P.; Larizza, C.; De Nicolao, G.; Riva, A.; Stefanelli, M.

    1998-01-01

    This paper describes the combination of Structural Time Series analysis and Temporal Abstractions for the interpretation of data coming from home monitoring of diabetic patients. Blood Glucose data are analyzed by a novel Bayesian technique for time series analysis. The results obtained are post-processed using Temporal Abstractions in order to extract knowledge that can be exploited "at the point of use" from physicians. The proposed data analysis procedure can be viewed as a Knowledge Discovery in Data Base process that is applied to time-varying data. The work here described is part of a Web-based telemedicine system for the management of Insulin Dependent Diabetes Mellitus patients, called T-IDDM. PMID:9929202

  12. Statistical Analysis of Sensor Network Time Series at Multiple Time Scales

    NASA Astrophysics Data System (ADS)

    Granat, R. A.; Donnellan, A.

    2013-12-01

    Modern sensor networks often collect data at multiple time scales in order to observe physical phenomena that occur at different scales. Whether collected by heterogeneous or homogenous sensor networks, measurements at different time scales are usually subject to different dynamics, noise characteristics, and error sources. We explore the impact of these effects on the results of statistical time series analysis methods applied to multi-scale time series data. As a case study, we analyze results from GPS time series position data collected in Japan and the Western United States, which produce raw observations at 1Hz and orbit corrected observations at time resolutions of 5 minutes, 30 minutes, and 24 hours. We utilize the GPS analysis package (GAP) software to perform three types of statistical analysis on these observations: hidden Markov modeling, probabilistic principle components analysis, and covariance distance analysis. We compare the results of these methods at the different time scales and discuss the impact on science understanding of earthquake fault systems generally and recent large seismic events specifically, including the Tohoku-Oki earthquake in Japan and El Mayor-Cucupah earthquake in Mexico.

  13. Modified cross sample entropy and surrogate data analysis method for financial time series

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Shang, Pengjian

    2015-09-01

    For researching multiscale behaviors from the angle of entropy, we propose a modified cross sample entropy (MCSE) and combine surrogate data analysis with it in order to compute entropy differences between original dynamics and surrogate series (MCSDiff). MCSDiff is applied to simulated signals to show accuracy and then employed to US and Chinese stock markets. We illustrate the presence of multiscale behavior in the MCSDiff results and reveal that there are synchrony containing in the original financial time series and they have some intrinsic relations, which are destroyed by surrogate data analysis. Furthermore, the multifractal behaviors of cross-correlations between these financial time series are investigated by multifractal detrended cross-correlation analysis (MF-DCCA) method, since multifractal analysis is a multiscale analysis. We explore the multifractal properties of cross-correlation between these US and Chinese markets and show the distinctiveness of NQCI and HSI among the markets in their own region. It can be concluded that the weaker cross-correlation between US markets gives the evidence for the better inner mechanism in the US stock markets than that of Chinese stock markets. To study the multiscale features and properties of financial time series can provide valuable information for understanding the inner mechanism of financial markets.

  14. Time series analysis of knowledge of results effects during motor skill acquisition.

    PubMed

    Blackwell, J R; Simmons, R W; Spray, J A

    1991-03-01

    Time series analysis was used to investigate the hypothesis that during acquisition of a motor skill, knowledge of results (KR) information is used to generate a stable internal referent about which response errors are randomly distributed. Sixteen subjects completed 50 acquisition trials of each of three movements whose spatial-temporal characteristics differed. Acquisition trials were either blocked, with each movement being presented in series, or randomized, with the presentation of movements occurring in random order. Analysis of movement time data indicated the contextual interference effect reported in previous studies was replicated in the present experiment. Time series analysis of the acquisition trial data revealed the majority of individual subject response patterns during blocked trials were best described by a model with a temporarily stationary, internal reference of the criterion and systematic, trial-to-trial variation of response errors. During random trial conditions, response patterns were usually best described by a "White-noise" model. This model predicts a permanently stationary, internal reference associated with randomly distributed response errors that are unaffected by KR information. These results are not consistent with previous work using time series analysis to describe motor behavior (Spray & Newell, 1986). PMID:2028084

  15. A Systematic Review of Methodology: Time Series Regression Analysis for Environmental Factors and Infectious Diseases

    PubMed Central

    Imai, Chisato; Hashizume, Masahiro

    2015-01-01

    Background: Time series analysis is suitable for investigations of relatively direct and short-term effects of exposures on outcomes. In environmental epidemiology studies, this method has been one of the standard approaches to assess impacts of environmental factors on acute non-infectious diseases (e.g. cardiovascular deaths), with conventionally generalized linear or additive models (GLM and GAM). However, the same analysis practices are often observed with infectious diseases despite of the substantial differences from non-infectious diseases that may result in analytical challenges. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, systematic review was conducted to elucidate important issues in assessing the associations between environmental factors and infectious diseases using time series analysis with GLM and GAM. Published studies on the associations between weather factors and malaria, cholera, dengue, and influenza were targeted. Findings: Our review raised issues regarding the estimation of susceptible population and exposure lag times, the adequacy of seasonal adjustments, the presence of strong autocorrelations, and the lack of a smaller observation time unit of outcomes (i.e. daily data). These concerns may be attributable to features specific to infectious diseases, such as transmission among individuals and complicated causal mechanisms. Conclusion: The consequence of not taking adequate measures to address these issues is distortion of the appropriate risk quantifications of exposures factors. Future studies should pay careful attention to details and examine alternative models or methods that improve studies using time series regression analysis for environmental determinants of infectious diseases. PMID:25859149

  16. Adventures in Modern Time Series Analysis: From the Sun to the Crab Nebula and Beyond

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey

    2014-01-01

    With the generation of long, precise, and finely sampled time series the Age of Digital Astronomy is uncovering and elucidating energetic dynamical processes throughout the Universe. Fulfilling these opportunities requires data effective analysis techniques rapidly and automatically implementing advanced concepts. The Time Series Explorer, under development in collaboration with Tom Loredo, provides tools ranging from simple but optimal histograms to time and frequency domain analysis for arbitrary data modes with any time sampling. Much of this development owes its existence to Joe Bredekamp and the encouragement he provided over several decades. Sample results for solar chromospheric activity, gamma-ray activity in the Crab Nebula, active galactic nuclei and gamma-ray bursts will be displayed.

  17. Local Rainfall Forecast System based on Time Series Analysis and Neural Networks

    NASA Astrophysics Data System (ADS)

    Buendia, Fulgencio S.; Tarquis, A. M.; Buendia, G.; Andina, D.

    2010-05-01

    Rainfall is one of the most important events in daily life of human beings. During several decades, scientists have been trying to characterize the weather, current forecasts are based on high complex dynamic models. In this paper is presented a local rainfall forecast system based on Time Series analysis and Neural Networks. This model tries to complement the currently state of the art ensembles, from a locally historical perspective, where the model definition is not so dependent from the exact values of the initial conditions. After several year taking data, expert meteorologists proposed this approximation to characterize the local weather behavior, that is being automated by this system in different stages. However the whole system is introduced, it is focused on the different rainfall events situation classification as well as the time series analysis and forecast

  18. Motion Artifact Reduction in Ultrasound Based Thermal Strain Imaging of Atherosclerotic Plaques Using Time Series Analysis

    PubMed Central

    Dutta, Debaditya; Mahmoud, Ahmed M.; Leers, Steven A.; Kim, Kang

    2013-01-01

    Large lipid pools in vulnerable plaques, in principle, can be detected using US based thermal strain imaging (US-TSI). One practical challenge for in vivo cardiovascular application of US-TSI is that the thermal strain is masked by the mechanical strain caused by cardiac pulsation. ECG gating is a widely adopted method for cardiac motion compensation, but it is often susceptible to electrical and physiological noise. In this paper, we present an alternative time series analysis approach to separate thermal strain from the mechanical strain without using ECG. The performance and feasibility of the time-series analysis technique was tested via numerical simulation as well as in vitro water tank experiments using a vessel mimicking phantom and an excised human atherosclerotic artery where the cardiac pulsation is simulated by a pulsatile pump. PMID:24808628

  19. Identification of statistical patterns in complex systems via symbolic time series analysis.

    PubMed

    Gupta, Shalabh; Khatkhate, Amol; Ray, Asok; Keller, Eric

    2006-10-01

    Identification of statistical patterns from observed time series of spatially distributed sensor data is critical for performance monitoring and decision making in human-engineered complex systems, such as electric power generation, petrochemical, and networked transportation. This paper presents an information-theoretic approach to identification of statistical patterns in such systems, where the main objective is to enhance structural integrity and operation reliability. The core concept of pattern identification is built upon the principles of Symbolic Dynamics, Automata Theory, and Information Theory. To this end, a symbolic time series analysis method has been formulated and experimentally validated on a special-purpose test apparatus that is designed for data acquisition and real-time analysis of fatigue damage in polycrystalline alloys. PMID:17063932

  20. Parametric time-series analysis of daily air pollutants of city of Shumen, Bulgaria

    NASA Astrophysics Data System (ADS)

    Ivanov, A.; Voynikova, D.; Gocheva-Ilieva, S.; Boyadzhiev, D.

    2012-10-01

    The urban air pollution is one of the main factors determining the ambient air quality, which affects on the human health and the environment. In this paper parametric time series models are obtained for studying the distribution over time of primary pollutants as sulphur and nitrogen oxides, particulate matter and a secondary pollutant ground level ozon in the town of Shumen, Bulgaria. The methods of factor analysis and ARIMA are used to carry out the time series analysis based on hourly average data in 2011 and first quarter of 2012. The constructed models are applied for a short-term air pollution forecasting. The results are estimated on the basis of national and European regulation indices. The sources of pollutants in the region and their harmful effects on human health are also discussed.

  1. Discovery of progenitor cell signatures by time-series synexpression analysis during Drosophila embryonic cell immortalization

    PubMed Central

    Dequéant, Mary-Lee; Fagegaltier, Delphine; Hu, Yanhui; Spirohn, Kerstin; Simcox, Amanda; Hannon, Gregory J.; Perrimon, Norbert

    2015-01-01

    The use of time series profiling to identify groups of functionally related genes (synexpression groups) is a powerful approach for the discovery of gene function. Here we apply this strategy during RasV12 immortalization of Drosophila embryonic cells, a phenomenon not well characterized. Using high-resolution transcriptional time-series datasets, we generated a gene network based on temporal expression profile similarities. This analysis revealed that common immortalized cells are related to adult muscle precursors (AMPs), a stem cell-like population contributing to adult muscles and sharing properties with vertebrate satellite cells. Remarkably, the immortalized cells retained the capacity for myogenic differentiation when treated with the steroid hormone ecdysone. Further, we validated in vivo the transcription factor CG9650, the ortholog of mammalian Bcl11a/b, as a regulator of AMP proliferation predicted by our analysis. Our study demonstrates the power of time series synexpression analysis to characterize Drosophila embryonic progenitor lines and identify stem/progenitor cell regulators. PMID:26438832

  2. Detection of chaos: New approach to atmospheric pollen time-series analysis

    NASA Astrophysics Data System (ADS)

    Bianchi, M. M.; Arizmendi, C. M.; Sanchez, J. R.

    1992-09-01

    Pollen and spores are biological particles that are ubiquitous to the atmosphere and are pathologically significant, causing plant diseases and inhalant allergies. One of the main objectives of aerobiological surveys is forecasting. Prediction models are required in order to apply aerobiological knowledge to medical or agricultural practice; a necessary condition of these models is not to be chaotic. The existence of chaos is detected through the analysis of a time series. The time series comprises hourly counts of atmospheric pollen grains obtained using a Burkard spore trap from 1987 to 1989 at Mar del Plata. Abraham's method to obtain the correlation dimension was applied. A low and fractal dimension shows chaotic dynamics. The predictability of models for atomspheric pollen forecasting is discussed.

  3. Nonlinear time series analysis of the fluctuations of the geomagnetic horizontal field

    NASA Astrophysics Data System (ADS)

    George, B.; Renuka, G.; Satheesh Kumar, K.; Kumar, C. P. Anil; Venugopal, C.

    2002-02-01

    A detailed nonlinear time series analysis of the hourly data of the geomagnetic horizontal intensity H measured at Kodaikanal (10.2° N; 77.5° E; mag: dip 3.5° N) has been carried out to investigate the dynamical behaviour of the fluctuations of H. The recurrence plots, spatiotemporal entropy and the result of the surrogate data test show the deterministic nature of the fluctuations, rejecting the hypothesis that H belong to the family of linear stochastic signals. The low dimensional character of the dynamics is evident from the estimated value of the correlation dimension and the fraction of false neighbours calculated for various embedding dimensions. The exponential decay of the power spectrum and the positive Lyapunov exponent indicate chaotic behaviour of the underlying dynamics of H. This is also supported by the results of the comparison of the chaotic characteristics of the time series of H with the pseudo-chaotic characteristics of coloured noise time series. We have also shown that the error involved in the short-term prediction of successive values of H, using a simple but robust, zero-order nonlinear prediction method, increases exponentially. It has also been suggested that there exists the possibility of characterizing the geomagnetic fluctuations in terms of the invariants in chaos theory, such as Lyapunov exponents and correlation dimension. The results of the analysis could also have implications in the development of a suitable model for the daily fluctuations of geomagnetic horizontal intensity.

  4. Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus).

    PubMed

    Dowling, Thomas E; Turner, Thomas F; Carson, Evan W; Saltzgiver, Melody J; Adams, Deborah; Kesner, Brian; Marsh, Paul C

    2014-03-01

    Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (N b /N a) increased significantly despite sevenfold reduction of N a. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics. PMID:24665337

  5. Inverting geodetic time series with a principal component analysis-based inversion method

    NASA Astrophysics Data System (ADS)

    Kositsky, A. P.; Avouac, J.-P.

    2010-03-01

    The Global Positioning System (GPS) system now makes it possible to monitor deformation of the Earth's surface along plate boundaries with unprecedented accuracy. In theory, the spatiotemporal evolution of slip on the plate boundary at depth, associated with either seismic or aseismic slip, can be inferred from these measurements through some inversion procedure based on the theory of dislocations in an elastic half-space. We describe and test a principal component analysis-based inversion method (PCAIM), an inversion strategy that relies on principal component analysis of the surface displacement time series. We prove that the fault slip history can be recovered from the inversion of each principal component. Because PCAIM does not require externally imposed temporal filtering, it can deal with any kind of time variation of fault slip. We test the approach by applying the technique to synthetic geodetic time series to show that a complicated slip history combining coseismic, postseismic, and nonstationary interseismic slip can be retrieved from this approach. PCAIM produces slip models comparable to those obtained from standard inversion techniques with less computational complexity. We also compare an afterslip model derived from the PCAIM inversion of postseismic displacements following the 2005 8.6 Nias earthquake with another solution obtained from the extended network inversion filter (ENIF). We introduce several extensions of the algorithm to allow statistically rigorous integration of multiple data sources (e.g., both GPS and interferometric synthetic aperture radar time series) over multiple timescales. PCAIM can be generalized to any linear inversion algorithm.

  6. Evaluation of physiologic complexity in time series using generalized sample entropy and surrogate data analysis

    NASA Astrophysics Data System (ADS)

    Eduardo Virgilio Silva, Luiz; Otavio Murta, Luiz

    2012-12-01

    Complexity in time series is an intriguing feature of living dynamical systems, with potential use for identification of system state. Although various methods have been proposed for measuring physiologic complexity, uncorrelated time series are often assigned high values of complexity, errouneously classifying them as a complex physiological signals. Here, we propose and discuss a method for complex system analysis based on generalized statistical formalism and surrogate time series. Sample entropy (SampEn) was rewritten inspired in Tsallis generalized entropy, as function of q parameter (qSampEn). qSDiff curves were calculated, which consist of differences between original and surrogate series qSampEn. We evaluated qSDiff for 125 real heart rate variability (HRV) dynamics, divided into groups of 70 healthy, 44 congestive heart failure (CHF), and 11 atrial fibrillation (AF) subjects, and for simulated series of stochastic and chaotic process. The evaluations showed that, for nonperiodic signals, qSDiff curves have a maximum point (qSDiffmax) for q ≠1. Values of q where the maximum point occurs and where qSDiff is zero were also evaluated. Only qSDiffmax values were capable of distinguish HRV groups (p-values 5.10×10-3, 1.11×10-7, and 5.50×10-7 for healthy vs. CHF, healthy vs. AF, and CHF vs. AF, respectively), consistently with the concept of physiologic complexity, and suggests a potential use for chaotic system analysis.

  7. Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus)

    PubMed Central

    Dowling, Thomas E; Turner, Thomas F; Carson, Evan W; Saltzgiver, Melody J; Adams, Deborah; Kesner, Brian; Marsh, Paul C

    2014-01-01

    Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (Nb/Na) increased significantly despite sevenfold reduction of Na. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics. PMID:24665337

  8. Geospatial Analysis of Near-Surface Soil Moisture Time Series Data Over Indian Region

    NASA Astrophysics Data System (ADS)

    Berwal, P.; Murthy, C. S.; Raju, P. V.; Sesha Sai, M. V. R.

    2016-06-01

    The present study has developed the time series database surface soil moisture over India, for June, July and August months for the period of 20 years from 1991 to 2010, using data products generated under Climate Change Initiative Programme of European Space Agency. These three months represent the crop sowing period in the prime cropping season in the country and the soil moisture data during this period is highly useful to detect the drought conditions and assess the drought impact. The time series soil moisture data which is in 0.25 degree spatial resolution was analyzed to generate different indicators. Rainfall data of same spatial resolution for the same period, generated by India Meteorological Department was also procured and analyzed. Geospatial analysis of soil moisture and rainfall derived indicators was carried out to study (1) inter annual variability of soil moisture and rainfall, (2) soil moisture deviations from normal during prominent drought years, (3) soil moisture and rainfall correlations and (4) drought exposure based on soil moisture and rainfall variability. The study has successfully demonstrated the potential of these soil moisture time series data sets for generating regional drought surveillance information products, drought hazard mapping, drought exposure analysis and detection of drought sensitive areas in the crop planting period.

  9. Towards Solving the Mixing Problem in the Decomposition of Geophysical Time Series by Independent Component Analysis

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Chedin, Alain; Hansen, James E. (Technical Monitor)

    2000-01-01

    The use of the Principal Component Analysis technique for the analysis of geophysical time series has been questioned in particular for its tendency to extract components that mix several physical phenomena even when the signal is just their linear sum. We demonstrate with a data simulation experiment that the Independent Component Analysis, a recently developed technique, is able to solve this problem. This new technique requires the statistical independence of components, a stronger constraint, that uses higher-order statistics, instead of the classical decorrelation a weaker constraint, that uses only second-order statistics. Furthermore, ICA does not require additional a priori information such as the localization constraint used in Rotational Techniques.

  10. Reference manual for generation and analysis of Habitat Time Series: version II

    USGS Publications Warehouse

    Milhous, Robert T.; Bartholow, John M.; Updike, Marlys A.; Moos, Alan R.

    1990-01-01

    The selection of an instream flow requirement for water resource management often requires the review of how the physical habitat changes through time. This review is referred to as 'Time Series Analysis." The Tune Series Library (fSLIB) is a group of programs to enter, transform, analyze, and display time series data for use in stream habitat assessment. A time series may be defined as a sequence of data recorded or calculated over time. Examples might be historical monthly flow, predicted monthly weighted usable area, daily electrical power generation, annual irrigation diversion, and so forth. The time series can be analyzed, both descriptively and analytically, to understand the importance of the variation in the events over time. This is especially useful in the development of instream flow needs based on habitat availability. The TSLIB group of programs assumes that you have an adequate study plan to guide you in your analysis. You need to already have knowledge about such things as time period and time step, species and life stages to consider, and appropriate comparisons or statistics to be produced and displayed or tabulated. Knowing your destination, you must first evaluate whether TSLIB can get you there. Remember, data are not answers. This publication is a reference manual to TSLIB and is intended to be a guide to the process of using the various programs in TSLIB. This manual is essentially limited to the hands-on use of the various programs. a TSLIB use interface program (called RTSM) has been developed to provide an integrated working environment where the use has a brief on-line description of each TSLIB program with the capability to run the TSLIB program while in the user interface. For information on the RTSM program, refer to Appendix F. Before applying the computer models described herein, it is recommended that the user enroll in the short course "Problem Solving with the Instream Flow Incremental Methodology (IFIM)." This course is offered

  11. Water quality time series for Big Melen stream (Turkey): its decomposition analysis and comparison to upstream.

    PubMed

    Karakaya, N; Evrendilek, F

    2010-06-01

    Big Melen stream is one of the major water resources providing 0.268 [corrected] km(3) year(-1) of drinking and municipal water for Istanbul. Monthly time series data between 1991 and 2004 for 25 chemical, biological, and physical water properties of Big Melen stream were separated into linear trend, seasonality, and error components using additive decomposition models. Water quality index (WQI) derived from 17 water quality variables were used to compare Aksu upstream and Big Melen downstream water quality. Twenty-six additive decomposition models of water quality time series data including WQI had R (2) values ranging from 88% for log(water temperature) (P < or = 0.001) to 3% for log(total dissolved solids) (P < or = 0.026). Linear trend models revealed that total hardness, calcium concentration, and log(nitrite concentration) had the highest rate of increase over time. Tukey's multiple comparison pointed to significant decreases in 17 water quality variables including WQI of Big Melen downstream relative to those of Aksu upstream (P < or = 0.001). Monitoring changes in water quality on the basis of watersheds through WQI and decomposition analysis of time series data paves the way for an adaptive management process of water resources that can be tailored in response to effectiveness and dynamics of management practices. PMID:19444637

  12. Global coseismic deformations, GNSS time series analysis, and earthquake scaling laws

    NASA Astrophysics Data System (ADS)

    Métivier, Laurent; Collilieux, Xavier; Lercier, Daphné; Altamimi, Zuheir; Beauducel, François

    2014-12-01

    We investigate how two decades of coseismic deformations affect time series of GPS station coordinates (Global Navigation Satellite System) and what constraints geodetic observations give on earthquake scaling laws. We developed a simple but rapid model for coseismic deformations, assuming different earthquake scaling relations, that we systematically applied on earthquakes with magnitude larger than 4. We found that coseismic displacements accumulated during the last two decades can be larger than 10 m locally and that the cumulative displacement is not only due to large earthquakes but also to the accumulation of many small motions induced by smaller earthquakes. Then, investigating a global network of GPS stations, we demonstrate that a systematic global modeling of coseismic deformations helps greatly to detect discontinuities in GPS coordinate time series, which are still today one of the major sources of error in terrestrial reference frame construction (e.g., the International Terrestrial Reference Frame). We show that numerous discontinuities induced by earthquakes are too small to be visually detected because of seasonal variations and GPS noise that disturb their identification. However, not taking these discontinuities into account has a large impact on the station velocity estimation, considering today's precision requirements. Finally, six groups of earthquake scaling laws were tested. Comparisons with our GPS time series analysis on dedicated earthquakes give insights on the consistency of these scaling laws with geodetic observations and Okada coseismic approach.

  13. Nonlinear Time Series Analysis of Nodulation Factor Induced Calcium Oscillations: Evidence for Deterministic Chaos?

    PubMed Central

    Hazledine, Saul; Sun, Jongho; Wysham, Derin; Downie, J. Allan; Oldroyd, Giles E. D.; Morris, Richard J.

    2009-01-01

    Legume plants form beneficial symbiotic interactions with nitrogen fixing bacteria (called rhizobia), with the rhizobia being accommodated in unique structures on the roots of the host plant. The legume/rhizobial symbiosis is responsible for a significant proportion of the global biologically available nitrogen. The initiation of this symbiosis is governed by a characteristic calcium oscillation within the plant root hair cells and this signal is activated by the rhizobia. Recent analyses on calcium time series data have suggested that stochastic effects have a large role to play in defining the nature of the oscillations. The use of multiple nonlinear time series techniques, however, suggests an alternative interpretation, namely deterministic chaos. We provide an extensive, nonlinear time series analysis on the nature of this calcium oscillation response. We build up evidence through a series of techniques that test for determinism, quantify linear and nonlinear components, and measure the local divergence of the system. Chaos is common in nature and it seems plausible that properties of chaotic dynamics might be exploited by biological systems to control processes within the cell. Systems possessing chaotic control mechanisms are more robust in the sense that the enhanced flexibility allows more rapid response to environmental changes with less energetic costs. The desired behaviour could be most efficiently targeted in this manner, supporting some intriguing speculations about nonlinear mechanisms in biological signaling. PMID:19675679

  14. InSAR time series analysis of crustal deformation in southern California from 1992-2010

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Lundgren, P.

    2010-12-01

    Since early the 1990’s, Interferometric Satellite Aperture Radar (InSAR) data has had some success imaging surface deformation of plate boundary deformation zones. The ~18 years of extensive data collection over southern California now make it possible to generate a long time interval InSAR-based line-of-sight (LOS) velocity map to examine the resolution of both steady-state and transient deformation processes. We perform InSAR time series analysis on an extensive catalog of ERS-1/2 and Envisat data from 1992 up to the present in southern California by applying a variant of the Small Baseline Subset (SBAS) time series analysis approach. Despite the limitation imposed by atmospheric phase delay, the large number of data acquisitions and long duration of data sampling allow us to effectively suppress the atmospheric noise through spatiotemporal smoothing in the time series analysis. We integrate an updated version of a California GPS velocity solution with InSAR to constrain the long wavelength deformation signals while estimating and removing the effect of orbital error. A large number of interferograms (> 800) over 5 tracks in southern California have been processed and analyzed. We examine the time dependency of resulting deformation patterns. Preliminary results from the ~18 year time series already reveal some interesting features. For example, the InSAR LOS displacements show significant transient variations in greater spatial resolution following the 1999 Mw7.1 Hector Mine earthquake. The 7-year post-seismic rate map demonstrates a broad transient deformation pattern and much localized deformation near the fault surface trace, reflecting a combined effect from afterslip, poroelastic, and viscoelastic relaxation at different spatiotemporal scales. We observe a variation of deformation rate across the Blackwater-Little lake fault system in the Eastern California Shear Zone, suggesting a possible transient variation over this part of the plate boundary. The In

  15. On the Impact of a Quadratic Acceleration Term in the Analysis of Position Time Series

    NASA Astrophysics Data System (ADS)

    Bogusz, Janusz; Klos, Anna; Bos, Machiel Simon; Hunegnaw, Addisu; Teferle, Felix Norman

    2016-04-01

    The analysis of Global Navigation Satellite System (GNSS) position time series generally assumes that each of the coordinate component series is described by the sum of a linear rate (velocity) and various periodic terms. The residuals, the deviations between the fitted model and the observations, are then a measure of the epoch-to-epoch scatter and have been used for the analysis of the stochastic character (noise) of the time series. Often the parameters of interest in GNSS position time series are the velocities and their associated uncertainties, which have to be determined with the highest reliability. It is clear that not all GNSS position time series follow this simple linear behaviour. Therefore, we have added an acceleration term in the form of a quadratic polynomial function to the model in order to better describe the non-linear motion in the position time series. This non-linear motion could be a response to purely geophysical processes, for example, elastic rebound of the Earth's crust due to ice mass loss in Greenland, artefacts due to deficiencies in bias mitigation models, for example, of the GNSS satellite and receiver antenna phase centres, or any combination thereof. In this study we have simulated 20 time series with different stochastic characteristics such as white, flicker or random walk noise of length of 23 years. The noise amplitude was assumed at 1 mm/y-/4. Then, we added the deterministic part consisting of a linear trend of 20 mm/y (that represents the averaged horizontal velocity) and accelerations ranging from minus 0.6 to plus 0.6 mm/y2. For all these data we estimated the noise parameters with Maximum Likelihood Estimation (MLE) using the Hector software package without taken into account the non-linear term. In this way we set the benchmark to then investigate how the noise properties and velocity uncertainty may be affected by any un-modelled, non-linear term. The velocities and their uncertainties versus the accelerations for

  16. Teaching time-series analysis. I. Finite Fourier analysis of ocean waves

    NASA Astrophysics Data System (ADS)

    Whitford, Dennis J.; Vieira, Mario E. C.; Waters, Jennifer K.

    2001-04-01

    The introduction of students to methods of time-series analysis is a pedagogical challenge, since the availability of easily manipulated computer software presents an attractive alternative to an understanding of the computations, as well as their assumptions and limitations. A two-part pedagogical tutorial exercise is offered as a hands-on laboratory to complement classroom discussions or as a reference for students involved in independent research projects. The exercises are focused on the analysis of ocean waves, specifically wind-generated surface gravity waves. The exercises are cross-disciplinary in nature and can be extended to any other field dealing with random signal analysis. The first exercise introduces the manual arithmetic steps of a finite Fourier analysis of a wave record, develops a spectrum, and compares these results to the results obtained using a fast Fourier transform (FFT). The second part of the exercise, described in the subsequent article, takes a longer wave record and addresses the theoretical and observed wave probability distributions of wave heights and sea surface elevations. These results are then compared to a FFT, thus linking the two pedagogical laboratory exercise parts for a more complete understanding of both exercises.

  17. Studies in astronomical time series analysis. I - Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1981-01-01

    Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.

  18. Extracting tidal frequencies using multivariate harmonic analysis of sea level height time series

    NASA Astrophysics Data System (ADS)

    Amiri-Simkooei, A. R.; Zaminpardaz, S.; Sharifi, M. A.

    2014-10-01

    This contribution is seen as a first attempt to extract the tidal frequencies using a multivariate spectral analysis method applied to multiple time series of tide-gauge records. The existing methods are either physics-based in which the ephemeris of Moon, Sun and other planets are used, or are observation-based in which univariate analysis methods—Fourier and wavelet for instance—are applied to tidal observations. The existence of many long tide-gauge records around the world allows one to use tidal observations and extract the main tidal constituents for which efficient multivariate methods are to be developed. This contribution applies the multivariate least-squares harmonic estimation (LS-HE) to the tidal time series of the UK tide-gauge stations. The first 413 harmonics of the tidal constituents and their nonlinear components are provided using the multivariate LS-HE. A few observations of the research are highlighted: (1) the multivariate analysis takes information of multiple time series into account in an optimal least- squares sense, and thus the tidal frequencies have higher detection power compared to the univariate analysis. (2) Dominant tidal frequencies range from the long-term signals to the sixth-diurnal species interval. Higher frequencies have negligible effects. (3) The most important tidal constituents (the first 50 frequencies) ordered from their amplitudes range from 212 cm (M2) to 1 cm (OQ2) for the data set considered. There are signals in this list that are not available in the 145 main tidal frequencies of the literature. (4) Tide predictions using different lists of tidal frequencies on five different data sets around the world are compared. The prediction results using the first significant 50 constituents provided promising results on these locations of the world.

  19. Multifractal analysis of geophysical time series in the urban lake of Créteil (France).

    NASA Astrophysics Data System (ADS)

    Mezemate, Yacine; Tchiguirinskaia, Ioulia; Bonhomme, Celine; Schertzer, Daniel; Lemaire, Bruno Jacques; Vinçon leite, Brigitte; Lovejoy, Shaun

    2013-04-01

    Urban water bodies take part in the environmental quality of the cities. They regulate heat, contribute to the beauty of landscape and give some space for leisure activities (aquatic sports, swimming). As they are often artificial they are only a few meters deep. It confers them some specific properties. Indeed, they are particularly sensitive to global environmental changes, including climate change, eutrophication and contamination by micro-pollutants due to the urbanization of the watershed. Monitoring their quality has become a major challenge for urban areas. The need for a tool for predicting short-term proliferation of potentially toxic phytoplankton therefore arises. In lakes, the behavior of biological and physical (temperature) fields is mainly driven by the turbulence regime in the water. Turbulence is highly non linear, nonstationary and intermittent. This is why statistical tools are needed to characterize the evolution of the fields. The knowledge of the probability distribution of all the statistical moments of a given field is necessary to fully characterize it. This possibility is offered by the multifractal analysis based on the assumption of scale invariance. To investigate the effect of space-time variability of temperature, chlorophyll and dissolved oxygen on the cyanobacteria proliferation in the urban lake of Creteil (France), a spectral analysis is first performed on each time series (or on subsamples) to have an overall estimate of their scaling behaviors. Then a multifractal analysis (Trace Moment, Double Trace Moment) estimates the statistical moments of different orders. This analysis is adapted to the specific properties of the studied time series, i. e. the presence of large scale gradients. The nonlinear behavior of the scaling functions K(q) confirms that the investigated aquatic time series are indeed multifractal and highly intermittent .The knowledge of the universal multifractal parameters is the key to calculate the different

  20. Sinking Chao Phraya delta plain, Thailand, derived from SAR interferometry time series analysis

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Mio, A.; Saito, Y.

    2013-12-01

    The Bangkok Metropolitan region and its surrounding provinces are located in a low-lying delta plain of the Chao Phraya River. Extensive groundwater use from the late 1950s has caused the decline of groundwater levels in the aquifers and Holocene clay compaction beneath the Bangkok Region, resulting in significant subsidence of the ground. This ground deformation has been monitored using leveling surveys since 1978, and differential InSAR (Interferometric Synthetic Aperture Radar) analysis. It shows that the Bangkok Metropolitan region is subsiding at a rate of about 20 mm/year during the recent years due to law-limited groundwater pumping, although the highest subsidence rate as high as 120 mm/year was recorded in 1981. The subsidence rate in the Bangkok area has significantly decreased since the late 1980s; however, the affected area has spread out to the surrounding areas. The maximum subsidence rate up to 30 mm/year occurred in the outlying southeast and southwest coastal zones in 2002. In this study, we apply a SAR interferometry time series analysis to monitor ground deformations in the lower Chao Phraya delta plain (Lower Central Plain), Thailand, using ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band SAR) data acquired between July 2007 and September 2010. We derive a single reference time series interferogram from the stacking of unwrapped phases under the assumptions that those phases are smoothly and continuously connected, and apply a smoothness-constrained inversion algorithm that optimizes the displacement from the phase unwrapping of multitemporal differential SAR interferograms. The SAR interferometry time series analysis succeeds to monitor the incremental line-of-sight (LOS)-change between SAR scene acquisitions. LOS displacements are converted to vertical displacements, based on the assumption that the ground displacement in this area occurs only in the vertical directions. This reveals an overall pattern of subsidence

  1. Analysis of trends and breakpoints in observed discharge time series in Lower Saxony, Germany

    NASA Astrophysics Data System (ADS)

    Fangmann, Anne; Belli, Aslan; Haberlandt, Uwe

    2013-04-01

    Historical streamflow in the federal state of Lower Saxony, Germany was analyzed for potential trends and breakpoints. The investigation was based on time series of daily mean discharge values in the periods 1951 to 2005, for which 34 gauging stations showed a sufficient record length, and 1966 to 2005, for which 110 gauges were available. Indices characterizing both high and low flow conditions, as well as the mean discharge within a year and the individual seasons, were extracted from the daily time series and subjected to statistical analyses, including the estimation of trend direction, slope and local and global significance, as well as a breakpoint analysis. Simultaneously, several precipitation and temperature indices were tested for trends in the exact same manner, in order to investigate alterations in the atmospheric driving forces as potential causes for changes in the hydrological regime. 263 precipitation and 18 temperature stations provided the daily data from 1951 to 2005. For the discharge the largest significant changes could be noted in summer, where low, high and medium flows decreased throughout. Spatially, these downward trends proved strongest in the eastern half of Lower Saxony. A breakpoint analysis revealed that a large portion of gauging stations feature breaks in the summer indicator time series in 1988, after which a trend reversal, i.e. an increase in discharge, was observed. In spring and fall, a spatial differentiation between an increase in the northwest and a decrease in the southeast were found for the low flow. In winter, an increasing tendency in all discharge portions could be noted, but merely the trends in the flood indices proved field significant. Generally, the trends in discharge were found consistent with those in temperature and especially precipitation. For the mean temperature, consistently strong, positive, significant trends were detected, while the analysis of the precipitation indices revealed increases in winter

  2. Finite element techniques in computational time series analysis of turbulent flows

    NASA Astrophysics Data System (ADS)

    Horenko, I.

    2009-04-01

    In recent years there has been considerable increase of interest in the mathematical modeling and analysis of complex systems that undergo transitions between several phases or regimes. Such systems can be found, e.g., in weather forecast (transitions between weather conditions), climate research (ice and warm ages), computational drug design (conformational transitions) and in econometrics (e.g., transitions between different phases of the market). In all cases, the accumulation of sufficiently detailed time series has led to the formation of huge databases, containing enormous but still undiscovered treasures of information. However, the extraction of essential dynamics and identification of the phases is usually hindered by the multidimensional nature of the signal, i.e., the information is "hidden" in the time series. The standard filtering approaches (like f.~e. wavelets-based spectral methods) have in general unfeasible numerical complexity in high-dimensions, other standard methods (like f.~e. Kalman-filter, MVAR, ARCH/GARCH etc.) impose some strong assumptions about the type of the underlying dynamics. Approach based on optimization of the specially constructed regularized functional (describing the quality of data description in terms of the certain amount of specified models) will be introduced. Based on this approach, several new adaptive mathematical methods for simultaneous EOF/SSA-like data-based dimension reduction and identification of hidden phases in high-dimensional time series will be presented. The methods exploit the topological structure of the analysed data an do not impose severe assumptions on the underlying dynamics. Special emphasis will be done on the mathematical assumptions and numerical cost of the constructed methods. The application of the presented methods will be first demonstrated on a toy example and the results will be compared with the ones obtained by standard approaches. The importance of accounting for the mathematical

  3. Time series analysis of Adaptive Optics wave-front sensor telemetry data

    SciTech Connect

    Poyneer, L A; Palmer, D

    2004-03-22

    Time series analysis techniques are applied to wave-front sensor telemetry data from the Lick Adaptive Optics System. For 28 fully-illuminated subapertures, telemetry data of 4096 consecutive slope estimates for each subaperture are available. The primary problem is performance comparison of alternative wave-front sensing algorithms. Using direct comparison of data in open loop and closed-loop trials, we analyze algorithm performance in terms of gain, noise and residual power. We also explore the benefits of multi-input Wiener filtering and analyze the open-loop and closed-loop spatial correlations of the sensor measurements.

  4. Use of recurrence plot and recurrence quantification analysis in Taiwan unemployment rate time series

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Shing

    2011-04-01

    The aim of the article is to answer the question if the Taiwan unemployment rate dynamics is generated by a non-linear deterministic dynamic process. This paper applies a recurrence plot and recurrence quantification approach based on the analysis of non-stationary hidden transition patterns of the unemployment rate of Taiwan. The case study uses the time series data of the Taiwan’s unemployment rate during the period from 1978/01 to 2010/06. The results show that recurrence techniques are able to identify various phases in the evolution of unemployment transition in Taiwan.

  5. Blind summarization: content-adaptive video summarization using time-series analysis

    NASA Astrophysics Data System (ADS)

    Divakaran, Ajay; Radhakrishnan, Regunathan; Peker, Kadir A.

    2006-01-01

    Severe complexity constraints on consumer electronic devices motivate us to investigate general-purpose video summarization techniques that are able to apply a common hardware setup to multiple content genres. On the other hand, we know that high quality summaries can only be produced with domain-specific processing. In this paper, we present a time-series analysis based video summarization technique that provides a general core to which we are able to add small content-specific extensions for each genre. The proposed time-series analysis technique consists of unsupervised clustering of samples taken through sliding windows from the time series of features obtained from the content. We classify content into two broad categories, scripted content such as news and drama, and unscripted content such as sports and surveillance. The summarization problem then reduces to finding either finding semantic boundaries of the scripted content or detecting highlights in the unscripted content. The proposed technique is essentially an event detection technique and is thus best suited to unscripted content, however, we also find applications to scripted content. We thoroughly examine the trade-off between content-neutral and content-specific processing for effective summarization for a number of genres, and find that our core technique enables us to minimize the complexity of the content-specific processing and to postpone it to the final stage. We achieve the best results with unscripted content such as sports and surveillance video in terms of quality of summaries and minimizing content-specific processing. For other genres such as drama, we find that more content-specific processing is required. We also find that judicious choice of key audio-visual object detectors enables us to minimize the complexity of the content-specific processing while maintaining its applicability to a broad range of genres. We will present a demonstration of our proposed technique at the conference.

  6. Time series analysis of thermal variation on Italian volcanic active areas by using IR satellite data

    NASA Astrophysics Data System (ADS)

    Silvestri, M.; Buongiorno, M. F.; Pieri, D. C.

    2014-12-01

    To monitoring of active volcanoes the systematic acquisition of medium/high resolution thermal data and the subsequent analysis of time series may improve the capability to detect small surface temperature variation related to changes in volcanic activity level and contribute to the early warning systems. Examples on the processing of long time series based EO data of Mt Etna activity and Phlegraean Fields observation by using remote sensing techniques and at different spatial resolution data (ASTER - 90mt, AVHRR -1km, MODIS-1km, MSG SEVIRI-3km) are showed. The use of TIR sensors with high spatial resolution offers the possibility to obtain detailed information on the areas where there are significant changes, detecting variation in fumaroles fields and summit craters before eruptions. Thanks to ASTER thermal infrared (TIR, 5 bands) regions of the electromagnetic spectrum we have obtained the surface temperature map on the volcano area. For this study we have considered the ASTER's night observations that show well defined episodes of increasing thermal emission of crater thanks to a more uniform background temperature. Two different procedures are shown, both using the TIR high spatial resolution data: for Phlegraean Fields (active but quiescent volcano) the analysis of time series of surface temperature which may improve the capability to detect small surface temperature variation related to changes in volcanic activity level; for Mt. Etna (active volcano) a semi-automatic procedure which extract the summit area radiance values with the goal of detecting variation related to eruptive events. The advantage of direct download of EO data by means INGV antennas even though low spatial resolution offers the possibility of a systematic data processing having a daily updating of information for prompt response and hazard mitigation. At the same time the comparison of surface temperature retrievals at different scale is an important issue for future satellite sensors.

  7. Online Time Series Analysis of Land Products over Asia Monsoon Region via Giovanni

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2011-01-01

    Time series analysis is critical to the study of land cover/land use changes and climate. Time series studies at local-to-regional scales require higher spatial resolution, such as 1km or less, data. MODIS land products of 250m to 1km resolution enable such studies. However, such MODIS land data files are distributed in 10ox10o tiles, due to large data volumes. Conducting a time series study requires downloading all tiles that include the study area for the time period of interest, and mosaicking the tiles spatially. This can be an extremely time-consuming process. In support of the Monsoon Asia Integrated Regional Study (MAIRS) program, NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has processed MODIS land products at 1 km resolution over the Asia monsoon region (0o-60oN, 60o-150oE) with a common data structure and format. The processed data have been integrated into the Giovanni system (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) that enables users to explore, analyze, and download data over an area and time period of interest easily. Currently, the following regional MODIS land products are available in Giovanni: 8-day 1km land surface temperature and active fire, monthly 1km vegetation index, and yearly 0.05o, 500m land cover types. More data will be added in the near future. By combining atmospheric and oceanic data products in the Giovanni system, it is possible to do further analyses of environmental and climate changes associated with the land, ocean, and atmosphere. This presentation demonstrates exploring land products in the Giovanni system with sample case scenarios.

  8. Use of a Principal Components Analysis for the Generation of Daily Time Series.

    NASA Astrophysics Data System (ADS)

    Dreveton, Christine; Guillou, Yann

    2004-07-01

    A new approach for generating daily time series is considered in response to the weather-derivatives market. This approach consists of performing a principal components analysis to create independent variables, the values of which are then generated separately with a random process. Weather derivatives are financial or insurance products that give companies the opportunity to cover themselves against adverse climate conditions. The aim of a generator is to provide a wider range of feasible situations to be used in an assessment of risk. Generation of a temperature time series is required by insurers or bankers for pricing weather options. The provision of conditional probabilities and a good representation of the interannual variance are the main challenges of a generator when used for weather derivatives. The generator was developed according to this new approach using a principal components analysis and was applied to the daily average temperature time series of the Paris-Montsouris station in France. The observed dataset was homogenized and the trend was removed to represent correctly the present climate. The results obtained with the generator show that it represents correctly the interannual variance of the observed climate; this is the main result of the work, because one of the main discrepancies of other generators is their inability to represent accurately the observed interannual climate variance—this discrepancy is not acceptable for an application to weather derivatives. The generator was also tested to calculate conditional probabilities: for example, the knowledge of the aggregated value of heating degree-days in the middle of the heating season allows one to estimate the probability if reaching a threshold at the end of the heating season. This represents the main application of a climate generator for use with weather derivatives.


  9. Time Series Analysis of Onchocerciasis Data from Mexico: A Trend towards Elimination

    PubMed Central

    Pérez-Rodríguez, Miguel A.; Adeleke, Monsuru A.; Orozco-Algarra, María E.; Arrendondo-Jiménez, Juan I.; Guo, Xianwu

    2013-01-01

    Background In Latin America, there are 13 geographically isolated endemic foci distributed among Mexico, Guatemala, Colombia, Venezuela, Brazil and Ecuador. The communities of the three endemic foci found within Mexico have been receiving ivermectin treatment since 1989. In this study, we predicted the trend of occurrence of cases in Mexico by applying time series analysis to monthly onchocerciasis data reported by the Mexican Secretariat of Health between 1988 and 2011 using the software R. Results A total of 15,584 cases were reported in Mexico from 1988 to 2011. The data of onchocerciasis cases are mainly from the main endemic foci of Chiapas and Oaxaca. The last case in Oaxaca was reported in 1998, but new cases were reported in the Chiapas foci up to 2011. Time series analysis performed for the foci in Mexico showed a decreasing trend of the disease over time. The best-fitted models with the smallest Akaike Information Criterion (AIC) were Auto-Regressive Integrated Moving Average (ARIMA) models, which were used to predict the tendency of onchocerciasis cases for two years ahead. According to the ARIMA models predictions, the cases in very low number (below 1) are expected for the disease between 2012 and 2013 in Chiapas, the last endemic region in Mexico. Conclusion The endemic regions of Mexico evolved from high onchocerciasis-endemic states to the interruption of transmission due to the strategies followed by the MSH, based on treatment with ivermectin. The extremely low level of expected cases as predicted by ARIMA models for the next two years suggest that the onchocerciasis is being eliminated in Mexico. To our knowledge, it is the first study utilizing time series for predicting case dynamics of onchocerciasis, which could be used as a benchmark during monitoring and post-treatment surveillance. PMID:23459370

  10. Characterization of Ground Deformation above AN Urban Tunnel by Means of Insar Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Ferretti, A.; Iannacone, J.; Falorni, G.; Berti, M.; Corsini, A.

    2013-12-01

    Ground deformation produced by tunnel excavation in urban areas can cause damage to buildings and infrastructure. In these contexts, monitoring systems are required to determine the surface area affected by displacement and the rates of movement. Advanced multi-image satellite-based InSAR approaches are uniquely suited for this purpose as they provide an overview of the entire affected area and can measure movement rates with millimeter precision. Persistent scatterer approaches such as SqueeSAR™ use reflections off buildings, lampposts, roads, etc to produce a high-density point cloud in which each point has a time series of deformation spanning the period covered by the imagery. We investigated an area of about 10 km2 in North Vancouver, (Canada) where the shaft excavation of the Seymour-Capilano water filtration plant was started in 2004. As part of the project, twin tunnels in bedrock were excavated to transfer water from the Capilano Reservoir to the treatment plant. A radar dataset comprising 58 images (spanning March 2001 - June 2008) acquired by the Radarsat-1 satellite and covering the period of excavation was processed with the SqueeSAR™ algorithm (Ferretti et al., 2011) to assess the ground deformation caused by the tunnel excavation. To better characterize the deformation in the time and space domains and correlate ground movement with excavation, an in-depth time series analysis was carried out. Berti et al. (2013) developed an automatic procedure for the analysis of InSAR time series based on a sequence of statistical tests. The tool classifies time series into six distinctive types (uncorrelated; linear; quadratic; bilinear; discontinuous without constant velocity; discontinuous with change in velocity) which can be linked to different physical phenomena. It also provides a series of descriptive parameters which can be used to characterize the temporal changes of ground motion. We processed the movement time series with PSTime to determine the

  11. Wet tropospheric delays forecast based on Vienna Mapping Function time series analysis

    NASA Astrophysics Data System (ADS)

    Rzepecka, Zofia; Kalita, Jakub

    2016-04-01

    It is well known that the dry part of the zenith tropospheric delay (ZTD) is much easier to model than the wet part (ZTW). The aim of the research is applying stochastic modeling and prediction of ZTW using time series analysis tools. Application of time series analysis enables closer understanding of ZTW behavior as well as short-term prediction of future ZTW values. The ZTW data used for the studies were obtained from the GGOS service hold by Vienna technical University. The resolution of the data is six hours. ZTW for the years 2010 -2013 were adopted for the study. The International GNSS Service (IGS) permanent stations LAMA and GOPE, located in mid-latitudes, were admitted for the investigations. Initially the seasonal part was separated and modeled using periodic signals and frequency analysis. The prominent annual and semi-annual signals were removed using sines and consines functions. The autocorrelation of the resulting signal is significant for several days (20-30 samples). The residuals of this fitting were further analyzed and modeled with ARIMA processes. For both the stations optimal ARMA processes based on several criterions were obtained. On this basis predicted ZTW values were computed for one day ahead, leaving the white process residuals. Accuracy of the prediction can be estimated at about 3 cm.

  12. Time-series analysis for determining vertical air permeability in unsaturated zones

    SciTech Connect

    Lu, N.

    1999-01-01

    The air pressure in the unsaturated subsurface changes dynamically as the barometric pressure varies with time. Depending on the material properties and boundary conditions, the intensity of the correlation between the atmospheric and subsurface pressures may be evidenced in two persistent patterns: (1) the amplitude attenuation; and (2) the phase lag for the principal modes, such as the diurnal, semidiurnal, and 8-h tides. The amplitude attenuation and the phase lag generally depend on properties that can be classified into two categories: (1) The barometric pressure parameters, such as the apparent pressure amplitudes and frequencies controlled by the atmospheric tides and others; and (2) the material properties of porous media, such as the air viscosity, air-filled porosity, and permeability. Based on the principle of superposition and a Fourier time-series analysis, an analytical solution for predicting the subsurface air pressure variation caused by the atmospheric pressure fluctuation is presented. The air permeability (or pneumatic diffusivity) can be quantitatively determined by using the calculated amplitude attenuations (or phase lags) and the appropriate analytical relations among the parameters of the atmosphere and the porous medium. An analysis using the field data shows that the Fourier time-series analysis may provide a potentially reliable and simple method for predicting the subsurface barometric pressure variation and for determining the air permeability of unsaturated zones.

  13. InSAR and GPS time series analysis: Crustal deformation in the Yucca Mountain, Nevada region

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hammond, W. C.; Blewitt, G.; Kreemer, C. W.; Plag, H.

    2010-12-01

    Several previous studies have successfully demonstrated that long time series (e.g. >5 years) of GPS measurements can be employed to detect tectonic signals with a vertical rate greater than 0.3 mm/yr (e.g. Hill and Blewitt, 2006; Bennett et al. 2009). However, GPS stations are often sparse, with spacing from a few kilometres to a few hundred kilometres. Interferometric SAR (InSAR) can complement GPS by providing high horizontal spatial resolution (e.g. meters to tens-of metres) over large regions (e.g. 100 km × 100 km). A major source of error for repeat-pass InSAR is the phase delay in radio signal propagation through the atmosphere. The portion of this attributable to tropospheric water vapour causes errors as large as 10-20 cm in deformation retrievals. InSAR Time Series analysis with Atmospheric Estimation Models (InSAR TS + AEM), developed at the University of Glasgow, is a robust time series analysis approach, which mainly uses interferograms with small geometric baselines to minimise the effects of decorrelation and inaccuracies in topographic data. In addition, InSAR TS + AEM can be used to separate deformation signals from atmospheric water vapour effects in order to map surface deformation as it evolves in time. The principal purposes of this study are to assess: (1) how consistent InSAR-derived deformation time series are with GPS; and (2) how precise InSAR-derived atmospheric path delays can be. The Yucca Mountain, Nevada region is chosen as the study site because of its excellent GPS network and extensive radar archives (>10 years of dense and high-quality GPS stations, and >17 years of ERS and ENVISAT radar acquisitions), and because of its arid environment. The latter results in coherence that is generally high, even for long periods that span the existing C-band radar archives of ERS and ENVISAT. Preliminary results show that our InSAR LOS deformation map agrees with GPS measurements to within 0.35 mm/yr RMS misfit at the stations which is the

  14. Spectral analysis of hydrological time series of a river basin in southern Spain

    NASA Astrophysics Data System (ADS)

    Luque-Espinar, Juan Antonio; Pulido-Velazquez, David; Pardo-Igúzquiza, Eulogio; Fernández-Chacón, Francisca; Jiménez-Sánchez, Jorge; Chica-Olmo, Mario

    2016-04-01

    Spectral analysis has been applied with the aim to determine the presence and statistical significance of climate cycles in data series from different rainfall, piezometric and gauging stations located in upper Genil River Basin. This river starts in Sierra Nevada Range at 3,480 m a.s.l. and is one of the most important rivers of this region. The study area has more than 2.500 km2, with large topographic differences. For this previous study, we have used more than 30 rain data series, 4 piezometric data series and 3 data series from gauging stations. Considering a monthly temporal unit, the studied period range from 1951 to 2015 but most of the data series have some lacks. Spectral analysis is a methodology widely used to discover cyclic components in time series. The time series is assumed to be a linear combination of sinusoidal functions of known periods but of unknown amplitude and phase. The amplitude is related with the variance of the time series, explained by the oscillation at each frequency (Blackman and Tukey, 1958, Bras and Rodríguez-Iturbe, 1985, Chatfield, 1991, Jenkins and Watts, 1968, among others). The signal component represents the structured part of the time series, made up of a small number of embedded periodicities. Then, we take into account the known result for the one-sided confidence band of the power spectrum estimator. For this study, we established confidence levels of <90%, 90%, 95%, and 99%. Different climate signals have been identified: ENSO, QBO, NAO, Sun Spot cycles, as well as others related to sun activity, but the most powerful signals correspond to the annual cycle, followed by the 6 month and NAO cycles. Nevertheless, significant differences between rain data series and piezometric/flow data series have been pointed out. In piezometric data series and flow data series, ENSO and NAO signals could be stronger than others with high frequencies. The climatic peaks in lower frequencies in rain data are smaller and the confidence

  15. Analysis of temporal correlations in GPS time series: comparison between different methods

    NASA Astrophysics Data System (ADS)

    Barzaghi, R.; Borghi, A.; Cannizzaro, L.

    2009-04-01

    Previous works (Agnew, 1992; Langbein et al., 1997; Zhang et al., 1997; Mao et al., 1999; Williams, 2003; Williams et al., 2004; Amiri-Simkoeii et al., 2007) have proved that the daily GPS time series are characterized by coloured noise. The Power Law Noise Process (PLNP) method has been generally adopted to describe the noise of continuous GPS observations. We suggest a different methodology to define the stochastic model of time series of position estimates for permanent GPS stations: when the residual data, after the linear and periodic trend reduction is performed, behave as a stationary and ergodic stochastic process, we suggest to define the noise characteristics of the GPS signal studying the Empirical Covariance Function (ECF). In principle, whether the stationary condition is satisfied, the two methodologies, PNLP with the estimate of the fractional spectral index and ECF, should give the same results, because they face the correlation analysis problem by a dual point of view: frequency and time domain respectively. However, due to the long computational time especially for long time series, the PLNP model is often approximated by fixing the spectral index to the value of the flicker noise. In this case we think that the results obtained by means of the ECF method are more rigorous than those obtained by fixing the spectral index, because it reflects, via covariance estimation, the proper stochastic structure of the data. Moreover, the ECF method have no computational burden respect to PLNP method with fractional spectral index estimation. The PLNP and ECF methodologies have been compared on a set of 70 Italian GPS stations, with variable observation windows, from a minimum of three years up to over 10 years.

  16. Wasserstein distances in the analysis of time series and dynamical systems

    NASA Astrophysics Data System (ADS)

    Muskulus, Michael; Verduyn-Lunel, Sjoerd

    2011-01-01

    A new approach based on Wasserstein distances, which are numerical costs of an optimal transportation problem, allows us to analyze nonlinear phenomena in a robust manner. The long-term behavior is reconstructed from time series, resulting in a probability distribution over phase space. Each pair of probability distributions is then assigned a numerical distance that quantifies the differences in their dynamical properties. From the totality of all these distances a low-dimensional representation in a Euclidean space is derived, in which the time series can be classified and statistically analyzed. This representation shows the functional relationships between the dynamical systems under study. It allows us to assess synchronization properties and also offers a new way of numerical bifurcation analysis. The statistical techniques for this distance-based analysis of dynamical systems are presented, filling a gap in the literature, and their application is discussed in a few examples of datasets arising in physiology and neuroscience, and in the well-known Hénon system.

  17. Population-level administration of AlcoholEdu for college: an ARIMA time-series analysis.

    PubMed

    Wyatt, Todd M; Dejong, William; Dixon, Elizabeth

    2013-08-01

    Autoregressive integrated moving averages (ARIMA) is a powerful analytic tool for conducting interrupted time-series analysis, yet it is rarely used in studies of public health campaigns or programs. This study demonstrated the use of ARIMA to assess AlcoholEdu for College, an online alcohol education course for first-year students, and other health and safety programs introduced at a moderate-size public university in the South. From 1992 to 2009, the university administered annual Core Alcohol and Drug Surveys to samples of undergraduates (Ns = 498 to 1032). AlcoholEdu and other health and safety programs that began during the study period were assessed through a series of quasi-experimental ARIMA analyses. Implementation of AlcoholEdu in 2004 was significantly associated with substantial decreases in alcohol consumption and alcohol- or drug-related negative consequences. These improvements were sustained over time as succeeding first-year classes took the course. Previous studies have shown that AlcoholEdu has an initial positive effect on students' alcohol use and associated negative consequences. This investigation suggests that these positive changes may be sustainable over time through yearly implementation of the course with first-year students. ARIMA time-series analysis holds great promise for investigating the effect of program and policy interventions to address alcohol- and drug-related problems on campus. PMID:23742712

  18. A Wavelet Time Series Analysis of Aperiodic Variable Stars in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Arnold, Timothy; Mighell, K.; Howell, S.

    2009-12-01

    The variable sky offers insights into the physical mechanisms of astronomical objects and can be used as a useful tool for many other purposes like the determination of distance with standard candles. Periodic variables were the first to be classified, understood, and used. Many variable but aperiodic light curves are discarded or insufficiently analyzed because of the apparent uselessness of the information contained in these data. Many contemporary projects (e.g. the Large Synoptic Survey Telescope, PanSTARRS, the Kepler mission) aim to map the transient sky, and recently methods of time series analysis have become increasingly advanced. It would be advantageous to discover identifying information in the large number of variable but ostensibly aperiodic light curves. We use a wavelet analysis, based on a weighted projection of time series data on to basis functions, to analyze aperiodic variable stars in the Burrell-Optical-Kepler Survey (BOKS). Using the Weighted Wavelet Z-Transform detailed in Foster 1996, we find that variable but aperiodic stars in our sample offer few characteristic properties that would be useful for further classification. Arnold's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  19. Cross-recurrence quantification analysis of categorical and continuous time series: an R package

    PubMed Central

    Coco, Moreno I.; Dale, Rick

    2014-01-01

    This paper describes the R package crqa to perform cross-recurrence quantification analysis of two time series of either a categorical or continuous nature. Streams of behavioral information, from eye movements to linguistic elements, unfold over time. When two people interact, such as in conversation, they often adapt to each other, leading these behavioral levels to exhibit recurrent states. In dialog, for example, interlocutors adapt to each other by exchanging interactive cues: smiles, nods, gestures, choice of words, and so on. In order for us to capture closely the goings-on of dynamic interaction, and uncover the extent of coupling between two individuals, we need to quantify how much recurrence is taking place at these levels. Methods available in crqa would allow researchers in cognitive science to pose such questions as how much are two people recurrent at some level of analysis, what is the characteristic lag time for one person to maximally match another, or whether one person is leading another. First, we set the theoretical ground to understand the difference between “correlation” and “co-visitation” when comparing two time series, using an aggregative or cross-recurrence approach. Then, we describe more formally the principles of cross-recurrence, and show with the current package how to carry out analyses applying them. We end the paper by comparing computational efficiency, and results’ consistency, of crqa R package, with the benchmark MATLAB toolbox crptoolbox (Marwan, 2013). We show perfect comparability between the two libraries on both levels. PMID:25018736

  20. Combined use of correlation dimension and entropy as discriminating measures for time series analysis

    NASA Astrophysics Data System (ADS)

    Harikrishnan, K. P.; Misra, R.; Ambika, G.

    2009-09-01

    We show that the combined use of correlation dimension (D2) and correlation entropy (K2) as discriminating measures can extract a more accurate information regarding the different types of noise present in a time series data. For this, we make use of an algorithmic approach for computing D2 and K2 proposed by us recently [Harikrishnan KP, Misra R, Ambika G, Kembhavi AK. Physica D 2006;215:137; Harikrishnan KP, Ambika G, Misra R. Mod Phys Lett B 2007;21:129; Harikrishnan KP, Misra R, Ambika G. Pramana - J Phys, in press], which is a modification of the standard Grassberger-Proccacia scheme. While the presence of white noise can be easily identified by computing D2 of data and surrogates, K2 is a better discriminating measure to detect colored noise in the data. Analysis of time series from a real world system involving both white and colored noise is presented as evidence. To our knowledge, this is the first time that such a combined analysis is undertaken on a real world data.

  1. Time series analysis of contaminant transport in the subsurface: Applications to conservative tracer and engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Bai, Chunmei; Li, Yusong

    2014-08-01

    Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed.

  2. Recurrence quantification analysis for detecting dynamical changes in earthquake magnitude time series

    NASA Astrophysics Data System (ADS)

    Lin, Min; Zhao, Gang; Wang, Gang

    2015-12-01

    In this study, recurrence plot (RP) and recurrence quantification analysis (RQA) techniques are applied to a magnitude time series composed of seismic events occurred in California region. Using bootstrapping techniques, we give the statistical test of the RQA for detecting dynamical transitions. From our results, we find the different patterns of RPs for magnitude time series before and after the M6.1 Joshua Tree Earthquake. RQA measurements of determinism (DET) and laminarity (LAM) quantifying the order with confidence levels also show peculiar behaviors. It is found that DET and LAM values of the recurrence-based complexity measure significantly increase to a large value at the main shock, and then gradually recovers to a small values after it. The main shock and its aftershock sequences trigger a temporary growth in order and complexity of the deterministic structure in the RP of seismic activity. It implies that the onset of the strong earthquake event is reflected in a sharp and great simultaneous change in RQA measures.

  3. Gravity-driven deformation of Tenerife measured by InSAR time series analysis

    NASA Astrophysics Data System (ADS)

    Fernández, J.; Tizzani, P.; Manzo, M.; Borgia, A.; González, P. J.; Martí, J.; Pepe, A.; Camacho, A. G.; Casu, F.; Berardino, P.; Prieto, J. F.; Lanari, R.

    2009-02-01

    We study the state of deformation of Tenerife (Canary Islands) using Differential Synthetic Aperture Radar Interferometry (DInSAR). We apply the Small BAseline Subset (SBAS) DInSAR algorithm to radar images acquired from 1992 to 2005 by the ERS sensors to determine the deformation rate distribution and the time series for the coherent pixels identified in the island. Our analysis reveals that the summit area of the volcanic edifice is characterized by a rather continuous subsidence extending well beyond Las Cañadas caldera rim and corresponding to the dense core of the island. These results, coupled with GPS ones, structural and geological information and deformation modeling, suggest an interpretation based on the gravitational sinking of the dense core of the island into a weak lithosphere and that the volcanic edifice is in a state of compression. We also detect more localized deformation patterns correlated with water table changes and variations in the deformation time series associated with the seismic crisis in 2004.

  4. Uniform framework for the recurrence-network analysis of chaotic time series

    NASA Astrophysics Data System (ADS)

    Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.

    2016-01-01

    We propose a general method for the construction and analysis of unweighted ɛ -recurrence networks from chaotic time series. The selection of the critical threshold ɛc in our scheme is done empirically and we show that its value is closely linked to the embedding dimension M . In fact, we are able to identify a small critical range Δ ɛ numerically that is approximately the same for the random and several standard chaotic time series for a fixed M . This provides us a uniform framework for the nonsubjective comparison of the statistical measures of the recurrence networks constructed from various chaotic attractors. We explicitly show that the degree distribution of the recurrence network constructed by our scheme is characteristic to the structure of the attractor and display statistical scale invariance with respect to increase in the number of nodes N . We also present two practical applications of the scheme, detection of transition between two dynamical regimes in a time-delayed system and identification of the dimensionality of the underlying system from real-world data with a limited number of points through recurrence network measures. The merits, limitations, and the potential applications of the proposed method are also highlighted.

  5. Time series analysis of contaminant transport in the subsurface: applications to conservative tracer and engineered nanomaterials.

    PubMed

    Bai, Chunmei; Li, Yusong

    2014-08-01

    Accurately predicting the transport of contaminants in the field is subject to multiple sources of uncertainty due to the variability of geological settings, the complexity of field measurements, and the scarcity of data. Such uncertainties can be amplified when modeling some emerging contaminants, such as engineered nanomaterials, when a fundamental understanding of their fate and transport is lacking. Typical field work includes collecting concentration at a certain location for an extended period of time, or measuring the movement of plume for an extended period time, which would result in a time series of observation data. This work presents an effort to evaluate the possibility of applying time series analysis, particularly, autoregressive integrated moving average (ARIMA) models, to forecast contaminant transport and distribution in the subsurface environment. ARIMA modeling was first assessed in terms of its capability to forecast tracer transport at two field sites, which had different levels of heterogeneity. After that, this study evaluated the applicability of ARIMA modeling to predict the transport of engineered nanomaterials at field sites, including field measured data of nanoscale zero valent iron and (nZVI) and numerically generated data for the transport of nano-fullerene aggregates (nC60). This proof-of-concept effort demonstrates the possibility of applying ARIMA to predict the contaminant transport in the subsurface environment. Like many other statistical models, ARIMA modeling is only descriptive and not explanatory. The limitation and the challenge associated with applying ARIMA modeling to contaminant transport in the subsurface are also discussed. PMID:24987973

  6. Time series analysis of personal exposure to ambient air pollution and mortality using an exposure simulator

    PubMed Central

    Chang, Howard H.; Fuentes, Montserrat; Frey, H. Christopher

    2013-01-01

    This paper describes a modeling framework for estimating the acute effects of personal exposure to ambient air pollution in a time series design. First, a spatial hierarchical model is used to relate Census tract-level daily ambient concentrations and simulated exposures for a subset of the study period. The complete exposure time series is then imputed for risk estimation. Modeling exposure via a statistical model reduces the computational burden associated with simulating personal exposures considerably. This allows us to consider personal exposures at a finer spatial resolution to improve exposure assessment and for a longer study period. The proposed approach is applied to an analysis of fine particulate matter of <2.5 μm in aerodynamic diameter (PM2.5) and daily mortality in the New York City metropolitan area during the period 2001–2005. Personal PM2.5 exposures were simulated from the Stochastic Human Exposure and Dose Simulation. Accounting for exposure uncertainty, the authors estimated a 2.32% (95% posterior interval: 0.68, 3.94) increase in mortality per a 10 μg/m3 increase in personal exposure to PM2.5 from outdoor sources on the previous day. The corresponding estimates per a 10 μg/m3 increase in PM2.5 ambient concentration was 1.13% (95% confidence interval: 0.27, 2.00). The risks of mortality associated with PM2.5 were also higher during the summer months. PMID:22669499

  7. Harmonic analysis of environmental time series with missing data or irregular sample spacing.

    PubMed

    Dilmaghani, Shabnam; Henry, Isaac C; Soonthornnonda, Puripus; Christensen, Erik R; Henry, Ronald C

    2007-10-15

    The Lomb periodogram and discrete Fourier transform are described and applied to harmonic analysis of two typical data sets, one air quality time series and one water quality time series. The air quality data is a 13 year series of 24 hour average particulate elemental carbon data from the IMPROVE station in Washington, D.C. The water quality data are from the stormwater monitoring network in Milwaukee, WI and cover almost 2 years of precipitation events. These data have irregular sampling periods and missing data that preclude the straightforward application of the fast Fourier transform (FFT). In both cases, an anthropogenic periodicity is identified; a 7-day weekday/ weekend effect in the Washington elemental carbon series and a 1 month cycle in several constituents of stormwater. Practical aspects of application of the Lomb periodogram are discussed, particularly quantifying the effects of random noise. The proper application of the FFT to data that are irregularly spaced with missing values is demonstrated on the air quality data. Recommendations are given when to use the Lomb periodogram and when to use the FFT. PMID:17993144

  8. Constraint-based analysis of gene interactions using restricted boolean networks and time-series data

    PubMed Central

    2011-01-01

    Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available. PMID:21554763

  9. Extensive mapping of coastal change in Alaska by Landsat time-series analysis, 1972-2013

    NASA Astrophysics Data System (ADS)

    Reynolds, J.; Macander, M. J.; Swingley, C. S.; Spencer, S. R.

    2014-12-01

    The landscape-scale effects of coastal storms on Alaska's Bering Sea and Gulf of Alaska coasts includes coastal erosion, migration of spits and barrier islands, breaching of coastal lakes and lagoons, and inundation and salt-kill of vegetation. Large changes in coastal storm frequency and intensity are expected due to climate change and reduced sea-ice extent. Storms have a wide range of impacts on carbon fluxes and on fish and wildlife resources, infrastructure siting and operation, and emergency response planning. In areas experiencing moderate to large effects, changes can be mapped by analyzing trends in time series of Landsat imagery from Landsat 1 through Landsat 8. The authors are performing a time-series trend analysis for over 22,000 kilometers of coastline along the Bering Sea and Gulf of Alaska. Ice- and cloud-free Landsat imagery from Landsat 1-8, covering 1972-2013, were analyzed using a combination of regression, changepoint detection, and classification tree approaches to detect, classify, and map changes in near-infrared reflectance. Areas with significant changes in coastal features, as well as timing of dominant changes and, in some cases, rates of change were identified . The approach captured many coastal changes over the 42-year study period, including coastal erosion exceeding the 60-m pixel resolution of the Multispectral Scanner (MSS) data and migrations of coastal spits and estuarine channels.

  10. Water Resources Management Plan for Ganga River using SWAT Modelling and Time series Analysis

    NASA Astrophysics Data System (ADS)

    Satish, L. N. V.

    2015-12-01

    Water resources management of the Ganga River is one of the primary objectives of National Ganga River Basin Environmental Management Plan. The present study aims to carry out water balance study and development of appropriate methodologies to compute environmental flow in the middle Ganga river basin between Patna-Farraka, India. The methodology adopted here are set-up a hydrological model to estimate monthly discharge at the tributaries under natural condition, hydrological alternation analysis of both observed and simulated discharge series, flow health analysis to obtain status of the stream health in the last 4 decades and estimating the e-flow using flow health indicators. ArcSWAT, was used to simulate 8 tributaries namely Kosi, Gandak and others. This modelling is quite encouraging and helps to provide the monthly water balance analysis for all tributaries for this study. The water balance analysis indicates significant change in surface and ground water interaction pattern within the study time period Indicators of hydrological alternation has been used for both observed and simulated data series to quantify hydrological alternation occurred in the tributaries and the main river in the last 4 decades,. For temporal variation of stream health, flow health tool has been used for observed and simulated discharge data. A detailed stream health analysis has been performed by considering 3 approaches based on i) observed flow time series, ii) observed and simulated flow time series and iii) simulated flow time series at small upland basin, major tributary and main Ganga river basin levels. At upland basin level, these approaches show that stream health and its temporal variations are good with non-significant temporal variation. At major tributary level, the stream health and its temporal variations are found to be deteriorating from 1970s. At the main Ganga reach level river health and its temporal variations does not show any declining trend. Finally, E- flows

  11. Satellite time series analysis to study the ephemeral nature of archaeological marks

    NASA Astrophysics Data System (ADS)

    Stewart, Chris

    2014-05-01

    Archaeological structures buried beneath the ground often leave traces at the surface. These traces can be in the form of differences in soil moisture and composition, or vegetation growth caused for example by increased soil water retention over a buried ditch, or by insufficient soil depth over a buried wall for vegetation to place deep roots. Buried structures also often leave subtle topographic traces at the surface. Analyses is carried out on the ephemeral characteristics of buried archaeological crop and soil marks over a number of sites around the city of Rome using satellite data from both optical and SAR (Synthetic Aperture Radar) sensors, including Kompsat-2, ALOS PRISM and COSMO SkyMed. The sensitivity of topographic satellite data, obtained by optical photogrammetry and interferometric SAR, is also analysed over the same sites, as well as other sites in Egypt. The analysis includes a study of the interferometric coherence of successive pairs of a time series of SAR data over sites containing buried structuresto better understand the nature of the vegetated or bare soil surface. To understand the ephemeral nature of archaeological crop and soil marks, the spectral reflectance characteristics of areas where such marks sometimes appear are extracted from a time series of optical multispectral and panchromatic imagery, and their backscatter characteristics extracted from a time series of SAR backscatter amplitude data. The results of this analysis is then compared with the results of the coherence analysis to see if any link can be established between the appearance of archaeological structures and the nature of ground cover. Results show that archaeological marks in the study areas are more present in SAR backscatter data over vegetated surfaces, rather than bare soil surfaces, but sometimes appear also in bare soil conditions. In the study areas, crop marks appear more distinctly in optical data after long periods without rainfall. The topographic

  12. Data Reorganization for Optimal Time Series Data Access, Analysis, and Visualization

    NASA Astrophysics Data System (ADS)

    Rui, H.; Teng, W. L.; Strub, R.; Vollmer, B.

    2012-12-01

    The way data are archived is often not optimal for their access by many user communities (e.g., hydrological), particularly if the data volumes and/or number of data files are large. The number of data records of a non-static data set generally increases with time. Therefore, most data sets are commonly archived by time steps, one step per file, often containing multiple variables. However, many research and application efforts need time series data for a given geographical location or area, i.e., a data organization that is orthogonal to the way the data are archived. The retrieval of a time series of the entire temporal coverage of a data set for a single variable at a single data point, in an optimal way, is an important and longstanding challenge, especially for large science data sets (i.e., with volumes greater than 100 GB). Two examples of such large data sets are the North American Land Data Assimilation System (NLDAS) and Global Land Data Assimilation System (GLDAS), archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC; Hydrology Data Holdings Portal, http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings). To date, the NLDAS data set, hourly 0.125x0.125° from Jan. 1, 1979 to present, has a total volume greater than 3 TB (compressed). The GLDAS data set, 3-hourly and monthly 0.25x0.25° and 1.0x1.0° Jan. 1948 to present, has a total volume greater than 1 TB (compressed). Both data sets are accessible, in the archived time step format, via several convenient methods, including Mirador search and download (http://mirador.gsfc.nasa.gov/), GrADS Data Server (GDS; http://hydro1.sci.gsfc.nasa.gov/dods/), direct FTP (ftp://hydro1.sci.gsfc.nasa.gov/data/s4pa/), and Giovanni Online Visualization and Analysis (http://disc.sci.gsfc.nasa.gov/giovanni). However, users who need long time series currently have no efficient way to retrieve them. Continuing a longstanding tradition of facilitating data access, analysis, and

  13. Investigation on Law and Economics Based on Complex Network and Time Series Analysis

    PubMed Central

    Yang, Jian; Qu, Zhao; Chang, Hui

    2015-01-01

    The research focuses on the cooperative relationship and the strategy tendency among three mutually interactive parties in financing: small enterprises, commercial banks and micro-credit companies. Complex network theory and time series analysis were applied to figure out the quantitative evidence. Moreover, this paper built up a fundamental model describing the particular interaction among them through evolutionary game. Combining the results of data analysis and current situation, it is justifiable to put forward reasonable legislative recommendations for regulations on lending activities among small enterprises, commercial banks and micro-credit companies. The approach in this research provides a framework for constructing mathematical models and applying econometrics and evolutionary game in the issue of corporation financing. PMID:26076460

  14. Modeling of human operator dynamics in simple manual control utilizing time series analysis. [tracking (position)

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.

    1982-01-01

    Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.

  15. [Evolution of child undernutrition in Chile and some of its conditioning factors: a time series analysis].

    PubMed

    Amigo, H; Díaz, L; Pino, P; Vera, G

    1994-06-01

    The objective of this study was to determine the evolution of the nutritional status of the population under five years of age during the period 1975-1990. Several conditioning factors were also assessed. The information was evaluated through time series analysis by using the AREG procedure. This procedure allows for the estimation of a regression model correcting by the autocorrelation of errors. Results indicates a significant trend to decreased undernutrition rates (p < 0.0001). A seasonal effect on undernutrition was observed, being higher the prevalences in summer. Analysis of selected conditioning factors, as well as the familiar buying capacity remained stable during the period. An exception to the lack of association among undernutrition and the conditioning factors evaluated, was seen during the period 1975-1982 when clear inverse relationship was evidenced. In conclusion, the decrease of infant undernutrition in Chile during the period 1975-1990 was not related to the changes observed in certain socioeconomic indices. PMID:7733798

  16. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, Max

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that our techniques allow more accurate estimation of the global system load ing, resulting in fewer object migration than local methods. Our method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive methods.

  17. Use of a prototype pulse oximeter for time series analysis of heart rate variability

    NASA Astrophysics Data System (ADS)

    González, Erika; López, Jehú; Hautefeuille, Mathieu; Velázquez, Víctor; Del Moral, Jésica

    2015-05-01

    This work presents the development of a low cost pulse oximeter prototype consisting of pulsed red and infrared commercial LEDs and a broad spectral photodetector used to register time series of heart rate and oxygen saturation of blood. This platform, besides providing these values, like any other pulse oximeter, processes the signals to compute a power spectrum analysis of the patient heart rate variability in real time and, additionally, the device allows access to all raw and analyzed data if databases construction is required or another kind of further analysis is desired. Since the prototype is capable of acquiring data for long periods of time, it is suitable for collecting data in real life activities, enabling the development of future wearable applications.

  18. 3D time series analysis of cell shape using Laplacian approaches

    PubMed Central

    2013-01-01

    Background Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations. PMID:24090312

  19. Quantification of evolution from order to randomness in practical time series analysis.

    PubMed

    Pincus, S M

    1994-01-01

    The principal focus of this chapter is the description of a recently developed, readily usable regularity statistic, ApEn, that quantifies the continuum from perfectly orderly to completely random in time series data. Several properties of ApEn facilitate its utility for practical time series analysis: (1) ApEn is nearly unaffected by noise of magnitude below a de facto specified filter level; (2) ApEn is robust to outliers; (3) ApEn can be applied to time series of 100 or more points, with good confidence (established by standard deviation calculations); (4) ApEn is finite for stochastic, noisy deterministic, and composite (mixed) processes, the last of which are likely models for complicated biological systems; (5) increasing ApEn corresponds to intuitively increasing process complexity in the settings of (4). This applicability to medium-sized data sets and general stochastic processes is in marked contrast to capabilities of "chaos" algorithms such as the correlation dimension, which are properly applied to low-dimensional iterated deterministic dynamical systems. The potential uses of ApEn to provide new insights in biological settings are thus myriad, from a perspective complementary to that given by classic statistical methods. The ApEn statistic is typically calculated by a computer program, with a FORTRAN listing for a "basic" code referenced above. It is imperative to view ApEn as a family of statistics, each of which is a relative measure of process regularity. For proper implementation, the two input parameters m (window length) and r (tolerance width, de facto filter) must remain fixed in all calculations, as must N, the data length, to ensure meaningful comparisons. Guidelines for m and r selection are indicated above. We have found normalized regularity to be especially useful; "r" is chosen as a fixed percentage (often 15 or 20%) of the SD of the subject rather than of a group SD. This version of ApEn has the property that it is decorrelated from

  20. Pitfalls in Fractal Time Series Analysis: fMRI BOLD as an Exemplary Case

    PubMed Central

    Eke, Andras; Herman, Peter; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Mukli, Peter; Nagy, Zoltan

    2012-01-01

    This article will be positioned on our previous work demonstrating the importance of adhering to a carefully selected set of criteria when choosing the suitable method from those available ensuring its adequate performance when applied to real temporal signals, such as fMRI BOLD, to evaluate one important facet of their behavior, fractality. Earlier, we have reviewed on a range of monofractal tools and evaluated their performance. Given the advance in the fractal field, in this article we will discuss the most widely used implementations of multifractal analyses, too. Our recommended flowchart for the fractal characterization of spontaneous, low frequency fluctuations in fMRI BOLD will be used as the framework for this article to make certain that it will provide a hands-on experience for the reader in handling the perplexed issues of fractal analysis. The reason why this particular signal modality and its fractal analysis has been chosen was due to its high impact on today’s neuroscience given it had powerfully emerged as a new way of interpreting the complex functioning of the brain (see “intrinsic activity”). The reader will first be presented with the basic concepts of mono and multifractal time series analyses, followed by some of the most relevant implementations, characterization by numerical approaches. The notion of the dichotomy of fractional Gaussian noise and fractional Brownian motion signal classes and their impact on fractal time series analyses will be thoroughly discussed as the central theme of our application strategy. Sources of pitfalls and way how to avoid them will be identified followed by a demonstration on fractal studies of fMRI BOLD taken from the literature and that of our own in an attempt to consolidate the best practice in fractal analysis of empirical fMRI BOLD signals mapped throughout the brain as an exemplary case of potentially wide interest. PMID:23227008

  1. Seasonal and annual precipitation time series trend analysis in North Carolina, United States

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, Mohammad; Jha, Manoj K.

    2014-02-01

    The present study performs the spatial and temporal trend analysis of the annual and seasonal time-series of a set of uniformly distributed 249 stations precipitation data across the state of North Carolina, United States over the period of 1950-2009. The Mann-Kendall (MK) test, the Theil-Sen approach (TSA) and the Sequential Mann-Kendall (SQMK) test were applied to quantify the significance of trend, magnitude of trend, and the trend shift, respectively. Regional (mountain, piedmont and coastal) precipitation trends were also analyzed using the above-mentioned tests. Prior to the application of statistical tests, the pre-whitening technique was used to eliminate the effect of autocorrelation of precipitation data series. The application of the above-mentioned procedures has shown very notable statewide increasing trend for winter and decreasing trend for fall precipitation. Statewide mixed (increasing/decreasing) trend has been detected in annual, spring, and summer precipitation time series. Significant trends (confidence level ≥ 95%) were detected only in 8, 7, 4 and 10 nos. of stations (out of 249 stations) in winter, spring, summer, and fall, respectively. Magnitude of the highest increasing (decreasing) precipitation trend was found about 4 mm/season (- 4.50 mm/season) in fall (summer) season. Annual precipitation trend magnitude varied between - 5.50 mm/year and 9 mm/year. Regional trend analysis found increasing precipitation in mountain and coastal regions in general except during the winter. Piedmont region was found to have increasing trends in summer and fall, but decreasing trend in winter, spring and on an annual basis. The SQMK test on "trend shift analysis" identified a significant shift during 1960 - 70 in most parts of the state. Finally, the comparison between winter (summer) precipitations with the North Atlantic Oscillation (Southern Oscillation) indices concluded that the variability and trend of precipitation can be explained by the

  2. Time Series Explorer

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas

    The key, central objectives of the proposed Time Series Explorer project are to develop an organized collection of software tools for analysis of time series data in current and future NASA astrophysics data archives, and to make the tools available in two ways: as a library (the Time Series Toolbox) that individual science users can use to write their own data analysis pipelines, and as an application (the Time Series Automaton) providing an accessible, data-ready interface to many Toolbox algorithms, facilitating rapid exploration and automatic processing of time series databases. A number of time series analysis methods will be implemented, including techniques that range from standard ones to state-of-the-art developments by the proposers and others. Most of the algorithms will be able to handle time series data subject to real-world problems such as data gaps, sampling that is otherwise irregular, asynchronous sampling (in multi-wavelength settings), and data with non-Gaussian measurement errors. The proposed research responds to the ADAP element supporting the development of tools for mining the vast reservoir of information residing in NASA databases. The tools that will be provided to the community of astronomers studying variability of astronomical objects (from nearby stars and extrasolar planets, through galactic and extragalactic sources) will revolutionize the quality of timing analyses that can be carried out, and greatly enhance the scientific throughput of all NASA astrophysics missions past, present, and future. The Automaton will let scientists explore time series - individual records or large data bases -- with the most informative and useful analysis methods available, without having to develop the tools themselves or understand the computational details. Both elements, the Toolbox and the Automaton, will enable deep but efficient exploratory time series data analysis, which is why we have named the project the Time Series Explorer. Science

  3. Experimental nonlinear dynamical studies in cesium magneto-optical trap using time-series analysis

    NASA Astrophysics Data System (ADS)

    Anwar, M.; Islam, R.; Faisal, M.; Sikandar, M.; Ahmed, M.

    2015-03-01

    A magneto-optical trap of neutral atoms is essentially a dissipative quantum system. The fast thermal atoms continuously dissipate their energy to the environment via spontaneous emissions during the cooling. The atoms are, therefore, strongly coupled with the vacuum reservoir and the laser field. The vacuum fluctuations as well as the field fluctuations are imparted to the atoms as random photon recoils. Consequently, the external and internal dynamics of atoms becomes stochastic. In this paper, we have investigated the stochastic dynamics of the atoms in a magneto-optical trap during the loading process. The time series analysis of the fluorescence signal shows that the dynamics of the atoms evolves, like all dissipative systems, from deterministic to the chaotic regime. The subsequent disappearance and revival of chaos was attributed to chaos synchronization between spatially different atoms in the magneto-optical trap.

  4. Possible signatures of dissipation from time-series analysis techniques using a turbulent laboratory magnetohydrodynamic plasma

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.; Brown, M. R.; Rock, A. B.

    2016-05-01

    The frequency spectrum of magnetic fluctuations as measured on the Swarthmore Spheromak Experiment is broadband and exhibits a nearly Kolmogorov 5/3 scaling. It features a steepening region which is indicative of dissipation of magnetic fluctuation energy similar to that observed in fluid and magnetohydrodynamic turbulence systems. Two non-spectrum based time-series analysis techniques are implemented on this data set in order to seek other possible signatures of turbulent dissipation beyond just the steepening of fluctuation spectra. Presented here are results for the flatness, permutation entropy, and statistical complexity, each of which exhibits a particular character at spectral steepening scales which can then be compared to the behavior of the frequency spectrum.

  5. Studies in astronomical time series analysis: Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1979-01-01

    Random process models phased in the time domain are used to analyze astrophysical time series data produced by random processes. A moving average (MA) model represents the data as a sequence of pulses occurring randomly in time, with random amplitudes. An autoregressive (AR) model represents the correlations in the process in terms of a linear function of past values. The best AR model is determined from sampled data and transformed to an MA for interpretation. The randomness of the pulse amplitudes is maximized by a FORTRAN algorithm which is relatively stable numerically. Results of test cases are given to study the effects of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the optical light curve of the quasar 3C 273 is given.

  6. Experimental nonlinear dynamical studies in cesium magneto-optical trap using time-series analysis

    SciTech Connect

    Anwar, M. Islam, R.; Faisal, M.; Sikandar, M.; Ahmed, M.

    2015-03-30

    A magneto-optical trap of neutral atoms is essentially a dissipative quantum system. The fast thermal atoms continuously dissipate their energy to the environment via spontaneous emissions during the cooling. The atoms are, therefore, strongly coupled with the vacuum reservoir and the laser field. The vacuum fluctuations as well as the field fluctuations are imparted to the atoms as random photon recoils. Consequently, the external and internal dynamics of atoms becomes stochastic. In this paper, we have investigated the stochastic dynamics of the atoms in a magneto-optical trap during the loading process. The time series analysis of the fluorescence signal shows that the dynamics of the atoms evolves, like all dissipative systems, from deterministic to the chaotic regime. The subsequent disappearance and revival of chaos was attributed to chaos synchronization between spatially different atoms in the magneto-optical trap.

  7. Tidal frequencies in the spectral analysis of time series muon flux measurements

    NASA Astrophysics Data System (ADS)

    Feldman, Catherine; Takai, Helio

    2016-03-01

    Tidal frequencies are observed in the spectral analysis of time series muon flux measurements performed by the MARIACHI experiment over a period of seven years. The prominent peaks from the frequency spectrum correspond to tidal frequencies S1,S2,S3,K1,P1 and Ψ1 . We will present these results and compare them to the regular density oscillations from balloon sounding data. We interpret the observed data as being the effect of regular atmospheric density oscillations induced by the thermal heating of layers in Earth's atmosphere. As the density of the atmosphere varies, the altitude where particles are produced varies accordingly. As a consequence, the muon decay path elongates or contracts, modulating the number of muons detected at ground level. The role of other tidal effects, including geomagnetic tides, will also be discussed.

  8. Local Rainfall Forecast System based on Time Series Analysis and Neural Networks

    NASA Astrophysics Data System (ADS)

    Buendia-Buendía, F. S.; López Carrión, F.; Tarquis, A. M.; Buendía Moya, G.; Andina, D.

    2010-05-01

    Rainfall is one of the most important events in daily life of human beings. During several decades, scientists have been trying to characterize the weather, current forecasts are based on high complex dynamic models. In this paper is presented a local rainfall forecast system based on Time Series analysis and Neural Networks. This model tries to complement the currently state of the art ensembles, from a locally historical perspective, where the model definition is not so dependent from the exact values of the initial conditions. After several years taking data, expert meteorologists proposed this approximation to characterize the local weather behaviour, that is automated by this system. The current system predicts rainfall events over Valladolid within a time period of a month with a twelve hours accuracy. The different blocks of the system is explained as well as the work introduces how to apply the forecast system to prevent economical impact hazards produced by rainfalls.

  9. Assimilating Cloud Initiation based on Time Series Analysis into flash flood prediction model

    NASA Astrophysics Data System (ADS)

    Shiff, Shilo; Lensky, Itamar

    2015-04-01

    We used Temporal Fourier Analysis on time series (2010-2013) of Meteosat Second Generation (MSG) European geostationary weather satellite to generate cloud free climatological values of channel 1 (0.6um) reflectance and channel 9 (10.8um) brightness temperatures (BT) on pixel basis. Discrepancy between measured reflectance and/or BT and their climatological values are used to detect "cloud contaminated" pixels. This algorithm is very sensitive to sub-pixel clouds that are visible only in the High Resolution Visible channel, but not in the spectral channels. This method is valuable for early detection of convection. We used this cloud initiation method within high-resolution numerical weather forecasts to improve its accuracy in terms of early warning on the location and timing of potential flash floods.

  10. Asymmetric multifractal detrending moving average analysis in time series of PM2.5 concentration

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Ni, Zhiwei; Ni, Liping; Li, Jingming; Zhou, Longfei

    2016-09-01

    In this paper, we propose the asymmetric multifractal detrending moving average analysis (A-MFDMA) method to explore the asymmetric correlation in non-stationary time series. The proposed method is applied to explore the asymmetric correlation of PM2.5 daily average concentration with uptrends or downtrends in China. In addition, shuffling and phase randomization procedures are applied to detect the sources of multifractality. The results show that existences of asymmetric correlations, and the asymmetric correlations are multifractal. Further, the multifractal scaling behavior in the Chinese PM2.5 is caused not only by long-range correlation but also by fat-tailed distribution, but the major source of multifractality is fat-tailed distribution.