Science.gov

Sample records for object recognition system

  1. Cognitive object recognition system (CORS)

    NASA Astrophysics Data System (ADS)

    Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy

    2010-04-01

    We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.

  2. Method and System for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor); Stubberud, Allen R. (Inventor)

    2012-01-01

    A method for object recognition using shape and color features of the object to be recognized. An adaptive architecture is used to recognize and adapt the shape and color features for moving objects to enable object recognition.

  3. A neuromorphic system for video object recognition.

    PubMed

    Khosla, Deepak; Chen, Yang; Kim, Kyungnam

    2014-01-01

    Automated video object recognition is a topic of emerging importance in both defense and civilian applications. This work describes an accurate and low-power neuromorphic architecture and system for real-time automated video object recognition. Our system, Neuormorphic Visual Understanding of Scenes (NEOVUS), is inspired by computational neuroscience models of feed-forward object detection and classification pipelines for processing visual data. The NEOVUS architecture is inspired by the ventral (what) and dorsal (where) streams of the mammalian visual pathway and integrates retinal processing, object detection based on form and motion modeling, and object classification based on convolutional neural networks. The object recognition performance and energy use of the NEOVUS was evaluated by the Defense Advanced Research Projects Agency (DARPA) under the Neovision2 program using three urban area video datasets collected from a mix of stationary and moving platforms. These datasets are challenging and include a large number of objects of different types in cluttered scenes, with varying illumination and occlusion conditions. In a systematic evaluation of five different teams by DARPA on these datasets, the NEOVUS demonstrated the best performance with high object recognition accuracy and the lowest energy consumption. Its energy use was three orders of magnitude lower than two independent state of the art baseline computer vision systems. The dynamic power requirement for the complete system mapped to commercial off-the-shelf (COTS) hardware that includes a 5.6 Megapixel color camera processed by object detection and classification algorithms at 30 frames per second was measured at 21.7 Watts (W), for an effective energy consumption of 5.45 nanoJoules (nJ) per bit of incoming video. These unprecedented results show that the NEOVUS has the potential to revolutionize automated video object recognition toward enabling practical low-power and mobile video processing

  4. A neuromorphic system for video object recognition

    PubMed Central

    Khosla, Deepak; Chen, Yang; Kim, Kyungnam

    2014-01-01

    Automated video object recognition is a topic of emerging importance in both defense and civilian applications. This work describes an accurate and low-power neuromorphic architecture and system for real-time automated video object recognition. Our system, Neuormorphic Visual Understanding of Scenes (NEOVUS), is inspired by computational neuroscience models of feed-forward object detection and classification pipelines for processing visual data. The NEOVUS architecture is inspired by the ventral (what) and dorsal (where) streams of the mammalian visual pathway and integrates retinal processing, object detection based on form and motion modeling, and object classification based on convolutional neural networks. The object recognition performance and energy use of the NEOVUS was evaluated by the Defense Advanced Research Projects Agency (DARPA) under the Neovision2 program using three urban area video datasets collected from a mix of stationary and moving platforms. These datasets are challenging and include a large number of objects of different types in cluttered scenes, with varying illumination and occlusion conditions. In a systematic evaluation of five different teams by DARPA on these datasets, the NEOVUS demonstrated the best performance with high object recognition accuracy and the lowest energy consumption. Its energy use was three orders of magnitude lower than two independent state of the art baseline computer vision systems. The dynamic power requirement for the complete system mapped to commercial off-the-shelf (COTS) hardware that includes a 5.6 Megapixel color camera processed by object detection and classification algorithms at 30 frames per second was measured at 21.7 Watts (W), for an effective energy consumption of 5.45 nanoJoules (nJ) per bit of incoming video. These unprecedented results show that the NEOVUS has the potential to revolutionize automated video object recognition toward enabling practical low-power and mobile video processing

  5. Development of a sonar-based object recognition system

    NASA Astrophysics Data System (ADS)

    Ecemis, Mustafa Ihsan

    2001-02-01

    Sonars are used extensively in mobile robotics for obstacle detection, ranging and avoidance. However, these range-finding applications do not exploit the full range of information carried in sonar echoes. In addition, mobile robots need robust object recognition systems. Therefore, a simple and robust object recognition system using ultrasonic sensors may have a wide range of applications in robotics. This dissertation develops and analyzes an object recognition system that uses ultrasonic sensors of the type commonly found on mobile robots. Three principal experiments are used to test the sonar recognition system: object recognition at various distances, object recognition during unconstrained motion, and softness discrimination. The hardware setup, consisting of an inexpensive Polaroid sonar and a data acquisition board, is described first. The software for ultrasound signal generation, echo detection, data collection, and data processing is then presented. Next, the dissertation describes two methods to extract information from the echoes, one in the frequency domain and the other in the time domain. The system uses the fuzzy ARTMAP neural network to recognize objects on the basis of the information content of their echoes. In order to demonstrate that the performance of the system does not depend on the specific classification method being used, the K- Nearest Neighbors (KNN) Algorithm is also implemented. KNN yields a test accuracy similar to fuzzy ARTMAP in all experiments. Finally, the dissertation describes a method for extracting features from the envelope function in order to reduce the dimension of the input vector used by the classifiers. Decreasing the size of the input vectors reduces the memory requirements of the system and makes it run faster. It is shown that this method does not affect the performance of the system dramatically and is more appropriate for some tasks. The results of these experiments demonstrate that sonar can be used to develop

  6. Individual differences in involvement of the visual object recognition system during visual word recognition.

    PubMed

    Laszlo, Sarah; Sacchi, Elizabeth

    2015-01-01

    Individuals with dyslexia often evince reduced activation during reading in left hemisphere (LH) language regions. This can be observed along with increased activation in the right hemisphere (RH), especially in areas associated with object recognition - a pattern referred to as RH compensation. The mechanisms of RH compensation are relatively unclear. We hypothesize that RH compensation occurs when the RH object recognition system is called upon to supplement an underperforming LH visual word form recognition system. We tested this by collecting ERPs while participants with a range of reading abilities viewed words, objects, and word/object ambiguous items (e.g., "SMILE" shaped like a smile). Less experienced readers differentiate words, objects, and ambiguous items less strongly, especially over the RH. We suggest that this lack of differentiation may have negative consequences for dyslexic individuals demonstrating RH compensation. PMID:25957504

  7. Automatic object recognition

    NASA Technical Reports Server (NTRS)

    Ranganath, H. S.; Mcingvale, Pat; Sage, Heinz

    1988-01-01

    Geometric and intensity features are very useful in object recognition. An intensity feature is a measure of contrast between object pixels and background pixels. Geometric features provide shape and size information. A model based approach is presented for computing geometric features. Knowledge about objects and imaging system is used to estimate orientation of objects with respect to the line of sight.

  8. A Primitive-Based 3D Object Recognition System

    NASA Astrophysics Data System (ADS)

    Dhawan, Atam P.

    1988-08-01

    A knowledge-based 3D object recognition system has been developed. The system uses the hierarchical structural, geometrical and relational knowledge in matching the 3D object models to the image data through pre-defined primitives. The primitives, we have selected, to begin with, are 3D boxes, cylinders, and spheres. These primitives as viewed from different angles covering complete 3D rotation range are stored in a "Primitive-Viewing Knowledge-Base" in form of hierarchical structural and relational graphs. The knowledge-based system then hypothesizes about the viewing angle and decomposes the segmented image data into valid primitives. A rough 3D structural and relational description is made on the basis of recognized 3D primitives. This description is now used in the detailed high-level frame-based structural and relational matching. The system has several expert and knowledge-based systems working in both stand-alone and cooperative modes to provide multi-level processing. This multi-level processing utilizes both bottom-up (data-driven) and top-down (model-driven) approaches in order to acquire sufficient knowledge to accept or reject any hypothesis for matching or recognizing the objects in the given image.

  9. Visual object recognition for mobile tourist information systems

    NASA Astrophysics Data System (ADS)

    Paletta, Lucas; Fritz, Gerald; Seifert, Christin; Luley, Patrick; Almer, Alexander

    2005-03-01

    We describe a mobile vision system that is capable of automated object identification using images captured from a PDA or a camera phone. We present a solution for the enabling technology of outdoors vision based object recognition that will extend state-of-the-art location and context aware services towards object based awareness in urban environments. In the proposed application scenario, tourist pedestrians are equipped with GPS, W-LAN and a camera attached to a PDA or a camera phone. They are interested whether their field of view contains tourist sights that would point to more detailed information. Multimedia type data about related history, the architecture, or other related cultural context of historic or artistic relevance might be explored by a mobile user who is intending to learn within the urban environment. Learning from ambient cues is in this way achieved by pointing the device towards the urban sight, capturing an image, and consequently getting information about the object on site and within the focus of attention, i.e., the users current field of view.

  10. Poka Yoke system based on image analysis and object recognition

    NASA Astrophysics Data System (ADS)

    Belu, N.; Ionescu, L. M.; Misztal, A.; Mazăre, A.

    2015-11-01

    Poka Yoke is a method of quality management which is related to prevent faults from arising during production processes. It deals with “fail-sating” or “mistake-proofing”. The Poka-yoke concept was generated and developed by Shigeo Shingo for the Toyota Production System. Poka Yoke is used in many fields, especially in monitoring production processes. In many cases, identifying faults in a production process involves a higher cost than necessary cost of disposal. Usually, poke yoke solutions are based on multiple sensors that identify some nonconformities. This means the presence of different equipment (mechanical, electronic) on production line. As a consequence, coupled with the fact that the method itself is an invasive, affecting the production process, would increase its price diagnostics. The bulky machines are the means by which a Poka Yoke system can be implemented become more sophisticated. In this paper we propose a solution for the Poka Yoke system based on image analysis and identification of faults. The solution consists of a module for image acquisition, mid-level processing and an object recognition module using associative memory (Hopfield network type). All are integrated into an embedded system with AD (Analog to Digital) converter and Zync 7000 (22 nm technology).

  11. Toward a unified model of face and object recognition in the human visual system

    PubMed Central

    Wallis, Guy

    2013-01-01

    Our understanding of the mechanisms and neural substrates underlying visual recognition has made considerable progress over the past 30 years. During this period, accumulating evidence has led many scientists to conclude that objects and faces are recognised in fundamentally distinct ways, and in fundamentally distinct cortical areas. In the psychological literature, in particular, this dissociation has led to a palpable disconnect between theories of how we process and represent the two classes of object. This paper follows a trend in part of the recognition literature to try to reconcile what we know about these two forms of recognition by considering the effects of learning. Taking a widely accepted, self-organizing model of object recognition, this paper explains how such a system is affected by repeated exposure to specific stimulus classes. In so doing, it explains how many aspects of recognition generally regarded as unusual to faces (holistic processing, configural processing, sensitivity to inversion, the other-race effect, the prototype effect, etc.) are emergent properties of category-specific learning within such a system. Overall, the paper describes how a single model of recognition learning can and does produce the seemingly very different types of representation associated with faces and objects. PMID:23966963

  12. Classification of fragments of objects by the Fourier masks pattern recognition system

    NASA Astrophysics Data System (ADS)

    Barajas-García, Carolina; Solorza-Calderón, Selene; Álvarez-Borrego, Josué

    2016-05-01

    The automation process of the pattern recognition for fragments of objects is a challenge to humanity. For humans it is relatively easy to classify the fragment of some object even if it is isolated and perhaps this identification could be more complicated if it is partially overlapped by other object. However, the emulation of the functions of the human eye and brain by a computer is not a trivial issue. This paper presents a pattern recognition digital system based on Fourier binary rings masks in order to classify fragments of objects. The system is invariant to position, scale and rotation, and it is robust in the classification of images that have noise. Moreover, it classifies images that present an occlusion or elimination of approximately 50% of the area of the object.

  13. Real-time optical multiple object recognition and tracking system and method

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua Kuang (Inventor)

    1987-01-01

    The invention relates to an apparatus and associated methods for the optical recognition and tracking of multiple objects in real time. Multiple point spatial filters are employed that pre-define the objects to be recognized at run-time. The system takes the basic technology of a Vander Lugt filter and adds a hololens. The technique replaces time, space and cost-intensive digital techniques. In place of multiple objects, the system can also recognize multiple orientations of a single object. This later capability has potential for space applications where space and weight are at a premium.

  14. A knowledge-based object recognition system for applications in the space station

    NASA Astrophysics Data System (ADS)

    Dhawan, Atam P.

    1988-02-01

    A knowledge-based three-dimensional (3D) object recognition system is being developed. The system uses primitive-based hierarchical relational and structural matching for the recognition of 3D objects in the two-dimensional (2D) image for interpretation of the 3D scene. At present, the pre-processing, low-level preliminary segmentation, rule-based segmentation, and the feature extraction are completed. The data structure of the primitive viewing knowledge-base (PVKB) is also completed. Algorithms and programs based on attribute-trees matching for decomposing the segmented data into valid primitives were developed. The frame-based structural and relational descriptions of some objects were created and stored in a knowledge-base. This knowledge-base of the frame-based descriptions were developed on the MICROVAX-AI microcomputer in LISP environment. The simulated 3D scene of simple non-overlapping objects as well as real camera data of images of 3D objects of low-complexity have been successfully interpreted.

  15. A knowledge-based object recognition system for applications in the space station

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1988-01-01

    A knowledge-based three-dimensional (3D) object recognition system is being developed. The system uses primitive-based hierarchical relational and structural matching for the recognition of 3D objects in the two-dimensional (2D) image for interpretation of the 3D scene. At present, the pre-processing, low-level preliminary segmentation, rule-based segmentation, and the feature extraction are completed. The data structure of the primitive viewing knowledge-base (PVKB) is also completed. Algorithms and programs based on attribute-trees matching for decomposing the segmented data into valid primitives were developed. The frame-based structural and relational descriptions of some objects were created and stored in a knowledge-base. This knowledge-base of the frame-based descriptions were developed on the MICROVAX-AI microcomputer in LISP environment. The simulated 3D scene of simple non-overlapping objects as well as real camera data of images of 3D objects of low-complexity have been successfully interpreted.

  16. Hybrid system of optics and computer for 3-D object recognition

    NASA Astrophysics Data System (ADS)

    Li, Qun Z.; Miao, Peng C.; He, Anzhi

    1992-03-01

    In this paper, a hybrid system of optics and computer for 3D object recognition is presented. The system consists of a Twyman-Green interferometer, a He-Ne laser, a computer, a TV camera, and an image processor. The structured light produced by a Twyman-Green interferometer is split in and illuminates objects in two directions at the same time. Moire contour is formed on the surface of object. In order to delete unwanted patterns in moire contour, we don't utilize the moire contour on the surface of object. We place a TV camera in the middle of the angle between two illuminating directions and take two groups of deformed fringes on the surface of objects. Two groups of deformed fringes are processed using the digital image processing system controlled and operated by XOR logic in the computer, moire fringes are then extracted from the complicated environment. 3D coordinates of points of the object are obtained after moire fringe is followed, and points belonging to the same fringe are given the same altitude. The object is described by its projected drawings in three coordinate planes. The projected drawings in three coordinate planes of the known objects are stored in the library of judgment. The object can be recognized by inquiring the library of judgment.

  17. An Intelligent Systems Approach to Automated Object Recognition: A Preliminary Study

    USGS Publications Warehouse

    Maddox, Brian G.; Swadley, Casey L.

    2002-01-01

    Attempts at fully automated object recognition systems have met with varying levels of success over the years. However, none of the systems have achieved high enough accuracy rates to be run unattended. One of the reasons for this may be that they are designed from the computer's point of view and rely mainly on image-processing methods. A better solution to this problem may be to make use of modern advances in computational intelligence and distributed processing to try to mimic how the human brain is thought to recognize objects. As humans combine cognitive processes with detection techniques, such a system would combine traditional image-processing techniques with computer-based intelligence to determine the identity of various objects in a scene.

  18. Real-time optical multiple object recognition and tracking system and method

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)

    1990-01-01

    System for optically recognizing and tracking a plurality of objects within a field of vision. Laser (46) produces a coherent beam (48). Beam splitter (24) splits the beam into object (26) and reference (28) beams. Beam expanders (50) and collimators (52) transform the beams (26, 28) into coherent collimated light beams (26', 28'). A two-dimensional SLM (54), disposed in the object beam (26'), modulates the object beam with optical information as a function of signals from a first camera (16) which develops X and Y signals reflecting the contents of its field of vision. A hololens (38), positioned in the object beam (26') subsequent to the modulator (54), focuses the object beam at a plurality of focal points (42). A planar transparency-forming film (32), disposed with the focal points on an exposable surface, forms a multiple position interference filter (62) upon exposure of the surface and development processing of the film (32). A reflector (53) directing the reference beam (28') onto the film (32), exposes the surface, with images focused by the hololens (38), to form interference patterns on the surface. There is apparatus (16', 64) for sensing and indicating light passage through respective ones of the positions of the filter (62), whereby recognition of objects corresponding to respective ones of the positions of the filter (62) is affected. For tracking, apparatus (64) focuses light passing through the filter (62) onto a matrix of CCD's in a second camera (16') to form a two-dimensional display of the recognized objects.

  19. Geometric filtration of classification-based object detectors in realtime road scene recognition systems

    NASA Astrophysics Data System (ADS)

    Prun, Viktor; Bocharov, Dmitry; Koptelov, Ivan; Sholomov, Dmitry; Postnikov, Vassily

    2015-12-01

    We study the issue of performance improvement of classification-based object detectors by including certain geometric-oriented filters. Configurations of the observed 3D scene may be used as a priori or a posteriori information for object filtration. A priori information is used to select only those object parameters (size and position on image plane) that are in accordance with the scene, restricting implausible combinations of parameters. On the other hand the detection robustness can be enhanced by rejecting detection results using a posteriori information about 3D scene. For example, relative location of detected objects can be used as criteria for filtration. We have included proposed filters in object detection modules of two different industrial vision-based recognition systems and compared the resulting detection quality before detectors improving and after. Filtering with a priori information leads to significant decrease of detector's running time per frame and increase of number of correctly detected objects. Including filter based on a posteriori information leads to decrease of object detection false positive rate.

  20. Object recognition memory in zebrafish.

    PubMed

    May, Zacnicte; Morrill, Adam; Holcombe, Adam; Johnston, Travis; Gallup, Joshua; Fouad, Karim; Schalomon, Melike; Hamilton, Trevor James

    2016-01-01

    The novel object recognition, or novel-object preference (NOP) test is employed to assess recognition memory in a variety of organisms. The subject is exposed to two identical objects, then after a delay, it is placed back in the original environment containing one of the original objects and a novel object. If the subject spends more time exploring one object, this can be interpreted as memory retention. To date, this test has not been fully explored in zebrafish (Danio rerio). Zebrafish possess recognition memory for simple 2- and 3-dimensional geometrical shapes, yet it is unknown if this translates to complex 3-dimensional objects. In this study we evaluated recognition memory in zebrafish using complex objects of different sizes. Contrary to rodents, zebrafish preferentially explored familiar over novel objects. Familiarity preference disappeared after delays of 5 mins. Leopard danios, another strain of D. rerio, also preferred the familiar object after a 1 min delay. Object preference could be re-established in zebra danios by administration of nicotine tartrate salt (50mg/L) prior to stimuli presentation, suggesting a memory-enhancing effect of nicotine. Additionally, exploration biases were present only when the objects were of intermediate size (2 × 5 cm). Our results demonstrate zebra and leopard danios have recognition memory, and that low nicotine doses can improve this memory type in zebra danios. However, exploration biases, from which memory is inferred, depend on object size. These findings suggest zebrafish ecology might influence object preference, as zebrafish neophobia could reflect natural anti-predatory behaviour. PMID:26376244

  1. Recurrent Processing during Object Recognition

    PubMed Central

    O’Reilly, Randall C.; Wyatte, Dean; Herd, Seth; Mingus, Brian; Jilk, David J.

    2013-01-01

    How does the brain learn to recognize objects visually, and perform this difficult feat robustly in the face of many sources of ambiguity and variability? We present a computational model based on the biology of the relevant visual pathways that learns to reliably recognize 100 different object categories in the face of naturally occurring variability in location, rotation, size, and lighting. The model exhibits robustness to highly ambiguous, partially occluded inputs. Both the unified, biologically plausible learning mechanism and the robustness to occlusion derive from the role that recurrent connectivity and recurrent processing mechanisms play in the model. Furthermore, this interaction of recurrent connectivity and learning predicts that high-level visual representations should be shaped by error signals from nearby, associated brain areas over the course of visual learning. Consistent with this prediction, we show how semantic knowledge about object categories changes the nature of their learned visual representations, as well as how this representational shift supports the mapping between perceptual and conceptual knowledge. Altogether, these findings support the potential importance of ongoing recurrent processing throughout the brain’s visual system and suggest ways in which object recognition can be understood in terms of interactions within and between processes over time. PMID:23554596

  2. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  3. Interactive object recognition assistance: an approach to recognition starting from target objects

    NASA Astrophysics Data System (ADS)

    Geisler, Juergen; Littfass, Michael

    1999-07-01

    Recognition of target objects in remotely sensed imagery required detailed knowledge about the target object domain as well as about mapping properties of the sensing system. The art of object recognition is to combine both worlds appropriately and to provide models of target appearance with respect to sensor characteristics. Common approaches to support interactive object recognition are either driven from the sensor point of view and address the problem of displaying images in a manner adequate to the sensing system. Or they focus on target objects and provide exhaustive encyclopedic information about this domain. Our paper discusses an approach to assist interactive object recognition based on knowledge about target objects and taking into account the significance of object features with respect to characteristics of the sensed imagery, e.g. spatial and spectral resolution. An `interactive recognition assistant' takes the image analyst through the interpretation process by indicating step-by-step the respectively most significant features of objects in an actual set of candidates. The significance of object features is expressed by pregenerated trees of significance, and by the dynamic computation of decision relevance for every feature at each step of the recognition process. In the context of this approach we discuss the question of modeling and storing the multisensorial/multispectral appearances of target objects and object classes as well as the problem of an adequate dynamic human-machine-interface that takes into account various mental models of human image interpretation.

  4. Visual object recognition and tracking

    NASA Technical Reports Server (NTRS)

    Chang, Chu-Yin (Inventor); English, James D. (Inventor); Tardella, Neil M. (Inventor)

    2010-01-01

    This invention describes a method for identifying and tracking an object from two-dimensional data pictorially representing said object by an object-tracking system through processing said two-dimensional data using at least one tracker-identifier belonging to the object-tracking system for providing an output signal containing: a) a type of the object, and/or b) a position or an orientation of the object in three-dimensions, and/or c) an articulation or a shape change of said object in said three dimensions.

  5. Development of a lateral migration radiography image generation and object recognition system

    NASA Astrophysics Data System (ADS)

    Wehlburg, Joseph Cornelis

    Compton Backscatter Imaging (CBI) has always been impeded by inefficient sensing of information carrying photons, and extensive structured noise due to object surface features and heterogeneity. In this research project, a new variant of CBI, which substantially resolves both impedimental is suggested, developed and rigorously tested by application to a difficult imaging problem. The new approach is termed Lateral Migration Radiography (LMR) which aptly describes the specific photon history process giving rise to resulting image contrast. The photons employed in this research are conventionally generated x rays. A pencil x-ray beam with a typical filtered-bremsstrahlung photon energy spectrum is perpendicularly incident upon, and systematically rastered over, the object to be imaged. Efficient sensing of information-carrying photons is achieved by employing large-area detectors with sensitive planes perpendicular to the incident beam. A geometric array of a group of such detectors along with varying degrees of detector collimation to discriminate singly-scattered from multiple-scattered, detected x rays is developed. The direct output of the detector-array components is algebraically combined to eliminate image cloaking by surface features and heterogeneity. Image contrast is generated by the variation of x-ray interaction probabilities in the internal details relative to the surrounding material. These major improvements to conventional CBI have allowed the detection of internals with clarity such that recognition of the internal features via the image details is possible in cases where ordinary CBI can not even detect the presence of the internal structure. The test application is the detection and recognition of all-plastic antitank landmines buried in soil at depths of up to three inches. In the military application of clearing 12 inch diameter mines from 14-foot-wide tank-lanes, the spatial resolution requirement of one inch and the speed of 3 to 5 mph over

  6. Hybrid pyramid/neural network object recognition

    NASA Astrophysics Data System (ADS)

    Anandan, P.; Burt, Peter J.; Pearson, John C.; Spence, Clay D.

    1994-02-01

    This work concerns computationally efficient computer vision methods for the search for and identification of small objects in large images. The approach combines neural network pattern recognition with pyramid-based coarse-to-fine search, in a way that eliminates the drawbacks of each method when used by itself and, in addition, improves object identification through learning and exploiting the low-resolution image context associated with the objects. The presentation will describe the system architecture and the performance on illustrative problems.

  7. Disruptive camouflage impairs object recognition.

    PubMed

    Webster, Richard J; Hassall, Christopher; Herdman, Chris M; Godin, Jean-Guy J; Sherratt, Thomas N

    2013-01-01

    Whether hiding from predators, or avoiding battlefield casualties, camouflage is widely employed to prevent detection. Disruptive coloration is a seemingly well-known camouflage mechanism proposed to function by breaking up an object's salient features (for example their characteristic outline), rendering objects more difficult to recognize. However, while a wide range of animals are thought to evade detection using disruptive patterns, there is no direct experimental evidence that disruptive coloration impairs recognition. Using humans searching for computer-generated moth targets, we demonstrate that the number of edge-intersecting patches on a target reduces the likelihood of it being detected, even at the expense of reduced background matching. Crucially, eye-tracking data show that targets with more edge-intersecting patches were looked at for longer periods prior to attack, and passed-over more frequently during search tasks. We therefore show directly that edge patches enhance survivorship by impairing recognition, confirming that disruptive coloration is a distinct camouflage strategy, not simply an artefact of background matching. PMID:24152693

  8. A fast 3-D object recognition algorithm for the vision system of a special-purpose dexterous manipulator

    NASA Technical Reports Server (NTRS)

    Hung, Stephen H. Y.

    1989-01-01

    A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.

  9. Object recognition by artificial cortical maps.

    PubMed

    Plebe, Alessio; Domenella, Rosaria Grazia

    2007-09-01

    Object recognition is one of the most important functions of the human visual system, yet one of the least understood, this despite the fact that vision is certainly the most studied function of the brain. We understand relatively well how several processes in the cortical visual areas that support recognition capabilities take place, such as orientation discrimination and color constancy. This paper proposes a model of the development of object recognition capability, based on two main theoretical principles. The first is that recognition does not imply any sort of geometrical reconstruction, it is instead fully driven by the two dimensional view captured by the retina. The second assumption is that all the processing functions involved in recognition are not genetically determined or hardwired in neural circuits, but are the result of interactions between epigenetic influences and basic neural plasticity mechanisms. The model is organized in modules roughly related to the main visual biological areas, and is implemented mainly using the LISSOM architecture, a recent neural self-organizing map model that simulates the effects of intercortical lateral connections. This paper shows how recognition capabilities, similar to those found in brain ventral visual areas, can develop spontaneously by exposure to natural images in an artificial cortical model. PMID:17604954

  10. The uncrowded window of object recognition

    PubMed Central

    Pelli, Denis G; Tillman, Katharine A

    2009-01-01

    It is now emerging that vision is usually limited by object spacing rather than size. The visual system recognizes an object by detecting and then combining its features. ‘Crowding’ occurs when objects are too close together and features from several objects are combined into a jumbled percept. Here, we review the explosion of studies on crowding—in grating discrimination, letter and face recognition, visual search, selective attention, and reading—and find a universal principle, the Bouma law. The critical spacing required to prevent crowding is equal for all objects, although the effect is weaker between dissimilar objects. Furthermore, critical spacing at the cortex is independent of object position, and critical spacing at the visual field is proportional to object distance from fixation. The region where object spacing exceeds critical spacing is the ‘uncrowded window’. Observers cannot recognize objects outside of this window and its size limits the speed of reading and search. PMID:18828191

  11. Invariant object recognition based on extended fragments.

    PubMed

    Bart, Evgeniy; Hegdé, Jay

    2012-01-01

    Visual appearance of natural objects is profoundly affected by viewing conditions such as viewpoint and illumination. Human subjects can nevertheless compensate well for variations in these viewing conditions. The strategies that the visual system uses to accomplish this are largely unclear. Previous computational studies have suggested that in principle, certain types of object fragments (rather than whole objects) can be used for invariant recognition. However, whether the human visual system is actually capable of using this strategy remains unknown. Here, we show that human observers can achieve illumination invariance by using object fragments that carry the relevant information. To determine this, we have used novel, but naturalistic, 3-D visual objects called "digital embryos." Using novel instances of whole embryos, not fragments, we trained subjects to recognize individual embryos across illuminations. We then tested the illumination-invariant object recognition performance of subjects using fragments. We found that the performance was strongly correlated with the mutual information (MI) of the fragments, provided that MI value took variations in illumination into consideration. This correlation was not attributable to any systematic differences in task difficulty between different fragments. These results reveal two important principles of invariant object recognition. First, the subjects can achieve invariance at least in part by compensating for the changes in the appearance of small local features, rather than of whole objects. Second, the subjects do not always rely on generic or pre-existing invariance of features (i.e., features whose appearance remains largely unchanged by variations in illumination), and are capable of using learning to compensate for appearance changes when necessary. These psychophysical results closely fit the predictions of earlier computational studies of fragment-based invariant object recognition. PMID:22936910

  12. Relations among Early Object Recognition Skills: Objects and Letters

    ERIC Educational Resources Information Center

    Augustine, Elaine; Jones, Susan S.; Smith, Linda B.; Longfield, Erica

    2015-01-01

    Human visual object recognition is multifaceted and comprised of several domains of expertise. Developmental relations between young children's letter recognition and their 3-dimensional object recognition abilities are implicated on several grounds but have received little research attention. Here, we ask how preschoolers' success in recognizing…

  13. Timecourse of neural signatures of object recognition.

    PubMed

    Johnson, Jeffrey S; Olshausen, Bruno A

    2003-01-01

    How long does it take for the human visual system to recognize objects? This issue is important for understanding visual cortical function as it places constraints on models of the information processing underlying recognition. We designed a series of event-related potential (ERP) experiments to measure the timecourse of electrophysiological correlates of object recognition. We find two distinct types of components in the ERP recorded during categorization of natural images. One is an early presentation-locked signal arising around 135 ms that is present when there are low-level feature differences between images. The other is a later, recognition-related component arising between 150-300 ms. Unlike the early component, the latency of the later component covaries with the subsequent reaction time. In contrast to previous studies suggesting that the early, presentation-locked component of neural activity is correlated to recognition, these results imply that the neural signatures of recognition have a substantially later and variable time of onset. PMID:14507255

  14. New method of 3-D object recognition

    NASA Astrophysics Data System (ADS)

    He, An-Zhi; Li, Qun Z.; Miao, Peng C.

    1991-12-01

    In this paper, a new method of 3-D object recognition using optical techniques and a computer is presented. We perform 3-D object recognition using moire contour to obtain the object's 3- D coordinates, projecting drawings of the object in three coordinate planes to describe it and using a method of inquiring library of judgement to match objects. The recognition of a simple geometrical entity is simulated by computer and studied experimentally. The recognition of an object which is composed of a few simple geometrical entities is discussed.

  15. Infant Visual Attention and Object Recognition

    PubMed Central

    Reynolds, Greg D.

    2015-01-01

    This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. PMID:25596333

  16. Explanation mode for Bayesian automatic object recognition

    NASA Astrophysics Data System (ADS)

    Hazlett, Thomas L.; Cofer, Rufus H.; Brown, Harold K.

    1992-09-01

    One of the more useful techniques to emerge from AI is the provision of an explanation modality used by the researcher to understand and subsequently tune the reasoning of an expert system. Such a capability, missing in the arena of statistical object recognition, is not that difficult to provide. Long standing results show that the paradigm of Bayesian object recognition is truly optimal in a minimum probability of error sense. To a large degree, the Bayesian paradigm achieves optimality through adroit fusion of a wide range of lower informational data sources to give a higher quality decision--a very 'expert system' like capability. When various sources of incoming data are represented by C++ classes, it becomes possible to automatically backtrack the Bayesian data fusion process, assigning relative weights to the more significant datums and their combinations. A C++ object oriented engine is then able to synthesize 'English' like textural description of the Bayesian reasoning suitable for generalized presentation. Key concepts and examples are provided based on an actual object recognition problem.

  17. REKRIATE: A Knowledge Representation System for Object Recognition and Scene Interpretation

    NASA Astrophysics Data System (ADS)

    Meystel, Alexander M.; Bhasin, Sanjay; Chen, X.

    1990-02-01

    What humans actually observe and how they comprehend this information is complex due to Gestalt processes and interaction of context in predicting the course of thinking and enforcing one idea while repressing another. How we extract the knowledge from the scene, what we get from the scene indeed and what we bring from our mechanisms of perception are areas separated by a thin, ill-defined line. The purpose of this paper is to present a system for Representing Knowledge and Recognizing and Interpreting Attention Trailed Entities dubbed as REKRIATE. It will be used as a tool for discovering the underlying principles involved in knowledge representation required for conceptual learning. REKRIATE has some inherited knowledge and is given a vocabulary which is used to form rules for identification of the object. It has various modalities of sensing and has the ability to measure the distance between the objects in the image as well as the similarity between different images of presumably the same object. All sensations received from matrix of different sensors put into an adequate form. The methodology proposed is applicable to not only the pictorial or visual world representation, but to any sensing modality. It is based upon the two premises: a) inseparability of all domains of the world representation including linguistic, as well as those formed by various sensor modalities. and b) representativity of the object at several levels of resolution simultaneously.

  18. Relations among early object recognition skills: Objects and letters

    PubMed Central

    Augustine, Elaine; Jones, Susan S.; Smith, Linda B.; Longfield, Erica

    2014-01-01

    Human visual object recognition is multifaceted, with several domains of expertise. Developmental relations between young children's letter recognition and their 3-dimensional object recognition abilities are implicated on several grounds but have received little research attention. Here, we ask how preschoolers’ success in recognizing letters relates to their ability to recognize 3-dimensional objects from sparse shape information alone. A relation is predicted because perception of the spatial relations is critical in both domains. Seventy-three 2 ½- to 4-year-old children completed a Letter Recognition task, measuring the ability to identify a named letter among 3 letters with similar shapes, and a “Shape Caricature Recognition” task, measuring recognition of familiar objects from sparse, abstract information about their part shapes and the spatial relations among those parts. Children also completed a control “Shape Bias” task, in which success depends on recognition of overall object shape but not of relational structure. Children's success in letter recognition was positively related to their shape caricature recognition scores, but not to their shape bias scores. The results suggest that letter recognition builds upon developing skills in attending to and representing the relational structure of object shape, and that these skills are common to both 2-dimensional and 3-dimensional object perception. PMID:25969673

  19. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    PubMed

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. PMID

  20. A Vision System for Real Time Road and Object Recognition for Vehicle Guidance

    NASA Astrophysics Data System (ADS)

    Jackson, T. A.; Samuelsen, G. S.

    1987-02-01

    One crucial component of a control system for autonomous vehicle guidance is real time image analysis. This system part is burdened by the maximum flow of information. To overcome the high demands in computation power a combination of knowledge based scene analysis and special hardware has been developed. The use of knowledge based image analysis supports real time processing not by schematically evaluating all parts of the image, but only evaluating those which contain relevant information. This is due to the fact that in many practical problems the relevant information is very unevenly distributed over the image. Preknowledge of the problem or the aim of the mission and expectations or predictions about the scene sustantially reduce the amount of information to be processed. The operations during such an analysis may be divided into two classes - simple processes, e.g. filters, correlation, contour processing and simple search strategies - complex search and control strategy This classification supplied the concept for a special hardware. The complex tasks are performed by a universal processor 80286 while the remaining tasks are executed by a special coprocessor (including image memory). This combination permits the use of filter masks with a arbitrary geometry together with a powerful search strategy. A number of these basic modules may be configured into a multiprocessor system. The universal processor is programmed in a high level language. To support the coprocessor a set of software tools has been built. They permit interactive graphical manipulation of filtermasks, generation of simple search strategies and non real time simulation. Also the real data structures that control the function of the coprocessor are generated by this software package. The system is used within our autonomous vehicle project. One set of algorithms tracks the border lines of the road even if they are broken or disturbed by dirt. Also shadows of bridges crossing the road are

  1. Object Recognition by a Hopfield Neural Network

    NASA Astrophysics Data System (ADS)

    Li, Wei; Nasrabadi, Nasser M.

    1990-03-01

    A model-based object recognition technique is introduced in this paper to identify and locate an object in any position and orientation. The test scenes could consist of an isolated object or several partially overlapping objects. A cooperative feature matching technique is proposed which is implemented by a Hopfield neural network. The proposed matching technique uses the parallelism of the neural network to globally match all the objects (they may be overlapping or touching) in the input scene against all the object models in the model-database at the same time. For each model, distinct features such as curvature points (corners) are extracted and a graph consisting of a number of nodes connected by arcs is constructed. Each node in the graph represents a feature which has a numerical feature value and is connected to other nodes by an arc representing the relationship or compatibility between them. Object recognition is formulated as matching a global model graph, representing all the object models, with an input scene graph representing a single object or several overlapping objects. A 2-dimensional Hopfield binary neural network is implemented to perform a subgraph isomorphism to obtain the optimal compatible matching features between the two graphs. The synaptic interconnection weights between neurons are designed such that matched features belonging to the same model receive excitatory supports, and matched features belonging to different models receive an inhibitory support or a mutual support depending on whether the input scene is an isolated object or several overlapping objects. The coordinate transformation for mapping each pair of matched nodes from the model onto the input scene is calculated, followed by a simple clustering technique to eliminate any false matches. The orientation and the position of objects in the scene are then calculated by averaging the transformation of correct matched nodes. Some simulation results are shown to illustrate the

  2. Object Recognition Memory and the Rodent Hippocampus

    ERIC Educational Resources Information Center

    Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.

    2010-01-01

    In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…

  3. The Role of Object Recognition in Young Infants' Object Segregation.

    ERIC Educational Resources Information Center

    Carey, Susan; Williams, Travis

    2001-01-01

    Discusses Needham's findings by asserting that they extend understanding of infant perception by showing that the memory representations infants draw upon have bound together information about shape, color, and pattern. Considers the distinction between two senses of "recognition" and asks in which sense object recognition contributes to object…

  4. Invariant visual object recognition: biologically plausible approaches.

    PubMed

    Robinson, Leigh; Rolls, Edmund T

    2015-10-01

    Key properties of inferior temporal cortex neurons are described, and then, the biological plausibility of two leading approaches to invariant visual object recognition in the ventral visual system is assessed to investigate whether they account for these properties. Experiment 1 shows that VisNet performs object classification with random exemplars comparably to HMAX, except that the final layer C neurons of HMAX have a very non-sparse representation (unlike that in the brain) that provides little information in the single-neuron responses about the object class. Experiment 2 shows that VisNet forms invariant representations when trained with different views of each object, whereas HMAX performs poorly when assessed with a biologically plausible pattern association network, as HMAX has no mechanism to learn view invariance. Experiment 3 shows that VisNet neurons do not respond to scrambled images of faces, and thus encode shape information. HMAX neurons responded with similarly high rates to the unscrambled and scrambled faces, indicating that low-level features including texture may be relevant to HMAX performance. Experiment 4 shows that VisNet can learn to recognize objects even when the view provided by the object changes catastrophically as it transforms, whereas HMAX has no learning mechanism in its S-C hierarchy that provides for view-invariant learning. This highlights some requirements for the neurobiological mechanisms of high-level vision, and how some different approaches perform, in order to help understand the fundamental underlying principles of invariant visual object recognition in the ventral visual stream. PMID:26335743

  5. Automatic anatomy recognition of sparse objects

    NASA Astrophysics Data System (ADS)

    Zhao, Liming; Udupa, Jayaram K.; Odhner, Dewey; Wang, Huiqian; Tong, Yubing; Torigian, Drew A.

    2015-03-01

    A general body-wide automatic anatomy recognition (AAR) methodology was proposed in our previous work based on hierarchical fuzzy models of multitudes of objects which was not tied to any specific organ system, body region, or image modality. That work revealed the challenges encountered in modeling, recognizing, and delineating sparse objects throughout the body (compared to their non-sparse counterparts) if the models are based on the object's exact geometric representations. The challenges stem mainly from the variation in sparse objects in their shape, topology, geographic layout, and relationship to other objects. That led to the idea of modeling sparse objects not from the precise geometric representations of their samples but by using a properly designed optimal super form. This paper presents the underlying improved methodology which includes 5 steps: (a) Collecting image data from a specific population group G and body region Β and delineating in these images the objects in Β to be modeled; (b) Building a super form, S-form, for each object O in Β; (c) Refining the S-form of O to construct an optimal (minimal) super form, S*-form, which constitutes the (fuzzy) model of O; (d) Recognizing objects in Β using the S*-form; (e) Defining confounding and background objects in each S*-form for each object and performing optimal delineation. Our evaluations based on 50 3D computed tomography (CT) image sets in the thorax on four sparse objects indicate that substantially improved performance (FPVF~2%, FNVF~10%, and success where the previous approach failed) can be achieved using the new approach.

  6. Developing a multi-Kinect-system for monitoring in dairy cows: object recognition and surface analysis using wavelets.

    PubMed

    Salau, J; Haas, J H; Thaller, G; Leisen, M; Junge, W

    2016-09-01

    Camera-based systems in dairy cattle were intensively studied over the last years. Different from this study, single camera systems with a limited range of applications were presented, mostly using 2D cameras. This study presents current steps in the development of a camera system comprising multiple 3D cameras (six Microsoft Kinect cameras) for monitoring purposes in dairy cows. An early prototype was constructed, and alpha versions of software for recording, synchronizing, sorting and segmenting images and transforming the 3D data in a joint coordinate system have already been implemented. This study introduced the application of two-dimensional wavelet transforms as method for object recognition and surface analyses. The method was explained in detail, and four differently shaped wavelets were tested with respect to their reconstruction error concerning Kinect recorded depth maps from different camera positions. The images' high frequency parts reconstructed from wavelet decompositions using the haar and the biorthogonal 1.5 wavelet were statistically analyzed with regard to the effects of image fore- or background and of cows' or persons' surface. Furthermore, binary classifiers based on the local high frequencies have been implemented to decide whether a pixel belongs to the image foreground and if it was located on a cow or a person. Classifiers distinguishing between image regions showed high (⩾0.8) values of Area Under reciever operation characteristic Curve (AUC). The classifications due to species showed maximal AUC values of 0.69. PMID:26837672

  7. Possibility of object recognition using Altera's model based design approach

    NASA Astrophysics Data System (ADS)

    Tickle, A. J.; Wu, F.; Harvey, P. K.; Smith, J. S.

    2009-07-01

    Object recognition is an image processing task of finding a given object in a selected image or video sequence. Object recognition can be divided into two areas: one of these is decision-theoretic and deals with patterns described by quantitative descriptors, for example such as length, area, shape and texture. With this Graphical User Interface Circuitry (GUIC) methodology employed here being relatively new for object recognition systems, the aim of this work is to identify if the developed circuitry can detect certain shapes or strings within the target image. A much smaller reference image feeds the preset data for identification, tests are conducted for both binary and greyscale and the additional mathematical morphology to highlight the area within the target image with the object(s) are located is also presented. This then provides proof that basic recognition methods are valid and would allow the progression to developing decision-theoretical and learning based approaches using GUICs for use in multidisciplinary tasks.

  8. Integration trumps selection in object recognition.

    PubMed

    Saarela, Toni P; Landy, Michael S

    2015-03-30

    Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154

  9. High speed optical object recognition processor with massive holographic memory

    NASA Technical Reports Server (NTRS)

    Chao, T.; Zhou, H.; Reyes, G.

    2002-01-01

    Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.

  10. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation.

    PubMed

    Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro

    2013-11-01

    Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory. PMID:24036398

  11. Integrating task-directed planning with reactive object recognition

    NASA Astrophysics Data System (ADS)

    Dickinson, Sven J.; Stevenson, Suzanne; Amdur, Eugene; Tsotsos, John K.; Olsson, Lars

    1993-08-01

    We describe a robot vision system that achieves complex object recognition with two layers of behaviors, performing the tasks of planning and object recognition, respectively. The recognition layer is a pipeline in which successive stages take in images from a stereo head, recover relevant features, build intermediate representations, and deposit 3-D objects into a world model. Each stage is an independent process that reacts automatically to output from the previous stage. This reactive system operates continuously and autonomously to construct the robot's 3-D model of the environment. Sitting above the recognition pipeline is the planner which is responsible for populating the world model with objects that satisfy the high-level goals of the system. For example, upon examination of the world model, the planner can decide to direct the head to another location, gating new images into the recognition pipeline, causing new objects to be deposited into the world model. Alternatively, the planner can alter the recognition behavior of the pipeline so that objects of a certain type or at a certain location appear in the world model.

  12. Shape and Color Features for Object Recognition Search

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.

    2012-01-01

    A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.

  13. Object recognition with hierarchical discriminant saliency networks

    PubMed Central

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and

  14. Object recognition with hierarchical discriminant saliency networks.

    PubMed

    Han, Sunhyoung; Vasconcelos, Nuno

    2014-01-01

    The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and

  15. A new method of edge detection for object recognition

    USGS Publications Warehouse

    Maddox, Brian G.; Rhew, Benjamin

    2004-01-01

    Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.

  16. Dealing with uncertain feature assessments in interactive object recognition

    NASA Astrophysics Data System (ADS)

    Bauer, Alexander; Jürgens, Verena; Angele, Susanne

    2010-10-01

    Object recognition is a typical task of aerial reconnaissance and especially in military applications, to determine the class of an unknown object on the battlefield can give valuable information on its capabilities and its threat. RecceMan® (Reconnaissance Manual) is a decision support system for object recognition developed by the Fraunhofer IOSB. It supports object recognition by automating the tedious task of matching the object features with the set of possible object classes, while leaving the assessment of features to the trained human interpreter. The quality of the features assessed by the user is influenced by several factors such as the quality of the image of the object. These factors are potential sources of error, which can lead to an incorrect classification and therefore have to be considered by the system. To address this issue, two methods for consideration of uncertainty in human feature assessment - a probabilistic and a heuristic approach - are presented and compared based on an experiment in the exemplary domain of flower recognition.

  17. Model attraction in medical image object recognition

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Zingaretti, Primo

    1995-04-01

    This paper presents as new approach to image recognition based on a general attraction principle. A cognitive recognition is governed by a 'focus on attention' process that concentrates on the visual data subset of task- relevant type only. Our model-based approach combines it with another process, focus on attraction, which concentrates on the transformations of visual data having relevance for the matching. The recognition process is characterized by an intentional evolution of the visual data. This chain of image transformations is viewed as driven by an attraction field that attempts to reduce the distance between the image-point and the model-point in the feature space. The field sources are determined during a learning phase, by supplying the system with a training set. The paper describes a medical interpretation case in the feature space, concerning human skin lesions. The samples of the training set, supplied by the dermatologists, allow the system to learn models of lesions in terms of features such as hue factor, asymmetry factor, and asperity factor. The comparison of the visual data with the model derives the trend of image transformations, allowing a better definition of the given image and its classification. The algorithms are implemented in C language on a PC equipped with Matrox Image Series IM-1280 acquisition and processing boards. The work is now in progress.

  18. A smoothness constraint on the development of object recognition.

    PubMed

    Wood, Justin N

    2016-08-01

    Understanding how the brain learns to recognize objects is one of the ultimate goals in the cognitive sciences. To date, however, we have not yet characterized the environmental factors that cause object recognition to emerge in the newborn brain. Here, I present the results of a high-throughput controlled-rearing experiment that examined whether the development of object recognition requires experience with temporally smooth visual objects. When newborn chicks (Gallus gallus) were raised with virtual objects that moved smoothly over time, the chicks developed accurate color recognition, shape recognition, and color-shape binding abilities. In contrast, when newborn chicks were raised with virtual objects that moved non-smoothly over time, the chicks' object recognition abilities were severely impaired. These results provide evidence for a "smoothness constraint" on newborn object recognition. Experience with temporally smooth objects facilitates the development of object recognition. PMID:27208825

  19. Field of Attention for Instantaneous Object Recognition

    PubMed Central

    Yao, Jian-Gao; Gao, Xin; Yan, Hong-Mei; Li, Chao-Yi

    2011-01-01

    Background Instantaneous object discrimination and categorization are fundamental cognitive capacities performed with the guidance of visual attention. Visual attention enables selection of a salient object within a limited area of the visual field; we referred to as “field of attention” (FA). Though there is some evidence concerning the spatial extent of object recognition, the following questions still remain unknown: (a) how large is the FA for rapid object categorization, (b) how accuracy of attention is distributed over the FA, and (c) how fast complex objects can be categorized when presented against backgrounds formed by natural scenes. Methodology/Principal Findings To answer these questions, we used a visual perceptual task in which subjects were asked to focus their attention on a point while being required to categorize briefly flashed (20 ms) photographs of natural scenes by indicating whether or not these contained an animal. By measuring the accuracy of categorization at different eccentricities from the fixation point, we were able to determine the spatial extent and the distribution of accuracy over the FA, as well as the speed of categorizing objects using stimulus onset asynchrony (SOA). Our results revealed that subjects are able to rapidly categorize complex natural images within about 0.1 s without eye movement, and showed that the FA for instantaneous image categorization covers a visual field extending 20°×24°, and accuracy was highest (>90%) at the center of FA and declined with increasing eccentricity. Conclusions/Significance In conclusion, human beings are able to categorize complex natural images at a glance over a large extent of the visual field without eye movement. PMID:21283690

  20. Rule-Based Orientation Recognition Of A Moving Object

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1989-03-01

    This paper presents a detailed description and a comparative analysis of the algorithms used to determine the position and orientation of an object in real-time. The exemplary object, a freely moving gold-fish in an aquarium, provides "real-world" motion, with definable characteristics of motion (the fish never swims upside-down) and the complexities of a non-rigid body. For simplicity of implementation, and since a restricted and stationary viewing domain exists (fish-tank), we reduced the problem of obtaining 3D correspondence information to trivial alignment calculations by using two cameras orthogonally viewing the object. We applied symbolic processing techniques to recognize the 3-D orientation of a moving object of known identity in real-time. Assuming motion, each new frame (sensed by the two cameras) provides images of the object's profile which has most likely undergone translation, rotation, scaling and/or bending of the non-rigid object since the previous frame. We developed an expert system which uses heuristics of the object's motion behavior in the form of rules and information obtained via low-level image processing (like numerical inertial axis calculations) to dynamically estimate the object's orientation. An inference engine provides these estimates at frame rates of up to 10 per second (which is essentially real-time). The advantages of the rule-based approach to orientation recognition will be compared other pattern recognition techniques. Our results of an investigation of statistical pattern recognition, neural networks, and procedural techniques for orientation recognition will be included. We implemented the algorithms in a rapid-prototyping environment, the TI-Ezplorer, equipped with an Odyssey and custom imaging hardware. A brief overview of the workstation is included to clarify one motivation for our choice of algorithms. These algorithms exploit two facets of the prototype image processing and understanding workstation - both low

  1. A Hierarchical Control Strategy For 2-D Object Recognition

    NASA Astrophysics Data System (ADS)

    Cullen, Mark F.; Kuszmaul, Christopher L.; Ramsey, Timothy S.

    1988-02-01

    A control strategy for 2-D object recognition has been implemented on a hardware configuration which includes a Symbolics Lisp Machine (TM) as a front-end processor to a 16,384 processor Connection Machine (TM). The goal of this ongoing research program is to develop an image analysis system as an aid to human image interpretation experts. Our efforts have concentrated on 2-D object recognition in aerial imagery specifically, the detection and identification of aircraft near the Danbury, CT airport. Image processing functions to label and extract image features are implemented on the Connection Machine for robust computation. A model matching function was also designed and implemented on the CM for object recognition. In this paper we report on the integration of these algorithms on the CM, with a hierarchical control strategy to focus and guide the object recognition task to particular objects and regions of interest in imagery. It will be shown that these tech-nigues may be used to manipulate imagery on the order of 2k x 2k pixels in near-real-time.

  2. A novel multi-view object recognition in complex background

    NASA Astrophysics Data System (ADS)

    Chang, Yongxin; Yu, Huapeng; Xu, Zhiyong; Fu, Chengyu; Gao, Chunming

    2015-02-01

    Recognizing objects from arbitrary aspects is always a highly challenging problem in computer vision, and most existing algorithms mainly focus on a specific viewpoint research. Hence, in this paper we present a novel recognizing framework based on hierarchical representation, part-based method and learning in order to recognize objects from different viewpoints. The learning evaluates the model's mistakes and feeds it back the detector to avid the same mistakes in the future. The principal idea is to extract intrinsic viewpoint invariant features from the unseen poses of object, and then to take advantage of these shared appearance features to support recognition combining with the improved multiple view model. Compared with other recognition models, the proposed approach can efficiently tackle multi-view problem and promote the recognition versatility of our system. For an quantitative valuation The novel algorithm has been tested on several benchmark datasets such as Caltech 101 and PASCAL VOC 2010. The experimental results validate that our approach can recognize objects more precisely and the performance outperforms others single view recognition methods.

  3. Object Recognition using Feature- and Color-Based Methods

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Duong, Vu; Stubberud, Allen

    2008-01-01

    An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.

  4. Automatic Recognition of Object Names in Literature

    NASA Astrophysics Data System (ADS)

    Bonnin, C.; Lesteven, S.; Derriere, S.; Oberto, A.

    2008-08-01

    SIMBAD is a database of astronomical objects that provides (among other things) their bibliographic references in a large number of journals. Currently, these references have to be entered manually by librarians who read each paper. To cope with the increasing number of papers, CDS develops a tool to assist the librarians in their work, taking advantage of the Dictionary of Nomenclature of Celestial Objects, which keeps track of object acronyms and of their origin. The program searches for object names directly in PDF documents by comparing the words with all the formats stored in the Dictionary of Nomenclature. It also searches for variable star names based on constellation names and for a large list of usual names such as Aldebaran or the Crab. Object names found in the documents often correspond to several astronomical objects. The system retrieves all possible matches, displays them with their object type given by SIMBAD, and lets the librarian make the final choice. The bibliographic reference can then be automatically added to the object identifiers in the database. Besides, the systematic usage of the Dictionary of Nomenclature, which is updated manually, permitted to automatically check it and to detect errors and inconsistencies. Last but not least, the program collects some additional information such as the position of the object names in the document (in the title, subtitle, abstract, table, figure caption...) and their number of occurrences. In the future, this will permit to calculate the 'weight' of an object in a reference and to provide SIMBAD users with an important new information, which will help them to find the most relevant papers in the object reference list.

  5. Feature based recognition of submerged objects in holographic imagery

    NASA Astrophysics Data System (ADS)

    Ratto, Christopher R.; Beagley, Nathaniel; Baldwin, Kevin C.; Shipley, Kara R.; Sternberger, Wayne I.

    2014-05-01

    The ability to autonomously sense and characterize underwater objects in situ is desirable in applications of unmanned underwater vehicles (UUVs). In this work, underwater object recognition was explored using a digital holographic system. Two experiments were performed in which several objects of varying size, shape, and material were submerged in a 43,000 gallon test tank. Holograms were collected from each object at multiple distances and orientations, with the imager located either outside the tank (looking through a porthole) or submerged (looking downward). The resultant imagery from these holograms was preprocessed to improve dynamic range, mitigate speckle, and segment out the image of the object. A collection of feature descriptors were then extracted from the imagery to characterize various object properties (e.g., shape, reflectivity, texture). The features extracted from images of multiple objects, collected at different imaging geometries, were then used to train statistical models for object recognition tasks. The resulting classification models were used to perform object classification as well as estimation of various parameters of the imaging geometry. This information can then be used to inform the design of autonomous sensing algorithms for UUVs employing holographic imagers.

  6. Video Scene Recognition System

    NASA Astrophysics Data System (ADS)

    Wong, Robert Y.; Sallak, Rashid M.

    1983-03-01

    Microprocessors are used to show a possible implementation of a multiprocessoi system for video scene recognition operations. The system was designed in the multiple input stream and multiple data stream (MIMD) configuration. "Autonomous cooperation" among the working processors is supervised by a global operating system, the heart of which is the scheduler. The design of the scheduler and the overall operations of the system are discussed.

  7. A hybrid learning approach for better recognition of visual objects

    SciTech Connect

    Imam, I.F.; Gutta, S.

    1996-12-31

    Real world images often contain similar objects but with different rotations, noise, or other visual alterations. Vision systems should be able to recognize objects regardless of these visual alterations. This paper presents a novel approach for learning optimized structures of classifiers for recognizing visual objects regardless of certain types of visual alterations. The approach consists of two phases. The first phase is concerned with learning classifications of a set of standard and altered objects. The second phase is concerned with discovering an optimized structure of classifiers for recognizing objects from unseen images. This paper presents an application of this approach to a domain of 15 classes of hand gestures. The experimental results show significant improvement in the recognition rate rather than using a single classifier or multiple classifiers with thresholds.

  8. Object recognition by triaural perception on a mobile robot

    NASA Astrophysics Data System (ADS)

    Peremans, Herbert; Van Campenhout, Jan M.

    1993-05-01

    To overcome some of the problems associated with the use of ultrasonic sensors for navigation purposes, we propose a measurement system composed of three ultrasonic sensors, one transmitting and three receiving, placed on a moving vehicle. By triangulation this tri-aural sensor is able to determine the position, both distance and bearing, of the objects in the field of view. In this paper, we derive a statistical test which combines consecutive sightings by the moving sensor, of the same object to determine whether it is an edge, a plane or a corner. This test is formulated as a sequential test which guarantees that the object will be recognized after the minimal number of measurements given predetermined error probabilities. We include experimental data showing the object recognition capabilities of the system.

  9. Temporal scales of auditory objects underlying birdsong vocal recognition

    PubMed Central

    Gentner, Timothy Q.

    2008-01-01

    Vocal recognition is common among songbirds, and provides an excellent model system to study the perceptual and neurobiological mechanisms for processing natural vocal communication signals. Male European starlings, a species of songbird, learn to recognize the songs of multiple conspecific males by attending to stereotyped acoustic patterns, and these learned patterns elicit selective neuronal responses in auditory forebrain neurons. The present study investigates the perceptual grouping of spectrotemporal acoustic patterns in starling song at multiple temporal scales. The results show that permutations in sequencing of submotif acoustic features have significant effects on song recognition, and that these effects are specific to songs that comprise learned motifs. The observations suggest that (1) motifs form auditory objects embedded in a hierarchy of acoustic patterns, (2) that object-based song perception emerges without explicit reinforcement, and (3) that multiple temporal scales within the acoustic pattern hierarchy convey information about the individual identity of the singer. The authors discuss the results in the context of auditory object formation and talker recognition. PMID:18681620

  10. Fast neuromimetic object recognition using FPGA outperforms GPU implementations.

    PubMed

    Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph

    2013-08-01

    Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks. PMID:24808564

  11. An Efficient Bayesian Approach to Exploit the Context of Object-Action Interaction for Object Recognition.

    PubMed

    Yoon, Sungbaek; Park, Hyunjin; Yi, Juneho

    2016-01-01

    This research features object recognition that exploits the context of object-action interaction to enhance the recognition performance. Since objects have specific usages, and human actions corresponding to these usages can be associated with these objects, human actions can provide effective information for object recognition. When objects from different categories have similar appearances, the human action associated with each object can be very effective in resolving ambiguities related to recognizing these objects. We propose an efficient method that integrates human interaction with objects into a form of object recognition. We represent human actions by concatenating poselet vectors computed from key frames and learn the probabilities of objects and actions using random forest and multi-class AdaBoost algorithms. Our experimental results show that poselet representation of human actions is quite effective in integrating human action information into object recognition. PMID:27347977

  12. An Efficient Bayesian Approach to Exploit the Context of Object-Action Interaction for Object Recognition

    PubMed Central

    Yoon, Sungbaek; Park, Hyunjin; Yi, Juneho

    2016-01-01

    This research features object recognition that exploits the context of object-action interaction to enhance the recognition performance. Since objects have specific usages, and human actions corresponding to these usages can be associated with these objects, human actions can provide effective information for object recognition. When objects from different categories have similar appearances, the human action associated with each object can be very effective in resolving ambiguities related to recognizing these objects. We propose an efficient method that integrates human interaction with objects into a form of object recognition. We represent human actions by concatenating poselet vectors computed from key frames and learn the probabilities of objects and actions using random forest and multi-class AdaBoost algorithms. Our experimental results show that poselet representation of human actions is quite effective in integrating human action information into object recognition. PMID:27347977

  13. Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice.

    PubMed

    Varga, Dániel; Herédi, Judit; Kánvási, Zita; Ruszka, Marian; Kis, Zsolt; Ono, Etsuro; Iwamori, Naoki; Iwamori, Tokuko; Takakuwa, Hiroki; Vécsei, László; Toldi, József; Gellért, Levente

    2015-01-01

    L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice. PMID:26136670

  14. Visual Object Recognition and Tracking of Tools

    NASA Technical Reports Server (NTRS)

    English, James; Chang, Chu-Yin; Tardella, Neil

    2011-01-01

    A method has been created to automatically build an algorithm off-line, using computer-aided design (CAD) models, and to apply this at runtime. The object type is discriminated, and the position and orientation are identified. This system can work with a single image and can provide improved performance using multiple images provided from videos. The spatial processing unit uses three stages: (1) segmentation; (2) initial type, pose, and geometry (ITPG) estimation; and (3) refined type, pose, and geometry (RTPG) calculation. The image segmentation module files all the tools in an image and isolates them from the background. For this, the system uses edge-detection and thresholding to find the pixels that are part of a tool. After the pixels are identified, nearby pixels are grouped into blobs. These blobs represent the potential tools in the image and are the product of the segmentation algorithm. The second module uses matched filtering (or template matching). This approach is used for condensing synthetic images using an image subspace that captures key information. Three degrees of orientation, three degrees of position, and any number of degrees of freedom in geometry change are included. To do this, a template-matching framework is applied. This framework uses an off-line system for calculating template images, measurement images, and the measurements of the template images. These results are used online to match segmented tools against the templates. The final module is the RTPG processor. Its role is to find the exact states of the tools given initial conditions provided by the ITPG module. The requirement that the initial conditions exist allows this module to make use of a local search (whereas the ITPG module had global scope). To perform the local search, 3D model matching is used, where a synthetic image of the object is created and compared to the sensed data. The availability of low-cost PC graphics hardware allows rapid creation of synthetic images

  15. Object recognition and localization: the role of tactile sensors.

    PubMed

    Aggarwal, Achint; Kirchner, Frank

    2014-01-01

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087

  16. Object Recognition and Localization: The Role of Tactile Sensors

    PubMed Central

    Aggarwal, Achint; Kirchner, Frank

    2014-01-01

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087

  17. Automatic speaker recognition system

    NASA Astrophysics Data System (ADS)

    Higgins, Alan; Naylor, Joe

    1984-07-01

    The Defense Communications Division of ITT (ITTDCD) has developed an automatic speaker recognition (ASR) system that meets the functional requirements defined in NRL's Statement of Work. This report is organized as follows. Chapter 2 is a short history of the development of the ASR system, both the algorithm and the implementation. Chapter 3 describes the methodology of system testing, and Chapter 4 summarizes test results. In Chapter 5, some additional testing performed using GFM test material is discussed. Conclusions derived from the contract work are given in Chapter 6.

  18. An ERP Study on Self-Relevant Object Recognition

    ERIC Educational Resources Information Center

    Miyakoshi, Makoto; Nomura, Michio; Ohira, Hideki

    2007-01-01

    We performed an event-related potential study to investigate the self-relevance effect in object recognition. Three stimulus categories were prepared: SELF (participant's own objects), FAMILIAR (disposable and public objects, defined as objects with less-self-relevant familiarity), and UNFAMILIAR (others' objects). The participants' task was to…

  19. Mechanisms of object recognition: what we have learned from pigeons

    PubMed Central

    Soto, Fabian A.; Wasserman, Edward A.

    2014-01-01

    Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the “simple” brains of pigeons. PMID:25352784

  20. Declining object recognition performance in semantic dementia: A case for stored visual object representations.

    PubMed

    Tree, Jeremy J; Playfoot, David

    2015-01-01

    The role of the semantic system in recognizing objects is a matter of debate. Connectionist theories argue that it is impossible for a participant to determine that an object is familiar to them without recourse to a semantic hub; localist theories state that accessing a stored representation of the visual features of the object is sufficient for recognition. We examine this issue through the longitudinal study of two cases of semantic dementia, a neurodegenerative disorder characterized by a progressive degradation of the semantic system. The cases in this paper do not conform to the "common" pattern of object recognition performance in semantic dementia described by Rogers, T. T., Lambon Ralph, M. A., Hodges, J. R., & Patterson, K. (2004). Natural selection: The impact of semantic impairment on lexical and object decision. Cognitive Neuropsychology, 21, 331-352., and show no systematic relationship between severity of semantic impairment and success in object decision. We argue that these data are inconsistent with the connectionist position but can be easily reconciled with localist theories that propose stored structural descriptions of objects outside of the semantic system. PMID:27355607

  1. Infants' Recognition of Objects Using Canonical Color

    ERIC Educational Resources Information Center

    Kimura, Atsushi; Wada, Yuji; Yang, Jiale; Otsuka, Yumiko; Dan, Ippeita; Masuda, Tomohiro; Kanazawa, So; Yamaguchi, Masami K.

    2010-01-01

    We explored infants' ability to recognize the canonical colors of daily objects, including two color-specific objects (human face and fruit) and a non-color-specific object (flower), by using a preferential looking technique. A total of 58 infants between 5 and 8 months of age were tested with a stimulus composed of two color pictures of an object…

  2. Method of synthesized phase objects for pattern recognition: matched filtering.

    PubMed

    Yezhov, Pavel V; Kuzmenko, Alexander V; Kim, Jin-Tae; Smirnova, Tatiana N

    2012-12-31

    To solve the pattern recognition problem, a method of synthesized phase objects is suggested. The essence of the suggested method is that synthesized phase objects are used instead of real amplitude objects. The former is object-dependent phase distributions calculated using the iterative Fourier-transform (IFT) algorithm. The method is experimentally studied with a Vander Lugt optical-digital 4F-correlator. We present the comparative analysis of recognition results using conventional and proposed methods, estimate the sensitivity of the latter to distortions of the structure of objects, and determine the applicability limits. It is demonstrated that the proposed method allows one: (а) to simplify the procedure of choice of recognition signs (criteria); (b) to obtain one-type δ-like recognition signals irrespective of the type of objects; (с) to improve signal-to-noise ratio (SNR) for correlation signals by 20 - 30 dB on average. The spatial separation of the Fourier-spectra of objects and optical noises of the correlator by means of the superposition of the phase grating on recognition objects at the recording of holographic filters and at the matched filtering has additionally improved SNR (>10 dB) for correlation signals. To introduce recognition objects in the correlator, we use a SLM LC-R 2500 device. Matched filters are recorded on a self-developing photopolymer. PMID:23388812

  3. Category-Specificity in Visual Object Recognition

    ERIC Educational Resources Information Center

    Gerlach, Christian

    2009-01-01

    Are all categories of objects recognized in the same manner visually? Evidence from neuropsychology suggests they are not: some brain damaged patients are more impaired in recognizing natural objects than artefacts whereas others show the opposite impairment. Category-effects have also been demonstrated in neurologically intact subjects, but the…

  4. A Taxonomy of 3D Occluded Objects Recognition Techniques

    NASA Astrophysics Data System (ADS)

    Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh

    2016-03-01

    The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.

  5. Visuo-haptic multisensory object recognition, categorization, and representation

    PubMed Central

    Lacey, Simon; Sathian, K.

    2014-01-01

    Visual and haptic unisensory object processing show many similarities in terms of categorization, recognition, and representation. In this review, we discuss how these similarities contribute to multisensory object processing. In particular, we show that similar unisensory visual and haptic representations lead to a shared multisensory representation underlying both cross-modal object recognition and view-independence. This shared representation suggests a common neural substrate and we review several candidate brain regions, previously thought to be specialized for aspects of visual processing, that are now known also to be involved in analogous haptic tasks. Finally, we lay out the evidence for a model of multisensory object recognition in which top-down and bottom-up pathways to the object-selective lateral occipital complex are modulated by object familiarity and individual differences in object and spatial imagery. PMID:25101014

  6. Determinants of novel object and location recognition during development.

    PubMed

    Jablonski, S A; Schreiber, W B; Westbrook, S R; Brennan, L E; Stanton, M E

    2013-11-01

    In the novel object recognition (OR) paradigm, rats are placed in an arena where they encounter two sample objects during a familiarization phase. A few minutes later, they are returned to the same arena and are presented with a familiar object and a novel object. The object location recognition (OL) variant involves the same familiarization procedure but during testing one of the familiar objects is placed in a novel location. Normal adult rats are able to perform both the OR and OL tasks, as indicated by enhanced exploration of the novel vs. the familiar test item. Rats with hippocampal lesions perform the OR but not OL task indicating a role of spatial memory in OL. Recently, these tasks have been used to study the ontogeny of spatial memory but the literature has yielded conflicting results. The current experiments add to this literature by: (1) behaviorally characterizing these paradigms in postnatal day (PD) 21, 26 and 31-day-old rats; (2) examining the role of NMDA systems in OR vs. OL; and (3) investigating the effects of neonatal alcohol exposure on both tasks. Results indicate that normal-developing rats are able to perform OR and OL by PD21, with greater novelty exploration in the OR task at each age. Second, memory acquisition in the OL but not OR task requires NMDA receptor function in juvenile rats [corrected]. Lastly, neonatal alcohol exposure does not disrupt performance in either task. Implications for the ontogeny of incidental spatial learning and its disruption by developmental alcohol exposure are discussed. PMID:23933466

  7. The subjective experience of object recognition: comparing metacognition for object detection and object categorization.

    PubMed

    Meuwese, Julia D I; van Loon, Anouk M; Lamme, Victor A F; Fahrenfort, Johannes J

    2014-05-01

    Perceptual decisions seem to be made automatically and almost instantly. Constructing a unitary subjective conscious experience takes more time. For example, when trying to avoid a collision with a car on a foggy road you brake or steer away in a reflex, before realizing you were in a near accident. This subjective aspect of object recognition has been given little attention. We used metacognition (assessed with confidence ratings) to measure subjective experience during object detection and object categorization for degraded and masked objects, while objective performance was matched. Metacognition was equal for degraded and masked objects, but categorization led to higher metacognition than did detection. This effect turned out to be driven by a difference in metacognition for correct rejection trials, which seemed to be caused by an asymmetry of the distractor stimulus: It does not contain object-related information in the detection task, whereas it does contain such information in the categorization task. Strikingly, this asymmetry selectively impacted metacognitive ability when objective performance was matched. This finding reveals a fundamental difference in how humans reflect versus act on information: When matching the amount of information required to perform two tasks at some objective level of accuracy (acting), metacognitive ability (reflecting) is still better in tasks that rely on positive evidence (categorization) than in tasks that rely more strongly on an absence of evidence (detection). PMID:24554231

  8. Object Recognition and Random Image Structure Evolution

    ERIC Educational Resources Information Center

    Sadr, Jvid; Sinha, Pawan

    2004-01-01

    We present a technique called Random Image Structure Evolution (RISE) for use in experimental investigations of high-level visual perception. Potential applications of RISE include the quantitative measurement of perceptual hysteresis and priming, the study of the neural substrates of object perception, and the assessment and detection of subtle…

  9. Developmental Commonalities between Object and Face Recognition in Adolescence

    PubMed Central

    Jüttner, Martin; Wakui, Elley; Petters, Dean; Davidoff, Jules

    2016-01-01

    In the visual perception literature, the recognition of faces has often been contrasted with that of non-face objects, in terms of differences with regard to the role of parts, part relations and holistic processing. However, recent evidence from developmental studies has begun to blur this sharp distinction. We review evidence for a protracted development of object recognition that is reminiscent of the well-documented slow maturation observed for faces. The prolonged development manifests itself in a retarded processing of metric part relations as opposed to that of individual parts and offers surprising parallels to developmental accounts of face recognition, even though the interpretation of the data is less clear with regard to holistic processing. We conclude that such results might indicate functional commonalities between the mechanisms underlying the recognition of faces and non-face objects, which are modulated by different task requirements in the two stimulus domains. PMID:27014176

  10. Object locating system

    DOEpatents

    Novak, James L.; Petterson, Ben

    1998-06-09

    A sensing system locates an object by sensing the object's effect on electric fields. The object's effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions.

  11. Object locating system

    DOEpatents

    Novak, J.L.; Petterson, B.

    1998-06-09

    A sensing system locates an object by sensing the object`s effect on electric fields. The object`s effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions. 12 figs.

  12. Testing conditions for viewpoint invariance in object recognition.

    PubMed

    Hayward, W G; Tarr, M J

    1997-10-01

    Based on the geon structural description approach, I. Biederman and P.C. Gerhardstein (1993) proposed 3 conditions under which object recognition is predicted to be viewpoint invariant. Two experiments are reported that satisfied all 3 criteria yet revealed performance that was clearly viewpoint dependent. Experiment 1 demonstrated that for both sequential matching and naming tasks, recognition of qualitatively distinct objects became progressively longer and less accurate as the viewpoint difference between study and test viewpoints increased. Experiment 2 demonstrated that for single-part objects, larger effects of viewpoint occurred when there was a change in the visible structure, indicating sensitivity to qualitative features in the image, not geon structural descriptions. These results suggest that the conditions proposed by I. Biederman and P.C. Gerhardstein are not generally applicable, the recognition of qualitatively distinct objects often relies on viewpoint-dependent mechanisms, and the molar features of view-based mechanisms appear to be image features rather than geons. PMID:9411023

  13. Spontaneous Object Recognition Memory in Aged Rats: Complexity versus Similarity

    ERIC Educational Resources Information Center

    Gamiz, Fernando; Gallo, Milagros

    2012-01-01

    Previous work on the effect of aging on spontaneous object recognition (SOR) memory tasks in rats has yielded controversial results. Although the results at long-retention intervals are consistent, conflicting results have been reported at shorter delays. We have assessed the potential relevance of the type of object used in the performance of…

  14. The Neural Regions Sustaining Episodic Encoding and Recognition of Objects

    ERIC Educational Resources Information Center

    Hofer, Alex; Siedentopf, Christian M.; Ischebeck, Anja; Rettenbacher, Maria A.; Widschwendter, Christian G.; Verius, Michael; Golaszewski, Stefan M.; Koppelstaetter, Florian; Felber, Stephan; Wolfgang Fleischhacker, W.

    2007-01-01

    In this functional MRI experiment, encoding of objects was associated with activation in left ventrolateral prefrontal/insular and right dorsolateral prefrontal and fusiform regions as well as in the left putamen. By contrast, correct recognition of previously learned objects (R judgments) produced activation in left superior frontal, bilateral…

  15. Object Recognition with Severe Spatial Deficits in Williams Syndrome: Sparing and Breakdown

    ERIC Educational Resources Information Center

    Landau, Barbara; Hoffman, James E.; Kurz, Nicole

    2006-01-01

    Williams syndrome (WS) is a rare genetic disorder that results in severe visual-spatial cognitive deficits coupled with relative sparing in language, face recognition, and certain aspects of motion processing. Here, we look for evidence for sparing or impairment in another cognitive system--object recognition. Children with WS, normal mental-age…

  16. Spatiotemporal information during unsupervised learning enhances viewpoint invariant object recognition

    PubMed Central

    Tian, Moqian; Grill-Spector, Kalanit

    2015-01-01

    Recognizing objects is difficult because it requires both linking views of an object that can be different and distinguishing objects with similar appearance. Interestingly, people can learn to recognize objects across views in an unsupervised way, without feedback, just from the natural viewing statistics. However, there is intense debate regarding what information during unsupervised learning is used to link among object views. Specifically, researchers argue whether temporal proximity, motion, or spatiotemporal continuity among object views during unsupervised learning is beneficial. Here, we untangled the role of each of these factors in unsupervised learning of novel three-dimensional (3-D) objects. We found that after unsupervised training with 24 object views spanning a 180° view space, participants showed significant improvement in their ability to recognize 3-D objects across rotation. Surprisingly, there was no advantage to unsupervised learning with spatiotemporal continuity or motion information than training with temporal proximity. However, we discovered that when participants were trained with just a third of the views spanning the same view space, unsupervised learning via spatiotemporal continuity yielded significantly better recognition performance on novel views than learning via temporal proximity. These results suggest that while it is possible to obtain view-invariant recognition just from observing many views of an object presented in temporal proximity, spatiotemporal information enhances performance by producing representations with broader view tuning than learning via temporal association. Our findings have important implications for theories of object recognition and for the development of computational algorithms that learn from examples. PMID:26024454

  17. Sensor agnostic object recognition using a map seeking circuit

    NASA Astrophysics Data System (ADS)

    Overman, Timothy L.; Hart, Michael

    2012-05-01

    Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.

  18. Object recognition and pose estimation of planar objects from range data

    NASA Technical Reports Server (NTRS)

    Pendleton, Thomas W.; Chien, Chiun Hong; Littlefield, Mark L.; Magee, Michael

    1994-01-01

    The Extravehicular Activity Helper/Retriever (EVAHR) is a robotic device currently under development at the NASA Johnson Space Center that is designed to fetch objects or to assist in retrieving an astronaut who may have become inadvertently de-tethered. The EVAHR will be required to exhibit a high degree of intelligent autonomous operation and will base much of its reasoning upon information obtained from one or more three-dimensional sensors that it will carry and control. At the highest level of visual cognition and reasoning, the EVAHR will be required to detect objects, recognize them, and estimate their spatial orientation and location. The recognition phase and estimation of spatial pose will depend on the ability of the vision system to reliably extract geometric features of the objects such as whether the surface topologies observed are planar or curved and the spatial relationships between the component surfaces. In order to achieve these tasks, three-dimensional sensing of the operational environment and objects in the environment will therefore be essential. One of the sensors being considered to provide image data for object recognition and pose estimation is a phase-shift laser scanner. The characteristics of the data provided by this scanner have been studied and algorithms have been developed for segmenting range images into planar surfaces, extracting basic features such as surface area, and recognizing the object based on the characteristics of extracted features. Also, an approach has been developed for estimating the spatial orientation and location of the recognized object based on orientations of extracted planes and their intersection points. This paper presents some of the algorithms that have been developed for the purpose of recognizing and estimating the pose of objects as viewed by the laser scanner, and characterizes the desirability and utility of these algorithms within the context of the scanner itself, considering data quality and

  19. A face recognition embedded system

    NASA Astrophysics Data System (ADS)

    Pun, Kwok Ho; Moon, Yiu Sang; Tsang, Chi Chiu; Chow, Chun Tak; Chan, Siu Man

    2005-03-01

    This paper presents an experimental study of the implementation of a face recognition system in embedded systems. To investigate the feasibility and practicality of real time face recognition on such systems, a door access control system based on face recognition is built. Due to the limited computation power of embedded device, a semi-automatic scheme for face detection and eye location is proposed to solve these computationally hard problems. It is found that to achieve real time performance, optimization of the core face recognition module is needed. As a result, extensive profiling is done to pinpoint the execution hotspots in the system and optimization are carried out. After careful precision analysis, all slow floating point calculations are replaced with their fixed-point versions. Experimental results show that real time performance can be achieved without significant loss in recognition accuracy.

  20. Pattern recognition systems and procedures

    NASA Technical Reports Server (NTRS)

    Nelson, G. D.; Serreyn, D. V.

    1972-01-01

    The objectives of the pattern recognition tasks are to develop (1) a man-machine interactive data processing system; and (2) procedures to determine effective features as a function of time for crops and soils. The signal analysis and dissemination equipment, SADE, is being developed as a man-machine interactive data processing system. SADE will provide imagery and multi-channel analog tape inputs for digitation and a color display of the data. SADE is an essential tool to aid in the investigation to determine useful features as a function of time for crops and soils. Four related studies are: (1) reliability of the multivariate Gaussian assumption; (2) usefulness of transforming features with regard to the classifier probability of error; (3) advantage of selecting quantizer parameters to minimize the classifier probability of error; and (4) advantage of using contextual data. The study of transformation of variables (features), especially those experimental studies which can be completed with the SADE system, will be done.

  1. Improving human object recognition performance using video enhancement techniques

    NASA Astrophysics Data System (ADS)

    Whitman, Lucy S.; Lewis, Colin; Oakley, John P.

    2004-12-01

    Atmospheric scattering causes significant degradation in the quality of video images, particularly when imaging over long distances. The principle problem is the reduction in contrast due to scattered light. It is known that when the scattering particles are not too large compared with the imaging wavelength (i.e. Mie scattering) then high spatial resolution information may be contained within a low-contrast image. Unfortunately this information is not easily perceived by a human observer, particularly when using a standard video monitor. A secondary problem is the difficulty of achieving a sharp focus since automatic focus techniques tend to fail in such conditions. Recently several commercial colour video processing systems have become available. These systems use various techniques to improve image quality in low contrast conditions whilst retaining colour content. These systems produce improvements in subjective image quality in some situations, particularly in conditions of haze and light fog. There is also some evidence that video enhancement leads to improved ATR performance when used as a pre-processing stage. Psychological literature indicates that low contrast levels generally lead to a reduction in the performance of human observers in carrying out simple visual tasks. The aim of this paper is to present the results of an empirical study on object recognition in adverse viewing conditions. The chosen visual task was vehicle number plate recognition at long ranges (500 m and beyond). Two different commercial video enhancement systems are evaluated using the same protocol. The results show an increase in effective range with some differences between the different enhancement systems.

  2. Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image

    NASA Astrophysics Data System (ADS)

    Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; pre="and">Ernastuti,

    2016-06-01

    An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.

  3. Object Recognition Method of Space Debris Tracking Image Sequence

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Ping, Y. D.

    2015-09-01

    In order to strengthen the capability of the space debris researches, automated optical observation becomes more and more popular. Thus, the fully unattended automated object recognition framework is urgently needed to be studied. On the other hand, the open loop tracking which guides the telescope only with historical orbital elements is a simple and robust way to track space debris. According to the analysis of point distribution characteristics in pixel domain of object's open loop tracking image sequence, the Cluster Identification Method is introduced into automated space debris recognition method. With the comparison of three algorithm implements, it is shown that this method is totally available in actual research work.

  4. Visual Exploration and Object Recognition by Lattice Deformation

    PubMed Central

    Melloni, Lucia; Mureşan, Raul C.

    2011-01-01

    Mechanisms of explicit object recognition are often difficult to investigate and require stimuli with controlled features whose expression can be manipulated in a precise quantitative fashion. Here, we developed a novel method (called “Dots”), for generating visual stimuli, which is based on the progressive deformation of a regular lattice of dots, driven by local contour information from images of objects. By applying progressively larger deformation to the lattice, the latter conveys progressively more information about the target object. Stimuli generated with the presented method enable a precise control of object-related information content while preserving low-level image statistics, globally, and affecting them only little, locally. We show that such stimuli are useful for investigating object recognition under a naturalistic setting – free visual exploration – enabling a clear dissociation between object detection and explicit recognition. Using the introduced stimuli, we show that top-down modulation induced by previous exposure to target objects can greatly influence perceptual decisions, lowering perceptual thresholds not only for object recognition but also for object detection (visual hysteresis). Visual hysteresis is target-specific, its expression and magnitude depending on the identity of individual objects. Relying on the particular features of dot stimuli and on eye-tracking measurements, we further demonstrate that top-down processes guide visual exploration, controlling how visual information is integrated by successive fixations. Prior knowledge about objects can guide saccades/fixations to sample locations that are supposed to be highly informative, even when the actual information is missing from those locations in the stimulus. The duration of individual fixations is modulated by the novelty and difficulty of the stimulus, likely reflecting cognitive demand. PMID:21818397

  5. Three-dimensional object recognition using similar triangles and decision trees

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.

  6. 3-D object recognition using 2-D views.

    PubMed

    Li, Wenjing; Bebis, George; Bourbakis, Nikolaos G

    2008-11-01

    We consider the problem of recognizing 3-D objects from 2-D images using geometric models and assuming different viewing angles and positions. Our goal is to recognize and localize instances of specific objects (i.e., model-based) in a scene. This is in contrast to category-based object recognition methods where the goal is to search for instances of objects that belong to a certain visual category (e.g., faces or cars). The key contribution of our work is improving 3-D object recognition by integrating Algebraic Functions of Views (AFoVs), a powerful framework for predicting the geometric appearance of an object due to viewpoint changes, with indexing and learning. During training, we compute the space of views that groups of object features can produce under the assumption of 3-D linear transformations, by combining a small number of reference views that contain the object features using AFoVs. Unrealistic views (e.g., due to the assumption of 3-D linear transformations) are eliminated by imposing a pair of rigidity constraints based on knowledge of the transformation between the reference views of the object. To represent the space of views that an object can produce compactly while allowing efficient hypothesis generation during recognition, we propose combining indexing with learning in two stages. In the first stage, we sample the space of views of an object sparsely and represent information about the samples using indexing. In the second stage, we build probabilistic models of shape appearance by sampling the space of views of the object densely and learning the manifold formed by the samples. Learning employs the Expectation-Maximization (EM) algorithm and takes place in a "universal," lower-dimensional, space computed through Random Projection (RP). During recognition, we extract groups of point features from the scene and we use indexing to retrieve the most feasible model groups that might have produced them (i.e., hypothesis generation). The likelihood

  7. What are the Visual Features Underlying Rapid Object Recognition?

    PubMed Central

    Crouzet, Sébastien M.; Serre, Thomas

    2011-01-01

    Research progress in machine vision has been very significant in recent years. Robust face detection and identification algorithms are already readily available to consumers, and modern computer vision algorithms for generic object recognition are now coping with the richness and complexity of natural visual scenes. Unlike early vision models of object recognition that emphasized the role of figure-ground segmentation and spatial information between parts, recent successful approaches are based on the computation of loose collections of image features without prior segmentation or any explicit encoding of spatial relations. While these models remain simplistic models of visual processing, they suggest that, in principle, bottom-up activation of a loose collection of image features could support the rapid recognition of natural object categories and provide an initial coarse visual representation before more complex visual routines and attentional mechanisms take place. Focusing on biologically plausible computational models of (bottom-up) pre-attentive visual recognition, we review some of the key visual features that have been described in the literature. We discuss the consistency of these feature-based representations with classical theories from visual psychology and test their ability to account for human performance on a rapid object categorization task. PMID:22110461

  8. Three-dimensional object recognition using wavelets for feature denoising

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Soo; Kasparis, Takis; Schiavone, Guy A.

    1996-06-01

    Recognition of 3D objects independent of size, position, and rotation is an important and difficult subject in computer vision. A 3D feature extraction method referred to as the Open Ball Operator (OBO) is proposed as an approach to solving the 3D object recognition problem. The OBO feature extraction method has the three characteristics of invariance to rotation, scaling, and translation invariance. Additionally, the OBO is capable of distinguishing between convexities and concavities in the surface of 3D object. The OBO also exhibits a good robustness to noise and uncertainty caused by inaccuracies in 3D measurements. A wavelet de- noising method is used for filtering out noise contained in the feature vectors of 3D objects.

  9. Nicotine Administration Attenuates Methamphetamine-Induced Novel Object Recognition Deficits

    PubMed Central

    Vieira-Brock, Paula L.; McFadden, Lisa M.; Nielsen, Shannon M.; Smith, Misty D.; Hanson, Glen R.

    2015-01-01

    Background: Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms. Methods: Adolescent or adult male Sprague-Dawley rats received either nicotine water (10–75 μg/mL) or tap water for several weeks. Methamphetamine (4×7.5mg/kg/injection) or saline was administered either before or after chronic nicotine exposure. Novel object recognition was evaluated 6 days after methamphetamine or saline. Serotonin transporter function and density and α4β2 nicotinic acetylcholine receptor density were assessed on the following day. Results: Chronic nicotine intake via drinking water beginning during either adolescence or adulthood attenuated the novel object recognition deficits caused by a high-dose methamphetamine administration. Similarly, nicotine attenuated methamphetamine-induced deficits in novel object recognition when administered after methamphetamine treatment. However, nicotine did not attenuate the serotonergic deficits caused by methamphetamine in adults. Conversely, nicotine attenuated methamphetamine-induced deficits in α4β2 nicotinic acetylcholine receptor density in the hippocampal CA1 region. Furthermore, nicotine increased α4β2 nicotinic acetylcholine receptor density in the hippocampal CA3, dentate gyrus and perirhinal cortex in both saline- and methamphetamine-treated rats. Conclusions: Overall, these findings suggest that nicotine-induced increases in α4β2 nicotinic acetylcholine receptors in the hippocampus and perirhinal cortex might be one mechanism by which

  10. Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory.

    PubMed

    Albasser, Mathieu M; Amin, Eman; Lin, Tzu-Ching E; Iordanova, Mihaela D; Aggleton, John P

    2012-10-01

    Adult rats with extensive, bilateral neurotoxic lesions of the hippocampus showed normal forgetting curves for object recognition memory, yet were impaired on closely related tests of object recency memory. The present findings point to specific mechanisms for temporal order information (recency) that are dependent on the hippocampus and do not involve object recognition memory. The object recognition tests measured rats exploring simultaneously presented objects, one novel and the other familiar. Task difficulty was varied by altering the retention delays after presentation of the familiar object, so creating a forgetting curve. Hippocampal lesions had no apparent effect, despite using an apparatus (bow-tie maze) where it was possible to give lists of objects that might be expected to increase stimulus interference. In contrast, the same hippocampal lesions impaired the normal preference for an older (less recent) familiar object over a more recent, familiar object. A correlation was found between the loss of septal hippocampal tissue and this impairment in recency memory. The dissociation in the present study between recognition memory (spared) and recency memory (impaired) was unusually compelling, because it was possible to test the same objects for both forms of memory within the same session and within the same apparatus. The object recency deficit is of additional interest as it provides an example of a nonspatial memory deficit following hippocampal damage. PMID:23025831

  11. Invariant visual object recognition and shape processing in rats

    PubMed Central

    Zoccolan, Davide

    2015-01-01

    Invariant visual object recognition is the ability to recognize visual objects despite the vastly different images that each object can project onto the retina during natural vision, depending on its position and size within the visual field, its orientation relative to the viewer, etc. Achieving invariant recognition represents such a formidable computational challenge that is often assumed to be a unique hallmark of primate vision. Historically, this has limited the invasive investigation of its neuronal underpinnings to monkey studies, in spite of the narrow range of experimental approaches that these animal models allow. Meanwhile, rodents have been largely neglected as models of object vision, because of the widespread belief that they are incapable of advanced visual processing. However, the powerful array of experimental tools that have been developed to dissect neuronal circuits in rodents has made these species very attractive to vision scientists too, promoting a new tide of studies that have started to systematically explore visual functions in rats and mice. Rats, in particular, have been the subjects of several behavioral studies, aimed at assessing how advanced object recognition and shape processing is in this species. Here, I review these recent investigations, as well as earlier studies of rat pattern vision, to provide an historical overview and a critical summary of the status of the knowledge about rat object vision. The picture emerging from this survey is very encouraging with regard to the possibility of using rats as complementary models to monkeys in the study of higher-level vision. PMID:25561421

  12. Priming for novel object associations: Neural differences from object item priming and equivalent forms of recognition.

    PubMed

    Gomes, Carlos Alexandre; Figueiredo, Patrícia; Mayes, Andrew

    2016-04-01

    The neural substrates of associative and item priming and recognition were investigated in a functional magnetic resonance imaging study over two separate sessions. In the priming session, participants decided which object of a pair was bigger during both study and test phases. In the recognition session, participants saw different object pairs and performed the same size-judgement task followed by an associative recognition memory task. Associative priming was accompanied by reduced activity in the right middle occipital gyrus as well as in bilateral hippocampus. Object item priming was accompanied by reduced activity in extensive priming-related areas in the bilateral occipitotemporofrontal cortex, as well as in the perirhinal cortex, but not in the hippocampus. Associative recognition was characterized by activity increases in regions linked to recollection, such as the hippocampus, posterior cingulate cortex, anterior medial frontal gyrus and posterior parahippocampal cortex. Item object priming and recognition recruited broadly overlapping regions (e.g., bilateral middle occipital and prefrontal cortices, left fusiform gyrus), even though the BOLD response was in opposite directions. These regions along with the precuneus, where both item priming and recognition were accompanied by activation, have been found to respond to object familiarity. The minimal structural overlap between object associative priming and recollection-based associative recognition suggests that they depend on largely different stimulus-related information and that the different directions of the effects indicate distinct retrieval mechanisms. In contrast, item priming and familiarity-based recognition seemed mainly based on common memory information, although the extent of common processing between priming and familiarity remains unclear. Further implications of these findings are discussed. © 2015 Wiley Periodicals, Inc. PMID:26418396

  13. Multispectral image analysis for object recognition and classification

    NASA Astrophysics Data System (ADS)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  14. Human cortical object recognition from a visual motion flowfield.

    PubMed

    Kriegeskorte, Nikolaus; Sorger, Bettina; Naumer, Marcus; Schwarzbach, Jens; van den Boogert, Erik; Hussy, Walter; Goebel, Rainer

    2003-02-15

    Moving dots can evoke a percept of the spatial structure of a three-dimensional object in the absence of other visual cues. This phenomenon, called structure from motion (SFM), suggests that the motion flowfield represented in the dorsal stream can form the basis of object recognition performed in the ventral stream. SFM processing is likely to contribute to object perception whenever there is relative motion between the observer and the object viewed. Here we investigate the motion flowfield component of object recognition with functional magnetic resonance imaging. Our SFM stimuli encoded face surfaces and random three-dimensional control shapes with matched curvature properties. We used two different types of an SFM stimulus with the dots either fixed to the surface of the object or moving on it. Despite the radically different encoding of surface structure in the two types of SFM, both elicited strong surface percepts and involved the same network of cortical regions. From early visual areas, this network extends dorsally into the human motion complex and parietal regions and ventrally into object-related cortex. The SFM stimuli elicited a face-selective response in the fusiform face area. The human motion complex appears to have a central role in SFM object recognition, not merely representing the motion flowfield but also the surface structure of the motion-defined object. The motion complex and a region in the intraparietal sulcus reflected the motion state of the SFM-implicit object, responding more strongly when the implicit object was in motion than when it was stationary. PMID:12598634

  15. Biological object recognition in μ-radiography images

    NASA Astrophysics Data System (ADS)

    Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.

    2015-03-01

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

  16. Recognition system rapid application prototyping tool

    NASA Astrophysics Data System (ADS)

    Mills, Stuart A.; Karins, James P.; Dydyk, Robert B.

    1997-03-01

    The recognition system rapid application prototyping tool (RSRAPT) was developed to evaluate various potential configurations of miniature ruggedized optical correlator (MROC) modules and to rapidly assess the feasibility of their use within systems such as missile seekers. RSRAPT is a simulation environment for rapidly prototyping, developing, and evaluating recognition systems that incorporate MROC technology. It is designed to interface to OLE compliant Windows applications using standard OLE interfaces. The system consists of nine key functional elements: sensor, detection, segmentation, pre-processor, filter selection, correlator, post-processor, identifier, and controller. The RSRAPT is a collection of object oriented server components, a client user interface and a recognitions system image and image sensor database. The server components are implemented to encapsulate processes that are typical to any optical-correlator based pattern recognition system. All the servers are implemented as Microsoft component object model objects. In addition to the system servers there are two key 'helper servers.' The first is the image server, which encapsulates all 'images'. This includes gray scale images and even complex images. The other supporting server is the filter generation server. This server trains the system on user data by calculating filters for user selected image types. The system hosts a library of standard image processing routines such as convolution, edge operators, clustering algorithms, median filtering, morphological operators such as erosion and dilation, connected components, region growing, and adaptive thresholding. In this paper we describe the simulator and show sample results from diverse applications.

  17. Effects of active navigation on object recognition in virtual environments.

    PubMed

    Hahm, Jinsun; Lee, Kanghee; Lim, Seung-Lark; Kim, Sei-Young; Kim, Hyun-Taek; Lee, Jang-Han

    2007-04-01

    We investigated the importance and efficiency of active and passive exploration on the recognition of objects in a variety of virtual environments (VEs). In this study, 54 participants were randomly allocated into one of active and passive navigation conditions. Active navigation was performed by allowing participants to self-pace and control their own navigation, but passive navigation was conducted by forced navigation. After navigating VEs, participants were asked to recognize the objects that had been in the VEs. Active navigation condition had a significantly higher percentage of hit responses (t (52) = 4.000, p < 0.01), and a significantly lower percentage of miss responses (t (52) = -3.763, p < 0.01) in object recognition than the passive condition. These results suggest that active navigation plays an important role in spatial cognition as well as providing an explanation for the efficiency of learning in a 3D-based program. PMID:17474852

  18. Object Cueing System For Infrared Images

    NASA Astrophysics Data System (ADS)

    Ranganath, H. S.; McIngvale, Pat; Speigle, Scott

    1987-09-01

    This paper considers the design of an object cueing system as a rule-based expert system. The architecture is modular and the control strategy permits dynamic scheduling of tasks. In this approach, results of several algorithms and many object recognition heuristics are combined to achieve better performance levels. Importance of spatial knowledge representatiOn is also discussed.

  19. Biologically Motivated Novel Localization Paradigm by High-Level Multiple Object Recognition in Panoramic Images

    PubMed Central

    Kim, Sungho; Shim, Min-Sheob

    2015-01-01

    This paper presents the novel paradigm of a global localization method motivated by human visual systems (HVSs). HVSs actively use the information of the object recognition results for self-position localization and for viewing direction. The proposed localization paradigm consisted of three parts: panoramic image acquisition, multiple object recognition, and grid-based localization. Multiple object recognition information from panoramic images is utilized in the localization part. High-level object information was useful not only for global localization, but also for robot-object interactions. The metric global localization (position, viewing direction) was conducted based on the bearing information of recognized objects from just one panoramic image. The feasibility of the novel localization paradigm was validated experimentally. PMID:26457323

  20. Top-down facilitation of visual object recognition: object-based and context-based contributions.

    PubMed

    Fenske, Mark J; Aminoff, Elissa; Gronau, Nurit; Bar, Moshe

    2006-01-01

    The neural mechanisms subserving visual recognition are traditionally described in terms of bottom-up analysis, whereby increasingly complex aspects of the visual input are processed along a hierarchical progression of cortical regions. However, the importance of top-down facilitation in successful recognition has been emphasized in recent models and research findings. Here we consider evidence for top-down facilitation of recognition that is triggered by early information about an object, as well as by contextual associations between an object and other objects with which it typically appears. The object-based mechanism is proposed to trigger top-down facilitation of visual recognition rapidly, using a partially analyzed version of the input image (i.e., a blurred image) that is projected from early visual areas directly to the prefrontal cortex (PFC). This coarse representation activates in the PFC information that is back-projected as "initial guesses" to the temporal cortex where it presensitizes the most likely interpretations of the input object. In addition to this object-based facilitation, a context-based mechanism is proposed to trigger top-down facilitation through contextual associations between objects in scenes. These contextual associations activate predictive information about which objects are likely to appear together, and can influence the "initial guesses" about an object's identity. We have shown that contextual associations are analyzed by a network that includes the parahippocampal cortex and the retrosplenial complex. The integrated proposal described here is that object- and context-based top-down influences operate together, promoting efficient recognition by framing early information about an object within the constraints provided by a lifetime of experience with contextual associations. PMID:17027376

  1. The Neural Basis of Nonvisual Object Recognition Memory in the Rat

    PubMed Central

    Albasser, Mathieu M.; Olarte-Sánchez, Cristian M.; Amin, Eman; Horne, Murray R.; Newton, Michael J.; Warburton, E. Clea; Aggleton, John P.

    2012-01-01

    Research into the neural basis of recognition memory has traditionally focused on the remembrance of visual stimuli. The present study examined the neural basis of object recognition memory in the dark, with a view to determining the extent to which it shares common pathways with visual-based object recognition. Experiment 1 assessed the expression of the immediate-early gene c-fos in rats that discriminated novel from familiar objects in the dark (Group Novel). Comparisons made with a control group that explored only familiar objects (Group Familiar) showed that Group Novel had higher c-fos activity in the rostral perirhinal cortex and the lateral entorhinal cortex. Outside the temporal region, Group Novel showed relatively increased c-fos activity in the anterior medial thalamic nucleus and the anterior cingulate cortex. Both the hippocampal CA fields and the granular retrosplenial cortex showed borderline increases in c-fos activity with object novelty. The hippocampal findings prompted Experiment 2. Here, rats with hippocampal lesions were tested in the dark for object recognition memory at different retention delays. Across two replications, no evidence was found that hippocampal lesions impair nonvisual object recognition. The results indicate that in the dark, as in the light, interrelated parahippocampal sites are activated when rats explore novel stimuli. These findings reveal a network of linked c-fos activations that share superficial features with those associated with visual recognition but differ in the fine details; for example, in the locus of the perirhinal cortex activation. While there may also be a relative increase in c-fos activation in the extended-hippocampal system to object recognition in the dark, there was no evidence that this recognition memory problem required an intact hippocampus. PMID:23244291

  2. Early recurrent feedback facilitates visual object recognition under challenging conditions

    PubMed Central

    Wyatte, Dean; Jilk, David J.; O'Reilly, Randall C.

    2014-01-01

    Standard models of the visual object recognition pathway hold that a largely feedforward process from the retina through inferotemporal cortex leads to object identification. A subsequent feedback process originating in frontoparietal areas through reciprocal connections to striate cortex provides attentional support to salient or behaviorally-relevant features. Here, we review mounting evidence that feedback signals also originate within extrastriate regions and begin during the initial feedforward process. This feedback process is temporally dissociable from attention and provides important functions such as grouping, associational reinforcement, and filling-in of features. Local feedback signals operating concurrently with feedforward processing are important for object identification in noisy real-world situations, particularly when objects are partially occluded, unclear, or otherwise ambiguous. Altogether, the dissociation of early and late feedback processes presented here expands on current models of object identification, and suggests a dual role for descending feedback projections. PMID:25071647

  3. Affective and contextual values modulate spatial frequency use in object recognition

    PubMed Central

    Caplette, Laurent; West, Gregory; Gomot, Marie; Gosselin, Frédéric; Wicker, Bruno

    2014-01-01

    Visual object recognition is of fundamental importance in our everyday interaction with the environment. Recent models of visual perception emphasize the role of top-down predictions facilitating object recognition via initial guesses that limit the number of object representations that need to be considered. Several results suggest that this rapid and efficient object processing relies on the early extraction and processing of low spatial frequencies (LSF). The present study aimed to investigate the SF content of visual object representations and its modulation by contextual and affective values of the perceived object during a picture-name verification task. Stimuli consisted of pictures of objects equalized in SF content and categorized as having low or high affective and contextual values. To access the SF content of stored visual representations of objects, SFs of each image were then randomly sampled on a trial-by-trial basis. Results reveal that intermediate SFs between 14 and 24 cycles per object (2.3–4 cycles per degree) are correlated with fast and accurate identification for all categories of objects. Moreover, there was a significant interaction between affective and contextual values over the SFs correlating with fast recognition. These results suggest that affective and contextual values of a visual object modulate the SF content of its internal representation, thus highlighting the flexibility of the visual recognition system. PMID:24904514

  4. Object Locating System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    2000-01-01

    A portable system is provided that is operational for determining, with three dimensional resolution, the position of a buried object or approximately positioned object that may move in space or air or gas. The system has a plurality of receivers for detecting the signal front a target antenna and measuring the phase thereof with respect to a reference signal. The relative permittivity and conductivity of the medium in which the object is located is used along with the measured phase signal to determine a distance between the object and each of the plurality of receivers. Knowing these distances. an iteration technique is provided for solving equations simultaneously to provide position coordinates. The system may also be used for tracking movement of an object within close range of the system by sampling and recording subsequent position of the object. A dipole target antenna. when positioned adjacent to a buried object, may be energized using a separate transmitter which couples energy to the target antenna through the medium. The target antenna then preferably resonates at a different frequency, such as a second harmonic of the transmitter frequency.

  5. How does the brain solve visual object recognition?

    PubMed Central

    Zoccolan, Davide; Rust, Nicole C.

    2012-01-01

    Mounting evidence suggests that “core object recognition,” the ability to rapidly recognize objects despite substantial appearance variation, is solved in the brain via a cascade of reflexive, largely feedforward computations that culminate in a powerful neuronal representation in the inferior temporal cortex. However, the algorithm that produces this solution remains little-understood. Here we review evidence ranging from individual neurons, to neuronal populations, to behavior, to computational models. We propose that understanding this algorithm will require using neuronal and psychophysical data to sift through many computational models, each based on building blocks of small, canonical sub-networks with a common functional goal. PMID:22325196

  6. Object recognition by component features: are there age differences.

    PubMed

    Frazier, L; Hoyer, W J

    1992-01-01

    This study extended aspects of Biederman's (1987) recognition-by-components (RBC) theory to the analysis of age differences in the recognition of incomplete visually-presented objects. RBC theory predicts that objects are recognizable or recoverable under conditions of fragmentation if a sufficient amount of essential structural information remains available. Objects are rendered nonrecoverable by the omission or obstruction of essential structural features at vertices and areas of concavity. Fifteen young adults and 15 older adults participated in a study of the effects of amount (25%, 45%, 65%) and type of fragmentation (recoverable, nonrecoverable) on object naming. Age-related declines in recognizing incomplete objects were associated with the amount of fragmentation, but type of fragmentation did not affect the performance of older adults. For the young adults, accuracy of performance was affected by both amount and type of fragmentation, consistent with Biederman's RBC theory. These results were interpreted as suggesting that age-related declines in perceptual closure performance have to do with non-structural factors such as the ability to inferentially augment degraded or missing visual information. PMID:1446700

  7. A chicken model for studying the emergence of invariant object recognition

    PubMed Central

    Wood, Samantha M. W.; Wood, Justin N.

    2015-01-01

    “Invariant object recognition” refers to the ability to recognize objects across variation in their appearance on the retina. This ability is central to visual perception, yet its developmental origins are poorly understood. Traditionally, nonhuman primates, rats, and pigeons have been the most commonly used animal models for studying invariant object recognition. Although these animals have many advantages as model systems, they are not well suited for studying the emergence of invariant object recognition in the newborn brain. Here, we argue that newly hatched chicks (Gallus gallus) are an ideal model system for studying the emergence of invariant object recognition. Using an automated controlled-rearing approach, we show that chicks can build a viewpoint-invariant representation of the first object they see in their life. This invariant representation can be built from highly impoverished visual input (three images of an object separated by 15° azimuth rotations) and cannot be accounted for by low-level retina-like or V1-like neuronal representations. These results indicate that newborn neural circuits begin building invariant object representations at the onset of vision and argue for an increased focus on chicks as an animal model for studying invariant object recognition. PMID:25767436

  8. The role of spatial frequency in expert object recognition.

    PubMed

    Hagen, Simen; Vuong, Quoc C; Scott, Lisa S; Curran, Tim; Tanaka, James W

    2016-03-01

    Novices recognize objects at the basic-category level (e.g., dog, chair, and bird) at which identification is based on the global form of the objects (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). In contrast, experts recognize objects within their domain of expertise at the subordinate level (e.g., Sparrow or Finch) for which the internal object information may play an important role in identification (Tanaka & Taylor, 1991). To investigate whether expert recognition relies on internal object information, we band-pass filtered bird images over a range of spatial frequencies (SF) and then masked the filtered image to preserve its global form. In Experiment 1, bird experts categorized common birds at the family level (e.g., Robin or Sparrow) more quickly and more accurately than novices. Both experts and novices were more accurate when bird images contained the internal information represented by a middle range of SFs, and this finding was characterized by a quadratic function in which accuracy decreased toward each end of the SF spectrum. However, the experts, but not the novices, showed a similar quadratic relationship between response times and SF range. In Experiment 2, experts categorized Warblers and Finches at the more specific, species level (e.g., Wilson's Warbler or House Finch). Recognition was again fastest and most accurate for images filtered in the middle range of SFs. Collectively, these results indicate that a midrange of SFs contain crucial information for subordinate recognition, and that extensive perceptual experience can influence the efficiency with which this information is utilized. (PsycINFO Database Record PMID:26480250

  9. Visual appearance interacts with conceptual knowledge in object recognition.

    PubMed

    Cheung, Olivia S; Gauthier, Isabel

    2014-01-01

    Objects contain rich visual and conceptual information, but do these two types of information interact? Here, we examine whether visual and conceptual information interact when observers see novel objects for the first time. We then address how this interaction influences the acquisition of perceptual expertise. We used two types of novel objects (Greebles), designed to resemble either animals or tools, and two lists of words, which described non-visual attributes of people or man-made objects. Participants first judged if a word was more suitable for describing people or objects while ignoring a task-irrelevant image, and showed faster responses if the words and the unfamiliar objects were congruent in terms of animacy (e.g., animal-like objects with words that described human). Participants then learned to associate objects and words that were either congruent or not in animacy, before receiving expertise training to rapidly individuate the objects. Congruent pairing of visual and conceptual information facilitated observers' ability to become a perceptual expert, as revealed in a matching task that required visual identification at the basic or subordinate levels. Taken together, these findings show that visual and conceptual information interact at multiple levels in object recognition. PMID:25120509

  10. Visual appearance interacts with conceptual knowledge in object recognition

    PubMed Central

    Cheung, Olivia S.; Gauthier, Isabel

    2014-01-01

    Objects contain rich visual and conceptual information, but do these two types of information interact? Here, we examine whether visual and conceptual information interact when observers see novel objects for the first time. We then address how this interaction influences the acquisition of perceptual expertise. We used two types of novel objects (Greebles), designed to resemble either animals or tools, and two lists of words, which described non-visual attributes of people or man-made objects. Participants first judged if a word was more suitable for describing people or objects while ignoring a task-irrelevant image, and showed faster responses if the words and the unfamiliar objects were congruent in terms of animacy (e.g., animal-like objects with words that described human). Participants then learned to associate objects and words that were either congruent or not in animacy, before receiving expertise training to rapidly individuate the objects. Congruent pairing of visual and conceptual information facilitated observers' ability to become a perceptual expert, as revealed in a matching task that required visual identification at the basic or subordinate levels. Taken together, these findings show that visual and conceptual information interact at multiple levels in object recognition. PMID:25120509

  11. Objective 3D face recognition: Evolution, approaches and challenges.

    PubMed

    Smeets, Dirk; Claes, Peter; Vandermeulen, Dirk; Clement, John Gerald

    2010-09-10

    Face recognition is a natural human ability and a widely accepted identification and authentication method. In modern legal settings, a lot of credence is placed on identifications made by eyewitnesses. Consequently these are based on human perception which is often flawed and can lead to situations where identity is disputed. Therefore, there is a clear need to secure identifications in an objective way based on anthropometric measures. Anthropometry has existed for many years and has evolved with each advent of new technology and computing power. As a result of this, face recognition methodology has shifted from a purely 2D image-based approach to the use of 3D facial shape. However, one of the main challenges still remaining is the non-rigid structure of the face, which can change permanently over varying time-scales and briefly with facial expressions. The majority of face recognition methods have been developed by scientists with a very technical background such as biometry, pattern recognition and computer vision. This article strives to bridge the gap between these communities and the forensic science end-users. A concise review of face recognition using 3D shape is given. Methods using 3D shape applied to data embodying facial expressions are tabulated for reference. From this list a categorization of different strategies to deal with expressions is presented. The underlying concepts and practical issues relating to the application of each strategy are given, without going into technical details. The discussion clearly articulates the justification to establish archival, reference databases to compare and evaluate different strategies. PMID:20395086

  12. The role of the dorsal dentate gyrus in object and object-context recognition.

    PubMed

    Dees, Richard L; Kesner, Raymond P

    2013-11-01

    The aim of this study was to determine the role of the dorsal dentate gyrus (dDG) in object recognition memory using a black box and object-context recognition memory using a clear box with available cues that define a spatial context. Based on a 10 min retention interval between the study phase and the test phase, the results indicated that dDG lesioned rats are impaired when compared to controls in the object-context recognition test in the clear box. However, there were no reliable differences between the dDG lesioned rats and the control group for the object recognition test in the black box. Even though the dDG lesioned rats were more active in object exploration, the habituation gradients did not differ. These results suggest that the dentate gyrus lesioned rats are clearly impaired when there is an important contribution of context. Furthermore, based on a 24 h retention interval in the black box the dDG lesioned rats were impaired compared to controls. PMID:23880567

  13. The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded.

    PubMed

    Wyatte, Dean; Curran, Tim; O'Reilly, Randall

    2012-11-01

    Everyday vision requires robustness to a myriad of environmental factors that degrade stimuli. Foreground clutter can occlude objects of interest, and complex lighting and shadows can decrease the contrast of items. How does the brain recognize visual objects despite these low-quality inputs? On the basis of predictions from a model of object recognition that contains excitatory feedback, we hypothesized that recurrent processing would promote robust recognition when objects were degraded by strengthening bottom-up signals that were weakened because of occlusion and contrast reduction. To test this hypothesis, we used backward masking to interrupt the processing of partially occluded and contrast reduced images during a categorization experiment. As predicted by the model, we found significant interactions between the mask and occlusion and the mask and contrast, such that the recognition of heavily degraded stimuli was differentially impaired by masking. The model provided a close fit of these results in an isomorphic version of the experiment with identical stimuli. The model also provided an intuitive explanation of the interactions between the mask and degradations, indicating that masking interfered specifically with the extensive recurrent processing necessary to amplify and resolve highly degraded inputs, whereas less degraded inputs did not require much amplification and could be rapidly resolved, making them less susceptible to masking. Together, the results of the experiment and the accompanying model simulations illustrate the limits of feedforward vision and suggest that object recognition is better characterized as a highly interactive, dynamic process that depends on the coordination of multiple brain areas. PMID:22905822

  14. Ear recognition: a complete system

    NASA Astrophysics Data System (ADS)

    Abaza, Ayman; Harrison, Mary Ann F.

    2013-05-01

    Ear Recognition has recently received significant attention in the literature. Even though current ear recognition systems have reached a certain level of maturity, their success is still limited. This paper presents an efficient complete ear-based biometric system that can process five frames/sec; Hence it can be used for surveillance applications. The ear detection is achieved using Haar features arranged in a cascaded Adaboost classifier. The feature extraction is based on dividing the ear image into several blocks from which Local Binary Pattern feature distributions are extracted. These feature distributions are then fused at the feature level to represent the original ear texture in the classification stage. The contribution of this paper is three fold: (i) Applying a new technique for ear feature extraction, and studying various optimization parameters for that technique; (ii) Presenting a practical ear recognition system and a detailed analysis about error propagation in that system; (iii) Studying the occlusion effect of several ear parts. Detailed experiments show that the proposed ear recognition system achieved better performance (94:34%) compared to other shape-based systems as Scale-invariant feature transform (67:92%). The proposed approach can also handle efficiently hair occlusion. Experimental results show that the proposed system can achieve about (78%) rank-1 identification, even in presence of 60% occlusion.

  15. Picture-object recognition in the tortoise Chelonoidis carbonaria.

    PubMed

    Wilkinson, Anna; Mueller-Paul, Julia; Huber, Ludwig

    2013-01-01

    To recognize that a picture is a representation of a real-life object is a cognitively demanding task. It requires an organism to mentally represent the concrete object (the picture) and abstract its relation to the item that it represents. This form of representational insight has been shown in a small number of mammal and bird species. However, it has not previously been studied in reptiles. This study examined picture-object recognition in the red-footed tortoise (Chelonoidis carbonaria). In Experiment 1, five red-footed tortoises were trained to distinguish between food and non-food objects using a two-alternative forced choice procedure. After reaching criterion, they were presented with test trials in which the real objects were replaced with color photographs of those objects. There was no difference in performance between training and test trials, suggesting that the tortoises did see some correspondence between the real object and its photographic representation. Experiment 2 examined the nature of this correspondence by presenting the tortoises with a choice between the real food object and a photograph of it. The findings revealed that the tortoises confused the photograph with the real-life object. This suggests that they process real items and photographic representations of these items in the same way and, in this context, do not exhibit representational insight. PMID:22945433

  16. An optical processor for object recognition and tracking

    NASA Technical Reports Server (NTRS)

    Sloan, J.; Udomkesmalee, S.

    1987-01-01

    The design and development of a miniaturized optical processor that performs real time image correlation are described. The optical correlator utilizes the Vander Lugt matched spatial filter technique. The correlation output, a focused beam of light, is imaged onto a CMOS photodetector array. In addition to performing target recognition, the device also tracks the target. The hardware, composed of optical and electro-optical components, occupies only 590 cu cm of volume. A complete correlator system would also include an input imaging lens. This optical processing system is compact, rugged, requires only 3.5 watts of operating power, and weighs less than 3 kg. It represents a major achievement in miniaturizing optical processors. When considered as a special-purpose processing unit, it is an attractive alternative to conventional digital image recognition processing. It is conceivable that the combined technology of both optical and ditital processing could result in a very advanced robot vision system.

  17. CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing- learning-actuating system for high-speed visual object recognition and tracking.

    PubMed

    Serrano-Gotarredona, Rafael; Oster, Matthias; Lichtsteiner, Patrick; Linares-Barranco, Alejandro; Paz-Vicente, Rafael; Gomez-Rodriguez, Francisco; Camunas-Mesa, Luis; Berner, Raphael; Rivas-Perez, Manuel; Delbruck, Tobi; Liu, Shih-Chii; Douglas, Rodney; Hafliger, Philipp; Jimenez-Moreno, Gabriel; Civit Ballcels, Anton; Serrano-Gotarredona, Teresa; Acosta-Jimenez, Antonio J; Linares-Barranco, Bernabé

    2009-09-01

    This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asychronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45k neurons (spiking cells), up to 5M synapses, performs 12G synaptic operations per second, and achieves millisecond object recognition and tracking latencies. PMID:19635693

  18. Bayesian multi-target tracking and sequential object recognition

    NASA Astrophysics Data System (ADS)

    Armbruster, Walter

    2008-04-01

    The paper considers the following problem: given a 3D model of a reference target and a sequence of images of a 3D scene, identify the object in the scene most likely to be the reference target and determine its current pose. Finding the best match in each frame independently of previous decisions is not optimal, since past information is ignored. Our solution concept uses a novel Bayesian framework for multi target tracking and object recognition to define and sequentially update the probability that the reference target is any one of the tracked objects. The approach is applied to problems of automatic lock-on and missile guidance using a laser radar seeker. Field trials have resulted in high target hit probabilities despite low resolution imagery and temporarily highly occluded targets.

  19. Are Face and Object Recognition Independent? A Neurocomputational Modeling Exploration.

    PubMed

    Wang, Panqu; Gauthier, Isabel; Cottrell, Garrison

    2016-04-01

    Are face and object recognition abilities independent? Although it is commonly believed that they are, Gauthier et al. [Gauthier, I., McGugin, R. W., Richler, J. J., Herzmann, G., Speegle, M., & VanGulick, A. E. Experience moderates overlap between object and face recognition, suggesting a common ability. Journal of Vision, 14, 7, 2014] recently showed that these abilities become more correlated as experience with nonface categories increases. They argued that there is a single underlying visual ability, v, that is expressed in performance with both face and nonface categories as experience grows. Using the Cambridge Face Memory Test and the Vanderbilt Expertise Test, they showed that the shared variance between Cambridge Face Memory Test and Vanderbilt Expertise Test performance increases monotonically as experience increases. Here, we address why a shared resource across different visual domains does not lead to competition and to an inverse correlation in abilities? We explain this conundrum using our neurocomputational model of face and object processing ["The Model", TM, Cottrell, G. W., & Hsiao, J. H. Neurocomputational models of face processing. In A. J. Calder, G. Rhodes, M. Johnson, & J. Haxby (Eds.), The Oxford handbook of face perception. Oxford, UK: Oxford University Press, 2011]. We model the domain general ability v as the available computational resources (number of hidden units) in the mapping from input to label and experience as the frequency of individual exemplars in an object category appearing during network training. Our results show that, as in the behavioral data, the correlation between subordinate level face and object recognition accuracy increases as experience grows. We suggest that different domains do not compete for resources because the relevant features are shared between faces and objects. The essential power of experience is to generate a "spreading transform" for faces (separating them in representational space) that

  20. Random neural network recognition of shaped objects in strong clutter

    NASA Astrophysics Data System (ADS)

    Bakircioglu, Hakan; Gelenbe, Erol

    1998-04-01

    Detecting objects in images containing strong clutter is an important issue in a variety of applications such as medical imaging and automatic target recognition. Artificial neural networks are used as non-parametric pattern recognizers to cope with different problems due to their inherent ability to learn from training data. In this paper we propose a neural approach based on the Random Neural Network model (Gelenbe 1989, 1990, 1991, 1993), to detect shaped targets with the help of multiple neural networks whose outputs are combined for making decisions.

  1. The Army word recognition system

    NASA Technical Reports Server (NTRS)

    Hadden, David R.; Haratz, David

    1977-01-01

    The application of speech recognition technology in the Army command and control area is presented. The problems associated with this program are described as well as as its relevance in terms of the man/machine interactions, voice inflexions, and the amount of training needed to interact with and utilize the automated system.

  2. Auto-associative segmentation for real-time object recognition in realistic outdoor images

    NASA Astrophysics Data System (ADS)

    Estevez, Leonardo W.; Kehtarnavaz, Nasser D.

    1998-04-01

    As digital signal processors (DSPs) become more advanced, many real-time recognition problems will be solved with completely integrated solutions. In this paper a methodology which is designed for today's DSP architectures and is capable of addressing applications in real-time color object recognition is presented. The methodology is integrated into a processing structure called raster scan video processing which requires a small amount of memory. The small amount of memory required enables the entire recognition system to be implemented on a single DSP. This auto-associative segmentation approach provides a means for desaturated color images to be segmented. The system is applied to the problem of stop sign recognition is realistically captured outdoor images.

  3. a Decision Level Fusion Method for Object Recognition Using Multi-Angular Imagery

    NASA Astrophysics Data System (ADS)

    Tabib Mahmoudi, F.; Samadzadegan, F.; Reinartz, P.

    2013-09-01

    Spectral similarity and spatial adjacency between various kinds of objects, shadow and occluded areas behind high rise objects as well as complex relationships lead to object recognition difficulties and ambiguities in complex urban areas. Using new multi-angular satellite imagery, higher levels of analysis and developing a context aware system may improve object recognition results in these situations. In this paper, the capability of multi-angular satellite imagery is used in order to solve object recognition difficulties in complex urban areas based on decision level fusion of Object Based Image Analysis (OBIA). The proposed methodology has two main stages. In the first stage, object based image analysis is performed independently on each of the multi-angular images. Then, in the second stage, the initial classified regions of each individual multi-angular image are fused through a decision level fusion based on the definition of scene context. Evaluation of the capabilities of the proposed methodology is performed on multi-angular WorldView-2 satellite imagery over Rio de Janeiro (Brazil).The obtained results represent several advantages of multi-angular imagery with respect to a single shot dataset. Together with the capabilities of the proposed decision level fusion method, most of the object recognition difficulties and ambiguities are decreased and the overall accuracy and the kappa values are improved.

  4. Recognition of Simple 3D Geometrical Objects under Partial Occlusion

    NASA Astrophysics Data System (ADS)

    Barchunova, Alexandra; Sommer, Gerald

    In this paper we present a novel procedure for contour-based recognition of partially occluded three-dimensional objects. In our approach we use images of real and rendered objects whose contours have been deformed by a restricted change of the viewpoint. The preparatory part consists of contour extraction, preprocessing, local structure analysis and feature extraction. The main part deals with an extended construction and functionality of the classifier ensemble Adaptive Occlusion Classifier (AOC). It relies on a hierarchical fragmenting algorithm to perform a local structure analysis which is essential when dealing with occlusions. In the experimental part of this paper we present classification results for five classes of simple geometrical figures: prism, cylinder, half cylinder, a cube, and a bridge. We compare classification results for three classical feature extractors: Fourier descriptors, pseudo Zernike and Zernike moments.

  5. Category Specificity in Normal Episodic Learning: Applications to Object Recognition and Category-Specific Agnosia

    ERIC Educational Resources Information Center

    Bukach, Cindy M.; Bub, Daniel N.; Masson, Michael E. J.; Lindsay, D. Stephen

    2004-01-01

    Studies of patients with category-specific agnosia (CSA) have given rise to multiple theories of object recognition, most of which assume the existence of a stable, abstract semantic memory system. We applied an episodic view of memory to questions raised by CSA in a series of studies examining normal observers' recall of newly learned attributes…

  6. Evidence for a specific role for muscarinic receptors in crossmodal object recognition in rats.

    PubMed

    Jacklin, Derek L; Kelly, Patrick; Bianchi, Cristina; MacDonald, Tyler; Traquair, Hugh; Winters, Boyer D

    2015-02-01

    Acetylcholine (ACh) has been implicated in numerous cognitive functions, including multisensory feature binding. In the present study, we systematically assessed the involvement of cholinergic muscarinic receptors in several variations of an object recognition task for rats. In the standard spontaneous object recognition (SOR) task, tactile and visual properties of objects were freely available throughout the sample and choice phases. In the tactile- and visual-only unimodal SOR tasks, exploration in both phases was restricted to tactile and visual information, respectively. For the basic crossmodal object recognition (CMOR) task, sample object exploration was limited to tactile features, whereas choice objects were available only in the visual domain. In Experiment 1, pre-sample systemic administration of scopolamine (0.2mg/kg) disrupted performance on standard SOR, both unimodal SOR tasks, and basic CMOR, consistent with a role for muscarinic receptors in memory encoding. Conversely, in Experiment 2, pre-choice systemic scopolamine selectively impaired object recognition on the CMOR task. For Experiment 3, the inclusion of multimodal, but not unimodal pre-exposure to the to-be-remembered objects prevented scopolamine from disrupting performance on the CMOR task when given prior to the choice phase. These results suggest that ACh is necessary during the choice phase of the CMOR task to facilitate the binding of object features across sensory modalities, a function that is not required for the other tasks assessed. Multimodal object pre-exposure might preclude the requisite contribution of ACh in the choice phase by allowing rats to bind important visual and tactile object information prior to testing. PMID:25490059

  7. Plastic modifications induced by object recognition memory processing

    PubMed Central

    Clarke, Julia Rosauro; Cammarota, Martín; Gruart, Agnès; Izquierdo, Iván; Delgado-García, José María

    2010-01-01

    Long-term potentiation (LTP) phenomenon is widely accepted as a cellular model of memory consolidation. Object recognition (OR) is a particularly useful way of studying declarative memory in rodents because it makes use of their innate preference for novel over familiar objects. In this study, mice had electrodes implanted in the hippocampal Schaffer collaterals–pyramidal CA1 pathway and were trained for OR. Field EPSPs evoked at the CA3-CA1 synapse were recorded at the moment of training and at different times thereafter. LTP-like synaptic enhancement was found 6 h posttraining. A testing session was conducted 24 h after training, in the presence of one familiar and one novel object. Hippocampal synaptic facilitation was observed during exploration of familiar and novel objects. A short depotentiation period was observed early after the test and was followed by a later phase of synaptic efficacy enhancement. Here, we show that OR memory consolidation is accompanied by transient potentiation in the hippocampal CA3-CA1 synapses, while reconsolidation of this memory requires a short-lasting phase of depotentiation that could account for its well described vulnerability. The late synaptic enhancement phase, on the other hand, would be a consequence of memory restabilization. PMID:20133798

  8. Combining depth and color data for 3D object recognition

    NASA Astrophysics Data System (ADS)

    Joergensen, Thomas M.; Linneberg, Christian; Andersen, Allan W.

    1997-09-01

    This paper describes the shape recognition system that has been developed within the ESPRIT project 9052 ADAS on automatic disassembly of TV-sets using a robot cell. Depth data from a chirped laser radar are fused with color data from a video camera. The sensor data is pre-processed in several ways and the obtained representation is used to train a RAM neural network (memory based reasoning approach) to detect different components within TV-sets. The shape recognizing architecture has been implemented and tested in a demonstration setup.

  9. The role of color in expert object recognition.

    PubMed

    Hagen, Simen; Vuong, Quoc C; Scott, Lisa S; Curran, Tim; Tanaka, James W

    2014-01-01

    In the current study, we examined how color knowledge in a domain of expertise influences the accuracy and speed of object recognition. In Experiment 1, expert bird-watchers and novice participants categorized common birds (e.g., robin, sparrow, cardinal) at the family level of abstraction. The bird images were shown in their natural congruent color, nonnatural incongruent color, and gray scale. The main finding was that color affected the performance of bird experts and bird novices, albeit in different ways. Although both experts and novices relied on color to recognize birds at the family level, analysis of the response time distribution revealed that color facilitated expert performance in the fastest and slowest trials whereas color only helped the novices in the slower trials. In Experiment 2, expert bird-watchers were asked to categorize congruent color, incongruent color, and gray scale images of birds at the more subordinate, species level (e.g., Nashville warbler, Wilson's warbler). The performance of experts was better with congruent color images than with incongruent color and gray scale images. As in Experiment 1, analysis of the response time distribution showed that the color effect was present in the fastest trials and was sustained through the slowest trials. Collectively, the findings show that experts have ready access to color knowledge that facilitates their fast and accurate identification at the family and species level of recognition. PMID:25113021

  10. Laptop Computer - Based Facial Recognition System Assessment

    SciTech Connect

    R. A. Cain; G. B. Singleton

    2001-03-01

    The objective of this project was to assess the performance of the leading commercial-off-the-shelf (COTS) facial recognition software package when used as a laptop application. We performed the assessment to determine the system's usefulness for enrolling facial images in a database from remote locations and conducting real-time searches against a database of previously enrolled images. The assessment involved creating a database of 40 images and conducting 2 series of tests to determine the product's ability to recognize and match subject faces under varying conditions. This report describes the test results and includes a description of the factors affecting the results. After an extensive market survey, we selected Visionics' FaceIt{reg_sign} software package for evaluation and a review of the Facial Recognition Vendor Test 2000 (FRVT 2000). This test was co-sponsored by the US Department of Defense (DOD) Counterdrug Technology Development Program Office, the National Institute of Justice, and the Defense Advanced Research Projects Agency (DARPA). Administered in May-June 2000, the FRVT 2000 assessed the capabilities of facial recognition systems that were currently available for purchase on the US market. Our selection of this Visionics product does not indicate that it is the ''best'' facial recognition software package for all uses. It was the most appropriate package based on the specific applications and requirements for this specific application. In this assessment, the system configuration was evaluated for effectiveness in identifying individuals by searching for facial images captured from video displays against those stored in a facial image database. An additional criterion was that the system be capable of operating discretely. For this application, an operational facial recognition system would consist of one central computer hosting the master image database with multiple standalone systems configured with duplicates of the master operating in

  11. Anthropomorphic robot for recognition and drawing generalized object images

    NASA Astrophysics Data System (ADS)

    Ginzburg, Vera M.

    1998-10-01

    The process of recognition, for instance, understanding the text, written by different fonts, consists in the depriving of the individual attributes of the letters in the particular font. It is shown that such process, in Nature and technique, can be provided by the narrowing the spatial frequency of the object's image by its defocusing. In defocusing images remain only areas, so-called Informative Fragments (IFs), which all together form the generalized (stylized) image of many identical objects. It is shown that the variety of shapes of IFs is restricted and can be presented by `Geometrical alphabet'. The `letters' for this alphabet can be created using two basic `genetic' figures: a stripe and round spot. It is known from physiology that the special cells of visual cortex response to these particular figures. The prototype of such `genetic' alphabet has been made using Boolean algebra (Venn's diagrams). The algorithm for drawing the letter's (`genlet's') shape in this alphabet and generalized images of objects (for example, `sleeping cat'), are given. A scheme of an anthropomorphic robot is shown together with results of model computer experiment of the robot's action--`drawing' the generalized image.

  12. The role of histamine receptors in the consolidation of object recognition memory.

    PubMed

    da Silveira, Clarice Krás Borges; Furini, Cristiane R G; Benetti, Fernando; Monteiro, Siomara da Cruz; Izquierdo, Ivan

    2013-07-01

    Findings have shown that histamine receptors in the hippocampus modulate the acquisition and extinction of fear motivated learning. In order to determine the role of hippocampal histaminergic receptors on recognition memory, adult male Wistar rats with indwelling infusion cannulae stereotaxically placed in the CA1 region of dorsal hippocampus were trained in an object recognition learning task involving exposure to two different stimulus objects in an enclosed environment. In the test session, one of the objects presented during training was replaced by a novel one. Recognition memory retention was assessed 24 h after training by comparing the time spent in exploration (sniffing and touching) of the known object with that of the novel one. When infused in the CA1 region immediately, 30, 120 or 360 min posttraining, the H1-receptor antagonist, pyrilamine, the H2-receptor antagonist, ranitidine, and the H3-receptor agonist, imetit, blocked long-term memory retention in a time dependent manner (30-120 min) without affecting general exploratory behavior, anxiety state or hippocampal function. Our data indicate that histaminergic system modulates consolidation of object recognition memory through H1, H2 and H3 receptors. PMID:23583502

  13. Infrared detection, recognition and identification of handheld objects

    NASA Astrophysics Data System (ADS)

    Adomeit, Uwe

    2012-10-01

    A main criterion for comparison and selection of thermal imagers for military applications is their nominal range performance. This nominal range performance is calculated for a defined task and standardized target and environmental conditions. The only standardization available to date is STANAG 4347. The target defined there is based on a main battle tank in front view. Because of modified military requirements, this target is no longer up-to-date. Today, different topics of interest are of interest, especially differentiation between friend and foe and identification of humans. There is no direct way to differentiate between friend and foe in asymmetric scenarios, but one clue can be that someone is carrying a weapon. This clue can be transformed in the observer tasks detection: a person is carrying or is not carrying an object, recognition: the object is a long / medium / short range weapon or civil equipment and identification: the object can be named (e. g. AK-47, M-4, G36, RPG7, Axe, Shovel etc.). These tasks can be assessed experimentally and from the results of such an assessment, a standard target for handheld objects may be derived. For a first assessment, a human carrying 13 different handheld objects in front of his chest was recorded at four different ranges with an IR-dual-band camera. From the recorded data, a perception experiment was prepared. It was conducted with 17 observers in a 13-alternative forced choice, unlimited observation time arrangement. The results of the test together with Minimum Temperature Difference Perceived measurements of the camera and temperature difference and critical dimension derived from the recorded imagery allowed defining a first standard target according to the above tasks. This standard target consist of 2.5 / 3.5 / 5 DRI line pairs on target, 0.24 m critical size and 1 K temperature difference. The values are preliminary and have to be refined in the future. Necessary are different aspect angles, different

  14. Methods for recognition of natural and man-made objects using laser radar data

    NASA Astrophysics Data System (ADS)

    Groenwall, Christina A.; Chevalier, Tomas R.; Persson, Asa; Elmqvist, Magnus; Ahlberg, Simon; Klasen, Lena M.; Andersson, Pierre

    2004-09-01

    Over the years imaging laser radar systems have been developed for both military and civilian (topographic) applications. Among the applications, 3D data is used for environment modeling and object reconstruction and recognition. The data processing methods are mainly developed separately for military or topographic applications, seldom both application areas are in mind. In this paper, an overview of methods from both areas is presented. First, some of the work on ground surface estimation and classification of natural objects, for example trees, is described. Once natural objects have been detected and classified, we review some of the extensive work on reconstruction and recognition of man-made objects. Primarily we address the reconstruction of buildings and recognition of vehicles. Further, some methods for evaluation of measurement systems and algorithms are described. Models of some types of laser radar systems are reviewed, based on both physical and statistical approaches, for analysis and evaluation of measurement systems and algorithms. The combination of methods for reconstruction of natural and man-made objects is also discussed. By combining methods originating from civilian and military applications, we believe that the tools to analyze a whole scene become available. In this paper we show examples where methods from both application fields are used to analyze a scene.

  15. Standard object recognition memory and "what" and "where" components: Improvement by post-training epinephrine in highly habituated rats.

    PubMed

    Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel

    2010-02-11

    The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats. PMID:19788899

  16. 3-D Object Recognition from Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Smith, W.; Walker, A. S.; Zhang, B.

    2011-09-01

    The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be valuable in robotics and UAV applications. The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex roofs. Several case

  17. Image quality analysis and improvement of Ladar reflective tomography for space object recognition

    NASA Astrophysics Data System (ADS)

    Wang, Jin-cheng; Zhou, Shi-wei; Shi, Liang; Hu, Yi-Hua; Wang, Yong

    2016-01-01

    Some problems in the application of Ladar reflective tomography for space object recognition are studied in this work. An analytic target model is adopted to investigate the image reconstruction properties with limited relative angle range, which are useful to verify the target shape from the incomplete image, analyze the shadowing effect of the target and design the satellite payloads against recognition via reflective tomography approach. We proposed an iterative maximum likelihood method basing on Bayesian theory, which can effectively compress the pulse width and greatly improve the image resolution of incoherent LRT system without loss of signal to noise ratio.

  18. A 3D approach for object recognition in illuminated scenes with adaptive correlation filters

    NASA Astrophysics Data System (ADS)

    Picos, Kenia; Díaz-Ramírez, Víctor H.

    2015-09-01

    In this paper we solve the problem of pose recognition of a 3D object in non-uniformly illuminated and noisy scenes. The recognition system employs a bank of space-variant correlation filters constructed with an adaptive approach based on local statistical parameters of the input scene. The position and orientation of the target are estimated with the help of the filter bank. For an observed input frame, the algorithm computes the correlation process between the observed image and the bank of filters using a combination of data and task parallelism by taking advantage of a graphics processing unit (GPU) architecture. The pose of the target is estimated by finding the template that better matches the current view of target within the scene. The performance of the proposed system is evaluated in terms of recognition accuracy, location and orientation errors, and computational performance.

  19. Learning invariant object recognition from temporal correlation in a hierarchical network.

    PubMed

    Lessmann, Markus; Würtz, Rolf P

    2014-06-01

    Invariant object recognition, which means the recognition of object categories independent of conditions like viewing angle, scale and illumination, is a task of great interest that humans can fulfill much better than artificial systems. During the last years several basic principles were derived from neurophysiological observations and careful consideration: (1) Developing invariance to possible transformations of the object by learning temporal sequences of visual features that occur during the respective alterations. (2) Learning in a hierarchical structure, so basic level (visual) knowledge can be reused for different kinds of objects. (3) Using feedback to compare predicted input with the current one for choosing an interpretation in the case of ambiguous signals. In this paper we propose a network which implements all of these concepts in a computationally efficient manner which gives very good results on standard object datasets. By dynamically switching off weakly active neurons and pruning weights computation is sped up and thus handling of large databases with several thousands of images and a number of categories in a similar order becomes possible. The involved parameters allow flexible adaptation to the information content of training data and allow tuning to different databases relatively easily. Precondition for successful learning is that training images are presented in an order assuring that images of the same object under similar viewing conditions follow each other. Through an implementation with sparse data structures the system has moderate memory demands and still yields very good recognition rates. PMID:24657573

  20. Emerging technologies with potential for objectively evaluating speech recognition skills.

    PubMed

    Rawool, Vishakha Waman

    2016-01-01

    Work-related exposure to noise and other ototoxins can cause damage to the cochlea, synapses between the inner hair cells, the auditory nerve fibers, and higher auditory pathways, leading to difficulties in recognizing speech. Procedures designed to determine speech recognition scores (SRS) in an objective manner can be helpful in disability compensation cases where the worker claims to have poor speech perception due to exposure to noise or ototoxins. Such measures can also be helpful in determining SRS in individuals who cannot provide reliable responses to speech stimuli, including patients with Alzheimer's disease, traumatic brain injuries, and infants with and without hearing loss. Cost-effective neural monitoring hardware and software is being rapidly refined due to the high demand for neurogaming (games involving the use of brain-computer interfaces), health, and other applications. More specifically, two related advances in neuro-technology include relative ease in recording neural activity and availability of sophisticated analysing techniques. These techniques are reviewed in the current article and their applications for developing objective SRS procedures are proposed. Issues related to neuroaudioethics (ethics related to collection of neural data evoked by auditory stimuli including speech) and neurosecurity (preservation of a person's neural mechanisms and free will) are also discussed. PMID:26807789

  1. Object recognition in Williams syndrome: Uneven ventral stream activation

    PubMed Central

    O’Hearn, Kirsten; Roth, Jennifer K.; Courtney, Susan M.; Luna, Beatriz; Street, Whitney; Terwillinger, Robert; Landau, Barbara

    2010-01-01

    Williams syndrome (WS) is a genetic disorder associated with severe visuospatial deficits, relatively strong language skills, heightened social interest, and increased attention to faces. On the basis of the visuospatial impairments, this disorder has been characterized primarily as a deficit of the dorsal stream, the occipitoparietal brain regions that subserve visuospatial processing. However, some evidence indicates that this disorder may also affect the development of the ventral stream, the occipitotemporal cortical regions that subserve face and object recognition. The present studies examined ventral stream function in WS, with the hypothesis that faces would produce a relatively more mature pattern of ventral occipitotemporal cortical activation, relative to other objects that are also represented across these visual areas. We compared functional magnetic resonance imaging activation patterns during viewing of human faces, cat faces, houses and shoes in individuals with WS (age 14–27), typically developing 6–9 year olds (matched approximately on mental age), and typically developing 14–26 year olds (matched on chronological age). Typically developing individuals exhibited changes in the pattern of activation over age, consistent with previous reports. The ventral stream topography of the WS individuals differed from both control groups, however, reflecting the same level of activation to face stimuli as chronological age matches, but less activation to house stimuli than either mental age or chronological age matches. We discuss the possible causes of this unusual topography and implications for understanding the behavioral profile of people with WS. PMID:21477194

  2. Cross-modal object recognition and dynamic weighting of sensory inputs in a fish.

    PubMed

    Schumacher, Sarah; Burt de Perera, Theresa; Thenert, Johanna; von der Emde, Gerhard

    2016-07-01

    Most animals use multiple sensory modalities to obtain information about objects in their environment. There is a clear adaptive advantage to being able to recognize objects cross-modally and spontaneously (without prior training with the sense being tested) as this increases the flexibility of a multisensory system, allowing an animal to perceive its world more accurately and react to environmental changes more rapidly. So far, spontaneous cross-modal object recognition has only been shown in a few mammalian species, raising the question as to whether such a high-level function may be associated with complex mammalian brain structures, and therefore absent in animals lacking a cerebral cortex. Here we use an object-discrimination paradigm based on operant conditioning to show, for the first time to our knowledge, that a nonmammalian vertebrate, the weakly electric fish Gnathonemus petersii, is capable of performing spontaneous cross-modal object recognition and that the sensory inputs are weighted dynamically during this task. We found that fish trained to discriminate between two objects with either vision or the active electric sense, were subsequently able to accomplish the task using only the untrained sense. Furthermore we show that cross-modal object recognition is influenced by a dynamic weighting of the sensory inputs. The fish weight object-related sensory inputs according to their reliability, to minimize uncertainty and to enable an optimal integration of the senses. Our results show that spontaneous cross-modal object recognition and dynamic weighting of sensory inputs are present in a nonmammalian vertebrate. PMID:27313211

  3. 3D scene's object detection and recognition using depth layers and SIFT-based machine learning

    NASA Astrophysics Data System (ADS)

    Kounalakis, T.; Triantafyllidis, G. A.

    2011-09-01

    This paper presents a novel system that is fusing efficient and state-of-the-art techniques of stereo vision and machine learning, aiming at object detection and recognition. To this goal, the system initially creates depth maps by employing the Graph-Cut technique. Then, the depth information is used for object detection by separating the objects from the whole scene. Next, the Scale-Invariant Feature Transform (SIFT) is used, providing the system with unique object's feature key-points, which are employed in training an Artificial Neural Network (ANN). The system is then able to classify and recognize the nature of these objects, creating knowledge from the real world. [Figure not available: see fulltext.

  4. The speed of object recognition from a haptic glance: event-related potential evidence.

    PubMed

    Gurtubay-Antolin, Ane; Rodriguez-Herreros, Borja; Rodríguez-Fornells, Antoni

    2015-05-01

    Recognition of an object usually involves a wide range of sensory inputs. Accumulating evidence shows that first brain responses associated with the visual discrimination of objects emerge around 150 ms, but fewer studies have been devoted to measure the first neural signature of haptic recognition. To investigate the speed of haptic processing, we recorded event-related potentials (ERPs) during a shape discrimination task without visual information. After a restricted exploratory procedure, participants (n = 27) were instructed to judge whether the touched object corresponded to an expected object whose name had been previously presented in a screen. We encountered that any incongruence between the presented word and the shape of the object evoked a frontocentral negativity starting at ∼175 ms. With the use of source analysis and L2 minimum-norm estimation, the neural sources of this differential activity were located in higher level somatosensory areas and prefrontal regions involved in error monitoring and cognitive control. Our findings reveal that the somatosensory system is able to complete an amount of haptic processing substantial enough to trigger conflict-related responses in medial and prefrontal cortices in <200 ms. The present results show that our haptic system is a fast recognition device closely interlinked with error- and conflict-monitoring processes. PMID:25744887

  5. Moving Object Control System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    2001-01-01

    A method is provided for controlling two objects relatively moveable with respect to each other. A plurality of receivers are provided for detecting a distinctive microwave signal from each of the objects and measuring the phase thereof with respect to a reference signal. The measured phase signal is used to determine a distance between each of the objects and each of the plurality of receivers. Control signals produced in response to the relative distances are used to control the position of the two objects.

  6. Crowding, grouping, and object recognition: A matter of appearance

    PubMed Central

    Herzog, Michael H.; Sayim, Bilge; Chicherov, Vitaly; Manassi, Mauro

    2015-01-01

    In crowding, the perception of a target strongly deteriorates when neighboring elements are presented. Crowding is usually assumed to have the following characteristics. (a) Crowding is determined only by nearby elements within a restricted region around the target (Bouma's law). (b) Increasing the number of flankers can only deteriorate performance. (c) Target-flanker interference is feature-specific. These characteristics are usually explained by pooling models, which are well in the spirit of classic models of object recognition. In this review, we summarize recent findings showing that crowding is not determined by the above characteristics, thus, challenging most models of crowding. We propose that the spatial configuration across the entire visual field determines crowding. Only when one understands how all elements of a visual scene group with each other, can one determine crowding strength. We put forward the hypothesis that appearance (i.e., how stimuli look) is a good predictor for crowding, because both crowding and appearance reflect the output of recurrent processing rather than interactions during the initial phase of visual processing. PMID:26024452

  7. Acute restraint stress and corticosterone transiently disrupts novelty preference in an object recognition task.

    PubMed

    Vargas-López, Viviana; Torres-Berrio, Angélica; González-Martínez, Lina; Múnera, Alejandro; Lamprea, Marisol R

    2015-09-15

    The object recognition task is a procedure based on rodents' natural tendency to explore novel objects which is frequently used for memory testing. However, in some instances novelty preference is replaced by familiarity preference, raising questions regarding the validity of novelty preference as a pure recognition memory index. Acute stress- and corticosterone administration-induced novel object preference disruption has been frequently interpreted as memory impairment; however, it is still not clear whether such effect can be actually attributed to either mnemonic disruption or altered novelty seeking. Seventy-five adult male Wistar rats were trained in an object recognition task and subjected to either acute stress or corticosterone administration to evaluate the effect of stress or corticosterone on an object recognition task. Acute stress was induced by restraining movement for 1 or 4h, ending 30 min before the sample trial. Corticosterone was injected intraperitoneally 10 min before the test trial which was performed either 1 or 24h after the sample trial. Four-hour, but not 1-h, stress induced familiar object preference during the test trial performed 1h after the sample trial; however, acute stress had no effects on the test when performed 24h after sample trial. Systemic administration of corticosterone before the test trial performed either 1 or 24h after the sample trial also resulted in familiar object preference. However, neither acute stress nor corticosterone induced changes in locomotor behaviour. Taken together, such results suggested that acute stress probably does not induce memory retrieval impairment but, instead, induces an emotional arousing state which motivates novelty avoidance. PMID:25986403

  8. 3D video analysis of the novel object recognition test in rats.

    PubMed

    Matsumoto, Jumpei; Uehara, Takashi; Urakawa, Susumu; Takamura, Yusaku; Sumiyoshi, Tomiki; Suzuki, Michio; Ono, Taketoshi; Nishijo, Hisao

    2014-10-01

    The novel object recognition (NOR) test has been widely used to test memory function. We developed a 3D computerized video analysis system that estimates nose contact with an object in Long Evans rats to analyze object exploration during NOR tests. The results indicate that the 3D system reproducibly and accurately scores the NOR test. Furthermore, the 3D system captures a 3D trajectory of the nose during object exploration, enabling detailed analyses of spatiotemporal patterns of object exploration. The 3D trajectory analysis revealed a specific pattern of object exploration in the sample phase of the NOR test: normal rats first explored the lower parts of objects and then gradually explored the upper parts. A systematic injection of MK-801 suppressed changes in these exploration patterns. The results, along with those of previous studies, suggest that the changes in the exploration patterns reflect neophobia to a novel object and/or changes from spatial learning to object learning. These results demonstrate that the 3D tracking system is useful not only for detailed scoring of animal behaviors but also for investigation of characteristic spatiotemporal patterns of object exploration. The system has the potential to facilitate future investigation of neural mechanisms underlying object exploration that result from dynamic and complex brain activity. PMID:24991752

  9. Promoting rotational-invariance in object recognition despite experience with only a single view.

    PubMed

    Soto, Fabian A; Wasserman, Edward A

    2016-02-01

    Different processes are assumed to underlie invariant object recognition across affine transformations, such as changes in size, and non-affine transformations, such as rotations in depth. From this perspective, promoting invariant object recognition across rotations in depth requires visual experience with the object from multiple viewpoints. One learning mechanism potentially contributing to invariant recognition is the error-driven learning of associations between relatively view-invariant visual properties and motor responses or object labels. This account uniquely predicts that experience with affine transformations of a single object view may also promote view-invariance, if view-invariant properties are also invariant across such affine transformations. We empirically confirmed this prediction in both people and pigeons, thereby suggesting that: (a) the hypothesized mechanism participates in view-invariance learning, (b) this mechanism is present across distantly-related vertebrates, and (c) the distinction between affine and non-affine transformations may not be fundamental for biological visual systems, as previously assumed. PMID:26608549

  10. Object recognition through turbulence with a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher

    2015-03-01

    Atmospheric turbulence adds accumulated distortion to images obtained by cameras and surveillance systems. When the turbulence grows stronger or when the object is further away from the observer, increasing the recording device resolution helps little to improve the quality of the image. Many sophisticated methods to correct the distorted images have been invented, such as using a known feature on or near the target object to perform a deconvolution process, or use of adaptive optics. However, most of the methods depend heavily on the object's location, and optical ray propagation through the turbulence is not directly considered. Alternatively, selecting a lucky image over many frames provides a feasible solution, but at the cost of time. In our work, we propose an innovative approach to improving image quality through turbulence by making use of a modified plenoptic camera. This type of camera adds a micro-lens array to a traditional high-resolution camera to form a semi-camera array that records duplicate copies of the object as well as "superimposed" turbulence at slightly different angles. By performing several steps of image reconstruction, turbulence effects will be suppressed to reveal more details of the object independently (without finding references near the object). Meanwhile, the redundant information obtained by the plenoptic camera raises the possibility of performing lucky image algorithmic analysis with fewer frames, which is more efficient. In our work, the details of our modified plenoptic cameras and image processing algorithms will be introduced. The proposed method can be applied to coherently illuminated object as well as incoherently illuminated objects. Our result shows that the turbulence effect can be effectively suppressed by the plenoptic camera in the hardware layer and a reconstructed "lucky image" can help the viewer identify the object even when a "lucky image" by ordinary cameras is not achievable.

  11. Similarity dependency of the change in ERP component N1 accompanying with the object recognition learning.

    PubMed

    Tokudome, Wataru; Wang, Gang

    2012-01-01

    Performance during object recognition across views is largely dependent on inter-object similarity. The present study was designed to investigate the similarity dependency of object recognition learning on the changes in ERP component N1. Human subjects were asked to train themselves to recognize novel objects with different inter-object similarity by performing object recognition tasks. During the tasks, images of an object had to be discriminated from the images of other objects irrespective of the viewpoint. When objects had a high inter-object similarity, the ERP component, N1 exhibited a significant increase in both the amplitude and the latency variation across objects during the object recognition learning process, and the N1 amplitude and latency variation across the views of the same objects decreased significantly. In contrast, no significant changes were found during the learning process when using objects with low inter-object similarity. The present findings demonstrate that the changes in the variation of N1 that accompany the object recognition learning process are dependent upon the inter-object similarity and imply that there is a difference in the neuronal representation for object recognition when using objects with high and low inter-object similarity. PMID:22115890

  12. A Scientific Workflow Platform for Generic and Scalable Object Recognition on Medical Images

    NASA Astrophysics Data System (ADS)

    Möller, Manuel; Tuot, Christopher; Sintek, Michael

    In the research project THESEUS MEDICO we aim at a system combining medical image information with semantic background knowledge from ontologies to give clinicians fully cross-modal access to biomedical image repositories. Therefore joint efforts have to be made in more than one dimension: Object detection processes have to be specified in which an abstraction is performed starting from low-level image features across landmark detection utilizing abstract domain knowledge up to high-level object recognition. We propose a system based on a client-server extension of the scientific workflow platform Kepler that assists the collaboration of medical experts and computer scientists during development and parameter learning.

  13. Regulation of object recognition and object placement by ovarian sex steroid hormones

    PubMed Central

    Tuscher, Jennifer J.; Fortress, Ashley M.; Kim, Jaekyoon; Frick, Karyn M.

    2014-01-01

    The ovarian hormones 17β-estradiol (E2) and progesterone (P4) are potent modulators of hippocampal memory formation. Both hormones have been demonstrated to enhance hippocampal memory by regulating the cellular and molecular mechanisms thought to underlie memory formation. Behavioral neuroendocrinologists have increasingly used the object recognition and object placement (object location) tasks to investigate the role of E2 and P4 in regulating hippocampal memory formation in rodents. These one-trial learning tasks are ideal for studying acute effects of hormone treatments on different phases of memory because they can be administered during acquisition (pre-training), consolidation (post-training), or retrieval (pre-testing). This review synthesizes the rodent literature testing the effects of E2 and P4 on object recognition (OR) and object placement (OP), and the molecular mechanisms in the hippocampus supporting memory formation in these tasks. Some general trends emerge from the data. Among gonadally intact females, object memory tends to be best when E2 and P4 levels are elevated during the estrous cycle, pregnancy, and in middle age. In ovariectomized females, E2 given before or immediately after testing generally enhances OR and OP in young and middle-aged rats and mice, although effects are mixed in aged rodents. Effects of E2 treatment on OR 7and OP memory consolidation can be mediated by both classical estrogen receptors (ERα and ERβ), and depend on glutamate receptors (NMDA, mGluR1) and activation of numerous cell signaling cascades (e.g., ERK, PI3K/Akt, mTOR) and epigenetic processes (e.g., histone H3 acetylation, DNA methylation). Acute P4 treatment given immediately after training also enhances OR and OP in young and middle-aged ovariectomized females by activating similar cell signaling pathways as E2 (e.g., ERK, mTOR). The few studies that have administered both hormones in combination suggest that treatment can enhance OR and OP, but that

  14. Privacy protection schemes for fingerprint recognition systems

    NASA Astrophysics Data System (ADS)

    Marasco, Emanuela; Cukic, Bojan

    2015-05-01

    The deployment of fingerprint recognition systems has always raised concerns related to personal privacy. A fingerprint is permanently associated with an individual and, generally, it cannot be reset if compromised in one application. Given that fingerprints are not a secret, potential misuses besides personal recognition represent privacy threats and may lead to public distrust. Privacy mechanisms control access to personal information and limit the likelihood of intrusions. In this paper, image- and feature-level schemes for privacy protection in fingerprint recognition systems are reviewed. Storing only key features of a biometric signature can reduce the likelihood of biometric data being used for unintended purposes. In biometric cryptosystems and biometric-based key release, the biometric component verifies the identity of the user, while the cryptographic key protects the communication channel. Transformation-based approaches only a transformed version of the original biometric signature is stored. Different applications can use different transforms. Matching is performed in the transformed domain which enable the preservation of low error rates. Since such templates do not reveal information about individuals, they are referred to as cancelable templates. A compromised template can be re-issued using a different transform. At image-level, de-identification schemes can remove identifiers disclosed for objectives unrelated to the original purpose, while permitting other authorized uses of personal information. Fingerprint images can be de-identified by, for example, mixing fingerprints or removing gender signature. In both cases, degradation of matching performance is minimized.

  15. Scopolamine infused into perirhinal cortex improves object recognition memory by blocking the acquisition of interfering object information

    PubMed Central

    Winters, Boyer D.; Bartko, Susan J.; Saksida, Lisa M.; Bussey, Timothy J.

    2007-01-01

    In a previous study, we reported apparently paradoxical facilitation of object recognition memory following infusions of the cholinergic muscarinic receptor antagonist scopolamine into the perirhinal cortex (PRh) of rats. We attributed these effects to the blockade by scopolamine of the acquisition of interfering information. The present study tested this possibility directly by modifying the spontaneous object recognition memory task to allow the presentation of a potentially interfering object either before the sample phase or in the retention delay between the sample and choice phases. Presentation of an object between the sample and choice phases disrupted subsequent recognition of the sample object (retroactive interference), and intra-PRh infusions of scopolamine prior to the presentation of the irrelevant object prevented this retroactive interference effect. Moreover, presentation of an irrelevant object prior to the sample phase interfered proactively with sample object recognition, and intra-PRh infusions of scopolamine prior to the presentation of the pre-sample object prevented this proactive interference effect. These results suggest that blocking muscarinic cholinergic receptors in PRh can disrupt the acquisition of potentially interfering object information, thereby facilitating object recognition memory. This finding provides further, strong evidence that acetylcholine is important for the acquisition of object information in PRh. PMID:17823242

  16. It takes two-skilled recognition of objects engages lateral areas in both hemispheres.

    PubMed

    Bilalić, Merim; Kiesel, Andrea; Pohl, Carsten; Erb, Michael; Grodd, Wolfgang

    2011-01-01

    Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas. PMID:21283683

  17. Experience moderates overlap between object and face recognition, suggesting a common ability

    PubMed Central

    Gauthier, Isabel; McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E.

    2014-01-01

    Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. PMID:24993021

  18. Research on recognition methods of aphid objects in complex backgrounds

    NASA Astrophysics Data System (ADS)

    Zhao, Hui-Yan; Zhang, Ji-Hong

    2009-07-01

    In order to improve the recognition accuracy among the kinds of aphids in the complex backgrounds, the recognition method among kinds of aphids based on Dual-Tree Complex Wavelet Transform (DT-CWT) and Support Vector Machine (Libsvm) is proposed. Firstly the image is pretreated; secondly the aphid images' texture feature of three crops are extracted by DT-CWT in order to get the training parameters of training model; finally the training model could recognize aphids among the three kinds of crops. By contrasting to Gabor wavelet transform and the traditional extracting texture's methods based on Gray-Level Co-Occurrence Matrix (GLCM), the experiment result shows that the method has a certain practicality and feasibility and provides basic for aphids' recognition between the identification among same kind aphid.

  19. Crossmodal enhancement in the LOC for visuohaptic object recognition over development.

    PubMed

    Jao, R Joanne; James, Thomas W; James, Karin Harman

    2015-10-01

    Research has provided strong evidence of multisensory convergence of visual and haptic information within the visual cortex. These studies implement crossmodal matching paradigms to examine how systems use information from different sensory modalities for object recognition. Developmentally, behavioral evidence of visuohaptic crossmodal processing has suggested that communication within sensory systems develops earlier than across systems; nonetheless, it is unknown how the neural mechanisms driving these behavioral effects develop. To address this gap in knowledge, BOLD functional Magnetic Resonance Imaging (fMRI) was measured during delayed match-to-sample tasks that examined intramodal (visual-to-visual, haptic-to-haptic) and crossmodal (visual-to-haptic, haptic-to-visual) novel object recognition in children aged 7-8.5 years and adults. Tasks were further divided into sample encoding and test matching phases to dissociate the relative contributions of each. Results of crossmodal and intramodal object recognition revealed the network of known visuohaptic multisensory substrates, including the lateral occipital complex (LOC) and the intraparietal sulcus (IPS). Critically, both adults and children showed crossmodal enhancement within the LOC, suggesting a sensitivity to changes in sensory modality during recognition. These groups showed similar regions of activation, although children generally exhibited more widespread activity during sample encoding and weaker BOLD signal change during test matching than adults. Results further provided evidence of a bilateral region in the occipitotemporal cortex that was haptic-preferring in both age groups. This region abutted the bimodal LOtv, and was consistent with a medial to lateral organization that transitioned from a visual to haptic bias within the LOC. These findings converge with existing evidence of visuohaptic processing in the LOC in adults, and extend our knowledge of crossmodal processing in adults and

  20. Fusion of Depth and Intensity Data for Three-Dimensional Object Representation and Recognition

    NASA Astrophysics Data System (ADS)

    Ramirez Cortes, Juan Manuel

    For humans, retinal images provide sufficient information for the complete understanding of three-dimensional shapes in a scene. The ultimate goal of computer vision is to develop an automated system able to reproduce some of the tasks performed in a natural way by human beings as recognition, classification, or analysis of the environment as basis for further decisions. At the first level, referred to as early computer vision, the task is to extract symbolic descriptive information in a scene from a variety of sensory data. The second level is concerned with classification, recognition, or decision systems and the related heuristics, that aid the processing of the available information. This research is concerned with a new approach to 3-D object representation and recognition using an interpolation scheme applied to the information from the fusion of range and intensity data. The range image acquisition uses a methodology based on a passive stereo-vision model originally developed to be used with a sequence of images. However, curved features, large disparities and noisy input images are some of the problems associated with real imagery, which need to be addressed prior to applying the matching techniques in the spatial frequency domain. Some of the above mentioned problems can only be solved by computationally intensive spatial domain algorithms. Regularization techniques are explored for surface recovery from sparse range data, and intensity images are incorporated in the final representation of the surface. As an important application, the problem of 3-D representation of retinal images for extraction of quantitative information is addressed. Range information is also combined with intensity data to provide a more accurate numerical description based on aspect graphs. This representation is used as input to a three-dimensional object recognition system. Such an approach results in an improved performance of 3-D object classifiers.

  1. Using an Improved SIFT Algorithm and Fuzzy Closed-Loop Control Strategy for Object Recognition in Cluttered Scenes

    PubMed Central

    Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo

    2015-01-01

    Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094

  2. Kannada character recognition system using neural network

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.

    2013-03-01

    Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.

  3. Infliximab ameliorates AD-associated object recognition memory impairment.

    PubMed

    Kim, Dong Hyun; Choi, Seong-Min; Jho, Jihoon; Park, Man-Seok; Kang, Jisu; Park, Se Jin; Ryu, Jong Hoon; Jo, Jihoon; Kim, Hyun Hee; Kim, Byeong C

    2016-09-15

    Dysfunctions in the perirhinal cortex (PRh) are associated with visual recognition memory deficit, which is frequently detected in the early stage of Alzheimer's disease. Muscarinic acetylcholine receptor-dependent long-term depression (mAChR-LTD) of synaptic transmission is known as a key pathway in eliciting this type of memory, and Tg2576 mice expressing enhanced levels of Aβ oligomers are found to have impaired mAChR-LTD in this brain area at as early as 3 months of age. We found that the administration of Aβ oligomers in young normal mice also induced visual recognition memory impairment and perturbed mAChR-LTD in mouse PRh slices. In addition, when mice were treated with infliximab, a monoclonal antibody against TNF-α, visual recognition memory impaired by pre-administered Aβ oligomers dramatically improved and the detrimental Aβ effect on mAChR-LTD was annulled. Taken together, these findings suggest that Aβ-induced inflammation is mediated through TNF-α signaling cascades, disturbing synaptic transmission in the PRh, and leading to visual recognition memory deficits. PMID:27265784

  4. The development of newborn object recognition in fast and slow visual worlds.

    PubMed

    Wood, Justin N; Wood, Samantha M W

    2016-04-27

    Object recognition is central to perception and cognition. Yet relatively little is known about the environmental factors that cause invariant object recognition to emerge in the newborn brain. Is this ability a hardwired property of vision? Or does the development of invariant object recognition require experience with a particular kind of visual environment? Here, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) require visual experience with slowly changing objects to develop invariant object recognition abilities. When newborn chicks were raised with a slowly rotating virtual object, the chicks built invariant object representations that generalized across novel viewpoints and rotation speeds. In contrast, when newborn chicks were raised with a virtual object that rotated more quickly, the chicks built viewpoint-specific object representations that failed to generalize to novel viewpoints and rotation speeds. Moreover, there was a direct relationship between the speed of the object and the amount of invariance in the chick's object representation. Thus, visual experience with slowly changing objects plays a critical role in the development of invariant object recognition. These results indicate that invariant object recognition is not a hardwired property of vision, but is learned rapidly when newborns encounter a slowly changing visual world. PMID:27097925

  5. Post-Training Reversible Inactivation of the Hippocampus Enhances Novel Object Recognition Memory

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Hawk, Joshua D.; Abel, Ted; Havekes, Robbert

    2010-01-01

    Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory…

  6. The Consolidation of Object and Context Recognition Memory Involve Different Regions of the Temporal Lobe

    ERIC Educational Resources Information Center

    Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico

    2008-01-01

    These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…

  7. Practical automatic Arabic license plate recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Since 1970's, the need of an automatic license plate recognition system, sometimes referred as Automatic License Plate Recognition system, has been increasing. A license plate recognition system is an automatic system that is able to recognize a license plate number, extracted from image sensors. In specific, Automatic License Plate Recognition systems are being used in conjunction with various transportation systems in application areas such as law enforcement (e.g. speed limit enforcement) and commercial usages such as parking enforcement and automatic toll payment private and public entrances, border control, theft and vandalism control. Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. [License plate detection using cluster run length smoothing algorithm ].Generally, an automatic license plate localization and recognition system is made up of three modules; license plate localization, character segmentation and optical character recognition modules. This paper presents an Arabic license plate recognition system that is insensitive to character size, font, shape and orientation with extremely high accuracy rate. The proposed system is based on a combination of enhancement, license plate localization, morphological processing, and feature vector extraction using the Haar transform. The performance of the system is fast due to classification of alphabet and numerals based on the license plate organization. Experimental results for license plates of two different Arab countries show an average of 99 % successful license plate localization and recognition in a total of more than 20 different images captured from a complex outdoor environment. The results run times takes less time compared to conventional and many states of art methods.

  8. Graph - Based High Resolution Satellite Image Segmentation for Object Recognition

    NASA Astrophysics Data System (ADS)

    Ravali, K.; Kumar, M. V. Ravi; Venugopala Rao, K.

    2014-11-01

    Object based image processing and analysis is challenging research in very high resolution satellite utilisation. Commonly ei ther pixel based classification or visual interpretation is used to recognize and delineate land cover categories. The pixel based classification techniques use rich spectral content of satellite images and fail to utilise spatial relations. To overcome th is drawback, traditional time consuming visual interpretation methods are being used operational ly for preparation of thematic maps. This paper addresses computational vision principles to object level image segmentation. In this study, computer vision algorithms are developed to define the boundary between two object regions and segmentation by representing image as graph. Image is represented as a graph G (V, E), where nodes belong to pixels and, edges (E) connect nodes belonging to neighbouring pixels. The transformed Mahalanobis distance has been used to define a weight function for partition of graph into components such that each component represents the region of land category. This implies that edges between two vertices in the same component have relatively low weights and edges between vertices in different components should have higher weights. The derived segments are categorised to different land cover using supervised classification. The paper presents the experimental results on real world multi-spectral remote sensing images of different landscapes such as Urban, agriculture and mixed land cover. Graph construction done in C program and list the run time for both graph construction and segmentation calculation on dual core Intel i7 system with 16 GB RAM, running 64bit window 7.

  9. Face Recognition Is Affected by Similarity in Spatial Frequency Range to a Greater Degree Than Within-Category Object Recognition

    ERIC Educational Resources Information Center

    Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi

    2004-01-01

    Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…

  10. Recognition of Single and Overlay of Objects on a Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Savicheva, S. V.

    2015-05-01

    Proposed a method for detection of flat objects when they overlap condition. The method is based on two separate recognition algorithms flat objects. The first algorithm is based on a binary image of the signature of the object plane. The second algorithm is based on the values of the discrete points in the curvature contour of a binary image. The results of experimental studies of algorithms and a method of recognition of individual superimposed flat objects.

  11. Differential effects of spaced vs. massed training in long-term object-identity and object-location recognition memory.

    PubMed

    Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor

    2013-08-01

    Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. PMID:23644160

  12. Parts and Relations in Young Children's Shape-Based Object Recognition

    ERIC Educational Resources Information Center

    Augustine, Elaine; Smith, Linda B.; Jones, Susan S.

    2011-01-01

    The ability to recognize common objects from sparse information about geometric shape emerges during the same period in which children learn object names and object categories. Hummel and Biederman's (1992) theory of object recognition proposes that the geometric shapes of objects have two components--geometric volumes representing major object…

  13. Hardware Accelerator for Run-Time Learning Adopted in Object Recognition with Cascade Particle Filter

    NASA Astrophysics Data System (ADS)

    Sugano, Hiroki; Ochi, Hiroyuki; Nakamura, Yukihiro; Miyamoto, Ryusuke

    Recently, many researchers tackle accurate object recognition algorithms and many algorithms are proposed. However, these algorithms have some problems caused by variety of real environments such as a direction change of the object or its shading change. The new tracking algorithm, Cascade Particle Filter, is proposed to fill such demands in real environments by constructing the object model while tracking the objects. We have been investigating to implement accurate object recognition on embedded systems in real-time. In order to apply the Cascade Particle Filter to embedded applications such as surveillance, automotives, and robotics, a hardware accelerator is indispensable because of limitations in power consumption. In this paper we propose a hardware implementation of the Discrete AdaBoost algorithm that is the most computationally intensive part of the Cascade Particle Filter. To implement the proposed hardware, we use PICO Express, a high level synthesis tool provided by Synfora, for rapid prototyping. Implementation result shows that the synthesized hardware has 1, 132, 038 transistors and the die area is 2,195µm × 1,985µm under a 0.180µm library. The simulation result shows that total processing time is about 8.2 milliseconds at 65MHz operation frequency.

  14. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The

  15. Model-based object recognition in range imagery

    NASA Astrophysics Data System (ADS)

    Armbruster, Walter

    2009-09-01

    The paper formulates the mathematical foundations of object discrimination and object re-identification in range image sequences using Bayesian decision theory. Object discrimination determines the unique model corresponding to each scene object, while object re-identification finds the unique object in the scene corresponding to a given model. In the first case object identities are independent; in the second case at most one object exists having a given identity. Efficient analytical and numerical techniques for updating and maximizing the posterior distributions are introduced. Experimental results indicate to what extent a single range image of an object can be used for re-identifying this object in arbitrary scenes. Applications including the protection of commercial vessels against piracy are discussed.

  16. High-speed correspondence for object recognition and tracking

    NASA Astrophysics Data System (ADS)

    Ariyawansa, Dambakumbure D.; Clarke, Timothy A.

    1997-07-01

    Real-time measurement using multi-camera 3D measuring system requires three major components to operate at high speed: image data processing; correspondence; and least squares estimation. This paper is based upon a system developed at City University which uses high speed solutions for the first and last elements, and describes recent work to provide a high speed solution to the correspondence problem. Correspondence has traditionally been solved in photogrammetry by using human stereo fusion of two views of an object providing an immediate solution. Computer vision researchers and photogrammetrists have applied image processing techniques and computers to the same configuration and have developed numerous matching algorithms with considerable success. Where research is still required, and the published work is not so plentiful, is in the area of multi-camera correspondence. The most commonly used methods utilize the epipolar geometry to establish the correspondences. While this method is adequate for some simple situations, extensions to more than just a few cameras are required which are reliable and efficient. In this paper the early stages of research into reliable and efficient multi-camera correspondence method for high speed measurement tasks are reported.

  17. How Does Using Object Names Influence Visual Recognition Memory?

    ERIC Educational Resources Information Center

    Richler, Jennifer J.; Palmeri, Thomas J.; Gauthier, Isabel

    2013-01-01

    Two recent lines of research suggest that explicitly naming objects at study influences subsequent memory for those objects at test. Lupyan (2008) suggested that naming "impairs" memory by a representational shift of stored representations of named objects toward the prototype (labeling effect). MacLeod, Gopie, Hourihan, Neary, and Ozubko (2010)…

  18. Symbolic Play Connects to Language through Visual Object Recognition

    ERIC Educational Resources Information Center

    Smith, Linda B.; Jones, Susan S.

    2011-01-01

    Object substitutions in play (e.g. using a box as a car) are strongly linked to language learning and their absence is a diagnostic marker of language delay. Classic accounts posit a symbolic function that underlies both words and object substitutions. Here we show that object substitutions depend on developmental changes in visual object…

  19. Higher-order neural network software for distortion invariant object recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  20. Developmental changes in visual object recognition between 18 and 24 months of age

    PubMed Central

    Pereira, Alfredo F.; Smith, Linda B.

    2010-01-01

    Two experiments examined developmental changes in children’s visual recognition of common objects during the period of 18 to 24 months. Experiment 1 examined children’s ability to recognize common category instances that presented three different kinds of information: (1) richly detailed and prototypical instances that presented both local and global shape information, color, textural and featural information, (2) the same rich and prototypical shapes but no color, texture or surface featural information, or (3) that presented only abstract and global representations of object shape in terms of geometric volumes. Significant developmental differences were observed only for the abstract shape representations in terms of geometric volumes, the kind of shape representation that has been hypothesized to underlie mature object recognition. Further, these differences were strongly linked in individual children to the number of object names in their productive vocabulary. Experiment 2 replicated these results and showed further that the less advanced children’s object recognition was based on the piecemeal use of individual features and parts, rather than overall shape. The results provide further evidence for significant and rapid developmental changes in object recognition during the same period children first learn object names. The implications of the results for theories of visual object recognition, the relation of object recognition to category learning, and underlying developmental processes are discussed. PMID:19120414

  1. Support plane method applied to ground objects recognition using modelled SAR images

    NASA Astrophysics Data System (ADS)

    Zherdev, Denis A.; Fursov, Vladimir A.

    2015-09-01

    In this study, the object recognition problem was solved using support plane method. The modelled SAR images were used as features vectors in the recognition algorithm. Radar signal backscattering of objects in different observing poses is presented in SAR images. For real time simulation, we used simple mixture model of Lambertian-specular reflectivity. To this end, an algorithm of ray tracing is extended for simulating SAR images of 3D man-made models. The suggested algorithm of support plane is very effective in objects recognition using SAR images and RCS diagrams.

  2. Automatic 3D object recognition and reconstruction based on neuro-fuzzy modelling

    NASA Astrophysics Data System (ADS)

    Samadzadegan, Farhad; Azizi, Ali; Hahn, Michael; Lucas, Curo

    Three-dimensional object recognition and reconstruction (ORR) is a research area of major interest in computer vision and photogrammetry. Virtual cities, for example, is one of the exciting application fields of ORR which became very popular during the last decade. Natural and man-made objects of cities such as trees and buildings are complex structures and automatic recognition and reconstruction of these objects from digital aerial images but also other data sources is a big challenge. In this paper a novel approach for object recognition is presented based on neuro-fuzzy modelling. Structural, textural and spectral information is extracted and integrated in a fuzzy reasoning process. The learning capability of neural networks is introduced to the fuzzy recognition process by taking adaptable parameter sets into account which leads to the neuro-fuzzy approach. Object reconstruction follows recognition seamlessly by using the recognition output and the descriptors which have been extracted for recognition. A first successful application of this new ORR approach is demonstrated for the three object classes 'buildings', 'cars' and 'trees' by using aerial colour images of an urban area of the town of Engen in Germany.

  3. Representational dynamics of object recognition: Feedforward and feedback information flows.

    PubMed

    Goddard, Erin; Carlson, Thomas A; Dermody, Nadene; Woolgar, Alexandra

    2016-03-01

    Object perception involves a range of visual and cognitive processes, and is known to include both a feedfoward flow of information from early visual cortical areas to higher cortical areas, along with feedback from areas such as prefrontal cortex. Previous studies have found that low and high spatial frequency information regarding object identity may be processed over different timescales. Here we used the high temporal resolution of magnetoencephalography (MEG) combined with multivariate pattern analysis to measure information specifically related to object identity in peri-frontal and peri-occipital areas. Using stimuli closely matched in their low-level visual content, we found that activity in peri-occipital cortex could be used to decode object identity from ~80ms post stimulus onset, and activity in peri-frontal cortex could also be used to decode object identity from a later time (~265ms post stimulus onset). Low spatial frequency information related to object identity was present in the MEG signal at an earlier time than high spatial frequency information for peri-occipital cortex, but not for peri-frontal cortex. We additionally used Granger causality analysis to compare feedforward and feedback influences on representational content, and found evidence of both an early feedfoward flow and later feedback flow of information related to object identity. We discuss our findings in relation to existing theories of object processing and propose how the methods we use here could be used to address further questions of the neural substrates underlying object perception. PMID:26806290

  4. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    PubMed Central

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer’s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory. PMID:26246157

  5. An object-oriented environment for computer vision and pattern recognition

    SciTech Connect

    Hernandez, J.E.

    1992-12-01

    Vision is a flexible and extensible object-oriented programming environment for prototyping solutions to problems requiring computer vision and pattern recognition techniques. Vision integrates signal/image processing, statistical pattern recognition, neural networks, low and mid level computer vision, and graphics into a cohesive framework useful for a wide variety of applications at Lawrence Livermore National Laboratory.

  6. Automatic TLI recognition system, general description

    SciTech Connect

    Lassahn, G.D.

    1997-02-01

    This report is a general description of an automatic target recognition system developed at the Idaho National Engineering Laboratory for the Department of Energy. A user`s manual is a separate volume, Automatic TLI Recognition System, User`s Guide, and a programmer`s manual is Automatic TLI Recognition System, Programmer`s Guide. This system was designed as an automatic target recognition system for fast screening of large amounts of multi-sensor image data, based on low-cost parallel processors. This system naturally incorporates image data fusion, and it gives uncertainty estimates. It is relatively low cost, compact, and transportable. The software is easily enhanced to expand the system`s capabilities, and the hardware is easily expandable to increase the system`s speed. In addition to its primary function as a trainable target recognition system, this is also a versatile, general-purpose tool for image manipulation and analysis, which can be either keyboard-driven or script-driven. This report includes descriptions of three variants of the computer hardware, a description of the mathematical basis if the training process, and a description with examples of the system capabilities.

  7. New multiexpert architecture for high-performance object recognition

    NASA Astrophysics Data System (ADS)

    Fairhurst, Michael C.; Rahman, A. Fuad R.

    1996-10-01

    Considerable work has been reported in recent years on the utilization of hierarchical architectures for efficient classification of image data typically encountered in task domains relevant to automated inspection, part sorting, quality monitoring, and so on. Such work has opened up the possibility of further enhancements through the more effective use of multiple-experts in such structures, but a principal difficulty encountered is to formulate an efficient way to combine decisions of individual experts to form a consensus. The approach proposed here can be envisaged as a structure with multiple layers of filters to separate an input object/image stream. In an n-way classification problem, the primary layer channels the input stream into n different streams, with subsequent further processing dependent on the form of decision taken at the earlier stages. The decision about combining the initially filtered streams is taken based on the degree of confusion among the classes present. The filter battery effectively creates two separate types of output. One is the relatively well-behaved filtered stream corresponding to the defined target classes, while the other contains the patterns which are rejected by different filters as not belonging to the target stream. Subsequently, more specialized classifiers are trained to recognize the intended target classes only, while the rejected patterns from all the second layer filters are collected and presented to a reject recovery classifier which is trained on all the n input classes. Thus, progressively more focusing of the decision making occurs as the processing path is traversed, with the resultant increase in the overall classification capability of the overall system. In this paper, classification results are presented to illustrate the relative performance levels achieved with single expert classifiers in comparison with this type of multi-expert configuration where these single experts are integrated within the

  8. Mechanisms and neural basis of object and pattern recognition: a study with chess experts.

    PubMed

    Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-11-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception. PMID:21038986

  9. Improved MFCC algorithm in speaker recognition system

    NASA Astrophysics Data System (ADS)

    Shi, Yibo; Wang, Li

    2011-10-01

    In speaker recognition systems, one of the key feature parameters is MFCC, which can be used for speaker recognition. So, how to extract MFCC parameter in speech signals more exactly and efficiently, decides the performance of the system. Theoretically, MFCC parameters are used to describe the spectrum envelope of the vocal tract characteristics and often ignore the impacts of fundamental frequency. But in practice, MFCC can be influenced by fundamental frequency which can cause palpable performance reduction. So, smoothing MFCC (SMFCC), which based on smoothing short-term spectral amplitude envelope, has been proposed to improve MFCC algorithm. Experimental results show that improved MFCC parameters---SMFCC can degrade the bad influences of fundamental frequency effectively and upgrade the performances of speaker recognition system. Especially for female speakers, who have higher fundamental frequency, the recognition rate improves more significantly.

  10. Selecting and implementing a voice recognition system.

    PubMed

    Wheeler, S; Cassimus, G C

    1999-01-01

    A single radiology department serves the three separate organizations that comprise Emory Healthcare in Atlanta--three separate hospitals, the Emory Clinic and the Emory University School of Medicine. In 1996, the chairman of Emory Healthcare issued a mandate to the radiology department to decrease its report turnaround time, provide better service and increase customer satisfaction. The area where the greatest effect could be made without involving the transcription area was the "exam complete to dictate" piece of the reporting process. A committee investigating voice recognition systems established an essential criteria for potential vendors--to be able to download patient scheduling and demographic information from the existing RIS to the new system. Second, the system had to be flexible and straightforward for doctors to learn. It must have a word processing package for easy report correction and editing, and a microphone that would rewind and correct dictation before recognition took place. To keep capital costs low for the pilot, the committee opted for server recognition rather than purchase the expensive workstations necessary for real-time recognition. A switch was made later to real-time recognition. PACS and voice recognition have proven to be highly complementary. Most importantly, the new system has had a tremendous impact on turnaround time in the "dictate to final" phase. Once in the 30-hour range, 65 percent of the reports are now turned around in less than 15 minutes, 80 percent in less than 30 minutes, and 90 percent in less than an hour. PMID:10558032

  11. Do Simultaneously Viewed Objects Influence Scene Recognition Individually or as Groups? Two Perceptual Studies

    PubMed Central

    Gagne, Christopher R.; MacEvoy, Sean P.

    2014-01-01

    The ability to quickly categorize visual scenes is critical to daily life, allowing us to identify our whereabouts and to navigate from one place to another. Rapid scene categorization relies heavily on the kinds of objects scenes contain; for instance, studies have shown that recognition is less accurate for scenes to which incongruent objects have been added, an effect usually interpreted as evidence of objects' general capacity to activate semantic networks for scene categories they are statistically associated with. Essentially all real-world scenes contain multiple objects, however, and it is unclear whether scene recognition draws on the scene associations of individual objects or of object groups. To test the hypothesis that scene recognition is steered, at least in part, by associations between object groups and scene categories, we asked observers to categorize briefly-viewed scenes appearing with object pairs that were semantically consistent or inconsistent with the scenes. In line with previous results, scenes were less accurately recognized when viewed with inconsistent versus consistent pairs. To understand whether this reflected individual or group-level object associations, we compared the impact of pairs composed of mutually related versus unrelated objects; i.e., pairs, which, as groups, had clear associations to particular scene categories versus those that did not. Although related and unrelated object pairs equally reduced scene recognition accuracy, unrelated pairs were consistently less capable of drawing erroneous scene judgments towards scene categories associated with their individual objects. This suggests that scene judgments were influenced by the scene associations of object groups, beyond the influence of individual objects. More generally, the fact that unrelated objects were as capable of degrading categorization accuracy as related objects, while less capable of generating specific alternative judgments, indicates that the process

  12. Formal Implementation of a Performance Evaluation Model for the Face Recognition System

    PubMed Central

    Shin, Yong-Nyuo; Kim, Jason; Lee, Yong-Jun; Shin, Woochang; Choi, Jin-Young

    2008-01-01

    Due to usability features, practical applications, and its lack of intrusiveness, face recognition technology, based on information, derived from individuals' facial features, has been attracting considerable attention recently. Reported recognition rates of commercialized face recognition systems cannot be admitted as official recognition rates, as they are based on assumptions that are beneficial to the specific system and face database. Therefore, performance evaluation methods and tools are necessary to objectively measure the accuracy and performance of any face recognition system. In this paper, we propose and formalize a performance evaluation model for the biometric recognition system, implementing an evaluation tool for face recognition systems based on the proposed model. Furthermore, we performed evaluations objectively by providing guidelines for the design and implementation of a performance evaluation system, formalizing the performance test process. PMID:18317524

  13. Dissociating the Effects of Angular Disparity and Image Similarity in Mental Rotation and Object Recognition

    ERIC Educational Resources Information Center

    Cheung, Olivia S.; Hayward, William G.; Gauthier, Isabel

    2009-01-01

    Performance is often impaired linearly with increasing angular disparity between two objects in tasks that measure mental rotation or object recognition. But increased angular disparity is often accompanied by changes in the similarity between views of an object, confounding the impact of the two factors in these tasks. We examined separately the…

  14. Complementary Hemispheric Asymmetries in Object Naming and Recognition: A Voxel-Based Correlational Study

    ERIC Educational Resources Information Center

    Acres, K.; Taylor, K. I.; Moss, H. E.; Stamatakis, E. A.; Tyler, L. K.

    2009-01-01

    Cognitive neuroscientific research proposes complementary hemispheric asymmetries in naming and recognising visual objects, with a left temporal lobe advantage for object naming and a right temporal lobe advantage for object recognition. Specifically, it has been proposed that the left inferior temporal lobe plays a mediational role linking…

  15. Object-oriented recognition of high-resolution remote sensing image

    NASA Astrophysics Data System (ADS)

    Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan

    2016-01-01

    With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .

  16. An optimal sensing strategy for recognition and localization of 3-D natural quadric objects

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan; Hahn, Hernsoo

    1991-01-01

    An optimal sensing strategy for an optical proximity sensor system engaged in the recognition and localization of 3-D natural quadric objects is presented. The optimal sensing strategy consists of the selection of an optimal beam orientation and the determination of an optimal probing plane that compose an optimal data collection operation known as an optimal probing. The decision of an optimal probing is based on the measure of discrimination power of a cluster of surfaces on a multiple interpretation image (MII), where the measure of discrimination power is defined in terms of a utility function computing the expected number of interpretations that can be pruned out by a probing. An object representation suitable for active sensing based on a surface description vector (SDV) distribution graph and hierarchical tables is presented. Experimental results are shown.

  17. Object recognition based on spatial active basis template

    NASA Astrophysics Data System (ADS)

    Peng, Shaowu; Xu, Jingcheng

    2011-11-01

    This article presents a method for the object classification that combines a generative template and a discriminative classifier. The method is a variant of the support vector machine (SVM), which uses Multiple Kernel Learning (MKL). The features are extracted from a generative template so called Active Basis template. Before using them for object classification, we construct a visual vocabulary by clustering a set of training features according to their orientations. To keep the spatial information, a "spatial pyramid" is used. The strength of this approach is that it combines the rich information encoded in the generative template, the Active Basis, with the discriminative power of the SVM algorithm. We show promising results of experiments for images from the LHI dataset.

  18. Practical vision based degraded text recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published

  19. The impact of interactive manipulation on the recognition of objects

    NASA Astrophysics Data System (ADS)

    Meijer, Frank; van den Broek, Egon L.; Schouten, Theo

    2008-02-01

    A new application for VR has emerged: product development, in which several stakeholders (from engineers to end users) use the same VR for development and communicate purposes. Various characteristics among these stakeholders vary considerably, which imposes potential constraints to the VR. The current paper discusses the influence of three types of exploration of objects (i.e., none, passive, active) on one of these characteristics: the ability to form mental representations or visuo-spatial ability (VSA). Through an experiment we found that all users benefit from exploring objects. Moreover, people with low VSA (e.g., end users) benefit from an interactive exploration of objects opposed to people with a medium or high VSA (e.g. engineers), who are not sensitive for the type of exploration. Hence, for VR environments in which multiple stakeholders participate (e.g. for product development), differences among their cognitive abilities (e.g., VSA) have to be taken into account to enable an efficient usage of VR.

  20. Automatic TLI recognition system beta prototype testing

    SciTech Connect

    Lassahn, G.D.

    1996-06-01

    This report describes the beta prototype automatic target recognition system ATR3, and some performance tests done with this system. This is a fully operational system, with a high computational speed. It is useful for findings any kind of target in digitized image data, and as a general purpose image analysis tool.

  1. Feature extraction and object recognition in multi-modal forward looking imagery

    NASA Astrophysics Data System (ADS)

    Greenwood, G.; Blakely, S.; Schartman, D.; Calhoun, B.; Keller, J. M.; Ton, T.; Wong, D.; Soumekh, M.

    2010-04-01

    The U. S. Army Night Vision and Electronic Sensors Directorate (NVESD) recently tested an explosive-hazards detection vehicle that combines a pulsed FLGPR with a visible-spectrum color camera. Additionally, NVESD tested a human-in-the-loop multi-camera system with the same goal in mind. It contains wide field-of-view color and infrared cameras as well as zoomable narrow field-of-view versions of those modalities. Even though they are separate vehicles, having information from both systems offers great potential for information fusion. Based on previous work at the University of Missouri, we are not only able to register the UTM-based positions of the FLGPR to the color image sequences on the first system, but we can register these locations to corresponding image frames of all sensors on the human-in-the-loop platform. This paper presents our approach to first generate libraries of multi-sensor information across these platforms. Subsequently, research is performed in feature extraction and recognition algorithms based on the multi-sensor signatures. Our goal is to tailor specific algorithms to recognize and eliminate different categories of clutter and to be able to identify particular explosive hazards. We demonstrate our library creation, feature extraction and object recognition results on a large data collection at a US Army test site.

  2. Speech recognition system for an automotive vehicle

    SciTech Connect

    Noso, K.; Futami, T.

    1987-01-13

    A speech recognition system is described for an automotive vehicle for activating vehicle actuators in response to predetermined spoken instructions supplied to the system via a microphone, which comprises: (a) a manually controlled record switch for deriving a record signal when activated; (b) a manually controlled recognition switch for deriving a recognition signal when activated; (c) a speech recognizer for sequentially recording reference spoken instructions whenever one reference spoken instruction is supplied to the system through the microphone while the record switch is activated, a memory having a storage area for each spoken instruction, and means for shifting access to each storage area for each spoken instruction has been recorded in the storage area provided therefore. A means is included for activating vehicle actuators sequentially whenever one recognition spoken instruction is supplied to the system via the microphone while the recognition switch is activated and when the spoken instruction to be recognized is similar to the reference spoken instruction; and (d) means for deriving skip instruction signal and for coupling the skip instruction signal to the speech recognizer to shift access from a currently accessed storage area for recording a current reference spoken instruction to a succeeding storage area for recording a succeeding reference spoken instruction even when the current reference spoken instruction is not supplied to the system through the microphone.

  3. Solid-object digitizing system

    NASA Astrophysics Data System (ADS)

    Sunthankar, S.

    1990-08-01

    This paper describes a method concerned with the design and construction of a systeL to measure and record discrete surface locations from actual physical objects. It also investigates different image processing techniques, compaction of graphical data algorithms and 3-D object reconstruction and manipulation, from a laser scanner for the reconstruction of the human soft tissue of the face out of the skull. It is a robotic laser ranging system that automatically generates three dimensional surface co-ordinates starting from homemorphic surfaced objects. The principle of the digitising process is based on triangulation between a laser point, illuminated on the surface of the object and two custom-built light sensors. Given the geometry of the system, one of the light sensors detects the small spot on the object and then calculates a representative point in Euclidean three space. A two degree-offreedom electro-mechanical system translates the laser and rotates the object in order to discretise the entire object. Representations of complex real objects have been generated in a relatively short time with very good resolution. For example, a human skull can be digitised, representing over 5000 surface points, in a little over one hour. The data representations can then be viewed and manipulated in real time on high performance graphics devices or viewed and then animated as a realistic image on raster graphics. The principal aim of this project is to develop Artificial Intelligence and Knowledge based system techniques to infer the depth of the soft tissue and its associated relationship with the skull.

  4. Multi-class remote sensing object recognition based on discriminative sparse representation.

    PubMed

    Wang, Xin; Shen, Siqiu; Ning, Chen; Huang, Fengchen; Gao, Hongmin

    2016-02-20

    The automatic recognition of multi-class objects with various backgrounds is a big challenge in the field of remote sensing (RS) image analysis. In this paper, we propose a novel recognition framework for multi-class RS objects based on the discriminative sparse representation. In this framework, the recognition problem is implemented in two stages. In the first, or discriminative dictionary learning stage, considering the characterization of remote sensing objects, the scale-invariant feature transform descriptor is first combined with an improved bag-of-words model for multi-class objects feature extraction and representation. Then, information about each class of training samples is fused into the dictionary learning process; by using the K-singular value decomposition algorithm, a discriminative dictionary can be learned for sparse coding. In the second, or recognition, stage, to improve the computational efficiency, the phase spectrum of a quaternion Fourier transform model is applied to the test image to predict a small set of object candidate locations. Then, a multi-scale sliding window mechanism is utilized to scan the image over those candidate locations to obtain the object candidates (or objects of interest). Subsequently, the sparse coding coefficients of these candidates under the discriminative dictionary are mapped to the discriminative vectors that have a good ability to distinguish different classes of objects. Finally, multi-class object recognition can be accomplished by analyzing these vectors. The experimental results show that the proposed work outperforms a number of state-of-the-art methods for multi-class remote sensing object recognition. PMID:26906591

  5. Stochastic Process Underlying Emergent Recognition of Visual Objects Hidden in Degraded Images

    PubMed Central

    Murata, Tsutomu; Hamada, Takashi; Shimokawa, Tetsuya; Tanifuji, Manabu; Yanagida, Toshio

    2014-01-01

    When a degraded two-tone image such as a “Mooney” image is seen for the first time, it is unrecognizable in the initial seconds. The recognition of such an image is facilitated by giving prior information on the object, which is known as top-down facilitation and has been intensively studied. Even in the absence of any prior information, however, we experience sudden perception of the emergence of a salient object after continued observation of the image, whose processes remain poorly understood. This emergent recognition is characterized by a comparatively long reaction time ranging from seconds to tens of seconds. In this study, to explore this time-consuming process of emergent recognition, we investigated the properties of the reaction times for recognition of degraded images of various objects. The results show that the time-consuming component of the reaction times follows a specific exponential function related to levels of image degradation and subject's capability. Because generally an exponential time is required for multiple stochastic events to co-occur, we constructed a descriptive mathematical model inspired by the neurophysiological idea of combination coding of visual objects. Our model assumed that the coincidence of stochastic events complement the information loss of a degraded image leading to the recognition of its hidden object, which could successfully explain the experimental results. Furthermore, to see whether the present results are specific to the task of emergent recognition, we also conducted a comparison experiment with the task of perceptual decision making of degraded images, which is well known to be modeled by the stochastic diffusion process. The results indicate that the exponential dependence on the level of image degradation is specific to emergent recognition. The present study suggests that emergent recognition is caused by the underlying stochastic process which is based on the coincidence of multiple stochastic events

  6. Zero-Copy Objects System

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    Zero-Copy Objects System software enables application data to be encapsulated in layers of communication protocol without being copied. Indirect referencing enables application source data, either in memory or in a file, to be encapsulated in place within an unlimited number of protocol headers and/or trailers. Zero-copy objects (ZCOs) are abstract data access representations designed to minimize I/O (input/output) in the encapsulation of application source data within one or more layers of communication protocol structure. They are constructed within the heap space of a Simple Data Recorder (SDR) data store to which all participating layers of the stack must have access. Each ZCO contains general information enabling access to the core source data object (an item of application data), together with (a) a linked list of zero or more specific extents that reference portions of this source data object, and (b) linked lists of protocol header and trailer capsules. The concatenation of the headers (in ascending stack sequence), the source data object extents, and the trailers (in descending stack sequence) constitute the transmitted data object constructed from the ZCO. This scheme enables a source data object to be encapsulated in a succession of protocol layers without ever having to be copied from a buffer at one layer of the protocol stack to an encapsulating buffer at a lower layer of the stack. For large source data objects, the savings in copy time and reduction in memory consumption may be considerable.

  7. Scalable Medical Image Understanding by Fusing Cross-Modal Object Recognition with Formal Domain Semantics

    NASA Astrophysics Data System (ADS)

    Möller, Manuel; Sintek, Michael; Buitelaar, Paul; Mukherjee, Saikat; Zhou, Xiang Sean; Freund, Jörg

    Recent advances in medical imaging technology have dramatically increased the amount of clinical image data. In contrast, techniques for efficiently exploiting the rich semantic information in medical images have evolved much slower. Despite the research outcomes in image understanding, current image databases are still indexed by manually assigned subjective keywords instead of the semantics of the images. Indeed, most current content-based image search applications index image features that do not generalize well and use inflexible queries. This slow progress is due to the lack of scalable and generic information representation systems which can abstract over the high dimensional nature of medical images as well as semantically model the results of object recognition techniques. We propose a system combining medical imaging information with ontological formalized semantic knowledge that provides a basis for building universal knowledge repositories and gives clinicians fully cross-lingual and cross-modal access to biomedical information.

  8. Object recognition impairment and rescue by a dopamine D2 antagonist in hyperdopaminergic mice.

    PubMed

    França, Arthur S C; Muratori, Larissa; Nascimento, George Carlos; Pereira, Catia Mendes; Ribeiro, Sidarta; Lobão-Soares, Bruno

    2016-07-15

    Genetically-modified mice without the dopamine transporter (DAT) are hyperdopaminergic, and serve as models for studies of addiction, mania and hyperactive disorders. Here we investigated the capacity for object recognition in mildly hyperdopaminergic mice heterozygous for DAT (DAT +/-), with synaptic dopaminergic levels situated between those shown by DAT -/- homozygous and wild-type (WT) mice. We used a classical dopamine D2 antagonist, haloperidol, to modulate the levels of dopaminergic transmission in a dose-dependent manner, before or after exploring novel objects. In comparison with WT mice, DAT +/- mice showed a deficit in object recognition upon subsequent testing 24h later. This deficit was compensated by a single 0.05mg/kg haloperidol injection 30min before training. In all mice, a 0.3mg/kg haloperidol injected immediately after training impaired object recognition. The results indicate that a mild enhancement of dopaminergic levels can be detrimental to object recognition, and that this deficit can be rescued by a low dose of a D2 dopamine receptor antagonist. This suggests that novel object recognition is optimal at intermediate levels of D2 receptor activity. PMID:27059337

  9. Expertise modulates the neural basis of context dependent recognition of objects and their relations.

    PubMed

    Bilalić, Merim; Turella, Luca; Campitelli, Guillermo; Erb, Michael; Grodd, Wolfgang

    2012-11-01

    Recognition of objects and their relations is necessary for orienting in real life. We examined cognitive processes related to recognition of objects, their relations, and the patterns they form by using the game of chess. Chess enables us to compare experts with novices and thus gain insight in the nature of development of recognition skills. Eye movement recordings showed that experts were generally faster than novices on a task that required enumeration of relations between chess objects because their extensive knowledge enabled them to immediately focus on the objects of interest. The advantage was less pronounced on random positions where the location of chess objects, and thus typical relations between them, was randomized. Neuroimaging data related experts' superior performance to the areas along the dorsal stream-bilateral posterior temporal areas and left inferior parietal lobe were related to recognition of object and their functions. The bilateral collateral sulci, together with bilateral retrosplenial cortex, were also more sensitive to normal than random positions among experts indicating their involvement in pattern recognition. The pattern of activations suggests experts engage the same regions as novices, but also that they employ novel additional regions. Expert processing, as the final stage of development, is qualitatively different than novice processing, which can be viewed as the starting stage. Since we are all experts in real life and dealing with meaningful stimuli in typical contexts, our results underline the importance of expert-like cognitive processing on generalization of laboratory results to everyday life. PMID:21998070

  10. Foreign object detection via texture recognition and a neural classifier

    NASA Astrophysics Data System (ADS)

    Patel, Devesh; Hannah, I.; Davies, E. R.

    1993-10-01

    It is rate to find pieces of stone, wood, metal, or glass in food packets, but when they occur, these foreign objects (FOs) cause distress to the consumer and concern to the manufacturer. Using x-ray imaging to detect FOs within food bags, hard contaminants such as stone or metal appear darker, whereas soft contaminants such as wood or rubber appear slightly lighter than the food substrate. In this paper we concentrate on the detection of soft contaminants such as small pieces of wood in bags of frozen corn kernels. Convolution masks are used to generate textural features which are then classified into corresponding homogeneous regions on the image using an artificial neural network (ANN) classifier. The separate ANN outputs are combined using a majority operator, and region discrepancies are removed by a median filter. Comparisons with classical classifiers showed the ANN approach to have the best overall combination of characteristics for our particular problem. The detected boundaries are in good agreement with the visually perceived segmentations.

  11. From neural-based object recognition toward microelectronic eyes

    NASA Technical Reports Server (NTRS)

    Sheu, Bing J.; Bang, Sa Hyun

    1994-01-01

    Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues.

  12. Recognition of haptic interaction patterns in dyadic joint object manipulation.

    PubMed

    Madan, Cigil Ece; Kucukyilmaz, Ayse; Sezgin, Tevfik Metin; Basdogan, Cagatay

    2015-01-01

    The development of robots that can physically cooperate with humans has attained interest in the last decades. Obviously, this effort requires a deep understanding of the intrinsic properties of interaction. Up to now, many researchers have focused on inferring human intents in terms of intermediate or terminal goals in physical tasks. On the other hand, working side by side with people, an autonomous robot additionally needs to come up with in-depth information about underlying haptic interaction patterns that are typically encountered during human-human cooperation. However, to our knowledge, no study has yet focused on characterizing such detailed information. In this sense, this work is pioneering as an effort to gain deeper understanding of interaction patterns involving two or more humans in a physical task. We present a labeled human-human-interaction dataset, which captures the interaction of two humans, who collaboratively transport an object in an haptics-enabled virtual environment. In the light of information gained by studying this dataset, we propose that the actions of cooperating partners can be examined under three interaction types: In any cooperative task, the interacting humans either 1) work in harmony, 2) cope with conflicts, or 3) remain passive during interaction. In line with this conception, we present a taxonomy of human interaction patterns; then propose five different feature sets, comprising force-, velocity-and power-related information, for the classification of these patterns. Our evaluation shows that using a multi-class support vector machine (SVM) classifier, we can accomplish a correct classification rate of 86 percent for the identification of interaction patterns, an accuracy obtained by fusing a selected set of most informative features by Minimum Redundancy Maximum Relevance (mRMR) feature selection method. PMID:25532210

  13. Crowded and Sparse Domains in Object Recognition: Consequences for Categorization and Naming

    ERIC Educational Resources Information Center

    Gale, Tim M.; Laws, Keith R.; Foley, Kerry

    2006-01-01

    Some models of object recognition propose that items from structurally crowded categories (e.g., living things) permit faster access to superordinate semantic information than structurally dissimilar categories (e.g., nonliving things), but slower access to individual object information when naming items. We present four experiments that utilize…

  14. Modeling guidance and recognition in categorical search: Bridging human and computer object detection

    PubMed Central

    Zelinsky, Gregory J.; Peng, Yifan; Berg, Alexander C.; Samaras, Dimitris

    2013-01-01

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery. PMID:24105460

  15. Modeling guidance and recognition in categorical search: bridging human and computer object detection.

    PubMed

    Zelinsky, Gregory J; Peng, Yifan; Berg, Alexander C; Samaras, Dimitris

    2013-01-01

    Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery. PMID:24105460

  16. A Survey on Automatic Speaker Recognition Systems

    NASA Astrophysics Data System (ADS)

    Saquib, Zia; Salam, Nirmala; Nair, Rekha P.; Pandey, Nipun; Joshi, Akanksha

    Human listeners are capable of identifying a speaker, over the telephone or an entryway out of sight, by listening to the voice of the speaker. Achieving this intrinsic human specific capability is a major challenge for Voice Biometrics. Like human listeners, voice biometrics uses the features of a person's voice to ascertain the speaker's identity. The best-known commercialized forms of voice Biometrics is Speaker Recognition System (SRS). Speaker recognition is the computing task of validating a user's claimed identity using characteristics extracted from their voices. This literature survey paper gives brief introduction on SRS, and then discusses general architecture of SRS, biometric standards relevant to voice/speech, typical applications of SRS, and current research in Speaker Recognition Systems. We have also surveyed various approaches for SRS.

  17. Young Children's Self-Generated Object Views and Object Recognition

    ERIC Educational Resources Information Center

    James, Karin H.; Jones, Susan S.; Smith, Linda B.; Swain, Shelley N.

    2014-01-01

    Two important and related developments in children between 18 and 24 months of age are the rapid expansion of object name vocabularies and the emergence of an ability to recognize objects from sparse representations of their geometric shapes. In the same period, children also begin to show a preference for planar views (i.e., views of objects held…

  18. Ball-scale based hierarchical multi-object recognition in 3D medical images

    NASA Astrophysics Data System (ADS)

    Bağci, Ulas; Udupa, Jayaram K.; Chen, Xinjian

    2010-03-01

    This paper investigates, using prior shape models and the concept of ball scale (b-scale), ways of automatically recognizing objects in 3D images without performing elaborate searches or optimization. That is, the goal is to place the model in a single shot close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. This is achieved via the following set of key ideas: (a) A semi-automatic way of constructing a multi-object shape model assembly. (b) A novel strategy of encoding, via b-scale, the pose relationship between objects in the training images and their intensity patterns captured in b-scale images. (c) A hierarchical mechanism of positioning the model, in a one-shot way, in a given image from a knowledge of the learnt pose relationship and the b-scale image of the given image to be segmented. The evaluation results on a set of 20 routine clinical abdominal female and male CT data sets indicate the following: (1) Incorporating a large number of objects improves the recognition accuracy dramatically. (2) The recognition algorithm can be thought as a hierarchical framework such that quick replacement of the model assembly is defined as coarse recognition and delineation itself is known as finest recognition. (3) Scale yields useful information about the relationship between the model assembly and any given image such that the recognition results in a placement of the model close to the actual pose without doing any elaborate searches or optimization. (4) Effective object recognition can make delineation most accurate.

  19. Cultural differences in visual object recognition in 3-year-old children.

    PubMed

    Kuwabara, Megumi; Smith, Linda B

    2016-07-01

    Recent research indicates that culture penetrates fundamental processes of perception and cognition. Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (N=128) examined the degree to which nonface object recognition by 3-year-olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects where only three diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children, and the likelihood of recognition increased for U.S. children, but not Japanese children, when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children's recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. PMID:26985576

  20. Spontaneous object recognition: a promising approach to the comparative study of memory

    PubMed Central

    Blaser, Rachel; Heyser, Charles

    2015-01-01

    Spontaneous recognition of a novel object is a popular measure of exploratory behavior, perception and recognition memory in rodent models. Because of its relative simplicity and speed of testing, the variety of stimuli that can be used, and its ecological validity across species, it is also an attractive task for comparative research. To date, variants of this test have been used with vertebrate and invertebrate species, but the methods have seldom been sufficiently standardized to allow cross-species comparison. Here, we review the methods necessary for the study of novel object recognition in mammalian and non-mammalian models, as well as the results of these experiments. Critical to the use of this test is an understanding of the organism’s initial response to a novel object, the modulation of exploration by context, and species differences in object perception and exploratory behaviors. We argue that with appropriate consideration of species differences in perception, object affordances, and natural exploratory behaviors, the spontaneous object recognition test can be a valid and versatile tool for translational research with non-mammalian models. PMID:26217207

  1. Orientation estimation of anatomical structures in medical images for object recognition

    NASA Astrophysics Data System (ADS)

    Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian

    2011-03-01

    Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.

  2. Lateral Entorhinal Cortex is Critical for Novel Object-Context Recognition

    PubMed Central

    Wilson, David IG; Langston, Rosamund F; Schlesiger, Magdalene I; Wagner, Monica; Watanabe, Sakurako; Ainge, James A

    2013-01-01

    Episodic memory incorporates information about specific events or occasions including spatial locations and the contextual features of the environment in which the event took place. It has been modeled in rats using spontaneous exploration of novel configurations of objects, their locations, and the contexts in which they are presented. While we have a detailed understanding of how spatial location is processed in the brain relatively little is known about where the nonspatial contextual components of episodic memory are processed. Initial experiments measured c-fos expression during an object-context recognition (OCR) task to examine which networks within the brain process contextual features of an event. Increased c-fos expression was found in the lateral entorhinal cortex (LEC; a major hippocampal afferent) during OCR relative to control conditions. In a subsequent experiment it was demonstrated that rats with lesions of LEC were unable to recognize object-context associations yet showed normal object recognition and normal context recognition. These data suggest that contextual features of the environment are integrated with object identity in LEC and demonstrate that recognition of such object-context associations requires the LEC. This is consistent with the suggestion that contextual features of an event are processed in LEC and that this information is combined with spatial information from medial entorhinal cortex to form episodic memory in the hippocampus. © 2013 Wiley Periodicals, Inc. PMID:23389958

  3. Automated recognition system for power quality disturbances

    NASA Astrophysics Data System (ADS)

    Abdelgalil, Tarek

    The application of deregulation policies in electric power systems has resulted in the necessity to quantify the quality of electric power. This fact highlights the need for a new monitoring strategy which is capable of tracking, detecting, classifying power quality disturbances, and then identifying the source of the disturbance. The objective of this work is to design an efficient and reliable power quality monitoring strategy that uses the advances in signal processing and pattern recognition to overcome the deficiencies that exist in power quality monitoring devices. The purposed monitoring strategy has two stages. The first stage is to detect, track, and classify any power quality violation by the use of on-line measurements. In the second stage, the source of the classified power quality disturbance must be identified. In the first stage, an adaptive linear combiner is used to detect power quality disturbances. Then, the Teager Energy Operator and Hilbert Transform are utilized for power quality event tracking. After the Fourier, Wavelet, and Walsh Transforms are employed for the feature extraction, two approaches are then exploited to classify the different power quality disturbances. The first approach depends on comparing the disturbance to be classified with a stored set of signatures for different power quality disturbances. The comparison is developed by using Hidden Markov Models and Dynamic Time Warping. The second approach depends on employing an inductive inference to generate the classification rules directly from the data. In the second stage of the new monitoring strategy, only the problem of identifying the location of the switched capacitor which initiates the transients is investigated. The Total Least Square-Estimation of Signal Parameters via Rotational Invariance Technique is adopted to estimate the amplitudes and frequencies of the various modes contained in the voltage signal measured at the facility entrance. After extracting the

  4. Feature-specific imaging: Extensions to adaptive object recognition and active illumination based scene reconstruction

    NASA Astrophysics Data System (ADS)

    Baheti, Pawan K.

    Computational imaging (CI) systems are hybrid imagers in which the optical and post-processing sub-systems are jointly optimized to maximize the task-specific performance. In this dissertation we consider a form of CI system that measures the linear projections (i.e., features) of the scene optically, and it is commonly referred to as feature-specific imaging (FSI). Most of the previous work on FSI has been concerned with image reconstruction. Previous FSI techniques have also been non-adaptive and restricted to the use of ambient illumination. We consider two novel extensions of the FSI system in this work. We first present an adaptive feature-specific imaging (AFSI) system and consider its application to a face-recognition task. The proposed system makes use of previous measurements to adapt the projection basis at each step. We present both statistical and information-theoretic adaptation mechanisms for the AFSI system. The sequential hypothesis testing framework is used to determine the number of measurements required for achieving a specified misclassification probability. We demonstrate that AFSI system requires significantly fewer measurements than static-FSI (SFSI) and conventional imaging at low signal-to-noise ratio (SNR). We also show a trade-off, in terms of average detection time, between measurement SNR and adaptation advantage. Experimental results validating the AFSI system are presented. Next we present a FSI system based on the use of structured light. Feature measurements are obtained by projecting spatially structured illumination onto an object and collecting all of the reflected light onto a single photodetector. We refer to this system as feature-specific structured imaging (FSSI). Principal component features are used to define the illumination patterns. The optimal LMMSE operator is used to generate object estimates from the measurements. We demonstrate that this new imaging approach reduces imager complexity and provides improved image

  5. Object recognition in congruent and incongruent natural scenes: a life-span study.

    PubMed

    Rémy, F; Saint-Aubert, L; Bacon-Macé, N; Vayssière, N; Barbeau, E; Fabre-Thorpe, M

    2013-10-18

    Efficient processing of our complex visual environment is essential and many daily visual tasks rely on accurate and fast object recognition. It is therefore important to evaluate how object recognition performance evolves during the course of adulthood. Surprisingly, this ability has not yet been investigated in the aged population, although several neuroimaging studies have reported altered activity in high-level visual ventral regions when elderly subjects process natural stimuli. In the present study, color photographs of various objects embedded in contextual scenes were used to assess object categorization performance in 97 participants aged from 20 to 91. Objects were either animals or pieces of furniture, embedded in either congruent or incongruent contexts. In every age group, subjects showed reduced categorization performance, both in terms of accuracy and speed, when objects were seen in incongruent vs. congruent contexts. In subjects over 60 years old, object categorization was greatly slowed down when compared to young and middle-aged subjects. Moreover, subjects over 75 years old evidenced a significant decrease in categorization accuracy when objects were seen in incongruent contexts. This indicates that incongruence of the scene may be particularly disturbing in late adulthood, therefore impairing object recognition. Our results suggest that daily visual processing of complex natural environments may be less efficient with age, which might impact performance in everyday visual tasks. PMID:23891714

  6. Recognition of partially occluded threat objects using the annealed Hopefield network

    NASA Technical Reports Server (NTRS)

    Kim, Jung H.; Yoon, Sung H.; Park, Eui H.; Ntuen, Celestine A.

    1992-01-01

    Recognition of partially occluded objects has been an important issue to airport security because occlusion causes significant problems in identifying and locating objects during baggage inspection. The neural network approach is suitable for the problems in the sense that the inherent parallelism of neural networks pursues many hypotheses in parallel resulting in high computation rates. Moreover, they provide a greater degree of robustness or fault tolerance than conventional computers. The annealed Hopfield network which is derived from the mean field annealing (MFA) has been developed to find global solutions of a nonlinear system. In the study, it has been proven that the system temperature of MFA is equivalent to the gain of the sigmoid function of a Hopfield network. In our early work, we developed the hybrid Hopfield network (HHN) for fast and reliable matching. However, HHN doesn't guarantee global solutions and yields false matching under heavily occluded conditions because HHN is dependent on initial states by its nature. In this paper, we present the annealed Hopfield network (AHN) for occluded object matching problems. In AHN, the mean field theory is applied to the hybird Hopfield network in order to improve computational complexity of the annealed Hopfield network and provide reliable matching under heavily occluded conditions. AHN is slower than HHN. However, AHN provides near global solutions without initial restrictions and provides less false matching than HHN. In conclusion, a new algorithm based upon a neural network approach was developed to demonstrate the feasibility of the automated inspection of threat objects from x-ray images. The robustness of the algorithm is proved by identifying occluded target objects with large tolerance of their features.

  7. A neuromorphic architecture for object recognition and motion anticipation using burst-STDP.

    PubMed

    Nere, Andrew; Olcese, Umberto; Balduzzi, David; Tononi, Giulio

    2012-01-01

    In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips. PMID:22615855

  8. A roadmap to global illumination in 3D scenes: solutions for GPU object recognition applications

    NASA Astrophysics Data System (ADS)

    Picos, Kenia; Díaz-Ramírez, Victor H.; Tapia, Juan J.

    2014-09-01

    Light interactions with matter is of remarkable complexity. An adequate modeling of global illumination is a vastly studied topic since the beginning of computer graphics, and still is an unsolved problem. The rendering equation for global illumination is based of refraction and reflection of light in interaction with matter within an environment. This physical process possesses a high computational complexity when implemented in a digital computer. The appearance of an object depends on light interactions with the surface of the material, such as emission, scattering, and absorption. Several image-synthesis methods have been used to realistically render the appearance of light incidence on an object. Recent global illumination algorithms employ mathematical models and computational strategies that improve the efficiency of the simulation solution. This work presents a review the state of the art of global illumination algorithms and focuses on the efficiency of the solution in a computational implementation in a graphics processing unit. A reliable system is developed to simulate realistics scenes in the context of real-time object recognition under different lighting conditions. Computer simulations results are presented and discussed in terms of discrimination capability, and robustness to additive noise, when considering several lighting model reflections and multiple light sources.

  9. Environmental enrichment improves novel object recognition and enhances agonistic behavior in male mice.

    PubMed

    Mesa-Gresa, Patricia; Pérez-Martinez, Asunción; Redolat, Rosa

    2013-01-01

    Environmental enrichment (EE) is an experimental paradigm in which rodents are housed in complex environments containing objects that provide stimulation, the effects of which are expected to improve the welfare of these subjects. EE has been shown to considerably improve learning and memory in rodents. However, knowledge about the effects of EE on social interaction is generally limited and rather controversial. Thus, our aim was to evaluate both novel object recognition and agonistic behavior in NMRI mice receiving EE, hypothesizing enhanced cognition and slightly enhanced agonistic interaction upon EE rearing. During a 4-week period half the mice (n = 16) were exposed to EE and the other half (n = 16) remained in a standard environment (SE). On PND 56-57, animals performed the object recognition test, in which recognition memory was measured using a discrimination index. The social interaction test consisted of an encounter between an experimental animal and a standard opponent. Results indicated that EE mice explored the new object for longer periods than SE animals (P < .05). During social encounters, EE mice devoted more time to sociability and agonistic behavior (P < .05) than their non-EE counterparts. In conclusion, EE has been shown to improve object recognition and increase agonistic behavior in adolescent/early adulthood mice. In the future we intend to extend this study on a longitudinal basis in order to assess in more depth the effect of EE and the consistency of the above-mentioned observations in NMRI mice. PMID:23588702

  10. Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases

    PubMed Central

    Weiss, Craig; Disterhoft, John F.

    2015-01-01

    Analysis of data collected from behavioral paradigms has provided important information for understanding the etiology and progression of diseases that involve neural regions mediating abnormal behavior. The trace eyeblink conditioning (EBC) paradigm is particularly suited to examine cerebro-cerebellar interactions since the paradigm requires the cerebellum, forebrain, and awareness of the stimulus contingencies. Impairments in acquiring EBC have been noted in several neuropsychiatric conditions, including schizophrenia, Alzheimer’s disease (AD), progressive supranuclear palsy, and post-traumatic stress disorder. Although several species have been used to examine EBC, the rabbit is unique in its tolerance for restraint, which facilitates imaging, its relatively large skull that facilitates chronic neuronal recordings, a genetic sequence for amyloid that is identical to humans which makes it a valuable model to study AD, and in contrast to rodents, it has a striatum that is differentiated into a caudate and a putamen that facilitates analysis of diseases involving the striatum. This review focuses on EBC during schizophrenia and AD since impairments in cerebro-cerebellar connections have been hypothesized to lead to a cognitive dysmetria. We also relate EBC to conditioned avoidance responses that are more often examined for effects of antipsychotic medications, and we propose that an analysis of novel object recognition (NOR) may add to our understanding of how the underlying neural circuitry has changed during disease states. We propose that the EBC and NOR paradigms will help to determine which therapeutics are effective for treating the cognitive aspects of schizophrenia and AD, and that neuroimaging may reveal biomarkers of the diseases and help to evaluate potential therapeutics. The rabbit, thus, provides an important translational system for studying neural mechanisms mediating maladaptive behaviors that underlie some psychiatric diseases, especially