Science.gov

Sample records for nutrientes npk em

  1. 12 Years of NPK Addition Diminishes Carbon Sink Potential of a Nutrient Limited Peatland

    NASA Astrophysics Data System (ADS)

    Larmola, T.; Bubier, J. L.; Juutinen, S.; Moore, T. R.

    2011-12-01

    Peatlands store about a third of global soil carbon. Our aim was to study whether the vegetation feedbacks of nitrogen (N) deposition lead to stronger carbon sink or source in a nutrient limited peatland ecosystem. We investigated vegetation structure and ecosystem CO2 exchange at Mer Bleue Bog, Canada, that has been fertilized for 7-12 years. We have applied 5 and 20 times ambient annual wet N deposition (0.8 g N m-2) with or without phosphorus (P) and potassium (K). Gross photosynthesis, ecosystem respiration and net CO2 exchange (NEE) were measured weekly during the growing season using chamber technique. Under the highest N(PK) treatments, the light saturated photosynthesis (PSmax) was reduced by 20-30% compared to the control treatment, whereas under moderate N and PK additions PSmax slightly increased or was similar to the control. The ecosystem respiration showed similar trends among the treatments, but changes in the rates were less pronounced. High nutrient additions led to up to 65% lower net CO2 uptake than that in the control: In the NPK plots with cumulative N additions of 70, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.3), 2.0 (se. 0.4), and 2.4 (se. 0.3) μmol m-2 s-1, respectively. In the N only plots with cumulative N additions of 45, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.2), 2.6 (se. 0.4), and 1.8 (se. 0.3) μmol m-2 s-1, respectively. The reduced plant photosynthetic capacity and diminished carbon sink potential in the highest nutrient treatments correlated with the loss of peat mosses and were not compensated for by the increased vascular plant biomass that has mainly been allocated to woody shrub stems.

  2. Assessment and treatment of hydrocarbon inundated soils using inorganic nutrient (N-P-K) supplements: II. A case study of eneka oil spillage in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Egbuson, Ebitimi J; Ojinnaka, Chukwunnoye M

    2006-04-01

    Polluted soils from Eneka oil field in the Niger delta region of Nigeria were collected two months after recorded incidence of oil spillage as part of a two-site reclamation programme. The soils were taken on the second day of reconnaissance from three replicate quadrats, at surface (0-15 cm) and subsurface (15-30 cm) depths, using the grid sampling technique. Total extractable hydrocarbon content (THC) of the polluted soils ranged from 1.006 x 10(3)-5.540 x 10(4) mg/kg at surface and subsurface depths (no overlap in Standard Errors at 95% Confidence Level). Greenhouse trials for possible reclamation were later carried out using (NH(4))(2)SO(4), KH(2)PO(4) and KCl (N-P-K) fertilizer as nutrient supplements. Nitrogen as NO(3)-N and potassium were optimally enhanced at 2% (w/w) and 3% (w/w) of the N-P-K supplementation respectively. Phosphorus, which was inherently more enhanced in the soils than the other nutrients, maintained same level impact after 20 g treatment with the N-P-K fertilizer. Total organic carbon (%TOC), total organic matter (%TOM), pH and % moisture content all provided evidence of enhanced mineralization in the fertilizer treated soils. If reclamation of the crude oil inundated soils is construed as the return to normal levels of metabolic activities of the soils, then the application of the inorganic fertilizers at such prescribed levels would duly accelerate the remediation process. This would be, however, limited to levels of pollution empirically defined by such THC values obtained in this study. The data on the molecular compositional changes of the total petroleum hydrocarbon content (TPH) of the spilled-oil showed the depletion of the fingerprints of the n-paraffins, nC(8)-nC(10), and complete disappearance of C(12)-C(17) as well as the acyclic isoprenoid, pristane, all of which provided substantial evidence of degradation. PMID:16649138

  3. NPK macronutrients and microRNA homeostasis

    PubMed Central

    Kulcheski, Franceli R.; Côrrea, Régis; Gomes, Igor A.; de Lima, Júlio C.; Margis, Rogerio

    2015-01-01

    Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant–microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding. PMID:26136763

  4. Differences in responses of summer and winter spinach to elevated UV-B at varying soil NPK levels.

    PubMed

    Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B

    2014-05-01

    Seasonal variations in response of spinach to elevated ultraviolet-B (UV-B) during summer and winter were assessed with respect to growth, biomass, yield, NPK uptake and NPK use efficiencies at varying NPK levels. The nutrient amendments were recommended NPK (RNPK) and 1.5 times recommended NPK (1.5 RNPK). Season significantly affected the measured parameters except the number of leaves. Under ambient UV-B, the growth performance of summer spinach was better in both the NPK levels, higher being at 1.5 RNPK leading to higher nutrient uptake. However, more reduction in biomass under elevated UV-B in 1.5 RNPK was recorded during summer, while during winter in RNPK. Reduction in biomass under elevated UV-B was accompanied by the modification in its partitioning with more biomass allocation to root during summer compared to winter at both the NPK levels. NPK uptake was higher in summer, while NPK use efficiencies were higher during winter. At higher than recommended NPK level, better NPK use efficiencies were displayed during both the seasons. Increased NPK supply during winter enabled spinach to capitalize light more efficiently and hence increased biomass accumulation. Strategies for surviving elevated UV-B in winter differ from those that provided protection from the same stress when it occurs in summer. PMID:24474564

  5. A Miniaturized On-Chip Colorimeter for Detecting NPK Elements.

    PubMed

    Liu, Rui-Tao; Tao, Lu-Qi; Liu, Bo; Tian, Xiang-Guang; Mohammad, Mohammad Ali; Yang, Yi; Ren, Tian-Ling

    2016-01-01

    Recently, precision agriculture has become a globally attractive topic. As one of the most important factors, the soil nutrients play an important role in estimating the development of precision agriculture. Detecting the content of nitrogen, phosphorus and potassium (NPK) elements more efficiently is one of the key issues. In this paper, a novel chip-level colorimeter was fabricated to detect the NPK elements for the first time. A light source-microchannel photodetector in a sandwich structure was designed to realize on-chip detection. Compared with a commercial colorimeter, all key parts are based on MEMS (Micro-Electro-Mechanical System) technology so that the volume of this on-chip colorimeter can be minimized. Besides, less error and high precision are achieved. The cost of this colorimeter is two orders of magnitude less than that of a commercial one. All these advantages enable a low-cost and high-precision sensing operation in a monitoring network. The colorimeter developed herein has bright prospects for environmental and biological applications. PMID:27527177

  6. Use of polysulfone in controlled-release NPK fertilizer formulations.

    PubMed

    Tomaszewska, Maria; Jarosiewicz, Anna

    2002-07-31

    Encapsulation of fertilizers in polymeric coatings is a method used to reduce fertilizer losses and to minimize environmental pollution. Polysulfone was used for a coating preparation for soluble NPK granular fertilizer in controlled-release fertilizer formulations. The coatings were formed by the phase inversion technique (wet method). The influence of the polymer concentration in the film-forming solution on the physical properties of the coatings was examined. The coating structure controls the diffusion of the elements from the interior of the fertilizer granule. It was experimentally confirmed that the use of polysulfone as a coating for a soluble fertilizer decreases the release rate of components. Moreover, the release rate of nutrients from coated granules decreases with the decrease of the coating porosity. In the case of coating with 38.5% porosity, prepared from 13.5% polymer solution after 5 h of test, 100% of NH(4)(+) was released, whereas only 19.0% of NH(4)(+) was released after 5 h for the coating with 11% porosity. In addition, coating of fertilizers leads to improvement of handling properties, and the crushing strength of all coated fertilizers was an average 40% higher than that for uncoated NPK fertilizer. PMID:12137488

  7. Effect of NPK fertilizer on chemical composition of pumpkin (Cucurbita pepo Linn.) seeds.

    PubMed

    Oloyede, F M; Obisesan, I O; Agbaje, G O; Obuotor, E M

    2012-01-01

    An investigation of the proximate composition and antioxidant profile of pumpkin seeds obtained from different levels of NPK 15 : 15 : 15 compound fertilizer application at the Obafemi Awolowo University, Ile-Ife, Nigeria was carried out. Pumpkin seeds were grown in 2010 for two cropping seasons (May to August and August to November), and the following fertilizer rates were applied: 0, 50, 100, 150, 200, and 250 kg/ha. Standard analytical methods were used to determine protein, crude fibre, ash, fat, carbohydrate, antioxidant activities, phenol, flavonoid, proanthocyanidin, and anthocyanin. The highest concentrations of the proximate and antioxidants analysed were found from the seeds of control and those treated with lower NPK rates. The mean protein, ash, crude fibre, and carbohydrate values of pumpkin seeds at zero to 100 kg NPK/ha were 27%, 1.56%, 0.56%, and 11.7% respectively. At these same levels of fertilizer, pumpkin seed oil yield was 59%. Antioxidant activities ranged from 89.9 to 90.4% while total phenol was 47 mg/100 g. Except for carbohydrate, the % concentration of nutrients and antioxidants in pumpkin seeds was significantly (P = 0.05) depressed with fertilizer rates above 100 g/ha. PMID:22629204

  8. [Effects of long-term different fertilizations on biomass and nutrient content of maize root].

    PubMed

    Cai, Miao; Meng, Yan; Mohammad Amin, Ahmadzai; Zhou, Jian-bin

    2015-08-01

    Taking two long-term local field trials at the south edge of the Loess Plateau, which were found in 1990 and 2003, respectively, as test subjects, the effects of different fertilization practices on the maize root biomass and nutrient content were investigated in this paper. Maize roots in the 0-20 cm top soil post-maize harvest from the different fertilization practices were collected by hand in October 2011. The results showed that compared with control without fertilization and N, NK, or PK treatments, the NP, NPK, fertilizers plus manure (M1NPK and M2NPK) or plus straw return (SNPK) treatments significantly increased the dry mass of maize root. The C, N, P and K contents in maize roots in the NP, NPK, M1 NPK, M2NPK and SNPK treatments were also significantly higher than those of control, especially in the NPK plus organic manure treatments (M1 NPK and M2NPK) in the trial. Compared with the N fertilizer free treatment (N0), root biomass in the 120 kg N · hm(-2) (N120) and 240 kg N · hm(-2) ( N240) fertilization treatments increased by 38% and 45%, respectively, but there was no significant difference between N120 and N240 treatments. Nitrogen fertilizer application (N120 and N240) also improved the C, N, P and K contents in maize root. The water soluble organic C and total soluble N contents of maize root in the NP, NPK, M1NPK, M2NPK, SNPK and the N120 and N240 treatments were greater than those of control and other treatments. Otherwise, the cellulose and lignin contents in maize roots declined in the NPK, M1NPK, M2NPK, and SNPK treatments compared with other treatments. So the root C/N and lignin/N ratios in the control, PK and N0 treatments were significantly higher than those in the NP, NPK, M1NPK, M2NPK and SNPK treatments. We concluded that the optimum fertilization (e. g., NP, NPK, MNPK and SNPK treatments) could increase maize root growth and nutrient content and improve soil fertility and carbon sequestration through root residue into soil. PMID

  9. [Regional difference of NPK fertilizers application and environmental risk assessment in Jiangsu Province, China].

    PubMed

    Liu, Qin-pu

    2015-05-01

    It is of great importance to have a deep understanding of the spatial distribution of NPK fertilizers application and the potential threat to the ecological environment in Jiangsu Province, which is helpful for regulating the rational fertilization, strengthening the fertilizer use risk management and guidance, and preventing agricultural non-point pollution. Based on the environmental risk assessment model with consideration of different impacts of N, P, K fertilizers on environment, this paper researched the regional differentiation characteristic and environmental risk of intensity of NPK fertilizer usages in Jiangsu. Analystic hierarchy process ( AHP) was used to determine the weithts of N, P, K. The environmental safety thresholds of N, P, K were made according to the standard of 250 kg · hm(-2) for the construction of ecological counties sponsered by Chinese government and the proportion of 1:0.5:0.5 for N:P:K surposed by some developed countries. The results showed that the intensity of NPK fertilizer application currently presented a gradually increasing trend from south to north of Jiangsu, with the extremum ratio of 3.3, and the extremum ratios of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer were 3.3, 4.5 and 4.4, respectively. The average proportion of nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer of 13 cities in Jiangsu was 1:0.39:0.26. Their proportion was relatively in equilibrium in southern Jiangsu, but the nutrient structure disorder was serious in northern Jiangsu. In Jiangsu, the environmental risk index of fertilization averaged at 0.69 and in the middle-range of environmental risk. The environmental risk index of fertilizer application in southern and central Jiangsu was respectively at the low and moderate levels, while that of cities in northern Jiangsu was at the moderate, serious or severe level. In Jiangsu, the regional difference of fertilizer application and environmental risk assessment were

  10. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite.

    PubMed

    Rashidzadeh, Azam; Olad, Ali

    2014-12-19

    A novel slow released NPK fertilizer encapsulated by superabsorbent nanocomposite was prepared via in-situ free radical polymerization of sodium alginate, acrylic acid, acrylamide, and montmorillonite in the presence of fertilizer compounds. Evidence of grafting and component interactions, superabsorbent nanocomposite structure and morphology was obtained by a FT-IR, XRD and SEM techniques. The water absorbency behavior of superabsorbent nanocomposite was investigated. After those characterizations, the potential application was verified through the study of fertilizer release from prepared formulations. Results indicated that the presence of the montmorillonite caused the system to liberate the nutrient in a more controlled manner than that with the neat superabsorbent. The good slow release fertilizer property as well as good water retention capacity showed that this formulation is potentially viable for application in agriculture as a fertilizer carrier vehicle. PMID:25263891

  11. Controlled-release NPK fertilizer encapsulated by polymeric membranes.

    PubMed

    Jarosiewicz, Anna; Tomaszewska, Maria

    2003-01-15

    The commercial granular fertilizer NPK6-20-30 was coated using polysulfone (PSF), polyacrylonitrile (PAN), and cellulose acetate (CA). The coatings were formed from the polymer solutions by the phase inversion technique. Measurements of the thickness and porosity of the prepared coatings and a microphotographic observation of the coatings were performed. The physical properties of the coatings influence the release rate of macronutrients which are present in the core of the coated fertilizer. In the case of PAN coating with 60.45% porosity, prepared from a 16% polymer solution, 100% of NH(4)(+) and P(2)O(5) was released after 4 h of test and 99.7% of K(+) after 5 h of test, whereas in the case of coating with 48.8% porosity, 31.8% of NH(4)(+), 16.7% of P(2)O(5), and 11.6% of K(+) was released after 5 h. In all experiments, different selectivities of the coatings in terms of the release of components were observed. The release of potassium through the coatings made of PSF and PAN was the slowest. The same tendency was observed for the release of nitrogen through a coating of CA. The release of fertilizer active components was the slowest in the case of PSF. The lowest porosity coating was prepared from the 18% PSF solution. PMID:12517104

  12. Application of controlled nutrient release to permeable reactive barriers.

    PubMed

    Freidman, Benjamin L; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2016-03-15

    The application of controlled release nutrient (CRN) materials to permeable reactive barriers to promote biodegradation of petroleum hydrocarbons in groundwater was investigated. The longevity of release, influence of flow velocity and petroleum hydrocarbon concentration on nutrient release was assessed using soluble and ion exchange CRN materials; namely Polyon™ and Zeopro™. Both CRN materials, assessed at 4 °C and 23 °C, demonstrated continuing release of nitrogen, phosphorus and potassium (N-P-K) at 3500 bed volumes passing, with longer timeframes of N-P-K release at 4 °C. Zeopro™-activated carbon mixtures demonstrated depletion of N-P-K prior to 3500 bed volumes passing. Increased flow velocity was shown to lower nutrient concentrations in Polyon™ flow cells while nutrient release from Zeopro™ was largely unchanged. The presence of petroleum hydrocarbons, at 1.08 mmol/L and 3.25 mmol/L toluene, were not shown to alter nutrient release from Polyon™ and Zeopro™ across 14 days. These findings suggest that Polyon™ and Zeopro™ may be suitable CRN materials for application to PRBs in low nutrient environments. PMID:26735866

  13. Nutritional and antioxidant profiles of pumpkin (Cucurbita pepo Linn.) immature and mature fruits as influenced by NPK fertilizer.

    PubMed

    Oloyede, F M; Agbaje, G O; Obuotor, E M; Obisesan, I O

    2012-11-15

    This study evaluated the influence of NPK fertilizer on protein, fibre, ash, fat, carbohydrate, antioxidant activities and antioxidant phenolic compounds in immature and mature fruits of pumpkin. The treatment consisted of six NPK levels (0, 50, 100, 150, 200 and 250 kg/ha), and was replicated six times in a randomized complete block design (RCBD). Proximate analysis and antioxidant assays were done using standard analytical methods. At control and lower NPK rates, the proximate compositions and antioxidant profile of pumpkin fruits decreased with increasing NPK fertilizer. Between the control and the highest fertilizer rate, proximate compositions decreased by 7-62% while the antioxidant profile decreased by 13-79% for both immature and mature fruits. Across all the measured parameters, mature fruit had higher proximate contents and higher antioxidant concentrations. For the high health value of pumpkin fruits to be maintained, little or no NPK fertilizer should be applied. PMID:22868114

  14. Supplemental exogenous NPK application alters biochemical processes to improve yield and drought tolerance in wheat (Triticum aestivum L.).

    PubMed

    Shabbir, Rana Nauman; Waraich, E A; Ali, H; Nawaz, F; Ashraf, M Y; Ahmad, R; Awan, M I; Ahmad, S; Irfan, M; Hussain, S; Ahmad, Z

    2016-02-01

    The recent food security issues, combined with the threats from climate change, demand future farming systems to be more precise and accurate to fulfill the ever increasing global food requirements. The role of nutrients such as nitrogen (N), phosphorous (P), and potassium (K) in stimulating plant growth and development is well established; however, little is known about their function, if applied in combination, in improving crop yields under environmental stresses like drought. The aim of this study was to evaluate the effects of combined foliar spray of supplemental NPK (NPKc) on physiological and biochemical mechanisms that enhance the drought tolerance potential of wheat for improved yield. Foliar NPKc markedly influenced the accumulation of osmoprotectants and activity of both nitrogen assimilation and antioxidant enzymes. It significantly improved the concentration of proline (66 %), total soluble sugars (37 %), and total soluble proteins (10 %) and enhanced the activity of nitrate reductase, nitrite reductase, catalase, and peroxidase by 47, 45, 19, and 8 %, respectively, with respect to no spray under water-deficit conditions which, in turn, improve the yield and yield components. The accumulation of osmolytes and activity of antioxidant machinery were more pronounced in drought tolerant (Bhakkar-02) than sensitive genotype (Shafaq-06). PMID:26432272

  15. Virtual and Embedded Nutrient Flows from Soybean Production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Couto, E. G.; Johnson, M. S.

    2012-12-01

    The increase in international trade of agricultural products has enabled consumers to take advantage of distant resources to secure their provision of food. However, such a relationship has also distanced consumers from producers, resulting in environmental footprints often externalized to distant countries. For example, half of all soybeans grown in the state of Mato Grosso, the largest Brazilian soybean producer this past decade, were exported to China and Europe in 2009. This study looks at nitrogen (N), phosphorous (P) and potassium (K) use related to Mato Grosso soybean production and exports to China and Europe in the 2000-2009 period. More specifically we look at 'virtual' and 'embedded' NPK flows to China and Europe, where 'virtual' represents NPK inputs associated with soybean production but not actually embedded in the exported soybeans, and 'embedded' represents the NPK contained within the soybeans. Both virtual and embedded NPK export flows more than doubled between 2000 and 2009, with embedded NPK flows up to 18 times larger than virtual flows on an annual basis. We also quantify nutrient balances resulting from the soybean trade including imported and domestically produced fertilizer. Initial results suggest that the majority of embedded N may cause an issue for importing countries, while virtual P is mostly externalized to Mato Grosso which must rely on limited national production and fertilizer imports to meet P needs. This study contributes towards a more comprehensive understanding of the use of nutrients in soybean production as a component of a more complete environmental impact assessment of this agricultural product.

  16. Poultry Litter Application Time Effect on Nutrient Availability and Corn Yield In Central Kentucky.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the growing interest in poultry litter use as nutrient sources, knowledge of whether application time is consequential to production is pertinent. This study investigated the effects of fall and spring application of two rates (9 and 18 mega grams per ha) of poultry litter and a 19-19-19 NPK b...

  17. Effects of high nutrient supply on the growth of seven bamboo species.

    PubMed

    Piouceau, Julien; Bois, Grégory; Panfili, Fréderic; Anastase, Matthieu; Dufossé, Laurent; Arfi, Véronique

    2014-01-01

    Over the last decade, bamboo has emerged as an interesting plant for the treatment of various polluted waters using plant-based wastewater treatment systems. In these systems, nitrogen and phosphorous concentrations in wastewater can exceed plant requirements and potentially limit plant growth. The effects of two nutrient rates on the growth of seven bamboo species were assessed in a one-year experiment: Dendrocalamus strictus, Thyrsostachys siamensis, Bambusa tuldoides, Gigantochloa wrayi, Bambusa oldhamii, Bambusa multiplex and Bambusa vulgaris. Nutrient rates were applied with a 20:20:20 NPK fertilizer as 2.6 and 13.2 t.ha.yr(-1) NPK to three-year-old bamboo planted in 70 L containers. Morphological characters, photosynthetic responses, and NPK content in bamboo tissues were investigated. Under high-nutrient supply rate, the main trend observed was an increase of culm production but the culms' diameters were reduced. For the seven species, the above ground biomass yield tended to increase with high-nutrient rate. Increasing in nutrient rates also improved the photosynthetic activity which is consistent with the increase of nitrogen and phosphorus contents measured in plant tissues. All the bamboo species tested appears suitable for wastewater treatment purposes, but the species Bambusa oldhamii and Gigantochloa wrayi showed the higher biomass yield and nutrient removaL PMID:24933901

  18. Effects of Nutrient Enrichment on Primary Production and Biomass of Sediment Microalgae in a Subtropical Seagrass Bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eutrophication of coastal waters often leads to excessive growth of microalgal epiphytes attached to seagrass leaves; however, the effect of increased nutrient levels on sediment microalgae has not been studied within seagrass communities. A slow-release NPK Osmocote fertilizer was added to sedimen...

  19. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    PubMed

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-05-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils. PMID:26515426

  20. Correlation of soil organic carbon and nutrients (NPK) to soil mineralogy, texture, aggregation, and land use pattern.

    PubMed

    Adhikari, Gopi; Bhattacharyya, Krishna G

    2015-11-01

    This work investigates the correlations existing among soil organic carbon (C), nitrogen (N), phosphorous (P), potassium (K), and physicochemical properties like clay mineralogy, textural components, soil aggregation, and land use pattern. Seven different locations were chosen in the tropical rainforest climate region of Assam, India, for the work. The soil texture classifications were clay, sandy clay loam, and sandy loam with mixed clay mineralogy consisting of tectosilicates and phylosilicates. Two distinct compositions of total Fe/Al oxides≥11.5 and <10.8% were observed along with two distinct groups of water stable soil aggregates of mean weight diameter≈6.42 and ≤3.26 mm. The soil clay and sand had positive and negative contributions respectively to the soil organic carbon (SOC) protection, which was observed to be dependent on lesser sand content, higher silt+clay content, and the presence of higher percentages of total Fe/Al oxides. Soil clay mineralogy suggested that the mineral, chlorite, favored retention of higher SOC content in a particular site. Under similar climatic and mineralogical conditions, both natural and anthropogenic soil disturbances destabilized SOC protection through SOM mineralization and soil aggregate destabilization as indicated by SOC protective capacity studies. Urbanization resulting in soil compaction contributed to enhanced SOC level through increased contact between the occluded organic carbon and the soil mineralogical constituents. PMID:26553358

  1. Effect of Fertilization on Soil Fertility and Nutrient Use Efficiency at Potatoes

    NASA Astrophysics Data System (ADS)

    Neshev, Nesho; Manolov, Ivan

    2016-04-01

    The effect of fertilization on soil fertility, yields and nutrient use efficiency of potatoes grown under field experimental conditions was studied. The trail was conducted on shallow brown forest soil (Cambisols-coarse) during the vegetation periods of 2013 to 2015. The variants of the experiment were: control, N140; P80; K100; N140P80; N140K100; P80K100; N140P80K100; N140P80K100Mg33. The applied fertilization slightly decreased soil's pH after the harvest of potatoes compared to the soil pH their planting. Decreasing of pH was more severe at variant N (from 5,80 to 4,19 in 2014). The mineral nitrogen content in the soil after the harvest of potatoes was lower for the variants P, K and PK. The positive effect of fertilization on soil fertility after the end of the trails was more pronounced at variants NPK and NPKMg. The content of available nitrogen, phosphorus and potassium forms for these variants was the highest for each year. The highest content of mineral nitrogen was observed in 2013 (252,5 and 351,1 mg/1000g, respectively for variants NPK and NPKMg). It was due to extremely dry weather conditions during the vegetation in this year. Soil content of mineral N for the next two years was lower. The same tendency was observed for phosphorus and potassium was observed. In 2013 the P2O5 and K2O content in soil was the highest for the variants with full mineral fertilization - NPK (64,4 and 97,6 mg 100g-1 respectively for P2O5 and K2O) and NPKMg (65,2 and 88,0 mg 100g-1 respectively for P2O5 and K2O). The highest yields were recorded at variants NPK and NPKMg - 24,21 and 22,01 t ha-1, average for the studied period. The yield of variant NPK was 25 % higher than the yield from variant NP and 68 % higher than control. The partial factor productivity (PFPN, PFPP and PFPK) of the applied fertilizers was the highest at variant NPK. The PFPN (80,10 kg kg-1) for the yields of variant N was 57 % lower than the PFPN at variant NPK (180,36 kg kg-1). The PFPP and PFPK at

  2. The effects of weed-crop competition on nutrient uptake as affected by crop rotation and fertilizers.

    PubMed

    Mohammaddoust-E-Chamanabad, Hamid Reza; Asghari, Ali; Tulikov, Aleksander Mikhailovic

    2007-11-15

    A field study at the Agricultural University of Timiriazev, Moscow, was conducted to determine the effect of crop rotation and Long-term fertilizer application on differences in the competitive ability of spring barley and weeds to nutrient uptake in 2004 and 2005. Spring barley was cultivated in continuous and in crop rotation with winter rye, potato, clover, flax and fallow, with and without NPK application since 1912. Spring barley, especially in no fertilizer plots grown in crop rotation has greater dry mass than spring barley grown in continuous. While dry weed mass markedly decreased in crop rotation. Decrease dry weeds mass was greater when NPK had applied. The statistical analyses show that when spring barley grew in competition with weeds in the no fertilizer plots, crop rotation significantly increased nutrient content in spring barley, but when fertilizer applied the content of N, P2O5 and K2O in barley did not change. Lowest weeds nutrient content observed where soil fertility was increased by crop rotation and NPK application. Crop rotation significantly increased total nutrient uptake of soils by spring barley, but decreased total nutrient uptake by weeds. PMID:19090292

  3. Ocean nutrients

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Hurd, Catriona L.

    Nutrients provide the chemical life-support system for phytoplankton in the ocean. Together with the carbon fixed during photosynthesis, nutrients provide the other elements, such as N and P, needed to synthesize macromolecules to build cellular constituents such as ribosomes. The makeup of these various biochemicals, such as proteins, pigments, and nucleic acids, together determine the elemental stoichiometry of an individual phytoplankton cell. The stoichiometry of different phytoplankton species or groups will vary depending on the proportions of distinct cellular machinery, such as for growth or resource acquisition, they require for their life strategies. The uptake of nutrients by phytoplankton helps to set the primary productivity, and drives the biological pump, of the global ocean. In the case of nitrogen, the supply of nutrients is categorized as either new or regenerated. The supply of new nitrogen, such as nitrate upwelled from the ocean' interior or biological nitrogen fixation, is equal to the vertical export of particular organic matter from the upper ocean on a timescale of years. Nutrients such as silica can also play a structural role in some phytoplankton groups, such as diatoms, where they are used to synthesize a siliceous frustule that offers some mechanical protection from grazers. In this chapter, we also explore nutrient uptake kinetics, patterns in nutrient distributions in space and time, the biogeochemical cycle of nitrogen, the atmospheric supply of nutrients, departures from the Redfield ratio, and whether nutrient distributions and cycling will be altered in the future

  4. Effect of N and NPK fertilizers on early field performance of narrow-leaved ash, Fraxinus angustifolia.

    PubMed

    Cicek, Emrah; Yilmaz, Faruk; Yilmaz, Murat

    2010-01-01

    The effect of fertilization in the first growing season on early survival and growth of narrow-leaved ash (NLA) (Fraxinus angustifolia ssp. oxycarpa) was evaluated throughout the first 3 years of growth in Adapazari, Turkey. A randomized complete block design with four replications was established to investigate fertilization effects. Granular N urea [46%, (NH2)2CO, NH2-N] and NPK (15/15/15%; NH3-N, P2O5, K2O) fertilizers were applied in mid-May of the first growing season. Fertilization treatments per tree were control, 67 g NPK (equal to 10/10/10 g N/P2O5 /K2O tree(-1)), 133 g NPK (20/20/20 g N/P2O5 /K2O tree(-1)), 33 g urea N (15 g N tree(-1)) and 54 g urea N (25 g N tree(-1)). After three growing seasons under these fertilizer treatments, 98% of trees were still viable. Compared to the control treatment, fertilization had a large and positive effect on diameter and height growth during the first 3 years of growth. However, since there were no significant differences among the fertilized plots in terms of tree diameter and height growth, addition of P and K to the fertilizer regime was not beneficial. The results show that N fertilization in the first growing season has the potential to improve early field growth of narrow-leaved ash. PMID:20648820

  5. Nutrient cycling.

    PubMed

    Bormann, F H; Likens, G E

    1967-01-27

    The small-watershed approach to problems of nutrient cycling has these advantages. (i) The small watershed is a natural unit of suitable size for intensive study of nutrient cycling at the ecosystem level. (ii) It provides a means of reducing to a minimum, or virtually eliminating, the effect of the difficult-to-measure variables of geologic input and nutrient losses in deep seepage. Control of these variables makes possible accurate measurement of nutrient input and output (erosion) and therefore establishes the relationship of the smaller ecosystem to the larger biospheric cycles. (iii) The small-watershed approach provides a method whereby such important parameters as nutrient release from minerals (weathering) and annual nutrient budgets may be calculated. (iv) It provides a means of studying the interrelationships between the biota and the hydrologic cycle, various nutrient cycles, and energy flow in a single system. (v) Finally, with the small-watershed system we can test the effect of various land-management practices or environmental pollutants on nutrient cycling in natural systems. PMID:17737551

  6. Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  7. Nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  8. Differential sensitivity of spinach and amaranthus to enhanced UV-B at varying soil nutrient levels: association with gas exchange, UV-B-absorbing compounds and membrane damage.

    PubMed

    Singh, Suruchi; Agrawal, Madhoolika; Agrawal, S B

    2013-07-01

    The metabolic reasons associated with differential sensitivity of C3 and C4 plant species to enhanced UV-B under varying soil nutrient levels are not well understood. In the present study, spinach (Spinacia oleracea L. var All Green), a C3 and amaranthus (Amaranthus tricolor L. var Pusa Badi Chaulai), a C4 plant were subjected to enhanced UV-B (280-315 nm; 7.2 kJ m(-2) day(-1)) over ambient under varying soil nutrient levels. The nutrient amendments were recommended Nitrogen (N), Phosphorus (P), Potassium (K), 1.5× recommended NPK, 1.5× recommended N and 1.5× recommended K. Enhanced UV-B negatively affected both the species at all nutrient levels, but the reductions varied with nutrient concentration and combinations. Reductions in photosynthetic rate, stomatal conductance and chlorophyll content were significantly more in spinach compared with amaranthus. The reduction in photosynthetic rate was maximum at 1.5× recommended K and minimum in 1.5× NPK amended plants. The oxidative damage to membranes measured in terms of malondialdehyde content was significantly higher in spinach compared with amaranthus. Enhanced UV-B reduced SOD activity in both the plants except in amaranthus at 1.5× recommended K. POX activity increased under enhanced UV-B at all nutrient levels in amaranthus, but only at 1.5× K in spinach. Amaranthus had significantly higher UV-B-absorbing compounds than spinach even under UV-B stress. Lowest reductions in yield and total biomass under enhanced UV-B compared with ambient were observed in amaranthus grown at 1.5× recommended NPK. Enhanced UV-B did not significantly change the nitrogen use efficiency in amaranthus at all NPK levels, but reduced in spinach except at 1.5× K. These findings suggest that the differential sensitivity of the test species under enhanced UV-B at varying nutrient levels is due to varying antioxidative and UV-B screening capacity, and their ability to utilize nutrients. Amaranthus tolerated enhanced UV-B stress

  9. Management of Striga hermonthica on sorghum (Sorghum bicolor) using arbuscular mycorrhizal fungi (Glomus mosae) and NPK fertilizer levels.

    PubMed

    Isah, K M; Kumar, Niranjan; Lagoke, S T O; Atayese, M O

    2013-11-15

    Trials were conducted in the screen house of Niger State College of Agriculture, Mokwa (09 degrees 18'N; 05 degrees 04'E) in the Southern Guinea Savannah agro-ecological zone of Nigeria during October-December, 2008 and January-March, 2009. The objective was to evaluate the effect of management of Striga hermonthica on sorghum (Sorghum bicolor) using Arbuscular mycorrhizal fungi and NPK fertilizer levels. The trials were laid out in split-split plot arrangement in a randomized complete block design. The main-plot treatments consisted of three sorghum varieties; SAMSORG 3, ICSVIII and SAMSORG 14 while the sub-plot treatments consisted of inoculations; Striga mixed with Glomus, Striga only and Glomus only as well as no inoculation control. The sub-sub-plot treatments were made up of NPK fertilizer levels; (100 kg N, 50 kg P2O5, 50 kg K2O ha(-1)), (50 kg N, 50 kg P2O5, 50 kg K2O ha(-1)) and (0 kg N, 0 kg P2O5, 0 kg K2O ha(-1)). The result obtained showed that sorghum variety SAMSORG 3 were taller, having more vigour and lower reaction to Striga parasitism which resulted in the crop producing higher dry matter compared to the other two varieties. The plots inoculated with Striga only supported shorter plants of sorghum varieties, higher vigour and lower reaction score to Striga compared to Striga mixed with Glomus. It is obvious in this study that the crop performance increases with increase in the rates of NPK fertilizer applied. PMID:24511701

  10. The combination of NPK fertilizer and deltamethrin insecticide favors the proliferation of pyrethroid-resistant Anopheles gambiae (Diptera: Culicidae)

    PubMed Central

    Darriet, F.; Rossignol, M.; Chandre, F.

    2012-01-01

    In this laboratory study, we investigated how the biological cycle of Anopheles gambiae s.s. (VKPR strain) would be like when grew in an environment containing more or less plant matter (2.5 or 5 g/l) and fertilizer (8-12-8 or 17-23-17 mg/l). Half of the environments studied were not exposed to insecticide (control) whereas the other half was submitted to deltamethrin treatment at the concentration of 0.015 mg/l. The bioassays showed that 2.5 g/l of plant matter in water are not sufficient to feed the hundred larvae, each breeding site contains. Treating these breeding sites with deltamethrin reversed the situation as it decreased the competition for food resources and allowed the surviving larvae to share the small amount of food enabling them to pursue their development until adults. If the introduction of NPK in untreated sites has not improved the nutritive qualities of the water, in the treated sites it multiplied the number of emerging adults by 2.5. In the waters containing 5 g/l of plant matter, the larvae did not undergo feeding competition and the impact of insecticide followed of a more traditional selection scheme that expressed itself by a lower number of emerging adults. In these environments treated or nontreated where plant matter is abundant, adding NPK brings food supplement to the larvae therefore increases the survival rate of An. gambiae. To conclude, whether in habitats with little or much plant matter, NPK presence in water results in larger adults with generally, more soluble proteins. PMID:22550627

  11. Flower synchrony, growth and yield enhancement of small type bitter gourd (Momordica charantia L.) through plant growth regulators and NPK fertilization.

    PubMed

    Mia, Baset M A; Islam, Md Serajul; Miah, Md Yunus; Das, M R; Khan, H I

    2014-02-01

    Assessment of growth regulator and NPK fertilization effects are important tools for flower stimulation and yield improvement in cucurbits. This investigation demonstrates the comparative male-female flower induction and fruit yield of small sized bitter gourd treated with NPK fertilizers and plant growth regulators. Namely, two experiments having three replicates were conducted in a Randomized Complete Block Design (RCBD) with NPK fertilization and plant growth regulators-GA3, NAA and Ethophon application on small sized bitter gourd-genotype BG5 at the research field of the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU). In experiment 1, different doses of NPK fertilizers comprised of 10 treatments and in that of experiment 2, different levels of plant growth regulators indicated 10 treatments. The results indicated that application of different doses of NPK fertilizer and plant growth regulators significantly (< or = 0.05) influenced over the flower initiation and fruit setting. The application of N90-P45-K60 fertilizer along with Ethophon spraying resulted in the better yield of small sized bitter gourd. PMID:24897796

  12. Role of phosphogypsum and NPK amendments on the retention or leaching of metals in different soils.

    PubMed

    Ammar, Rawaa; Kanbar, Hussein Jaafar; Kazpard, Véronique; Wazne, Mahmoud; El Samrani, Antoine G; Amacha, Nabil; Saad, Zeinab; Chou, Lei

    2016-08-01

    Column leaching tests were conducted to investigate the effects of soil physicochemical characteristics on metal mobility in the subsurface. The metals investigated originated from disposed industrial waste byproducts and from agrochemicals spread over the farmlands. Soil column tests can provide insights into leaching of metals to underlying water compartments. The findings of this study can be used for prevention strategies and for setting risk assessment approaches to land-use and management, and soil and water quality and sustainability. Soils collected from an industrial (IS) watershed and an agricultural (AQ) hydrographic basin were used in soil column leaching experiments. The soil samples were characterized for mineralogy, functional groups, grain size, surface charge, soil type, porosity, and cation exchange capacity (CEC) along with elemental composition. Varying concentrations of phosphogypsum industrial waste or agrochemical (NPK fertilizer) was then added to the surface of the packed columns (n = 28). The columns were subjected to artificial rain over a period of 65 days. Leachates were collected and analyzed for dissolved Na(+), K(+), and Cd(2+) throughout the experimental period, whereas residual Cd content in the subsurface soil was measured at the end of the experiment. Physicochemical characterization indicated that the AQ soil has a higher potential for metal retention due to its fine clay texture, calcareous pH, high organic matter content and CEC. Metal release was more prominent in the IS soil indicating potential contamination of the surrounding soil and water compartments. The higher metal release is attributed to soil physicochemical characteristics. High calcium concentrations of phosphogypsum origin is expected to compete for adsorbed bivalent elements, such as Cd, resulting in their release. The physicochemical characteristics of the receiving media should be taken into consideration when planning land-use in order to achieve

  13. The effect of nutrients on pyrrolizidine alkaloids in Senecio plants and their interactions with herbivores and pathogens.

    PubMed

    Hol, W H G

    2011-03-01

    The aim of this review is to combine the knowledge of studies on effects of nutrients on pyrrolizidine alkaloids (PAs) in Senecio with those studies of effects of PAs on herbivores and pathogens in order to predict the effects that nutrients may have on herbivores and pathogens via changes in PAs. We discuss whether these predictions match with the outcome of studies where the effect of nutrients on herbivores and insects were measured. PA concentrations in S. jacobaea, S. vulgaris and S. aquaticus were mostly reduced by NPK fertilization, with genotype-specific effects occurring. Plant organs varied in their response to increased fertilization; PA concentrations in flowers remained constant, while shoot and roots were mostly negatively affected. Biomass change is probably largely responsible for the change in concentrations. Nutrients affect both the variety and the levels of PAs in the plant. The reduced PA concentrations after NPK fertilization was expected to benefit herbivores, but no or negative responses from insect herbivores were observed. Apparently other changes in the plant after fertilization are overriding the effect of PAs. Pathogens do seem to benefit from the lower PA concentrations after fertilization; they were more detrimental to fertilized plants than to unfertilized control plants. Future studies should include the effect of each element of nutrients separately and in combinations in order to gain more insight in the effect of specific nutrients on PA content in Senecio plants. PMID:21475405

  14. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  15. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention.

    PubMed

    Wu, Lan; Liu, Mingzhu; Rui Liang

    2008-02-01

    A double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention was prepared by crosslinked poly(acrylic acid)/diatomite - containing urea (the outer coating), chitosan (the inner coating), and water-soluble granular fertilizer NPK (the core). The effects of the amount of crosslinker, initiator, degree of neutralization of acrylic acid, initial monomer and diatomite concentration on water absorbency were investigated and optimized. The water absorbency of the product was 75 times its own weight if it was allowed to swell in tap water at room temperature for 2 h. Atomic absorption spectrophotometer and element analysis results showed that the product contained 8.47% potassium (shown by K(2)O), 8.51% phosphorus (shown by P(2)O(5)), and 15.77% nitrogen. We also investigated the water-retention property of the product and the slow release behavior of N, P and K in the product. This product with excellent slow release and water-retention capacity, being nontoxic in soil and environment-friendly, could be especially useful in agricultural and horticultural applications. PMID:17320380

  16. Differential response of radish plants to supplemental ultraviolet-B radiation under varying NPK levels: chlorophyll fluorescence, gas exchange and antioxidants.

    PubMed

    Singh, Suruchi; Kumari, Rima; Agrawal, Madhoolika; Agrawal, Shashi Bhushan

    2012-07-01

    Current and projected increases in ultraviolet-B (UV-B; 280-315 nm) radiation may alter crop growth and yield by modifying the physiological and biochemical functions. This study was conducted to assess the possibility of alleviating the negative effects of supplemental UV-B (sUV-B; 7.2 kJ m⁻² day⁻¹; 280-315 nm) on radish (Raphanus sativus var Pusa Himani) by modifying soil nitrogen (N), phosphorus (P) and potassium (K) levels. The N, P and K treatments were recommended dose of N, P and K, 1.5 times recommended dose of N, P and K, 1.5 times recommended dose of N and 1.5 times recommended dose of K. Plants showed variations in their response to UV-B radiation under varying soil NPK levels. The minimum damaging effects of sUV-B on photosynthesis rate and stomatal conductance coupled with minimum reduction in chlorophyll content were recorded for plants grown at recommended dose of NPK. Flavonoids increased under sUV-B except in plants grown at 1.5 times recommended dose of N. Lipid peroxidation (LPO) also increased in response to sUV-B at all NPK levels with maximum at 1.5 times recommended dose of K and minimum at recommended dose of NPK. This study revealed that sUV-B radiation negatively affected the radish plants by reducing the photosynthetic efficiency and increasing LPO. The plants grown at 1.5 times recommended dose of NPK/N/K could not enhance antioxidative potential to the extent as recorded at recommended dose of NPK and hence showed more sensitivity to sUV-B. PMID:22304244

  17. Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment.

    PubMed

    Chmura, Gail L; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m(-2) hr(-1), respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m(-2) hr(-1), respectively, with a flux under the additional high N/low P treatment of 21 mmoles m(-2) hr(-1)). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m(-2) hr(-1) with control, N, and NPK treatments, respectively and 1.21 μmol m(-2) hr(-1) under high N/low P treatment. At the microtidal marsh CH4 fluxes were 0.23, 0.16, and -0.24 μmol CH4 m(-2) hr(-1) in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m(-2) hr(-1) in control, N, NPK and treatments, respectively and 0.35 μmol m(-2) hr(-1) under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m(-2) hr(-1), respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes. PMID:26914333

  18. Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment

    PubMed Central

    Chmura, Gail L.; Kellman, Lisa

    2016-01-01

    We assessed the impact of nutrient additions on greenhouse gas fluxes using dark static chambers in a microtidal and a macrotidal marsh along the coast of New Brunswick, Canada approximately monthly over a year. Both were experimentally fertilized for six years with varying levels of N and P. For unfertilized, N and NPK treatments, average yearly CO2 emissions (which represent only respiration) at the microtidal marsh (13, 19, and 28 mmoles CO2 m-2 hr-1, respectively) were higher than at the macrotidal marsh (12, 15, and 19 mmoles m-2 hr-1, respectively, with a flux under the additional high N/low P treatment of 21 mmoles m-2 hr-1). Response of CH4 to fertilization was more variable. At the macrotidal marsh average yearly fluxes were 1.29, 1.26, and 0.77 μmol CH4 m-2 hr-1 with control, N, and NPK treatments, respectively and 1.21 μmol m-2 hr-1 under high N/low P treatment. At the microtidal marsh CH4 fluxes were 0.23, 0.16, and -0.24 μmol CH4 m-2 hr-1 in control, N, and NPK and treatments, respectively. Fertilization changed soils from sinks to sources of N2O. Average yearly N2O fluxes at the macrotidal marsh were -0.07, 0.08, and 1.70, μmol N2O m-2 hr-1 in control, N, NPK and treatments, respectively and 0.35 μmol m-2 hr-1 under high N/low P treatment. For the control, N, and NPK treatments at the microtidal marsh N2O fluxes were -0.05, 0.30, and 0.52 μmol N2O m-2 hr-1, respectively. Our results indicate that N2O fluxes are likely to vary with the source of pollutant nutrients but emissions will be lower if N is not accompanied by an adequate supply of P (e.g., atmospheric deposition vs sewage or agricultural runoff). With chronic fertilization the global warming potential of the increased N2O emissions may be enough to offset the global cooling potential of the C sequestered by salt marshes. PMID:26914333

  19. Impact of commercial garden growth substratum and NPK-fertilizer on copper fractionation in a copper-mine tailing

    NASA Astrophysics Data System (ADS)

    Charles, A.; Karam, A.; Jaouich, A.

    2009-04-01

    Organic amendment and NPK-fertilizer could affect the distribution of copper (Cu) among Cu-mine tailing compounds and hence the availability or phytotoxicity of Cu to plants. A laboratory incubation experiment was conducted to investigate the forms of Cu in a Cu-mine tailing (pH 7.70) amended with a commercial garden growth substratum (GGS) containing peat moss and natural mycorrhizae (Glomus intraradices) in combination with a commercial NPK-fertilizer (20-20-20), by a sequential extraction method. There were eight treatments after the combination of four rates of GGS (0, 12.4, 50 and 100 g/kg tailing) and two rates of fertilizer (0 and 20 g/kg tailing). At the end of a 52-week incubation period, tailing Cu was sequentially extracted to fractionate Cu into five operationally defined geochemical forms, namely ‘water-soluble' (Cu-sol), ‘exchangeable' (Cu-exc), ‘specifically adsorbed on carbonates or carbonate-bound' (Cu-car), ‘organic-bound' (Cu-org) and ‘residual' (Cu-res) fractions. After treatments, the most labile Cu pool (Cu-sol + Cu-exc) represented about 0.94 % of the total Cu, the Cu-car and Cu-org accounted for 22.7 and 5.0% of total Cu, and the residual Cu accounted for nearly 71.3% of total Cu. Compared with the control, the application of GGS decreased Cu-car and increased CuORG whereas the addition of fertilizer increased Cu-sol + Cu-exc and decreased Cu-carb. Fertilizer-treated tailings had the highest amount of Cu-sol + Cu-exc. High rates of GGS resulted in Cu-org levels in GGS-treated tailings which were more than 2.0-2.8 times those obtained in the untreated tailing (control). The partition of Cu in GGS-treated tailings followed the order: Cu-sol + Cu-exc < Cu-car < Cu-org < Cu-res. This study suggests that NPK-fertilizer promotes the formation of labile Cu forms in the calcite-containing Cu-mine tailing. GGS in the tailing matrix acts as effective sorbent for Cu.

  20. Enhancement of growth and nutrient uptake of rapeseed (Brassica napus L.) by applying mineral nutrients and biofertilizers.

    PubMed

    Yasari, Esmaeil; Azadgoleh, M A Esmaeili; Mozafari, Saedeh; Alashti, Mahsa Rafati

    2009-01-15

    For investigating the effect of chemical fertilizer as well as biofertilizers on seed yield and quality i.e. oil, protein and nutrients concentration of rapeseed (Brassica napus L.), a split-plot fertilizers application experimental design in 4 replications was carried out during the 2005-2006 growing season, at the Gharakheil Agricultural Research Station in the Mazandaran province of Iran. Rapeseed was grown as a second crop in rotation after rice. Biofertilizers treatments were two different levels: control (no seed inoculation) and seeds inoculation with a combination of Azotobacter chroococcum and Azosprillum brasilense and Azosprillum lipoferum, as main plot and chemical fertilizers comprised N, P, K and their combinations, NPKS and NPK Zn as sub plots. The maximum value of seed yield obtained at (BF+NPK Zn) 3421.2 kg h(-1) corresponding to 244.5 pods per plant and maximum concentration of Zn in leaves as well as seeds. The highest weight of 1000 seeds (4.45 g) happened to obtain at (BF+NPK S) which coinciding with the maximum K levels in leaves. The highest number of branches was obtained at (BF+NPK Zn) with 4.43 branches per plant i.e., 46.2% increase over the control. The maximum value of rapeseed oil content 47.73% obtained at T16 (BF+NK) but maximum protein concentration of seed obtained at T12 (BF+N). Overall the results indicated that inoculation resulted in increase in seeds yield (21.17%), number of pods per plant (16.05%), number of branches (11.78%), weight of 1000 grain (2.92%), oil content of seeds (1.73%) and protein (3.91%) but decrease (-0.24%) in number of seeds per pods comparing to non-Biofertilizers treatments. Irrespective to the treatments, results showed that application of Biofertilizers coincided with 3.86, 0.82, 2.25, 0.75 and 0.91% increase in concentrations of N, P, K, S and Zn in the seeds over the non-Biofertilizers treatments. PMID:19579932

  1. Short-Term Effect of Nutrient Availability and Rainfall Distribution on Biomass Production and Leaf Nutrient Content of Savanna Tree Species

    PubMed Central

    Barbosa, Eduardo R. M.; Tomlinson, Kyle W.; Carvalheiro, Luísa G.; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H. T.; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings’ above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient

  2. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree species.

    PubMed

    Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration

  3. Chemical evaluation of nutrient supply from fly ash-biosolids mixtures

    SciTech Connect

    Schumann, A.W.; Sumner, M.E.

    2000-02-01

    Prediction of plant nutrient supply from fly ash and biosolids (sewage sludge and poultry manure) may enhance their agricultural use as crop fertilizer. Two mild extraction methods (42-d equilibration with ion-exchange resins; 2-d equilibration with pH 4.8 buffered nutrient solution) and analysis of nutrient data by the Diagnosis and Recommendation Integrated System (DRIS) were tested with 29 fly ash samples, four biosolids samples, and their mixtures. The resin method was useful for major nutrient (N, P, K, Ca, Mg, S) extraction from fly ashes and organic materials, particularly where mineralizable fractions of N and P under aerobic conditions are required. However, resins were inefficient in extracting P from high-Fe sewage sludges because organic waste samples caused premature failure of semipermeable membranes and fouling of resins. Extraction of fly ash with dilute buffered nutrient solution was more successful because micronutrient recovery was improved, major nutrients were correlated to the resin method, both addition and removal of nutrients were recorded. DRIS analysis was possible, and equilibration was rapid (2 d). The overall nutrient supply from these extremely variable fly ashes was: Cu = Fe {approx} B {approx} Mo > Ca > S > Zn >> Mn > N > Mg > P > K (high micronutrient, low major nutrient supply). For biosolids, the major nutrients ranked: P > N {approx} Ca > S > Mg > K (sewage sludges), and N > Ca {approx} K > P > Mg > S (poultry manures). In mixtures of fly ash with 26% sewage sludge the order was: Ca > S > N > Mg > P > K, while in mixtures of fly ash and 13% poultry manure, the nutrients ranked: Ca > K {approx} N {approx} S > Mg > P. Optimal plant nutrition (especially N-P-K balancing) should be possible by mixing these three waste materials.

  4. Root Nutrient Foraging1

    PubMed Central

    Giehl, Ricardo F.H.; von Wirén, Nicolaus

    2014-01-01

    During a plant's lifecycle, the availability of nutrients in the soil is mostly heterogeneous in space and time. Plants are able to adapt to nutrient shortage or localized nutrient availability by altering their root system architecture to efficiently explore soil zones containing the limited nutrient. It has been shown that the deficiency of different nutrients induces root architectural and morphological changes that are, at least to some extent, nutrient specific. Here, we highlight what is known about the importance of individual root system components for nutrient acquisition and how developmental and physiological responses can be coupled to increase nutrient foraging by roots. In addition, we review prominent molecular mechanisms involved in altering the root system in response to local nutrient availability or to the plant's nutritional status. PMID:25082891

  5. Nutrient Density Scores.

    ERIC Educational Resources Information Center

    Dickinson, Annette; Thompson, William T.

    1979-01-01

    Announces a nutrient density food scoring system called the Index of Nutritional Quality (INQ). It expresses the ratio between the percent RDA of a nutrient and the percent daily allowance of calories in a food. (Author/SA)

  6. NATIONAL NUTRIENTS DATABASE

    EPA Science Inventory

    Resource Purpose:The Nutrient Criteria Program has initiated development of a National relational database application that will be used to store and analyze nutrient data. The ultimate use of these data will be to derive ecoregion- and waterbody-specific numeric nutrient...

  7. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    PubMed

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits. PMID:25925733

  8. Sex-related differences in photoinhibition, photo-oxidative stress and photoprotection in stinging nettle (Urtica dioica L.) exposed to drought and nutrient deficiency.

    PubMed

    Simancas, Bárbara; Juvany, Marta; Cotado, Alba; Munné-Bosch, Sergi

    2016-03-01

    Dimorphic plant species can show distinct nutrient needs due to sex-related differences in nutrient allocation to reproductive structures, which can potentially affect their sensitivity to photoinhibition and photo-oxidative stress. Here, we investigated sex-related differences in the extent of photo-oxidative stress in male and female individuals of U. dioica exposed to a combination of severe drought and nutrient starvation. Male and female individuals of U. dioica subject to severe drought stress were exposed to various levels of nutrient availability. First, a set of plants grown under field conditions and exposed to summer drought was used to test the effects of nutrient supply (given as NPK fertilizer). Secondly, the effects of various phosphate concentrations in the nutrient solution were tested in drought-stressed potted plants. The Fv/Fm ratio (maximum efficiency of PSII photochemistry), photoprotection capacity (levels of carotenoids, including the xanthophyll cycle, and vitamins C and E), and the extent of lipid peroxidation (hydroperoxide levels) were measured. Results showed that an application of the NPK fertilizer to the soil had a positive effect on drought-stressed plants, reducing the extent of lipid peroxidation in both males and females. P deficiency led to residual photoinhibition, as indicated by significant reductions in the Fv/Fm ratio, and enhanced lipid peroxidation in females, but not in males. We conclude that (i) increased nutrient availability in the soil can alleviate photo-oxidative stress in drought-stressed U. dioica plants, and (ii) U. dioica plants show sexual secondary dimorphism in terms of photoinhibition and photo-oxidative stress, but this is only apparent when stress infringed on plants is very severe. PMID:26799330

  9. Influence of Npk inorganic fertilizer treatment on the proximate composition of the leaves of Ocimum gratissimum (L.) and Gongronema latifolium (benth).

    PubMed

    Osuagwu, G G E; Edeoga, H O

    2013-04-15

    The influence of NPK inorganic fertilizer treatment on the proximate composition of the leaves of Ocimum gratissimum (L.) and Gongronema latifolium (Benth) was investigated. Cultivated O. gratissimum and G. latifolium were treated with NPK (15:15:15) fertilizer at 100, 200, 300, 400 and 500 kg h(-1) treatment levels in planting buckets derived using the furrow slice method two months after seedling emergence. No fertilizer treatment served as control. The leaves of the plants were harvested for analysis one month after treatment. The leaf was used for the analysis because it the most eaten part. Fertilizer treatment significantly (p < 0.05) increased the dry matter, moisture content, ash, crude protein, crude fibre, crude fat contents of the leaves of both plants. On the other hand, fertilizer treatment significantly, (p < 0.05) decreased the carbohydrate and the calorific value of the leaves of the plants. The increase in the concentrations of these substances as a result of fertilizer of fertilizer treatment might be due to the role of fertilizer in chlorophyll content of plant's leaves, which in turn enhanced the process of photosynthesis leading to increased synthesis of these substances. The decrease in the carbohydrate content might be due to its conversion to other materials in the plants. The results obtained were discussed in line with current literatures. PMID:24494518

  10. Movement of pesticides and nutrients into tile drainage water. Final report, 22 September 1985-22 September 1988

    SciTech Connect

    Van Scoyoc, G.E.; Kladivko, E.J.

    1989-01-01

    Concern about contamination of surface and ground water by agricultural chemicals has increased in the last five years. The objectives of this study were to determine field-scale pesticide and nutrient losses to tile drains over a 3-year period on a low-organic-matter, poorly structured silt loam soil under typical agricultural management practices. A tile-drainage spacing study was instrumented to measure water outflow rates and to continuously collect tile outflow samples on a flow-proportional basis. Two replicates of 3 tile spacings (5, 10, and 20 m) were included in the study. Water samples were analyzed for all applied pesticides (atrazine, cyanazine, alachlor, carbofuran, terbufos, and chlorpyrifos) as well as major nutrients (N,P,K) and sediment.

  11. Duodenal luminal nutrient sensing

    PubMed Central

    Rønnestad, Ivar; Akiba, Yasutada; Kaji, Izumi; Kaunitz, Jonathan D

    2016-01-01

    The gastrointestinal mucosa is exposed to numerous chemical substances and microorganisms, including macronutrients, micronutrients, bacteria, endogenous ions, and proteins. The regulation of mucosal protection, digestion, absorption and motility is signaled in part by luminal solutes. Therefore, luminal chemosensing is an important mechanism enabling the mucosa to monitor luminal conditions, such as pH, ion concentrations, nutrient quantity, and microflora. The duodenal mucosa shares luminal nutrient receptors with lingual taste receptors in order to detect the five basic tastes, in addition to essential nutrients, and unwanted chemicals. The recent ‘de-orphanization’ of nutrient sensing G protein-coupled receptors provides an essential component of the mechanism by which the mucosa senses luminal nutrients. In this review, we will update the mechanisms of and underlying physiological and pathological roles in luminal nutrient sensing, with a main focus on the duodenal mucosa. PMID:25113991

  12. Growth, yield, and nutrient status of pecans fertilized with biosolids and inoculated with rizosphere fungi.

    PubMed

    Tarango Rivero, S H; Nevárez Moorillón, V G; Orrantia Borunda, E

    2009-03-01

    The application of anaerobically digested biosolids as a nutrient source for pecan, Carya illinoinensis (Wangeh.) K. Koch, cultivar Western, was evaluated. Conventional NPK fertilizers (CF) and biosolids included a treatment with the rhizospheric fungi Pisolithus tinctorius+Scleroderma sp. and Trichoderma sp. After an average of three years, the tree trunks with biosolid treatment grew 9.5% more than with CF; the length of the bearing shoots was 18.1 and 18.3cm and the production of nuts/tree was 9.26 and 8.75kg for pecans with CF and with biosolids, respectively. Western foliar nutrient concentration and nut quality were statistically equal in trees with CF and with biosolids. Soil inoculation with mycorrhizal fungi improved shoot growth by 19.4% when CF was applied, but did not when biosolids were used. Nutrient status and yield did not increase with mycorrhizal fungi. The addition of Trichoderma sp. did not favor any of the variables evaluated with both nutrient sources. Biosolids are efficient fertilizer at promoting the growth, production and nut quality of pecan trees. PMID:18993060

  13. Spatial variability of soil nutrient in paddy plantation: Sites FELCRA Seberang Perak

    NASA Astrophysics Data System (ADS)

    Kamarudin, H.; Adnan, N. A.; Mispan, M. R.; Athirah. A, A.

    2016-06-01

    The conventional methods currently used for rice cultivation in Malaysia are unable to give maximum yield although the yield production of paddy is increasing. This is due to the conversional method being unable to include soil properties as one of their parameters in agriculture management. Soil properties vary spatially in farm scale due to differences in topography, parent material, vegetation or land management and soil characteristics; also plantation productivity varies significantly over small spatial scales. Knowledge of spatial variability in soil fertility is important for site specific nutrient management. Analysis of spatial variability of soil nutrient of nitrogen (N), phosphorus (P) and potassium (K) were conducted in this study with the aid of GIS (i.e ArcGIS) and statistical softwares. In this study different temporal and depths of soil nutrient were extracted on the field and further analysis of N,P,K content were analysed in the chemical laboratory and using spatially technique in GIS sofware. The result indicated that for the Seberang Perak site of 58 hactares area, N and K are met minimum requirements nutrient content as outlines by the MARDI for paddy cultivation. However, P indicated poor condition in the study area; therefore the soil needs further attention and treatment.

  14. JAZ Repressors: Potential Involvement in Nutrients Deficiency Response in Rice and Chickpea

    PubMed Central

    Singh, Ajit P.; Pandey, Bipin K.; Deveshwar, Priyanka; Narnoliya, Laxmi; Parida, Swarup K.; Giri, Jitender

    2015-01-01

    Jasmonates (JA) are well-known phytohormones which play important roles in plant development and defense against pathogens. Jasmonate ZIM domain (JAZ) proteins are plant-specific proteins and act as transcriptional repressors of JA-responsive genes. JA regulates both biotic and abiotic stress responses in plants; however, its role in nutrient deficiency responses is very elusive. Although, JA is well-known for root growth inhibition, little is known about behavior of JAZ genes in response to nutrient deficiencies, under which root architectural alteration is an important adaptation. Using protein sequence homology and a conserved-domains approach, here we identify 10 novel JAZ genes from the recently sequenced Chickpea genome, which is one of the most nutrient efficient crops. Both rice and chickpea JAZ genes express in tissue- and stimuli-specific manners. Many of which are preferentially expressed in root. Our analysis further showed differential expression of JAZ genes under macro (NPK) and micronutrients (Zn, Fe) deficiency in rice and chickpea roots. While both rice and chickpea JAZ genes showed a certain level of specificity toward type of nutrient deficiency, generally majority of them showed induction under K deficiency. Generally, JAZ genes showed an induction at early stages of stress and expression declined at later stages of macro-nutrient deficiency. Our results suggest that JAZ genes might play a role in early nutrient deficiency response both in monocot and dicot roots, and information generated here can be further used for understanding the possible roles of JA in root architectural alterations for nutrient deficiency adaptations. PMID:26617618

  15. Digestate as nutrient source for biomass production of sida, lucerne and maize

    NASA Astrophysics Data System (ADS)

    Bueno Piaz Barbosa, Daniela; Nabel, Moritz; Horsch, David; Tsay, Gabriela; Jablonowski, Nicolai

    2014-05-01

    Biogas as a renewable energy source is supported in many countries driven by climate and energy policies. Nowadays, Germany is the largest biogas producer in the European Union. A sustainable resource management has to be considered within this growing scenario of biogas production systems and its environmental impacts. In this respect, studies aiming to enhance the management of biogas residues, which represents a valuable source of nutrients and organic fertilization, are needed. Our objective was to evaluate the digestate (biogas residue after fermentation process) application as nutrient source for biomass production of three different plants: sida (Sida hermaphrodita - Malvaceae), lucerne (Medicago sativa - Fabaceae) and maize (Zea mays - Poaceae). The digestate was collected from an operating biogas facility (fermenter volume 2500m³, ADRW Natur Power GmbH & Co.KG Titz/Ameln, Germany) composed of maize silage as the major feedstock, and minor amounts of chicken manure, with a composition of 3,29% N; 1,07% P; 3,42% K; and 41,2% C. An arable field soil (Endogleyic Stagnosol) was collected from 0-30 cm depth and 5 mm sieved. The fertilizer treatments of the plants were established in five replicates including digestate (application amount equivalent to 40 t ha-1) and NPK fertilizer (application amount equivalent to 200:100:300 kg ha-1) applications, according to the recommended agricultural doses, and a control (no fertilizer application). The digestate and the NPK fertilizer were thoroughly mixed with the soil in a rotatory shaker for 30 min. The 1L pots were filled with the fertilized soil and the seedlings were transplanted and grown for 30 days under greenhouse conditions (16 h day/8 h night: 24ºC/18ºC; 60% air humidity). After harvesting, the leaf area was immediately measured, and the roots were washed to allow above and below-ground biomass determination. Subsequently, shoots and roots were dried at 60ºC for 48 hours. The biomass and leaf area of sida

  16. Mechanism of nutrient sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term nutrient sensing has emerged to describe the molecular mechanisms by which nutrients and their metabolites interact with various cell surface receptors, intracellular signaling proteins, and nuclear receptors, and modulate the activity of a complex network of signaling pathways that regulat...

  17. Nutrient Control Design Manual

    EPA Science Inventory

    The Nutrient Control Design Manual will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). This manual will present ...

  18. Nutrient Control Seminars

    EPA Science Inventory

    These Nutrient Control Seminars will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). These seminars will present ...

  19. Nutrient Sensing Mechanisms Across Evolution

    PubMed Central

    Chantranupong, Lynne; Wolfson, Rachel L.; Sabatini, David M.

    2015-01-01

    For organisms to coordinate their growth and development with nutrient availability they must be able to sense nutrient levels in their environment. Here, we review select nutrient sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes. PMID:25815986

  20. Integrated Urban Nutrient Management

    NASA Astrophysics Data System (ADS)

    Nhapi, I.; Veenstra, S.; Siebel, M. A.; Gijzen, H. J.

    Most cities, especially from the developing countries, are facing serious problems with the management of nutrients, necessitating an urgent review of current waste management systems. Whilst highly efficient technologies are available, the inclusion of these in a well-thought out and systematic approach is necessary to contain the nutrient influxes and outfluxes from towns. Five intervention measures are proposed in this paper. The first is to manage the use and generation of nutrients by drastically minimising water consumption and employing other cleaner production approaches. The second deals with the optimal reuse of nutrients and water at the smallest possible level, like at the household and on-plot level. The second option is to covert the waste into something useful for reuse, and, where not possible, to something which is envi- ronmentally neutral. This involves treatment, but applying technologies that makes the best use of side products via reuse. Where the first three options will have failed, two least preferred options could be used. Waste can be dispersed or diluted to enhance self-purification capacities of downstream water bodies. The last option is to store the wastewater for some parts of the year when there is water shortage to allow for polishing during the standing period. The success of urban nutrient planning requires an integrated approach, proving specific solutions to specific situations. This, in turn, requires appropriate institutional responses.

  1. EFFECTS OF NUTRIENT ENRICHMENT ON PRIMARY PRODUCTION AND BIOMASS OF SEDIMENT MICROALGAE IN A SUBTROPICAL SEAGRASS BED(1).

    PubMed

    Bucolo, Philip; Sullivan, Michael J; Zimba, Paul V

    2008-08-01

    Eutrophication of coastal waters often leads to excessive growth of microalgal epiphytes attached to seagrass leaves; however, the effect of increased nutrient levels on sediment microalgae has not been studied within seagrass communities. A slow-release NPK Osmocote fertilizer was added to sediments within and outside beds of the shoal grass Halodule wrightii, in Big Lagoon, Perdido Key, Florida. Gross primary production (GPP) and biomass (HPLC photopigments) of sediment microalgae within and adjacent to fertilized and control H. wrightii beds were measured following two 4-week enrichment periods during June and July 2004. There was no effect of position on sediment microalgal GPP or biomass in control and enriched plots. However, nutrient enrichment significantly increased GPP in both June and July. These results suggest that sediment microalgae could fill some of the void in primary production where seagrass beds disappear due to excessive nutrient enrichment. Sedimentary chl a (proxy of total microalgal biomass) significantly increased only during the June enrichment period, whereas fucoxanthin (proxy of total diatom biomass) was not increased by nutrient enrichment even though its concentration doubled in the enriched plots in June. PMID:27041604

  2. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.

    PubMed

    Chen, Weile; Koide, Roger T; Adams, Thomas S; DeForest, Jared L; Cheng, Lei; Eissenstat, David M

    2016-08-01

    Photosynthesis by leaves and acquisition of water and minerals by roots are required for plant growth, which is a key component of many ecosystem functions. Although the role of leaf functional traits in photosynthesis is generally well understood, the relationship of root functional traits to nutrient uptake is not. In particular, predictions of nutrient acquisition strategies from specific root traits are often vague. Roots of nearly all plants cooperate with mycorrhizal fungi in nutrient acquisition. Most tree species form symbioses with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. Nutrients are distributed heterogeneously in the soil, and nutrient-rich "hotspots" can be a key source for plants. Thus, predicting the foraging strategies that enable mycorrhizal root systems to exploit these hotspots can be critical to the understanding of plant nutrition and ecosystem carbon and nutrient cycling. Here, we show that in 13 sympatric temperate tree species, when nutrient availability is patchy, thinner root species alter their foraging to exploit patches, whereas thicker root species do not. Moreover, there appear to be two distinct pathways by which thinner root tree species enhance foraging in nutrient-rich patches: AM trees produce more roots, whereas EM trees produce more mycorrhizal fungal hyphae. Our results indicate that strategies of nutrient foraging are complementary among tree species with contrasting mycorrhiza types and root morphologies, and that predictable relationships between below-ground traits and nutrient acquisition emerge only when both roots and mycorrhizal fungi are considered together. PMID:27432986

  3. Nutrient element interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of overall tree physiological processes for optimization of either orchard yield or profitability is an annual challenge facing orchard managers. Optimization of chemical nutrient element concentrations within this context is often far more challenging than first appears. Tree or or...

  4. SPARROW REGIONAL NUTRIENT MODEL

    EPA Science Inventory

    This is the second year of funding for the New England SPARROW (Spatially Referenced Regressions on Watershed Attributes) model. Funds in the first year (along with funds allocated for projects supporting Nutrient-Criteria development) were used to analyze regional results ...

  5. Nutrient Criteria Research

    EPA Science Inventory

    EPA has developed methodologies for deriving nutrient criteria, default criteria for the variety of waters and eco-regions found in the U.S., and a strategy for implementing the criteria including guidance on the use and development of biocriteria. Whereas preliminary research ha...

  6. Nutrient Requirements in Adolescence.

    ERIC Educational Resources Information Center

    McKigney, John I,; Munro, Hamish N.

    It is important to understand the nutrient requirements and the significance of nutrition both in pubescence and adolescence. The pubescent growth spurt is characterized by an increase in body size and a change in proportion of different tissues. Both of these factors are of great nutritional importance, since there is reason to believe that the…

  7. Estimation of stream nutrient uptake from nutrient addition experiments

    SciTech Connect

    Payn, Robert

    2005-09-01

    Nutrient uptake in streams is often quantified by determining nutrient uptake length. However, current methods for measuring nutrient uptake length are often impractical, expensive, or demonstrably incorrect. We have developed a new method to estimate ambient nutrient uptake lengths using field experiments involving several levels of nutrient addition. Data analysis involves plotting nutrient addition uptake lengths versus added concentration and extrapolating to the negative ambient concentration. This method is relatively easy, inexpensive, and based on sound theoretical development. It is more accurate than the commonly used method involving a single nutrient addition. The utility of the method is supported by field studies directly comparing our new method with isotopic tracer methods for determining uptake lengths of phosphorus, ammonium, and nitrate. Our method also provides parameters for comparing potential nutrient limitation among streams.

  8. Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?

    PubMed

    Teste, François P; Veneklaas, Erik J; Dixon, Kingsley W; Lambers, Hans

    2015-01-01

    Nitrogen (N) transfer among plants has been found where at least one plant can fix N2 . In nutrient-poor soils, where plants with contrasting nutrient-acquisition strategies (without N2 fixation) co-occur, it is unclear if N transfer exists and what promotes it. A novel multi-species microcosm pot experiment was conducted to quantify N transfer between arbuscular mycorrhizal (AM), ectomycorrhizal (EM), dual AM/EM, and non-mycorrhizal cluster-rooted plants in nutrient-poor soils with mycorrhizal mesh barriers. We foliar-fed plants with a K(15) NO3 solution to quantify one-way N transfer from 'donor' to 'receiver' plants. We also quantified mycorrhizal colonization and root intermingling. Transfer of N between plants with contrasting nutrient-acquisition strategies occurred at both low and high soil nutrient levels with or without root intermingling. The magnitude of N transfer was relatively high (representing 4% of donor plant N) given the lack of N2 fixation. Receiver plants forming ectomycorrhizas or cluster roots were more enriched compared with AM-only plants. We demonstrate N transfer between plants of contrasting nutrient-acquisition strategies, and a preferential enrichment of cluster-rooted and EM plants compared with AM plants. Nutrient exchanges among plants are potentially important in promoting plant coexistence in nutrient-poor soils. PMID:24811370

  9. Effects of Nutrient Addition on Belowground Stoichiometry and Microbial Activity in an Ombrotrophic Bog

    NASA Astrophysics Data System (ADS)

    Pinsonneault, A. J.; Moore, T. R.; Roulet, N. T.

    2015-12-01

    Ombrotrophic bogs are both nutrient-poor systems and important carbon (C) sinks yet there remains a dearth of information on the stoichiometry of C, nitrogen (N), phosphorus (P), and potassium (K), an important determinant of substrate quality for microorganisms, in these systems. In this study, we quantified the C, N, P, and K concentrations and stoichiometric ratios of both soil organic matter (SOM) and dissolved organic matter (DOM) as well as microbial extracellular enzyme activity from 0 - 10cm depth in a long-term fertilization experiment at Mer Bleue bog, Ontario, Canada. Though trends in C:N, C:P, and C:K between SOM and DOM seem to follow one another, preliminary results indicate that the stoichiometric ratios of DOM were at least an order of magnitude smaller than those of DOM suggesting that nutrient fertilization impacts the quality of DOM as a microbial substrate to a greater degree than SOM. C:N decreased with greater nitrogen addition but C:P and C:K increased; the magnitude of that increase being smaller in NPK treatments relative to N-only treatments suggesting co-limitation by P and/or K. This is further supported by the increase in activity of both the C-cycling enzyme, β-D-glucosidase (bdG), and the P-cycling enzyme, phosphatase (Phos), with greater nitrogen addition; particularly in NPK-treatments for bdG and N-only treatments for Phos. The activity of the N-cycling enzyme, N-acetyl-β-D-glucosaminidase, and the C-cycling enzyme, phenol oxidase, with greater N-addition suggests a decreased need to breakdown organic nitrogen to meet microbial N-requirements in the former and N-inhibition in the latter consistent with findings in the literature. Taken together, these results suggest that higher levels of nutrients impact both microbial substrate quality as well as the activity of microbial enzymes that are key in the decomposition process which may ultimately decrease the ability of peatlands to sequester carbon.

  10. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).

    PubMed

    Moyin-Jesu, Emmanuel Ibukunoluwa

    2007-08-01

    The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost

  11. Slow-release nutrient capsules for microorganism stimulation in oil remediation.

    PubMed

    Reis, E A; Rocha-Leão, M H M; Leite, S G F

    2013-02-01

    As the concern towards environmental deterioration grows worldwide, new technological achievements become essential for all countries. Among the technologies with great potential of bioremediation is microencapsulation of active material. Several studies have investigated the use of controlled release of active materials as a way of biostimulation and supplying the nutrients necessary for the bioremediation process. In fact, as the use of microorganisms has a great potential in degrading crude oils, this work aims to use that technology and to associate it to produce controlled-release capsules of nitrogen, phosphorus, and potassium (N, P, and K) for bioremediation purposes. For the capsule formulation, polymers of sodium alginate, Capsul®, and the commercial fertilizer NPK from Sempre Verde Inc. were used. Crude oil was the only carbon source and mineral medium for microorganism growth. Controlled-release nutrient capsules, with 4 mm in diameter, made of 3.0 % alginate (w/v) and 4.0 % Capsul® (w/v) were produced. Those capsules were used in association with a microbial consortium, in a liquid phase bioremediation process, having degraded 43.6 % of the total hydrocarbon within 240 h, evidencing thus as a promising tool for hydrocarbon bioremediation. PMID:23306878

  12. Estuarine macrofauna responses to continuous in situ nutrient addition on a tropical mudflat.

    PubMed

    Botter-Carvalho, Mônica L; Carvalho, Paulo V V C; Valença, Ana Paula M C; Santos, Paulo J P

    2014-06-15

    A field experiment to assess the effects of continuous nutrient addition on the macrobenthic community was carried out on an estuarine mudflat on the northeast coast of Brazil. The experiment began on 5 October 2005 and ended on 8 February 2006. Macrofauna was compared at approximately four-week intervals in triplicate plots with three levels (Control - C, Low Dose - LD and High Dose - HD) of weekly fertilizer additions for 17 weeks. Inorganic fertilizer (N-P-K) was applied on nine randomly defined quadrangular plots (4m(2) each). All measurements were calculated from species abundances. Multivariate analyses as well as the univariate indices (richness, abundance and Shannon-Wiener index) showed statistically significant differences between the enriched and control areas during the period of the experiment. The expected gradual response based on the succession model of Pearson and Rosenberg was not observed. The nutrient doses used were high enough to cause severe decreases in abundance, richness and evenness, and an increase in dominance. PMID:24835372

  13. Changes in nutrient dynamics throughout water transfers in a Tropical Forest and Pasture of Rondonia, Brazil

    NASA Astrophysics Data System (ADS)

    Piccolo, M. D.; Neill, C.; Krusche, A.; Laclau, J. P.; Cerri, C. C.

    2006-12-01

    The clearing of tropical forest in the Brazilian Amazon for cattle pasture since the 70s is a globally important land use change that has consequences for soil biogeochemical cycles. Generally, five to ten years after deforestation, pastures become degraded due to inadequate management practices. Development of strategies for restoration of low productivity pastures constitutes the main goal for Rondônia state. We analyzed the concentrations of the main nutrient of the biogeochemical cycles in three representative land uses at Fazenda Nova Vida, in central Rondônia (10o30'S, 62o30'W). The treatments were: (1) native forest; (2) pasture dominated by the forage grass Brachiaria brizantha but containing some weeds, under non- intensive management and; (3) a section of the same pasture that was subjected to tilling, replanting and fertilization (NPK + micronutrients) to eliminate weeds and improve grass productivity. Water samples from rain, throughfall, overland flow, tension lysimeter and zero-tension lysimeter (1.0 m soil depth), were collected during the rainy seasons from January to May of 2002 and 2003. The concentrations of C (DOC and DIC), inorganic-N (NH4+, NO3- and NO2-), Na+, K+, Mg2+, Ca2+, SO42- and Cl- were measured in all treatments. Rain water was dominated by the nutrients (NH4+, Na+, K+, Ca2+ and Cl-) and DOC. Forest throughfall was enriched in most of the elements. Concentrations of elements in the overland flow showed higher variations in the pasture and in the plowed pasture, however samples were not collected in forest. Soil solution waters (tension lysimeter) and lysimeter waters (zero-tension lysimeter) too had higher variations for elements concentrations in all treatments. Forest clearing for pasture and pasture submitted to tillage practices profoundly influence soil properties and, consequently, the nutrient availability in soil profiles. The soil solution composition may be indicative of altered patterns of nutrient availability in this

  14. Impact of human interventions on nutrient biogeochemistry in the Pamba River, Kerala, India.

    PubMed

    David, Shilly Elizabeth; Chattopadhyay, Mahamaya; Chattopadhyay, Srikumar; Jennerjahn, Tim C

    2016-01-15

    Anthropogenic inputs nowadays are the major source of nutrients to the coastal area. While a wealth of data exists from high latitude regions, little is known on the amount and composition of nutrient fluxes from densely populated tropical catchments. The South Indian Pamba River is a prime example in this respect because of its manifold human interventions such as the Sabarimala pilgrimage, the largest pilgrim centre in the world and agricultural practices. In order (i) to identify direct cause-effect relationships, (ii) to quantify land use specific nutrient inputs and (iii) to assess the respective impacts water was sampled along the river course during the pre monsoon, south west monsoon and north east monsoon periods in 2010 to 2012. Sampling segments were chosen according to prevailing land use. A socioeconomic survey on agricultural practices was conducted to collect information on the type, time and quantity of fertilizer application. Our results indicate (i) little human activities in the forest segment resulted in a low nutrient yield; (ii) pilgrim activities led to high ammonium and phosphate yields in the temple segment; (iii) specific fertilizer management resulted in moderate and maximum nitrate yields in the respective agriculture segments. Annual NPK fertilizer inputs to the catchment were 95 kg ha(-1) yr(-1).The average yield for the Pamba River catchment amounted to 3.5 kg ha(-1) yr(-1) of DIN and 0.2 kg ha(-1) yr(-1) of phosphate-P. As opposing predictions for densely-populated regions the N and P yields of the Pamba River are moderate to low on a global scale. It highlights the need for land use specific quantitative estimates from tropical regions in order to improve the global database and local water quality management. PMID:26479915

  15. Nutrient profiling: the new environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2005 Dietary Guidelines for Americans (DGA) recommends that individuals choose nutrient-dense foods to help meet nutrient needs without consuming excess calories, a concept that is supported by health professionals and nutrition organizations. With an increased emphasis on nutrient density, the ...

  16. Bone nutrients for vegetarians.

    PubMed

    Mangels, Ann Reed

    2014-07-01

    The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. PMID:24898231

  17. National Nutrient Database for Standard Reference - Find Nutrient Value of Common Foods by Nutrient

    MedlinePlus

    ... Department of Agriculture Agricultural Research Service National Nutrient Database for Standard Reference Release 28 NDL Home Food ... Sort by: Measure by: * required field ​ National Nutrient Database for Standard Reference Release 28 slightly revised May, ...

  18. Identification of climate-resilient integrated nutrient management practices for rice-rice cropping system--an empirical approach to uphold food security.

    PubMed

    Subash, N; Gangwar, B; Singh, Rajbir; Sikka, A K

    2015-01-01

    Yield datasets of long-term experiments on integrated nutrient management in rice-rice cropping systems were used to investigate the relationship of variability in rainfall, temperature, and integrated nutrient management (INM) practices in rice-rice cropping system in three different agroecological regions of India. Twelve treatments with different combinations of inorganic (chemical fertilizer) and organic (farmyard manure, green manure, and paddy straw) were compared with farmer's conventional practice. The intraseasonal variations in rice yields are largely driven by rainfall during kharif rice and by temperature during rabi rice. Half of the standard deviation from the average monthly as well as seasonal rainfall during kharif rice and 1 °C increase or decrease from the average maximum and minimum temperature during rabi rice has been taken as the classification of yield groups. The trends in the date of effective onset of monsoon indicate a 36-day delay during the 30-year period at Rajendranagar, which is statistically significant at 95 % confidence level. The mean annual maximum temperature shows an increasing trend in all the study sites. The length of monsoon also showed a shrinking trend in the rate of 40 days during the 30-year study period at Rajendranagar representing a semiarid region. At Bhubaneshwar, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through green manure resulted in an overall average higher increase of 5.1 % in system productivity under both excess and deficit rainfall years and also during the years having seasonal mean maximum temperature ≥35 °C. However, at Jorhat, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through straw resulted in an overall average higher increase of 7.4 % in system productivity, while at Rajendranagar, the application of 75 % NPK through chemical fertilizers and 25 % N through green manusre resulted in an overall average higher increase of

  19. Identification of climate-resilient integrated nutrient management practices for rice-rice cropping system—an empirical approach to uphold food security

    NASA Astrophysics Data System (ADS)

    Subash, N.; Gangwar, B.; Singh, Rajbir; Sikka, A. K.

    2015-01-01

    Yield datasets of long-term experiments on integrated nutrient management in rice-rice cropping systems were used to investigate the relationship of variability in rainfall, temperature, and integrated nutrient management (INM) practices in rice-rice cropping system in three different agroecological regions of India. Twelve treatments with different combinations of inorganic (chemical fertilizer) and organic (farmyard manure, green manure, and paddy straw) were compared with farmer's conventional practice. The intraseasonal variations in rice yields are largely driven by rainfall during kharif rice and by temperature during rabi rice. Half of the standard deviation from the average monthly as well as seasonal rainfall during kharif rice and 1 °C increase or decrease from the average maximum and minimum temperature during rabi rice has been taken as the classification of yield groups. The trends in the date of effective onset of monsoon indicate a 36-day delay during the 30-year period at Rajendranagar, which is statistically significant at 95 % confidence level. The mean annual maximum temperature shows an increasing trend in all the study sites. The length of monsoon also showed a shrinking trend in the rate of 40 days during the 30-year study period at Rajendranagar representing a semiarid region. At Bhubaneshwar, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through green manure resulted in an overall average higher increase of 5.1 % in system productivity under both excess and deficit rainfall years and also during the years having seasonal mean maximum temperature ≥35 °C. However, at Jorhat, the application of 50 % recommended NPK through chemical fertilizers and 50 % N through straw resulted in an overall average higher increase of 7.4 % in system productivity, while at Rajendranagar, the application of 75 % NPK through chemical fertilizers and 25 % N through green manusre resulted in an overall average higher increase of

  20. Nutrient dynamics: Chapter 3

    USGS Publications Warehouse

    Likens, Gene E.; LaBaugh, James W.; Buso, Donald C.; Bade, Darren

    2009-01-01

    This chapter focuses on the variability and trends in chemical concentrations and fluxes at Mirror Lake during the period 1981–2000. It examines the water and chemical budgets of Mirror Lake to identify and understand better long-term trends in the chemical characteristics of the lake. It also identifies the causes of changes in nutrient concentrations and examines the contribution of hydrologic pathways to the contamination of Mirror Lake by road salt. The role of groundwater and precipitation on water and chemical budgets of the lake are also examined.

  1. Studies on nutrient uptake of rice and characteristics of soil microorganisms in a long-term fertilization experiments for irrigated rice.

    PubMed

    Zhang, Qi-chun; Wang, Guang-huo

    2005-02-01

    The ecosystem characteristics of soil microorganism and the nutrient uptake of irrigated rice were investigated in a split-block experiment with different fertilization treatments, including control (no fertilizer application), PK, NK, NP, NPK fertilization, in the main block, and conventional rice and hybrid rice comparison, in the sub block. Average data of five treatments in five years indicated that the indigenous N supply (INS) capacity ranged from 32.72 to 93.21 kg/ha; that indigenous P supply (IPS) capacity ranged from 7.42 to 32.25 kg/ha; and that indigenous K supply (IKS) capacity ranged from 16.24 to 140.51 kg/ha, which showed that soil available nutrient pool depletion might occur very fast and that P, K deficiency has become a constraint to increasing yields of consecutive crops grown without fertilizer application. It was found that soil nutrient deficiency and unbalanced fertilization to rice crop had negative effect on the diversity of the microbial community and total microbial biomass in the soil. The long-term fertilizer experiment (LTFE) also showed that balanced application of N, P and K promoted microbial biomass growth and improvement of community composition. Unbalanced fertilization reduced microbial N and increased C/N ratio of the microbial biomass. Compared with inbred rice, hybrid rice behavior is characterized by physiological advantage in nutrient uptake and lower internal K use efficiency. PMID:15633252

  2. Nutrient Sensing Mechanisms and Pathways

    PubMed Central

    Efeyan, Alejo; Comb, William C.; Sabatini, David M.

    2015-01-01

    PREFACE The ability to sense and respond to fluctuations in environmental nutrient levels is a requisite for life. Nutrient scarcity is a selective pressure that has shaped the evolution of most cellular processes. Different pathways that detect intracellular and extracellular levels of sugars, amino acids and lipids, and surrogate metabolites, are then integrated and coordinated at the organismal level via hormonal signals. During food abundance, nutrient sensing pathways engage anabolism and storage, and scarcity triggers homeostatic mechanisms, like the mobilization of internal stores through mechanisms such as autophagy. Nutrient sensing pathways are commonly deregulated in human metabolic diseases. PMID:25592535

  3. N-P-K balance in a milk production system on a C. nlemfuensis grassland and a biomass bank of P. purpureum CT-115 clone

    NASA Astrophysics Data System (ADS)

    Crespo, G.; Rodriguez, I.; Martinez, O.

    2009-04-01

    In very intensive milk production systems in Europe and America with the use of high amounts of chemical fertilizers, the nutrient recycling models consider the losses by leaching and N volatilization, as well as the hydro physical characteristics of the soil affecting the performance of this element (10; 6). However, in more extensive milk production systems, low input agriculture forming the natural cycle occurring within each farm, is of vital importance to potentate nutrient recycling for a stable animal production. The objective is the determination of the values of N, P and K inputs and outputs in a dairy farm with a sward composed by 60% of C. nlemfuensis and 40% of P. purpureum CT-115, associated with legumes in 28% of the area and the balance of these nutrients in the system using the "Recycling" software proposed by Crespo et al (2007). The grassland covered an area of 53.4 ha, composed by C. nlemfuensis (60%), P. purpureum CT-115 (40%) and L. leucocephala and C. cajan legumes intercropped in 28% of the area. The dairy herd consisted of 114 cows, 35 replacement heifers and 24 calves. There was a milk yield of 100 000 litters and the animals consumed 825 t DM from pastures and 75.1 t DM from other supplementary feeds. Nutrients extracted by pastures, nutrients intake by animals from pastures, symbiotically N fixation by legumes and N, P and K determinations outside the system due to animal production were determined (3-11). Volatilized ammonia, nutrient input and litter accumulated in the paddocks were measured once each season of the year. In the whole system the balance indicates negative values of N, P and K. Out of the total amount of nutrients consumed, animals used only 16 kg N, 5 Kg P and 4 Kg K for milk production, LW gain and calf production, the remainder returned to the system through excretions. Hence, more than 90% of the N and K, and approximately 81% of the P consumed by the animals were recycled to the system through the excretions. These

  4. Nutrients and neurodevelopment: lipids.

    PubMed

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. PMID:27606648

  5. Nutrient Cycling Study

    SciTech Connect

    Peter A. Pryfogle

    2005-09-01

    The particular goal of this study is to develop measurement techniques for understanding how consortia of organisms from geothermal facilities utilize sulfur and iron for metabolic activity; and in turn, what role that activity plays in initiating or promoting the development of a biofilm on plant substrates. Sulfur cycling is of interest because sulfur is produced in the resource. Iron is found in some of the steel formulations used in plant components and is also added as chemical treatment for reducing sulfide emissions from the plants. This report describes the set-up and operation of a bioreactor for evaluating the response of colonies of geothermal organisms to changes in nutrient and environmental conditions. Data from initial experiments are presented and plans for future testing is discussed.

  6. Nutrient loading alters the performance of key nutrient exchange mutualisms.

    PubMed

    Shantz, Andrew A; Lemoine, Nathan P; Burkepile, Deron E

    2016-01-01

    Nutrient exchange mutualisms between phototrophs and heterotrophs, such as plants and mycorrhizal fungi or symbiotic algae and corals, underpin the functioning of many ecosystems. These relationships structure communities, promote biodiversity and help maintain food security. Nutrient loading may destabilise these mutualisms by altering the costs and benefits each partner incurs from interacting. Using meta-analyses, we show a near ubiquitous decoupling in mutualism performance across terrestrial and marine environments in which phototrophs benefit from enrichment at the expense of their heterotrophic partners. Importantly, heterotroph identity, their dependence on phototroph-derived C and the type of nutrient enrichment (e.g. nitrogen vs. phosphorus) mediated the responses of different mutualisms to enrichment. Nutrient-driven changes in mutualism performance may alter community organisation and ecosystem processes and increase costs of food production. Consequently, the decoupling of nutrient exchange mutualisms via alterations of the world's nitrogen and phosphorus cycles may represent an emerging threat of global change. PMID:26549314

  7. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  8. Nutrient biofortification of food crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, b...

  9. Nutrient Needs of Young Athletes.

    ERIC Educational Resources Information Center

    Willenberg, Barbara; Hemmelgarn, Melinda

    1991-01-01

    Explains the nutritional requirements of children and adolescents, and the physiological roles of the major nutrients. Details the nutrient needs of young athletes, including pre- and postgame meals and fluid replacement. Discusses eating disorders and obesity. Advocates a diet rich in complex carbohydrates. (BC)

  10. Use of Select Nutrients to Foster Wellness.

    ERIC Educational Resources Information Center

    Cassel, Russell N.

    1987-01-01

    Discusses how to be healthy through one's diet. Lists 20 nutrients necessary for one's well being and explains role of each nutrient. Describes how nutrients complement one another and asserts that the right combination of nutrients can sometimes substitute for medication. Also lists 20 diagnostic categories of problems and suggests nutrients to…

  11. Energy and Nutrient Intake Monitoring

    NASA Technical Reports Server (NTRS)

    Luckey, T. D.; Venugopal, B.; Hutcheson, D. P.

    1975-01-01

    A passive system to determine the in-flight intake of nutrients is developed. Nonabsorbed markers placed in all foods in proportion to the nutrients selected for study are analyzed by neutron activation analysis. Fecal analysis for each market indicates how much of the nutrients were eaten and apparent digestibility. Results of feasibility tests in rats, mice, and monkeys indicate the diurnal variation of several markers, the transit time for markers in the alimentary tract, the recovery of several markers, and satisfactory use of selected markers to provide indirect measurement of apparent digestibility. Recommendations are provided for human feasibility studies.

  12. Cycling and loss of nutrients in pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pastures are fundamentally different than croplands. When cropland is harvested, large amounts of plant nutrients are removed so relatively large rates of nutrients are often needed. In pasture, most of the nutrients harvested by livestock are returned. The proportion of nutrients returned by livest...

  13. Nutrient-sensing mechanisms across evolution.

    PubMed

    Chantranupong, Lynne; Wolfson, Rachel L; Sabatini, David M

    2015-03-26

    For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes. PMID:25815986

  14. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation

    PubMed Central

    Tao, Jun; Ma, Yi-Cheng; Yang, Zhong-Shan; Zou, Cheng-Gang; Zhang, Ke-Qin

    2016-01-01

    Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms. PMID:27386520

  15. TOR Signaling and Nutrient Sensing.

    PubMed

    Dobrenel, Thomas; Caldana, Camila; Hanson, Johannes; Robaglia, Christophe; Vincentz, Michel; Veit, Bruce; Meyer, Christian

    2016-04-29

    All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth. PMID:26905651

  16. Programming placental nutrient transport capacity

    PubMed Central

    Fowden, A L; Ward, J W; Wooding, F P B; Forhead, A J; Constancia, M

    2006-01-01

    Many animal studies and human epidemiological findings have shown that impaired growth in utero is associated with physiological abnormalities in later life and have linked this to tissue programming during suboptimal intrauterine conditions at critical periods of development. However, few of these studies have considered the contribution of the placenta to the ensuing adult phenotype. In mammals, the major determinant of intrauterine growth is the placental nutrient supply, which, in turn, depends on the size, morphology, blood supply and transporter abundance of the placenta and on synthesis and metabolism of nutrients and hormones by the uteroplacental tissues. This review examines the regulation of placental nutrient transfer capacity and the potential programming effects of nutrition and glucocorticoid over-exposure on placental phenotype with particular emphasis on the role of the Igf2 gene in these processes. PMID:16439433

  17. Spatial patterns of soil nutrients and groundwater levels within the Debre Mawi watershed of the Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Guzman, Christian; Tilahun, Seifu; Dagnew, Dessalegn; Zegeye, Assefe; Tebebu, Tigist; Yitaferu, Birru; Steenhuis, Tammo

    2015-04-01

    Persistent patterns of erosion have emerged in the Ethiopian highlands leading to soil and water conservation practices being implemented throughout the countryside. A common concern is the loss of soil fertility and loss of soil water. This study investigates the spatial patterns of soil nutrients and water table depths in a small sub-watershed in the northwestern Ethiopian highlands. NPK, a particularly important group of nutrients for inorganic fertilizer considerations, did not follow a consistent trend as a group along and across slope and land use transects. Whereas nitrogen content was greatest in the upslope regions (~0.1% TN), available phosphorus had comparably similar content in the different slope regions throughout the watershed (~2.7 mg/kg). The exchangeable cations (K, Ca, Mg) did increase in content in a downslope direction (in most cases though, they were highest in the middle region) but not consistently later in the season. On average, calcium (40 cmol/kg), magnesium (5 cmol/kg), and potassium (0.5 cmol/kg) were orders of magnitudes different in content. The perched water table in different areas of the watershed showed a very distinct trend. The lower part of the sub-watershed had shallower levels of water table depths (less than 10 cm from the surface) than did the upper parts of the sub-watershed (usually greater than 120 cm from the surface). The middle part of the sub-watershed had water table depths located at 40 to 70 cm below the surface. These results show how the landscape slope position and land use may be important for planning where and when soil nutrients and water would be expected to be appropriately "conserved" or stored.

  18. Hungry for Nutrient Data? Navigating the USDA Nutrient Database

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA National Nutrient Database for Standard Reference (SR) is the major source of food composition data in the United States, providing the foundation for most food composition databases in the public and private sectors. Most nutrition professionals are familiar with the basics of the SR onlin...

  19. Effects of biochar and clay amendment on nutrient sorption of an Arenosol in semi-arid NE-Brazil

    NASA Astrophysics Data System (ADS)

    Beusch, Christine; Kaupenjohann, Martin

    2014-05-01

    In the semi-arid Northeast of Brazil nutrient-poor Arenosol with a low capacity to retain water and nutrients is the predominant soil type. Our aim is to provide a long-term melioration of the soils with locally available and inexpensive materials. We hypothesize an increase in nutrient sorption by the addition of biochar and clay. We conducted adsorption experiments according to OECD 106 batch equilibrium method in order to test this hypothesis. Sandy Arenosol, locally produced pyrolized biochar made of Prosopis juliflora, and a clayey Vertisol with a clay content of 69.8 %, all from our project area in Pernambuco, NE-Brazil, were used. The percentage of biochar and Vertisol added were 0 % (pure Arenosol), 1 %, 2.5 %, 5 %, 10 %, 100 % (pure biochar respectively Vertisol). Samples were shaken for 24 hours in a 1:5 solid-solution ratio in six different concentrations of Ammonium-N, Nitrate-N (0 - 25 mg L-1 each), Phosphorus (0 - 19.8 mg L-1) and Potassium (0 - 50 mg L-1). These concentrations were chosen to represent a common range of nutrients in a prevalent quaternary fertilization scheme of N:P:K of 1:0.4:1, with half NH4-N and NO3-N each. Then, where possible, sorption isotherms according to Langmuir were derived. Addition of biochar and Vertisol only showed marginal effects on Ammonium sorption. We detected a high loss of Ammonium with pure biochar, we assume loss of gaseous NH3. High rates of biochar addition caused Nitrate retention. Biochar increased P sorption with a maximum adsorption capacity (qmax) of 27.35 mg kg-1 for the 5 % amendment, although some P was leached out (up to 1.58 mg kg-1 for the 10 % addition). Phosphate sorption on Vertisol was even higher with a qmax for the 5 % addition of 60.77 mg kg-1. Potassium did not sorb to biochar, but was strongly leached out (84.19 mg kg-1 out of the 5 % addition). For Vertisol we observed a strong Potassium sorption that is linear within the concentration range we tested. A possible enhancement of nutrient

  20. REGIONAL CHARACTERISTICS OF NUTRIENT CONCENTRATIONS IN STREAMS AND THEIR APPLICATION TO NUTRIENT CRITERIA DEVELOPMENT

    EPA Science Inventory

    In order to establish meaningful nutrient criteria, consideration must be given to the spatial variations in geographic phenomena that cause or reflect differences in nutrient concentrations in streams. Regional differences in stream nutrient concentrations were illustrated usin...

  1. DEVELOPMENT OF NUMERICAL NUTRIENT CRITERIA

    EPA Science Inventory

    A major goal of the numeric nutrient criteria program is to develop waterbody-type technical guidance manuals for assessing trophic state. EPA has published guidance for lakes and for rivers. EPA Region 1 is publishing New England-specific guidance in 2001 for lakes, ponds and ...

  2. Regulating nutrient allocation in plants

    DOEpatents

    Udvardi, Michael; Yang, Jiading; Worley, Eric

    2014-12-09

    The invention provides coding and promoter sequences for a VS-1 and AP-2 gene, which affects the developmental process of senescence in plants. Vectors, transgenic plants, seeds, and host cells comprising heterologous VS-1 and AP-2 genes are also provided. Additionally provided are methods of altering nutrient allocation and composition in a plant using the VS-1 and AP-2 genes.

  3. Stillage processing for nutrient recovery

    SciTech Connect

    Sweeten, J.M.; Coble, C.G.; Egg, R.P.; Lawhon, J.T.; McBee, G.G.; Schelling, G.T.

    1983-06-01

    Stillage from fermentation of grain sorghum and sweet potatoes was processed for dry matter and nutrient recovery by combinations of screw press, vibrating screen, centrifugation, ultrafiltration, and reverse osmosis, yielding up to 98% dry matter removal. For most processes, protein removal equaled or exceeded dry matter removal.

  4. Rhizosphere priming: a nutrient perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizospher...

  5. Nutrient enrichment and nutrient regeneration stimulate bacterioplankton growth.

    PubMed

    Chrzanowski, T H; Sterner, R W; Elser, J J

    1995-05-01

    Bacterial abundance results from predatory losses of individuals and replacement of losses through growth. Growth depends on sustained input of organic substrates and mineral nutrients. In this work we tested the hypothesis that bacterial growth in two oligotrophic Canadian shield lakes was limited by nitrogen (N) or phosphorus (P). We also determined whether consumer-regenerated resources contributed substantially to net bacterial growth. Two types of dilution assays were conducted to determine the response of bacteria to nutrient enrichment: diluted whole water (DWW, 1:9 whole/filtered with 0.2 μm of filtered lake water) and diluted fractionated water (DFW, 1.0 μm prefiltered then diluted as above). Replicate bottles in each dilution assay received either N (50 μM), P (10 μM), or both N and P enrichments. Controls received no nutrients. Resource-saturated growth rates and grazing rates were estimated from a standard dilution-growth approach. Bacterial growth was stimulated by addition of P alone and in combination with N. Consumers regenerated sufficient resources to support up to half the bacterial growth rate, but the benefit derived from consumers was minor when compared to mortality. PMID:24185342

  6. Stimulation of hybrid poplar growth in petroleum-contaminated soils through oxygen addition and soil nutrient amendments.

    PubMed

    Rentz, Jeremy A; Chapman, Brad; Alvarez, Pedro J J; Schnoor, Jerald L

    2003-01-01

    Hybrid poplar trees (Populus deltoides x nigra DN34) were grown in a green-house using hydrocarbon-contaminated soil from a phytoremediation demonstration site in Health, Ohio. Two independent experiments investigated the effect of nutrient addition on poplar growth and the importance of oxygen addition to root development and plant growth. Biomass measurements, poplar height, and leaf color were used as indicators of plant health in the selection of a 10/5/5 NPK fertilizer applied at 1121 kg/ha (112 kg-N, 24.4 kg-P, 46.5 kg-K per ha) to enhance hybrid poplar growth at the Health site. Five passive methods of oxygen delivery were examined, including aeration tubes, gravel addition, and an Oxygen Release Compound (ORC). When ORC was placed in coffee filters above hydrocarbon-contaminated soil, a statistically significant increase of 145% was observed in poplar biomass growth, relative to unamended controls. The ORC in filters also stimulated significant increases in root density. A 15.2-cm interval of soil directly below ORC addition exhibited an increase from 2.6 +/- 1.0 mg/cm3 to 4.8 +/- 1.0 mg/cm3, showing stimulation of root growth in hydrocarbon-stained soil. The positive response of hybrid poplars to oxygen amendments suggests that overcoming oxygen limitation to plants should be considered in phytoremediation projects when soil contamination exerts a high biochemical oxygen demand, such as in former refinery sites. PMID:12710235

  7. Evaluation of phytotoxic elements, trace elements and nutrients in a standardized crop plant, irrigated with raw wastewater treated by APT and ozone.

    PubMed

    Orta de Velásquez, M T; Rojas-Valencia, M N; Reales-Pineda, A C

    2006-01-01

    This project studied the benefits of applying Advanced Primary Treatment (APT) and ozone (O3) to raw wastewater destined for reuse in agriculture. The ozone was applied directly to raw wastewater, as well as to wastewater already treated with APT, and the results compared against a control sample of potable water. The experimental conditions that reported the best results was wastewater treated with O3 (at a dose of 4.8 mg/L, at pH 7, temperature 23 degrees C, for 1 hr), given that it met standards in force in Mexico with regard to micro-organism and heavy metal content. Under these conditions, after 15 min of ozonation, 100% destruction of the following bacteria was observed: V. cholerae, S. typhi as well as total and faecal coliforms. Destruction of helminth eggs and Giardia sp. took one hour. No phytotoxic elements or heavy metals were found. The balance of nutrients N:P:K (300:100:200 mg/kg) required for lettuce growth, was found in wastewater subjected to both treatment plans. However, ozone favoured the nitrification and assimilation of the nutrients, by contributing oxygen to the soil. Therefore, these conditions produced the greatest lettuce growth, the entire plant averaging 38 cm in length and 125 g. in weight. Moreover, a better appearance of the leaves was also noted. PMID:17302317

  8. NUTRIENT CRITERIA DEVELOPMENT FOR R10 ECOREGIONS.

    EPA Science Inventory

    Excess nutrients in waters of the northwest are one of the top contributors to water quality impairment. EPA, states and Tribes lack quantifiable targets for nutrients in the water quality standards. Water quality standards for nutrients usually use narrative language, such as ...

  9. Nutrient Data Bases--Considerations for Educators.

    ERIC Educational Resources Information Center

    Hoover, Loretta W.; Pelican, Suzanne

    1984-01-01

    Examines sources and limitations of nutrient data and databases, and discusses some educational issues surrounding their selection and use in nutrient analysis programs. Tables illustrating the state of development of methods for nutrients in food, and selected United States Department of Agriculture (USDA) databases. (JN)

  10. Nutrient quality of fast food kids meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposure of children to kids’ meals at fast food restaurants is high; however, the nutrient quality of such meals has not been systematically assessed. We assessed the nutrient quality of fast food meals marketed to young children, i.e., "kids meals". The nutrient quality of kids’ meals was assessed...

  11. Silage and whole-farm nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The management of forage-based livestock farms is complex. A selected silage system can affect nutrient management by influencing the type, amount, and nutrient content of feeds fed. Manure handling procedures used on a farm can also affect the yield and nutrient contents of the forages produced. So...

  12. Nutrient Management Behavior on Wisconsin Dairy Farms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management plans for livestock operations should account for rates and timing of manure application to cropland, as well as how manure is integrated with other nutrient sources. Little is known, however, about actual farmer nutrient management practices and what changes may be needed for fa...

  13. Automated nutrient analyses in seawater

    SciTech Connect

    Whitledge, T.E.; Malloy, S.C.; Patton, C.J.; Wirick, C.D.

    1981-02-01

    This manual was assembled for use as a guide for analyzing the nutrient content of seawater samples collected in the marine coastal zone of the Northeast United States and the Bering Sea. Some modifications (changes in dilution or sample pump tube sizes) may be necessary to achieve optimum measurements in very pronounced oligotrophic, eutrophic or brackish areas. Information is presented under the following section headings: theory and mechanics of automated analysis; continuous flow system description; operation of autoanalyzer system; cookbook of current nutrient methods; automated analyzer and data analysis software; computer interfacing and hardware modifications; and trouble shooting. The three appendixes are entitled: references and additional reading; manifold components and chemicals; and software listings. (JGB)

  14. Spectral Quantitation Of Hydroponic Nutrients

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  15. Rhizosphere priming: a nutrient perspective

    PubMed Central

    Dijkstra, Feike A.; Carrillo, Yolima; Pendall, Elise; Morgan, Jack A.

    2013-01-01

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply in response to a rise in atmospheric CO2 concentration. We examined how these interactions were affected by elevated CO2 in two similar semiarid grassland field studies. We found that an increase in rhizosphere priming enhanced the release of nitrogen (N) through decomposition of a larger fraction of SOM in one study, but not in the other. We postulate that rhizosphere priming may enhance N supply to plants in systems that are N limited, but that rhizosphere priming may not occur in systems that are phosphorus (P) limited. Under P limitation, rhizodeposition may be used for mobilization of P, rather than for decomposition of SOM. Therefore, with increasing atmospheric CO2 concentrations, rhizosphere priming may play a larger role in affecting C sequestration in N poor than in P poor soils. PMID:23908649

  16. Reclamation of acidic, denuded copper basin land: Revegetation performance of phosphate rock vs other nutrient sources

    SciTech Connect

    Soileau, J.M.; Sikora, F.J.; Maddox, J.J.; Kelsoe, J.J.

    1996-12-31

    Open pit smelting of Copper ore about 100 years ago resulted in approximately 9,300 ha of severely eroded, very acidic (pH 4.0 to 5.0) soils at Copper Basin, Tennessee. Along with other essential nutrients, phosphorus (P) amendments are critical for long-term productivity and sustainability of vegetation on this depleted soil. A field study was conducted (1992-1995) to compare revegetation from surface-applied North Carolina phosphate rock (PR) and triple superphosphate (TSP) at 20, 59, and 295 kg P ha{sup -1}, and to determine benefits of starter NPK tree tablets. The experimental design consisted of 7.3 x 9.1 m replicated plots, each planted to 20 loblolly pine seedlings and aerially seeded with a mixture of grasses and legumes. Tree survivability was high from all treatments. Through the third year, tree height and diameter increased with increasing P to 59 kg P ha without fertilizer tablets. There were no pine growth differences between PR and TSP. Weeping lovegrass has been the dominant cover crop through 1995, with increased stimulation to tree tablets and surface P. Tall fescue (KY 31), sericea lespedeza, and black locust responded more to PR than to TSP. Surface soil pH increased, and 0.01 M SrCl{sub 2} extractable Al decreased, with increasing rate of PR. For future loblolly pine plantings in the Copper Basin, this study suggests there is no benefit to applying both tree tablets and surface P at rates above 59 kg P ha{sup -1}. For reclaiming land with high acidity and low P fertility, PR has significant benefits. In reclaiming steep, gullied land, there is great potential for aerial application of PR and/or pelletized liming agents.

  17. Impact of integrated nutrient management on tomato yield under farmers field conditions.

    PubMed

    Pandey, S K; Chandra, K K

    2013-11-01

    Field trials were conducted in farmer's field of district Chandauli, Uttar Pradesh, India to assess the impact of integrated nutrient management (INM) on the performance of tomato crop during rabi (2008) and kharif (2009) season. Before conducting trials technological gap between actual and potential productivity were analyzed by interviewing growers to find out the major causes for low yield. Overall gap in use of fertilizers was recorded 64.90 % whereas overall mean gap in technology was 43.83%. On-farm experiments on INM were conducted by applying FYM (10t ha(-1)) + (NPK (150:80:60 kg ha(-1)) followed by dipping seedling roots in 1% Azotobacter solution for 15 min and foliar spray with 20 ppm ferrous ammonium sulphate after 30, 45 and 75 days of transplantation. The plant height, root length, number of primary branches, average fruit weight increased in INM plots as compared to farm practice. The increment in yield was found to be 28.84 and 33.86% during rabi and kharif season respectively. The maximum marketable yield obtained in INM plot during kharif and rabi seasons was 1025 q ha(-1) and 955 q ha(-1) respectively, whereas as farm practice yielded 740 q ha(-1) and 713 q ha(-1) during the same seasons. The percent loss from total production was recorded 8.5 % and 8.8 % in control plot and only 4.9 % and 5.7 % in INM plot during rabi and kharif seasons respectively. The higher fruit weight and lower incidence of disease and pest were observed in INM field in comparison to farm practice. The benefit cost ratio with INM treatment was recorded 4.25 and 4.23 in rabi and kharif season respectively against the benefit cost ratio of 2.98 and 2.82 in control plot during the same respective seasons. PMID:24555335

  18. Nutrient Cycling in Piermont Marsh

    NASA Astrophysics Data System (ADS)

    Diaz, K.; Reyes, N.; Gribbin, S.; Newton, R.; Laporte, N.; Trivino, G.; Ortega, J.; McKee, K.; Sambrotto, R.

    2011-12-01

    We investigate the cycling of nutrients through a brackish tidal wetland about 40 km north of Manhattan in the Hudson River estuary. As part of a long-term ecological study of Piermont Marsh, a NOAA reference wetland managed by the NY State DEC, we are measuring dissolved inorganic nutrients on the Marsh surface and its drainage channels. The marsh occupies 400 acres along the southwest corner of Haverstraw Bay with approximately 2 km frontage to the estuary. It is supplied with nutrient-rich water and drained primarily along several tidal creeks and the hundreds of rivulets that feed them. During most tidal cycles the silty berm bounding the marsh is not topped. Human influence in the marsh's surrounding area has had profound effects, one of the most fundamental of which has been the shift from native grass species, predominantly Spartina alterniflora, to an invasive genotype of common reed, Phragmites australis. Along with this shift there have been changes in the root bed, the effective marsh interior and berm heights, the hydroperiod and, as a result, the ability of the marsh to be utilized by various types of Hudson estuary fish. The vegetative shift is believed to be anthropogenic, but the connection is not well understood, and it is not known what role biogeochemical perturbations are playing. We present two field seasons of nitrate, phosphate and silicate measurements from Sparkill Creek, a freshwater stream draining the surrounding highlands constitutes the northern boundary, two tidally driven creeks transect the Marsh from West to East: the Crumkill and an unnamed creek we have dubbed the "Tidal", Ludlow Ditch, a no-longer-maintained drainage channel grading gently from the northern part of the marsh to the South terminates in a wide tidal outlet that is its southern boundary. Net tidal cycle fluxes and fluxes resulting from runoff events are presented. Deviations from Redfield ratios and limiting nutrients are analyzed. Piermont Marsh data is compared

  19. Inorganic nutrients, bacteria, and the microbial loop.

    PubMed

    Caron, D A

    1994-09-01

    The realization that natural assemblages of planktonic bacteria may acquire a significant fraction of their nitrogen and phosphorus via the uptake of dissolved inorganic nutrients has modified our traditional view of these microorganisms as nutrient remineralizers in plankton communities. Bacterial uptake of inorganic nitrogen and phosphorus may place bacteria and phytoplankton in competition for growth-limiting nutrients, rather than in their traditional roles as the respective "source" and "sink" for these nutrients in the plankton. Bacterial nutrient uptake also implies that bacterivorous protozoa may play a pivotal role in the remineralization of these elements in the microbial loop. The overall contribution of bacterial utilization of inorganic nutrients to total nutrient uptake in the ocean is still poorly understood, but some generalizations are emerging with respect to the geographical areas and community physiological conditions that might elicit this behavior. PMID:24186457

  20. Nutrient Management in Recirculating Hydroponic Culture

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  1. Generalized Nutrient Taxes Can Increase Consumer Welfare.

    PubMed

    Bishai, David

    2015-11-01

    Certain nutrients can stimulate appetite making them fattening in a way that is not fully conveyed by the calorie content on the label. For rational eaters, this information gap could be corrected by more labeling. As an alternative, this paper proposes a set of positive and negative taxes on the fattening and slimming nutrients in food rather than on the food itself. There are conditions under which this tax plus subsidy system could increase welfare by stopping unwanted weight gain while leaving the final retail price of food unchanged. A nutrient tax system could improve welfare if fattening nutrients, net of their effect on weight, are inferior goods and the fiscal cost of administering the tax is sufficiently low. More data on the price elasticity of demand for nutrients as well as data on how specific nutrients affect satiety and how total calorie intake would be necessary before one could be sure a nutrient tax would work in practice. PMID:25241653

  2. [Nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants in Beijing region].

    PubMed

    Bai, Li-Ping; Qi, Hong-Tao; Fu, Ya-Ping; Li, Ping

    2014-12-01

    Changes of nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants (as represented by CSS-A and CSS-B, respectively) in Beijing region were investigated. The results showed that the pH values, nutrient contents, trace elements and heavy metals in CSS-A and CSS-B depended on the sludge resources and particular years. The average of organic matter content in different years (203 338.0 mg x kg(-1)) from CSS-A met both the requirement of sludge quality standard for agricultural use (CJ/T 309-2009) and land improvement (GB/T 24600-2009) in China except the permitted limit of sludge quality standards for garden or park use (GB/T 23486-2009) in China. Moreover, the average of organic matter in different years (298531.5 mg x kg(-1)) from CSS-B and the averages of pH values (7.1 and 7.2, respectively) and NPK concentrations (41 111.7 mg x kg(-1) and 65 901.5 mg x kg(-1), respectively) in different years from CSS-A and CSS-B all met the requirements of sludge quality standards for the above-mentioned disposal types of sewage sludge from municipal wastewater treatment plants. The contents of heavy metals in CSS-A and CSS-B except Hg and Ni were below the permitted limits of the A-class sludge quality standard for agricultural use (CJ/T 309-2009) , being the most stringent standards in China. It was suggested that composted sewage sludge from different municipal wastewater treatment plants in Beijing region use as a fertilizer in agriculture, land improvement, and garden or park, but the top concern about potential environmental pollution of Hg and Ni should be considered. PMID:25826937

  3. Insects, infestations and nutrient fluxes

    NASA Astrophysics Data System (ADS)

    Michalzik, B.

    2012-04-01

    Forest ecosystems are characterized by a high temporal and spatial variability in the vertical transfer of energy and matter within the canopy and the soil compartment. The mechanisms and controlling factors behind canopy processes and system-internal transfer dynamics are imperfectly understood at the moment. Seasonal flux diversities and inhomogeneities in throughfall composition have been reported from coniferous and deciduous forests, and in most cases leaf leaching has been considered as principle driver for differences in the amount and quality of nutrients and organic compounds (Tukey and Morgan 1963). Since herbivorous insects and the processes they initiate received less attention in past times, ecologists now emphasize the need for linking biological processes occurring in different ecosystem strata to explain rates and variability of nutrient cycling (Bardgett et al. 1998, Wardle et al. 2004). Consequently, herbivore insects in the canopies of forests are increasingly identified to play an important role for the (re)cycling and availability of nutrients, or, more generally, for the functioning of ecosystems not only in outbreak situations but also at endemic (non-outbreak) density levels (Stadler et al. 2001, Hunter et al. 2003). Before, little attention was paid to insect herbivores when quantifying element and energy fluxes through ecosystems, although the numerous and different functions insects fulfill in ecosystems (e.g. as pollinators, herbivores or detritivores) were unanimously recognized (Schowalter 2000). Amongst the reasons for this restraint was the argument that the total biomass of insects tends to be relatively low compared to the biomass of trees or the pool of soil organic matter (Ohmart et al. 1983). A second argument which was put forward to justify the inferior role of insects in nutrient cycling were the supposed low defoliation losses between 5-10% of the annual leaf biomass, or net primary production, due to insect herbivory under

  4. Plant and pathogen nutrient acquisition strategies

    PubMed Central

    Fatima, Urooj; Senthil-Kumar, Muthappa

    2015-01-01

    Nutrients are indispensable elements required for the growth of all living organisms including plants and pathogens. Phyllosphere, rhizosphere, apoplast, phloem, xylem, and cell organelles are the nutrient niches in plants that are the target of bacterial pathogens. Depending upon nutrients availability, the pathogen adapts various acquisition strategies and inhabits the specific niche. In this review, we discuss the nutrient composition of different niches in plants, the mechanisms involved in the recognition of nutrient niche and the sophisticated strategies used by the bacterial pathogens for acquiring nutrients. We provide insight into various nutrient acquisition strategies used by necrotrophic, biotrophic, and hemibiotrophic bacteria. Specifically we discuss both modulation of bacterial machinery and manipulation of host machinery. In addition, we highlight the current status of our understanding about the nutrient acquisition strategies used by bacterial pathogens, namely targeting the sugar transporters that are dedicated for the plant’s growth and development. Bacterial strategies for altering the plant cell membrane permeability to enhance the release of nutrients are also enumerated along with in-depth analysis of molecular mechanisms behind these strategies. The information presented in this review will be useful to understand the plant–pathogen interaction in nutrient perspective. PMID:26442063

  5. Global nutrient limitation in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Fisher, Joshua B.; Badgley, Grayson; Blyth, Eleanor

    2012-09-01

    Most vegetation is limited in productivity by nutrient availability, but the magnitude of limitation globally is not known. Nutrient limitation is directly relevant not only to ecology and agriculture, but also to the global carbon cycle by regulating how much atmospheric CO2the terrestrial biosphere can sequester. We attempt to identify total nutrient limitation in terrestrial plant productivity globally using ecophysiological theory and new developments in remote sensing for evapotranspiration and plant productivity. Our map of nutrient limitation qualitatively reproduces known regional nutrient gradients (e.g., across Amazonia), highlights differences in nutrient addition to croplands (e.g., between "developed" and "developing" countries), identifies the role of nutrients on the distribution of major biomes (e.g., tree line migration in boreal North America), and compares similarly to a ground-based test along the Long Substrate Age Gradient in Hawaii, U.S.A. (e.g., foliar and soil nutrients, litter decomposition). Nonetheless, challenges in representing light and water use efficiencies, disturbance, and comparison to ground data with multiple interacting nutrients provide avenues for further progress on refining such a global map. Global average reduction in terrestrial plant productivity was within 16-28%, depending on treatment of disturbance; these values can be compared to global carbon cycle model estimates of carbon uptake reduction with nutrient cycle inclusion.

  6. Ecosystem functioning in the German bight under continental nutrient inputs by rivers

    SciTech Connect

    Radach, G. )

    1992-12-01

    The functioning of the German Bight ecosystem is determined largely by nutrient fluxes in and out of the system from the central and southern North Sea; by nutrient inputs through direct continental river runoff into the German Bight (Elbe, Weser, and Ems rivers); and by atmospheric nutrient inputs originating from land. The nutrient situation is assessed by estimating from available data. For the entire North Sea, the total input of phosphorus increased by 7.7% and nitrogen by about 11.4% from 1950 to 1980. The percentage of Atlantic input of phosphorus into the entire North Sea decreased from 91% to 85%, while river input increased from 2% to 13%. In the continental coastal strip the total inputs increased by 80%. The share of river input increased to 52%, both for phosphorus (1950: 14%) and nitrogen (1950: 20%). Of the winter nutrient content of the upper 30 m of the North Sea 33.5% of phosphate and 16.1% of nitrate are taken up by algae until summer. About 50% of total new production is generated in the coastal areas, with 32.8% of the volume and 34.4% of the area of the North Sea. In the German Bight, phosphate and nitrate concentrations increased during the last four decades. At Helgoland the five-year-medians of phosphate and nitrate increased by a factor of 1.7 and 2.5, respectively. As the nutrient inputs by river discharges are only slightly larger than advective contributions, the nutrient concentrations rose comparatively slowly. Diatoms stagnated and flagellates increased 10-fold. Common winter values in the early 1980s resemble those during summer blooms in the early 1960's. The German Bight ecosystem has changed drastically on all time scales under the anthropogenic nutrient inputs during the last 40 years; the plankton system is no longer in an annual quasiperiodic state.54 refs., 13 figs., 5 tabs.

  7. Protein: A nutrient in focus.

    PubMed

    Arentson-Lantz, Emily; Clairmont, Stephanie; Paddon-Jones, Douglas; Tremblay, Angelo; Elango, Rajavel

    2015-08-01

    Protein is an essential component of a healthy diet and is a focus of research programs seeking to optimize health at all stages of life. The focus on protein as a nutrient often centers on its thermogenic and satiating effect, and when included as part of a healthy diet, its potential to preserve lean body mass. A growing body of literature, including stable isotope based studies and longer term dietary interventions, suggests that current dietary protein recommendations may not be sufficient to promote optimal muscle health in all populations. A protein intake moderately higher than current recommendations has been widely endorsed by many experts and working groups and may provide health benefits for aging populations. Further, consuming moderate amounts of high-quality protein at each meal may optimally stimulate 24-h muscle protein synthesis and may provide a dietary platform that favors the maintenance of muscle mass and function while promoting successful weight management in overweight and obese individuals. Dietary protein has the potential to serve as a key nutrient for many health outcomes and benefits might be increased when combined with adequate physical activity. Future studies should focus on confirming these health benefits from dietary protein with long-term randomized controlled studies. PMID:26197807

  8. [Nutrient supplements - possibilities and limitations].

    PubMed

    Ströhle, Alexander; Hahn, Andreas

    2013-05-01

    The consumption of micronutrient-supplements by the general public has become widespread; between 25 and more than 40% of individuals questioned in western developed nations confirm to regularly consume such products. In principle, there are two product categories for micronutrient-supplements - medicinal products (drugs) and foodstuffs. The latter are marketed as food supplements (FS) and dietary foodstuffs for particular nutritional uses including foods for special medical purposes (FSMP). FS serve the general supplementation of any consumer whilst foodstuffs for particular nutritional uses are directed at consumers with special dietary requirements; FSMP are intended for the dietary management of patients. There are clearly defined legal frameworks for those product categories. Independently of their legal product status, six areas of application can be characterised for micronutrient-supplements: general and special supplementation, primary prevention, compensation of disease-related deficits, therapeutic function and containment of diseases or avoidance of subsequent damages (secondary and tertiary function). Gauged with the mean-intake, micro nutrient supply in Germany is sufficient (exception: folic acid and vitamin D; partially also iodine). However, the intake of vitamins E, C, B1 and B2 as well as the minerals calcium, magnesium, zinc and iodine could be improved in 20-50% of the general public. Micro nutrient preparations in physiological dose could contribute to closing this gap in supply. PMID:23758028

  9. Adaptability of growth and nutrient uptake potential of Chlorella sorokiniana with variable nutrient loading.

    PubMed

    Shriwastav, Amritanshu; Gupta, Sanjay Kumar; Ansari, Faiz Ahmad; Rawat, Ismail; Bux, Faizal

    2014-12-01

    Chlorella sorokiniana can sustain growth in conditions hostile to other species, and possesses good nutrient removal and lipid accumulation potentials. However, the effects of variable nutrient levels (N and P) in wastewaters on growth, productivity, and nutrient uptake by C. sorokiniana have not been studied in detail. This study demonstrates the ability of this alga to sustain uniform growth and productivity, while regulating the relative nutrient uptake in accordance to their availability in the bulk medium. These results highlight the potential of C. sorokiniana as a suitable candidate for fulfilling the coupled objectives of nutrient removal and biomass production for bio-fuel with wastewaters having great variability in nutrient levels. PMID:25463782

  10. Nutrient availability moderates transpiration in Ehrharta calycina.

    PubMed

    Cramer, Michael D; Hoffmann, Vera; Verboom, G Anthony

    2008-01-01

    Transpiration-driven 'mass-flow' of soil-water can increase nutrient flow to the root surface. Here it was investigated whether transpiration could be partially regulated by nutrient status. Seeds of Ehrharta calycina from nine sites across a rainfall gradient were supplied with slow-release fertilizer dibbled into the sand surrounding the roots and directly available through interception, mass-flow and diffusion (dubbed 'interception'), or sequestered behind a 40-microm mesh and not directly accessible by the roots, but from which nutrients could move by diffusion or mass-flow (dubbed 'mass-flow'). Although mass-flow plants were significantly smaller than interception plants as a consequence of nutrient limitation, they transpired 60% faster, had 90% higher photosynthesis relative to transpiration (A/E), and 40% higher tissue P, Ca and Na concentrations than plants allowed to intercept nutrients directly. Tissue N and K concentrations were similar for interception and mass-flow plants. Transpiration was thus higher in the nutrient-constrained 'mass-flow' plants, increasing the transport of nutrients to the roots by mass-flow. Transpiration may have been regulated by N availability, resulting in similar tissue concentration between treatments. It is concluded that, although transpiration is a necessary consequence of photosynthetic CO(2) uptake in C(3) plants, plants can respond to nutrient limitation by varying transpiration-driven mass-flow of nutrients. PMID:18537891

  11. Nutrient-Specific Foraging in Invertebrate Predators

    NASA Astrophysics Data System (ADS)

    Mayntz, David; Raubenheimer, David; Salomon, Mor; Toft, Søren; Simpson, Stephen J.

    2005-01-01

    Many herbivores and omnivores adjust their food selection behavior to regulate the intake of multiple nutrients. Carnivores, however, are generally assumed to optimize the rate of prey capture rather than select prey according to nutrient composition. We showed experimentally that invertebrate predators can forage selectively for protein and lipids to redress specific nutritional imbalances. This selection can take place at different stages of prey handling: The predator may select among foods of different nutritional composition, eat more of a prey if it is rich in nutrients that the predator is deficient in, or extract specific nutrients from a single prey item.

  12. Variable primary producer responses to nutrient and temperature manipulations in mesocosms: temperature usually trumps nutrient effects

    EPA Science Inventory

    Mesocosm experiments have been used to evaluate the impacts of nutrient loading on estuarine plant communities in order to develop nutrient response relationships. Mesocosm eutrophication studies tend to focus on long residence time systems. In the Pacific Northwest, many estuari...

  13. NUTRIENT UPTAKE: A Microcomputer Program to Predict Nutrient Absorption from Soil by Roots.

    ERIC Educational Resources Information Center

    Oates, Kenneth; Barber, S. A.

    1987-01-01

    Discusses the use of a computer program designed to solve the mathematical model associated with soil nutrient uptake by plant roots and to predict the nutrient uptake. Describes a user-friendly personal computer version of this program. (TW)

  14. Nutrient balance and body composition.

    PubMed

    Rolland-Cachera, M F; Deheeger, M; Bellisle, F

    1997-01-01

    The prevalence of obesity in industrialized countries is increasing in spite of decreased energy and fat intakes. This trend might be mainly a consequence of a decline in energy expenditure. It is suggested here that it might also be accounted for by the increasing proportion of protein in the diet, affecting the hormonal status. The nutrient imbalance is particularly apparent in early childhood, when a low fat and high protein diet is not justified because of high energy needs for growth and because it is the period of high rate of myelinization of the nervous system. At later ages, the proportion of fat exceeds the recommended level, and the protein intake remains high. A diet containing less animal and more vegetable products would reduce both protein and saturated fat excesses and could help decrease metabolic risk factors. PMID:9477439

  15. Nutrient Models Developments Using Runoff-Nutrient Relationships in an Agricultural Prairie Basin, Manitoba.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Elliott, J. A.; Baulch, H. M.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient export to streams and lakes from agricultural activities can result in significant deterioration of water quality and aquatic ecosystem health. In Western Canada, particular concerns arise for prairie agricultural systems, which are dominated by the effects of a cold climate. Insufficient attention has been given to understand the links between cold region watershed responses and nutrient concentration and a robust watershed-scale modeling framework is needed to simulate nutrient concentration and loads. Long-term, field observations of nutrient concentration-runoff relationships were used to develop nutrient concentration models for the Tobacco Creek Model Watershed (TCMW) which drains into the Red River basin. Field observations include streamflow concentrations of N and P at multiple scales from two headwater basins. Distinct nutrient concentration-runoff models for snowmelt, rain on snow (ROS) and rainfall runoff processes were developed from observed runoff-nutrient concentration relationships. Snowmelt runoff had a moderately positive correlation with particulate nutrient concentrations but no correlation with that of dissolved nutrients. ROS runoff had a weak relationship with both particulate and dissolved nutrient concentrations. Rainfall runoff had the strongest positive correlation with particulate nutrient concentrations but no association with that of dissolved nutrients. The modeling approach also identified a clear hysteretic behavior in the relationship between runoff and particulate nutrient concentration during the 2013 snowmelt runoff event at the basin outlet gauge. The models provide insight into the hydrological controls on nutrient export from cold regions watersheds and the strong effects of inter-annual climatic variability. Snowmelt runoff is a reliable exporter of large nutrient loads while nutrient export by rainfall runoff exceeded snowmelt runoff during hydrologically wet summers such as 2002, 2005, 2011 and 2013.

  16. Practice Paper of the American Dietetic Association: Nutrient Density: Meeting Nutrient Goals within Calorie Needs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although nutrient density is a core nutrition concept of the Dietary Guidelines for Americans 2005, there is currently no scientifically valid definition for either nutrient density or nutrient-dense food. The purposes of this American Dietetic Association Practice Paper are to summarize the current...

  17. Comparison of nutrient density and nutrient-to-cost between cooked and canned beans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of nutrient rich foods such as beans and peas is recommended because these foods provide key nutrients and relatively little energy. Many consumers are unfamiliar with dried beans or do not have the time to prepare them. The purpose of this study was to compare nutrient density and nutri...

  18. Enhanced Plant Nutrient use Efficiency with PGPR and AMF in an Integrated Nutrient Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-year field study was conducted with field corn from 2005 to 2007 to test the hypothesis that microbial inoculants that increase plant growth and yield will enhance nutrient uptake, and thereby remove more nutrients, especially N, P, and K from the field as part of an integrated nutrient mana...

  19. Closed-Cycle Nutrient Supply For Hydroponics

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.

    1991-01-01

    Hydroponic system controls composition and feed rate of nutrient solution and recovers and recycles excess solution. Uses air pressure on bladders to transfer aqueous nutrient solution. Measures and adjusts composition of solution before it goes to hydroponic chamber. Eventually returns excess solution to one of tanks. Designed to operate in microgravity, also adaptable to hydroponic plant-growing systems on Earth.

  20. WASTEWATER TREATMENT WITH PLANTS IN NUTRIENT FILMS

    EPA Science Inventory

    The nutrient film technique (NFT) is a unique modification of a hydroponic plant growth system which utilizes plants growing on an impermeable surface. A thin film of water flowing through the extensive root system provides nutrients for plants and associated microbial growth. Ro...

  1. Grassland productivity limited by multiple nutrients.

    PubMed

    Fay, Philip A; Prober, Suzanne M; Harpole, W Stanley; Knops, Johannes M H; Bakker, Jonathan D; Borer, Elizabeth T; Lind, Eric M; MacDougall, Andrew S; Seabloom, Eric W; Wragg, Peter D; Adler, Peter B; Blumenthal, Dana M; Buckley, Yvonne M; Chu, Chengjin; Cleland, Elsa E; Collins, Scott L; Davies, Kendi F; Du, Guozhen; Feng, Xiaohui; Firn, Jennifer; Gruner, Daniel S; Hagenah, Nicole; Hautier, Yann; Heckman, Robert W; Jin, Virginia L; Kirkman, Kevin P; Klein, Julia; Ladwig, Laura M; Li, Qi; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John W; Risch, Anita C; Schütz, Martin; Stevens, Carly J; Wedin, David A; Yang, Louie H

    2015-01-01

    Terrestrial ecosystem productivity is widely accepted to be nutrient limited(1). Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)(2,3), the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized(4-8). However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment. PMID:27250253

  2. Crop nutrient recovery from applied fish coproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Alaska fishing industry produces over 1,000,000 metric tons of fish byproducts annually, and most of them are not used. Most food in Alaska is imported. Fish byproducts are rich in plant essential nutrients and can be used as nutrient sources for crop production. The objective of the study was t...

  3. Processes and patterns of oceanic nutrient limitation

    NASA Astrophysics Data System (ADS)

    Moore, C. M.; Mills, M. M.; Arrigo, K. R.; Berman-Frank, I.; Bopp, L.; Boyd, P. W.; Galbraith, E. D.; Geider, R. J.; Guieu, C.; Jaccard, S. L.; Jickells, T. D.; La Roche, J.; Lenton, T. M.; Mahowald, N. M.; Marañón, E.; Marinov, I.; Moore, J. K.; Nakatsuka, T.; Oschlies, A.; Saito, M. A.; Thingstad, T. F.; Tsuda, A.; Ulloa, O.

    2013-09-01

    Microbial activity is a fundamental component of oceanic nutrient cycles. Photosynthetic microbes, collectively termed phytoplankton, are responsible for the vast majority of primary production in marine waters. The availability of nutrients in the upper ocean frequently limits the activity and abundance of these organisms. Experimental data have revealed two broad regimes of phytoplankton nutrient limitation in the modern upper ocean. Nitrogen availability tends to limit productivity throughout much of the surface low-latitude ocean, where the supply of nutrients from the subsurface is relatively slow. In contrast, iron often limits productivity where subsurface nutrient supply is enhanced, including within the main oceanic upwelling regions of the Southern Ocean and the eastern equatorial Pacific. Phosphorus, vitamins and micronutrients other than iron may also (co-)limit marine phytoplankton. The spatial patterns and importance of co-limitation, however, remain unclear. Variability in the stoichiometries of nutrient supply and biological demand are key determinants of oceanic nutrient limitation. Deciphering the mechanisms that underpin this variability, and the consequences for marine microbes, will be a challenge. But such knowledge will be crucial for accurately predicting the consequences of ongoing anthropogenic perturbations to oceanic nutrient biogeochemistry.

  4. UNDERSTANDING NUTRIENT VARIABILITY: IMPACT ON PUBLIC HEALTH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: Information on the sources and magnitude of nutrient variability in U.S. foods is often lacking and may include differences due to cultivars, brands, growing or processing conditions, cooking practices, fortification, nutrient stability, and analytical methods. Accurate analytical determi...

  5. SSMILes: Measuring the Nutrient Tolerance of Algae.

    ERIC Educational Resources Information Center

    Hedgepeth, David J.

    1995-01-01

    Presents an activity integrating mathematics and science intended to introduce students to the use of metric measurement of mass as a way to increase the meaningfulness of observations about variables in life sciences. Involves measuring the nutrient tolerance of algae. Contains a reproducible algae nutrient graph. (Author/MKR)

  6. Nutrient Density: Making the Pyramid Come Alive

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2005 Dietary Guidelines for Americans (DGA’s) and MyPyramid, which accompanies it, emphasize nutrient density as a way to choose foods within food groups. Yet, nutrient density is a difficult concept for consumers to apply to individual foods. In addition, consensus is lacking on how to measur...

  7. 21 CFR 107.10 - Nutrient information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Nutrient information. 107.10 Section 107.10 Food... HUMAN CONSUMPTION INFANT FORMULA Labeling § 107.10 Nutrient information. (a) The labeling of infant... order given, in the units specified, and in tabular format, the following information regarding...

  8. INCORPORATING NUTRIENT SENSING TECHNOLOGY IN PRODUCTION AGRICULTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greatest impediment to using manual soil sampling followed by laboratory measurement for crop nutrient management is the time and expense associated with sampling, transportation, and analysis of the sample. While improvements in fertilizer nutrient use efficiency have been made relying on these...

  9. Seasonal sediment and nutrients transport patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is essential to understand sediment and nutrient sources and their spatial and temporal patterns in order to design effective mitigation strategies. However, long-term data sets to determine sediment and nutrient loadings are scarce and expensive to collect. The goal of this study was to determin...

  10. Nutrient Management: Water Quality/Use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management programs must have a positive impact on water quality. The challenge for producers is to understand the nutrient balance in the soil and to reduce the risk of surface runoff of manure. The challenge for science is to increase our understanding of the value of manure in the soil a...

  11. Nutrient use efficiency in plants: an overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In modern agriculture use of essential plant nutrients in crop production is very important to increase productivity and maintain sustainability of the cropping system. Use of nutrients in crop production is influenced by climatic, soil, plant and social-economical condition of the farmers. Overall,...

  12. A Method for Developing a Nutrient Guide.

    ERIC Educational Resources Information Center

    Gillespie, Ardyth H.; Roderuck, Charlotte E.

    1982-01-01

    This paper proposes a new approach to developing a tool for teaching nutrition and food selection. It allows adjustments as new information becomes available and takes into account both dietary recommendations and food composition. Steps involve nutrient composition; nutrient density; and ratings for fat, cholesterol, and sodium. (Author/CT)

  13. Dairy Manure Nutrients: Variable, But Valuable

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowing the nutrient content of manure is essential for doing nutrient management planning for dairy farms. Summaries of over 14,000 dairy manure samples from Wisconsin and 2,300 from Vermont over a 10 to 15-year period showed average values that were consistent with UW-Extension book values but dif...

  14. NUTRIENTS IN WATERSHEDS; DEVELOPING ENHANCED MODELING TOOLS

    EPA Science Inventory

    Nutrient enrichment is one of the most detrimental stressors causing water-resource impairment. Of systems surveyed and reported as impaired, 40% of rivers, 51% of lakes, and 57% of estuaries listed nutrients as a primary cause of impairment (USEPA, 1996). In many cases, these ...

  15. 21 CFR 107.10 - Nutrient information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Nutrient information. 107.10 Section 107.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION INFANT FORMULA Labeling § 107.10 Nutrient information. (a) The labeling of infant formulas, as defined in section 201(aa) of...

  16. NUTRIENT-UPTAKE MODEL IN MARSH ECOSYSTEMS

    EPA Science Inventory

    Mechanistic models of nutrient dynamics in natural wetlands were developed and applied in a study of Kissimmee River (Florida) flood-plain marshes. The models describe hydrodynamics and transport diffusion in wetland basins and the ecological processes of nutrient uptake, convers...

  17. Variation in nutrient resorption by desert shrubs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant nutrient resorption prior to leaf senescence is an important nutrient conservation mechanism for aridland plant species. However, little is known regarding the phylogenetic and environmental factors influencing this trait. Our objective was to compare nitrogen and phosphorus resorption in a ...

  18. 21 CFR 107.10 - Nutrient information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Nutrient information. 107.10 Section 107.10 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION INFANT FORMULA Labeling § 107.10 Nutrient information. (a) The labeling of infant formulas, as defined in section 201(aa) of...

  19. Nutrient Content of Lettuce and its Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lettuce is a popular leafy vegetable and plays an important role in American diet and nutrition. Crisphead lettuce has much lower nutrient content than leaf and romaine types. As the synthesis or absorption of many nutrients is light dependent, the lower nutritional value of crisphead lettuce is due...

  20. A biogeochemical model for phosphorus and nitrogen cycling in the Eastern Mediterranean Sea. Part 2. Response of nutrient cycles and primary production to anthropogenic forcing: 1950-2000

    NASA Astrophysics Data System (ADS)

    Powley, H. R.; Krom, M. D.; Emeis, K.-C.; Van Cappellen, P.

    2014-11-01

    Anthropogenic inputs of nutrient phosphorus (P) and nitrogen (N) to the Eastern Mediterranean Sea (EMS) increased significantly after 1950. Nonetheless, the EMS remained ultra-oligotrophic, with eutrophication only affecting a restricted number of nearshore areas. To better understand this apparent contradiction, we reconstructed the external inputs of reactive P and N to the EMS for the period 1950 to 2000. Although the inputs associated with atmospheric deposition and river discharge more than doubled, the inflow of surface water from the Western Mediterranean Sea (WMS) remained the dominant source of nutrient P and N to the EMS during the second half of the 20th century. The combined external input of reactive P rose by 24% from 1950 to 1985, followed by a slight decline. In contrast, the external reactive N input increased continuously from 1950 to 2000, with a 62% higher input in 2000 compared to 1950. When imposing the reconstructed inputs to the dynamic model of P and N cycling in the EMS developed in the companion paper, a maximum increase of primary production of only 16% is predicted. According to the model, integrated over the period 1950-2000, outflow of Levantine Intermediate Water (LIW) to the WMS exported the equivalent of about one third of the P supplied in excess of the 1950 input, while another one third was translocated to the Eastern Mediterranean Deep Water (EMDW). Together, both mechanisms efficiently counteracted enhanced P input to the EMS, by drawing nutrient P away from primary producers in the surface waters. Furthermore, between 1950 and 2000, inorganic and organic dissolved N:P ratios increased in all water masses. Thus, the EMS became even more P limited because of anthropogenic nutrient inputs. A model simulation incorporating the circulation changes accompanying the Eastern Mediterranean Transient (EMT) between 1987 and 2000 yielded a 4% increase of EMS primary productivity relative to the baseline scenario.

  1. Sources of Nutrients for Ocean Enrichment

    NASA Astrophysics Data System (ADS)

    Jones, I. S.

    2008-12-01

    The remarkable doubling of the productivity of the land over the last 50 years raises the question of opportunities to follow suit in the sea. The rapidly rising population makes increasing demands on food supply and the disposal of waste in the atmosphere from fossil fuel burning It is well known that the supply of nutrients to the photic zone of the ocean limits primary production and this limitation can be removed by the addition of nutrients. The surface waters of the ocean are typically in the photic zone for a decade and their initial quota of nutrients are supplemented by cyanobacteria, atmospheric deposition and river inflows. Together with upwelling these nutrients support about 10,000GtC of new primary production per year. Extra nutrients can be sourced from the thermocline, from enhancing the diazotrophs or by chemically transforming elements on the land or in the atmosphere. Using thermocline nutrients to enhance productivity but are first order neutral for carbon sequestration. Diazotrophs seem restricted to temperate and tropical waters and need phosphate and other nutrients. The increased nitrogen they provide is expected to lead to more carbon storage in the ocean. The macronutrients, nitrogen and phosphorus and the micronutrients have all been shown to be beneficial. With increased new primary production we expect increased sustainable fish production but the species composition will depend on the success of recruitment.

  2. Nutrient elements in large Chinese estuaries

    NASA Astrophysics Data System (ADS)

    Zhang, Jing

    1996-07-01

    Based on comprehensive observations since 1983, this study summarizes major features of nutrient elements (nitrogen, phosphorus and silicon) in large Chinese river/estuary systems. Elevated nutrient element levels were observed in Chinese rivers, when compared to large and less disturbed aquatic systems (e.g. the Amazon, Zaire and Orinoco). Data from this study are similar to those obtained from the polluted and/or eutrophic rivers in Europe and North America (e.g. the Rhóne and Loire). Nutrient elements may have either conservative or active distributions, or both, in the mixing zone, depending on the element and the estuary. For example, non-conservative behaviors were observed in the upper estuary, where nutrient elements may be remobilized due to the strong desorption and variations of the fresh water end-member, but conservative distributions were found afterwards in the lower estuary. Outside the riverine effluent plumes, nutrient elements may be depleted in surface waters relative to elevated bioproduction, whereas the regeneration with respect to decomposition of organic material and/or nitrification/denitrification offshore, may sustain high levels of nutrient elements in near-bottom waters. Laboratory experiment data generally compares well with field observations. The high fluxes and area] yields of nutrient elements from large Chinese rivers, indicate the extensive use of chemical fertilizers and domestic waste drainage over watersheds in China.

  3. Regulation of intestinal ontogeny by intraluminal nutrients.

    PubMed

    Castillo, R O; Feng, J J; Stevenson, D K; Kerner, J A; Kwong, L K

    1990-02-01

    Major events in gastrointestinal ontogeny occur in the infant rat in association with weaning, resulting in striking alterations in small intestinal structure and function. Although the dietary changes attendant to weaning are not essential for the initiation of these events, dietary nutrients have been shown to participate in the maturation of some intestinal parameters. In order to define more precisely the role of intraluminal nutrients in the regulation of small intestinal ontogeny, a longitudinal study was conducted using a unique animal model in which intraluminal nutrients were excluded from the intact maturing intestine in vivo throughout the entire weaning period without major compromise in nutritional status. The absence of intraluminal nutrients over the weaning period resulted in diminished lengthening and accretion of mucosal mass, suggesting a slower rate of intestinal growth. Lower mucosal DNA, protein, and mitotic indices in intestines of animals receiving no intraluminal nutrients suggested that the lack of intraluminal nutrients resulted in the blunting of the striking increases in cellular proliferation normally exhibited by the developing intestinal mucosa at this time. Maturation of intestinal lactase-phlorizin hydrolase and maltase-glucoamylase was not affected by the absence of intraluminal nutrients. Although the appearance of sucrase-isomaltase was not altered by the absence of intraluminal nutrients, activity levels rose to only 50% of control levels. These data suggest that during this period of rapid intestinal maturation, intestinal growth is more dependent upon intraluminal nutrients than are the characteristic enzymic alterations normally expressed during this period.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2303970

  4. Nutrient content of some winter grouse foods

    USGS Publications Warehouse

    Treichler, R.R.; Stow, R.W.; Nelson, A.L.

    1946-01-01

    Seventeen preferred grouse foods were collected during the late winter and analyzed for nutrient content. The results include moisture, crude protein, ether extract, crude fiber, nitrogenfree extract, ash, calcium, phosphorus, and gross energy content expressed both on moisture free and fresh bases.....The preferred winter foods of grouse are characterized by a high content of dry substance and of nitrogen-free extract......On the basis of nutrient content, the foods examined are well qualified as sources of energy and other essential nutrients required for maintenance of grouse during the winter season.

  5. Nutrient profiling of foods: creating a nutrient-rich food index.

    PubMed

    Drewnowski, Adam; Fulgoni, Victor

    2008-01-01

    Nutrient profiling of foods, described as the science of ranking foods based on their nutrient content, is fast becoming the basis for regulating nutrition labels, health claims, and marketing and advertising to children. A number of nutrient profile models have now been developed by research scientists, regulatory agencies, and by the food industry. Whereas some of these models have focused on nutrients to limit, others have emphasized nutrients known to be beneficial to health, or some combination of both. Although nutrient profile models are often tailored to specific goals, the development process ought to follow the same science-driven rules. These include the selection of index nutrients and reference amounts, the development of an appropriate algorithm for calculating nutrient density, and the validation of the chosen nutrient profile model against healthy diets. It is extremely important that nutrient profiles be validated rather than merely compared to prevailing public opinion. Regulatory agencies should act only when they are satisfied that the scientific process has been followed, that the algorithms are transparent, and that the profile model has been validated with respect to objective measures of a healthy diet. PMID:18254882

  6. Recovery of agricultural nutrients from biorefineries.

    PubMed

    Carey, Daniel E; Yang, Yu; McNamara, Patrick J; Mayer, Brooke K

    2016-09-01

    This review lays the foundation for why nutrient recovery must be a key consideration in design and operation of biorefineries and comprehensively reviews technologies that can be used to recover an array of nitrogen, phosphorus, and/or potassium-rich products of relevance to agricultural applications. Recovery of these products using combinations of physical, chemical, and biological operations will promote sustainability at biorefineries by converting low-value biomass (particularly waste material) into a portfolio of higher-value products. These products can include a natural partnering of traditional biorefinery outputs such as biofuels and chemicals together with nutrient-rich fertilizers. Nutrient recovery not only adds an additional marketable biorefinery product, but also avoids the negative consequences of eutrophication, and helps to close anthropogenic nutrient cycles, thereby providing an alternative to current unsustainable approaches to fertilizer production, which are energy-intensive and reliant on nonrenewable natural resource extraction. PMID:26948442

  7. NUTRIENTS IN WATERSHEDS: DEVELOPING ENHANCED MODELING TOOLS

    EPA Science Inventory

    Nutrient enrichment is one of the most important stressors causing water-resource impairment. These impairments are causing devastating changes: 1) high nitrate concentrations have rendered the groundwaters and reservoirs in many regions impotable -- especially in the rural area...

  8. Application of nutrient intake values (NIVs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The process of applying nutrient intake values (NIVs) for dietary assessment, planning, and implementing programs is discussed in this paper. In addition to assessing, monitoring, and evaluating nutritional situations, applications include planning food policies, strategies, and programs for promoti...

  9. MANGROVE-DERIVED NUTRIENTS AND CORAL REEFS

    EPA Science Inventory

    Understanding the consequences of the declining global cover of mangroves due to anthropogenic disturbance necessitates consideration of how mangrove-derived nutrients contribute to threatened coral reef systems. We sampled potential sources of organic matter and a suite of sessi...

  10. NRMRL'S NUTRIENT-RELATED RISK MANAGEMENT RESEARCH

    EPA Science Inventory

    Anthropogenic loadings of nutrients into our Nation's atmosphere, aquatic, and terrestrial ecosystems have increased dramatically within the past few decades. Environmental impairments associated with this over fertilization include aquatic habitat loss due to low dissolved oxyge...

  11. USDA NATIONAL NUTRIENT DATABASE FOR STANDARD REFERENCE

    EPA Science Inventory

    The USDA Nutrient Database for Standard Reference (SR) is the major source of food composition data in the United States. It provides the foundation for most food composition databases in the public and private sectors.

  12. Nutrient Enrichment Increases Mortality of Mangroves

    PubMed Central

    Lovelock, Catherine E.; Ball, Marilyn C.; Martin, Katherine C.; C. Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients. PMID:19440554

  13. Nutrient Shielding in Clusters of Cells

    PubMed Central

    Lavrentovich, Maxim O.; Koschwanez, John H.; Nelson, David R.

    2014-01-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells’ spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude between different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction ϕ, and decreasing ambient nutrient concentration ψ∞. The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ. PMID:23848711

  14. Nutrient shielding in clusters of cells

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim O.; Koschwanez, John H.; Nelson, David R.

    2013-06-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells' spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude among different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction ϕ, and decreasing ambient nutrient concentration ψ∞. The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ.

  15. Nutrient additions to mitigate for loss of Pacific salmon: consequences for stream biofilm and nutrient dynamics

    USGS Publications Warehouse

    Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2014-01-01

    Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2–8-fold and incorporated marine-derived nutrients (measured using 15N and 13C) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33–47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2–3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients.

  16. Variation in wood nutrients along a tropical soil fertility gradient.

    PubMed

    Heineman, Katherine D; Turner, Benjamin L; Dalling, James W

    2016-07-01

    Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests. PMID:26922861

  17. EM International. Volume 1

    SciTech Connect

    Not Available

    1993-07-01

    It is the intent of EM International to describe the Office of Environmental Restoration and Waste Management`s (EM`s) various roles and responsibilities within the international community. Cooperative agreements and programs, descriptions of projects and technologies, and synopses of visits to international sites are all highlighted in this semiannual journal. Focus on EM programs in this issue is on international collaboration in vitrification projects. Technology highlights covers: in situ sealing for contaminated sites; and remote sensors for toxic pollutants. Section on profiles of countries includes: Arctic contamination by the former Soviet Union, and EM activities with Germany--cooperative arrangements.

  18. Modeling the Response of Nutrient Concentrations and Primary Productivity in Lake Michigan to Nutrient Loading Scenarios

    EPA Science Inventory

    A water quality model, LM3 Eutro, will be used to estimate the response of nutrient concentrations and primary productivity in Lake Michigan to nutrient loading scenarios. This work is part of a larger effort, the Future Midwestern landscapes study, that will estimate the produc...

  19. Are nutrient databases and nutrient analysis systems ready for the International implications of nutrigenomics?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective is to discuss the implications internationally of the increased focus on nutrigenomics as the underlying basis for individualized health promotion and chronic disease prevention and the challenges presented to existing nutrient database and nutrient analysis systems by these trends. De...

  20. Nutrient budgeting as an approach for improving nutrient management on Australian dairy farms.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy farming in Australia continues to intensify. Increased stocking rates have resulted in increased milk production per ha, but have also required greater inputs of purchased feed and fertiliser. The imbalance between nutrient inputs, primarily as feed and fertiliser, and nutrient outputs, in mil...

  1. YAQUINA ESTUARY NUTRIENT CRITERIA CASE STUDY: GUIDANCE FOR DEVELOPING NUTRIENT CRITERIA IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    The presentation provides an introduction to the Yaquina Estuary Nutrient Case Study which includes considerations for development of estuarine nutrient criteria in the Pacific Northwest. As part of this effort, a database of historic and recent data has been assembled consistin...

  2. DEVELOPMENT OF SAV LOSS-NUTRIENT LOAD RELATIONSHIPS AND FACTORS WHICH CONTROL SAV RESPONSE TO NUTRIENTS

    EPA Science Inventory

    This research aims to understand the relationship between SAV loss and nutrient loading (N and P). A set of models will be developed and used to examine how nutrients interact with the physical and biological components to affect the health of SAV populations. First, a literat...

  3. Nutrient Requirements of Domestic Animals, Number 10: Nutrient Requirements of Laboratory Animals. Third Revised Edition, 1978.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Board on Agricultural and Renewable Resources.

    This report deals with the nutrient requirements of seven species of animals used extensively for biomedical research in the United States. Following an introductory chapter of general information on nutrition, chapters are presented on the nutrient requirements of the laboratory rat, mouse, gerbil, guinea pig, hamster, vole, and fishes. Each…

  4. Nutrients affecting brain composition and behavior

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1987-01-01

    This review examines the changes in brain composition and in various brain functions, including behavior, that can follow the ingestion of particular foods or nutrients. It details those that are best understood: the increases in serotonin, catecholamine, or acetylcholine synthesis that can occur subsequent to food-induced increases in brain levels of tryptophan, tyrosine, or choline; it also discusses the various processes that must intervene between the mouth and the synapse, so to speak, in order for a nutrient to affect neurotransmission, and it speculates as to additional brain chemicals that may ultimately be found to be affected by changes in the availability of their nutrient precursors. Because the brain chemicals best known to be nutrient dependent overlap with those thought to underlie the actions of most of the drugs used to treat psychiatric diseases, knowledge of this dependence may help the psychiatrist to understand some of the pathologic processes occurring in his/her patients, particularly those with appetitive symptoms. At the very least, such knowledge should provide the psychiatrist with objective criteria for judging when to take seriously assertions that particular foods or nutrients do indeed affect behavior (e.g., in hyperactive children). If the food can be shown to alter neurotransmitter release, it may be behaviorally-active; however, if it lacks a discernible neurochemical effect, the likelihood that it really alters behavior is small.

  5. Fishing down nutrients on coral reefs

    PubMed Central

    Allgeier, Jacob E.; Valdivia, Abel; Cox, Courtney; Layman, Craig A.

    2016-01-01

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management. PMID:27529748

  6. Microbial life at extremely low nutrient levels

    NASA Astrophysics Data System (ADS)

    Hirsch, P.

    Many microorganisms (``oligotrophs'') grow in distilled water: Pseudomonas spp., Caulobacter spp., Hyphomicrobium spp., Arthrobacter spp., Seliberia spp., Bactoderma alba, Corynebacterium spp., Amycolata (Nocardia) autotrophica, Mycobacterium spp., yeasts, and Chlorella spp. Also, certain lower fungi can be found here. In the laboratory, these organisms thrive on contaminations of the air (CO, hydrocarbons, H2, alcohols etc.). All are euryosmotic and often grow also in higher concentrations of salts and nutrients. Natural locations with extremely low nutrient levels (snow, rain water pools, springs, free ocean water, Antarctic rocks and soils) do not contain more than 1-5 mg/1 of organic carbon. Oligotrophs found here are especially adapted to constant famine: they frequently live attached to surfaces, form polymers and storage products even while starving, and often aggregate. Many of these oligotrophs alter their morphology (surface to volume ratio) with changing nutrient concentrations. Extreme oligotrophs also occur in generally nutrient-rich environments such as sewage aeration tanks or compost soil. Here they are thought to survive in nutrient-depauperate microhabitats.

  7. Fishing down nutrients on coral reefs.

    PubMed

    Allgeier, Jacob E; Valdivia, Abel; Cox, Courtney; Layman, Craig A

    2016-01-01

    Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management. PMID:27529748

  8. Development of numeric nutrient criteria in Florida

    NASA Astrophysics Data System (ADS)

    Weaver, K.; Nearhoof, F.; Frydenborg, R.

    2005-05-01

    Building on the success of the recently adopted numeric phosphorus criterion for the Florida Everglades, the Florida Department of Environmental Protection (FDEP) is developing numeric nutrient criteria for all Florida freshwaters. FDEP is currently pursuing a reference site-based approach for streams and lakes. Least disturbed reference lakes and streams have been delineated based on landuse patterns (Landscape Development Intensity Index) and the knowledge of local experts. As a means of reducing and explaining the overall variance among reference lakes or reference streams, FDEP is evaluating different types of natural waterbodies (e.g., Florida ecoregions based on geography, physiography, etc.). The goal of these evaluations is to subdivide natural waterbodies into homogenous groups. It is anticipated that criteria will be statistically derived, for each homogenous waterbody group, from the frequency distribution of reference site nutrient concentrations and will likely be expressed as the long-term level required to preserve the least-disturbed condition in that waterbody type. Furthermore, FDEP is pursuing the development and evaluation of biological indices (vegetation, algae, macroinvertebrates) that may be used in conjunction with the reference nutrient concentration distribution approach in establishing nutrient criteria or verifying waterbody impairment status relative to the nutrient criteria.

  9. Effect of K-N-humates on dry matter production and nutrient use efficiency of maize in Sarawak, Malaysia.

    PubMed

    Petrus, Auldry Chaddy; Ahmed, Osumanu Haruna; Muhamad, Ab Majid Nik; Nasir, Hassan Mohammad; Jiwan, Make

    2010-01-01

    Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to

  10. Nutrient-dense food groups have high energy costs: an econometric approach to nutrient profiling.

    PubMed

    Maillot, Matthieu; Darmon, Nicole; Darmon, Michel; Lafay, Lionel; Drewnowski, Adam

    2007-07-01

    Consumers wishing to replace some of the foods in their diets with more nutrient-dense options need to be able to identify such foods on the basis of nutrient profiling. The present study used nutrient profiling to rank 7 major food groups and 25 subgroups in terms of their contribution to dietary energy, diet quality, and diet cost for 1332 adult participants in the French National INCA1 Study. Nutrient profiles were based on the presence of 23 qualifying nutrients, expressed as the percentage of nutrient adequacy per 8 MJ, and 3 negative or disqualifying nutrients, expressed as the percentage of the maximal recommended values for saturated fatty acids, added sugar, and sodium per 1.4 kg. Calculated cost of energy (euro/8 MJ) was based on the mean retail price of 619 foods in the nutrient composition database. The meat and the fruit and vegetables food groups had the highest nutritional quality but were associated with highest energy costs. Sweets and salted snacks had the lowest nutritional quality but were also one of the least expensive sources of dietary energy. Starches and grains were unique because they were low in disqualifying nutrients yet provided low-cost dietary energy. Within each major food group, some subgroups had a higher nutritient-to-price ratio than others. However, the fact that food groups with the more favorable nutrient profiles were also associated with higher energy costs suggests that the present structure of food prices may be a barrier to the adoption of food-based dietary guidelines, at least by low-income households. PMID:17585036

  11. Variations in concentrations and fluxes of dissolved inorganic nutrients related to catchment scale human interventions in Pamba River, Kerala, India

    NASA Astrophysics Data System (ADS)

    David, S. E.; Jennerjahn, T. C.; Chattopadhyay, S.

    2012-12-01

    maximum value during the pre and NE monsoon. Highest DIN with ammonium(NH4+) as the major component in January were observed during the peak pilgrim season. Except for the temple locations NH4+ values were low in the rest of the catchment. Nitrate(NO3-) was dominant during SW monsoon in the midland and low land regions due to the various agricultural practices displaying variability along the course of the river. Maximum values for phosphate (PO43-) and silicate (Si(OH)4) were in the temple area during the premonsoon months. Average NPK fertilizer use in the basin was 80.2 kg ha-1.When compared to the average of all India (72 kg.ha-1) usage is high but lower than Western Europe and U.S (250 kg.ha-1).Yield calculated were 7186.6 kg km-2yr-1for DIN, 453.2 kg km-2yr-1for PO43--P and 17728.9 kg km-2yr- for dissolved Si. NH4+-N and dissolved Si yield were maximum in the temple and forest dominated regions, NO3--N and PO43--P in smt regions respectively. When compared to other tropical rivers, nutrient yield from the Pamba River found to be higher points to the significant hydrological and land use practices. To conclude, land use activities in the basin are the key factor contributing to varying water quality and nutrient concentrations and loading in the Pamba catchment the main being pilgrim event and agriculture in our study.

  12. Dietary Restriction and Nutrient Balance in Aging.

    PubMed

    Santos, Júlia; Leitão-Correia, Fernanda; Sousa, Maria João; Leão, Cecília

    2016-01-01

    Dietary regimens that favour reduced calorie intake delay aging and age-associated diseases. New evidences revealed that nutritional balance of dietary components without food restriction increases lifespan. Particular nutrients as several nitrogen sources, proteins, amino acid, and ammonium are implicated in life and healthspan regulation in different model organisms from yeast to mammals. Aging and dietary restriction interact through partially overlapping mechanisms in the activation of the conserved nutrient-signalling pathways, mainly the insulin/insulin-like growth factor (IIS) and the Target Of Rapamycin (TOR). The specific nutrients of dietary regimens, their balance, and how they interact with different genes and pathways are currently being uncovered. Taking into account that dietary regimes can largely influence overall human health and changes in risk factors such as cholesterol level and blood pressure, these new findings are of great importance to fully comprehend the interplay between diet and humans health. PMID:26682004

  13. Information from USDA's Nutrient Data Bank.

    PubMed

    Haytowitz, D B

    1995-07-01

    The United States Department of Agriculture's Nutrient Data Bank contains a wealth of information on the composition of foods. These data are made available to the public through Agriculture Handbook No. 8, Composition of Foods: Raw, Processed, Prepared, its computerized form-the USDA Nutrient Data Base for Standard Reference, and other publications. Food components in Agriculture Handbook No. 8 include proximate components, minerals, vitamins, fatty acids, cholesterol, phytosterols, and amino acids. Other tables and data sets containing food components of special interest such as vitamins D and K, selenium, and sugars, are also available. This paper describes how to obtain the data in either printed or electronic form. Information on obtaining the data through the Nutrient Data Bank Bulletin Board or the Internet is also presented. PMID:7616313

  14. Dietary Restriction and Nutrient Balance in Aging

    PubMed Central

    Leitão-Correia, Fernanda

    2016-01-01

    Dietary regimens that favour reduced calorie intake delay aging and age-associated diseases. New evidences revealed that nutritional balance of dietary components without food restriction increases lifespan. Particular nutrients as several nitrogen sources, proteins, amino acid, and ammonium are implicated in life and healthspan regulation in different model organisms from yeast to mammals. Aging and dietary restriction interact through partially overlapping mechanisms in the activation of the conserved nutrient-signalling pathways, mainly the insulin/insulin-like growth factor (IIS) and the Target Of Rapamycin (TOR). The specific nutrients of dietary regimens, their balance, and how they interact with different genes and pathways are currently being uncovered. Taking into account that dietary regimes can largely influence overall human health and changes in risk factors such as cholesterol level and blood pressure, these new findings are of great importance to fully comprehend the interplay between diet and humans health. PMID:26682004

  15. Nutrient limitations to secondary forest regrowth

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.; Martinelli, Luiz A.

    The old, highly weathered soils of the lowland forest within the Amazon Basin generally exhibit conservative P cycles and leaky N cycles. This generalization applies to mature forests, but accelerating land use change is altering Amazonian landscapes. About 16% of the original forest area has been cleared, and about 160,000 km2 is in secondary forest cover. Secondary forests are common in agricultural regions, but few persist in one place for much more than 5 years. The nutrients within ephemeral forests are important for smallholder traditional slash-and-burn agriculture and in alternatives developed to conserve nutrients. Forest clearing causes an initial loss of nutrients through timber harvesting, fire, erosion, soil gaseous emissions, and hydrologic leaching, with N losses exceeding P losses. In contrast, the Ca, Mg, and K present in woody biomass are largely conserved as ash following fire, redistributing these nutrients to the soil. After the initial postclearing pulse of nutrient availability, rates of N cycling and loss consistently decline as cattle pastures age. Fertilization experiments have demonstrated that growth of young forests in abandoned agricultural land is nutrient limited. Several N cycling indicators in a secondary forest chronosequence study also demonstrated a conservative N cycle in young forests. Variable N limitation in young forests helps explain a negative relationship observed between the burn frequency during previous agricultural phases and the rate of forest regrowth. Recuperation of the N cycle gradually occurs during decades of secondary forest succession, such that mature lowland forests eventually recover abundant N relative to a conservative P cycle.

  16. Export of nutrients from the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Torres-Valdés, Sinhué; Tsubouchi, Takamasa; Bacon, Sheldon; Naveira-Garabato, Alberto C.; Sanders, Richards; McLaughlin, Fiona A.; Petrie, Brian; Kattner, Gerhard; Azetsu-Scott, Kumiko; Whitledge, Terry E.

    2013-04-01

    study provides the first physically based mass-balanced transport estimates of dissolved inorganic nutrients (nitrate, phosphate, and silicate) for the Arctic Ocean. Using an inverse model-generated velocity field in combination with a quasi-synoptic assemblage of hydrographic and hydrochemical data, we quantify nutrient transports across the main Arctic Ocean gateways: Davis Strait, Fram Strait, the Barents Sea Opening (BSO), and Bering Strait. We found that the major exports of all three nutrients occur via Davis Strait. Transports associated with the East Greenland Current are almost balanced by transports associated with the West Spitsbergen Current. The most important imports of nitrate and phosphate to the Arctic occur via the BSO, and the most important import of silicate occurs via Bering Strait. Oceanic budgets show that statistically robust net silicate and phosphate exports exist, while the net nitrate flux is zero, within the uncertainty limits. The Arctic Ocean is a net exporter of silicate (-15.7 ± 3.2 kmol s-1) and phosphate (-1.0 ± 0.3 kmol s-1; net ± 1 standard error) to the North Atlantic. The export of excess phosphate (relative to nitrate) from the Arctic, calculated at -1.1 ± 0.3 kmol s-1, is almost twice as large as previously estimated. Net transports of silicate and phosphate from the Arctic Ocean provide 12% and 90%, respectively, of the net southward fluxes estimated at 47°N in the North Atlantic. Additional sources of nutrients that may offset nutrient imbalances are explored, and the relevance and the pathway of nutrient transports to the North Atlantic are discussed.

  17. Efect of organic barley-based crop rotations on soil nutrient balance in a semiarid environment for a 16-year experiment

    NASA Astrophysics Data System (ADS)

    Meco, Ramón; María Moreno, Marta; Lacasta, Carlos; Moreno, Carmen

    2013-04-01

    straw in B-S, the symbiotic nitrogen from the vetch crops and the green manure in B-Vm. In the conventional system, fertilization consisted on barley straw and chemical fertilizers at a rate of 80-60-30 kg N-P-K ha-1. Before the organic management, the whole plot was subjected to conventional practices. The highest total yields (and therefore the nutrients extractions) were obtained in B-Vh, followed in this order by B-B, B-S, B-F, B-Vm, B-C and b-b. The crop rotations with the highest yields favoured the microbial activity and the organic residues mineralization, although this caused, eventually, a small decrease in the soil organic matter content. Since the eighth year, this parameter remained more stable until the end of the study period. The highest decrease of soil organic matter took place in B-F and B-S, while the lowest ones happened in B-B, where the great amounts of barley straw incorporated into the soil compensated the organic matter losses. The conversion from conventional to organic management with the incorporation of the straw to the soil implies a re-adaptation process with a decrease of the soil phosphorus level by the increasing soil microbial biomass. A decrease of phosphorus during the first six years of the experiment and a posterior recovery and stabilization of this ratio by the solubilisation of the fixed phosphorus was observed. B-F and B-S presented the lowest soluble phosphorus losses, while B-C the highest ones. In the same way, the potassium level decreased during the first eight years and after that remained constant. The highest decreases took place in the rotations with the biggest amounts of barley straw; this decrease could be explained by the nutrient immobilization caused by the microbial biomass.

  18. Nutrient limitation in tropical savannas across multiple scales and mechanisms.

    PubMed

    Pellegrini, Adam F A

    2016-02-01

    Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape

  19. Inventory of nutrients in the Bohai

    NASA Astrophysics Data System (ADS)

    Mei Liu, Su; Wei Li, Ling; Zhang, Zhinan

    2011-10-01

    Biogeochemical observations were carried out to address the influence of major sources on nutrient composition and the ecosystem of the Bohai. Relatively high concentrations of nutrients off the Huanghe mouth and the shallow water areas were observed in the Bohai suggesting the effects of tidal and residual currents and anthropogenic perturbation. Sediment in the Bohai represents a source for ammonium, phosphate and dissolved silicate, while it is a sink for nitrite and nitrate. Benthic nutrient fluxes were 2-3 times higher than the riverine input with the regeneration rate of phosphate being slower relative to DIN and dissolved silicate. The release of dissolved silicate and phosphate from sediments may mitigate the decrease of dissolved silicate and phosphate due to the reduction of freshwater discharge. Compared with submarine groundwater discharge, nutrient regeneration in sediment provides similar DIN flux, 2-5 times phosphate and dissolved silicate fluxes. DIN/P molar ratios in the three mentioned sources were 155-845, indicating that phosphorus limitation for phytoplankton growth could be intensified, which likely results in changes of ecosystems of the Bohai.

  20. ATMOSPHERIC DEPOSITION MODELING AND MONITORING OF NUTRIENTS

    EPA Science Inventory

    This talk presents an overview of the capabilities and roles that regional atmospheric deposition models can play with respect to multi-media environmental problems. The focus is on nutrient deposition (nitrogen). Atmospheric deposition of nitrogen is an important contributor to...

  1. Dietary nutrients, additives, and fish health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease outbreaks have become a major threat to the sustainability of the aquaculture industry, with antibiotics and chemicals historically used to treat animals ineffective or not allowed to be used today. In this book Dietary Nutrients, Additives, and Fish Health, the relationships between dietar...

  2. Foliar nutrient retranslocation in Eucalyptus globulus.

    PubMed

    Saur, E; Nambiar, E K; Fife, D N

    2000-10-01

    We measured patterns of change in concentrations and contents of nitrogen, phosphorus, potassium, magnesium and calcium in fully expanded leaves of young Eucalyptus globulus (Labill.) trees growing in a plantation in southeastern Australia, over a 12-month period beginning at the onset of spring. There was significant net retranslocation of mobile nutrients on a seasonal basis from green leaves, coinciding with continued growth and production of foliage. There was a close positive relationship between initial nutrient content (N, P and K) of the leaf and amount retranslocated, and a tight coupling between N and P retranslocated from leaves. Net retranslocation was significantly correlated with basal area growth increments. Artificial shading of leaves resulted in senescence and reduction in leaf mass. It also induced retranslocation of N, P and K from leaves of different ages and from different position in the canopy. Although the mechanisms underlying the effects of shading intensity on these changes were not elucidated, shading provided an experimental tool for studying retranslocation. Comparison of the results with published data for Pinus radiata (D. Don) grown in the same environment indicated a similarity between the species in patterns of change in foliar nutrient contents and in factors governing foliar nutrient retranslocation, giving rise to unifying principles. PMID:11269962

  3. Nutrients and Food Composition: Data Needs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For more than 100 years the U.S. Department of Agriculture (USDA) has supported the generation and compilation of food composition data. Today the Agricultural Research Service, USDA develops and maintains the National Nutrient Data Bank, a repository of food composition data which provides the foun...

  4. MIDDLE SNAKE RIVER PRODUCTIVITY AND NUTRIENT ASSESSMENT

    EPA Science Inventory

    From 1992 to 1994, the University of Idaho conducted a research project on the water quality- limited section of the MIddle Snake River from Twin Falls downstream to Upper Salmon Falls Dam in an effort to determine the relationship between the nutrients and sediments entering thi...

  5. NUTRIENT RESPONSE IN GREAT LAKES WETLANDS

    EPA Science Inventory

    The U.S. EPA National Health and Environmental Effects Laboratory's Aquatic Stressor Framework and associated Nutrient Implementation Plan define scientific and regulatory needs, and lay-out research goals too for a cross divisional program to investigate stressor-response relati...

  6. SOUTHEASTERN PLAINS NUTRIENT RESPONSE (SPNR) PROJECT

    EPA Science Inventory

    This study is part of a multi-year effort to examine nutrient biological responses and to develop accurate tools for measuring and assessing those responses. For 2007, this work involves developing a methodology for sampling and analysis of periphyton from sand and sediment. We...

  7. Nutrient element interactions in pecan orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pecan trees are remarkably capable of maintaining a satisfactory internal balance among essential macro-, micro- and beneficial nutrients; however, this balance is potentially disrupted when trees are sufficiently stressed. Stress can be due to many factors, but is most typically linked to either e...

  8. NUTRIENTS AND EPIGENETICS IN BOVINE CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a chapter for a book titled “Livestock Epigenetics” edited by Dr. Hasan Khatib and published by Wiley-Blackwell. This chapter is focused on the research development in our laboratory in the area of interaction of nutrients and genomic phonotype in bovine cells. Briefly, the Research on nutri...

  9. DETECTING TEMPORAL CHANGE IN WATERSHED NUTRIENT YIELDS

    EPA Science Inventory

    Meta-analyses reveal that nutrient yields tend to be higher for watersheds dominated by anthropogenic uses (e.g., urban, agriculture) and lower for watersheds dominated by natural vegetation. One implication of this pattern is that loss of natural vegetation will produce increase...

  10. Grassland productivity limited by multiple nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limitation of aboveground net primary productivity (ANPP) by nitrogen (N) is widely accepted, but the roles of phosphorus (P), potassium (K) and their combinations remain unclear. Thus we may underestimate nutrient limitation of primary productivity. We conducted standardized sampling of ANPP and ...

  11. Nutrient Estimation Using Subsurface Sensing Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report investigates the use of precision management techniques for measuring soil conductivity on feedlot surfaces to estimate nutrient value for crop production. An electromagnetic induction soil conductivity meter was used to collect apparent soil electrical conductivity (ECa) from feedlot p...

  12. [A nutrient medium for isolating Lactobacilli].

    PubMed

    Abrosimova, N A; Kushnareva, M V

    1991-01-01

    The composition of and method for preparation of nutrient medium for the isolation of Lactobacilli from biologic material are described. The medium is simple to prepare, consists of only Soviet reagents, this making it available for laboratories in this country. PMID:1710734

  13. Nutrient management studies in biofuel cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of nutrient management practices on biofuel crop production, and to evaluate long term effects of biofuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on biofuel crop production were esta...

  14. Nutrient management on pasture and haylands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management on pastures is a critical part of maintaining and improving their ability to provide key ecosystem services including forage and fuel production, clean air and water, and climate mitigation. Our objective was to determine the scientific underpinning for purported benefits of nutr...

  15. Nutrient requirements of term and preterm infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth of the healthy breast-fed term infant is the most widely accepted standard for growth from birth through 4-6 months of age. Thus, it is logical to assume that the amounts of each nutrient ingested by the breast-fed term infant during this period are adequate and the most recent dietary refer...

  16. Nutrient levels in the Yazoo River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High nitrogen (N) and phosphorus (P) loadings to aquatic ecosystems are linked to environmental problems including harmful algal blooms and hypoxia. Presented is an assessment of accessible data on nutrient sources, sinks and inputs to streams within the Yazoo River Basin of northern Mississippi. Ac...

  17. Uncertainty Propagation in an Ecosystem Nutrient Budget.

    EPA Science Inventory

    New aspects and advancements in classical uncertainty propagation methods were used to develop a nutrient budget with associated error for a northern Gulf of Mexico coastal embayment. Uncertainty was calculated for budget terms by propagating the standard error and degrees of fr...

  18. CH4 emissions from two floodplain fens of differing nutrient status

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran; Heppell, Catherine; Belyea, Lisa; Baird, Andrew

    2014-05-01

    Floodplain fens emit large amounts of CH4 in comparison with ombrotrophic bogs. Little is known about the effect of fluvial nitrogen (N) and phosphorus (P) on CH4 dynamics in fens, although N and P affect carbon (C) dynamics indirectly in other environments by controlling plant growth and root exudate release, as well as by altering microbial biomass and decomposition rates. This study aimed to compare CH4 emissions from two floodplain fen sites which differ in nutrient status, Sutton Fen (52°45'N 001°30'E) and Strumpshaw Fen (52°36'N 001°27'E), in the Norfolk Broadland of England. Sutton and Strumpshaw Fen are under conservation management and both sites have water levels that vary within a few decimetres above and below the surface. The sites are dominated by reed (Phragmites australis). Areas within the fens where the reed was cut in 2009 were chosen for this study. Average plant height and mean aboveground biomass were significantly greater at Strumpshaw (107.2 ± 7.8 cm and 1578 ± 169 g m-2, respectively) than Sutton (56.5 ± 5.1 cm and 435 ± 42 g m-2) as were mean foliar N and P contents (21.8 ± 1.5 g kg-1 and 2.0 ± 0.2 g kg-1 at Strumpshaw, versus 16.3 ± 1.5 g kg-1 and 1.1 ± 0.1 g kg-1 at Sutton). Foliar NPK ratios showed Strumpshaw to be N limited, whereas Sutton was both N and P limited, depending on microsite. Surface peat N and P contents were also greater at Strumpshaw (28.3 ± 0.35 g kg-1 and 0.78 ± 0.02 g kg-1, respectively) than Sutton (18.32 ± 0.87 g kg-1 and 0.43 ± 0.1 g kg-1). These results indicate clear differences in nutrient status between the two sites despite their geographical proximity and other similarities. CH4 emissions were monitored monthly between 19th June 2012 and 2nd September 2013 using tall static chambers and glass funnel-traps, the latter for ebullition. Steady fluxes did not follow a clear seasonal pattern; however, emission was greatest in the summer months. Strumpshaw had a greater range in efflux (0.25 to 134

  19. Recapturing nutrients from dairy waste using biochar

    NASA Astrophysics Data System (ADS)

    Sarkhot, D.; Ghezzehei, T. A.; Berhe, A. A.

    2009-12-01

    Biochar or biomass derived black carbon is known to be highly resistant to decomposition with half-life periods ranging from hundreds of years to millennia. It is also reported to enhance soil productivity due to high nutrient retention and favorable effects on soil pH, water retention capacity as well as microbial population. Brazilian Terra Preta soils have shown the potential of biochar for long-term carbon sequestration capacity and productivity of soil and many researchers have now focused on utilizing this phenomenon to create fertile, carbon-rich soils, called Terra Preta Nova. Although the highly adsorptive nature of biochar is well characterized, the potential for using biochar in environmental cleanup efforts is relatively unexplored. Dairy waste is a source of significant water pollution because it introduces excess nutrients such as phosphates and nitrates into the soil and water system. Since many soils have limited capacity to retain nitrate and phosphate, especially for long periods of time, the utility of dairy waste manure to enhance soil fertility and nutrient availability to plants is limited. Here, we present results from a project that we started to determine the potential of biochar to recover the excess nutrients from dairy flushed manure. In this initial study, a commercially available biochar amendment was ground and used in a batch sorption experiment with the dairy flushed manure from a local dairy in Merced, California. Four manure dilutions viz. 10, 25, 50 and 100%, and three shaking times, viz. 1, 12 and 24 hours were used for this study. We then calculated the amount of ammonia, nitrate and phosphate adsorbed by the biochar using differences in nutrient concentrations before and after the sorption experiment. Biochar showed significant capacity of adsorbing these nutrients, suggesting a potential for controlling the dairy pollution. The resulting enriched biochar can potentially act as a slow release fertilizer and enhance soil

  20. Nutrient Status of Adults with Cystic Fibrosis

    PubMed Central

    GORDON, CATHERINE M.; ANDERSON, ELLEN J.; HERLYN, KAREN; HUBBARD, JANE L.; PIZZO, ANGELA; GELBARD, RONDI; LAPEY, ALLEN; MERKEL, PETER A.

    2011-01-01

    Nutrition is thought to influence disease status in patients with cystic fibrosis (CF). This cross-sectional study sought to evaluate nutrient intake and anthropometric data from 64 adult outpatients with cystic fibrosis. Nutrient intake from food and supplements was compared with the Dietary Reference Intakes for 16 nutrients and outcomes influenced by nutritional status. Attention was given to vitamin D and calcium given potential skeletal implications due to cystic fibrosis. Measurements included weight, height, body composition, pulmonary function, and serum metabolic parameters. Participants were interviewed about dietary intake, supplement use, pulmonary function, sunlight exposure, and pain. The participants’ mean body mass index (±standard deviation) was 21.8±4.9 and pulmonary function tests were normal. Seventy-eight percent used pancreatic enzyme replacement for malabsorption. Vitamin D deficiency [25-hydroxyvitamin D (25OHD)<37.5 nmol/L] was common: 25 (39%) were deficient despite adequate vitamin D intake. Lipid profiles were normal in the majority, even though total and saturated fat consumption represented 33.0% and 16.8% of energy intake, respectively. Reported protein intake represented 16.9% of total energy intake (range 10%–25%). For several nutrients, including vitamin D and calcium, intake from food and supplements in many participants exceeded recommended Tolerable Upper Intake Levels. Among adults with cystic fibrosis, vitamin D deficiency was common despite reported adequate intake, and lipid profiles were normal despite a relatively high fat intake. Mean protein consumption was adequate, but the range of intake was concerning, as both inadequate or excessive intake may have deleterious skeletal effects. These findings call into question the applicability of established nutrient thresholds for patients with cystic fibrosis. PMID:18060897

  1. Nutrient-substituted hydroxyapatites: synthesis and characterization

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.

    1999-01-01

    Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.

  2. Dairy manure nutrient analysis using quick tests.

    PubMed

    Singh, A; Bicudo, J R

    2005-05-01

    Rapid on-farm assessment of manure nutrient content can be achieved with the use of quick tests. These tests can be used to indirectly measure the nutrient content in animal slurries immediately before manure is applied on agricultural fields. The objective of this study was to assess the reliability of hydrometers, electrical conductivity meter and pens, and Agros N meter against standard laboratory methods. Manure samples were collected from 34 dairy farms in the Mammoth Cave area in central Kentucky. Regression equations were developed for combined and individual counties located In the area (Barren, Hart and Monroe). Our results indicated that accuracy in nutrient estimation could be improved if separate linear regressions were developed for farms with similar facilities in a county. Direct hydrometer estimates of total nitrogen were among the most accurate when separate regression equations were developed for each county (R2 = 0.61, 0.93, and 0.74 for Barren, Hart and Monroe county, respectively). Reasonably accurate estimates (R2 > 0.70) were also obtained for total nitrogen and total phosphorus using hydrometers, either by relating specific gravity to nutrient content or to total solids content. Estimation of ammoniacal nitrogen with Agros N meter and electrical conductivity meter/pens correlated well with standard laboratory determinations, especially while using the individual data sets from Hart County (R2 = 0.70 to 0.87). This study indicates that the use of quick test calibration equations developed for a small area or region where farms are similar in terms of manure handling and management, housing, and feed ration are more appropriate than using "universal" equations usually developed with combined data sets. Accuracy is expected to improve if individual farms develop their own calibration curves. Nevertheless, we suggest confidence intervals always be specified for nutrients estimated through quick testing for any specific region, county, or farm

  3. Nutrient and nonnutrient renal blood flow

    SciTech Connect

    Young, J.S.; Passmore, J.C.; Hartupee, D.A.; Baker, C.H. )

    1990-06-01

    The role of prostaglandins in the distribution of total renal blood flow (TRBF) between nutrient and nonnutrient compartments was investigated in anesthetized mongrel dogs. Renal blood flow distribution was assessed by the xenon 133 freeze-dissection technique and by rubidium 86 extraction after ibuprofen treatment. Ibuprofen (13 mg/kg) significantly decreased TRBF by 16.3% +/- 1.2% (mean +/- SEM electromagnetic flow probe; p less than 0.005), but did not alter blood flows to the outer cortex (3.7 vs 4.3 ml/min per gram), the inner cortex (2.6 vs 2.7 ml/min per gram), and the other medulla (1.5 vs 1.5 ml/min per gram), which suggests a decrease in nonnutrient flow. In a separate group of animals the effect of reduced blood flow on the nutrient and nonnutrient components was determined by mechanically reducing renal arterial blood flow by 48%. Unlike the ibuprofen group, nutrient blood flows were proportionally reduced with the mechanical decrease in TRBF in the outer cortex (1.9 ml/min per gram, p less than 0.05), the inner cortex (1.4 ml/min per gram, p less than 0.05), and the outer medulla (0.8 ml/min per gram, p less than 0.01). These results indicate no shift between nutrient and nonnutrient compartments. Nutrient and nonnutrient renal blood flows of the left kidney were also determined by 86Rb extraction. After ibuprofen treatment, nonextracted 86Rb decreased to 12.1% from the control value of 15.6% (p less than 0.05). Mechanical reduction of TRBF did not significantly decrease the proportion of unextracted 86Rb (18.7%).

  4. Plasticity of the Arabidopsis root system under nutrient deficiencies.

    PubMed

    Gruber, Benjamin D; Giehl, Ricardo F H; Friedel, Swetlana; von Wirén, Nicolaus

    2013-09-01

    Plant roots show a particularly high variation in their morphological response to different nutrient deficiencies. Although such changes often determine the nutrient efficiency or stress tolerance of plants, it is surprising that a comprehensive and comparative analysis of root morphological responses to different nutrient deficiencies has not yet been conducted. Since one reason for this is an inherent difficulty in obtaining nutrient-deficient conditions in agar culture, we first identified conditions appropriate for producing nutrient-deficient plants on agar plates. Based on a careful selection of agar specifically for each nutrient being considered, we grew Arabidopsis (Arabidopsis thaliana) plants at four levels of deficiency for 12 nutrients and quantified seven root traits. In combination with measurements of biomass and elemental concentrations, we observed that the nutritional status and type of nutrient determined the extent and type of changes in root system architecture (RSA). The independent regulation of individual root traits further pointed to a differential sensitivity of root tissues to nutrient limitations. To capture the variation in RSA under different nutrient supplies, we used principal component analysis and developed a root plasticity chart representing the overall modulations in RSA under a given treatment. This systematic comparison of RSA responses to nutrient deficiencies provides a comprehensive view of the overall changes in root plasticity induced by the deficiency of single nutrients and provides a solid basis for the identification of nutrient-sensitive steps in the root developmental program. PMID:23852440

  5. Variation in nutrients formulated and nutrients supplied on 5 California dairies.

    PubMed

    Rossow, H A; Aly, S S

    2013-01-01

    Computer models used in ration formulation assume that nutrients supplied by a ration formulation are the same as the nutrients presented in front of the cow in the final ration. Deviations in nutrients due to feed management effects such as dry matter changes (i.e., rain), loading, mixing, and delivery errors are assumed to not affect delivery of nutrients to the cow and her resulting milk production. To estimate how feed management affects nutrients supplied to the cow and milk production, and determine if nutrients can serve as indexes of feed management practices, weekly total mixed ration samples were collected and analyzed for 4 pens (close-up cows, fresh cows, high-milk-producing, and low-milk-producing cows, if available) for 7 to 12 wk on 5 commercial California dairies. Differences among nutrient analyses from these samples and nutrients from the formulated rations were analyzed by PROC MIXED of SAS (SAS Institute Inc., Cary, NC). Milk fat and milk protein percentages did not vary as much [coefficient of variation (CV) = 18 to 33%] as milk yield (kg; CV = 16 to 47 %) across all dairies and pens. Variability in nutrients delivered were highest for macronutrient fat (CV = 22%), lignin (CV = 15%), and ash (CV = 11%) percentages and micronutrients Fe (mg/kg; CV = 48%), Na (%; CV = 42%), and Zn (mg/kg; CV = 38%) for the milking pens across all dairies. Partitioning of the variability in random effects of nutrients delivered and intraclass correlation coefficients showed that variability in lignin percentage of TMR had the highest correlation with variability in milk yield and milk fat percentage, followed by fat and crude protein percentages. But, variability in ash, fat, and lignin percentages of total mixed ration had the highest correlation with variability in milk protein percentage. Therefore, lignin, fat, and ash may be the best indices of feed management to include effects of variability in nutrients on variability in milk yield, milk fat, and milk

  6. Global nutrients data synthesis based on Reference Material of Nutrients of Seawater

    NASA Astrophysics Data System (ADS)

    Aoyama, Michio; Murata, Akihiko; Nishino, Shigeto

    2013-04-01

    Realistic distributions of nitrate, phosphate and silicate and inventories of them in the world's ocean are basic issues of geochemical study of nitrogen, phosphorous and silicon cycles as well as tracer use of nutrients for deep ocean circulation. WOA09 and WGHC were global hydrographic datasets created by objective analysis and offset correction/objective analysis, respectively. However synthesis using mathematics methods and experience could get apparent global comparability but does not have a firm foundation, therefore accuracy is unknown for nutrients data in WOA05/09 and WGHC. Recently hydrographic dataset such as CARINA and PACIFICA were also created by synthesis. We did global synthesis work based on Reference Material of Nutrients in Seawater (RMNS) for WOCE/CLIVAR cruises datasets, WGHC datasets and some new hydrographic cruises which cover the Pacific Ocean, the Atlantic Ocean, the Indian Ocean, the Southern Ocean and the Arctic Ocean. Among 69982 profiles in 5174 cruises, we could put correction factors of nutrients concentration for 14491 profiles in 268 cruises for nitrate, 18378 profiles in 412 cruises for phosphate and 15825 profiles in 268 cruises for silicate. Global Nutrients Dataset 2010, GND10, is newly created as 0.5 deg. × 0.5 deg. and 50 m interval of 138 levels gridded dataset based on corrected nutrients profiles described above. One feature of GND10 is that nitrate vs. phosphate ratio in deep waters in WOA dataset showed a peak at 14.6 while nitrate vs. phosphate ratio in GND10 showed a peak at 14.3 and kurtosis of frequency distribution of nitrate vs. phosphate ratio is larger in GND10 dataset rather than that in WOA dataset. A reason of larger kurtosis of distribution of nitrate vs. phosphate ratio might be that comparability of nitrate and phosphate concentration data was improved. Newly created GND10 can provide more realistic distribution of nutrients in the world ocean because comparability of nutrients concentration in GND10 is

  7. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna.

    PubMed

    Pellegrini, Adam F A; Hedin, Lars O; Staver, A Carla; Govender, Navashni

    2015-05-01

    Fire and nutrients interact to influence the global distribution and dynamics of the savanna biome, but the results of these interactions are both complex and poorly known. A critical but unresolved question is whether short-term losses of carbon and nutrients caused by fire can trigger long-term and potentially compensatory responses in the nutrient stoichiometry of plants, or in the abundance of dinitrogen-fixing trees. There is disagreement in the literature about the potential role of fire on savanna nutrients, and, in turn, on plant stoichiometry and composition. A major limitation has been the lack of fire manipulations over time scales sufficiently long for these interactions to emerge. We use a 58-year, replicated, large-scale, fire manipulation experiment in Kruger National Park (South Africa) in savanna to quantify the effect of fire on (1) distributions of carbon, nitrogen, and phosphorus at the ecosystem scale; (2) carbon: nitrogen: phosphorus stoichiometry of above- and belowground tissues of plant species; and (3) abundance of plant functional groups including nitrogen fixers. Our results show dramatic effects of fire on the relative distribution of nutrients in soils, but that individual plant stoichiometry and plant community composition remained unexpectedly resilient. Moreover, measures of nutrients and carbon stable isotopes allowed us to discount the role of tree cover change in favor of the turnover of herbaceous biomass as the primary mechanism that mediates a transition from low to high 'soil carbon and nutrients in the absence of fire. We conclude that, in contrast to extra-tropical grasslands or closed-canopy forests, vegetation in the savanna biome may be uniquely adapted to nutrient losses caused by recurring fire. PMID:26236841

  8. Nutrient release, recovery and removal from waste sludge of a biological nutrient removal system.

    PubMed

    Wang, Yi; Zheng, Shu-Jian; Pei, Li-Ying; Ke, Li; Peng, Dang-Cong; Xia, Si-Qing

    2014-01-01

    The uncontrolled release of nutrients from waste sludge results in nitrogen and phosphorus overloading in wastewater treatment plants when supernatant is returned to the inlet. A controlled release, recovery and removal of nutrient from the waste sludge of a Biological Nutrient Removal system (BNR) are investigated. Results showed that the supernatant was of high mineral salt, high electrical conductivity and poor biodegradability, in addition to high nitrogen and phosphorus concentrations after the waste sludge was hydrolysed through sodium dodecyl sulphate addition. Subsequently, over 91.8% of phosphorus and 10.5% of nitrogen in the supernatants were extracted by the crystallization method under the conditions of 9.5 pH and 400 rpm. The precipitate was mainly struvite according to X-ray diffraction and morphological examination. A multistage anoxic-oxic Moving Bed Biofilm Reactor (MBBR) was then adopted to remove the residual carbon, nitrogen and phosphorus in the supernatant. The MBBR exhibited good performance in simultaneously removing carbon, nitrogen and phosphorus under a short aeration time, which accounted for 31.25% of a cycle. Fluorescence in situ hybridization analysis demonstrated that nitrifiers presented mainly in floc, although higher extracellular polymeric substance content, especially DNA, appeared in the biofilm. Thus, a combination of hydrolysis and precipitation, followed by the MBBR, can complete the nutrient release from the waste sludge of a BNR system, recovers nutrients from the hydrolysed liquor and removes nutrients from leftovers effectively. PMID:25176308

  9. ENHANCED NUTRIENT REMOVAL FROM ON-SITE WASTEWATER TREATMENT SYSTEMS

    EPA Science Inventory

    Nutrient (nitrogen and phosphorus) runoffs impact streams and ecosystems. Furthermore, on-site wastewater treatment systems are important sources of nutrient discharges because effluents from septic tanks typically contain high concentrations of organic matter, nitrogen and ph...

  10. [The development of a dispensing cabinet of total nutrient admixture].

    PubMed

    Wu, Xiao-an

    2002-03-01

    A dispensing cabinet of total nutrient admixture is introduced in this paper. Which can be used for nutrient solution dispensing. The clinical application shows that it can provide a practical, simple, safe and satisfactory sterile environment. PMID:16104182

  11. OXYGEN UPTAKE AND NUTRIENT REGENERATION IN THE PECONIC ESTUARY

    EPA Science Inventory

    EXECUTIVE SUMMARY: OXYGEN UPTAKE AND NUTRIENT REGENERATION IN THE PECONIC ESTUARY Rates of oxygen consumption and nutrient regeneration were measured annually throughout the Peconic Estuarine System. Sediment and water column oxygen uptake were measured to determine the potential...

  12. Relating watershed nutrient loads to satellite derived estuarine water quality

    EPA Science Inventory

    Nutrient enhanced phytoplankton production is a cause of degraded estuarine water quality. Yet, relationships between watershed nutrient loads and the spatial and temporal scales of phytoplankton blooms and subsequent water quality impairments remain unquantified for most systems...

  13. Comparison of Nutrient Drivers and Response Metrics in Oregon Estuaries

    EPA Science Inventory

    With the goal of assessing sensitivity to nutrient enrichment, we present a cross-estuary comparison of nutrient sources, levels, and biological responses (phytoplankton and macroalgae) for thirteen Oregon estuaries. Nitrogen levels in the upstream portions of the estuaries are ...

  14. Herbivores and nutrients control grassland plant diversity via light limitation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human alterations to nutrient cycles and herbivore communities are dramatically altering global biodiversity. Theory predicts these changes to be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive excl...

  15. Nutrient Attenuation Under Natural Conditions in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drainage ditches are common practice in agricultural landscapes with poorly drained soils. Even though high concentrations of nutrients and other agricultural chemicals have been reportedly associated with agricultural drainage ditches, processes affecting nutrient transport in these ditches are not...

  16. Nontronite and Montmorillonite as Nutrient Sources for Life on Mars

    NASA Astrophysics Data System (ADS)

    Mickol, R. L.; Craig, P. I.; Kral, T. A.

    2016-05-01

    Methanogens were grown in media containing bicarbonate buffer, nontronite or montmorillonite clay, and hydrogen gas. No other nutrients were added. These results suggest that martian clays may provide adequate nutrients to support organism growth.

  17. Nutrient supplements and cardiovascular disease – A heartbreaking story

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Observational data have identified negative associations between carotenoids, folic acid and vitamin E, or metabolites altered by these nutrients, and cardiovascular disease (CVD) risk. Despite biological plausibility, for the most part, data derived from nutrient supplement trials using moderate t...

  18. NUTRIENT DYNAMICS IN RELATION TO GEOMORPHOLOGY OF RIVERINE WETLANDS

    EPA Science Inventory

    Variation in water depth and soil properties associated with geomorphic structures can affect riverine wetland nutrient dynamics by altering biogeochemical processes. We examined the seasonal influence of soils and geomorphology on nutrient forms and concentrations in riverine we...

  19. Assessment of Nutrient Stability in Space Foods

    NASA Technical Reports Server (NTRS)

    Zwart, S. R.; Perchonok, M.; Braby, L. A.; Kloeris, V. A.; Smith, S. M.

    2009-01-01

    Maintaining an intact nutrient supply in the food system flown on spacecraft is a critical issue for mission success and crew health and safety. Early polar expeditions and exploration expeditions by sailing vessels have taught us that a deficiency, or excess, of even a single vitamin in the food supply can be catastrophic. Evidence from ground-based research indicates that some vitamins are destroyed and fatty acids are oxidized (and therefore rendered dangerous or useless) by different types of radiation and by conditions of long-term storage. We hypothesize that radiation and long-term storage in the space-flight environment will affect the stability of vitamins, amino acids, and fatty acids in the space food system. The research objectives of our ongoing stability studies are to determine the stability of water- and fat-soluble vitamins, fatty acids, and amino acids in the space food supply before and after space flight on the International Space Station (ISS). Foods were analyzed after 2 weeks (a flight control), 11, 19, and 28 months of flight. Along with the space-flown foods, ground-based controls matched for time, light, and temperature are analyzed. The flight studies complement planned ground-based studies of the effects of radiation on vitamins, amino acids, and fatty acids. Flight studies are needed because a model based on ground-based data cannot predict all of the effects of the space-flight environment. Flight studies provide a more accurate test system to determine the effects on these nutrients of the temperature, and radiation conditions in the space-flight environment. Ground studies are required to evaluate longer missions and higher radiation levels expected outside low-Earth orbit. In addition to providing information about nutrient stability in space, the results of these studies will help NASA determine if a need exists to develop special packaging that can ensure stability of foods and nutrients in space, or if further studies of nutrient

  20. Improving Mississippi water quality: CAFO regulations and nutrient TMDLs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confined Animal Feeding Operations (CAFOs) are regulated to reduce nutrient discharges to local waters, although nutrient water quality standards do not yet exist. At first, it may seem that there is some discontinuity between requiring CAFOs to limit nutrient discharges without knowing what levels...

  1. Spatial variations in nutrient and microbial transport from feedlot surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient and microbial transport by runoff may vary at different locations within a beef cattle feedlot. If the areas making the greatest contributions to nutrient and microbial transport can be identified, it may be possible to institute precision management practices to reduce nutrient and microbi...

  2. Nutrients in the Great Lakes. Teacher's Guide and Student Workbook.

    ERIC Educational Resources Information Center

    Brothers, Chris; And Others

    This teacher guide and student workbook set presents two learning activities, designed for fifth through ninth grade students, that concentrate on nutrients in the Great Lakes. In activity A, students simulate aquatic habitats using lake water and goldfish in glass jars and observe the effects of nutrient loading and nutrient limitation on aquatic…

  3. Nutrient prices and concentrations in midwestern agricultural watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Policies to reduce nutrient emissions from agriculture rest on the assumption that it is very difficult to link inputs on farms to nutrient outputs. As a result, conservation programs fund the installation of best management practices that attempt to avoid, trap, or otherwise control nutrient emissi...

  4. 21 CFR 101.69 - Petitions for nutrient content claims.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Petitions for nutrient content claims. 101.69... (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING Specific Requirements for Nutrient Content Claims § 101... claim on food consumption and of any corresponding changes in nutrient intake. The latter item...

  5. Nutrient Management Certification for Delaware: Developing a Water Quality Curriculum

    ERIC Educational Resources Information Center

    Hansen, David J.; Binford, Gregory D.

    2004-01-01

    Water quality is a critical environmental, social, and political issue in Delaware. In the late 1990s, a series of events related to water quality issues led to the passage of a state nutrient management law. This new law required nutrient management planning and established a state certification program for nutrient users in the agricultural and…

  6. Artificial Soil With Build-In Plant Nutrients

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Allen, Earl; Henninger, Donald; Golden, D. C.

    1995-01-01

    Nutrients contained in sandlike material. Artificial soil provides nutrients to plants during several growing seasons without need to add fertilizer or nutrient solution. When watered, artificial soil slowly releases all materials a plant needs to grow. Developed as medium for growing crops in space. Also used to grow plants on Earth under controlled conditions or even to augment natural soil.

  7. Land Cover - Nutrient Export Relationships in Space and Time

    EPA Science Inventory

    The relationship between watershed land-cover composition and nutrient export has been well established through several meta-analyses. The meta-analyses reveal that nutrient loads from watersheds dominated by natural vegetation tend to be lower than nutrient loads from watershed...

  8. Nutrient Content of Single – Muscle Pork Cuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two objectives of this study were to determine the nutrient profiles of four fresh pork cuts (fabricated from individual muscles extracted from subprimals) for dissemination in the USDA National Nutrient Database for Standard Reference (SR) and determine cooking yields and nutrient retention fac...

  9. Nutrient leaching from container-grown ornamental tree production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically producing marketable container-grown ornamental shade trees with minimum amounts of nutrient leachate requires better management of nutrient applications during a growing season. Fertilizer practices with 16 treatments were used to test the nutrient leachate for growing Acer rubrum ‘Red...

  10. Nutrient export in tile drainage: Comparing manure injection to fertigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface tile drainage of agricultural land is implicated as a major source of nutrients to the Mississippi River. To protect water quality, land application of manure should maximize crop nutrient use and minimize nutrient loss. Weather constraints and regulations restrict the period during which...