Science.gov

Sample records for oblique hypervelocity impact

  1. Analysis of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1988-01-01

    This paper describes the results of an experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to a meteoroid or space debris environement.

  2. An investigation of oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1987-01-01

    This report describes the results of an investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multi-sheet aluminum structures. A model to be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations relating crater and perforation damage of a multi-sheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multi-sheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the hazardous meteoroid and space debris environment.

  3. Further investigations of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1988-01-01

    The results of a continuing investigation of the phenomena associated with the oblique hypervelocity impact of spherical projectiles onto multi-sheet aluminum structures are described. A series of equations that quantitatively describes these phenomena is obtained through a regression of experimental data. These equations characterize observed ricoshet and penetration damage phenomena in a multi-sheet structure as functions of the geometric parameters of the structure and the diameter, obliquity, and velocity of the impacting projectile. Crater damage observed on the ricochet witness plates is used to determine the sizes and speeds of the ricochet debris particles that caused the damage. It is shown that, in general, the most damaging ricochet debris particle is approximately 0.25 cm (0.10 in) in diameter and travels at the speed of approximately 2.1 km/sec (6,890 ft/sec). The equations necessary for the design of shielding panels that will protect external systems from such ricochet debris damage are also developed. The dimensions of these shielding panels are shown to be strongly dependent on their inclination and on their circumferential distribution around the spacecraft. It is concluded that obliquity effects of high-speed impacts must be considered in the design of any structure exposed to the meteoroid and space debris environment.

  4. Penetration and ricochet phenomena in oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1989-01-01

    An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectile on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.

  5. Design of orbital debris shields for oblique hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric P.

    1994-02-01

    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  6. Design of orbital debris shields for oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1994-01-01

    A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.

  7. Discrete shear failure planes resulting from oblique hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2014-08-01

    A combination of laboratory and numerical experiments examines the role of shear localization in subsurface damage following very oblique (15-30°) hypervelocity impacts. Laboratory experiments reveal subsurface damage planes ("blades") parallel to the impact trajectory for highly oblique impacts (15-30°), which are characterized by unique surface textures relative to other failure regions. Observations of growth rate and surface texture of the damage planes combined with three-dimensional CTH simulations indicate that the blades are the result of frictional processes during localized shear deformation. Laboratory experiments also reveal that impact angle and projectile failure play a role in the development of these blades: aluminum projectiles result in distinct along-trajectory blades for both 15° and 30° impacts, whereas the blades are weakly developed for Pyrex projectiles and nonexistent for planar polymethylmethacrylate projectiles. The blades form early in the cratering process and are signatures of the projectile momentum being transferred into the target. Based on the growth rate, and melting seen along the surface of these damage planes, the blades may provide an analog for the generation of pseudotachylytes during the early stages of impact crater formation.

  8. Effects of oblique impact on hypervelocity shield performance

    SciTech Connect

    Brewer, E.D.; Hendrich, W.R.; Thomas, D.G.; Smith, J.E.

    1990-01-01

    As part of the Advanced Shield Phenomenology Program, conducted from 1987 to 1989, a study of the effects of oblique impact on hypervelocity shield damage was performed. The specific threat used was an aluminum cylinder with a mass of 1.75 grams and a length to diameter ratio of one. Incidence angles of 30{degree}, 60{degree}, and 90{degree} were studied. The same layered shield assembly was tested at the different incidence angles. Testing was performed at the Arnold Engineering Development Center, Arnold Air Force Base, Tullahoma, Tennessee. Hydrocode analysis of the interaction of the projectile with the front plate was performed for each of the different incidence angles. 10 refs., 23 figs., 3 tabs.

  9. Oblique hypervelocity impact response of dual-sheet structures

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1989-01-01

    The results of a continuing investigation of the phenomena associated with the oblique hypervelocity impact of spherical projectiles onto multi-sheet aluminum structures are given. A series of equations that quantitatively describes these phenomena is obtained through a regression of experimental data. These equations characterize observed ricochet and penetration damage phenomena in a multi-sheet structure as functions of geometric parameters of the structure and the diameter, obliquity, and velocity of the impacting projectile. Crater damage observed on the ricochet witness plates is used to determine the sizes and speeds of the ricochet debris particles that caused the damage. It is observed that the diameter of the most damaging ricochet debris particle can be as large as 40 percent of the original particle diameter and can travel at speeds between 24 percent and 36 percent of the original projectile impact velocity. The equations necessary for the design of shielding panels that will protect external systems from such ricochet debris damage are also developed. The dimensions of these shielding panels are shown to be strongly dependent on their inclination and on their circumferential distribution around the spacecraft.

  10. An analysis of penetration and ricochet phenomena in oblique hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.; Horn, Jennifer R.

    1988-01-01

    An experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures is described. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to the meteoroid and space debris environment.

  11. Substrate Effects from Oblique Hypervelocity Impacts into Layered Targets

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2011-03-01

    We experimentally and numerically examine effects of low-impedance layers on subsurface target damage. Oblique impacts into targets with low-impedance surface layers exhibit reduced peak pressures, subsurface damage and crater size in the substrate.

  12. Enhanced magnetic field production during oblique hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1992-01-01

    The natural remanent magnetization of the lunar surface as displayed in returned lunar samples and the data returned by the Apollo subsatellite magnetometer has an unexpectedly high magnitude and exhibits spatial variation at all scales. The origin of the lunar remanent fields may be due to crustal remanence of a core dynamo field occurring early in lunar history prior to extensive modification by impact or remanence of transient fields, particularly associated with impacts, occurring on a local scale throughout lunar history. The presence of an early core dynamo field would have strong consequences for the formation and early evolution of the Moon, yet to deconvolve the role that an internally generated core dynamo field may have had, it is necessary to understand how the magnetic state of the lunar surface has developed through time. Impact-induced magnetism may be an important component of the present magnetic state of the lunar surface. New theoretical considerations suggest that transient magnetic fields within plasma produced by hypervelocity meteorite impacts may have greater significance at larger scales than previously thought.

  13. Modeling the oblique hypervelocity impact of orbital debris particles on spacecraft structures using elementary shock physics

    NASA Astrophysics Data System (ADS)

    Ebrahim, Ahmed Roushdy

    1998-11-01

    During their missions in space, spacecraft are subjected to high velocity impacts by orbital debris particles. Such impacts are expected to occur at non-normal angles of incidence and can cause severe damage to the spacecraft as well as its internal and external flight- critical systems. In order to ensure crew safety as well as the proper function of internal and external spacecraft systems, the characteristics of the debris clouds generated from orbital debris impacts must be determined. The effects of these debris clouds can then be considered in the design of spacecraft protective systems. In this dissertation, a new first principles- based analytical model is developed for the characterization of the penetration and ricochet debris clouds created by an oblique hypervelocity impact of a spherical projectile on a thin bumper plate. This model employs normal and oblique shock wave theories to characterize the penetration and ricochet processes. The model formulation consists of two mechanisms. The first predicts the leading edge velocities and trajectories of centers of mass of the normal and in-line debris clouds created in an oblique hypervelocity impact of a spherical projectile on a thin plate. The second predicts the leading edge velocity and trajectory of center of mass of ricochet debris cloud. In each of these two mechanisms, a new functional form of a reflected Hugoniot is developed to approximate the release of the bumper material. It was found that, unlike normal impact where there is only one reflected Hugoniot, the release of the bumper material in case of an oblique impact is approximated by a set of reflected Hugoniots that depends upon the impact obliquity angle. The methodology for characterizing the debris clouds created in an oblique hypervelocity impact uses the conservation equations that, governing the impact event, calculates the debris clouds' leading edge velocities and trajectories of debris cloud centers-of- mass using an elementary

  14. Extending the Applicable Range of the SRL Ballistic Limit Equation to Oblique Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Rudolph, Martin; Welty, Nathan; Putzar, Robin; Schafer, Frank; Koebel, David; Scheper, Marc; Janovsky, Rolf; Apeldoorn, Jeffrey; Lambert, Michel

    2012-07-01

    A standard method to assess the risk posed upon space assets from the micrometeoroid and space debris (MM/SD) environment is to evaluate the probability of no penetration (PNP) of the spacecraft outer hull. It implies catastrophic spacecraft failure upon a single particle penetration through the spacecraft structure wall. The method is justified by its conservative approach, however may result in overly protected structure walls. A more accurate approach is possible with the Schäfer-Ryan-Lambert (SRL) ballistic limit equation (BLE). It takes into consideration the components’ individual capability to defeat particles without functional effect. The initial equation [1] is calibrated with some 90 hypervelocity impact tests on fuel and heat pipes, pressure vessels, electronic boxes, harness and batteries. The paper at hand publishes results obtained from another 40 impact tests on three vulnerable components, namely the harness, electronics boxes and fuel pipes, with focus on oblique impacts at 45° and 60°. The obtained data complements the initial data base and a recalibration and validation of the SRL equation for oblique impacts is achieved. Applications for the SRL equation in the domain of spacecraft MM/SD risk assessment as well as in the domain of survivability enhancement are discussed.

  15. A fresh look at crater scaling laws for normal and oblique hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Watts, A. J.; Atkinson, D. R.; Rieco, S. R.; Brandvold, J. B.; Lapin, S. L.; Coombs, C. R.

    1993-01-01

    With the concomitant increase in the amount of man-made debris and an ever increasing use of space satellites, the issue of accidental collisions with particles becomes more severe. While the natural micrometeoroid population is unavoidable and assumed constant, continued launches increase the debris population at a steady rate. Debris currently includes items ranging in size from microns to meters which originated from spent satellites and rocket cases. To understand and model these environments, impact damage in the form of craters and perforations must be analyzed. Returned spacecraft materials such as those from LDEF and Solar Max have provided such a testbed. From these space-aged samples various impact parameters (i.e., particle size, particle and target material, particle shape, relative impact speed, etc.) may be determined. These types of analyses require the use of generic analytic scaling laws which can adequately describe the impact effects. Currently, most existing analytic scaling laws are little more than curve-fits to limited data and are not based on physics, and thus are not generically applicable over a wide range of impact parameters. During this study, a series of physics-based scaling laws for normal and oblique crater and perforation formation has been generated into two types of materials: aluminum and Teflon.

  16. Hypervelocity impact physics

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Bean, Alan J.; Darzi, Kent

    1991-01-01

    All large spacecraft are susceptible to impacts by meteoroids and orbiting space debris. These impacts occur at extremely high speed and can damage flight-critical systems, which can in turn lead to a catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for a long-duration mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystems components. The work performed under the contract consisted of applied research on the effects of meteoroid/space debris impacts on candidate materials, design configurations, and support mechanisms of long term space vehicles. Hypervelocity impact mechanics was used to analyze the damage that occurs when a space vehicle is impacted by a micrometeoroid or a space debris particle. An impact analysis of over 500 test specimens was performed to generate by a hypervelocity impact damage database.

  17. Shuttle Hypervelocity Impact Database

    NASA Technical Reports Server (NTRS)

    Hyde, James I.; Christiansen, Eric I.; Lear, Dana M.

    2011-01-01

    With three flights remaining on the manifest, the shuttle impact hypervelocity database has over 2800 entries. The data is currently divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. The paper will provide details and insights on the contents of the database including examples of descriptive statistics using the impact data. A discussion of post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will be presented. Future work to be discussed will be possible enhancements to the database structure and availability of the data for other researchers. A related database of ISS returned surfaces that are under development will also be introduced.

  18. Shuttle Hypervelocity Impact Database

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.

    2011-01-01

    With three missions outstanding, the Shuttle Hypervelocity Impact Database has nearly 3000 entries. The data is divided into tables for crew module windows, payload bay door radiators and thermal protection system regions, with window impacts compromising just over half the records. In general, the database provides dimensions of hypervelocity impact damage, a component level location (i.e., window number or radiator panel number) and the orbiter mission when the impact occurred. Additional detail on the type of particle that produced the damage site is provided when sampling data and definitive analysis results are available. Details and insights on the contents of the database including examples of descriptive statistics will be provided. Post flight impact damage inspection and sampling techniques that were employed during the different observation campaigns will also be discussed. Potential enhancements to the database structure and availability of the data for other researchers will be addressed in the Future Work section. A related database of returned surfaces from the International Space Station will also be introduced.

  19. Hypervelocity impact shield

    NASA Technical Reports Server (NTRS)

    Cour-Palais, Burton G. (Inventor); Crews, Jeanne Lee (Inventor)

    1991-01-01

    A hypervelocity impact shield and method for protecting a wall structure, such as a spacecraft wall, from impact with particles of debris having densities of about 2.7 g/cu cm and impact velocities up to 16 km/s are disclosed. The shield comprises a stack of ultra thin sheets of impactor disrupting material supported and arranged by support means in spaced relationship to one another and mounted to cover the wall in a position for intercepting the particles. The sheets are of a number and spacing such that the impacting particle and the resulting particulates of the impacting particle and sheet material are successively impact-shocked to a thermal state of total melt and/or vaporization to a degree as precludes perforation of the wall. The ratio of individual sheet thickness to the theoretical diameter of particles of debris which may be of spherical form is in the range of 0.03 to 0.05. The spacing between adjacent sheets is such that the debris cloud plume of liquid and vapor resulting from an impacting particle penetrating a sheet does not puncture the next adjacent sheet prior to the arrival thereat of fragment particulates of sheet material and the debris particle produced by a previous impact.

  20. Hypervelocity impacts into graphite

    NASA Astrophysics Data System (ADS)

    Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.

    2011-03-01

    Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.

  1. Hypervelocity impact simulations of Whipple shields

    NASA Technical Reports Server (NTRS)

    Segletes, Steven B.; Zukas, Jonas A.

    1992-01-01

    The problem associated with protecting space vehicles from space debris impact is described. Numerical simulation is espoused as a useful complement to experimentation: as a means to help understand and describe the hypervelocity impact phenomena. The capabilities of a PC-based hydrocode, ZeuS, are described, for application to the problem of hypervelocity impact. Finally, results of ZeuS simulations, as applied to the problem of bumper shield impact, are presented and compared with experimental results.

  2. Hypervelocity Impact (HVI). Volume 1; General Introduction

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. This volume contains an executive summary, overview of the method, brief descriptions of all targets, and highlights of results and conclusions.

  3. Hypervelocity impact technology and applications: 2007.

    SciTech Connect

    Reinhart, William Dodd; Chhabildas, Lalit C.

    2008-07-01

    The Hypervelocity Impact Society is devoted to the advancement of the science and technology of hypervelocity impact and related technical areas required to facilitate and understand hypervelocity impact phenomena. Topics of interest include experimental methods, theoretical techniques, analytical studies, phenomenological studies, dynamic material response as related to material properties (e.g., equation of state), penetration mechanics, and dynamic failure of materials, planetary physics and other related phenomena. The objectives of the Society are to foster the development and exchange of technical information in the discipline of hypervelocity impact phenomena, promote technical excellence, encourage peer review publications, and hold technical symposia on a regular basis. It was sometime in 1985, partly in response to the Strategic Defense Initiative (SDI), that a small group of visionaries decided that a conference or symposium on hypervelocity science would be useful and began the necessary planning. A major objective of the first Symposium was to bring the scientists and researchers up to date by reviewing the essential developments of hypervelocity science and technology between 1955 and 1985. This Symposia--HVIS 2007 is the tenth Symposium since that beginning. The papers presented at all the HVIS are peer reviewed and published as a special volume of the archival journal International Journal of Impact Engineering. HVIS 2007 followed the same high standards and its proceedings will add to this body of work.

  4. AXAF hypervelocity impact test results

    NASA Technical Reports Server (NTRS)

    Frost, Cynthia L.; Rodriguez, Pedro I.

    1997-01-01

    Composite and honeycomb panels are commonly used for spacecraft structural components. The impact test results and analysis of six different composite and honeycomb combinations for use on the advanced X-ray astrophysics facility (AXAF) are reported. The AXAF consists of an X-ray telescope and the associated detecting devices attached to an octagonal spacecraft with an internal propulsion system. The spacecraft's structural panels and optical bench are made of two different graphite fiber reinforced polyimides or composite panels bonded to either side of an aluminum honeycomb. The instrument is required to have at least a 0.92 probability of no failure of any of the critical elements due to meteoroids and debris. In relation to the no-failure probability determination in its low earth orbit environment, hypervelocity impact testing was performed to determine the ballistic limit range and the extent of damage due to impact. The test results for a power and signal cable bundle located behind a panel are presented. Tests planned for a multilayer insulation (MLI) blanket and four types of cable bundles are discussed.

  5. Element fracture technique for hypervelocity impact simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-tian; Li, Xiao-gang; Liu, Tao; Jia, Guang-hui

    2015-05-01

    Hypervelocity impact dynamics is the theoretical support of spacecraft shielding against space debris. The numerical simulation has become an important approach for obtaining the ballistic limits of the spacecraft shields. Currently, the most widely used algorithm for hypervelocity impact is the smoothed particle hydrodynamics (SPH). Although the finite element method (FEM) is widely used in fracture mechanics and low-velocity impacts, the standard FEM can hardly simulate the debris cloud generated by hypervelocity impact. This paper presents a successful application of the node-separation technique for hypervelocity impact debris cloud simulation. The node-separation technique assigns individual/coincident nodes for the adjacent elements, and it applies constraints to the coincident node sets in the modeling step. In the explicit iteration, the cracks are generated by releasing the constrained node sets that meet the fracture criterion. Additionally, the distorted elements are identified from two aspects - self-piercing and phase change - and are deleted so that the constitutive computation can continue. FEM with the node-separation technique is used for thin-wall hypervelocity impact simulations. The internal structures of the debris cloud in the simulation output are compared with that in the test X-ray graphs under different material fracture criteria. It shows that the pressure criterion is more appropriate for hypervelocity impact. The internal structures of the debris cloud are also simulated and compared under different thickness-to-diameter ratios (t/D). The simulation outputs show the same spall pattern with the tests. Finally, the triple-plate impact case is simulated with node-separation FEM.

  6. Hypervelocity impact testing of spacecraft optical sensors

    SciTech Connect

    1995-07-01

    Hypervelocity tests of spacecraft optical sensors were conducted to determine if the optical signature from an impact inside the optical sensor sunshade resembled signals that have been observed on-orbit. Impact tests were conducted in darkness and with the ejected debris illuminated. The tests were conducted at the Johnson Space Center Hypervelocity Impact Test Facility. The projectile masses and velocities that may be obtained at the facility are most representative of the hypervelocity particles thought to be responsible for a group of anomalous optical sensors responses that have been observed on-orbit. The projectiles are a few micrograms, slightly more massive than the microgram particles thought to be responsible for the signal source. The test velocities were typically 7.3 km/s, which are somewhat slower than typical space particles.

  7. Simulating plasma production from hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Fletcher, Alex; Close, Sigrid; Mathias, Donovan

    2015-09-01

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30-72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent Van de Graaff

  8. Progress in hypervelocity impact and protection

    NASA Astrophysics Data System (ADS)

    Thoma, K.; Schaefer, F.; Hiermaier, S.; Schneider, E.

    Starting with an introduction into the field of hypervelocity impacts, an overview of current activities in the area of protection against space debris and micrometeoroids is given. After a description of the relevant distributions of debris masses and velocities in orbit, the physical phenomena during a hypervelocity impact will be highlighted using high -speed photographs and flash x-ray pictures. Progress in shield design against space debris can be achieved only, when a combined approach of advanced numerical methods, specific mat erial models and experimental determination of input parameters for these models is used. Examples of experimental methods for material characterization are given, covering the range from quasi static to very high strain rates for materials like Nextel and carbon fiber reinforced materials. Mesh free numerical methods have extraordinary capabilities in the simulation of extreme material behaviour including complete failure with phase changes, combined with shock wave phenomena and the interaction with structural components. In addition to numerical methods, engineering models, summarizing knowledge gained from experiments and/or from numerical simulation, play an important role, for example for system studies and parametric investigations. New material types are developed for applications outside of hypervelocity impact and protection. A permanent screening of new materials with respect to their behaviour under hypervelocity impact loads is necessary to identify materials with a potential for increased protection efficiency. Aim of our paper is to demonstrate the favours of combining numerical methods, material modelling, detailed experimental methods and engineering formulas in shield design. We do this by discussing the following examples: - Hypervelocity impact on pressure vessels: Pressure vessels are integral components of any spacecraft. Therefore research has been focussed on their behaviour under the combined load of internal

  9. Experimental studies of oblique impact. [of meteorites on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Wedekind, J. A.

    1978-01-01

    Meteoritic materials most probably impact planetary bodies along oblique trajectories inclined less than 45 deg above their surfaces. Laboratory studies of hypervelocity impacts against rock and particulate media are presented that indicate important effects of obliquity on crater size, shape, and ejecta distribution. The effects are particularly important to crater size-frequency analyses and geologic interpretations of crater formations. Impacts at shallow incidence, which are not uncommon, lead to ricochet of the impacting object accompanied with some entrained excavated materials at velocities only slightly reduced from the pre-impact value.

  10. Hypervelocity Impact of Explosive Transfer Lines

    NASA Technical Reports Server (NTRS)

    Bjorkman, Michael D.; Christiansen, Eric L.

    2012-01-01

    Hypervelocity impact tests of 2.5 grains per foot flexible confined detonating chord (FCDC) shielded by a 1 mm thick 2024-T3 aluminum alloy bumper standing off 51 mm from the FCDC were performed. Testing showed that a 6 mm diameter 2017-T4 aluminum alloy ball impacting the bumper at 6.97 km/s and 45 degrees impact angle initiated the FCDC. However, impact by the same diameter and speed ball at 0 degrees angle of impact did not initiate the FCDC. Furthermore, impact at 45 degrees and the same speed by a slightly smaller diameter ball (5.8 mm diameter) also did not initiate the FCDC.

  11. NOTE: Survivability of Bacteria in Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Burchell, Mark J.; Mann, Jo; Bunch, Alan W.; Brandão, Pedro F. B.

    2001-12-01

    Bacteria belonging to the genus Rhodococcus have been tested for their survivability in hypervelocity impacts at 5.1±0.1 km s -1. This is similar to the martian escape velocity for example but is slower than the mean velocities typical of impacts from space on planets like Mars (typically 14 km s -1) and Earth (typically 20-25 km s -1). The bacteria fired were loaded on a projectile using a two-stage light-gas gun. The targets were plates of nutrient media. Analysis techniques including pyrolysis mass spectrometry and selective growth in acetonitrile confirmed that the bacterium grown on a target plate after a shot was the original strain. The indication is that, if fired on a projectile, bacteria can survive a hypervelocity impact and subsequently grow. This holds implications for the study of possible natural migration of life around the Solar System on minor bodies which end up impacting target planets, thus transferring life if the bacteria can survive the resulting hypervelocity impact.

  12. Simulating plasma production from hypervelocity impacts

    SciTech Connect

    Fletcher, Alex Close, Sigrid; Mathias, Donovan

    2015-09-15

    Hypervelocity particles, such as meteoroids and space debris, routinely impact spacecraft and are energetic enough to vaporize and ionize themselves and as well as a portion of the target material. The resulting plasma rapidly expands into the surrounding vacuum. While plasma measurements from hypervelocity impacts have been made using ground-based technologies such as light gas guns and Van de Graaff dust accelerators, some of the basic plasma properties vary significantly between experiments. There have been both ground-based and in-situ measurements of radio frequency (RF) emission from hypervelocity impacts, but the physical mechanism responsible and the possible connection to the impact-produced plasma are not well understood. Under certain conditions, the impact-produced plasma can have deleterious effects on spacecraft electronics by providing a new current path, triggering an electrostatic discharge, causing electromagnetic interference, or generating an electromagnetic pulse. Multi-physics simulations of plasma production from hypervelocity impacts are presented. These simulations incorporate elasticity and plasticity of the solid target, phase change and plasma formation, and non-ideal plasma physics due to the high density and low temperature of the plasma. A smoothed particle hydrodynamics method is used to perform a continuum dynamics simulation with these additional physics. By examining a series of hypervelocity impacts, basic properties of the impact produced plasma plume (density, temperature, expansion speed, charge state) are determined for impactor speeds between 10 and 72 km/s. For a large range of higher impact speeds (30–72 km/s), we find the temperature is unvarying at 2.5 eV. We also find that the plasma plume is weakly ionized for impact speeds less than 14 km/s and fully ionized for impact speeds greater than 20 km/s, independent of impactor mass. This is the same velocity threshold for the detection of RF emission in recent

  13. Structural Damage Prediction and Analysis for Hypervelocity Impacts: Handbook

    NASA Technical Reports Server (NTRS)

    Elfer, N. C.

    1996-01-01

    This handbook reviews the analysis of structural damage on spacecraft due to hypervelocity impacts by meteoroid and space debris. These impacts can potentially cause structural damage to a Space Station module wall. This damage ranges from craters, bulges, minor penetrations, and spall to critical damage associated with a large hole, or even rupture. The analysis of damage depends on a variety of assumptions and the area of most concern is at a velocity beyond well controlled laboratory capability. In the analysis of critical damage, one of the key questions is how much momentum can actually be transfered to the pressure vessel wall. When penetration occurs without maximum bulging at high velocity and obliquities (if less momentum is deposited in the rear wall), then large tears and rupture may be avoided. In analysis of rupture effects of cylindrical geometry, biaxial loading, bending of the crack, a central hole strain rate and R-curve effects are discussed.

  14. Hypervelocity impact calculations using CTH: Case studies

    SciTech Connect

    Trucano, T.G.; McGlaun, J.M.

    1989-01-01

    In this paper, we discuss the application of CTH, a multi-dimensional Eulerian shock wave physics code, by discussing its application to hypervelocity impact problems. CTH is heavily used for this and other types of applications. We will not attempt to provide a broad discussion of examples and capabilities. Rather, we choose to focus on certain features of CTH that are of interest in gaining understanding of some of the more delicate issues of numerical impact simulations. 14 refs., 15 figs., 1 tab.

  15. Hypervelocity Impact Studies on Solar Cell Modules

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Best, Stevie R.

    2001-01-01

    Space environmental effects have caused severe problems as satellites move toward increased power and operating voltage levels. The greatest unknown, however, is the effect of high velocity micrometeoroid impacts on high voltage arrays (>200V). Understanding such impact phenomena is necessary for the design of future reliable, high voltage solar arrays, especially for Space Solar Power applications. Therefore, the objective of this work was to study the effect of hypervelocity impacts on high voltage solar arrays. Initially, state of the art, 18% efficient GaAs solar cell strings were targeted. The maximum bias voltage on a two-cell string was -200 V while the adjacent string was held at -140 V relative to the plasma potential. A hollow cathode device provided the plasma. Soda lime glass particles 40-120 micrometers in diameter were accelerated in the Hypervelocity Impact Facility to velocities as high as 11.6 km/sec. Coordinates and velocity were obtained for each of the approximately 40 particle impact sites on each shot. Arcing did occur, and both discharging and recharging of arcs between the two strings was observed. The recharging phenomena appeared to stop at approximately 66V string differential. No arcing was observed at 400 V on concentrator cell modules for the Stretched Lens Array.

  16. ALE advantage in hypervelocity impact calculations

    SciTech Connect

    Gerassimenko, M.; Rathkopf, J.

    1998-10-01

    The ALE3D code is used to model experiments relevant to hypervelocity impact lethality, carried out in the 4-5 km/s velocity range. The code is run in the Eulerian and ALE modes. Zoning in the calculations is refined beyond the level found in most lethality calculations, but still short of convergence. The level of zoning refinement that produces equivalent results in uniformly zoned Eulerian calculations and ALE ones utilizing specialized zoning, weighting and relaxation techniques is established. It takes 11 times fewer zones and about 60% as many cycles when ALE capabilities are used. Calculations are compared to experimental results.

  17. Hypervelocity impact survivability experiments for carbonaceous impactors

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Becker, Luann; Bada, Jeffrey; Macklin, John; Radicatidibrozolo, Filippo; Fleming, R. H.; Erlichman, Jozef

    1993-01-01

    We performed a series of hypervelocity impact experiments using carbon-bearing impactors (diamond, graphite, fullerenes, phthalic acid crystals, and Murchison meteorite) into Al plate at velocities between 4.2 and 6.1 km/s. These tests were made to do the following: (1) determine the survivability of carbon forms and organize molecules in low hypervelocity impact; (2) characterize carbonaceous impactor residues; and (3) determine whether or not fullerenes could form from carbonaceous impactors, under our experimental conditions, or survive as impactors. An analytical protocol of field emission SEM imagery, SEM-EDX, laser Raman spectroscopy, single and 2-stage laser mass spectrometry, and laser induced fluorescence (LIF) found the following: (1) diamonds did not survive impact at 4.8 km/s, but were transformed into various forms of disordered graphite; (2) intact, well-ordered graphite impactors did survive impact at 5.9 km/sec, but were only found in the crater bottom centers; the degree of impact-induced disorder in the graphite increases outward (walls, rims, ejecta); (3) phthalic acid crystals were destroyed on impact (at 4.2 km/s, although a large proportion of phthalic acid molecules did survive impact); (4) fullerenes did not form as products of carbonaceous impactors (5.9 - 6.1 km/s, fullerene impactor molecules mostly survived impact at 5.9 km/s; and (5) two Murchison meteorite samples (launched at 4.8 and 5.9 km/s) show preservation of some higher mass polycyclic aromatic hydrocarbons (PAHs) compared with the non-impacted sample. Each impactor type shows unique impactor residue morphologies produced at a given impact velocity. An expanded methodology is presented to announce relatively new analytical techniques together with innovative modifications to other methods that can be used to characterize small impact residues in LDEF craters, in addition to other acquired extraterrestrial samples.

  18. Glasses formed by hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.

    1984-01-01

    This paper presents description, classification, and geological setting of impact glasses, which are formed as a result of meteorite impacts with the planetary surface, and discusses the impact-glass formation process in the context of cratering mechanics. Impact glasses can be classified as belonging to two major groups: (1) mineral glasses, which are identical in composition to a mineral, and (2) rock glasses, which have the composition of a rock or a mixture of various rocks. Rock glasses may be (1) melt ejecta, (2) parts of a coherent melt layer inside the crater cavity, or (3) dikes or veins. The composition of rock glasses at a particular crater can be matched by that of the target. In nonporous rocks, the formation of rock glasses requires peak pressures in excess of 60-80 GPa, while mineral glasses are formed in the pressure range of about 25 to 55 GPa; in porous rocks, interstitial glass forms at pressures as low as 5 GPa.

  19. Subsurface Deformation of Nonporous Rocks Induced by Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Winkler, R.; Poelchau, M. H.; Michalski, C.; Kenkmann, T.

    2015-09-01

    Two hypervelocity impact experiments into quarzite and marble were conducted under similar impact condition. Both experiments show tensile failure; quarzite developed zones of strong grain size reduction, while marble shows intragranular fracturing.

  20. Ejecta Dynamics during Hypervelocity Impacts into Dry and Wet Sandstone

    NASA Astrophysics Data System (ADS)

    Hoerth, T.; Schäfer, F.; Thoma, K.; Poelchau, M.; Kenkmann, T.; Deutsch, A.

    2011-03-01

    Hypervelocity impact experiments into dry and water saturated porous Seeberger sandstone were conducted at the two-stage light gas accelerator at the Ernst-Mach-Institute (EMI) and the ejecta dynamics were analyzed.

  1. The XLLGG — A Hypervelocity Launcher for Impact Cratering Research

    NASA Astrophysics Data System (ADS)

    Lexow, B.; Bückle, A.; Wickert, M.; Hiermaier, S.

    2015-09-01

    Hypervelocity launchers are used to accelerate projectiles that simulate impacting meteoroids or asteroids. The XLLGG (eXtra Large Light Gas Gun) at the EMI (Ernst-Mach-Institute) was used within the MEMIN program.

  2. Hydrocode modelling of hypervelocity impacts on ice

    NASA Astrophysics Data System (ADS)

    Fendyke, S.; Price, M. C.; Burchell, M. J.

    2013-08-01

    Experimental data are now widely available for the size of craters resulting from hypervelocity impacts of millimetre scale projectiles onto water ice targets. At such size scales the bowl shaped crater formed in ductile materials, or in larger scale impacts, is here surrounded by a large spallation zone due to the brittle nature of the ice. Modelling of these impacts therefore has to take account of this spallation. Here we used the iSALE2 hydrocode to simulate such impacts and compared the results to experimental data. We found that it was possible to reproduce the experimental data over a range of speeds (1-7 km s-1) for aluminium and copper projectiles. Initially, to reproduce the large spallation regions around the craters it was assumed that above a certain degree of damage, material was removed by spallation. However this simple one-parameter model failed to model the crater depth adequately. Accordingly, to obtain the best agreement of the simulations with the experimental data, a two-step ice strength was introduced, whereby above a critical amount of damage (0.95), the yield strength reduced from 1 MPa (intact) to 70 kPa (damaged). As a result, experimental data for crater depth and diameter and the results of the simulations agree to within 6% for diameter and 5% for depth over the impact energy range used in the experiments (1-240 J).

  3. Characteristics of plasma generated by hypervelocity impact

    SciTech Connect

    Song, Weidong; Li, Jianqiao; Ning, Jianguo

    2013-09-15

    The characteristics of plasma generated by hypervelocity impact were studied through both theoretical analysis and numerical simulation. Based on thermodynamics and statistical physics, a thermal ionization model was proposed to explore the relationships of ionization degree and plasma conductivity to temperature with consideration of the velocity distribution law in the thermodynamic equilibrium state. In order to derive the temperature, internal energy, and density of the plasma generated by the impact for the above relationships, a 3-D model for the impact of an aluminum spherical projectile on an aluminum target was established and five cases with different impact angles were numerically simulated. Then, the temperature calculated from the internal energy and the Thomas Fermi (TF) model, the internal energy and the density of the plasma were put into the function of the ionization degree to study the characteristics of plasma. Finally, based on the experimental data, a good agreement was obtained between the theoretical predictions and the experimental results, and the feasibility of this theoretical model was verified.

  4. Hypervelocity impact damage assessment for Space Station

    NASA Technical Reports Server (NTRS)

    Coronado, Alex R.; Gibbins, Martin N.; Stern, Paul H.

    1988-01-01

    To inhibit damage and limit the probability of penetration of the Space Station pressure wall by micrometeoroids and orbital debris, a shield placed away from the wall is used to form a double wall. To determine shield effectiveness and assess impact damage, existing test data were reviewed and additional testing was performed for Space Station double wall designs. Empirical spallation and penetration functions derived from the data show that shield thickness and impact angle affect the damage to the wall. Thick shields reduce wall damage for low angle impacts but increase damage for oblique impacts. Multilayer insulation between the shield and wall reduces impact damage to the wall. A relationship between impact velocity and spall damage to the wall is demonstrated. Preliminary test results on Li-Al shield material indicate possible improved effectiveness over Al shields.

  5. Dynamic Optical Investigations of Hypervelocity Impact Damage

    NASA Astrophysics Data System (ADS)

    Lamberson, Leslie Elise

    One of the prominent threats in the endeavor to develop next-generation space assets is the risk of space debris impact in earth's orbit and micrometeoroid impact damage in near-earth orbit and deep space. To date, there is no study available which concentrates on the analysis of dynamic crack growth from hypervelocity impacts on such structures, resulting in their eventual catastrophic degradation. Experiments conducted using a unique two-stage light-gas gun facility have examined the in situ dynamic fracture of brittle polymers subjected to this high-energy-density event. Optical techniques of caustics and photoelasticity, combined with high-speed photography up to 100 million frames per second, analyze crack growth behavior of Mylar and Homalite 100 thin plates after impact by a 1.8 mm diameter nylon 6-6 right cylindrical slug at velocities ranging from 3 to 7 km/s (7000--15500 mph). Crack speeds in both polymers averaged between 0.2 and 0.47 cR, the Rayleigh wave speed (450--1000 mph). Shadow spots and surrounding caustics reveal time histories of the dynamic stress intensity factor, as well as the energy release rate ahead of the mode-I, or opening, crack tips. Results indicate that even under extreme impact conditions of out of-plane loading, highly localized heating, and energetic impact phenomena involving plasma formation and ejecta, the dynamic fracture process occurs during a deformation regime dominated by in-plane loading. These findings imply that the reliability of impacted, thin-walled, plate and shell space structures, idealized by the experimental configuration investigated, can be predicted by the well defined principles of classical dynamic fracture mechanics.

  6. Crater and cavity depth in hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Kadono, T.; Fujiwara, A.

    2003-04-01

    Hypervelocity impact experiments with low-density mediums (e.g., foams) have been so far carried out to develop the instruments for intact capture of interplanetary dust particles. The results show that the impact leads a "cavity", a cylindrical or carrot (spindle) shaped vestige. Its shape depends on the condition of projectiles; when impact velocity is so low that projectiles are intact, the depth increases with impact velocity, while it decreases or is constant with impact velocity when the impact velocity is so high that projectiles are broken (e.g., Kadono, Planet. Space Sci. 47, 305--318, 1999). On the other hand, as described by Summers (NASA TN D-94, 1959), crater shape with high density targets (comparable to projectile density) also changes with impact velocity. At low velocities, the strength of projectile's materials is greater than the dynamic impact pressure and the projectile penetrates the target intact. The crater produced is deep and narrow. With increase in impact velocity, a point is reached at which the impact pressure is sufficient to cause the projectile to fragment into a few large pieces at impact. Then as the impact velocity is increased further, the projectile shatters into numerous small pieces and the penetration actually decreases. Finally a velocity is reached at which the typical fluid impact occurs, the crater formed is nearly hemispherical in shape. It appears that the situation in cavity formation with low density targets is quite similar to that in cratering with high density targets at low impact velocity. This similarity allows us to discuss cavity formation and cratering in a unified view. As described above, the previous experiments clearly suggest that the condition of projectiles plays important roles in both cratering and cavity formation. Hence here, by introducing a parameter that characterizes the condition of projectiles at the instance of impact, cratering processes such as projectile penetration and shock wave

  7. Electromagnetic Pulses Generated by Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Close, S.

    2011-12-01

    Hypervelocity impacts on spacecraft are known to cause mechanical damage, but their electrical effect on spacecraft systems are not well-characterized. We present a theory to explain plasma production and subsequent electric fields occurring when a meteoroid or piece of space debris strikes a spacecraft, ionizing itself and part of the spacecraft. This plasma, with a charge separation commensurate with different species mobilities, can produce a strong electromagnetic pulse (EMP), potentially causing catastrophic damage if the impact is relatively near an area with low shielding or an open umbilical. The plasma density, and hence plasma frequency, sweeps down as the plasma expands ballistically into the vacuum causing a chirp. Subsequent plasma oscillations can also emit significant power and may be responsible for many reported satellite anomalies. The presented theory discusses both a dust-free plasma expansion with coherent electron oscillation and a dusty plasma expansion with macroscopic charge separation. We show that significant RF can be emitted from frequencies ranging from VLF through S-band.

  8. Capacitors Would Help Protect Against Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Edwards, David; Hubbs, Whitney; Hovater, Mary

    2007-01-01

    A proposal investigates alternatives to the present bumper method of protecting spacecraft against impacts of meteoroids and orbital debris. The proposed method is based on a British high-voltage-capacitance technique for protecting armored vehicles against shaped-charge warheads. A shield, according to the proposal, would include a bare metal outer layer separated by a gap from an inner metal layer covered with an electrically insulating material. The metal layers would constitute electrodes of a capacitor. A bias potential would be applied between the metal layers. A particle impinging at hypervelocity on the outer metal layer would break apart into a debris cloud that would penetrate the electrical insulation on the inner metal layer. The cloud would form a path along which electric current could flow between the metal layers, thereby causing the capacitor to discharge. With proper design, the discharge current would be large enough to vaporize the particles in the debris cloud to prevent penetration of the spacecraft. The shield design can be mass optimized to be competitive with existing bumper designs. Parametric studies were proposed to determine optimum correction between bias voltage, impacting particle velocity, gap space, and insulating material required to prevent spacecraft penetration.

  9. Hypervelocity impact cratering - A catastrophic terrestrial geologic process

    NASA Astrophysics Data System (ADS)

    Grieve, Richard A. F.

    It is possible to infer a 5.4 x 10 to the 15th/sq km per year terrestrial impact cratering rate for hypervelocity impact structures with diameters greater than 20 km. These craters often contain such shock-metamorphic effects as shatter cones, tectosilicate microscopic planar features, diapleptic solid-state glasses, and impact melting. Impact melt rocks may contain siderophile anomalies indicative of siderophile material admixtures. Hypervelocity impacts have gained recognition as catastrophes with potentially severe biological effects; the cratering record is such as to suggest that the earth may be subjected to periodic cometary showers.

  10. Measurement Techniques for Hypervelocity Impact Test Fragments

    NASA Technical Reports Server (NTRS)

    Hill, Nicole E.

    2008-01-01

    The ability to classify the size and shape of individual orbital debris fragments provides a better understanding of the orbital debris environment as a whole. The characterization of breakup fragmentation debris has gradually evolved from a simplistic, spherical assumption towards that of describing debris in terms of size, material, and shape parameters. One of the goals of the NASA Orbital Debris Program Office is to develop high-accuracy techniques to measure these parameters and apply them to orbital debris observations. Measurement of the physical characteristics of debris resulting from groundbased, hypervelocity impact testing provides insight into the shapes and sizes of debris produced from potential impacts in orbit. Current techniques for measuring these ground-test fragments require determination of dimensions based upon visual judgment. This leads to reduced accuracy and provides little or no repeatability for the measurements. With the common goal of mitigating these error sources, allaying any misunderstandings, and moving forward in fragment shape determination, the NASA Orbital Debris Program Office recently began using a computerized measurement system. The goal of using these new techniques is to improve knowledge of the relation between commonly used dimensions and overall shape. The immediate objective is to scan a single fragment, measure its size and shape properties, and import the fragment into a program that renders a 3D model that adequately demonstrates how the object could appear in orbit. This information would then be used to aid optical methods in orbital debris shape determination. This paper provides a description of the measurement techniques used in this initiative and shows results of this work. The tradeoffs of the computerized methods are discussed, as well as the means of repeatability in the measurements of these fragments. This paper serves as a general description of methods for the measurement and shape analysis of

  11. Hypervelocity Impact Initiation of Explosive Transfer Lines

    NASA Technical Reports Server (NTRS)

    Bjorkman, Michael D.; Christiansen, Eric L.

    2012-01-01

    The Gemini, Apollo and Space Shuttle spacecraft utilized explosive transfer lines (ETL) in a number of applications. In each case the ETL was located behind substantial structure and the risk of impact initiation by micrometeoroids and orbital debris was negligible. A current NASA program is considering an ETL to synchronize the actuation of pyrobolts to release 12 capture latches in a contingency. The space constraints require placing the ETL 50 mm below the 1 mm thick 2024-T72 Whipple shield. The proximity of the ETL to the thin shield prompted analysts at NASA to perform a scoping analysis with a finite-difference hydrocode to calculate impact parameters that would initiate the ETL. The results suggest testing is required and a 12 shot test program with surplused Shuttle ETL is scheduled for February 2012 at the NASA White Sands Test Facility. Explosive initiation models are essential to the analysis and one exists in the CTH library for HNS I, but not the HNS II used in the Shuttle 2.5 gr/ft rigid shielded mild detonating cord (SMDC). HNS II is less sensitive than HNS I so it is anticipated that these results using the HNS I model are conservative. Until the hypervelocity impact test results are available, the only check on the analysis was comparison with the Shuttle qualification test result that a 22 long bullet would not initiate the SMDC. This result was reproduced by the hydrocode simulation. Simulations of the direct impact of a 7 km/s aluminum ball, impacting at 0 degree angle of incidence, onto the SMDC resulted in a 1.5 mm diameter ball initiating the SMDC and 1.0 mm ball failing to initiate it. Where one 1.0 mm ball could not initiate the SMDC, a cluster of six 1.0 mm diameter aluminum balls striking simultaneously could. Thus the impact parameters that will result in initiating SMDC located behind a Whipple shield will depend on how well the shield fragments the projectile and spreads the fragments. An end-to-end simulation of the impact of an

  12. Oblique impacts into low impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2009-12-01

    Planetary impacts occur indiscriminately, in all locations and materials. Varied geologic settings can have significant effects on the impact process, including the coupling between the projectile and target, the final damage patterns and modes of deformation that occur. For example, marine impact craters are not identical to impacts directly into bedrock or into sedimentary materials, though many of the same fundamental processes occur. It is therefore important, especially when considering terrestrial impacts, to understand how a low impedance sedimentary layer over bedrock affects the deformation process during and after a hypervelocity impact. As a first step, detailed comparisons between impacts and hydrocode models were performed. Experiments performed at the NASA Ames Vertical Gun Range of oblique impacts into polymethylmethacrylate (PMMA) targets with low impedance layers were performed and compared to experiments of targets without low impedance layers, as well as to hydrocode models under identical conditions. Impact velocities ranged from 5 km/s to 5.6 km/s, with trajectories from 30 degrees to 90 degrees above the horizontal. High-speed imaging provided documentation of the sequence and location of failure due to impact, which was compared to theoretical models. Plasticine and ice were used to construct the low impedance layers. The combination of experiments and models reveals the modes of failure due to a hypervelocity impact. How such failure is manifested at large scales can present a challenge for hydrocodes. CTH models tend to overestimate the amount of damage occurring within the targets and have difficulties perfectly reproducing morphologies; nevertheless, they provide significant and useful information about the failure modes and style within the material. CTH models corresponding to the experiments allow interpretation of the underlying processes involved as well as provide a benchmark for the experimental analysis. The transparency of PMMA

  13. Hypervelocity impact testing of non-metallic materials

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1990-01-01

    A comparative analysis of impact damage in composite and ceramic specimens and in geometrically similar aluminum specimens is performed to determine the advantages and disadvantages of employing certain composite and ceramic materials in the design of structural wall systems for long-duration spacecraft. A similar analysis of the damage in single panel lexan and multi-plane glass windows shows that glass window systems are rather resilent under hypervelocity impact loadings. It is concluded that thin Kevlar 49, IM6/3501-6 graphite/epoxy, and alumina panels offer no advantage over equivalent aluminum 6061-T6 panels in reducing the penetration threat of hypervelocity projectiles.

  14. Morphology correlation of craters formed by hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Crawford, Gary D.; Rose, M. Frank; Zee, Ralph H.

    1993-01-01

    Dust-sized olivine particles were fired at a copper plate using the Space Power Institute hypervelocity facility, simulating micrometeoroid damage from natural debris to spacecraft in low-Earth orbit (LEO). Techniques were developed for measuring crater volume, particle volume, and particle velocity, with the particle velocities ranging from 5.6 to 8.7 km/s. A roughly linear correlation was found between crater volume and particle energy which suggested that micrometeoroids follow standard hypervelocity relationships. The residual debris analysis showed that for olivine impacts of up to 8.7 km/s, particle residue is found in the crater. By using the Space Power Institute hypervelocity facility, micrometeoroid damage to satellites can be accurately modeled.

  15. Analysis of hypervelocity impact test data

    SciTech Connect

    Canavan, G.H.

    1998-01-01

    Experiments conducted by the Department of Defense provide an adequate basis for the determination of the fragment distribution and number from hypervelocity collisions. Models trained on only a portion of the data are shown to bias samples too far from the population to be useful for averaging over debris distributions or estimating fragment production rates. The average fragment production exponent is more appropriate for those purposes.

  16. Structural Damage Prediction and Analysis for Hypervelocity Impact: Consulting

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A portion of the contract NAS8-38856, 'Structural Damage Prediction and Analysis for Hypervelocity Impacts,' from NASA Marshall Space Flight Center (MSFC), included consulting which was to be documented in the final report. This attachment to the final report contains memos produced as part of that consulting.

  17. Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Yasensky, John; Christiansen, Eric L.

    2007-01-01

    A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.

  18. SPH (smoothed particle hydrodynamics) simulations of hypervelocity impacts

    SciTech Connect

    Cloutman, L.D.

    1991-01-24

    The smoothed particle hydrodynamics (SPH) method has been used to simulate several cases of hypervelocity impact in an exploratory study to determine the suitability of the method for such problems. The calculations compare favorably with experimental results and with other numerical simulations. We discuss the requirements that must be satisfied for SPH to produce accurate simulations of such problems. 18 refs., 9 figs.

  19. Hypervelocity impact tests on Space Shuttle Orbiter thermal protection material

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1977-01-01

    Hypervelocity impact tests were conducted to simulate the damage that meteoroids will produce in the Shuttle Orbiter leading edge structural subsystem material. The nature and extent of the damage is reported and the probability of encountering meteoroids with sufficient energy to produce such damage is discussed.

  20. Optimum Structure of Whipple Shield against Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Lee, Minhyung

    2013-06-01

    It has been known that the spacecraft protection issues against space debris or meteoroid impact damage are of great importance. Whipple shield structures (double spaced plates) have been investigated and empirical ballistic limit curve (BLCs) are developed. In this paper, we like to investigate an optimum Whipple Shield structure of fixed areal density and space. To do this, a new in-house SPH code has been used. Last 20 years SPH (Smoothed Particle Hydrodynamics) numerical scheme has been widely applied to the hypervelocity impact problems because of the limited velocity range and cost of test. We first examined the extent of debris spreading which seems to be a key factor to the back plate impact. The debris cloud expansion angle shows a maximum value. Then, a series of hypervelocity impact simulations were conducted to predict the critical impacting sphere diameter. It has been found that there is an optimum thickness ratio of front bumper to real wall.

  1. Survey of the hypervelocity impact technology and applications.

    SciTech Connect

    Chhabildas, Lalit Chandra; Orphal, Dennis L.

    2006-05-01

    HVIS 2005 was a clear success. The Symposium brought together nearly two hundred active researchers and students from thirteen countries around the world. The 84 papers presented at HVIS 2005 constitute an ''update'' on current research and the state-of-the-art of hypervelocity science. Combined with the over 7000 pages of technical papers from the eight previous Symposia, beginning in 1986, all published in the International Journal of Impact Engineering, the papers from HVIS 2005 add to the growing body of knowledge and the progressing state-of-the-art of hypervelocity science. It is encouraging to report that even with the limited funding resources compared to two decades ago, creativity and ingenuity in hypervelocity science are alive and well. There is considerable overlap in different disciplines that allows researchers to leverage. Experimentally, higher velocities are now available in the laboratory and are ideally suited for space applications that can be tied to both civilian (NASA) and DoD military applications. Computationally, there is considerable advancement both in computer and modeling technologies. Higher computing speeds and techniques such as parallel processing allow system level type applications to be addressed directly today, much in contrast to the situation only a few years ago. Needless to say, both experimentally and computationally, the ultimate utility will depend on the curiosity and the probing questions that will be incumbent upon the individual researcher. It is quite satisfying that over two dozen students attended the symposium. Hopefully this is indicative of a good pool of future researchers that will be needed both in the government and civilian industries. It is also gratifying to note that novel thrust areas exploring different and new material phenomenology relevant to hypervelocity impact, but a number of other applications as well, are being pursued. In conclusion, considerable progress is still being made that is

  2. Oxidation of Reinforced Carbon-Carbon Subjected to Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.; Pham, Vuong T.; Norman, Ignacio; Chao, Dennis C.

    2000-01-01

    This paper presents results from arc jet tests conducted at the NASA Johnson Space Center on reinforced carbon-carbon (RCC) samples subjected to hypervelocity impact. The RCC test specimens are representative of RCC components used on the Space Shuttle Orbiter. The arc jet testing established the oxidation characteristics of RCC when hypervelocity projectiles, simulating meteoroid/orbital debris, impact the RCC material. In addition to developing correlations for use in trajectory simulations, we discuss analytical modeling of the increased material oxidation in the impacted area using measured hole growth data. Entry flight simulations are useful in assessing the increased Space Shuttle RCC component degradation as a result of impact damage and the hot gas flow through an enlarging hole into the wing leading-edge cavity.

  3. Damage Analysis for Hypervelocity Impact Experiments on Spaceship Windows Glass

    NASA Astrophysics Data System (ADS)

    Jiyun, Y.; Jidong, Z.; Zizheng, G.; Hewei, P.

    2010-06-01

    The hypervelocity impact characteristics in fused silica glass, which is used for the outermost pane of the windshield as the critical part of the thermal protection system of spacecraft, were studied by 37 impact experiments with different millimeter diameter projectiles up to the velocity of 7 km/s launched by two stage light-gas-gun facility. The empirical damage equations were obtained from experiment data by the least square method and they were compared with NASA damage equations.

  4. Experimental hypervelocity impact effects on simulated planetesimal materials

    SciTech Connect

    Tedeschi, W.J.; Schulze, J.F.; Remo, J.L.; Young, R.P. Jr

    1994-08-01

    Experimental results are presented from a series of hypervelocity impact tests on simulated comet and asteroid materials for the purpose of characterizing their response to hypervelocity kinetic energy impacts. Nine tests were conducted at the Air Force Arnold Engineering Development Center (AEDC) S1 Range Facility on ice, rock, and iron target samples using a spherical 2.39 mm diameter aluminum impactor (0.0192 gm) at impact velocities of from 7.6 to 8.4 km/sec. The test objectives were to collect target response phenomenology data on cratering, momentum deposition and enhancement, target fragmentation, and material response under hypervelocity impact loading conditions. A carefully designed ballistic pendulum was used to measure momentum deposition into the targets. Observations and measurements of the impacted samples provide important insights into the response of these materials to kinetic energy impacts, especially in regards to unexpectedly large measured values of momentum enhancement to some of the targets. Such information is required to allow us to successfully deflect or fragment comets or asteroids which might someday be detected on collision trajectories with Earth.

  5. Spacecraft outer thermal blankets as hypervelocity impact bumpers

    NASA Astrophysics Data System (ADS)

    Cour-Palais, B. G.

    1996-05-01

    A thermal barrier consisting of a woven fabric outer layer followed by several layers of aluminized mylar insulation has been the primary impact protection against micrometeoroid and orbital impacts for many spacecraft currently in orbit. This paper examines its effectiveness as a hypervelocity "bumper" based on the performance of a NASA space suit. In this case, the thermal barrier consisted of a fabric layer followed by five layers of the aluminized mylar, which shielded either an aluminum rear wall or a rubberized pressure garment. The total areal density of the fabric and mylar layers was 0.052 g/cm2 and the fabric stand-off was 4 mm from the protected surfaces, with the aluminized mylar filling the space. Test results obtained with hypervelocity aluminum projectile impacts up to 8.5 km/s on the thermal barrier and aluminum wall are described, and a semi-empirical equation for this type of shielding is suggested.

  6. Impact sensor network for detection of hypervelocity impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Schäfer, Frank; Janovsky, Rolf

    2007-11-01

    With regard to hypervelocity impact detection, a sensor network that can be applied on typical spacecraft structures is under development at Fraunhofer EMI (Ernst-Mach-Institut), supported by OHB-System. For impact detection, acoustic transducers are used. The structure types investigated are a 2 mm thick plate from aluminium alloy and a 49 mm thick sandwich panel with aluminium face-sheets and aluminium honeycomb core. One impact test was performed on each of the panels, which were instrumented with 6 ultrasonic transducers. The signals recorded at the various sensor locations varied with regard to peak amplitude and elapse time of the signal. Using this information and combining it with a localization algorithm, the impact location could be successfully determined. A description of the impact sensor network and the mathematical model to determine the impact location is provided. The impact tests on the spacecraft structure, the response of the sensor network and the analysis performed to determine the impact location are described.

  7. Hypervelocity impact response of aluminum multi-wall structures

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Bean, Alan J.

    1991-01-01

    The results of an investigation in which the perforation resistance of aluminum multiwall structures is analyzed under a variety of hypervelocity impact loading conditions are presented. A comparative analysis of the impact damage in structural systems with two or more bumpers and the damage in single-bumper systems of similar weight is performed to determine the advantages and disadvantages of employing more than one bumper in structural wall systems for long-duration spacecraft. A significant increase in protection against perforation by hypervelocity projectiles can be achieved if a single bumper is replaced by two bumpers of similar weight while the total wall spacing is kept constant. It is found that increasing the number of bumpers beyond two while keeping the total stand-off distance constant does not result in a substantial increase in protection over that offered by two bumpers of similar weight.

  8. Hypervelocity impact simulation for micrometeorite and debris shield design

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1992-01-01

    A new capability has been developed for direct computer simulation of hypervelocity impacts on multi-plate orbital debris shields, for combinations of low shield thickness and wide shield spacing which place extreme demands on conventional Eulerian analysis techniques. The modeling methodology represents a novel approach to debris cloud dynamics simulation, a problem of long term interest in the design of space structures. Software implementation of the modeling methodology provides a new design tool for engineering analysis of proposed orbital debris protection systems.

  9. Theoretical and numerical predictions of hypervelocity impact-generated plasma

    SciTech Connect

    Li, Jianqiao; Song, Weidong Ning, Jianguo

    2014-08-15

    The hypervelocity impact generated plasmas (HVIGP) in thermodynamic non-equilibrium state were theoretically analyzed, and a physical model was presented to explore the relationship between plasma ionization degree and internal energy of the system by a group of equations including a chemical reaction equilibrium equation, a chemical reaction rate equation, and an energy conservation equation. A series of AUTODYN 3D (a widely used software in dynamic numerical simulations and developed by Century Dynamic Inc.) numerical simulations of the impacts of hypervelocity Al projectile on its targets at different incident angles were performed. The internal energy and the material density obtained from the numerical simulations were then used to calculate the ionization degree and the electron temperature. Based on a self-developed 2D smooth particle hydrodynamic (SPH) code and the theoretical model, the plasmas generated by 6 hypervelocity impacts were directly simulated and their total charges were calculated. The numerical results are in good agreements with the experimental results as well as the empirical formulas, demonstrating that the theoretical model is justified by the AUTODYN 3D and self-developed 2D SPH simulations and applicable to predict HVIGPs. The study is of significance for astrophysical and cosmonautic researches and safety.

  10. Hyper-velocity impact risk assessment study for LOFT

    NASA Astrophysics Data System (ADS)

    Perinati, Emanuele

    Within the ESA Cosmic Vision programme, the Large Observatory For x-ray Timing (LOFT) mission is one of the candidates for the M3 slot opportunity. LOFT is an x-ray (2-30 keV) experiment with two instruments on-board: the Large Area Detector (LAD) and the Wide Field Monitor (WFM). Both are based on Silicon Drift Detectors (SDDs). Due to the design of the instrumental configuration, hyper-velocity impacts of micrometeoroids and orbital debris represent a significant hazard factor. During the three-year assessment phase of LOFT, we performed experimental test campaigns at the MPIK Van de Graaff accelerator to measure the degradation of LOFT SDD prototypes induced by hyper-velocity impacts. For the WFM, to mitigate the impact risk we designed and tested at the TUM plasma accelerator a compact double-wall shield using thin (~10 micron) foils of Kapton and Polypropylene, capable to effectively stop hyper-velocity particles up to 70 micron in size, in a remarkable agreement with simulations performed in ESABASE2. We present the results of these activities in the context of LOFT, and brievly discuss the potential applicability of the SDD as a debris detector.

  11. Orbiter Window Hypervelocity Impact Strength Evaluation

    NASA Technical Reports Server (NTRS)

    Estes, Lynda R.

    2011-01-01

    When the Space Shuttle Orbiter incurs damage on its windowpane during flight from particles traveling at hypervelocity speeds, it produces a distinctive damage that reduces the overall strength of the pane. This damage has the potential to increase the risk associated with a safe return to Earth. Engineers at Boeing and NASA/JSC are called to Mission Control to evaluate the damage and provide an assessment on the risk to the crew. Historically, damages like these were categorized as "accepted risk" associated with manned spaceflight, and as long as the glass was intact, engineers gave a "go ahead" for entry for the Orbiter. Since the Columbia accident, managers have given more scrutiny to these assessments, and this has caused the Orbiter window engineers to capitalize on new methods of assessments for these damages. This presentation will describe the original methodology that was used to asses the damages, and introduce a philosophy new to the Shuttle program for assessing structural damage, reliability/risk-based engineering. The presentation will also present a new, recently adopted method for assessing the damage and providing management with a reasonable assessment on the realities of the risk to the crew and vehicle for return.

  12. Axial focusing of energy from a hypervelocity impact on earth

    SciTech Connect

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  13. Hypervelocity impact damage tolerance of fused silica glass

    NASA Technical Reports Server (NTRS)

    Edelstein, K. S.

    1992-01-01

    A test program was conducted at the NASA/Johnson Space Center (JSC) concerning hypervelocity impact damage in fused silica glass. The objectives of this test program were: to expand the penetration equation data base in the velocity range between 2 and 8 km/s; to determine how much strength remains in a glass pane that has sustained known impact damage; and to develop a relationship between crater measurements and residual strength predictions that can be utilized in the Space Shuttle and Space Station programs. The results and conclusions of the residual strength testing are discussed below. Detailed discussion of the penetration equation studies will follow in future presentations.

  14. Survivability of bacteria ejected from icy surfaces after hypervelocity impact.

    PubMed

    Burchell, Mark J; Galloway, James A; Bunch, Alan W; Brandão, Pedro F B

    2003-02-01

    Both the Saturnian and Jovian systems contain satellites with icy surfaces. If life exists on any of these icy bodies (in putative subsurface oceans for example) then the possibility exists for transfer of life from icy body to icy body. This is an application of the idea of Panspermia, wherein life migrates naturally through space. A possible mechanism would be that life, here taken as bacteria, could become frozen in the icy surface of one body. If a high-speed impact occurred on that surface, ejecta containing the bacteria could be thrown into space. It could then migrate around the local region of space until it arrived at a second icy body in another high-speed impact. In this paper we consider some of the necessary steps for such a process to occur, concentrating on the ejection of ice bearing bacteria in the initial impact, and on what happens when bacteria laden projectiles hit an icy surface. Laboratory experiments using high-speed impacts with a light gas gun show that obtaining icy ejecta with viable bacterial loads is straightforward. In addition to demonstrating the viability of the bacteria carried on the ejecta, we have also measured the angular and size distribution of the ejecta produced in hypervelocity impacts on ice. We have however been unsuccessful at transferring viable bacteria to icy surfaces from bacteria laden projectiles impacting at hypervelocities. PMID:12967273

  15. PVDF gauge characterization of hypervelocity-impact-generated debris clouds

    SciTech Connect

    Boslough, M.B.; Chhabildas, L.C.; Reinhart, W.D.; Hall, C.A.; Miller, J.M.; Hickman, R.; Mullin, S.A.; Littlefield, D.L.

    1993-08-01

    We have used PVDF gauges to determine time-resolved stresses resulting from interaction between hypervelocity-impact-generated debris clouds and various target gauge blocks. Debris clouds were generated from three different impact configurations: (1) steel spheres impacting steel bumper sheets at 4.5 to 6.0 km/s, (2) aluminum inhibited shaped-charge jets impacting aluminum bumper sheets at 11.4 km/s, and (3) titanium disks impacting titanium bumper sheets at 7.6 to 10.1 km/s. Additional data were collected from the various experiments using flash X-ray radiography, pulsed laser photography, impact flash measurements, time-resolved strain gauge measurements, and velocity interferometry (VISAR). Data from these various techniques are in general agreement with one another and with hydrocode predictions, and provide a quantitative and comprehensive picture of impact-generated debris clouds.

  16. Survival of fossils under extreme shocks induced by hypervelocity impacts

    PubMed Central

    Burchell, M. J.; McDermott, K. H.; Price, M. C.; Yolland, L. J.

    2014-01-01

    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s−1, corresponding to mean peak pressures of 0.2–19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon. PMID:25071234

  17. Survival of fossils under extreme shocks induced by hypervelocity impacts.

    PubMed

    Burchell, M J; McDermott, K H; Price, M C; Yolland, L J

    2014-08-28

    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s(-1), corresponding to mean peak pressures of 0.2-19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon. PMID:25071234

  18. Ejecta from Hypervelocity Dust Impacts Based on Light Flash Measurements

    NASA Astrophysics Data System (ADS)

    Drake, Keith; Sternovsky, Z.; Horányi, M.; Kempf, S.; Srama, R.

    2013-10-01

    Ejecta from hypervelocity dust impacts have been shown to depend on the impinging particles’ velocity, mass, composition, etc. (J. Friichtenicht 1965, G. Eichhorn 1976). Ejecta is thought to be responsible for developing rings and dusty atmospheres of moons throughout the solar system. In order for rings to be produced, dust velocities must be greater than the moon’s escape speed. To understand the dust impact yield; impact ejecta parameters (velocities, masses, angular distributions) must be well understood. Laboratory experiments provide direct information about the ejecta production rates and impactor fluxes. Using hypervelocity (1-60km/s) iron dust at the University of Colorado dust accelerator in Boulder, Colorado we measured the time characteristics and intensities of light flashes produced on a quartz disc from primary and secondary impacts. The flashes were measured with a photomultiplier tube at varying distances and angles. By analyzing the light flashes produced by such impacts we show that this method is a viable technique for measuring these parameters. These measurements provide detailed information about the secondary mass and velocity profiles, leading to insights into the formation of dusty rings and atmospheres.

  19. Hypervelocity Impact Test Results for a Metallic Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Karr, Katherine L.; Poteet, Carl C.; Blosser, Max L.

    2003-01-01

    Hypervelocity impact tests have been performed on specimens representing metallic thermal protection systems (TPS) developed at NASA Langley Research Center for use on next-generation reusable launch vehicles (RLV). The majority of the specimens tested consists of a foil gauge exterior honeycomb panel, composed of either Inconel 617 or Ti-6Al-4V, backed with 2.0 in. of fibrous insulation and a final Ti-6Al-4V foil layer. Other tested specimens include titanium multi-wall sandwich coupons as well as TPS using a second honeycomb sandwich in place of the foil backing. Hypervelocity impact tests were performed at the NASA Marshall Space Flight Center Orbital Debris Simulation Facility. An improved test fixture was designed and fabricated to hold specimens firmly in place during impact. Projectile diameter, honeycomb sandwich material, honeycomb sandwich facesheet thickness, and honeycomb core cell size were examined to determine the influence of TPS configuration on the level of protection provided to the substructure (crew, cabin, fuel tank, etc.) against micrometeoroid or orbit debris impacts. Pictures and descriptions of the damage to each specimen are included.

  20. Optimum structure of Whipple shield against hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  1. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Technical Reports Server (NTRS)

    Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather

    2015-01-01

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  2. Hyper-velocity impact experiments with electrostatic dust accelerators

    NASA Astrophysics Data System (ADS)

    Mocker, Anna; Aust, Thomas; Bugiel, Sebastian; Hillier, Jonathan; Hornung, Klaus; Li, Yan-Wei; Strack, Heiko; Ralf, Srama

    2015-06-01

    Hypervelocity impacts (HVI) of micrometer-sized particles play an important role in a variety of fields such as the investigation of matter at extreme pressures and temperatures, shock waves in solid bodies, planetology and cosmic dust. The physical phenomena occurring upon impact are fragmentation and cratering, shock waves, the production of neutral and ionized gas, and light flashes. Advanced analysis techniques promise new insights into short time-scale high-pressure states of matter, requiring the production of high speed projectiles. Electrostatic accelerators act as a source of micrometer and sub-micrometer particles as projectiles for HVI experiments. This paper describes an HVI facility, capable of accelerating particles to over 100 km/s, currently located at the Max Planck Institute for Nuclear Physics in Heidelberg, together with planned improvements. The facility is about to be relocated to the University of Stuttgart. This is an opportunity to enhance the facility to meet the requirements of future experimental campaigns, necessary to better understand the micrometeoroid hypervelocity impact process and develop new in situ dust experiments. We will present the design of the new facility and the planned enhancements, including new diagnostic apparatus.

  3. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    NASA Technical Reports Server (NTRS)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  4. Survivability to Hypervelocity Impacts of Electrodynamic Tape Tethers for Deorbiting Spacecraft in LEO

    NASA Astrophysics Data System (ADS)

    Francesconi, A.; Giacomuzzo, C.; Lorenzini, E. C.

    2013-08-01

    This paper reports the results of 16 hypervelocity impact experiments on a composite flat electrodynamic tether for LEO spacecraft end-of-life deorbiting. The system is being developed within the EU FP7 BETs program. Impact tests were carried out at CISAS impact facility, with the aim of deriving failure equations that include the impact angle dependence up to grazing incidence. Experiments were realised with 1.5 and 2.3 mm aluminium spheres, at velocities between 3 and 5 km/s and impact angle from 0° to 90° from the tape normal. After a preliminary post-impact inspection of the target, the damage extension on the tape was evaluated using an automatic image processing technique. Ballistic limit equations were developed in the experimental range using a procedure that allows to estimate the uncertainty in the failure predictions starting from the measurement of the damage area. Experiments showed that the impact damage is very close to the projectile size in case of normal impact, while it increases significantly at highly oblique impact angles.

  5. Investigation on plasma generated during hypervelocity impact at different impact velocities and angles

    SciTech Connect

    Song, Weidong Lv, Yangtao; Wang, Cheng; Li, Jianqiao

    2015-12-15

    A 3D Smoothed Particle Hydrodynamics code was developed to investigate plasma generation by considering a chemical reaction process in hypervelocity impacts of an aluminum projectile on an aluminum target. The chemical reaction process was described by the reaction rate based on the Arrhenius equation and used to calculate the plasma generation during the impact simulation. The predicted result was verified by empirical formulas and a new empirical formula was proposed based on the comparisons and analyses. The influence of the impact angle was discussed for different impact velocities. Then, the application of both the new and original empirical formulas for protection design from plasma generated by hypervelocity impact was discussed, which demonstrated that the code and model were useful in the prediction of hypervelocity impacts on spacecraft.

  6. Investigation on plasma generated during hypervelocity impact at different impact velocities and angles

    NASA Astrophysics Data System (ADS)

    Song, Weidong; Lv, Yangtao; Wang, Cheng; Li, Jianqiao

    2015-12-01

    A 3D Smoothed Particle Hydrodynamics code was developed to investigate plasma generation by considering a chemical reaction process in hypervelocity impacts of an aluminum projectile on an aluminum target. The chemical reaction process was described by the reaction rate based on the Arrhenius equation and used to calculate the plasma generation during the impact simulation. The predicted result was verified by empirical formulas and a new empirical formula was proposed based on the comparisons and analyses. The influence of the impact angle was discussed for different impact velocities. Then, the application of both the new and original empirical formulas for protection design from plasma generated by hypervelocity impact was discussed, which demonstrated that the code and model were useful in the prediction of hypervelocity impacts on spacecraft.

  7. Experimental Study of Spacecraft Material Ejected upon Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Francesconi, A.; Giacomuzzo, C.; Barilaro, L.; Segato, E.; Sansone, F.

    2013-08-01

    Twenty-eight hypervelocity impact experiments were carried out at CISAS impact facility, with the aim of assessing the amount of ejecta from three different targets representative of spacecraft materials, i.e. simple aluminum-alloy plates, silicon solar cells and simple aluminum-alloy plates covered by MLI blankets. Projectiles having different size (1, 1.5 and 2.3 mm diameter) were launched at speed ranging from 4 to 5.5 km/s and impact angle from 0° to 80° (the impact angle dependence was evaluated for simple aluminium targets only). Experiments pointed out that the number of ejecta produced after HVI is significantly high (order of thousands). Moreover, it was shown that brittle materials produce more fragments than ductile ones, but the environment pollution and the damage potential of particles coming from metals are much more critical, since large and heavy fragments are prevalent in this case.

  8. Survival of seeds in hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Jerling, Aaron; Burchell, Mark J.; Tepfer, David

    2008-10-01

    Panspermia (‘seeds everywhere’) postulates that life naturally migrates through space. Laboratory studies of Panspermia often examine the survival of Earth's species under the conditions thought to occur during transfer through space. Much of this research has centred on bacteria, but here we consider seeds themselves. We simulated the extreme accelerations necessary for their hypothetical ejection from a planetary surface and the impacts associated with their arrival on another planet. Seeds of tobacco, alfalfa and cress were fired into water at speeds in the range 1 3 km s-1, corresponding to impact shock pressures of circa 0.24 2.4 GPa. No seeds remained intact and able to germinate, even at the lowest speeds. Although fragmentation occurred, even at 3 km s-1 the size of some of the fragments was about 25% that of the seeds. Thus, whilst the seeds themselves did not survive extreme shocks, a substantial fraction of their mass did and might successfully deliver complex organic materials after impact. These results are discussed with respect to ancient Panspermia and the potential of contemporary impacts to eject living organisms into space.

  9. Hypervelocity impact response of honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Schonberg, William; Schäfer, Frank; Putzar, Robin

    2010-02-01

    Man-made orbital poses a serious threat to spacecraft that are launched to operate in Earth orbit because it can strike such spacecraft at very high velocities and consequently damage mission-critical systems. This paper describes the findings of a study whose objective was to develop a system of empirical equations that can be used to predict the trajectories and spread of the debris clouds that exit the rear facesheet following a high speed perforating impact of a honeycomb sandwich panel (HC/SP). These equations are based on a database containing the results of nearly 400 tests from 13 previously published papers and reports. Overall the correlation coefficient values for the various regression equations obtained are fairly reasonable, and range from near 60% to well above 90%. This indicates that the chosen forms of the equations are a good fit to the data, and that they are capable of picking up most of the variations in the data that result from changes in test conditions. These equations can now be used to estimate the amount of mass in a debris cloud if an HC/SP is perforated by a high speed impact, where this mass will travel, and what spacecraft components will be impacted by it. This information can then be fed into a risk assessment code to calculate the probability of spacecraft failure under a prescribed set of impact conditions.

  10. Hypervelocity Impact (HVI). Volume 5; WLE High Fidelity Specimen Fg(RCC)-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-1 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  11. Hypervelocity Impact (HVI). Volume 3; WLE Small-Scale Fiberglass Panel Flat Target C-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-1 was to study hypervelocity impacts on the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  12. Hypervelocity Impact (HVI). Volume 7; WLE High Fidelity Specimen RCC16R

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target RCC16R was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  13. Hypervelocity Impact (HVI). Volume 6; WLE High Fidelity Specimen Fg(RCC)-2

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target Fg(RCC)-2 was to study hypervelocity impacts through the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  14. Subsurface damage from oblique impacts into low-impedance layers

    NASA Astrophysics Data System (ADS)

    Stickle, A. M.; Schultz, P. H.

    2012-07-01

    Layered planetary surfaces occur ubiquitously in the solar system, where sedimentary sequences or icy layers overlay crystalline bedrock. Previous experimental studies investigated how the presence of weak layer overlying a strong basement affects crater morphology, subsurface damage and soft-sediment compression. Numerical studies generally focus on the final morphology as a function of thicknesses and burial depths of weak layers. In field studies of impact craters, the shock state of minerals is a key metric. Here, we evaluate the effect of a surficial low-impedance layer on peak pressure magnitudes and consequent damage extent in the competent substrate. Laboratory experiments coupled with 3D CTH models of oblique (30° from horizontal) hypervelocity impacts at laboratory and planetary scales show that surface layers with a thickness on the order of the projectile diameter shield the underlying surface and absorb/scatter ˜70% of the impact energy. Numerical simulations reveal that surficial layers reduce peak pressure magnitudes within the subsurface by ˜60-70%, while damage in the substrate is due to shear failure. Sedimentary layers are more efficient shields than icy layers, but both reduce the extent of subsurface damage and the resulting shock levels recorded by minerals. These results indicate that a thin surficial low impedance layer mitigates the expression of shocked minerals in the substrate even when a structural response is still observed.

  15. Hypervelocity impact effects on solar cells

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    One of the space hazards of concern is the problem of natural matter and space debris impacting spacecraft. In addition to mechanical damage, impact velocities greater than 5 km/sec can produce shock induced ionization effects with resultant surface charging and complex chemical interactions. The upper limit of the velocity distribution for these particles is on the order of 70 km/sec. The second source of particulate matter is due to the presence of man and the machinery needed to place satellites in orbit. This 'man made' component of the space debris consists of waste, rocket exhaust, and debris caused by satellite break-up. Most of the particles are small. However as the size increases, debris purposefully thrown overboard such as garbage and human waste, combined with paint chips, plastic, wire fragments, bolts, etc., become formidable hazards which completely dominate the distribution function for some orbits. These larger fragments can produce penetration and spalling of the thick metallic structures associated with spacecraft. The particles most often encountered are aluminum oxide, associated with fuel residue, and paint chips. These debris types can have a wide range of particle sizes. It has been stated that the design of spacecraft will have to take the debris evolution into account and provide additional suitable armor for key components in the near future. The purpose of this work was to subject samples from solar power arrays, one of the key components of any spacecraft, to a debris flux typical of what might be found in space, and measure the degradation of the power panels after impact.

  16. Physics of debris clouds from hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Zee, Ralph

    1993-01-01

    The protection scheme developed for long duration space platforms relies primarily upon placing thin metal plates or 'bumpers' around flight critical components. The effectiveness of this system is highly dependent upon its ability to break up and redistribute the momentum of any particle which might otherwise strike the outer surface of the spacecraft. Therefore it is of critical importance to design the bumpers such that maximum dispersion of momentum is achieved. This report is devoted to an in-depth study into the design and development of a laboratory instrument which would permit the in-situ monitoring of the momentum distribution as the impact event occurs. A series of four designs were developed, constructed and tested culminating with the working instrument which is currently in use. Each design was individually tested using the Space Environmental Effects Facility (SEEF) at the Marshall Space Flight Center in Huntsville, Alabama. Along with the development of the device, an experimental procedure was developed to assist in the investigation of various bumper materials and designs at the SEEF. Preliminary results were used to compute data which otherwise were not experimentally obtainable. These results were shown to be in relative agreement with previously obtained values derived through other methods. The results of this investigation indicated that momentum distribution could in fact be measured in-situ as the impact event occurred thus giving a more accurate determination of the effects of experimental parameters on the momentum spread. Data produced by the instrument indicated a Gaussian-type momentum distribution. A second apparatus was developed and it was placed before the shield in the line of travel utilized a plate to collect impact debris scattered backwards. This plate had a passage hole in the center to allow the particle to travel through it and impact the proposed shield material. Applying the law of conservation of angular momentum a

  17. Time-resolved temperature measurements in hypervelocity dust impact

    NASA Astrophysics Data System (ADS)

    Collette, A.; Drake, K.; Mocker, A.; Sternovsky, Z.; Munsat, T.; Horanyi, M.

    2013-12-01

    We present time-resolved temperature measurements of the debris cloud generated by hypervelocity dust impact. Micron- and submicron-sized iron grains were accelerated to speeds of 1-32 km/s using the 3 MV electrostatic dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies, and impacted on a tungsten target. The resulting light flashes were analyzed by an array of photomultiplier tubes equipped with narrowband interference filters to determine the blackbody temperature and radiant power of the impact-generated cloud as a function of time. We find time-averaged temperatures in the range of 2500-5000 K, increasing with velocity over the range studied; initial temperatures up to approximately twice the time averaged temperature persisting on short timescales (<1μs) compared to the 20μs duration of the flash; and that the temperature falls in a manner consistent with radiative cooling.

  18. Theoretical model for plasma expansion generated by hypervelocity impact

    SciTech Connect

    Ju, Yuanyuan; Zhang, Qingming Zhang, Dongjiang; Long, Renrong; Chen, Li; Huang, Fenglei; Gong, Zizheng

    2014-09-15

    The hypervelocity impact experiments of spherical LY12 aluminum projectile diameter of 6.4 mm on LY12 aluminum target thickness of 23 mm have been conducted using a two-stage light gas gun. The impact velocity of the projectile is 5.2, 5.7, and 6.3 km/s, respectively. The experimental results show that the plasma phase transition appears under the current experiment conditions, and the plasma expansion consists of accumulation, equilibrium, and attenuation. The plasma characteristic parameters decrease as the plasma expands outward and are proportional with the third power of the impact velocity, i.e., (T{sub e}, n{sub e}) ∝ v{sub p}{sup 3}. Based on the experimental results, a theoretical model on the plasma expansion is developed and the theoretical results are consistent with the experimental data.

  19. Thermodynamics analysis of aluminum plasma transition induced by hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiang; Zhang, Qingming; Ju, Yuanyuan

    2016-02-01

    The production of plasmas during hypervelocity meteoroid and space debris impact has been proposed to explain the presence of paleomagnetic fields on the lunar surface, and also the electromagnetic damage to spacecraft electronic devices. Based on Gibbs' ensemble theory, we deduce Saha equation of state and figure out the ionization degree; further, by using the derivation of Clausius-Clapeyron equation, we obtain the entropy increase and latent heat of plasma transition after vaporization; finally, we analyze the conversion efficiency of kinetic energy into internal energy, present two key contradictions, and revise them with the entropy increase, latent heat, and conversion efficiency. We analyze the aluminum plasma transition from multiple perspectives of the equation of state, latent heat of phase transition, and conversion efficiency and propose the internal energy and impact velocity criterion, based on the laws of thermodynamics.

  20. Multi-Dimensional Hydrocode Analyses of Penetrating Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Bessette, G. C.; Lawrence, R. J.; Chhabildas, L. C.; Reinhart, W. D.; Thornhill, T. F.; Saul, W. V.

    2004-07-01

    The Eulerian hydrocode, CTH, has been used to study the interaction of hypervelocity flyer plates with thin targets at velocities from 6 to 11 km/s. These penetrating impacts produce debris clouds that are subsequently allowed to stagnate against downstream witness plates. Velocity histories from this latter plate are used to infer the evolution and propagation of the debris cloud. This analysis, which is a companion to a parallel experimental effort, examined both numerical and physics-based issues. We conclude that numerical resolution and convergence are important in ways we had not anticipated. The calculated release from the extreme states generated by the initial impact shows discrepancies with related experimental observations, and indicates that even for well-known materials (e.g., aluminum), high-temperature failure criteria are not well understood, and that non-equilibrium or rate-dependent equations of state may be influencing the results.

  1. Multi-dimensional hydrocode analyses of penetrating hypervelocity impacts.

    SciTech Connect

    Saul, W. Venner; Reinhart, William Dodd; Thornhill, Tom Finley, III; Lawrence, Raymond Jeffery Jr.; Chhabildas, Lalit Chandra; Bessette, Gregory Carl

    2003-08-01

    The Eulerian hydrocode, CTH, has been used to study the interaction of hypervelocity flyer plates with thin targets at velocities from 6 to 11 km/s. These penetrating impacts produce debris clouds that are subsequently allowed to stagnate against downstream witness plates. Velocity histories from this latter plate are used to infer the evolution and propagation of the debris cloud. This analysis, which is a companion to a parallel experimental effort, examined both numerical and physics-based issues. We conclude that numerical resolution and convergence are important in ways we had not anticipated. The calculated release from the extreme states generated by the initial impact shows discrepancies with related experimental observations, and indicates that even for well-known materials (e.g., aluminum), high-temperature failure criteria are not well understood, and that non-equilibrium or rate-dependent equations of state may be influencing the results.

  2. An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith

    NASA Technical Reports Server (NTRS)

    Swift, W. R.; Moser, D. E.; Suggs, R. M.; Cooke, W. J.

    2011-01-01

    The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, eta, is a unique function of velocity with an extremely large variation in the laboratory range of under 6 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from both laboratory impacts and from lunar impact observations. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors. Keywords hypervelocity impact impact flash luminous efficiency lunar impact meteoroid 1

  3. Do oblique impacts produce Martian meteorites?

    NASA Astrophysics Data System (ADS)

    Nyquist, L. E.

    Geochronological and geochemical characteristics of several achondritic meteorites match those expected of Martian rocks. Several authors have suggested that these meteorites might have originated on Mars, but no satisfactory explanation has been given of how they may have been ejected from the Martian surface. It is suggested that the oblique impact of large meteoroids may produce ejecta which is entrained with the ricocheting projectile and accelerated to velocities in excess of Martian escape velocity. This suggestion is based on earlier experimental studies of oblique impacts and on the observation of several large Martian craters with the characteristic 'butterfly' ejecta pattern produced by low angle impacts. Several acceleration mechanisms may act on the Martian ejecta. The considerations suggest that a Martian origin of the shergottite meteorites is dynamically possible.

  4. Study of hypervelocity meteoroid impact on orbital space stations

    NASA Technical Reports Server (NTRS)

    Leimbach, K. R.; Prozan, R. J.

    1973-01-01

    Structural damage resulting in hypervelocity impact of a meteorite on a spacecraft is discussed. Of particular interest is the backside spallation caused by such a collision. To treat this phenomenon two numerical schemes were developed in the course of this study to compute the elastic-plastic flow fracture of a solid. The numerical schemes are a five-point finite difference scheme and a four-node finite element scheme. The four-node finite element scheme proved to be less sensitive to the type of boundary conditions and loadings. Although further development work is needed to improve the program versatility (generalization of the network topology, secondary storage for large systems, improving of the coding to reduce the run time, etc.), the basic framework is provided for a utilitarian computer program which may be used in a wide variety of situations. Analytic results showing the program output are given for several test cases.

  5. Hypervelocity Impact Testing of Space Station Freedom Solar Cells

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-01-01

    Solar array coupons designed for the Space Station Freedom electrical power system were subjected to hypervelocity impacts using the HYPER facility in the Space Power Institute at Auburn University and the Meteoroid/Orbital Debris Simulation Facility in the Materials and Processes Laboratory at the NASA Marshall Space Flight Center. At Auburn, the solar cells and array blanket materials received several hundred impacts from particles in the micron to 100 micron range with velocities typically ranging from 4.5 to 10.5 km/s. This fluence of particles greatly exceeds what the actual components will experience in low earth orbit. These impacts damaged less than one percent of total area of the solar cells and most of the damage was limited to the cover glass. There was no measurable loss of electrical performance. Impacts on the array blanket materials produced even less damage and the blanket materials proved to be an effective shield for the back surface of the solar cells. Using the light gas gun at MSFC, one cell of a four cell coupon was impacted by a 1/4 inch spherical aluminum projectile with a velocity of about 7 km/s. The impact created a neat hole about 3/8 inch in diameter. The cell and coupon were still functional after impact.

  6. The Deep Impact oblique impact cratering experiment

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.; Eberhardy, Clara A.; Ernst, Carolyn M.; A'Hearn, Michael F.; Sunshine, Jessica M.; Lisse, Carey M.

    The Deep Impact probe collided with 9P Tempel 1 at an angle of about 30° from the horizontal. This impact angle produced an evolving ejecta flow field very similar to much smaller scale oblique-impact experiments in porous particulate targets in the laboratory. Similar features and phenomena include a decoupled vapor/dust plume at the earliest times, a pronounced downrange bias of the ejecta, an uprange “zone of avoidance” (ZoA), heart-shaped ejecta ray system (cardioid pattern), and a conical (but asymmetric) ejecta curtain. Departures from nominal cratering evolution, however, provide clues on the nature of the impact target. These departures include: fainter than expected flash at first contact, delayed emergence of the self-luminous vapor/dust plume, uprange-directed plume, narrow early-time uprange ray followed by a late-stage uprange plume, persistence of ejecta asymmetries (and the uprange ZoA) throughout the approach sequence, emergence of a downrange ZoA at late times, detachment of uprange curved rays, very long lasting non-radial ejecta rays, and high-angle ejecta plume lasting over the entire encounter. The first second of crater formation most closely resembles the consequences of a highly porous target, while later evolution indicates that the target may be layered as well. Experiments also reveal that impacts into highly porous targets produce a vapor/dust plume directed back up the incoming trajectory. This uprange plume is attributed to cavitation within a narrow penetration funnel. The observed lateral expansion speed of the initial vapor plume downrange provides an estimate for the total vaporized mass equal to ˜5m (projectile masses) of water ice or 6m of CO2. The downrange plume speed is consistent with the gas expansion added to the downrange horizontal component of the DI probe. Based on high-speed spectroscopy of experimental impacts, the observed delay in brightening of the DI plume may be the result of delayed condensation of carbon

  7. The Deep Impact oblique impact cratering experiment

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.; Eberhardy, Clara A.; Ernst, Carolyn M.; A'Hearn, Michael F.; Sunshine, Jessica M.; Lisse, Carey M.

    2007-10-01

    The Deep Impact probe collided with 9P Tempel 1 at an angle of about 30° from the horizontal. This impact angle produced an evolving ejecta flow field very similar to much smaller scale oblique-impact experiments in porous particulate targets in the laboratory. Similar features and phenomena include a decoupled vapor/dust plume at the earliest times, a pronounced downrange bias of the ejecta, an uprange "zone of avoidance" (ZoA), heart-shaped ejecta ray system (cardioid pattern), and a conical (but asymmetric) ejecta curtain. Departures from nominal cratering evolution, however, provide clues on the nature of the impact target. These departures include: fainter than expected flash at first contact, delayed emergence of the self-luminous vapor/dust plume, uprange-directed plume, narrow early-time uprange ray followed by a late-stage uprange plume, persistence of ejecta asymmetries (and the uprange ZoA) throughout the approach sequence, emergence of a downrange ZoA at late times, detachment of uprange curved rays, very long lasting non-radial ejecta rays, and high-angle ejecta plume lasting over the entire encounter. The first second of crater formation most closely resembles the consequences of a highly porous target, while later evolution indicates that the target may be layered as well. Experiments also reveal that impacts into highly porous targets produce a vapor/dust plume directed back up the incoming trajectory. This uprange plume is attributed to cavitation within a narrow penetration funnel. The observed lateral expansion speed of the initial vapor plume downrange provides an estimate for the total vaporized mass equal to ˜5m (projectile masses) of water ice or 6m of CO 2. The downrange plume speed is consistent with the gas expansion added to the downrange horizontal component of the DI probe. Based on high-speed spectroscopy of experimental impacts, the observed delay in brightening of the DI plume may be the result of delayed condensation of carbon, in

  8. Real-Time Observation of Early Stage Damage During Hypervelocity Impacts into Basalt Targets

    NASA Astrophysics Data System (ADS)

    Kimberley, J.; Ramesh, K. T.

    2012-03-01

    Hypervelocity impacts were conducted on basalt targets bonded to glass allowing for the early stages of damage accumulation to be observed in real time. Results show that significant damage accumulates before the arrival of tensile wave reflections.

  9. Jet ejecta mass upon oblique impact

    NASA Technical Reports Server (NTRS)

    Yang, W.; Ahrens, T. J.; Miller, G. H.; Petach, M. B.

    1991-01-01

    Theoretical models in the jetting regime for symmetric and asymmetric impact of thin plates predict the mass and velocity of jetted material upon oblique impact. However, experimental constraints on the amount of material which form jets upon oblique impact are not known. A series of preliminary experiments were conducted in which tungsten (W) flyer plates at speeds of 1.5 to 2.0 km/s were obliquely impacted into carbon targets at 30 deg in the regime of jetting, yielding radiation temperatures in the about 3200 K range. Both framing-camera and flash X-ray imaging were conducted. Broad cm-sized craters induced by jet ejecta on 2024 Al witness plates were used to infer jet mass. We infer, from measured witness plate crater volumes, that jet masses in the range of 0.01 to 0.06 g are produced by a 32 mm diameter, 6 mm thick W impactor. This is about one to two orders of magnitude less than those calculated from present theoretical models. In contrast, in refractory material experiments, the mass of gabbro ejecta trapped in styrofoam is 0.52 g, which is similar to that calculated.

  10. Hypervelocity Impact Test Facility: A gun for hire

    NASA Technical Reports Server (NTRS)

    Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.

    1994-01-01

    An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.

  11. Correlation between speed and size for ejecta from hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Sachse, M.; Schmidt, J.; Kempf, S.; Spahn, F.

    2015-11-01

    Ejecta created in hypervelocity impacts of micrometeoroids on atmosphereless bodies are an efficient source for circumplanetary and interplanetary dust. The impact erodes the target surface and releases material into space. The ejecta are typically micron sized and populate a dust cloud around the parent body, whose number density decreases with increasing distance from the target. Unbound particles escape and add to the planetary dust environment. Here we explore the influence of a correlation between the fragment size and the ejection speed, such that larger fragments are (on average) launched with lower speeds. This behavior is suggested by theoretical considerations and impact experiments. We find that such a correlation provides a dynamical filter that removes large ejecta from high altitudes. The effect is stronger for bigger ejecta and for more massive parent bodies. Our results suggest that large particles found in the circumplanetary and interplanetary dust environment either originate from impacts on smaller moons, impacts of unusually large or fast impactors, or an entirely different process of dust production.

  12. Oblique impacts: Catastrophic vs. protracted effects

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1988-01-01

    Proposed impacts as the cause of biologic catastrophes at the end of the Cretaceous and Eocene face several enigmas: protracted extinctions, even prior to the stratigraphic cosmogenic signature; widespread but non-uniform dispersal of the meteoritic component; absence of a crater of sufficient size; and evidence for massive intensive fires. Various hypotheses provide reasonable mechanisms for mass mortalities: global cooling by continental impact sites; global warming by oceanic impact sites; contrasting effects of asteroidal, cometary, and even multiple impacts; and stress on an already fragile global environment. Yet not every known large impact is associated with a major biologic catastrophe. An alternative is expanded: the consequences of an oblique impact. The most probable angle of impact is 45 deg with the probability for an impact at smaller angles decreasing: A vertical impact is as rare as a tangential impact with a 5 deg impact angle or less occurring only 8 percent of the time. Consequently a low-angle impact is a rare but probable event. Laboratory experiments at the NASA-Ames Vertical Gun Range reveal important information about cratering efficiency, impact vaporization, projectile dispersal, and phenomenology, thereby providing perspective for possible consequences of such an impact on both the Earth and Moon. Oblique impacts are rare but certain events through geologic time: A 5 deg impact by a 2 km-diameter impactor on the Earth would occur only once in about 18 my with a 10 km-diameter once in about 450 my. Major life extinctions beginning prior to the stratigraphic cosmogenic signature or protracted extinctions seemingly too long after the proposed event may not be evidence against an impact as a cause but evidence for a more complex but probable sequence of events.

  13. Study of Hypervelocity Projectile Impact on Thick Metal Plates

    SciTech Connect

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; Hixson, Robert S.; Becker, Steven; Pena, Michael T.; Jennings, Richard; Somasoundaram, Deepak; Matthes, Melissa; Daykin, Edward P.; Machorro, Eric

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments: Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.

  14. Study of hypervelocity projectile impact on thick metal plates

    DOE PAGESBeta

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; Hixson, Robert S.; Becker, Steven; Pena, Michael T.; Jennings, Richard; Somasoundaram, Deepak; Matthes, Melissa; Daykin, Edward P.; et al

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments:more » Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.« less

  15. Study of hypervelocity projectile impact on thick metal plates

    SciTech Connect

    Roy, Shawoon K.; Trabia, Mohamed; O’Toole, Brendan; Hixson, Robert S.; Becker, Steven; Pena, Michael T.; Jennings, Richard; Somasoundaram, Deepak; Matthes, Melissa; Daykin, Edward P.; Machorro, Eric

    2016-01-01

    Hypervelocity impacts generate extreme pressure and shock waves in impacted targets that undergo severe localized deformation within a few microseconds. These impact experiments pose unique challenges in terms of obtaining accurate measurements. Similarly, simulating these experiments is not straightforward. This paper proposed an approach to experimentally measure the velocity of the back surface of an A36 steel plate impacted by a projectile. All experiments used a combination of a two-stage light-gas gun and the photonic Doppler velocimetry (PDV) technique. The experimental data were used to benchmark and verify computational studies. Two different finite-element methods were used to simulate the experiments: Lagrangian-based smooth particle hydrodynamics (SPH) and Eulerian-based hydrocode. Both codes used the Johnson-Cook material model and the Mie-Grüneisen equation of state. Experiments and simulations were compared based on the physical damage area and the back surface velocity. Finally, the results of this study showed that the proposed simulation approaches could be used to reduce the need for expensive experiments.

  16. Modelling hypervelocity impacts into aluminum structures based on LDEF data

    NASA Technical Reports Server (NTRS)

    Coombs, C. R.; Atkinson, D. R.; Watts, A. J.; Wagner, J. R.; Allbrooks, M. K.; Hennessy, C. J.

    1993-01-01

    Realizing and understanding the effects of the near-Earth space environment on a spacecraft during its mission lifetime is becoming more important with the regeneration of America's space program. Included among these potential effects are the following: erosion and surface degradation due to atomic oxygen impingement; ultraviolet exposure embrittlement; and delamination, pitting, cratering, and ring formation due to micrometeoroid and debris impacts. These effects may occur synergistically and may alter the spacecraft materials enough to modify the resultant crater, star crack, and/or perforation. This study concentrates on modelling the effects of micrometeoroid and debris hypervelocity impacts into aluminum materials (6061-T6). Space debris exists in all sizes, and has the possibility of growing into a potentially catastrophic problem, particularly since self-collisions between particles can rapidly escalate the number of small impactors. We have examined the morphologies of the Long Duration Exposure Facility (LDEF) impact craters and the relationship between the observed impact damage on LDEF versus the existing models for both the natural (micrometeoroid) and manmade (debris) environments in order to better define these environments.

  17. High pressure composite tank behaviour under an hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Salome, Roland; Albouys, Vincent; Le Floch, Christian; Sornette, Didier; Vila, Jean Paul

    2001-10-01

    Space debris represent a threat to spacecraft in near earth orbits and protection against them is a key requirement for the Space Station. Thus, regulations are being issued in order to prevent new debris generation from a spacecraft which can be impacted by a debris. Due to their risk of burst, pressurized vessels are classified as critical components, and high pressure composite overwrapped vessels are considered as specially critical. Furthermore, the design of a protection device is closely depending of the behaviour of the vessel under impact. CNES has started a R&D action in order to characterize the behaviour of a high pressure composite vessel under an hypervelocity impact. This study is managed by EADS/Launch vehicles in collaboration with Nice Sciences University and INSA Toulouse. The pressure vessel considered is an over-wrapped carbon fibre on a titanium liner loaded with xenon or helium under high pressure (15 Mpa or 31 Mpa). In a first phase, the theoretical approach to predict the tank behaviour consists in a 2D and 3D simulation using a SPH code (Smoothed Particle Hydrodynamics). An experimental validation of the numerical model will be conducted in the future.

  18. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Paque, Julie M.; Becker, Luann; Vedder, James F.; Erlichman, Jozef

    1995-01-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH's) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH's were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). We also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  19. Detection of meteoroid hypervelocity impacts on the Cluster spacecraft

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Mann, Ingrid; Kero, Johan; De Spiegeleer, Alexandre; Hamrin, Maria; Norberg, Carol; Pitkanen, Timo; Pellinen-Wannberg, Asta

    2016-07-01

    There are several methods to measure the cosmic dust entering the Earth's atmosphere such as space-born dust detectors, meteor and HPLA radars, and optical imaging. One complementary method could be to use electric field instruments initially designed to measure electric waves. A plasma cloud generated by a hypervelocity dust impact on a spacecraft body can be detected by the electric field instruments commonly operated on the spacecraft. Since Earth-orbiting missions are generally not equipped with conventional dust detectors, the electric field instruments offer an alternative method to measure the Earth's dust environment. We present the first detection of dust impacts on one of the Earth-orbiting Cluster satellites recorded by the Wide-Band Data (WBD) instrument. We describe the concept of dust impact detection focused on specifics of the Cluster spacecraft and the WBD instrument and their influence on dust impact detection. The detected pulses are compared with theoretical shape based on the model of the recollection of plasma clouds electrons. The estimation of the size and the velocity of the impinging dust grains from the amplitude of the Cluster voltage pulses shown that such impacts can be generated by grains of radius of r = 0.1 μm impacting with the velocity v ˜100 km/s or by grains of radius r = 1 μm impacting with the velocity v ˜10 km/s. We discuss the sensitivity of this method for dust grain detection showing that grains of radius r = 0.01 μm can be detected when impacting with velocity v ˜300 km/s and grains of radius r = 10 μm with velocity v ˜1 km/s if the WBD instrument operates in the high gain level (75 dB).

  20. Hypervelocity impact survivability experiments for carbonaceous impactors, part 2

    SciTech Connect

    Bunch, T.E.; Paque, J.M.; Becker, L.; Vedder, J.F.; Erlichman, J. ||

    1995-02-01

    Hypervelocity impact experiments were performed to further test the survivability of carbonaceous impactors and to determine potential products that may have been synthesized during impact. Diamonds were launched by the Ames two-stage light gas gun into Al plate at velocities of 2.75 and 3.1 km sec(exp -1). FESEM imagery confirms that diamond fragments survived in both experiments. Earlier experiments found that diamonds were destroyed on impact above 4.3 km sec(exp -1). Thus, the upper stability limit for diamond on impact into Al, as determined from our experimental conditions, is between 3.1 and 4.3 km sec(exp -1). Particles of the carbonaceous chondrite Nogoya were also launched into Al at a velocity of 6.2 km sec (exp -1). Laser desorption (L (exp 2) MS) analyses of the impactor residues indicate that the lowest and highest mass polycyclic aromatic hydrocarbons (PAH`s) were largely destroyed on impact; those of intermediate mass (202-220 amu) remained at the same level or increased in abundance. In addition, alkyl-substituted homologs of the most abundant pre-impacted PAH`s were synthesized during impact. These results suggest that an unknown fraction of some organic compounds can survive low to moderate impact velocities and that synthesized products can be expected to form up to velocities of, at least, 6.5 km sec(exp -1). The authors also present examples of craters formed by a unique microparticle accelerator that could launch micron-sized particles of almost any coherent material at velocities up to approximately 15 km sec(exp -1). Many of the experiments have a direct bearing on the interpretation of LDEF craters.

  1. Ejection and Lofting of Dust from Hypervelocity Impacts on the Moon

    NASA Astrophysics Data System (ADS)

    Hermalyn, B.; Schultz, P. H.

    2011-12-01

    Hypervelocity impact events mobilize and redistribute fine-grained regolith dust across the surfaces of planetary bodies. The ejecta mass-velocity distribution controls the location and emplacement of these materials. The current flux of material falling on the moon is dominated by small bolides and should cause frequent impacts that eject dust at high speeds. For example, approximately 25 LCROSS-sized (~20-30m diameter) craters are statistically expected to be formed naturally on the moon during any given earth year. When scaled to lunar conditions, the high-speed component of ejecta from hypervelocity impacts can be lofted for significant periods of time (as evidenced by the LCROSS mission results, c.f., Schultz, et al., 2010, Colaprete, et al., 2010). Even at laboratory scales, ejecta can approach orbital velocities; the higher impact speeds and larger projectiles bombarding the lunar surface may permit a significant portion of material to be launched closer to escape velocity. When these ejecta return to the surface (or encounter local topography), they impact at hundreds of meters per second or faster, thereby "scouring" the surface with low mass oblique impacts. While these high-speed ejecta represent only a small fraction of the total ejected mass, the lofting and subsequent ballistic return of this dust has the highest mobilization potential and will be directly applicable to the upcoming LADEE mission. A suite of hypervelocity impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR). This study incorporates both canonical sand targets and air-fall pumice dust to simulate the mechanical properties of lunar regolith. The implementation of a Particle Tracking Velocimetry (PTV) technique permits non-intrusive measurement of the ejecta velocity distribution within the ejecta curtain by following the path of individual ejecta particles. The PTV system developed at the AVGR uses a series of high-speed cameras (ranging

  2. Debris area distribution of spacecraft under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lan, Sheng-wei; Liu, Sen; Li, Yi; Ke, Fa-wei; Huang, Jie

    2014-12-01

    Cross-sectional area is an important parameter for spacecraft breakup debris as it is the directly measured data in space observation. It is significant for observing and analysing the spacecraft breakup event to accurately modelling the area distribution of the breakup debris. In this paper, experimental study has been performed on debris area distribution characteristics of spacecraft under hypervelocity impact. The tests are carried out at the ballistic ranges of CARDC. Aluminium projectiles are launched to normally impact the simulated spacecrafts at about 3.0 km/s. The simulated spacecrafts are made up of aluminium plates, filled with some simulated electronics boxes, each of which was installed with a circuit board. "Soft-catch" devices are used to recover the breakup fragments. The test results show that: 1) the relationship between the cross-sectional area and the characteristic length of debris, which can be obtained in the logarithmic coordinates by linear fitting, represents the debris shape characteristic in a certain extent; 2) the area-to-mass ratios of fragments show normal distributions in the logarithmic coordinates; 3) debris made of different materials can be distinguished by different peaks on the distribution curves; 4) the area-to-mass ratio distributions can be expressed by a linear superimposition of several normal functions which represent the main materials of the spacecraft.

  3. Hypervelocity Impact (HVI). Volume 4; WLE Small-Scale Fiberglass Panel Flat Target C-2

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-2 was to study impacts through the reinforced carboncarbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  4. Induction Heating of Hypervelocity Impact Samples to 2500 Degrees Centigrade

    NASA Technical Reports Server (NTRS)

    Simmons, Joshua; Pardo, Art; Henderson, Don; Rodriguez, Karen

    2014-01-01

    The Remote Hypervelocity Test Laboratory (RHTL) at White Sands Test Facility (WSTF) was asked to heat samples up to 2500 degrees Centigrade (4532 degrees Fahrenheit) to simulate reentry scenarios of crafts where heated shields are impacted with single small particles ranging from 0.2 to 1.0 millimeters (.008 to.039 inches) of various materials. The team decided an electromagnetic induction (induction heater) was the best method to achieve and control the temperatures in a rapid manner. The samples consisted of three-dimensional carbon-carbon and two-dimensional carbon-phenolic, which are both electrically conductive. After several attempts the team was able to achieve over 2500 degrees Centigrade (4532 degrees Fahrenheit) in ambient atmosphere. When the system was moved to the target chamber and the vacuum system evacuated down to 250 millitorr, arcing occurred between the bus bars and tank, the feedthrough fittings that carried the coolant and current, and between the target sample and coil. To overcome this arcing, conformal coatings, room temperature vulcanization (RTV) silicone, and other non-conductive materials were used to isolate the electromagnetic fields.

  5. Structural Damage Prediction and Analysis for Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Elfer, Norman

    1995-01-01

    It is necessary to integrate a wide variety of technical disciplines to provide an analysis of structural damage to a spacecraft due to hypervelocity impact. There are many uncertainties, and more detailed investigation is warranted, in each technical discipline. However, a total picture of the debris and meteoroid hazard is required to support manned spaceflight in general, and the international Space Station in particular. In the performance of this contract, besides producing a handbook, research and development was conducted in several different areas. The contract was broken into six separate tasks. Each task objectives and accomplishments will be reviewed in the following sections. The Handbook and separate task reports are contained as attachments to the final report. The final section summarizes all of the recommendations coming out of this study. The analyses and comments are general design guidelines and not necessarily applicable to final Space Station designs since several configuration and detailed design changes were being made during the course of this contract. Rather, the analyses and comments may indicate either a point-in-time concept analysis, available test data, or desirable protection goals, not hindered by the design and operation constraints faced by Space Station designers.

  6. Measurement of Oblique Impact-generated Shear Waves

    NASA Technical Reports Server (NTRS)

    Dahl, J. M.; Schultz, P. H.

    2001-01-01

    Experimental strain measurements reveal that oblique impacts can generate shear waves with displacements as large as those in the P-wave. Large oblique impacts may thus be more efficient sources of surface disruption than vertical impacts. Additional information is contained in the original extended abstract.

  7. A Shock Physics Based Model of the Oblique Impact of a Thin Plate by a Spherical Projectile

    NASA Astrophysics Data System (ADS)

    Schonberg, William; Ebrahim, Ahmed

    1999-06-01

    All spacecraft are susceptible to high-speed impacts by pieces of orbital debris. The impacts of these particles, which can occur at speeds as high as 12 to 14 km/s, can damage flight-critical spacecraft systems. Therefore, the design of a spacecraft must take into account the effects of such impacts and must contain protective systems to insure occupant safety. Numerous investigations have been performed over the last 30 years to study the effectiveness of multi-wall structures in reducing the threat of high-speed particles. Dual-wall configurations were repeatedly shown to provide significant increases in protection against perforation by hypervelocity projectiles over equal-weight single- wall structures. Recent experimental investigations of high-speed impact phenomena have shown that the response of a dual-wall structure to an oblique impact is significantly different from its response to a normal impact. Unlike a normal impact, an oblique impact produces two, not one, inward travelling debris clouds. Additionally, an oblique impact can produce a tremendous amount of ricochet particles. This paper presents a shock physics-based model that can be used to determine the mass, velocity, and trajectory quantities that characterize the three debris clouds created in an oblique high-speed impact. The validity of the model is assessed by comparing its predictions against those of empirically- and numerically-based regression equations, and against high speed impact test data.

  8. Characterization of space station multilayer insulation damage due to hypervelocity space debris impact

    NASA Technical Reports Server (NTRS)

    Rule, William Keith

    1990-01-01

    Four main tasks were accomplished. The first three tasks were related to the goal of measuring the degradation of the insulating capabilities of Space Station multilayer insulation (MLI) due to simulated space debris impacts at hypervelocities. The last task was associated with critically reviewing a Boeing document on the fracture characteristics of the Space Station pressure wall when subjected to a simulated hypervelocity space debris impact. In Task 1, a thermal test procedure for impact damaged MLI specimens was written. In Task 2, damaged MLI specimens were prepared. In Task 3, a computer program was written to simulate MLI thermal tests. In Task 4, the author reviewed a Boeing document describing hypervelocity impact testing on biaxially stressed plates.

  9. Determining orbital particle parameters of impacts into germanium using morphology analysis and calibration data from hypervelocity impact experiments in the laboratory

    NASA Technical Reports Server (NTRS)

    Paul, Klaus G.

    1995-01-01

    This paper describes the work that is done at the Lehrstuhl fur Raumfahrttechnik (lrt) at the Technische Universitat Munchen to examine particle impacts into germanium surfaces which were flown on board the LDEF satellite. Besides the description of the processing of the samples, a brief overview of the particle launchers at our institute is given together with descriptions of impact morphology of high- and hypervelocity particles into germanium. Since germanium is a brittle, almost glass-like material, the impact morphology may also be interesting for anyone dealing with materials such as optics and solar cells. The main focus of our investigations is to learn about the impacting particle's properties, for example mass, velocity and direction. This is done by examining the morphology, various geometry parameters, crater obliqueness and crater volume.

  10. Improving Metallic Thermal Protection System Hypervelocity Impact Resistance Through Design of Experiments Approach

    NASA Technical Reports Server (NTRS)

    Poteet, Carl C.; Blosser, Max L.

    2001-01-01

    A design of experiments approach has been implemented using computational hypervelocity impact simulations to determine the most effective place to add mass to an existing metallic Thermal Protection System (TPS) to improve hypervelocity impact protection. Simulations were performed using axisymmetric models in CTH, a shock-physics code developed by Sandia National Laboratories, and validated by comparison with existing test data. The axisymmetric models were then used in a statistical sensitivity analysis to determine the influence of five design parameters on degree of hypervelocity particle dispersion. Several damage metrics were identified and evaluated. Damage metrics related to the extent of substructure damage were seen to produce misleading results, however damage metrics related to the degree of dispersion of the hypervelocity particle produced results that corresponded to physical intuition. Based on analysis of variance results it was concluded that the most effective way to increase hypervelocity impact resistance is to increase the thickness of the outer foil layer. Increasing the spacing between the outer surface and the substructure is also very effective at increasing dispersion.

  11. Do oblique impacts produce Martian meteorites

    NASA Astrophysics Data System (ADS)

    Nyquist, L. E.

    1983-11-01

    It is pointed out that several achondritic meteorites, classified as shergottites, nakhlites, and chassignites, have a number of unusual characteristics. Following the suggestion of Wood and Ashwal (1981) these meteorites are collectively referred to as SNC meteorites. The major element compositions of the SNC meteorites are, in general, distinct from those of other meteorites and lunar samples, and similar to certain terrestrial rocks. The geochemical and geochronological characteristics of the SNC meteorites strongly imply that their parent body was on the order of lunar size or larger and geologically active. Serious attention must be given to the hypothesis of a Martian origin of the SNC meteorites and to dynamic processes capable of delivering Martian meteorites to earth. In connection with the present investigation, it is suggested that oblique impacts of large meteoroids can produce ejecta which is entrained with the ricocheting projectile and accelerated to velocities in excess of Martian escape velocity.

  12. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    SciTech Connect

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effect at larger scales, higher impact velocities, or both.

  13. Hypervelocity impact induced arcing and Kapton pyrolization in a plasma environment

    NASA Astrophysics Data System (ADS)

    Christie, Robert J.; Best, Steve R.; Myhre, Craig A.

    1994-03-01

    Tests were performed on the Space Station Freedom (SSF) solar array flat conductor circuit (FCC) to determine if hypervelocity impacts could induce pyrolization of Kapton and/or cross-conductor arcing. A sample piece of FCC was placed in a plasma environment and biased to +200 V relative to the plasma potential. The FCC was then impacted with particles in the 100 micron size range with hypervelocities of about 7 km/s. These tests were unable to induce Kapton pyrolization, cross-conductor arcing, or any other plasma interaction.

  14. Launch of martian meteorites in oblique impacts

    NASA Astrophysics Data System (ADS)

    Artemieva, Natalia; Ivanov, Boris

    2004-09-01

    A high-velocity oblique impact into the martian surface accelerates solid target material to escape velocity. A fraction of that material eventually falls as meteorites on Earth. For a long time they were called the SNC meteorites (Shergotty, Nakhla, and Chassigny). We study production of potential martian meteorites numerically within the frame of 3D hydrodynamic modeling. The ratio of the volume of escaping solid ejecta to projectile volume depends on the impact angle, impact velocity and the volatile content in the projectile and in the target. The size distribution of ejected fragments appears to be of crucial importance for the atmosphere-ejecta interaction in the case of a relatively small impact (with final crater size <3 km): 10-cm-sized particles are decelerated efficiently, while 30-50% of larger fragments could escape Mars. The results of numerical modeling are compared with shock metamorphic features in martian meteorites, their burial depth, and preatmospheric mass. Although it is impossible to accelerate ejected fragments to escape velocity without substantial compression (above 10 GPa), the maximum temperature increase in dunite (Chassigny) or ortopyroxenite (ALH84001) may be lower than 200 degree. This result is consistent with the observed chaotic magnetization of ALH84001. The probability of microbes' survival may be rather high even for the extreme conditions during the ejection process.

  15. Hypervelocity Impact (HVI). Volume 8; Tile Small Targets A-1, Ag-1, B-1, and Bg-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, Ag-1, B-1, and Bg-1 was to study hypervelocity impacts on the reinforced Shuttle Heat Shield Tiles of the Wing. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  16. Influence of impact conditions on plasma generation during hypervelocity impact by aluminum projectile

    NASA Astrophysics Data System (ADS)

    Song, Weidong; Lv, Yangtao; Li, Jianqiao; Wang, Cheng; Ning, Jianguo

    2016-07-01

    For describing hypervelocity impact (relative low-speed as related to space debris and much lower than travelling speed of meteoroids) phenomenon associated with plasma generation, a self-developed 3D code was advanced to numerically simulate projectiles impacting on a rigid wall. The numerical results were combined with a new ionization model which was developed in an early study to calculate the ionized materials during the impact. The calculated results of ionization were compared with the empirical formulas concluded by experiments in references and a good agreement was obtained. Then based on the reliable 3D numerical code, a series of impacts with different projectile configurations were simulated to investigate the influence of impact conditions on hypervelocity impact generated plasma. It was found that the form of empirical formula needed to be modified. A new empirical formula with a critical impact velocity was advanced to describe the velocity dependence of plasma generation and the parameters of the modified formula were ensured by the comparison between the numerical predictions and the empirical formulas. For different projectile configurations, the changes of plasma charges with time are different but the integrals of charges on time almost stayed in the same level.

  17. The Recent Research Progresses in Space Debris Hypervelocity Impact Test in CAST

    NASA Astrophysics Data System (ADS)

    Gong, Zizheng; Dai, Fu; Yang, Jiyun; Hou, Mingqiang; Zheng, Jiandong; Tong, Jingyu; Pang, Hewei

    2009-06-01

    A more perfect projectile/sabot aerodynamic separating technique in hypervelocity impact experiment was developed. By using this technique, the Al sphere with diameters from 10 mm to 1 mm were separated with sabot 100% successfully in the velocity ranges of 3˜ 7km/s, on the two-stage-light-gas gun with 18 mm caliber. The technique of flier-plate with graded wave impedance in hypervelocity launcher was developed, and a titanium plate with 4mm in diameter and 2 mm in thickness was launched to 10km/s. The ballistic limit curve of typical aluminum alloy whipple shield was investigated by both experiment and numerical simulation, the results were compared with Christiansen equation, and a jump phenomena were found at velocity between 8.5km/s and 11km/s in simulation results. The hypervelocity impact damage characteristic and damage model of fused silica glass outer windshield was obtained by using the two-stage-light-gas gun up to 6.5 km/s impacting velocity. The hypervelocity impacts on the outer surfaces functional material, such as the thermal control material, window glass, and OSR etc., by using The Laser-driven Flyer system are also reviewed.

  18. Hypervelocity impacts and the evolution of planetary surfaces and interiors

    NASA Astrophysics Data System (ADS)

    Watters, Wesley Andres

    2009-06-01

    The thesis consists of five studies relating impact processes to the evolution of planetary interiors as well as impact structures on planetary surfaces. Chapter 2 is concerned with developing methods for estimating the amount of heat deposited deep in terrestrial mantles by large impacts. Chapter 3 makes use of these results to compute the consequences of impact-related thermal buoyancy perturbations in numerical models of subsolidus convection. Among the important results of this work is a relation for the time-scale on which a buoyancy anomaly flattens and spreads before it is halted by convective downflows, as well as a condition that indicates for what perturbation magnitudes and Rayleigh numbers the flow is significantly slowed at a global scale. Chapter 4 describes a structural model of Endurance Crater in Meridiani Planum on Mars, which is constrained by observations gathered by the MER- B Opportunity rover. These results reveal new insights about the planform shape of the crater excavation flow, as well as the connection between crater shape and pre-existing structures in target materials. The study presented in chapter 5 relates the planimetric shape of simple impact craters on Mars ( D < 5 km) to the geological targets in which they form, as well as rim diameter. Planform crater shape is characterized by a suite of morphometric parameters, including Fourier harmonic amplitudes and phase angles, as well as measures of deviation from radial symmetry and convexity. In addition to finding the morphometric dependence on target properties, this work has illuminated prominent transitions between different cratering regimes, and contains a measure of the global distribution of planform elongation azimuths -- which may relate to impact azimuth and provide an estimate of Mars' past obliquity variations. Finally, Chapter 6 describes a stochastic-kinematic model of the interaction between the excavation front and fractures in the target, which replicates many of the

  19. Detection of electromagnetic pulses produced by hypervelocity micro particle impact plasmas

    SciTech Connect

    Close, Sigrid; Lee, Nicolas; Johnson, Theresa; Goel, Ashish; Fletcher, Alexander; Linscott, Ivan; Strauss, David; Lauben, David; Srama, Ralf; Mocker, Anna; Bugiel, Sebastian

    2013-09-15

    Hypervelocity micro particles (mass < 1 ng), including meteoroids and space debris, routinely impact spacecraft and produce plasmas that are initially dense (∼10{sup 28} m{sup −3}), but rapidly expand into the surrounding vacuum. We report the detection of radio frequency (RF) emission associated with electromagnetic pulses (EMPs) from hypervelocity impacts of micro particles in ground-based experiments using micro particles that are 15 orders of magnitude less massive than previously observed. The EMP production is a stochastic process that is influenced by plasma turbulence such that the EMP detection rate that is strongly dependent on impact speed and on the electrical charge conditions at the impact surface. In particular, impacts of the fastest micro particles occurring under spacecraft charging conditions representative of high geomagnetic activity are the most likely to produce RF emission. This new phenomenon may provide a source for unexplained RF measurements on spacecraft charged to high potentials.

  20. Response of Organic Materials to Hypervelocity Impacts (up to 11.2 km/sec)

    NASA Astrophysics Data System (ADS)

    Bass, D. S.; Murphy, W. M.; Miller, G. P.; Grosch, D. J.; Walker, J. D.; Mullin, A.; Waite, J. H.

    1998-09-01

    It is speculated that organic-rich planetesimals played a role in the origin of life on Earth. However, the mechanism by which organics could have been delivered from space to a planetary surface is difficult to determine. Particularly problematic is the question of the stability of organic material under hypervelocity impact conditions. Although some evidence suggests organic molecules cannot survive impacts from projectile velocities greater than about 10 km/sec [1], other investigators have found that impacts create a favorable environment for post-shock recombination of organic molecules in the plume phase [2, 3]. Understanding the mechanisms involved in delivering organics to a planetary surface remains difficult to assess due to the lack of experimental results of hypervelocity impacts, particularly in the velocity range of tens of km/sec. Organic material preservation and destruction from impact shocks, the synthesis of organics in the post-impact plume environment, and implications of these processes for Earth and Mars can be investigated by launching an inorganic projectile into an analog planetesimal-and-bolide organic-rich target. We explored the pressure and temperature ranges of hypervelocity impacts (11.2 km/sec) through simulations with CTH impact physics computer code. Using an inhibited shaped-charge launcher, we also experimentally determined the response of organic material to hypervelocity impacts. Initial work focused on saturating well-characterized zeolitic tuff with an aqueous solution containing dissolved naphthalene, a common polycyclic aromatic hydrocarbon (PAH). Porosity measurements, thin section, and x-ray diffraction analyses were performed to determine that the tuff is primarily fine-grained clinoptilolite. In order to distinguish between contaminants and compounds generated or destroyed in the impact, we tagged the aqueous component of our target with deuterium. Experimental tests revealed that to first order, naphthalene survived

  1. Hypervelocity impact study: The effect of impact angle on crater morphology

    NASA Technical Reports Server (NTRS)

    Crawford, Gary; Hill, David; Rose, Frank E.; Zee, Ralph; Best, Steve; Crumpler, Mike

    1993-01-01

    The Space Power Institute (SPI) of Auburn University has conducted preliminary tests on the effects of impact angle on crater morphology for hypervelocity impacts. Copper target plates were set at angles of 30 deg and 60 deg from the particle flight path. For the 30 deg impact, the craters looked almost identical to earlier normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution. Further research on angle effects is planned, because the particle velocities for these shots were relatively slow (7 km/s or less).

  2. Hypervelocity impact on brittle materials of semi-infinite thickness: fracture morphology related to projectile diameter

    NASA Astrophysics Data System (ADS)

    Taylor, Emma A.; Kay, Laurie; Shrine, Nick R. G.

    Hypervelocity impact on brittle materials produces features not observed on ductile targets. Low fracture toughness and high yield strength produce a range of fracture morphologies including cracking, spallation and shatter. For sub-mm diameter projectiles, impact features are characterised by petaloid spallation separated by radial cracks. The conchoidal or spallation diameter is a parameter in current cratering equations. An alternative method for interpreting hypervelocity impacts on glass targets of semi-infinite thickness is tested against impact data produced using the Light Gas Gun (LGG) facility at the University of Kent at Canterbury (UKC), U.K. Spherical projectiles of glass and other materials with diameters 30-300 μm were fired at ~5 km s^-1 at a glass target of semi-infinite thickness. The data is used to test a power law relationship between projectile diameter and crack length. The results of this work are compared with published cratering/spallation equations for brittle materials.

  3. A model for debris clouds produced by impact of hypervelocity projectiles on multiplate structures

    NASA Astrophysics Data System (ADS)

    Zhang, Qingming; Long, Renrong; Huang, Fenglei; Chen, Li; Fu, Yuesheng

    2008-11-01

    Hypervelocity impact of spherical and cylindrical projectiles on multipate shields at velocities between 4 and 6km/s was investigated experimentally. A model was developed to describe the motion of the debris clouds generated. Good agreement was obtained between the experimental and simulation results. The model is capable of predicting damage induced by the impact and can be applied to the optimization and design of multiplate shields.

  4. Testing and numerical modeling of hypervelocity impact damaged Space Station multilayer insulation

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    Results are presented of experiments measuring the degradation of the insulating capabilities of the multilayer insulation (MLI) of the Space Station Freedom, when subjected to hypervelocity impact damage. A simple numerical model was developed for use in an engineering design environment for quick assessment of thermal effect of the impact. The model was validated using results from thermal vacuum tests on MLI with simulated damage. The numerical model results agreed with experimental data.

  5. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGESBeta

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  6. Classical molecular dynamics simulations of hypervelocity nanoparticle impacts on amorphous silica

    SciTech Connect

    Samela, Juha; Nordlund, Kai

    2010-02-01

    We have investigated the transition from the atomistic to the macroscopic impact mechanism by simulating large Argon cluster impacts on amorphous silica. The transition occurs at cluster sizes less than 50 000 atoms at hypervelocity regime (22 km/s). After that, the crater volume increases linearly with the cluster size opposite to the nonlinear scaling typical of small cluster impacts. The simulations demonstrate that the molecular dynamics method can be used to explore atomistic mechanisms that lead to damage formation in small particle impacts, for example, in impacts of micrometeorites on spacecraft.

  7. Classical molecular dynamics simulations of hypervelocity nanoparticle impacts on amorphous silica

    NASA Astrophysics Data System (ADS)

    Samela, Juha; Nordlund, Kai

    2010-02-01

    We have investigated the transition from the atomistic to the macroscopic impact mechanism by simulating large Argon cluster impacts on amorphous silica. The transition occurs at cluster sizes less than 50000 atoms at hypervelocity regime (22 km/s). After that, the crater volume increases linearly with the cluster size opposite to the nonlinear scaling typical of small cluster impacts. The simulations demonstrate that the molecular dynamics method can be used to explore atomistic mechanisms that lead to damage formation in small particle impacts, for example, in impacts of micrometeorites on spacecraft.

  8. 3D laser scanning microscopy of hypervelocity impact features in metal and aerogel targets

    NASA Astrophysics Data System (ADS)

    Hillier, J. K.; Postberg, F.; Price, M. C.; Trieloff, M.; Li, Y. W.; Srama, R.

    2012-09-01

    We present the results of a study into the mapping of hypervelocity impact features using a Keyence VK-X200 3D laser scanning microscope. The impact features observed are impact craters in a variety of different metal targets (Al, Au and Cu) and impact tracks in aerogel targets, similar to those used in the Stardust mission. Differences in crater morphology between different target materials and impact velocities, as well as differences in track depth and diameter in aerogel, for particles of known constant dimensions, are discussed.

  9. Damage Characteristics of the Logical Chip Module Due to Plasma Created by Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Tang, Enling; Wu, Jin; Wang, Meng; Zhang, Lijiao; Xiang, Shenghai; Xia, Jin; Liu, Shuhua; He, Liping; Han, Yafei; Xu, Mingyang; Zhang, Shuang; Yuan, Jianfei

    2016-04-01

    To researching the damage characteristics of typical logical chip modules in spacecraft due to plasma generated by hypervelocity impacts, we have established a triple Langmuir probe diagnostic system and a logical chips measurement system, which were used to diagnose plasma characteristic parameters and the logical chip module's logical state changes due to the plasma created by a 7075 aluminum projectile hypervelocity impact on the 2A12 aluminum target. Three sets of experiments were performed with the collision speeds of 2.85 km/s, 3.1 km/s and 2.20 km/s, at the same incident angles of 30 degrees and logical chip module's positions by using a two-stage light gas gun loading system, a plasma characteristic parameters diagnostic system and a logical chip module's logical state measurement system, respectively. Electron temperature and density were measured at given position and azimuth, and damage estimation was performed for the logical chip module by using the data acquisition system. Experimental results showed that temporary damage could be induced on logical chip modules in spacecraft by plasma generated by hypervelocity impacts under the given experimental conditions and the sensors' position and azimuth. supported by National Natural Science Foundation of China (Nos. 10972145, 11272218, 11472178), Program for Liaoning Excellent Talents in University of China (No. LR2013008), Open Foundation of Key Laboratory of Liaoning Weapon Science and Technology, Liaoning Province Talents Engineering Projects of China (No. 2012921044)

  10. The Laser-driven Flyer System for Space Debris Hypervelocity Impact Simulations

    NASA Astrophysics Data System (ADS)

    Gong, Zizheng; Dai, Fu; Yang, Jiyun; Hou, Mingqiang; Zheng, Jiandong; Tong, Jingyu; Pang, Hewei

    2009-06-01

    The Laser-driven flyer (LDF) technique is showing promiseful in simulating micro meteoroids and orbital debris (M/OD) hypervelocity impacting effects. LDF system with a single pulses from a Q-switched Nd: glass laser, of 15 ns duration and up to 20J energy, launched the aluminum films of 5 μm thickness up to 8.3km/s velocity was developed in Beijing Institute of Spacecrafts Environment Engineering(BISEE), CAST. The quantitative relationships between the flyer velocity and the laser energy, the width of laser pulse, the diameter of laser focal spot, and the flyer thickness were analyzed, according to Lawrence-Gurney model, and compared with the experimental results. Some experimental aspects in our efforts on the space debris Hypervelocity impacts on the outer surfaces functional material, such as the thermal control material, window glass, and OSR etc., are reviewed. Though still developing, the Laser-driven flyer technique has been demonstrated promise in simulating micro M/OD hypervelocity impacting effects.

  11. Spontaneous magnetic field generation in hypervelocity impacts. [of meteoroids onto lunar and planetary surfaces

    NASA Technical Reports Server (NTRS)

    Srnka, L. J.

    1977-01-01

    Hypervelocity impacts of meteoroids onto early planetary surfaces may have generated short-lived magnetic fields. The high specific power densities of the impacts, plasma production in the ejecta clouds, and the chemically layered targets of the meteoroids are analyzed in describing the evolution of the magnetic fields. Durations from about one millionth of a minute to one minute, as well as strengths up to 100 tesla, are posited for the impact-generated magnetic fields. The analogy of magnetic-field generation in laser-target experiments is also mentioned. The acquisition of shock remanence and thermoremanence by the ejecta and nearby rock following impact is discussed.

  12. Predicting multi-wall structural response to hypervelocity impact using the hull code

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1993-01-01

    Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.

  13. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Chris; Rodriquez, Karen; Miller, Joshua; Bohl, William

    2011-01-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  14. Burst pressure failure of titanium tanks damaged by secondary plumes from hypervelocity impacts on aluminum shields

    NASA Astrophysics Data System (ADS)

    Nahra, Henry; Ghosn, L.; Christiansen, E.; Davis, B. A.; Keddy, C.; Rodriguez, K.; Miller, J.; Bohl, W.

    2012-03-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium alloy (Ti-6Al-4V) pressure vessels burst pressure and characteristics. The tests consisted of a pair of HVI impact tests on water-filled Ti-6Al-4V tanks (water being used as a surrogate to the actual propellant) and subsequent burst tests as well as a burst test on an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti-6Al-4V tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis showed that the tanks failure at the impact location may have been due to a spall crack that formed upon impact of a fragmentation on the Titanium surface. This result was corroborated with a finite element analysis from calculated Von-Mises and hoop stresses.

  15. Burst Pressure Failure of Titanium Tanks Damaged by Secondary Plumes from Hypervelocity Impacts on Aluminum Shields

    NASA Astrophysics Data System (ADS)

    Nahra, Henry; Ghosn, Louis; Christiansen, Eric; Davis, B. Alan; Keddy, Christopher; Rodriguez, Karen; Miller, Joshua; Bohl, William

    2011-06-01

    Metallic pressure tanks used in space missions are inherently vulnerable to hypervelocity impacts from micrometeoroids and orbital debris; thereby knowledge of impact damage and its effect on the tank integrity is crucial to a spacecraft risk assessment. This paper describes tests that have been performed to assess the effects of hypervelocity impact (HVI) damage on Titanium (Ti) pressure vessels burst pressure and characteristics. The series consists of a pair of HVI impact tests on water-filled Ti tanks (water as a surrogate to the propellant) and subsequent burst tests of these tanks and an undamaged control tank. The tanks were placed behind Aluminum (Al) shields and then each was impacted with a 7 km/s projectile. The resulting impact debris plumes partially penetrated the Ti tank surfaces resulting in a distribution of craters. During the burst tests, the tank that failed at a lower burst pressure did appear to have the failure initiating at a crater site with observed spall cracks. A fracture mechanics analysis that provides insight into how the cracks associated with a spall site initiate a failure cascade is discussed.

  16. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    NASA Technical Reports Server (NTRS)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  17. Meteoroids and space debris hypervelocity impact penetrations in LDEF map foils compared with hydrocode simulations

    NASA Astrophysics Data System (ADS)

    Tanner, W. G.; McDonnell, J. A. M.; Yano, H.; Fitzgerald, H. J.; Gardner, D. J.

    The continued analyses of penetrating impacts on MAP foils of Aluminium and Brass have produced data for several LDEF faces, i.e., Space, West, and East. These data have immediate bearing on the interpretation and design of devices to detect the penetration of a thin metallic film by a dust grain which have been tested both in the laboratory and in space. A crucial component of the analysis has been the theoretical calculation utilizing CTH, a Sandia National Laboratory Hydrodynamic computer code /1/ to assess the parameters of the hypervelocity penetration event. In particular theoretical hydrodynamic calculations have been conducted to simulate the hypervelocity impact event where various cosmic dust grain candidates, e.g., density = 0.998, 2.700, 7.870 (gm/cm^3), and velocities, i.e., 7 - 16 km/s, have been utilized to reproduce the events. Theoretical analyses of hypervelocity impact events will be reported which span an extensive matrix of values for velocity, density and size. Through a comparison between LDEF MAP foil measurements and CTH hydrocode calculations these analyses will provide an interpretation of the most critical parameters measured for space returned materials, i.e., for thin films, the diameter of the penetration hole, D_h, and for semi-infinite targets, the depth-to-diameter ratio of craters, D_c/T_c. An immediate consequence of a comparison of CTH calculations with space exposed materials will be an enhancement of the coherent model developed by UKC-USS researchers to describe penetration dynamics associated with LDEF MAP foils.

  18. The effect of impact angle on craters formed by hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank; Best, Steve R.; Crumpler, Michael S.; Crawford, Gary D.; Zee, Ralph H.-C.; Bozack, Michael J.

    1995-01-01

    The Space Power Institute (SPI) at Auburn University has conducted experiments on the effects of impact angle on crater morphology and impactor residue retention for hypervelocity impacts. Copper target plates were set at angles of 30 deg, 45 deg, 60 deg, and 75 deg from the particle flight path. For the 30 deg and 45 deg impacts, in the velocity regime greater than 8 km s(exp -1) the resultant craters are almost identical to normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg and 75 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution in the same velocity regime. Impactor residue shock fractionation effects have been quantified in first-order. It is concluded that a combination of analysis techniques can yield further information on impact velocity, direction, and angle of incidence.

  19. Numerical Simulation of Debris Cloud Propagation inside Gas-Filled Pressure Vessels under Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Gai, F. F.; Pang, B. J.; Guan, G. S.

    2009-03-01

    In the paper SPH methods in AUTODYN-2D is used to investigate the characteristics of debris clouds propagation inside the gas-filled pressure vessels for hypervelocity impact on the pressure vessels. The effect of equation of state on debris cloud has been investigated. The numerical simulation performed to analyze the effect of the gas pressure and the impact condition on the propagation of the debris clouds. The result shows that the increase of gas pressure can reduce the damage of the debris clouds' impact on the back wall of vessels when the pressure value is in a certain range. The smaller projectile lead the axial velocity of the debris cloud to stronger deceleration and the debris cloud deceleration is increasing with increased impact velocity. The time of venting begins to occur is related to the "vacuum column" at the direction of impact-axial. The paper studied the effect of impact velocities on gas shock wave.

  20. Analysis of energy dissipation and deposition in elastic bodies impacting at hypervelocities

    NASA Technical Reports Server (NTRS)

    Medina, David F.; Allahdadi, Firooz A.

    1992-01-01

    A series of impact problems were analyzed using the Eulerian hydrocode CTH. The objective was to quantify the amount of energy dissipated locally by a projectile-infinite plate impact. A series of six impact problems were formulated such that the mass and speed of each projectile were varied in order to allow for increasing speed with constant kinetic energy. The properties and dimensions of the plate were the same for each projectile impact. The resulting response of the plate was analyzed for global Kinetic Energy, global momentum, and local maximum shear stress. The percentage of energy dissipated by the various hypervelocity impact phenomena appears as a relative change of shear stress at a point away from the impact in the plate.

  1. Microfractures produced by a laboratory scale hypervelocity impact into granite. [for lunar sample crack spectra interpretation

    NASA Technical Reports Server (NTRS)

    Siegfried, R. W., II; Simmons, G.; Richter, D.; Hoerz, F.

    1977-01-01

    Differential strain analysis and scanning electron microscopy are employed to study the microcracks produced in a granite block by shock waves from a hypervelocity impact. The anisotropy of the pre-shock cracks appears to control the orientations of the microcracks. Over the range 2 to 20 kbar, total crack porosity proves to be linearly related to shock pressure. The effect of the peak shock pressure on the width and median closure pressure of the crack spectra is also investigated. The results of the microcrack study may be useful in interpreting lunar samples.

  2. An Ellipsoidal Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 1

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A number of coupled particle-element and hybrid particle-element methods have been developed for the simulation of hypervelocity impact problems, to avoid certain disadvantages associated with the use of pure continuum based or pure particle based methods. To date these methods have employed spherical particles. In recent work a hybrid formulation has been extended to the ellipsoidal particle case. A model formulation approach based on Lagrange's equations, with particles entropies serving as generalized coordinates, avoids the angular momentum conservation problems which have been reported with ellipsoidal smooth particle hydrodynamics models.

  3. A Kernel-Free Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 4

    NASA Technical Reports Server (NTRS)

    Park, Young-Keun; Fahrenthold, Eric P.

    2004-01-01

    An improved hybrid particle-finite element method has been developed for the simulation of hypervelocity impact problems. Unlike alternative methods, the revised formulation computes the density without reference to any kernel or interpolation functions, for either the density or the rate of dilatation. This simplifies the state space model and leads to a significant reduction in computational cost. The improved method introduces internal energy variables as generalized coordinates in a new formulation of the thermomechanical Lagrange equations. Example problems show good agreement with exact solutions in one dimension and good agreement with experimental data in a three dimensional simulation.

  4. The effects of dynamic friction in oblique motorcycle helmet impacts

    NASA Astrophysics Data System (ADS)

    Bonugli, Enrique

    The purpose of this study was to determine the frictional properties between the exterior surface of a motorcycle helmet and 'typical' roadway surfaces. These values were compared to abrasive papers currently recommended by government helmet safety standards and widely used by researchers in the field of oblique motorcycle helmet impacts. A guided freefall test fixture was utilized to obtain nominal impact velocities of 5, 7 and 9 m/s. The impacting surfaces were mounted to an angled anvil to simulate off-centered oblique collision. Head accelerations and impact forces were measured for each test. Analysis of the normal and tangential forces imparted to the contact surface indicated that the frictional properties of abrasive papers differ from asphalt and cement in magnitude, duration and onset. Reduction in head acceleration, both linear and angular, were observed when asphalt and cement were used as the impacting surface. Roofing shingle was determined to be a more suitable material to simulate 'typical' roadway surfaces however, this may not be ideal for use in a controlled laboratory setting. In a laboratory setting, the author recommends cement as a best-fit material to simulate roadway surface for use in oblique motorcycle helmet impacts since this material displayed characteristics that closely resemble asphalt and is currently used as a roadway construction material.

  5. Hypervelocity Impact Experiments in the Laboratory Relating to Lunar Astrobiology

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Parnell, J.; Bowden, S. A.; Crawford, I. A.

    2010-12-01

    The results of a set of laboratory impact experiments (speeds in the range 1-5 km s-1) are reviewed. They are discussed in the context of terrestrial impact ejecta impacting the Moon and hence lunar astrobiology through using the Moon to learn about the history of life on Earth. A review of recent results indicates that survival of quite complex organic molecules can be expected in terrestrial meteorites impacting the lunar surface, but they may have undergone selective thermal processing both during ejection from the Earth and during lunar impact. Depending on the conditions of the lunar impact (speed, angle of impact etc.) the shock pressures generated can cause significant but not complete sterilisation of any microbial load on a meteorite (e.g. at a few GPa 1-0.1% of the microbial load can survive, but at 20 GPa this falls to typically 0.01-0.001%). For more sophisticated biological products such as seeds (trapped in rocks) the lunar impact speeds generate shock pressures that disrupt the seeds (experiments show this occurs at approximately 1 GPa or semi-equivalently 1 km s-1). Overall, the delivery of terrestrial material of astrobiological interest to the Moon is supported by these experiments, although its long term survival on the Moon is a separate issue not discussed here.

  6. Composition of Plasma Formed from Hypervelocity Dust Impacts

    NASA Astrophysics Data System (ADS)

    Lee, N.; Close, S.; Rymer, A. M.; Mocker, A.

    2012-12-01

    Dust impacts can occur on all solar system bodies but are especially prevalent in the case of the Saturnian moons that are near or within the dust torus produced by Enceladus's plumes. Depending on the mass and charge on these plume particles, they will be influenced by both gravitational and electrodynamic forces, resulting in a range of possible impact speeds on the moons. The plasma formed upon impact can have very different characteristics depending on impact speed and on the electric field due to surface charging at the impact point. Through recent tests conducted at the Max Planck Institute for Nuclear Physics using a Van de Graaff dust accelerator, iron dust particles were electrostatically accelerated to speeds of 3-65 km/s and impacted on a variety of target materials including metallic and glassy surfaces. The target surfaces were connected to a biasing supply to represent surface charging effects. Because of the high specific kinetic energy of the dust particles, upon impact they vaporize along with part of the target surface and a fraction of this material is ionized forming a dense plasma. The impacts produced both positive and negative ions. We made measurements of the net current imparted by this expanding plasma at a distance of several centimeters from the impact point. By setting the bias of the target, we impose an electric field on the charge population, allowing a measurement of plasma composition through time of flight analysis. The figure shows representative measurements of the net current measured by a retarding potential analyzer (RPA) from separate 18 and 19 km/s impacts of 7 fg particles on a glassy surface that was negatively and positively biased, respectively. This target was an optical solar reflector donated by J. Likar of Lockheed Martin for these experiments. These results show that ions of both positive and negative charge can be formed through the mechanism of dust impacts, and has implications on the surface plasma environment

  7. Hypervelocity dust impact craters on photovoltaic devices imaged by ion beam induced charge

    NASA Astrophysics Data System (ADS)

    Yang, Changyi; Wu, Yiyong; Lv, Gang; Rubanov, Sergey; Jamieson, David N.

    2015-04-01

    Hypervelocity dust has a speed of greater than 5 km/s and is a significant problem for equipment deployed in space such as satellites because of impacts that damage vulnerable components. Photovoltaic (PV) arrays are especially vulnerable because of their large surface area and the performance can be degraded owing to the disruption of the structure of the junction in the cells making up the array. Satellite PV arrays returned to Earth after service in orbit reveal a large number of craters larger than 5 μm in diameter arising from hypervelocity dust impacts. Extensive prior work has been done on the analysis of the morphology of craters in PV cells to understand the origin of the micrometeoroid that caused the crater and to study the corresponding mechanical damage to the structure of the cell. Generally, about half the craters arise from natural micrometeoroids, about one third from artificial Al-rich debris, probably from solid rocket exhausts, and the remainder from miscellaneous sources both known and unknown. However to date there has not been a microscopic study of the degradation of the electrical characteristics of PV cells exposed to hypervelocity dust impacts. Here we present an ion beam induced charge (IBIC) pilot study by a 2 MeV He microbeam of craters induced on a Hamamatsu PIN diode exposed to artificial hypervelocity Al dust from a dust accelerator. Numerous 5-30 μm diameter craters were identified and the charge collection efficiency of the crater and surrounds mapped with IBIC with bias voltages between 0 and 20 V. At highest bias, it was found the efficiency of the crater had been degraded by about 20% compared to the surrounding material. The speed distribution achieved in the Al dust accelerator was peaked at about 4 km/s compared to 11-68 km/s for dust encountered in low Earth orbit. We are able to extrapolate the charge collection efficiency degradation rate of unbiased cells in space based on our current measurements and the differences

  8. Ground Testing Of Hypervelocity Impact Effects Of Micrometeoroids And Space Debris On Solar Arrays

    NASA Astrophysics Data System (ADS)

    Schimmerohn, Martin; Rott, Martin; Gerhard, Andreas; Osterholz, Jens; Schafer, Frank; D'Accolti, Gianfelice

    2011-10-01

    Solar arrays are the satellite component most exposed to micrometeoroid and space debris (MM/SD) impacts. The damage potential of hypervelocity impacts (HVI) is characterized by considerable energy released at the impact interface leading to mechanical damage and the generation of plasma. Impact experiments performed in the past indicate that the impact plasma can induce arcing, which consequently may lead to permanent power losses as known from electrostatic discharges. An ESA study is currently ongoing, the objective of which is to study and test the susceptibility of state-of-the art solar arrays to HVI. This paper describes potential failure modes, a ground testing approach to simulate them and its implementation for the test campaign, which will be performed at Fraunhofer EMI using a light gas gun and at Technische Universität München using a plasma-dynamic accelerator. Solar array simulation equipment and comprehensive plasma diagnostics are to be applied for ground testing.

  9. Hypervelocity Impact Testing of IM7/977-3 with Micro-Sized Particles

    NASA Technical Reports Server (NTRS)

    Smith, J. G.; Jegley, D. C.; Siochi, E. J.; Wells, B. K.

    2010-01-01

    Ground-based hypervelocity imapct testing was conducted on IM7/977-3 quasi-isotropic flat panels at normal incidence using micron-sized particles (i.e. less than or equal to 100 microns) of soda lime glass and olivine. Testing was performed at room temperature (RT) and 175 C with results from the 175 C test compared to those obtained at RT. Between 10 and 30 particles with velocities ranging from 5 to 13 km/s impacted each panel surface for each test temperature. Panels were ultrasonically scanned prior to and after impact testing to assess internal damage. Post-impact analysis included microscopic examination of the surface, determination of particle speed and location, and photomicroscopy for microcrack assessment. Internal damage was observed by ultrasonic inspection on panels impacted at 175 C, whereas damage for the RT impacted panels was confined to surface divets/craters as determined by microscopic analysis.

  10. Properties of largest fragment produced by hypervelocity impact of aluminum spheres with thin aluminum sheets

    NASA Technical Reports Server (NTRS)

    Piekutowski, Andrew J.

    1992-01-01

    Results are presented from hypervelocity impact tests in which 1.275 g spheres of 2017-T4 Al alloy were fired at normal incidence at eight thicknesses of 6061-T6 Al alloy sheets, with impact velocity of about 6.7 km/sec; additional data are presented for smaller and larger spheres than these, in the cases of other Al alloy impact bumpers. A large fragment of the projectile is observable at the center of the debris clouds generated upon impact. The velocity of these large fragments decreased continuously with increasing bumper thickness/projectile diameter ratio, from 99 percent to less than 80 percent of impact velocity; there is a linear increase in the size of the central projectile fragment with decreasing shock-induced stress in the projectile.

  11. Understanding oblique impacts from experiments, observations, and modeling

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.; Melosh, H. J.

    2000-01-01

    Natural impacts in which the projectile strikes the target vertically are virtually nonexistent. Nevertheless, our inherent drive to simplify nature often causes us to suppose most impacts are nearly vertical. Recent theoretical, observational, and experimental work is improving this situation, but even with the current wealth of studies on impact cratering, the effect of impact angle on the final crater is not well understood. Although craters' rims may appear circular down to low impact angles, the distribution of ejecta around the crater is more sensitive to the angle of impact and currently serves as the best guide to obliquity of impacts. Experimental studies established that crater dimensions depend only on the vertical component of the impact velocity. The shock wave generated by the impact weakens with decreasing impact angle. As a result, melting and vaporization depend on impact angle; however, these processes do not seem to depend on the vertical component of the velocity alone. Finally, obliquity influences the fate of the projectile: in particular, the amount and velocity of ricochet are a strong function of impact angle.

  12. Understanding Oblique Impacts from Experiments, Observations, and Modeling

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Melosh, H. J.

    Natural impacts in which the projectile strikes the target vertically are virtually nonexistent. Nevertheless, our inherent drive to simplify nature often causes us to suppose most impacts are nearly vertical. Recent theoretical, observational, and experimental work is improving this situation, but even with the current wealth of studies on impact cratering, the effect of impact angle on the final crater is not well understood. Although craters' rims may appear circular down to low impact angles, the distribution of ejecta around the crater is more sensitive to the angle of impact and currently serves as the best guide to obliquity of impacts. Experimental studies established that crater dimensions depend only on the vertical component of the impact velocity. The shock wave generated by the impact weakens with decreasing impact angle. As a result, melting and vaporization depend on impact angle; however, these processes do not seem to depend on the vertical component of the velocity alone. Finally, obliquity influences the fate of the projectile: in particular, the amount and velocity of ricochet are a strong function of impact angle.

  13. Understanding oblique impacts from experiments, observations, and modeling.

    PubMed

    Pierazzo, E; Melosh, H J

    2000-01-01

    Natural impacts in which the projectile strikes the target vertically are virtually nonexistent. Nevertheless, our inherent drive to simplify nature often causes us to suppose most impacts are nearly vertical. Recent theoretical, observational, and experimental work is improving this situation, but even with the current wealth of studies on impact cratering, the effect of impact angle on the final crater is not well understood. Although craters' rims may appear circular down to low impact angles, the distribution of ejecta around the crater is more sensitive to the angle of impact and currently serves as the best guide to obliquity of impacts. Experimental studies established that crater dimensions depend only on the vertical component of the impact velocity. The shock wave generated by the impact weakens with decreasing impact angle. As a result, melting and vaporization depend on impact angle; however, these processes do not seem to depend on the vertical component of the velocity alone. Finally, obliquity influences the fate of the projectile: in particular, the amount and velocity of ricochet are a strong function of impact angle. PMID:11583040

  14. Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station

    NASA Astrophysics Data System (ADS)

    Jantou, V.; McPhail, D. S.; Chater, R. J.; Kearsley, A.

    2006-07-01

    The aim of this project was to gain a better understanding of the microstructural effects of hypervelocity impacts (HVI) in titanium alloys. We investigated a titanium fuel tank recovered from the Russian Salyut 7 space station, which was launched on April 19, 1982 before being destroyed during an un-controlled re-entry in 1991, reportedly scattering debris over parts of South America. Several sections were cut out from the tank in order to undergo HVI simulations using a two-stage light gas gun. In addition, a Ti-6Al-4V alloy was studied for further comparison. The crater morphologies produced were successfully characterised using microscope-based white light interferometry (Zygo ® Corp, USA), while projectile remnants were identified via secondary ion mass spectrometry (SIMS). Microstructural alterations were investigated using focused ion beam (FIB) milling and depth profiling, as well as transmission electron microscopy (TEM). There was evidence of a very high density of dislocations in the vicinity of the crater. The extent of the deformation was localised in a region of about one to two radii of the impact craters. No notable differences were observed between the titanium alloys used during the hypervelocity impact tests.

  15. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas.

    PubMed

    Goel, A; Tarantino, P M; Lauben, D S; Close, S

    2015-04-01

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments. PMID:25933852

  16. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    NASA Astrophysics Data System (ADS)

    Goel, A.; Tarantino, P. M.; Lauben, D. S.; Close, S.

    2015-04-01

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  17. Design and testing of miniaturized plasma sensor for measuring hypervelocity impact plasmas

    SciTech Connect

    Goel, A. Tarantino, P. M.; Lauben, D. S.; Close, S.

    2015-04-15

    An increasingly notable component of the space environment pertains to the impact of meteoroids and orbital debris on spacecraft and the resulting mechanical and electrical damages. Traveling at speeds of tens of km/s, when these particles, collectively referred to as hypervelocity particles, impact a satellite, they vaporize, ionize, and produce a radially expanding plasma that can generate electrically harmful radio frequency emission or serve as a trigger for electrostatic discharge. In order to measure the flux, composition, energy distribution, and temperature of ions and electrons in this plasma, a miniaturized plasma sensor has been developed for carrying out in-situ measurements in space. The sensor comprises an array of electrostatic analyzer wells split into 16 different channels, catering to different species and energy ranges in the plasma. We present results from numerical simulation based optimization of sensor geometry. A novel approach of fabricating the sensor using printed circuit boards is implemented. We also describe the test setup used for calibrating the sensor and show results demonstrating the energy band pass characteristics of the sensor. In addition to the hypervelocity impact plasmas, the plasma sensor developed can also be used to carry out measurements of ionospheric plasma, diagnostics of plasma propulsion systems, and in other space physics experiments.

  18. An Exponential Luminous Efficiency Model for Hypervelocity Impact into Regolith

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Moser, D.E.; Suggs, Robb M.; Cooke, W.J.

    2010-01-01

    The flash of thermal radiation produced as part of the impact-crater forming process can be used to determine the energy of the impact if the luminous efficiency is known. From this energy the mass and, ultimately, the mass flux of similar impactors can be deduced. The luminous efficiency, Eta is a unique function of velocity with an extremely large variation in the laboratory range of under 8 km/s but a necessarily small variation with velocity in the meteoric range of 20 to 70 km/s. Impacts into granular or powdery regolith, such as that on the moon, differ from impacts into solid materials in that the energy is deposited via a serial impact process which affects the rate of deposition of internal (thermal) energy. An exponential model of the process is developed which differs from the usual polynomial models of crater formation. The model is valid for the early time portion of the process and focuses on the deposition of internal energy into the regolith. The model is successfully compared with experimental luminous efficiency data from laboratory impacts and from astronomical determinations and scaling factors are estimated. Further work is proposed to clarify the effects of mass and density upon the luminous efficiency scaling factors

  19. Asteroid deflection using a kinetic impactor: Insights from hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Hoerth, Tobias; Schäfer, Frank

    2016-04-01

    Within the framework of the planned AIDA mission [1], an impactor spacecraft (DART) hits the second component of the asteroid Didymos at hypervelocity. The impact crater will be observed from the AIM spacecraft and an observation of the ejecta plume is possible [1]. This allows conclusions to be drawn about the physical properties of the target material, and the momentum transfer will be studied [1]. In preparation for this mission, hypervelocity impact experiments can provide valuable information about the outcome of an impact event as a function of impactor and target material properties and, thus, support the interpretation of the data from the DART impact. In addition, these impact experiments provide an important means to validate numerical impact simulations required to simulate large-scale impacts that cannot be studied in laboratory experiments. Impact experiments have shown that crater morphology and size, crater growth and ejecta dynamics strongly depend on the physical properties of the target material [2]. For example, porous materials like sandstone lead to a shallower and slower ejection than low-porous materials like quartzite, and the cratering efficiency is reduced in porous targets leading to a smaller amount of ejected mass [3]. These phenomena result in a reduced momentum multiplication factor (often called "beta-value"), i.e. the ratio of the change in target momentum after the impact and the momentum of the projectile is smaller for porous materials. Hypervelocity impact experiments into target materials with different porosities and densities such as quartzite (2.9 %, 2.6 g/cm3), sandstone (25.3 %, 2 g/cm3), limestone (31 %, 1.8 g/cm3), and highly porous aerated concrete (87.5 %, 0.4 g/cm3) were conducted. Projectile velocities were varied between about 3 km/s and almost 7 km/s. A ballistic pendulum was used to measure the momentum transfer. The material strength required for scaling laws was determined for all target materials. The highest

  20. Time Resolved Temperature Measurement of Hypervelocity Impact Generated Plasma Using a Global Optimization Method

    NASA Astrophysics Data System (ADS)

    Hew, Y. M.; Linscott, I.; Close, S.

    2015-12-01

    Meteoroids and orbital debris, collectively referred to as hypervelocity impactors, travel between 7 and 72 km/s in free space. Upon their impact onto the spacecraft, the energy conversion from kinetic to ionization/vaporization occurs within a very brief timescale and results in a small and dense expanding plasma with a very strong optical flash. The radio frequency (RF) emission produced by this plasma can potentially lead to electrical anomalies within the spacecraft. In addition, space weather, such as solar activity and background plasma, can establish spacecraft conditions which can exaggerate the damages done by these impacts. During the impact, a very strong impact flash will be generated. Through the studying of this emission spectrum of the impact, we hope to study the impact generated gas cloud/plasma properties. The impact flash emitted from a ground-based hypervelocity impact test is long expected by many scientists to contain the characteristics of the impact generated plasma, such as plasma temperature and density. This paper presents a method for the time-resolved plasma temperature estimation using three-color visible band photometry data with a global pattern search optimization method. The equilibrium temperature of the plasma can be estimated using an optical model which accounts for both the line emission and continuum emission from the plasma. Using a global pattern search based optimizer, the model can isolate the contribution of the continuum emission versus the line emission from the plasma. The plasma temperature can thus be estimated. Prior to the optimization step, a Gaussian process is also applied to extract the optical emission signal out of the noisy background. The resultant temperature and line-to-continuum emission weighting factor are consistent with the spectrum of the impactor material and current literature.

  1. Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    2000-01-01

    An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.

  2. Evaluation of chest injury mechanisms in nearside oblique frontal impacts.

    PubMed

    Iraeus, Johan; Lindquist, Mats; Wistrand, Sofie; Sibgård, Elin; Pipkorn, Bengt

    2013-01-01

    Despite the use of seat belts and modern safety systems, many automobile occupants are still seriously injured or killed in car crashes. Common configurations in these crashes are oblique and small overlap frontal impacts that often lead to chest injuries.To evaluate the injury mechanism in these oblique impacts, an investigation was carried out using mathematical human body model simulations. A model of a simplified vehicle interior was developed and validated by means of mechanical sled tests with the Hybrid III dummy. The interior model was then combined with the human body model THUMS and validated by means of mechanical PMHS sled tests. Occupant kinematics as well as rib fracture patterns were predicted with reasonable accuracy.The final model was updated to conform to modern cars and a simulation matrix was run. In this matrix the boundary conditions, ΔV and PDOF, were varied and rib fracture risk as a function of the boundary conditions was evaluated using a statistical framework.In oblique frontal impacts, two injury producing mechanisms were found; (i) diagonal belt load and (ii) side structure impact. The second injury mechanism was found for PDOFs of 25°-35°, depending on ΔV. This means that for larger PDOFs, less ΔV is needed to cause a serious chest injury. PMID:24406957

  3. Evaluation of Chest Injury Mechanisms in Nearside Oblique Frontal Impacts

    PubMed Central

    Iraeus, Johan; Lindquist, Mats; Wistrand, Sofie; Sibgård, Elin; Pipkorn, Bengt

    2013-01-01

    Despite the use of seat belts and modern safety systems, many automobile occupants are still seriously injured or killed in car crashes. Common configurations in these crashes are oblique and small overlap frontal impacts that often lead to chest injuries. To evaluate the injury mechanism in these oblique impacts, an investigation was carried out using mathematical human body model simulations. A model of a simplified vehicle interior was developed and validated by means of mechanical sled tests with the Hybrid III dummy. The interior model was then combined with the human body model THUMS and validated by means of mechanical PMHS sled tests. Occupant kinematics as well as rib fracture patterns were predicted with reasonable accuracy. The final model was updated to conform to modern cars and a simulation matrix was run. In this matrix the boundary conditions, ΔV and PDOF, were varied and rib fracture risk as a function of the boundary conditions was evaluated using a statistical framework. In oblique frontal impacts, two injury producing mechanisms were found; (i) diagonal belt load and (ii) side structure impact. The second injury mechanism was found for PDOFs of 25°–35°, depending on ΔV. This means that for larger PDOFs, less ΔV is needed to cause a serious chest injury. PMID:24406957

  4. Hypervelocity Impact (HVI). Volume 2; WLE Small-Scale Fiberglass Panel Flat Multi-Layer Targets A-1, A-2, and B-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  5. Numerical Simulation on the Damage Characteristics of Ice Targets by Projectile Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wei, Gang; Mu, Zhong-Cheng

    2009-06-01

    Interpretation of cratering records on planetary surfaces including the Earth has primarily been concerned with rocky surfaces, most notably the lunar surface and more recently Mars and Venus. Recently, the survey of craters on icy surfaces in the Solar System has been augmented by data from spacecraft close encounters, such as the Galileo mission to the jovian system. To fully understand these cratering records, the physics of hypervelocity impacts needs to be understood. The numerical simulation on the damage characteristics of ice targets by projectile normally hypervelocity impact has been performed using the hydro-code AUTODYN. The 1mm spherical projectile is aluminum 2017 alloy. The targets are water ice. The simulation velocities were in the range of 1km/s-10km/s. The material models are consisted of Tillotson and Polynomial equation of state, Mohr-Coulomb and Johnson-Holmqiust strength model and Johnson-Holmqiust and principle stress failure model. The damage characteristics include peak ejection angle, peak temperature and pressure, maximum crater depth and diameter etc. The simulation results are given and compared with the experimental results of Burchell 2002. The simulation results are consistent very well with the experimental results.

  6. Numerical Simulation on the Damage Characteristics of Ice Targets by Projectile Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Gang, Wei; Zhong-Cheng, Mu; Chang, Liu

    2009-12-01

    Interpretation of cratering records on planetary surfaces including the Earth has primarily been concerned with rocky surfaces, most notably the lunar surface and more recently Mars and Venus. Recently, the survey of craters on icy surfaces in the Solar System has been augmented by data from spacecraft close encounters, such as the Galileo mission to the Jovian system. To fully understand these cratering records, the physics of hypervelocity impacts needs to be understood. The numerical simulation on the damage characteristics of ice targets by projectile normal hypervelocity impact has been performed using the hydro-code AUTODYN. The 1 mm spherical projectile is aluminum 2017 alloy. The targets are water ice. The simulation velocities were in the range of 1 km/s-10 km/s. The damage characteristics include peak ejection angle, maximum crater depth and diameter etc. The simulation results are given and compared with the experimental results of Shrine et al. 2002. The simulation results are consistent with the experimental results.

  7. Macroscopic electric charge separation during hypervelocity impacts: Potential implications for planetary paleomagnetism

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Schultz, P. H.

    1993-01-01

    The production of transient magnetic fields by hypervelocity meteoroid impact has been proposed to possibly explain the presence of paleomagnetic fields in certain lunar samples as well as across broader areas of the lunar surface. In an effort to understand the lunar magnetic record, continued experiments at the NASA Ames Vertical Gun Range allow characterizing magnetic fields produced by the 5 km/s impacts of 0.32-0.64 cm projectiles over a broad range of impact angles and projectile/target compositions. From such studies, another phenomenon has emerged, macroscopic electric charge separation, that may have importance for the magnetic state of solid-body surfaces. This phenomenon was observed during explosive cratering experiments, but the magnetic consequences of macroscopic electric charge separation (as opposed to plasma production) during explosion and impact cratering have not, to our knowledge, been explored before now. It is straightforward to show that magnetic field production due to this process may scale as a weakly increasing function of impactor kinetic energy, although more work is needed to precisely assess the scaling dependence. The original intent of our experiments was to assess the character of purely electrostatic signals for comparison with inferred electrostatic noise signals acquired by shielded magnetic sensors buried within particulate dolomite targets. The results demonstrated that electrostatic noise does affect the magnetic sensors but only at relatively short distances (less than 4 cm) from the impact point (our magnetic studies are generally performed at distances greater than approximately 5.5 cm). However, to assess models for magnetic field generation during impact, measurements are needed of the magnetic field as close to the impact point as possible; hence, work with an improved magnetic sensor design is in progress. In this paper, we focus on electric charge separation during hypervelocity impacts as a potential transient

  8. Oblique impact of dense granular sheets

    NASA Astrophysics Data System (ADS)

    Ellowitz, Jake; Guttenberg, Nicholas; Jaeger, Heinrich M.; Nagel, Sidney R.; Zhang, Wendy W.

    2013-11-01

    Motivated by experiments showing impacts of granular jets with non-circular cross sections produce thin ejecta sheets with anisotropic shapes, we study what happens when two sheets containing densely packed, rigid grains traveling at the same speed collide asymmetrically. Discrete particle simulations and a continuum frictional fluid model yield the same steady-state solution of two exit streams emerging from incident streams. When the incident angle Δθ is less than Δθc =120° +/-10° , the exit streams' angles differ from that measured in water sheet experiments. Below Δθc , the exit angles from granular and water sheet impacts agree. This correspondence is surprising because 2D Euler jet impact, the idealization relevant for both situations, is ill posed: a generic Δθ value permits a continuous family of solutions. Our finding that granular and water sheet impacts evolve into the same member of the solution family suggests previous proposals that perturbations such as viscous drag, surface tension or air entrapment select the actual outcome are not correct. Currently at Department of Physics, University of Oregon, Eugene, OR 97403.

  9. The Technology of Modeling Debris Cloud Produced by Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Ma, Zhaoxia; Huang, Jie; Liang, Shichang; Zhou, Zhixuan; Ren, Leisheng; Liu, Sen

    2013-08-01

    Because of the large amount of debris in a debris cloud, it is hard to achieve a complete description of all the debris by a simple function. One workable approach is to use a group of complete distribution functions and MonteCarlo method to simplify the debris cloud simulation. Enough debris samples are produced by SPH simulation and debris identification program firstly. According to the distribution functions of debris mass, velocity and space angles determined by statistical analysis, the engineering model of debris cloud is set up. Combining the engineering model and MonteCarlo method, the fast simulation of debris cloud produced by an aluminum projectile impacting an aluminum plate is realized. An application example of the debris cloud engineering model to predict satellite damage caused by space debris impact is given at the end.

  10. Hypervelocity impact of tungsten cubes on spaced armour

    NASA Astrophysics Data System (ADS)

    Chandel, Pradeep S.; Sood, Dharmanshu; Kumar, Rajeev; Sharma, Prince; Sewak, Bhupinder; Bhardwaj, Vikas; Athwal, Manoj; Mangla, Vikas; Biswas, Ipsita; Singh, Manjit

    2012-07-01

    The paper summarizes the experimental observations and simulation studies of damage potential of tungsten alloy cubes on relatively thin mild steel spaced armour target plates in the velocity regime 1300 - 4000 ms-1 using Two Stage Light Gas Gun technique. The cubes of size 9.5 mm and 12 mm having mass 15 g and 30 g respectively were made to impact normally on three target plates of size 300 mm × 300 mm of thickness 4, 4 and 10 mm at 100 mm distance apart. Flash radiography has been used to image the projectile-target interaction in the nitrogen environment at 300 mbar vacuum at room temperature. The results reveal clear perforation by 9.5 mm cube in all the three target plates up to impact velocity of about 2000 m/s. While 12 mm cube can perforate the spaced armour upto impact velocity of 4000 m/s. This shows that 9.5mm tungsten alloy cube is not effective beyond 2000 m/s while 12 mm tungsten alloy cube can defeat the spaced armour upto 4000 m/s. The simulation studies have been carried out using Autodyn 3D nonlinear code using Lagrange solver at velocities 1200 - 4000 m/s. The simulation results are in good agreement with the experimental findings.

  11. Hypervelocity impact effects on solar cells. Final technical report

    SciTech Connect

    Rose, M.F.

    1993-01-01

    One of the space hazards of concern is the problem of natural matter and space debris impacting spacecraft. This phenomena has been studied since the early sixties and a methodology has been established to determine the relative abundance of meteoroids as a function of mass. As the mass decreases, the probability of suffering collisions increases, resulting in a constant bombardment from particles in the sub-micron range. The composition of this cosmic dust is primarily Fe, Ni, Al, Mg, Na, Ca, Cr, H, O, and Mn. In addition to mechanical damage, impact velocities greater than 5 km/sec can produce shock induced ionization effects with resultant surface charging and complex chemical interactions. The upper limit of the velocity distribution for these particles is on the order of 70 km/sec. The purpose of this work was to subject samples from solar power arrays to debris flux typical of what would be encountered in space, and measure the degradation of the panels after impact.

  12. Methodology of design and analysis of external walls of space station for hypervelocity impacts by meteoroids and space debris

    NASA Technical Reports Server (NTRS)

    Batla, F. A.

    1986-01-01

    The development of criteria and methodology for the design and analysis of Space Station wall elements for collisions with meteoroids and space debris at hypervelocities is discussed. These collisions will occur at velocities of 10 km/s or more and can be damaging to the external wall elements of the Space Station. The wall elements need to be designed to protect the pressurized modules of the Space Station from functional or structural failure due to these collisions at hypervelocities for a given environment and population of meteoroids and space debris. The design and analysis approach and the associated computer program presented is to achieve this objective, including the optimization of the design for a required overall probability of no penetration. The approach is based on the presently available experimental and actual data on meteoroids and space debris flux and damage assessments and the empirical relationships resulting from the hypervelocity impact studies in laboratories.

  13. Elemental analyses of hypervelocity micro-particle impact sites on interplanetary dust experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, Jim J.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity micro-particles that struck the active sensors with enough energy to breakdown the 0.4 to 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. These discharge features, which include 50 micron diameter areas where the aluminum top layer has been vaporized, facilitate the location of the impacts. The high purity Al-SiO2-Si substrates allow detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) is used to create two-dimensional elemental ion intensity maps of micro-particle impact sites on the IDE sensors. The element intensities in the central craters of the impacts are corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results are used to classify the particles' origins as 'manmade', 'natural' or 'indeterminate'. The last classification results from the presence of too little impactor residue (a frequent occurrence on leading edge impacts), analytical interference from high background contamination, the lack of information on silicon residue, the limited usefulness of data on aluminum in the central craters, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. A

  14. Hypervelocity Dust Impacts in Space and the Laboratory

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  15. Microanalysis of Hypervelocity Impact Residues of Possible Interstellar Origin

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Anasari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.; Bridges, John; Brownlee, Donald E.; Burchell, Mark; Burghammer, Manfred; Butterworth, Anna L.; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M.; Doll, Ryan; Floss, Christine; Flynn, George; Fougeray, Patrick; Frank, David; Sandford, Scott A.; Zolensky, Michael E.

    2012-01-01

    The NASA Stardust spacecraft deployed two collector trays, one dedicated to the collection of dust from Comet Wild 2, and the other for the capture of interstellar dust (ISD). The samples were returned successfully to Earth in 2006, and now provide an unprecedented opportunity for laboratory-based microanalysis of materials from the outer solar system and beyond. Results from the cometary sample studies have demonstrated that Wild 2 contains much more refractory condensate material and much less pristine extra-solar material than expected, which further indicates that there was significant transport of inner solar system materials to the Kuiper Belt in the early solar system [1]. The analysis of the interstellar samples is still in the preliminary examination (PE) phase, due to the level of difficulty in the definitive identification of the ISD features, the overall low abundance, and its irreplaceable nature, which necessitates minimally invasive measurements [2]. We present here coordinated microanalysis of the impact features on the Al foils, which have led to the identification of four impacts that are possibly attributable to interstellar dust. Results from the study of four ISD candidates captured in aerogel are presented elsewhere [2].

  16. Impact features tracing hypervelocity airbursts on earth from the atmosphere to the ground

    NASA Astrophysics Data System (ADS)

    Courty, M. M.

    2012-12-01

    In the absence of deep craters, impact features have been debated to possibly tracing proximal ejecta from yet undetected structure or airburst debris from a meteorite collision with the terrestrial atmosphere or lithosphere. We examine the possibility for impact features to have originated from the shock layer formed ahead of a hypervelocity collider in the earth atmosphere. This hypothesis is approached by comparing impact features from controlled materials to puzzling geological ones: (1) debris collected at the ground from a high altitude meteor airburst recorded on 2011 August 2nd in Southern France; (2) laboratory experiments performed for defense purposes at the CEA Gramat Center (France) with the Persephone hypervelocity light gas gun; (3) the Zhamanshin impact breccia, the Lybian glass, the Egyptian Dakhleh glass, the Tasmanian Darwin glass, the Australasian tektite strewnfield and the Australian Henbury crater field. The Persephone experiments include collisions from 4.1 to 7.9 km/s by a steel projectile embedded into a polycarbonate holder with a polystyrene separator on to a 40 mm thick aluminum target. The impact features been characterized by coupling Environmental SEM with EDS, Raman micro-spectrometry, XRD, TEM, Tof-SIMS, ICP-MS and isotope analyses. Similar carbonaceous polymorphs that are closely imbricated at meso to nano-scales to the crystallized components (including the metal blebs) and to the glass phases (spherules or matrix) are present in all the impact features studied. They dominantly consist of aliphatic polymers, rare aromatic compounds, with graphite-lonsdaleite inclusions. The Persephone experiments help relating the graphite-lonsdaleite couple to transformed organic residues by the transient high pressure shock (a few tens MPa) and the transient heating (ca 100°C) and the aliphatic polymers to new hydrocarbons that formed from the pulverized polycarbonate and polystyrene. The Persephone experiments provide the controlled situation

  17. Vulnerability analysis of a pressurized aluminum composite vessel against hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Hereil, Pierre-Louis; Plassard, Fabien; Mespoulet, Jérôme

    2015-09-01

    Vulnerability of high pressure vessels subjected to high velocity impact of space debris is analyzed with the response of pressurized vessels to hypervelocity impact of aluminum sphere. Investigated tanks are CFRP (carbon fiber reinforced plastics) overwrapped Al vessels. Explored internal pressure of nitrogen ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from Xrays radiographies and particle velocity measurements show the evolution of debris cloud and shock wave propagation in pressurized nitrogen. Observation of recovered vessels leads to the damage pattern and to its evolution as a function of the internal pressure. It is shown that the rupture mode is not a bursting mode but rather a catastrophic damage of the external carbon composite part of the vessel.

  18. Hypervelocity impact tests on Space Shuttle Orbiter RCC thermal protection material. [Reinforced Carbon-Carbon laminate

    NASA Technical Reports Server (NTRS)

    Humes, D. H.

    1978-01-01

    It is noted that the Shuttle Orbiter will be more subject to meteoroid impact than previous spacecraft, due to its greater surface area and longer cumulative time in space. The Orbiter structural material, RCC, a reinforced carbon-carbon laminate with a diffused silicon carbide coating, is evaluated in terms of its resistance to hypervelocity impact. It was found that the specimens (disks with a mass of 34 g and a thickness of 5.0 mm) were cratered only on the front surface when the impact energy was 3 J or less. At 3 J, a trace of the black carbon interior was exposed. The specimens were completely penetrated when the energy was 34 J or greater.

  19. Momentum distribution in debris cloud during hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Lemaster, P.; Mount, A.; Zee, R. H.

    1992-01-01

    The long term operation of the Space Station Freedom requires a scheme to protect it from high velocity impacts by both man-made particles and micrometeor fragments. One such scheme is the use of metal plates to serve as shields against such orbital debris. These 'bumper' plates, as they are referred to, serve to break up any incident particle and redistribute its momentum over a larger area. It is therefore necessary to determine the momentum distribution within the debris cloud produced by such collisions in order to evaluate a materials effectiveness at accomplishing this task. This paper details the design and development of an innovative device which has made this possible. Momentum profiles were obtained for a series of test conditions. Total momentum values in the debris cloud were then calculated from these profiles. These results indicated that a momentum amplification exists with a multiplication factor of between 2 and 3. Thus the role of the bumper to serve as a means for momentum redistribution and not reduction was verified.

  20. Empirical predictions of hypervelocity impact damage to the space station

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Hayashida, K. B.

    1991-01-01

    A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft is described. The spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and the pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on Earth. A module of the program facilitates the creation of the data base of experimental results that are used by the damage prediction modules of the code. The user has the choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall. One prediction module is based on fitting low order polynomials through subsets of the experimental data. Another prediction module fits functions based on nondimensional parameters through the data. The last prediction technique is a unique approach that is based on weighting the experimental data according to the distance from the design point.

  1. Threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact

    SciTech Connect

    Ju, Yuanyuan; Zhang, Qingming

    2015-12-15

    Molecular dynamics method is used to study the threshold for plasma phase transition of aluminum single crystal induced by hypervelocity impact. Two effective simulation methods, piston-driven method and multi-scale shock technique, are used to simulate the shock wave. The simulation results from the two methods agree well with the experimental data, indicating that the shock wave velocity is linearly dependent on the particle velocity. The atom is considered to be ionized if the increase of its internal energy is larger than the first ionization energy. The critical impact velocity for plasma phase transition is about 13.0 km/s, corresponding to the threshold of pressure and temperature which is about 220 GPa and 11.0 × 10{sup 3 }K on the shock Hugoniot, respectively.

  2. Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Silberschmidt, Vadim V.

    2015-09-01

    The mechanical response of CFRP-Al/HC (carbon fibre-reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact (up to 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by mean of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria, delamination modelled using cohesive-zone elements. The damaged Al/HC core is assessed on the basis of a Johnson Cook dynamic failure model while its hydrodynamic response is captured using the Mie-Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing HC core.

  3. Hypervelocity dust impacts on the Wind spacecraft: Correlations between Ulysses and Wind interstellar dust detections

    NASA Astrophysics Data System (ADS)

    Wood, S. R.; Malaspina, David M.; Andersson, Laila; Horanyi, Mihaly

    2015-09-01

    The Wind spacecraft is positioned just sunward of Earth at the first Lagrange point, while the Ulysses spacecraft orbits above and below the ecliptic plane crossing the ecliptic as far from the Sun as the orbit of Jupiter (˜5 AU). While Wind does not carry a dedicated dust detector, we demonstrate the ability of Wind electric field measurements to detect hypervelocity dust impacts through their impact plasma signatures. Interstellar dust (ISD) and interplanetary dust particles are differentiated based on a yearly modulation of the ISD flux. Measurements of ISD flux variation by Wind are found to be in good agreement with ISD flux variation measured by Ulysses. While measurements of the ISD flow direction through the Solar System determined by Wind could not be directly compared to those from Ulysses, strong variation in ISD flow direction was observed during similar time periods by both spacecraft.

  4. Magnetic field amplification and generation in hypervelocity meteoroid impacts with application to lunar paleomagnetism

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Vickery, A.

    1984-01-01

    A one-dimensional numerical model for the expansion of impact-produced vapor clouds is used to investigate magnetic field generation mechanisms in events such as meteor collisions with the moon. The resulting cloud properties, such as ionization fraction, electrical conductivity, radial expansion velocity, mass density, and energy density are estimated. The model is initiated with the peak shock states and pressure thresholds for incipient and complete vaporization of anorthosite lunar surface materials by iron and GA composition meteorites. The expansion of the spherical gas cloud into a vacuum was traced with a one-dimensional explicit lagrangian hydrodynamic code. The hypervelocity impact plasmas produced are found to be significant in the amplitudes and orientations of the magnetic fields generated. An ambient magnetic field could have been provided by the core dynamo, which would have interacted with the expanding plasmas and formed induced paleomagnetic fields. Several other field-contribution mechanisms are discussed and discarded as potential remanent magnetism contributors.

  5. Modelling hypervelocity impact fracture of ceramic panels using a mesh-free method

    NASA Astrophysics Data System (ADS)

    Das, R.; Mikhail, J.; Cleary, P. W.

    2010-06-01

    This paper studies the application of Smoothed Particle Hydrodynamics (SPH) for modelling hyper-velocity impact fracture and fragmentation in ceramic panels. Numerical modelling of complex fracture processes is important to understand the fundamental failure mechanisms in a variety of systems. Finite Element Method (FEM) is the mesh-based method conventionally applied to numerical simulation of fracture and fragmentation. However, the mesh generation and manipulation do not often provide the desired accuracy of the solutions, especially in problems with extreme deformations and discontinuities. To overcome this, here we use a mesh-free method called Smoothed Particle Hydrodynamic (SPH) to investigate the three-dimensional fracture of ceramic panels. The effect of impact speed on the fracture pattern and energy transfer is analysed. The SPH simulations are found to be robust in understanding the fracture mechanisms and in providing crucial design parameters.

  6. Magnetic field amplification and generation in hypervelocity meteoroid impacts with application to lunar paleomagnetism

    SciTech Connect

    Hood, L.L.; Vickery, A.

    1984-11-15

    A one-dimensional numerical model for the expansion of impact-produced vapor clouds is used to investigate magnetic field generation mechanisms in events such as meteor collisions with the moon. The resulting cloud properties, such as ionization fraction, electrical conductivity, radial expansion velocity, mass density, and energy density are estimated. The model is initiated with the peak shock states and pressure thresholds for incipient and complete vaporization of anorthosite lunar surface materials by iron and GA composition meteorites. The expansion of the spherical gas cloud into a vacuum was traced with a one-dimensional explicit lagrangian hydrodynamic code. The hypervelocity impact plasmas produced are found to be significant in the amplitudes and orientations of the magnetic fields generated. An ambient magnetic field could have been provided by the core dynamo, which would have interacted with the expanding plasmas and formed induced paleomagnetic fields. Several other field-contribution mechanisms are discussed and discarded as potential remanent magnetism contributors.

  7. Structural Damage Prediction and Analysis for Hypervelocity Impact: Properties of Largest Fragment Produced by Hypervelocity Impact of Aluminum Spheres with Thin Aluminum Sheets

    NASA Technical Reports Server (NTRS)

    Piekutowski, Andrew J.

    1995-01-01

    Results of a series of hypervelocity impact tests are presented. In these tests, 1.275-g, 9.53-mm-diameter, 2017-T4 aluminum spheres were fired at normal incidence at eight thicknesses of 6061-T6 aluminum sheet. Bumper thickness to projectile diameter (t/D) ratio ranged from 0.026 to 0.424. Nominal impact velocity was 6.7 km/s. Results of five tests using 6.35, 9.53, and 12.70-mm-diameter aluminum spheres and other aluminum alloy bumpers are also given. A large chunky fragment of projectile was observed at the center of the debris clouds produced by the impacts. The equivalent diameter of this large fragment ranged from 5.5 mm for the lowest t/D ratio to a minimum of 0.6 mm for the case where maximum breakup of the projectile occurred (t/D approximately 0.2 to 0.3). When the t/D ratio was 0.42, numerous large flaky fragments were evenly distributed in the external bubble of bumper debris. Velocity of the large central fragments decreased continuously with increasing t/D ratio, ranging from about 99 percent to less than 80 percent of the impact velocity. The change in the velocity of small fragments spalling from the rear of the projectile was used to obtain a relationship showing a linear increase in the size of the central projectile fragment with decrease in the shock-induced stress in the projectile.

  8. Numerical Simulation of Oblique Impacts: Impact Melt and Transient Cavity Size

    NASA Technical Reports Server (NTRS)

    Artemieva, N. A.; Ivanov, B. A.

    2001-01-01

    We present 3D hydrocode numerical modeling for oblique impacts (i) to estimate the melt production and (ii) to trace the evolution of the transient cavity shape till the crater collapse. Additional information is contained in the original extended abstract.

  9. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    NASA Technical Reports Server (NTRS)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  10. Recording and investigation of the seismic signal generated by hypervelocity impact experiments and numerical models

    NASA Astrophysics Data System (ADS)

    Güldemeister, N.; Moser, D.; Wünnemann, K.; Hoerth, T.; Schäfer, F.

    2013-09-01

    Meteorite impacts can cause environmental consequences, one of which is the generation of ground motions that may exceed the magnitude of the largest earthquakes [1]. Impacts generate shock waves that attenuate with distance until they even tually turn into seismic waves. Thus, meteorite impact may be considered as a source for seismic shaking similar to earthquakes. Seismic signals have been recorded in explosion experiments [2] and in hydrocode models of large impact events such as the Chicxulub crater [3]. To determine how much of the kinetic energy Ekin of the impactoris turned into seismic energy Eseis can be investigated experimentally (by recording the acoustic emission) or by numerical models. The ratio of Eseis/Ekin is the so called seismic efficiency k. The seismic efficiency depends on material properties (porosity) and is usually estimated to range between 10-2 and 10-6 [2,4]. In the framework of the "MEMIN" (multidisciplinary experimental and modeling impact crater research network) project a suite of hypervelocity impact experiments on a decimeter scale have been carried out [5]. We use acoustic emission (AE) technique and pressure gauges in high spatiotemporal Meteorite impacts can cause environmental consequences, one of which is the generation of ground motions that may exceed the magnitude of the largest earthquakes [1]. Impacts generate shock waves that attenuate with distance until they even tually turn into seismic waves. Thus, meteorite impact may be considered as a source for seismic shaking similar to earthquakes. Seismic signals have been recorded in explosion experiments [2] and in hydrocode models of large impact events such as the Chicxulub crater [3]. To determine how much of the kinetic energy Ekin of the impactoris turned into seismic energy Eseis can be investigated experimentally (by recording the acoustic emission) or by numerical models. The ratio of Eseis/Ekin is the so called seismic efficiency k. The seismic efficiency depends

  11. Hypervelocity nanoparticle impacts on free-standing graphene: A sui generis mode of sputtering

    SciTech Connect

    Eller, Michael J.; Della-Negra, Serge; Kim, Hansoo; Young, Amanda E.

    2015-01-28

    The study of the interaction of hypervelocity nano-particles with a 2D material and ultra-thin targets (single layer graphene, multi-layer graphene, and amorphous carbon foils) has been performed using mass selected gold nano-particles produced from a liquid metal ion source. During these impacts, a large number of atoms are ejected from the graphene, corresponding to a hole of ∼60 nm{sup 2}. Additionally, for the first time, secondary ions have been observed simultaneously in both the transmission and reflection direction (with respect to the path of the projectile) from a 2D target. The ejected area is much larger than that predicted by molecular dynamic simulations and a large ionization rate is observed. The mass distribution and characteristics of the emitted secondary ions are presented and offer an insight into the process to produce the large hole observed in the graphene.

  12. Extension and Validation of a Hybrid Particle-Finite Element Method for Hypervelocity Impact Simulation. Chapter 2

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.; Shivarama, Ravishankar

    2004-01-01

    The hybrid particle-finite element method of Fahrenthold and Horban, developed for the simulation of hypervelocity impact problems, has been extended to include new formulations of the particle-element kinematics, additional constitutive models, and an improved numerical implementation. The extended formulation has been validated in three dimensional simulations of published impact experiments. The test cases demonstrate good agreement with experiment, good parallel speedup, and numerical convergence of the simulation results.

  13. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile.

    PubMed

    Xia, Kang; Zhan, Haifei; Hu, De'an; Gu, Yuantong

    2016-01-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989

  14. Panspermia Survival Scenarios for Organisms that Survive Typical Hypervelocity Solar System Impact Events.

    NASA Astrophysics Data System (ADS)

    Pasini, D.

    2014-04-01

    Previous experimental studies have demonstrated the survivability of living cells during hypervelocity impact events, testing the panspermia and litho-panspermia hypotheses [1]. It has been demonstrated by the authors that Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [2]), survive impacts up to 6.93 km s-1 (approx. shock pressure 40 GPa) [3, 4]. Also shown to survive impacts up to 5.49 km s-1 is the tardigrade species Hypsibius dujardini (a complex micro-animal consisting of 40,000 cells) [5, 6]. It has also been shown that they can survive sustained pressures up to 600 MPa using a water filled pressure capsule [7]. Additionally bacteria can survive impacts up to 5.4 km s-1 (~30 GPa) - albeit with a low probability of survival [1], and the survivability of yeast spores in impacts up to 7.4 km s-1 (~30 GPa) has also recently been demonstrated [8]. Other groups have also reported that the lichen Xanthoria elegans is able to survive shocks in similar pressure ranges (~40 GPa) [9]. Here we present various simulated impact regimes to show which scenarios are condusive to the panspermia hypothesis of the natural transfer of life (via an icy body) through space to an extraterrestrial environment.

  15. Elemental analyses of hypervelocity microparticle impact sites on Interplanetary Dust Experiment sensor surfaces

    NASA Technical Reports Server (NTRS)

    Simon, Charles G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, Jim J.; Brownlee, D. E.

    1993-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to break down the 0.4 or 1.0 micron thick SIO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle impact sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results were used to classify the particles' origins as 'manmade,' 'natural,' or 'indeterminate.' The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters of these features. Thus far a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF have been analyzed: 36 from tray C-9 (Leading (ram), or East, side), 18 from tray C-3

  16. Elemental Analyses of Hypervelocity Microparticle Impact Sites on Interplanetary Dust Experiment Sensor Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. A.; Wortman, J. J.; Brownlee, D. E.

    1992-01-01

    The Interplanetary Dust Experiment (IDE) had over 450 electrically active ultra-high purity metal-oxide-silicon impact detectors located on the six primary sides of the Long Duration Exposure Facility (LDEF). Hypervelocity microparticles (approximately 0.2 to approximately 100 micron diameter) that struck the active sensors with enough energy to breakdown the 0.4 or 1.0 micron thick SiO2 insulator layer separating the silicon base (the negative electrode), and the 1000 A thick surface layer of aluminum (the positive electrode) caused electrical discharges that were recorded for the first year of orbit. The high purity Al-SiO2-Si substrates allowed detection of trace (ppm) amounts of hypervelocity impactor residues. After sputtering through a layer of surface contamination, secondary ion mass spectrometry (SIMS) was used to create two-dimensional elemental ion intensity maps of microparticle sites on the IDE sensors. The element intensities in the central craters of the impacts were corrected for relative ion yields and instrumental conditions and then normalized to silicon. The results classification resulted from the particles' origins as 'manmade', 'natural', or 'indeterminate'. The last classification resulted from the presence of too little impactor residue, analytical interference from high background contamination, the lack of information on silicon and aluminum residues, or a combination of these circumstances. Several analytical 'blank' discharges were induced on flight sensors by pressing down on the sensor surface with a pure silicon shard. Analyses of these blank discharges showed that the discharge energy blasts away the layer of surface contamination. Only Si and Al were detected inside the discharge zones, including the central craters, of these features. Thus far, a total of 79 randomly selected microparticle impact sites from the six primary sides of the LDEF were analyzed: 36 from tray C-9 (Leading (ram), or east, side), 18 from tray C-3 (Trailing

  17. Deformation mechanisms and damage in α-alumina under hypervelocity impact loading

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Branicio, Paulo S.

    2008-04-01

    Deformation mechanisms in α-alumina under hypervelocity impact are investigated using molecular dynamics simulations containing 540×106 atoms. A cylindrical projectile impacting normal to the (0001) surface at 18km/s generates large temperature and pressure gradients around the impact face, and consequently local amorphization of the substrate in a surrounding hemispherical region is produced. Away from the impact face, a wide range of deformations emerge and disappear as a function of time under the influence of local stress fields, e.g., basal and pyramidal slips and basal and rhombohedral twins, all of which show good agreement with the experimental and theoretical results. New deformation modes are observed, such as twins along {01¯11}, which propagate at a roughly constant speed of 8km/s and nucleate a large amount of defects where subsequent fractures initiate. The relation between deformation patterns and local stress levels is investigated. During unloading, we observe that microcracks nucleate extensively at the intersections of previous deformations within an hourglass-shaped volume that connects top and bottom free surfaces. From the simulation, the fracture toughness of alumina is estimated to be 2.0±0.5MPa√m. The substrate eventually fails along the surface of the hourglass region during spallation when clusters of substrate material are ejected from both free surfaces.

  18. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eric; Lear, Dana

    2009-01-01

    Metallic foams are a relatively new class of materials with low density and novel physical, mechanical, thermal, electrical and acoustic properties. Although incompletely characterized, they offer comparable mechanical performance to traditional spacecraft structural materials (i.e. honeycomb sandwich panels) without detrimental through-thickness channeling cells. There are two competing types of metallic foams: open cell and closed cell. Open cell foams are considered the more promising technology due to their lower weight and higher degree of homogeneity. Leading micrometeoroid and orbital debris shields (MMOD) incorporate thin plates separated by a void space (i.e. Whipple shield). Inclusion of intermediate fabric layers, or multiple bumper plates have led to significant performance enhancements, yet these shields require additional non-ballistic mass for installation (fasteners, supports, etc.) that can consume up to 35% of the total shield weight [1]. Structural panels, such as open cell foam core sandwich panels, that are also capable of providing sufficient MMOD protection, represent a significant potential for increased efficiency in hypervelocity impact shielding from a systems perspective through a reduction in required non-ballistic mass. In this paper, the results of an extensive impact test program on aluminum foam core sandwich panels are reported. The effect of pore density, and core thickness on shielding performance have been evaluated over impact velocities ranging from 2.2 - 9.3 km/s at various angles. A number of additional tests on alternate sandwich panel configurations of comparable-weight have also been performed, including aluminum honeycomb sandwich panels (see Figure 1), Nomex honeycomb core sandwich panels, and 3D aluminum honeycomb sandwich panels. A total of 70 hypervelocity impact tests are reported, from which an empirical ballistic limit equation (BLE) has been derived. The BLE is in the standard form suitable for implementation in

  19. Hypervelocity impact testing of advanced materials and structures for micrometeoroid and orbital debris shielding

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric L.

    2013-02-01

    A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.

  20. Hypervelocity Impact Performance of Open Cell Foam Core Sandwich Panel Structures

    NASA Technical Reports Server (NTRS)

    Ryan, S.; Ordonez, E.; Christiansen, E. L.; Lear, D. M.

    2010-01-01

    Open cell metallic foam core sandwich panel structures are of interest for application in spacecraft micrometeoroid and orbital debris shields due to their novel form and advantageous structural and thermal performance. Repeated shocking as a result of secondary impacts upon individual foam ligaments during the penetration process acts to raise the thermal state of impacting projectiles ; resulting in fragmentation, melting, and vaporization at lower velocities than with traditional shielding configurations (e.g. Whipple shield). In order to characterize the protective capability of these structures, an extensive experimental campaign was performed by the Johnson Space Center Hypervelocity Impact Technology Facility, the results of which are reported in this paper. Although not capable of competing against the protection levels achievable with leading heavy shields in use on modern high-risk vehicles (i.e. International Space Station modules), metallic foam core sandwich panels are shown to provide a substantial improvement over comparable structural panels and traditional low weight shielding alternatives such as honeycomb sandwich panels and metallic Whipple shields. A ballistic limit equation, generalized in terms of panel geometry, is derived and presented in a form suitable for application in risk assessment codes.

  1. Electrical signatures of hypervelocity impact plasma with applications in in-situ particle detection

    NASA Astrophysics Data System (ADS)

    Rudolph, M.; Schimmerohn, M.; Osterholz, J.; Schäfer, F.

    2014-08-01

    Hypervelocity impacts of micrometeoroid and space debris particles can produce a highly transient plasma cloud that shows a spectrum of distinct electrical phenomena ranging from charge production to electrostatic field and electromagnetic wave generation. The coupling of these effects to electrical probes can be used as a means of in-situ debris detection to monitor the polluted orbits around the Earth. In the past, some detectors were built mainly for the detection of natural dust populations in space, such as a long heritage of charge collection detectors. In addition, several radio astronomy and ambient plasma instruments that were not specifically dedicated to particle detection revealed impact-induced anomalies during interplanetary missions. Most of them were explained by the interaction of electrically sensitive probes with free charges produced upon impact. For the application in low Earth orbits, one needs to take into account, that the man-made debris population differs from natural populations in many regards, as does the plasma environment between interplanetary space and in orbits close to Earth. The paper at hand gives a summary of detectors with flight heritage and devises a first concept for in situ space debris detectors in low Earth orbit by exploiting past experience with dust detectors in deep space.

  2. Processing and Synthesis of Pre-Biotic Chemicals in Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Brickerhoff, W. B.; Managadze, G. G.; Chumikov, A. E.; Managadze, N. G.

    2005-01-01

    Hypervelocity impacts (HVIs) may have played a significant role in establishing the initial organic inventory for pre-biotic chemistry on the Earth and other planetary bodies. In addition to the delivery of organic compounds intact to planetary surfaces, generally at velocities below approx.20 km/s, HVIs also enable synthesis of new molecules. The cooling post-impact plasma plumes of HVIs in the interstellar medium (ISM), the protosolar nebula (PSN), and the early solar system comprise pervasive conditions for organic synthesis. Such plasma synthesis (PS) can operate over many length scales (from nm-scale dust to planets) and energy scales (from molecular rearrangement to atomization and recondensation). HVI experiments with the flexibility to probe the highest velocities and distinguish synthetic routes are a high priority to understand the relevance of PS to exobiology. We describe here recent studies of PS at small spatial scales and extremely high velocities with pulsed laser ablation (PLA). PLA can simulate the extreme plasma conditions generated in impacts of dust particles at speeds of up to 100 km/s or more. When applied to carbonaceous solids, new and pre-biotically relevant molecular species are formed with high efficiency [1,2].

  3. Secondary ion mass spectrometry (SIMS) analysis of hypervelocity microparticle impact sites on LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.

    1995-01-01

    Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal

  4. Scaling of sub-surface deformation in hypervelocity impact experiments on porous sandstone

    NASA Astrophysics Data System (ADS)

    Buhl, Elmar; Poelchau, Michael; Dresen, Georg; Kenkmann, Thomas

    2014-11-01

    Two hypervelocity impact experiments into dry sandstone (Seeberger Sandstein, ~ 23% porosity), performed under similar impact conditions but with different projectile sizes, have been analyzed to investigate the size scaling of impact damage. For one experiment a 2.5 mm steel projectile was impacted at 4.8 km s- 1 onto a sandstone cube of 20 cm side length. For the other experiment a 10 mm iron meteorite projectile was impacted at 4.6 km s- 1 onto a sandstone cube of 50 cm side length. The resulting kinetic impact energies of 773 and 42,627 J led to crater cavities of 7600 and 612,000 mm3. Investigation of thin sections along cross-sections through both craters revealed that the same deformation microstructures are present in both experiments. The occurrence of different microstructural patterns was mapped and zones of characteristic deformation were defined. This mapping was used to calculate the volumes of material deformed by specific mechanisms. Comparing the results, normalized to the size of the projectile, showed that the sub-surface damage is very similar in size, volume and geometry for both experiments. Analysis of deformation bands found in both experiments regarding their long axes orientation showed that these features are developed under shear deformation. Particle size distributions (PSD), expressed as power-law fits, were measured to quantify the impact damage. Comparison showed that the decay of the power-law exponents with increasing distance from the impact point source is similar for both experiments. Reconstruction of the loading path allowed to infer the stresses under which distinct deformation microstructures are developed.

  5. MEMIN: Chemical Modification of Projectile Spheres, Target Melts and Shocked Quartz in Hypervelocity Impact Experiments

    NASA Astrophysics Data System (ADS)

    Ebert, M.; Hecht, L.; Deutsch, A.; Kenkmann, T.

    2011-03-01

    We present results of hypervelocity cratering experiments using iron meteorite as projectile and a sandstone target. The ejecta show shock features (melting, PDFs, lechatelierite) and physical as well as chemical mixing between projectile and target.

  6. Study of Damage of Gas-filled Spherical Pressure Vassel Subjected to Hypervelocity Impact by Space Debris with Different Velocity

    NASA Astrophysics Data System (ADS)

    Cai, Yuan; Pang, Baojun; Jia, Bin

    2013-08-01

    As an important component of spacecraft, if a gas-filled pressure vessel is impacted by space debris, it might occur even overall bursting. Spherical aluminum projectiles are used to simulate space debris impacting gas-filled spherical pressure vessel with hypervelocity. Projectiles impact places with the same thickness in different tests. By analyzing the maximum gas pressure of the spherical vessel, the inflation pressure is determined: 1.075MPa. By numerical simulation, the critical impact velocity to perforate the front wall is determined: 2.02mm ~ 2.31mm. As the projectile velocity increases, the damage patterns of the back wall are of different bulged outwards patterns.

  7. Momentum Transfer in Oblique Impacts: Implications for Asteroid Rotations

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Masahisa; Hasegawa, Sunao

    2000-07-01

    We calculate the momentum transfer efficiency for small cratering impacts from 59 high-velocity (0.76-4.4 km/s) oblique impact experiments using nylon projectiles and targets made of basalt, aluminum, mild steel, mortar, and nylon. High-speed video frames show an initial luminous stream downrange of impact point for all the target materials. For basaltic and mortar targets there follows axi-symmetric ejection of target material around surface normal at the impact point. Our results suggest that: (1) momentum carried away by the axi-symmetric ejecta would significantly contribute to the normal component of momentum transfer efficiency; and (2) thepenetration depth of the projectile into target could determine the tangential momentum transfer efficiency. We calculated the efficiency of angular momentum transfer from the translational motion of projectiles to the rotation of ellipsoidal asteroids using the efficiencies for the linear momentum. The efficiency is more than four times that for spherical asteroid at their principal axis ratio of 2 : 1.4 : 1. If the experimental results hold for the impact that formed the largest crater on 253 Mathilde, the largest projectile estimated may have despun the asteroid to the present slow rotation by chance.

  8. Hypervelocity impact testing of the Space Station utility distribution system carrier

    NASA Technical Reports Server (NTRS)

    Lazaroff, Scott

    1993-01-01

    A two-phase, joint JSC and McDonnell Douglas Aerospace-Huntington Beach hypervelocity impact (HVI) test program was initiated to develop an improved understanding of how meteoroid and orbital debris (M/OD) impacts affect the Space Station Freedom (SSF) avionic and fluid lines routed in the Utility Distribution System (UDS) carrier. This report documents the first phase of the test program which covers nonpowered avionic line segment and pressurized fluid line segment HVI testing. From these tests, a better estimation of avionic line failures is approximately 15 failures per year and could very well drop to around 1 or 2 avionic line failures per year (depending upon the results of the second phase testing of the powered avionic line at White Sands). For the fluid lines, the initial McDonnell Douglas analysis calculated 1 to 2 line failures over a 30 year period. The data obtained from these tests indicate the number of predicted fluid line failures increased slightly to as many as 3 in the first 10 years and up to 15 for the entire 30 year life of SSF.

  9. Hypervelocity Impact Test Fragment Modeling: Modifications to the Fragment Rotation Analysis and Lightcurve Code

    NASA Technical Reports Server (NTRS)

    Gouge, Michael F.

    2011-01-01

    Hypervelocity impact tests on test satellites are performed by members of the orbital debris scientific community in order to understand and typify the on-orbit collision breakup process. By analysis of these test satellite fragments, the fragment size and mass distributions are derived and incorporated into various orbital debris models. These same fragments are currently being put to new use using emerging technologies. Digital models of these fragments are created using a laser scanner. A group of computer programs referred to as the Fragment Rotation Analysis and Lightcurve code uses these digital representations in a multitude of ways that describe, measure, and model on-orbit fragments and fragment behavior. The Dynamic Rotation subroutine generates all of the possible reflected intensities from a scanned fragment as if it were observed to rotate dynamically while in orbit about the Earth. This calls an additional subroutine that graphically displays the intensities and the resulting frequency of those intensities as a range of solar phase angles in a Probability Density Function plot. This document reports the additions and modifications to the subset of the Fragment Rotation Analysis and Lightcurve concerned with the Dynamic Rotation and Probability Density Function plotting subroutines.

  10. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  11. Geochemical processes between steel projectiles and silica-rich targets in hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Ebert, Matthias; Hecht, Lutz; Deutsch, Alexander; Kenkmann, Thomas; Wirth, Richard; Berndt, Jasper

    2014-05-01

    The possibility of fractionation processes between projectile and target matter is critical with regard to the classification of the impactor type from geochemical analysis of impactites from natural craters. Here we present results of five hypervelocity MEMIN impact experiments (Poelchau et al., 2013) using the Cr-V-Co-Mo-W-rich steel D290-1 as projectile and two different silica-rich lithologies (Seeberger sandstone and Taunus quartzite) as target materials. Our study is focused on geochemical target-projectile interaction occurring in highly shocked and projectile-rich ejecta fragments. In all of the investigated impact experiments, whether sandstone or quartzite targets, the ejecta fragments show (i) shock-metamorphic features e.g., planar-deformation features (PDF) and the formation of silica glasses, (ii) partially melting of projectile and target, and (iii) significant mechanical and chemical mixing of the target rock with projectile material. The silica-rich target melts are strongly enriched in the "projectile tracer elements" Cr, V, and Fe, but have just minor enrichments of Co, W, and Mo. Inter-element ratios of these tracer elements within the contaminated target melts differ strongly from the original ratios in the steel. The fractionation results from differences in the reactivity of the respective elements with oxygen during interaction of the metal melt with silicate melt. Our results indicate that the principles of projectile-target interaction and associated fractionation do not depend on impact energies (at least for the selected experimental conditions) and water-saturation of the target. Partitioning of projectile tracer elements into the silicate target melt is much more enhanced in experiments with a non-porous quartzite target compared with the porous sandstone target. This is mainly the result of higher impact pressures, consequently higher temperatures and longer reaction times at high temperatures in the experiments with quartzite as

  12. HE friction sensitivity oblique impact sensitivity of explosives (the SKID test). Progress report, October 1971--December 1971

    SciTech Connect

    Van Velkinburgh, J.H.

    1998-12-31

    The oblique impact test series on LX-10-0 Lot 710-2 was completed. Two instrumented oblique impact tests were done using RX-04-DW dropped at 45{degrees}, 5{prime} on a smooth steel surface. One additional oblique impact using RX-04-EB at 45{degrees} 3.5{prime} was done. An instrumented vertical drop and oblique impact series was begun on RX-04-EC (96/4 HMX/Viton).

  13. A comparative study between experimental results and numerical predictions of multi-wall structural response to hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Peck, Jeffrey A.

    1992-01-01

    Over the last three decades, multiwall structures have been analyzed extensively, primarily through experiment, as a means of increasing the protection afforded to spacecraft structure. However, as structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under impact loading conditions. This paper presents the results of a preliminary numerical/experimental investigation of the hypervelocity impact response of multiwall structures. The results of experimental high-speed impact tests are compared against the predictions of the HULL hydrodynamic computer code. It is shown that the hypervelocity impact response characteristics of a specific system cannot be accurately predicted from a limited number of HULL code impact simulations. However, if a wide range of impact loadings conditions are considered, then the ballistic limit curve of the system based on the entire series of numerical simulations can be used as a relatively accurate indication of actual system response.

  14. On the forces produced by oblique projectile impact

    SciTech Connect

    Yew, C.H.

    1995-12-31

    A mathematical model for calculating the force produced by projectile impact on terrestrial target was developed based on assumptions that (1) the projectile was rigid, and (2) the target material near the nose section was displaced normally to the nose surface by the penetrating projectile. The assumption suggested that the crater or tunnel produced by the penetrating projectile was similar to that produced by a series of dynamic spherical cavity expansions initiated at the nose tip, and the growth rate of cavities was restricted by the nose shape of the projectile and its penetrating velocity vector. The model allowed the calculation of pressure against the penetrating projectile by taking the inertia and the resistant pressure of the moving soil into consideration. The effect of projectile obliquity on pressure distribution on the nose section of projectile could also be calculated by relating the angle of attack and the angle of incidence to the rate of local radius change of the expanding cavity. Using this model, the time history of force vector exerted on the projectile as well as the corresponding trajectory of penetration were calculated. For a small angle of incidence, the calculated axial and lateral forces exerted on the nose of projectile showed a reasonable agreement with those measured from reverse ballistic impact tests. It was demonstrated that the magnitude of forces depended upon the impact velocity, the shape of projectile`s nose section, and the relative density between the projectile and the target material. There were no quantitative measurement of forces when the angle of incidence was large i.e., a shallow impact. For this case, the calculated forces were compared and discussed with the results from similitude analysis.

  15. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic cm), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic cm. Projectile incidence angles examined included 0 deg, 45 deg, and 60 deg from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the diameter of the crater in

  16. Effects of Hypervelocity Impacts on Silicone Elastomer Seals and Mating Aluminum Surfaces

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Steinetz, Bruce M.

    2009-01-01

    While in space silicone based elastomer seals planned for use on NASA's Crew Exploration Vehicle (CEV) are exposed to threats from micrometeoroids and orbital debris (MMOD). An understanding of these threats is required to assess risks to the crew, the CEV orbiter, and missions. An Earth based campaign of hypervelocity impacts on small scale seal rings has been done to help estimate MMOD threats to the primary docking seal being developed for the Low Impact Docking System (LIDS). LIDS is being developed to enable the CEV to dock to the ISS (International Space Station) or to Altair (NASA's next lunar lander). The silicone seal on LIDS seals against aluminum alloy flanges on ISS or Altair. Since the integrity of a seal depends on both sealing surfaces, aluminum targets were also impacted. The variables considered in this study included projectile mass, density, speed, incidence angle, seal materials, and target surface treatments and coatings. Most of the impacts used a velocity near 8 km/s and spherical aluminum projectiles (density = 2.7 g/cubic centimeter), however, a few tests were done near 5.6 km/s. Tests were also performed using projectile densities of 7.7, 2.79, 2.5 or 1.14 g/cubic centimeter. Projectile incidence angles examined included 0 degrees, 45 degrees , and 60 degrees from normal to the plane of the target. Elastomer compounds impacted include Parker's S0383-70 and Esterline's ELA-SA-401 in the as received condition, or after an atomic oxygen treatment. Bare, anodized and nickel coated aluminum targets were tested simulating the candidate mating seal surface materials. After impact, seals and aluminum plates were leak tested: damaged seals were tested against an undamaged aluminum plate; and undamaged seals were placed at various locations over craters in aluminum plates. It has been shown that silicone elastomer seals can withstand an impressive level of damage before leaking beyond allowable limits. In general on the tests performed to date, the

  17. Tektite origin by hypervelocity asteroidal or cometary impact: The quest for the source craters

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian

    Tektites are natural glasses that are chemically homogeneous, often spherically symmetrical objects several centimeters in size, and occur in four known strewn fields on the surface of the Earth: the North American, moldavite (or Central European), Ivory Coast, and Australasian strewn fields. Tektites found within such strewn fields are related to each other with respect to their petrological, physical, and chemical properties as well as their age. A theory of tektite origin needs to explain the similarity of tektites in respect to age and certain aspects of isotopic and chemical composition within one strewn field, as well as the variety of tektite materials present in each strewn field. In addition to tektites on land, microtektites (which are generally less than 1 mm in diameter) have been found in deep-sea cores. Tektites are classified into three groups: (1) normal or splash-form tektites, (2) aerodynamically shaped tektites, and (3) Muong Nong-type tektites (sometimes also called layered tektites). The aerodynamic ablation results from partial remelting of glass during atmospheric passage after it was ejected outside the terrestrial atmosphere and quenched from a hot liquid. Aerodynamically shaped tektites are known mainly from the Australasian strewn field where they occur as flanged-button australites. The shapes of splash-form tektites (spheres, droplets, teardrops, dumbbells, etc., or fragments thereof) are the result of the solidification of rotating liquids in the air or vacuum. Mainly due to chemical studies, it is now commonly accepted that tektites are the product of melting and quenching of terrestrial rocks during hypervelocity impact on the Earth. The chemistry of tektites is in many respects identical to the composition of upper crustal material.

  18. Tektite origin by hypervelocity asteroidal or cometary impact: The quest for the source craters

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1992-01-01

    Tektites are natural glasses that are chemically homogeneous, often spherically symmetrical objects several centimeters in size, and occur in four known strewn fields on the surface of the Earth: the North American, moldavite (or Central European), Ivory Coast, and Australasian strewn fields. Tektites found within such strewn fields are related to each other with respect to their petrological, physical, and chemical properties as well as their age. A theory of tektite origin needs to explain the similarity of tektites in respect to age and certain aspects of isotopic and chemical composition within one strewn field, as well as the variety of tektite materials present in each strewn field. In addition to tektites on land, microtektites (which are generally less than 1 mm in diameter) have been found in deep-sea cores. Tektites are classified into three groups: (1) normal or splash-form tektites, (2) aerodynamically shaped tektites, and (3) Muong Nong-type tektites (sometimes also called layered tektites). The aerodynamic ablation results from partial remelting of glass during atmospheric passage after it was ejected outside the terrestrial atmosphere and quenched from a hot liquid. Aerodynamically shaped tektites are known mainly from the Australasian strewn field where they occur as flanged-button australites. The shapes of splash-form tektites (spheres, droplets, teardrops, dumbbells, etc., or fragments thereof) are the result of the solidification of rotating liquids in the air or vacuum. Mainly due to chemical studies, it is now commonly accepted that tektites are the product of melting and quenching of terrestrial rocks during hypervelocity impact on the Earth. The chemistry of tektites is in many respects identical to the composition of upper crustal material.

  19. New Evidence from Silica Debris Exo-Systems for Planet Building Hypervelocity Impacts

    NASA Astrophysics Data System (ADS)

    Lisse, Carey

    2010-05-01

    There is abundant inferential evidence for massive collisions in the early solar system [1]: Mercury's high density; Venus' retrograde spin; Earth's Moon; Mars' North/South hemispherical cratering anisotropy; Vesta's igneous origin [2]; brecciation in meteorites [3]; and Uranus' spin axis located near the plane of the ecliptic. Recent work [4] analyzing Spitzer mid-IR spectra has demonstrated the presence of large amounts of amorphous silica and SiO gas produced by a recent (within 103 - 104 yrs) large (MExcess > MPluto) hypervelocity impact collision around the young (~12 Myr old) nearby star HD172555, at the right age to form rocky planets. Many questions still remain concerning the location, lifetime, and source of the detected silica/SiO gas, which should not be stable in orbit at the estimated 5.8 AU from the HD172555 A5V primary for more than a few decades, yet it is also highly unlikely that we are fortuitously observing these systems immediately after silica formation A tabulation of the amount counts in the fine silica dust is decidedly Fe and Mg-atom poor compared to solar [4]. Three possible origins for the observed silica/SiO gas seem currently plausible : (1) A single hyperevelocity impact (>10km/s in order to produce silica and vaporize SiO at impact) creating an optically thick circumplanetary debris ring which is overflowing or releasing silica-rich material from its Hill sphere. Like terrestrial tektites, the Fe/Mg poor amorphous silica rubble is formed from quick-quenched molten/vaporized rock created during the impact. The amount of dust detected in the HD172555 system is easily enough to fill and overflow the Hill sphere radius of 0.03 AU for a Pluto-sized body at 5.8 AU from an A5 star, unless it is optically thick (> 1 cm in physical depth). Such a disk would provide a substantial fraction of the observed IR flux, and will be dense enough to self-shield its SiO gas, greatly extending its photolytic lifetime. The lifetime for such a system

  20. Hypervelocity impact damage response and characterization of thin plate targets at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Corbett, Brooke Myers

    The performance of a typical International Space Station (ISS) shield against the meteoroid and orbital debris (M/OD) impact threat is generally modeled by damage equations for the outer shield and the rear pressure wall. In their current forms, these damage equations neglect the on-orbit temperature extremes witnessed by the ISS. To address IF and HOW temperature extremes affect the performance of the ISS' typical M/OD shield, a comprehensive study was undertaken that investigated hole diameters in .063" thick 6061-T6 aluminum targets impacted at velocities from ˜2-7 km/s at 20°C, 110°C, and 210°C. Robust graphical and analytical analyses confirmed the existence of a statistically significant temperature effect, i.e., hole diameters in heated targets were larger than those in room temperature targets. A new temperature-dependent model was found via multivariable regression analysis that incorporates a linear velocity term and a temperature term based on a form of the cumulative distribution function. Numerical modeling of hypervelocity impacts (HVI) into elevated temperature targets was also performed to determine whether or not currently available material and failure models can adequately simulate the differences observed between room and elevated temperature target hole diameters. Statistical analyses showed that AUTODYN simulated the heated data almost as well as the room temperature data. However, the slightly worse Goodness of Fit (GOF) values between the heated empirical vs. simulated comparisons suggest that the simulations do not completely account for the observed temperature effect. A series of materials tests and observations were carried out on the post-impacted target plates to help explain the empirical data results with respect to material variability and deformation features. Rockwell B and K macro-hardness tests revealed that the hardness values for the targets impacted at 110°C were statistically significantly higher compared to those

  1. Laboratory Study of Titan's Surface Chemistry Induced by Meteoritic Impact Processing: Laser-Simulated Hypervelocity Impact on Ices

    NASA Astrophysics Data System (ADS)

    Nna-Mvondo, D.; Khare, B. N.; McKay, C. P.

    2008-12-01

    Titan's dense atmosphere, mostly composed of nitrogen and some methane, allows easy formation of long chains of organic molecules and high-molecular-weight organic solids, known as tholins. Over geologic time, both tholins and condensates of the organic gases accumulate in substantial amounts on the surface as liquid and solid. Titan's surface is then a repository of interesting organic molecules generated in the almost complete absence of water but sitting on top of ice. Until recently, researchers have been very careful in their speculations about what might be happening after these molecules get to the surface of Titan. What kind of organic chemistry occurs on the surface? Titan's thick atmosphere protects the surface and organics from harmful cosmic rays and ultraviolet radiation. It has been suggested that these organics could have been subjected to impact processing on Titan's and participate in the formation of products relevant to life such as amino acids, carboxylic acids, purines and pyrimidines. Subsequent impacts would probably have recycled some of the organic material back into the atmosphere. Furthermore the presence of condensable agents (C2N2, HCN, etc.) along with a natural concentrating mechanism makes polymerization of amino acids or others species likely. Laboratory simulations of meteoritic impact shocks onto Titan's icy surface have not yet been carried out, but preliminary experiments have been performed for planetary icy satellites. In these previous experiments, the possible chemical production induced by micrometeorite impact shocks on ices has been studied using a high-energy pulsed Nd-YAG laser to reproduce the shock phenomena during hypervelocity micrometeorite impacts into the icy material. The results show the production of various organics and inorganics. Here we have decided to extend those experiments to a simulated Titan's environment in order to study the effect of meteoritic impacts on the organic chemistry occurring on Titan

  2. Hypervelocity Impact Effect of Molecules from Enceladus' Plume and Titan's Upper Atmosphere on NASA's Cassini Spectrometer from Reactive Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Jaramillo-Botero, Andres; An, Qi; Cheng, Mu-Jeng; Goddard, William A., III; Beegle, Luther W.; Hodyss, Robert

    2012-11-01

    The NASA/ESA Cassini probe of Saturn analyzed the molecular composition of plumes emanating from one of its moons, Enceladus, and the upper atmosphere of another, Titan. However, interpretation of this data is complicated by the hypervelocity (HV) flybys of up to ˜18km/sec that cause substantial molecular fragmentation. To interpret this data we use quantum mechanical based reactive force fields to simulate the HV impact of various molecular species and ice clathrates on oxidized titanium surfaces mimicking those in Cassini’s neutral and ion mass spectrometer (INMS). The predicted velocity dependent fragmentation patterns and composition mixing ratios agree with INMS data providing the means for identifying the molecules in the plume. We used our simulations to predict the surface damage from the HV impacts on the INMS interior walls, which we suggest acts as a titanium sublimation pump that could alter the instrument’s readings. These results show how the theory can identify chemical events from hypervelocity impacts in space plumes and atmospheres, providing in turn clues to the internal structure of the corresponding sources (e.g., Enceladus). This may be valuable in steering modifications in future missions.

  3. Hypervelocity impact effect of molecules from Enceladus' plume and Titan's upper atmosphere on NASA's Cassini spectrometer from reactive dynamics simulation.

    PubMed

    Jaramillo-Botero, Andres; An, Qi; Cheng, Mu-Jeng; Goddard, William A; Beegle, Luther W; Hodyss, Robert

    2012-11-21

    The NASA/ESA Cassini probe of Saturn analyzed the molecular composition of plumes emanating from one of its moons, Enceladus, and the upper atmosphere of another, Titan. However, interpretation of this data is complicated by the hypervelocity (HV) flybys of up to ~18 km/sec that cause substantial molecular fragmentation. To interpret this data we use quantum mechanical based reactive force fields to simulate the HV impact of various molecular species and ice clathrates on oxidized titanium surfaces mimicking those in Cassini's neutral and ion mass spectrometer (INMS). The predicted velocity dependent fragmentation patterns and composition mixing ratios agree with INMS data providing the means for identifying the molecules in the plume. We used our simulations to predict the surface damage from the HV impacts on the INMS interior walls, which we suggest acts as a titanium sublimation pump that could alter the instrument's readings. These results show how the theory can identify chemical events from hypervelocity impacts in space plumes and atmospheres, providing in turn clues to the internal structure of the corresponding sources (e.g., Enceladus). This may be valuable in steering modifications in future missions. PMID:23215593

  4. Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.

    PubMed

    Aboud, Damon G K; Kietzig, Anne-Marie

    2015-09-15

    Oblique drop impacts were performed at high speeds (up to 27 m/s, We > 9000) with millimetric water droplets, and a linear model was applied to define the oblique splashing threshold. Six different sample surfaces were tested: two substrate materials of different inherent surface wettability (PTFE and aluminum), each prepared with three different surface finishes (smooth, rough, and textured to support superhydrophobicity). Our choice of surfaces has allowed us to make several novel comparisons. Considering the inherent surface wettability, we discovered that PTFE, as the more hydrophobic surface, exhibits lower splashing thresholds than the hydrophilic surface of aluminum of comparable roughness. Furthermore, comparing oblique impacts on smooth and textured surfaces, we found that asymmetrical spreading and splashing behaviors occurred under a wide range of experimental conditions on our smooth surfaces; however, impacts occurring on textured surfaces were much more symmetrical, and one-sided splashing occurred only under very specific conditions. We attribute this difference to the air-trapping nature of textured superhydrophobic surfaces, which lowers the drag between the spreading lamella and the surface. The reduced drag affects oblique drop impacts by diminishing the effect of the tangential component of the impact velocity, causing the impact behavior to be governed almost exclusively by the normal velocity. Finally, by comparing oblique impacts on superhydrophobic surfaces at different impact angles, we discovered that although the pinning transition between rebounding and partial rebounding is governed primarily by the normal impact velocity, there is also a weak dependence on the tangential velocity. As a result, pinning is inhibited in oblique impacts. This led to the observation of a new behavior in highly oblique impacts on our superhydrophobic surfaces, which we named the stretched rebound, where the droplet is extended into an elongated pancake shape

  5. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    NASA Astrophysics Data System (ADS)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency

  6. Intact capture of hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    1986-01-01

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  7. Intact capture of hypervelocity particles

    NASA Astrophysics Data System (ADS)

    Tsou, P.; Brownlee, D. E.; Albee, A. L.

    Knowledge of the phase, structure, and crystallography of cosmic particles, as well as their elemental and isotopic compositions, would be very valuable information toward understanding the nature of our solar system. This information can be obtained from the intact capture of large mineral grains of cosmic particles from hypervelocity impacts. Hypervelocity experiments of intact capture in underdense media have indicated realistic potential in this endeaver. The recovery of the thermal blankets and louvers from the Solar Max spacecraft have independently verified this potential in the unintended capture of cosmic materials from hypervelocity impacts. Passive underdense media will permit relatively simple and inexpensive missions to capture cosmic particles intact, either by going to a planetary body or by waiting for the particles to come to the Shuttle or the Space Station. Experiments to explore the potential of using various underdense media for an intact comet sample capture up to 6.7 km/s were performed at NASA Ames Research Center Vertical Gun Range. Explorative hypervelocity experiments up to 7.9 km/s were also made at the Ernst Mach Institute. These experiments have proven that capturing intact particles at hypervelocity impacts is definitely possible. Further research is being conducted to achieve higher capture ratios at even higher hypervelocities for even smaller projectiles.

  8. Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2004-01-01

    Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.

  9. Preliminary Study on Configuration of Triple-Wall Shield with Oblique Middle Wall

    NASA Astrophysics Data System (ADS)

    Wen, Xuezhong; Ke, Fawei; Huang, Jie; Chen, Ping; Ma, Zhaoxia; Liu, Sen

    2013-08-01

    Spacecraft shield configuration is important in protecting the spacecraft from damages caused by small size space debris impact which could not be monitored. Improving the performance of the shield without increasing its weight and size has been a significant subject in the space debris shield research. Based on the fact that the ballistic limit of oblique impact is higher than that of normal impact, this paper introduces the "N" configuration to improve the shield performance with the oblique middle wall. According to the design, the middle layer of a triple-wall configuration was placed obliquely. The shield performances of this configuration and a parallel triple-wall configuration with the same areal density were compared and analyzed by 3D numerical simulation and hypervelocity impact tests. These results verified the validity of the introduction of oblique middle wall in improving the shield performance. The improvement is more notable with higher impact velocity.

  10. Characteristics of hypervelocity impact craters on LDEF experiment S1003 and implications of small particle impacts on reflective surfaces

    NASA Technical Reports Server (NTRS)

    Mirtich, Michael J.; Rutledge, Sharon K.; Banks, Bruce A.; Devries, Christopher; Merrow, James E.

    1993-01-01

    The Ion Beam textured and coated surfaces EXperiment (IBEX), designated S1003, was flown on LDEF at a location 98 deg in a north facing direction relative to the ram direction. Thirty-six diverse materials were exposed to the micrometeoroid (and some debris) environment for 5.8 years. Optical property measurements indicated no changes for almost all of the materials except S-13G, Kapton, and Kapton-coated surfaces, and these changes can be explained by other environmental effects. From the predicted micrometeoroid flux of NASA SP-8013, no significant changes in optical properties of the surfaces due to micrometeoroids were expected. There were hypervelocity impacts on the various diverse materials flown on IBEX, and the characteristics of these craters were documented using scanning electron microscopy (SEM). The S1003 alumigold-coated aluminum cover tray was sectioned into 2 cm x 2 cm pieces for crater documentation. The flux curve generated from this crater data fits well between the 1969 micrometeoroid model and the Kessler debris model for particles less than 10(exp -9) gm which were corrected for the S1003 positions (98 deg to ram). As the particle mass increases, the S1003 impact data is greater than that predicted by even the debris model. This, however, is consistent with data taken on intercostal F07 by the Micrometeoroid/Debris Special Investigating Group (M/D SIG). The mirrored surface micrometeoroid detector flown on IBEX showed no change in solar reflectance and corroborated the S1003 flux curve, as well as results of this surface flown on SERT 2 and OSO 3 for as long as 21 years.

  11. Characteristics of hypervelocity impact craters on LDEF experiment S1003 and implications of small particle impacts on reflective surfaces

    NASA Astrophysics Data System (ADS)

    Mirtich, Michael J.; Rutledge, Sharon K.; Banks, Bruce A.; Devries, Christopher; Merrow, James E.

    1993-04-01

    The Ion Beam textured and coated surfaces EXperiment (IBEX), designated S1003, was flown on LDEF at a location 98 deg in a north facing direction relative to the ram direction. Thirty-six diverse materials were exposed to the micrometeoroid (and some debris) environment for 5.8 years. Optical property measurements indicated no changes for almost all of the materials except S-13G, Kapton, and Kapton-coated surfaces, and these changes can be explained by other environmental effects. From the predicted micrometeoroid flux of NASA SP-8013, no significant changes in optical properties of the surfaces due to micrometeoroids were expected. There were hypervelocity impacts on the various diverse materials flown on IBEX, and the characteristics of these craters were documented using scanning electron microscopy (SEM). The S1003 alumigold-coated aluminum cover tray was sectioned into 2 cm x 2 cm pieces for crater documentation. The flux curve generated from this crater data fits well between the 1969 micrometeoroid model and the Kessler debris model for particles less than 10(exp -9) gm which were corrected for the S1003 positions (98 deg to ram). As the particle mass increases, the S1003 impact data is greater than that predicted by even the debris model. This, however, is consistent with data taken on intercostal F07 by the Micrometeoroid/Debris Special Investigating Group (M/D SIG). The mirrored surface micrometeoroid detector flown on IBEX showed no change in solar reflectance and corroborated the S1003 flux curve, as well as results of this surface flown on SERT 2 and OSO 3 for as long as 21 years.

  12. Hypervelocity microparticle characterization

    SciTech Connect

    Idzorek, G.C.

    1996-11-01

    To protect spacecraft from orbital debris requires a basic understanding of the processes involved in hypervelocity impacts and characterization of detectors to measure the space environment. Both require a source of well characterized hypervelocity particles. Electrostatic acceleration of charged microspheres provides such a source. Techniques refined at the Los Alamos National Laboratory provided information on hypervelocity impacts of particles of known mass and velocity ranging from 20-1000 nm diameter and 1-100 km/s. A Van De Graaff generator operating at 6 million volts was used to accelerate individual carbonyl iron microspheres produced by a specially designed particle source. Standard electrostatic lenses and steering were used to control the particles flight path. Charge sensitive pickoff tubes measured the particle charge and velocity in- flight without disturbing the particle. This information coupled with the measured Van De Graaff terminal voltage allowed calculation of the particle energy, mass, momenta and (using an assumed density) the size. Particles with the desired parameters were then electrostatically directed to a target chamber. Targets used in our experiments included cratering and foil puncture targets, microphone momentum enhancement detectors, triboluminescent detectors, and ``splash`` charge detectors. In addition the system has been used to rapidly characterize size distributions of conductive plastic particles and potentially provide a method of easily sorting microscopic particles by size.

  13. Shocked Minerals in the K-T Boundary: Implications for Obliquity of Impact

    NASA Astrophysics Data System (ADS)

    Morgan, J.; Lana, C.; Artemieva, N. A.

    2006-03-01

    This study combines observational data on the distribution of the coarse ejecta within the global K-T boundary layer with numerical modeling of vertical and oblique impacts, in an attempt to constrain the direction and angle of impact at Chicxulub.

  14. Impact cratering and catastrophic disruption of porous targets through hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Ferri, F.; Giacomuzzo, C.; Pavarin, D.; Francesconi, A.; Bettella, A.; Flamini, E.; Angrilli, F.

    We present an experimental study of impact cratering and fragmentation processes onto low density materials by means of high velocity impact experiments using a two-stage light-gas gun, the impact facility of CISAS "G. Colombo" of the University of Padova (http://cisas.unipd.it/lgg/lgg.html). The goal of our experiments is to obtain a better comprehension of the impact processes on different materials in order to analyze the evolution of the surface of the solid bodies and the collisional evolution of the minor bodies of the Solar System. The results of this research are also aimed to contribute to the data interpretation of the ground- and space-based observations, in particular in view of space missions such as Smart1, MarsExpress, VenusExpress, BepiColombo, Cassini-Huygens, Rosetta, Dawn. Porosity is an important physical characteristic of the minor bodies, affecting their behaviour during cratering and greatly lengthening the collisional lifetimes of porous asteroids. Porous targets are likely to have average sound velocity lower than those of nonporous targets composed of same material; compaction of initially porous materials can produce rapid attenuation of the shock, thus affecting energy propagation during collisions. Therefore we focus on the study of impact processes on porous targets both by experimental and theoretical approach in order to complement and extend the available data to ranges of velocity and physical conditions not yet explored. In order to simulate porous asteroids, comets, icy satellites, we have manufactured and used targets of different material, e.g. glass ceramic foam, natural pumices, water ice, and different porosity (with density ranging from 0.35 to 1.07 g/cm3 ). Impact test campaign have been performed on the different samples varying the impact kinetic energy (by changing projectile mass and velocity) in order to study the craterization up to catastrophic disruption. The impact and shattering events are observed by high speed

  15. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank; Best, S. G.; Chaloupka, T.; Stephens, B.

    1992-01-01

    The Space Power Institute at Auburn University has constructed an electromagnetically driven particle accelerator for simulating the effects of space debris on the materials for use in advanced spacecraft. The facility consists of a capacitively driven accelerator section, a drift tube and a specimen impact chamber. The drift tube is sufficiently long that all electrical activity has ceased prior to impact in the specimen chamber. The impact chamber is large enough to allow a wide range of specimen geometries, ranging from small coupons to active portions of advanced spacecraft. The electric drive for the accelerator consists of a 67 kJ, 50 k capacitor bank arranged in a low inductance configuration. The bank is discharged through an aluminum armature/plastic ablator plate/projectile load in roughly 1.2 microsec. The evaporation of the ablaitor plate produces an expanding gas slug, mostly H2, traveling at a velocity of some 60 km/sec. Because of the pressure and local density, the expanding gas cloud accelerates projectiles due to plasma drag. To date, we have utilized projectiles consisting of 100 micron SiC, 100 and 400 micron Al2O3, 100 and 145 micron olivines. Since many particles are accelerated in a given experiment, there is a range of velocities for each shot as well as some particle breakup. Advanced diagnostics techniques allow determination of impact coordinates, velocity, and approximate size for as many as 50 individual impacts in a given experiment. We routinely measure velocities in the range 1-15 km/sec. We have used this facility to study a variety of impact generated phenomena on coated surfaces, both paint and plastic, thermal blanket material, solar cell arrays, and optical materials such as glass and quartz lenses. The operating characteristics of the gun, the advanced diagnostic scheme, and the results of studies of crater morphology are described in detail. Projectile residue analysis, as a function of impact velocity for the materials listed

  16. Hypervelocity High Speed Projectile Imagery and Video

    NASA Technical Reports Server (NTRS)

    Henderson, Donald J.

    2009-01-01

    This DVD contains video showing the results of hypervelocity impact. One is showing a projectile impact on a Kevlar wrapped Aluminum bottle containing 3000 psi gaseous oxygen. One video show animations of a two stage light gas gun.

  17. Sunspot: A program to model the behavior of hypervelocity impact damaged multilayer insulation in the Sunspot thermal vacuum chamber of Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Hayashida, K. B.

    1992-01-01

    The development of a computer program to predict the degradation of the insulating capabilities of the multilayer insulation (MLI) blanket of Space Station Freedom due to a hypervelocity impact with a space debris particle is described. A finite difference scheme is used for the calculations. The computer program was written in Microsoft BASIC. Also described is a test program that was undertaken to validate the numerical model. Twelve MLI specimens were impacted at hypervelocities with simulated debris particles using a light gas gun at Marshall Space Flight Center. The impact-damaged MLI specimens were then tested for insulating capability in the space environment of the Sunspot thermal vacuum chamber at MSFC. Two undamaged MLI specimens were also tested for comparison with the test results of the damaged specimens. The numerical model was found to adequately predict behavior of the MLI specimens in the Sunspot chamber. A parameter, called diameter ratio, was developed to relate the nominal MLI impact damage to the apparent (for thermal analysis purposes) impact damage based on the hypervelocity impact conditions of a specimen.

  18. Hypervelocity impact facility for simulating materials exposure to impact by space debris

    NASA Technical Reports Server (NTRS)

    Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.

    1993-01-01

    As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.

  19. Survivability of copper projectiles during hypervelocity impacts in porous ice: A laboratory investigation of the survivability of projectiles impacting comets or other bodies

    NASA Astrophysics Data System (ADS)

    McDermott, K. H.; Price, M. C.; Cole, M.; Burchell, M. J.

    2016-04-01

    During hypervelocity impact (>a few km s-1) the resulting cratering and/or disruption of the target body often outweighs interest on the outcome of the projectile material, with the majority of projectiles assumed to be vaporised. However, on Earth, fragments, often metallic, have been recovered from impact sites, meaning that metallic projectile fragments may survive a hypervelocity impact and still exist within the wall, floor and/or ejecta of the impact crater post-impact. The discovery of the remnant impactor composition within the craters of asteroids, planets and comets could provide further information regarding the impact history of a body. Accordingly, we study in the laboratory the survivability of 1 and 2 mm diameter copper projectiles fired onto ice at speeds between 1.00 and 7.05 km s-1. The projectile was recovered intact at speeds up to 1.50 km s-1, with no ductile deformation, but some surface pitting was observed. At 2.39 km s-1, the projectile showed increasing ductile deformation and broke into two parts. Above velocities of 2.60 km s-1 increasing numbers of projectile fragments were identified post impact, with the mean size of the fragments decreasing with increasing impact velocity. The decrease in size also corresponds with an increase in the number of projectile fragments recovered, as with increasing shock pressure the projectile material is more intensely disrupted, producing smaller and more numerous fragments. The damage to the projectile is divided into four classes with increasing speed and shock pressure: (1) minimal damage, (2) ductile deformation, start of break up, (3) increasing fragmentation, and (4) complete fragmentation. The implications of such behaviour is considered for specific examples of impacts of metallic impactors onto Solar System bodies, including LCROSS impacting the Moon, iron meteorites onto Mars and NASA's "Deep Impact" mission where a spacecraft impacted a comet.

  20. Survival of Nannochloropsis Phytoplankton in Hypervelocity Impact Events up to Velocities of 6.07 km/s

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypothesis [1], [2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1] whilst larger more complex objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. We demonstrate here the survivability of Nannochloropsis Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone'(sunlit surface layers of oceans) [4] at impact velocities up to 6.07 km s-1. Phytoplankton from a culture sample was frozen and then fired into water (to simulate oceanic impacts, as described in [5]) using a light gas gun (LGG) [6]. The water was then retrieved and placed into a sealed culture vessel and left under a constant light source to check the viability of any remnant organisms.

  1. Numerical investigations on pressurized AL-composite vessel response to hypervelocity impacts: Comparison between experimental works and a numerical code

    NASA Astrophysics Data System (ADS)

    Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre-Louis

    2015-09-01

    Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels) have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure) that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.

  2. Results of Two-Stage Light-Gas Gun Development Efforts and Hypervelocity Impact Tests of Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Cornelison, C. J.; Watts, Eric T.

    1998-01-01

    Gun development efforts to increase the launching capabilities of the NASA Ames 0.5-inch two-stage light-gas gun have been investigated. A gun performance simulation code was used to guide initial parametric variations and hardware modifications, in order to increase the projectile impact velocity capability to 8 km/s, while maintaining acceptable levels of gun barrel erosion and gun component stresses. Concurrent with this facility development effort, a hypervelocity impact testing series in support of the X-33/RLV program was performed in collaboration with Rockwell International. Specifically, advanced thermal protection system materials were impacted with aluminum spheres to simulate impacts with on-orbit space debris. Materials tested included AETB-8, AETB-12, AETB-20, and SIRCA-25 tiles, tailorable advanced blanket insulation (TABI), and high temperature AFRSI (HTA). The ballistic limit for several Thermal Protection System (TPS) configurations was investigated to determine particle sizes which cause threshold TPS/structure penetration. Crater depth in tiles was measured as a function of impact particle size. The relationship between coating type and crater morphology was also explored. Data obtained during this test series was used to perform a preliminary analysis of the risks to a typical orbital vehicle from the meteoroid and space debris environment.

  3. Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.

    2015-08-01

    Hypervelocity stars (HVSs) travel with such extreme velocities that dynamical ejection via gravitational interaction with a massive black hole (MBH) is their most likely origin. Observers have discovered dozens of unbound main-sequence stars since the first in 2005, and the velocities, stellar nature, spatial distribution, and overall numbers of unbound B stars in the Milky Way halo all fit an MBH origin. Theorists have proposed various mechanisms for ejecting unbound stars, and these mechanisms can be tested with larger and more complete samples. HVSs' properties are linked to the nature and environment of the Milky Way's MBH, and, with future proper motion measurements, their trajectories may provide unique probes of the dark matter halo that surrounds the Milky Way.

  4. Survival of yeast spores in hypervelocity impact events up to velocities of 7.4 km s-1

    NASA Astrophysics Data System (ADS)

    Price, M. C.; Solscheid, C.; Burchell, M. J.; Josse, L.; Adamek, N.; Cole, M. J.

    2013-01-01

    We report on the survivability in hypervelocity impacts of yeast in spore form, and as mature cultures, at impact velocities from 1 to 7.4 km s-1, corresponding to an estimated peak shock pressure of ˜43 GPa. Spores from a yeast strain (BY4743), deficient in an enzyme required for uracil production, were fired into water (to simulate oceanic impact from space) using a light gas gun. The water was then retrieved and filtered and the resulting retentate and filtrate cultured to determine viability and survival rates of remnant spores. Yeast growth (confirmed as coming from the original sample as it had the same enzyme deficiency) was found in recovered samples at all impact speeds, albeit in smaller quantities at the higher speeds. The survival probabilities were measured as ˜50% at 1 km s-1, falling to ˜10-3% at 7.4 km s-1. This follows the pattern observed in previous work on survival of microbial life and spores exposed to extreme shock loading, where there is reasonable survival at low peak shock pressures with more severe lethality above a critical shock pressure at the GPa scale (here between 2 and 10 GPa). These results are explained in the context of a general model for survival against extreme shock and are relevant to the hypotheses of panspermia and litho-panspermia, showing that extreme shocks during transfer across space are not necessarily sterilising.

  5. Peculiarities in the formation of complex organic compounds in a nitrogen-methane atmosphere during hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Zaitsev, M. A.; Gerasimov, M. V.; Safonova, E. N.; Vasiljeva, A. S.

    2016-03-01

    Results of the experiments on model impact vaporization of peridotite, a mineral analogue of stony asteroids, in a nitrogen-methane atmosphere are presented. Nd-glass laser (γ = 1.06 µm) was used for simulation. Pulse energy was ~600-700 J, pulse duration ~10-3 s, vaporization tempereature ~4000-5000 K. The gaseous medium (96% vol. of N2 and 4% vol. of CH4, P = 1 atm) was a possible analogue of early atmospheres of terrestrial planets and corresponded to the present-day atmosphere composition of Titan, a satellite of Saturn. By means of pyrolytic gas chromatography/mass spectrometry, it is shown that solid condensates obtained in laser experiments contain relatively complex lowand high-molecular weight (kerogen-like) organic compounds. The main products of condensate pyrolysis were benzene and alkyl benzenes (including long-chain ones), unbranched aliphatic hydrocarbons, and various nitrogen-containing compounds (aliphatic and aromatic nitriles and pyrrol). It is shown that the nitrogen-methane atmosphere favors the formation of complex organic compounds upon hypervelocity impacts with the participation of stony bodies even with a small methane content in it. In this process, falling bodies may not contain carbon, hydrogen, and other chemical elements necessary for the formation of the organic matter. In such conditions, a noticeable contribution to the impact-induced synthesis of complex organic substances is probably made by heterogeneous catalytic reactions, in particular, Fischer-Tropsch type reactions.

  6. Measuring the internal energies of species emitted from hypervelocity nanoprojectile impacts on surfaces using recalibrated benzylpyridinium probe ions

    NASA Astrophysics Data System (ADS)

    DeBord, J. Daniel; Verkhoturov, Stanislav V.; Perez, Lisa M.; North, Simon W.; Hall, Michael B.; Schweikert, Emile A.

    2013-06-01

    We present herein a framework for measuring the internal energy distributions of vibrationally excited molecular ions emitted from hypervelocity nanoprojectile impacts on organic surfaces. The experimental portion of this framework is based on the measurement of lifetime distributions of "thermometer" benzylpyridinium ions dissociated within a time of flight mass spectrometer. The theoretical component comprises re-evaluation of the fragmentation energetics of benzylpyridinium ions at the coupled-cluster singles and doubles with perturbative triples level. Vibrational frequencies for the ground and transition states of select molecules are reported, allowing for a full description of vibrational excitations of these molecules via Rice-Ramsperger-Kassel-Marcus unimolecular fragmentation theory. Ultimately, this approach is used to evaluate the internal energy distributions from the measured lifetime distributions. The average internal energies of benzylpyridinium ions measured from 440 keV Au400+4 impacts are found to be relatively low (˜0.24 eV/atom) when compared with keV atomic bombardment of surfaces (1-2 eV/atom).

  7. Deformation of dry and wet sandstone targets during hypervelocity impact experiments, as revealed from the MEMIN Program

    NASA Astrophysics Data System (ADS)

    Buhl, Elmar; Poelchau, Michael H.; Dresen, Georg; Kenkmann, Thomas

    2013-01-01

    Hypervelocity impact experiments on dry and water-saturated targets of fine-grained quartz sandstone, performed within the MEMIN project, have been investigated to determine the effects of porosity and pore space saturation on deformation mechanisms in the crater's subsurface. A dry sandstone cube and a 90% water-saturated sandstone cube (Seeberger Sandstein, 20 cm side length, about 23% porosity) were impacted at the Fraunhofer EMI acceleration facilities by 2.5 mm diameter steel spheres at 4.8 and 5.3 km s-1, respectively. Microstructural postimpact analyses of the bisected craters revealed differences in the subsurface deformation for the dry and the wet target experiments. Enhanced grain comminution and compaction in the dry experiment and a wider extent of localized deformation in the saturated experiment suggest a direct influence of pore water on deformation mechanisms. We suggest that the pore water reduces the shock impedance mismatch between grains and pore space, and thus reduces the peak stresses at grain-grain contacts. This effect inhibits profound grain comminution and effective compaction, but allows for reduced shock wave attenuation and a more effective transport of energy into the target. The reduced shock wave attenuation is supposed to be responsible for the enhanced crater growth and the development of "near surface" fractures in the wet target.

  8. Survival of the Tardigrade Hypsibius Dujardini during Hypervelocity Impact Events up to 5.49 km s-1

    NASA Astrophysics Data System (ADS)

    Pasini, D.

    2014-04-01

    Studies have previously been conducted to verify the survivability of living cells during hypervelocity impact events to test the panspermia and lithopanspermia hypotheses [1, 2]. It has been demonstrated that bacteria survive impacts up to 5.4 km s-1 (approx. shock pressure 30 GPa) - albeit with a low probability of survival [1], whilst larger, more complex, objects (such as seeds) break up at ~1 km s-1 [2]. The survivability of yeast spores in impacts up to 7.4 km s-1 has also recently been shown [3]. Previous work by the authors demonstrated the survivability of Nannochloropsis Oculata Phytoplankton, a eukaryotic photosynthesizing autotroph found in the 'euphotic zone' (sunlit surface layers of oceans [4]), at impact velocities up to 6.07 km s-1 [5]. Other groups have also reported that lichens are able to survive shocks in similar pressure ranges [6]. However, whilst many simple single celled organisms have now been shown to survive such impacts (and the associated pressures) as those encountered during the migration of material from one planet to another [1, 3, 5], complex multicellular organisms have either largely not been tested or, those that have been, have not survived the process [2]. Hypsibius dujardini, like most species of tardigrade, are complex organisms composed of approximately 40,000 cells [7]. When humidity decreases they enter a highly dehydrated state known as a 'tun' and can survive extreme temperatures (as low as - 253°C or as high as 151°C), as well as exposure to Xrays and the vacuum of space [7]. Here we test the shock survivability of Hypsibius dujardini by firing a nylon projectile onto a frozen sample of water containing frozen tardigrades using a light gas gun (LGG) [8]. The recovered ice and water were then analysed under an optical microscope to check the viability of any remnant organisms that may have survived impact, and the pressures generated.

  9. A numerical analysis of empty and foam-filled aluminium conical tubes under oblique impact loading

    NASA Astrophysics Data System (ADS)

    Mat, Fauziah; Ismail, Khairul Azwan; Yaacob, Sazali

    2015-05-01

    In real impact applications, an energy absorber rarely sustains dynamic loading either axial or oblique but a combination of both. Established studies have proved that thin-walled tube is an excellent energy absorber under dynamic loading. Furthermore, the introduction of foam filling successfully enhanced the energy absorption capacity of thin-walled tube. However, the understanding of its response under oblique loading has yet been fully explored. Moreover, emerging in automotive industry has lead to increase interests on lightweight materials such as aluminium alloy. As such, this paper presents the crushing behaviour of empty and foam-filled aluminium alloy (AA6061-T6) conical tubes under oblique impact loading using a validated nonlinear finite element (FE) code, LS-DYNA. The study aims to assess the effect of foam filling on the energy absorption of AA6061-T6 tubes for variations in filler density. In fact, to the best of our knowledge, this study is the first attempt to evaluate a response of empty and foam-filled aluminum conical tube by using an experimentally validated model under oblique dynamic loading conditions. Good correlations between the numerical and experimental results were observed. The study show that initial peak force and the energy absorption increase with increasing filler density under axial and oblique loading. On the other hand, the effect of foam filling (0.534 g/cm3 aluminium foam filler) is less pronounced for the initial peak force under axial impact loading. Furthermore, the initial peak force and dynamic force of empty and foam-filled AA6061-T6 conical tubes decrease as the load angle increases from 0 deg to 20 deg hence reduces the energy absorption capacity.

  10. First Principles Based Reactive Atomistic Simulations to Understand the Effects of Molecular Hypervelocity Impact on Cassini's Ion and Neutral Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Jaramillo-Botero, A.; Cheng, M-J; Cvicek, V.; Beegle, Luther W.; Hodyss, R.; Goddard, W. A., III

    2011-01-01

    We report here on the predicted impact of species such as ice-water, CO2, CH4, and NH3, on oxidized titanium, as well as HC species on diamond surfaces. These simulations provide the dynamics of product distributions during and after a hypervelocity impact event, ionization fractions, and dissociation probabilities for the various species of interest as a function of impact velocity (energy). We are using these results to determine the relevance of the fragmentation process to Cassini INMS results, and to quantify its effects on the observed spectra.

  11. Experimental study on impact disruption of porous asteroids: Effects of oblique impact and multiple collisions on impact strength

    NASA Astrophysics Data System (ADS)

    Yasui, Minami; Takano, Shota; Matsue, Kazuma; Arakawa, Masahiko

    2015-08-01

    Most of asteroids would have pores and a plenty of pre-cracks in their interiors, and the pre-cracks could be formed by multiple impacts at various impact angles. Porosity and pre-cracks are important physical properties controlling the impact strength. Okamoto and Arakawa (2009) did impact experiments of porous gypsum spheres to obtain the impact strength of porous asteroids, but they carried out only single impact experiments on the same target at head-on. In this study, we conducted oblique impact and multiple impacts on porous gypsum and examined the effects of impact angle and pre-cracks on the impact strength.We carried out impact experiments by using the one-stage He gas gun and the two-stage H2 gas gun at Kobe University. The impact velocities were <200 m/s (low-vi) and >3 km/s (high-vi). Targets were porous gypsum spheres with the porosity of 55% and the diameters of 7 or 12 cm. The projectiles were a porous gypsum sphere with the diameter of 2.5 cm at low-vi or a polycarbonate sphere with the diameter of 4.7 cm at high-vi. The impact angle changed from 15° to 90°, and the projectile was impacted on the same target for 2-15 times. The impact phenomena were observed by a high-speed digital video camera to measure the fragment velocities.The oblique impact experiments showed that the impact strength did not depend on the impact angle θ between 45° and 90°, and obtained to be ~2000 J/kg, while it drastically changed at the θ from 15° to 30°. We reanalyzed our results by using the effective energy density defined as Qsin2θ, where Q is the energy density, and found that most of the results were consistent with the results of head-on impacts. The multiple impacts showed that the impact strength of pre-impacted targets was larger than that of intact targets in the case of low-vi. This might be caused by the compaction of the target surface. In the case of high-vi, the impact strength of pre-impacted targets was smaller than that of intact targets. This

  12. Oblique impact of water-skipping elastic spheres

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Truscott, Tadd; Hurd, Randy; Jandron, Michael; Bower, Allan

    2014-11-01

    Highly compliant elastic spheres possess remarkable water skipping capabilities. High-speed video reveals that, upon impact with the water, the balls create a cavity and deform significantly. The flattened spheres resemble skipping stones and this augmented geometry results in enhanced lift that causes the ball to launch back into the air. This deformation also excites elastic vibration modes within the sphere. A numerical model reveals that the vibrations are initiated by a stress concentration developed in the early moments of impact. In one mode, an elastic wave propagates around the sphere periphery and may impact the water surface, resulting in an energy loss from the sphere. Thus two timescales govern the success of skipping: the total collision time of impact must be less than the deformation time associated with material vibration. Using a simplified analytical model, we derive the expected scaling of each time in terms of a dimensionless ratio of material shear modulus to fluid inertia forces, G / ρU2 . Experiments over a range of parameters validate this scaling and result in a regime diagram that distinguishes different types of skipping. We identify critical relations for the material properties and impact conditions to achieve skipping.

  13. Hypervelocity Impact Testing of International Space Station Meteoroid/Orbital Debris Shielding Using an Inhibited Shaped Charge Launcher

    NASA Technical Reports Server (NTRS)

    Kerr, Justin H.; Grosch, Donald

    2001-01-01

    Engineers at the NASA Johnson Space Center have conducted hypervelocity impact (HVI) performance evaluations of spacecraft meteoroid and orbital debris (M/OD) shields at velocities in excess of 7 km/s. The inhibited shaped charge launcher (ISCL), developed by the Southwest Research Institute, launches hollow, circular, cylindrical jet tips to approximately 11 km/s. Since traditional M/OD shield ballistic limit performance is defined as the diameter of sphere required to just perforate or spall a spacecraft pressure wall, engineers must decide how to compare ISCL derived data with those of the spherical impactor data set. Knowing the mass of the ISCL impactor, an equivalent sphere diameter may be calculated. This approach is conservative since ISCL jet tips are more damaging than equal mass spheres. A total of 12 tests were recently conducted at the Southwest Research Institute (SWRI) on International Space Station M/OD shields. Results of these tests are presented and compared to existing ballistic limit equations. Modification of these equations is suggested based on the results.

  14. Hypervelocity Impacts on ISS Handrails and Evaluation of Alternative Materials to Prevent Extravehicular Mobility Unit (EMU) Glove Damage During EVA

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Christiansen, Eruc; Davis, B. Alan; Ordonez, Erick

    2009-01-01

    During post-flight processing of STS-116, damage to crewmember Robert Curbeam's Phase VI Glove Thermal Micrometeoroid Garment was discovered. This damage consisted of: loss of RTV-157 palm pads on the thumb area on the right glove, a 0.75 inch cut in the Vectran adjacent to the seam and thumb pad (single event cut), constituting the worst glove damage ever recorded for the U.S. space program. The underlying bladder and restraint were found not be damaged by this event. Evaluation of glove damage found that the outer Vectran fibers were sliced as a result of contact with a sharp edge or pinch point rather than general wear or abrasion (commonly observed on the RTV pads). Damage to gloves was also noted on STS-118 and STS-120. One potential source of EMU glove damages are sharp crater lips on external handrails, generated by micrometeoroid and orbital debris (MMOD) impacts. In this paper, the results of a hypervelocity impact (HVI) test program on representative and actual ISS handrails are presented. These tests were performed in order to characterize impact damage profiles on ISS handrails and evaluate alternatives for limiting risk to future missions. It was determined that both penetrating and non-penetrating MMOD impacts on aluminum and steel ISS handrails are capable of generating protruding crater profiles which exceed the heights required for EMU glove abrasion risk by an order of magnitude. Testing demonstrated that flexible overwraps attached to the outside of existing handrails are capable of limiting contact between hazardous crater formations and crewmember gloves during extravehicular activity (EVA). Additionally, replacing metallic handrails with high strength, low ductility, fiber reinforced composite materials would limit the formation of protruding crater lips on new ISS modules.

  15. Identification of minerals and meteoritic materials via Raman techniques after capture in hypervelocity impacts on aerogel

    SciTech Connect

    Burchell, M J; Mann, J; Creighton, J A; Kearsley, A; Graham, G A; Esposito, A P; Franchi, I A; Westphal, A J; Snead, C

    2004-10-04

    For this study, an extensive suite of mineral particles analogous to components of cosmic dust were tested to determine if their Raman signatures can be recognized after hypervelocity capture in aerogel. The mineral particles were mainly of greater than 20 micrometers in size and were accelerated onto the silica aerogel by light gas gun shots. It was found that all the individual minerals captured in aerogel could be subsequently identified using Raman (or fluorescent) spectra. The beam spot size used for the laser illumination was of the order of 5 micrometers, and in some cases the captured particles were of a similar small size. In some samples fired into aerogel there was observed a shift in the wavenumbers of some of the Raman bands, a result of the trapped particles being at quite high temperatures due to heating by the laser. Temperatures of samples under laser illumination were estimated from the relative intensities of Stokes and anti-Stokes Raman bands, or, in the case of ruby particles, from the wavenumber of fluorescence bands excited by the laser. It was found that the temperature of particles in aerogel varied greatly, dependent upon laser power and the nature of the particle. In the worst case, some particles were shown to have temperatures in the 500-700 C range at a laser power of about 3 mW at the sample. However most of the mineral particles examined at this laser power had temperatures below 200 C. This is sufficiently low a temperature not to damage most materials expected to be found captured in aerogel in space. In addition, selected meteorite samples were examined to obtain Raman signatures of their constituent minerals and were then shot into aerogel. It was possible to find several Raman signatures after capture in aerogel and obtain a Raman map of a whole grain in situ in the aerogel. Finally, a Raman analysis was carried out of a particle captured in aerogel in space and carbonaceous material identified. In general therefore it is

  16. Hypervelocity sub 10-micron impacts into aluminium foil: new experimental data and implications for comet 81P/Wild-2's dust fluence

    NASA Astrophysics Data System (ADS)

    Price, Mark C.; Kearsley, Anton T.; Burchell, Mark J.; Horz, Friedrich; Cole, Mike J.

    2009-06-01

    Recent experimental work (Price, M. C. et. al., LPSC XXXX, #1564, 2009) has shown that the lip-to-lip diameter of hypervelocity impact craters at micron-scales (Dp< 10 microns) is a non-linear function of the impactor's diameter (Dp). We present data for monodisperse silica projectiles impacting aluminium-1100 and elemental aluminium at 6.1 kmsec and discuss the implications of this effect for the Stardust fluence calibration for micron-scale particles (which make up the majority of the impactor flux). Hydrocodes have been used to investigate the potential causes of the phenomena and the results are presented.

  17. Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tandy, J. D.; Mihaly, J. M.; Adams, M. A.; Rosakis, A. J.

    2014-07-01

    The temporal evolution of a previously observed hypervelocity impact-induced vapor cloud [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013)] was measured by simultaneously recording several full-field, near-IR images of the resulting emission using an OMA-V high-speed camera. A two-stage light-gas gun was used to accelerate 5 mg Nylon 6/6 right-cylinders to speeds between 5 km/s and 7 km/s to impact 1.5 mm thick 6061-T6 aluminum target plates. Complementary laser-side-lighting [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013); Proc. Eng. 58, 363 (2013)] and front-of-target (without laser illumination) images were also captured using a Cordin ultra-high-speed camera. The rapid expansion of the vapor cloud was observed to contain a bright, emitting exterior, and a darker, optically thick interior. The shape of this phenomenon was also observed to vary considerably between experiments due to extremely high-rate (>250 000 rpm) of tumbling of the cylindrical projectiles. Additionally, UV-vis emission spectra were simultaneously recorded to investigate the temporal evolution of the atomic and molecular composition of the up-range, impact-induced vapor plume. A PI-MAX3 high-speed camera coupled to an Acton spectrograph was utilized to capture the UV-vis spectra, which shows an overall peak in emission intensity between approximately 6-10 μs after impact trigger, corresponding to an increased quantity of emitting vapor/plasma passing through the spectrometer slit during this time period. The relative intensity of the numerous spectral bands was also observed to vary according to the exposure delay of the camera, indicating that the different atomic/molecular species exhibit a varied temporal evolution during the vapor cloud expansion. Higher resolution spectra yielded additional emission lines/bands that provide further evidence of interaction between fragmented projectile material and the 1 mmHg atmosphere inside the target chamber. A comparison of the data to down

  18. Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy

    SciTech Connect

    Tandy, J. D.; Mihaly, J. M.; Adams, M. A.; Rosakis, A. J.

    2014-07-21

    The temporal evolution of a previously observed hypervelocity impact-induced vapor cloud [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013)] was measured by simultaneously recording several full-field, near-IR images of the resulting emission using an OMA-V high-speed camera. A two-stage light-gas gun was used to accelerate 5 mg Nylon 6/6 right-cylinders to speeds between 5 km/s and 7 km/s to impact 1.5 mm thick 6061-T6 aluminum target plates. Complementary laser-side-lighting [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013); Proc. Eng. 58, 363 (2013)] and front-of-target (without laser illumination) images were also captured using a Cordin ultra-high-speed camera. The rapid expansion of the vapor cloud was observed to contain a bright, emitting exterior, and a darker, optically thick interior. The shape of this phenomenon was also observed to vary considerably between experiments due to extremely high-rate (>250 000 rpm) of tumbling of the cylindrical projectiles. Additionally, UV-vis emission spectra were simultaneously recorded to investigate the temporal evolution of the atomic and molecular composition of the up-range, impact-induced vapor plume. A PI-MAX3 high-speed camera coupled to an Acton spectrograph was utilized to capture the UV-vis spectra, which shows an overall peak in emission intensity between approximately 6–10 μs after impact trigger, corresponding to an increased quantity of emitting vapor/plasma passing through the spectrometer slit during this time period. The relative intensity of the numerous spectral bands was also observed to vary according to the exposure delay of the camera, indicating that the different atomic/molecular species exhibit a varied temporal evolution during the vapor cloud expansion. Higher resolution spectra yielded additional emission lines/bands that provide further evidence of interaction between fragmented projectile material and the 1 mmHg atmosphere inside the target chamber. A comparison of the

  19. New method for oblique impact dynamics research of a flexible beam with large overall motion considering impact friction force

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Li, L.; Zhang, D. G.; Hong, J. Z.

    2016-08-01

    A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid modeling method, dynamic equations of the system, which include all states (before, during, and after the collision) are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.

  20. New method for oblique impact dynamics research of a flexible beam with large overall motion considering impact friction force

    NASA Astrophysics Data System (ADS)

    Yuan, W.; Li, L.; Zhang, D. G.; Hong, J. Z.

    2016-06-01

    A flexible beam with large overall rotating motion impacting with a rigid slope is studied in this paper. The tangential friction force caused by the oblique impact is analyzed. The tangential motion of the system is divided into a stick state and a slip state. The contact constraint model and Coulomb friction model are used respectively to deal with the two states. Based on this hybrid modeling method, dynamic equations of the system, which include all states (before, during, and after the collision) are obtained. Simulation results of a concrete example are compared with the results obtained from two other models: a nontangential friction model and a modified Coulomb model. Differences in the results from the three models are discussed. The tangential friction force cannot be ignored when an oblique impact occurs. In addition, the results obtained from the model proposed in this paper are more consistent with real movement.

  1. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    SciTech Connect

    Johnson, B. C.; Melosh, H. J.; Lisse, C. M.; Chen, C. H.; Wyatt, M. C.; Thebault, P.; Henning, W. G.; Gaidos, E.; Elkins-Tanton, L. T.; Bridges, J. C.; Morlok, A.

    2012-12-10

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  2. A Self-consistent Model of the Circumstellar Debris Created by a Giant Hypervelocity Impact in the HD 172555 System

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Lisse, C. M.; Chen, C. H.; Melosh, H. J.; Wyatt, M. C.; Thebault, P.; Henning, W. G.; Gaidos, E.; Elkins-Tanton, L. T.; Bridges, J. C.; Morlok, A.

    2012-12-01

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 1019 kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at ~6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that ~1047 molecules of SiO vapor are needed to explain an emission feature at ~8 μm in the Spitzer IRS spectrum of HD 172555. We find that unless there are ~1048 atoms or 0.05 M ⊕ of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the ~8 μm feature can be emission from solid SiO, which naturally occurs in submicron silicate "smokes" created by quickly condensing vaporized silicate.

  3. Oblique impact: A process for providing meteorite samples of other planets

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1986-01-01

    Cratering flow calculations for a series of oblique to normal impacts of silicate projectiles onto a silicate halfspace were carried out to determine whether the gas produced upon shock vaporizing both projectile and planetary material could entrain and accelerate surface rocks and thus provide a mechanism for propelling SNC meteorites from the Martian surface. The difficult constraints that the impact origin hypothesis for SNC meteorites has to satisfy are that these meteorites are lightly to moderately shocked and yet were accelerated to speeds in excess of the Martian escape velocity. Two dimensional finite difference calculations demonstrate that at highly probable impact velocities, vapor plume jets are produced at oblique impact angles of 25 deg to 60 deg and have speeds as great as 20 km/sec. These plumes flow nearly parallel to the planetary surface. It is shown that upon impact of projectiles having radii of 0.1 to 1 km, the resulting vapor jets have densities of 0.1 to 1 g/cu.cm. These jets can entrain Martian surface rocks and accelerate them to velocities 5 km/sec. It is suggested that this mechanism launches SNC meteorites to Earth.

  4. Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral Impact Tests using Chestbands.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Arun, Mike W J; Rhule, Heather; Rudd, Rodney; Craig, Matthew

    2015-11-01

    While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Threepoint belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given. Analysis of deformation contours, peak deflections, and angulations indicated that the left rear seated specimen were exposed to anterior oblique loading while left front specimens in both tests sustained essentially pure lateral loading to the torso. These data can be used to validate human body computational models. The occurrence of oblique loading in full-scale testing, hitherto unrecognized, may serve to stimulate the exploration of its role in injuries to the thorax and lower extremities in modern vehicles. It may be important to continue research in this area because injury metrics have a lower threshold for angled loading. PMID:26660738

  5. Simulating hypervelocity impact effects on structures using the smoothed particle hydrodynamics code MAGI

    NASA Technical Reports Server (NTRS)

    Libersky, Larry; Allahdadi, Firooz A.; Carney, Theodore C.

    1992-01-01

    Analysis of interaction occurring between space debris and orbiting structures is of great interest to the planning and survivability of space assets. Computer simulation of the impact events using hydrodynamic codes can provide some understanding of the processes but the problems involved with this fundamental approach are formidable. First, any realistic simulation is necessarily three-dimensional, e.g., the impact and breakup of a satellite. Second, the thickness of important components such as satellite skins or bumper shields are small with respect to the dimension of the structure as a whole, presenting severe zoning problems for codes. Thirdly, the debris cloud produced by the primary impact will yield many secondary impacts which will contribute to the damage and possible breakup of the structure. The problem was approached by choosing a relatively new computational technique that has virtues peculiar to space impacts. The method is called Smoothed Particle Hydrodynamics.

  6. Techniques for in situ collection and measurement of volatiles released during hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Heppner, R. A.; Niu, William; Maag, Carl R.

    1994-01-01

    The capability of the gas capture cell to collect particles and semivolatile species which were released during impact is examined. The proposed Comet Coma Sample Return (CCSR) payload contains a variety of instrumentation for characterizing and collecting cometary dust. In this suite of instruments the Gas Capture Cell (GCC) is unique in that it not only collects the vaporization products resulting from the dust particle impacts, but also provides chemical characterization information prior to return of the dust particles for analysis on Earth. The GCC provides near real-time characterization of the volatile species, such as low- and medium-molecular-weight organic compounds that evolve from dust particles on impact with metal targets. Instrument sensitivity is sufficient for analyzing the volatile impact products resulting from single, individual dust particles. This capability will enable characterization of near-pristine dust particles, including the CHON particles, to be performed at a level not previously possible. Its design concept, operation and performance are detailed.

  7. The shapes of fragments in hypervelocity impact experiments ranging from cratering to catastrophic disruption

    NASA Astrophysics Data System (ADS)

    Michikami, T.; Hagermann, A.; Kadokawa, T.; Yoshida, A.; Shimada, A.; Hasegawa, S.; Tsuchiyama, A.

    2015-12-01

    Laboratory impact experiments have found that the shapes of impact fragments as defined by axes a, b and c, these being the maximum dimensions of the fragment in three mutually orthogonal planes (a ≥ b ≥ c) are distributed around mean values of the axial ratios b/a ~0.7 and c/a ~0.5, i.e., corresponding to a : b: c in the simple proportion 2: √2: 1. The shape distributions of some boulders on asteroid Eros, the small- and fast-rotating asteroids (diameter < 200 m and rotation period < 1 h), and asteroids in young families, are similar to those of laboratory fragments in catastrophic disruption. However, the shapes of laboratory fragments were obtained from the experiments that resulted in catastrophic disruption, a process that is different from impact cratering. In order to systematically investigate the shapes of fragments in the range from impact cratering to catastrophic disruption, impact experiments for basalt targets 5 to 15 cm in size were performed. A total of 28 impact experiments were carried out by a spherical nylon projectile (diameter 7.14 mm) perpendicularly into the target surface at velocities of 1.6 to 7.0 km/s. More than 13,000 fragments with b ≥ 4 mm generated in the impact experiments were measured. In the experiments, the mean value of c/a in each impact decreases with decreasing impact energy per unit target mass. For instance, the mean value of c/a in an impact cratering event is nearly 0.2, which is less than that c/a in a catastrophic disruption (~0.5). To apply the experimental results to real collisions on asteroids, we investigated the shapes of 21 arbitrarily selected boulders (> 8 m) on asteroid Itokawa. The mean value of c/a of these boulders is 0.46, which is similar to the value for catastrophic disruption. This implies that the parent body of Itokawa could have experienced a catastrophic disruption.

  8. Modeling the fragmentation of hypervelocity impacts on a two wall shield

    NASA Astrophysics Data System (ADS)

    Miller, Joshua; Christiansen, Eric

    2013-06-01

    Two wall spacecraft shields are a mass efficient method for countering the risk of solid particle environments for systems operating in space. In this approach the threat encounters the first of two walls and shock wave compresses upon impact. The compression heats the materials so that upon subsequent release the materials spread out over a much larger region than the initial threat making it much more likely that a subsequent wall can arrest the impact energy. It is of great importance in system survivability assessments to accurately model this process and to develop models that reasonably describe a broad range of materials and impact conditions. To this end an experimental effort with spherical projectiles of a range of materials has been conducted to greater than 10 km/s and augmented to a much broader range of impact conditions by impact simulations. From this effort a modeling approach has been developed that captures this process for use in survivability assessments. The model and its anchoring data are discussed here.

  9. Hypervelocity impact tests and simulations of single Whipple bumper shield concepts at 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S. ); Hill, S.A. )

    1992-01-01

    A series of experiments has been performed to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities of [approximately] 10 km/s. Upon impact by a 19 mm (0.87 nun thick, L/D [approximately]0.5) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of [approximately]14 km/s and expands radially at a velocity of [approximately]7 km/s. Subsequent loading by the debris on a 3.2 mm thick aluminum substructure placed 114 mm from the bumper penetrates the substructure completely. However, when the diameter of the flier plate is reduced to 12.7 mm, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete perforation of the substructure by the subsequent debris cloud for the larger flier plate. The numerical simulation for a 12.7 mm flier plate, however, shows a strong dependence on assumed impact geometry, i.e., a spherical projectile impact geometry does not result in perforation of the substructure by the subsequent debris cloud, while the flat plate impact geometry results in perforation.

  10. Hypervelocity impact tests and simulations of single Whipple bumper shield concepts at 10 km/s

    SciTech Connect

    Chhabildas, L.C.; Hertel, E.S.; Hill, S.A.

    1992-12-01

    A series of experiments has been performed to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities of {approximately} 10 km/s. Upon impact by a 19 mm (0.87 nun thick, L/D {approximately}0.5) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of {approximately}14 km/s and expands radially at a velocity of {approximately}7 km/s. Subsequent loading by the debris on a 3.2 mm thick aluminum substructure placed 114 mm from the bumper penetrates the substructure completely. However, when the diameter of the flier plate is reduced to 12.7 mm, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete perforation of the substructure by the subsequent debris cloud for the larger flier plate. The numerical simulation for a 12.7 mm flier plate, however, shows a strong dependence on assumed impact geometry, i.e., a spherical projectile impact geometry does not result in perforation of the substructure by the subsequent debris cloud, while the flat plate impact geometry results in perforation.

  11. Shock wave properties of anorthosite and gabbro. [to model hypervelocity impact cratering on planetary surfaces

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1985-01-01

    Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.

  12. Hypervelocity impact studies using a rotating mirror framing laser shadowgraph camera

    NASA Technical Reports Server (NTRS)

    Parker, Vance C.; Crews, Jeanne Lee

    1988-01-01

    The need to study the effects of the impact of micrometeorites and orbital debris on various space-based systems has brought together the technologies of several companies and individuals in order to provide a successful instrumentation package. A light gas gun was employed to accelerate small projectiles to speeds in excess of 7 km/sec. Their impact on various targets is being studied with the help of a specially designed continuous-access rotating-mirror framing camera. The camera provides 80 frames of data at up to 1 x 10 to the 6th frames/sec with exposure times of 20 nsec.

  13. Hypervelocity Impact of Unstressed and Stressed Titanium in a Whipple Configuration in Support of the Orion Crew Exploration Vehicle Service Module Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Christiansen, Eric; Piekutowski, Andrew; Lyons, Frankel; Keddy, Christopher; Salem, Jonathan; Poormon, Kevin; Bohl, William; Miller, Joshua; Greene, Nathanael; Rodriquez, Karen

    2010-01-01

    Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium: shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the defInition of the penetration criteria of the propellant and oxidizer tanks dome surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.

  14. Hypervelocity Impact of Unstressed and Stressed Titanium in a Whipple Configuration in Support of the Orion Crew Exploration Vehicle Service Module Propellant Tanks

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Christiansen, Eric; Piekutowski, Andrew; Lyons, Frankel; Keddy, Christopher; Salem, Jonathan; Miller, Joshua; Bohl, William; Poormon, Kevin; Greene, Nathanel; Rodriquez, Karen

    2010-01-01

    Hypervelocity impacts were performed on six unstressed and six stressed titanium coupons with aluminium shielding in order to assess the effects of the partial penetration damage on the post impact micromechanical properties of titanium and on the residual strength after impact. This work is performed in support of the definition of the penetration criteria of the propellant tanks surfaces for the service module of the crew exploration vehicle where such a criterion is based on testing and analyses rather than on historical precedence. The objective of this work is to assess the effects of applied biaxial stress on the damage dynamics and morphology. The crater statistics revealed minute differences between stressed and unstressed coupon damage. The post impact residual stress analyses showed that the titanium strength properties were generally unchanged for the unstressed coupons when compared with undamaged titanium. However, high localized strains were shown near the craters during the tensile tests.

  15. Hypervelocity impact flash for missile-defense kill assessment and engagement analysis : experiments on Z.

    SciTech Connect

    Thornhill, Tom Finley, III; Reinhart, William Dodd; Lawrence, Raymond Jeffery Jr.; Chhabildas, Lalit Chandra; Kelly, Daniel P.

    2005-07-01

    Kill assessment continues to be a major problem for the nation's missile defense program. A potential approach for addressing this issue involves spectral and temporal analysis of the short-time impact flash that occurs when a kill vehicle intercepts and engages a target missile. This can provide identification of the materials involved in the impact event, which will, in turn, yield the data necessary for target identification, engagement analysis, and kill assessment. This report describes the first phases of a project under which we are providing laboratory demonstrations of the feasibility and effectiveness of this approach. We are using two major Sandia facilities, the Z-Pinch accelerator, and the two- and three-stage gas guns at the Shock Thermodynamics and Applied Research (STAR) facility. We have looked at the spectral content of impact flash at velocities up to 25 km/s on the Z-Pinch machine to establish the capability for spectroscopy for these types of events, and are looking at similar experiments at velocities from 6 to 11 km/s on the gas guns to demonstrate a similar capability for a variety of research-oriented and applied materials. The present report describes only the work performed on the Z machine.

  16. Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.

    1975-01-01

    Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.

  17. Analysis of Regolith Simulant Ejecta Distributions from Normal Incident Hypervelocity Impact

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Suggs, Rob; Moser, Danielle E.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has established the Constellation Program. The Constellation Program has defined one of its many goals as long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013 'Meteoroid Environment Model Near Earth to Lunar Surface', was developed for the Apollo program in 1969 and contains the latest definition of the lunar ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powdered pumice and unconsolidated JSC-1A Lunar Mare Regolith simulant targets. Projectiles were accelerated to velocities between 2.45 and 5.18 km/s at normal incidence using the Ames Vertical Gun Range (AVGR). The ejected particles were detected by thin aluminum foil targets strategically placed around the impact site and angular ejecta distributions were determined. Assumptions were made to support the analysis which include; assuming ejecta spherical symmetry resulting from normal impact and all ejecta particles were of mean target particle size. This analysis produces a hemispherical flux density distribution of ejecta with sufficient velocity to penetrate the aluminum foil detectors.

  18. Comparison of Ejecta Distributions from Normal Incident Hypervelocity Impact on Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Scruggs, Rob; Moser, Danielle E.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is progressing toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment; of specific importance is the primary meteoroid and subsequent ejecta environment. The document, NASA SP-8013, was developed for the Apollo program and is the latest definition of the ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface ejecta environment. This paper reports the results of experiments on projectile impact into powered pumice and unconsolidated JSC-1A Lunar Mare Regolith stimulant (JSC-1A) targets. The Ames Vertical Gun Range (AVGR) was used to accelerate projectiles to velocities in excess of 5 km/s and impact the targets at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the impact site and angular distributions were determined for ejecta. Comparison of ejecta angular distribution with previous works will be presented. A simplistic technique to characterize the ejected particles was formulated and improvements to this technique will be discussed for implementation in future tests.

  19. Influence of plasticity models upon the outcome of simulated hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Thomas, John N.

    1994-07-01

    This paper describes the results of numerical simulations of aluminum upon aluminum impacts which were performed with the CTH hydrocode to determine the effect plasticity formulations upon the final perforation size in the targets. The targets were 1 mm and 5 mm thick plates and the projectiles were 10 mm by 10 mm right circular cylinders. Both targets and projectiles were represented as 2024 aluminium alloy. The hydrocode simulations were run in a two-dimensional cylindrical geometry. Normal impacts at velocites between 5 and 15 km/s were simulated. Three isotropic yield stress models were explored in the simulations: an elastic-perfectly plastic model and the Johnson-Cook and Steinberg-Guinan-Lund viscoplastic models. The fracture behavior was modeled by a simple tensile pressure criterion. The simulations show that using the three strength models resulted in only minor differences in the final perforation diameter. The simulation results were used to construct an equation to predict the final hole size resulting from impacts on thin targets.

  20. Particle Size Distrbution in an Experimental Hypervelocity Impact on Dry Sandstone.

    NASA Astrophysics Data System (ADS)

    Buhl, Elmar; Poelchau, Michael H.; Deutsch, Alex; Kenkmann, Thomas; Dresen, Georg

    2013-04-01

    The particle size distribution (PSD) is a frequently used parameter to describe the deformation-induced fragmentation of fault rocks. It has been shown that resulting particle sizes may be described by a power law (fractal) size distribution: N(d) ~ dD where N(d) is the number of particles larger than diameter d, and D is the D-value. PSDs reported for impact deformation are still very few. D-values for natural and experimental impacts have been reported to range between 1.2-1.8 and 1.4-1.7, respectively. Here we show the systematic distribution of the PSD in the subsurface of an experimental impact crater. The investigated experiment was performed in the framework of the MEMIN project [1]. A 20 cm cube of quartz-rich sandstone (Seeberger Sandstein) was impacted by a 2.5 mm steel sphere at 4.8 km/s, producing a crater of 5.76 cm diameter and 11.0 mm depth [2]. For sample preparation the crater was impregnated with epoxy and the block was bisected. Thin sections were prepared from the crater sub-surface. Backscattered electron (BSE) micro-analysis was conducted by means of a Zeiss Leo 1525 Scanning Electron Microscope. A succession of 20 images (400x magnification) with increasing distance from the crater floor was analyzed. The image analysis software JMicrovision was used for automated object extraction. Area and perimeter of all detected particles were exported and used for PSD analysis. The obtained PSD were fit with a linear function in a log-log plot over at least one order of magnitude in diameter indicating that the PSD follows a power law relationship N(d) ~ dD. The distinct modes of deformation in the crater sub-surface [3] are closely linked to the fracture pattern and thus with the D-value. As expected, comminution was most effective closest to the crater floor. The highest D-value of 1.74 was found at a depth of 0.26-1.07 mm beneath the crater floor. Thus the largest fraction of fine material is situated in there. With growing distance the D-values drop

  1. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip

    2016-01-01

    conditions. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared to the values obtained from RAS under the true enthalpy conditions and using helium and hydrogen. Finally, the impact of combustion on mixing, often deemed small enough to neglect at hypervelocity conditions, is assessed by comparing the results obtained from the hydrogen-fueled reacting and non-reacting RAS. For reacting flows, in addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also considered. In all of the simulations, the incoming air Mach number and the fuel-to-air ratio are the same, while the total pressure, total enthalpy, and the fuel simulant vary depending on the case considered. It is found that under some conditions the "cold" flow experiments are a good approximation of the flight.

  2. Hypervelocity impact effects on solar cells. Final technical report, 30 March-29 September 1992

    SciTech Connect

    Rose, M.F.

    1992-09-01

    One of the space hazards of concern is the problem of natural matter and space debris impacting spacecraft. In addition to mechanical damage, impact velocities greater than 5 km/sec can produce shock induced ionization effects with resultant surface charging and complex chemical interactions. The upper limit of the velocity distribution for these particles is on the order of 70 km/sec. The second source of particulate matter is due to the presence of man and the machinery needed to place satellites in orbit. This 'man made' component of the space debris consists of waste, rocket exhaust, and debris caused by satellite break-up. Most of the particles are small. However as the size increases, debris purposefully thrown overboard such as garbage and human waste, combined with paint chips, plastic, wire fragments, bolts, etc., become formidable hazards which completely dominate the distribution function for some orbits. These larger fragments can produce penetration and spalling of the thick metallic structures associated with spacecraft. The particles most often encountered are aluminum oxide, associated with fuel residue, and paint chips. These debris types can have a wide range of particle sizes. It has been stated that the design of spacecraft will have to take the debris evolution into account and provide additional suitable armor for key components in the near future. The purpose of this work was to subject samples from solar power arrays, one of the key components of any spacecraft, to a debris flux typical of what might be found in space, and measure the degradation of the power panels after impact.

  3. A hypervelocity launcher for simulated large fragment space debris impacts at 10 km/s

    NASA Technical Reports Server (NTRS)

    Tullos, R. J.; Gray, W. M.; Mullin, S. A.; Cour-Palais, B. G.

    1989-01-01

    The background, design, and testing of two explosive launchers for simulating large fragment space debris impacts are presented. The objective was to develop a launcher capable of launching one gram aluminum fragments at velocities of 10 km/s. The two launchers developed are based on modified versions of an explosive shaped charge, common in many military weapons. One launcher design has yielded a stable fragment launch of approximately one gram of aluminum at 8.93 km/s velocity. The other design yielded velocities in excess of 10 km/s, but failed to produce a cohesive fragment launch. This work is ongoing, and future plans are given.

  4. Hypervelocity Impact Flash at 6, 11, and 25 KM/S

    NASA Astrophysics Data System (ADS)

    Lawrence, R. J.

    2005-07-01

    Impact-flash phenomenology has been known for many years, and is now being considered for missile-defense applications, in particular, remote diagnostics for kill assessment and target typing. To technically establish this capability, we have conducted a series of experiments at impact velocities of ˜6, ˜11, and ˜25 km/s. Two- and three-stage light-gas guns were used for the lower two velocities, and magnetically-driven flyers on the Sandia Z machine achieved the higher velocity. Spectrally- and time-resolved flash output addressed data reproducibility, material identification, and target configuration analysis. Usable data were obtained in the visible and infrared regions of the spectrum. Data from the Z shots extended for nearly 0.5 μs, and from the gas-guns usable reading times lasted for ˜100 μs. Standard atomic spectral databases were used to identify strong lines from all the principle materials used in the study. The data were unique to the individual materials over the wide range of velocities and conditions examined. The time-varying nature of the signals enabled correlation of differing spectra with multi-layer targets containing different materials in the separate layers. Integrating the records over wavelength helped to clarify those time variations. (*)Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Hypervelocity Impact Flash at 6, 11, and 25 KM/S

    NASA Astrophysics Data System (ADS)

    Lawrence, R. J.; Reinhart, W. D.; Chhabildas, L. C.; Thornhill, T. F.

    2006-07-01

    Impact-flash phenomenology has been known for decades, and is now being considered for missile-defense applications, in particular for remote engagement diagnostics. To technically establish this capability, we have conducted a series of experiments at impact velocities of ˜6, ˜11, and ˜25 km/s. Two- and three-stage light-gas guns were used for the lower two velocities, and magnetically-driven flyers on the Sandia Z machine achieved the higher velocity. Spectrally- and temporally-resolved flash output addressed data reproducibility, material identification, and target configuration analysis. Usable data were obtained at visible and infrared wavelengths. Standard atomic spectral databases were used to identify strong lines from all principal materials used in the study. The data were unique to the individual materials over the wide range of velocities and conditions examined. The time-varying nature of the signals offered the potential for correlation of the measurements with various aspects of the target configuration. Integrating the records over wavelength helped to clarify those time variations.

  6. Hypervelocity impact flash at 6, 11, and 25 km/s.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III; Lawrence, Jeffrey; Chhabildas, Lalit Chandra

    2005-08-01

    Impact-flash phenomenology has been known for decades, and is now being considered for missile-defense applications, in particular for remote engagement diagnostics. To technically establish this capability, we have conducted a series of experiments at impact velocities of {approx}6, {approx}11, and {approx}25 km/s. Two- and three-stage light-gas guns were used for the lower two velocities, and magnetically-driven flyers on the Sandia Z machine achieved the higher velocity. Spectrally- and temporally-resolved flash output addressed data reproducibility, material identification, and target configuration analysis. Usable data were obtained at visible and infrared wavelengths. Standard atomic spectral databases were used to identify strong lines from all principal materials used in the study. The data were unique to the individual materials over the wide range of velocities and conditions examined. The time-varying nature of the signals offered the potential for correlation of the measurements with various aspects of the target configuration. Integrating the records over wavelength helped to clarify those time variations.

  7. Measurement of Primary Ejecta From Normal Incident Hypervelocity Impact on Lunar Regolith Simulant

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Cooke, William; Moser, Danielle; Swift, Wesley

    2007-01-01

    The National Aeronautics and Space Administration (NASA) continues to make progress toward long-term lunar habitation. Critical to the design of a lunar habitat is an understanding of the lunar surface environment. A subject for further definition is the lunar primary ejecta environment. The document NASA SP-8013 was developed for the Apollo program and is the latest definition of the primary ejecta environment. There is concern that NASA SP-8013 may over-estimate the lunar primary ejecta environment. NASA's Meteoroid Environment Office (MEO) has initiated several tasks to improve the accuracy of our understanding of the lunar surface primary ejecta environment. This paper reports the results of experiments on projectile impact into pumice targets, simulating lunar regolith. The Ames Vertical Gun Range (AVGR) was used to accelerate spherical Pyrex projectiles of 0.29g to velocities ranging between 2.5 km/s and 5.18 km/s. Impact on the pumice target occurred at normal incidence. The ejected particles were detected by thin aluminum foil targets placed around the pumice target in a 0.5 Torr vacuum. A simplistic technique to characterize the ejected particles was formulated. Improvements to this technique will be discussed for implementation in future tests.

  8. MLIBlast: A program to empirically predict hypervelocity impact damage to the Space Station

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1991-01-01

    MLIBlast is described, which consists of a number of DOC PC based MIcrosoft BASIC program modules written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft. The Spacecraft wall configuration is assumed to consist of multilayer insulation (MLI) placed between a Whipple style bumper and a pressure wall. Predictions are based on data sets of experimental results obtained from simulating debris impact on spacecraft. One module of MLIBlast facilitates creation of the data base of experimental results that is used by the damage prediction modules of the code. The user has a choice of three different prediction modules to predict damage to the bumper, the MLI, and the pressure wall.

  9. Aerogel Keystones: Extraction Of Complete Hypervelocity Impact Events From Aerogel Collectors

    SciTech Connect

    Westphal, A J; Snead, C; Butterworth, A; Graham, G A; Bradley, J; Bajt, S; Grant, P G; Bench, G; Brennan, S; Piannetta, P

    2003-11-07

    In January 2006, the Stardust mission will return the first samples from a solid solar-system body since Apollo, and the first samples of contemporary interstellar dust ever collected. Although sophisticated laboratory instruments exist for the analysis of Stardust samples, techniques for the recovery of particles and particle residues from aerogel collectors remain primitive. Here we describe our recent progress in developing techniques for extracting small volumes of aerogel, which we have called ''keystones,'' which completely contain particle impacts but minimize the damage to the surrounding aerogel collector. These keystones can be fixed to custom-designed micromachined silicon fixtures (so-called ''microforklifts''). In this configuration the samples are self-supporting, which can be advantageous in situations in which interference from a supporting substrate is undesirable. The keystones may also be extracted and placed onto a substrate without a fixture. We have also demonstrated the capability of homologously crushing these unmounted keystones for analysis techniques which demand flat samples.

  10. Modeling of measured target pressure profiles in three hypervelocity impact experiments

    SciTech Connect

    Gerassimenko, M

    2000-10-11

    A 24 g aluminum sphere was shot at a sparse array of cylinders with nominal initial projectile velocity of 4 and 5 km/s. Pressure profiles were measured with cased carbon resistor gages at two locations in a projectile impacted water filled cylinder and two of its neighbors on three shots. The pressure maxima were in the 1-13 kbars range. The experiments are modeled with the ALE3D code and several techniques are used to concentrate zoning at places of interest. There is excellent agreement between the measured and calculated pressure profiles for two shots and good agreement for the third. Comparison of the calculated pressure profiles with those from more refined calculations for two shots suggest that we are near convergence with respect to zone size.

  11. Deflections from two types of Human Surrogates in Oblique Side Impacts

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.

    2008-01-01

    The objective of the study was to obtain time-dependent thoracic and abdominal deflections of an anthropomorphic test device, the WorldSID dummy, in oblique impact using sled tests, and compare with post mortem human subject (PMHS) data. To simulate the oblique loading vector, the load wall was configured such that the thorax and abdominal plates were offset by twenty or thirty degrees. Deflections were obtained from a chestband placed at the middle thoracic level and five internal deflection transducers. Data were compared from the chestband and the transducer located at the same level of the thorax. In addition, data were compared with deflections from similar PMHS tests obtained using chestbands placed at the level of the axilla, xyphoid process, and tenth rib, representing the upper thorax, middle thorax, and abdominal region of the biological specimen. Peak deflections ranged from 30 to 85 mm in the dummy tests. Peak deflections ranged from 60 to 115 mm in PMHS. Under both obliquities, dummy deflection-time histories at the location along the chestband in close proximity to the internal deflection transducer demonstrated similar profiles. However, the peak deflection magnitudes from the chestband were approximately 20 mm greater than those from the internal transducer. Acknowledging that the chestband measures external deflections in contrast to the transducer which records internal ribcage deformations, peak deflections match from the two sensors. Deflection time histories were also similar between the dummy and PMHS in terms of morphology, although thoracic deflection magnitudes from the dummy matched more closely with PMHS than abdominal deflection magnitudes. The dummy deformed in such a way that peak deflections occurred along the lateral vector. This was in contrast to PMHS tests wherein maximum deflections occurred along the antero-lateral direction, suggesting differing deformation responses in the two models. In addition, peak deflections occurred

  12. Response of the Human Torso to Lateral and Oblique Constant-Velocity Impacts

    PubMed Central

    Subit, Damien; Duprey, Sonia; Lau, Sabrina; Guillemot, Herve; Lessley, David; Kent, Richard

    2010-01-01

    The objective of this study was to provide new biomechanical response data for the thorax with lateral and oblique loading, so as to support the development of safety systems for side impact protection that would offer the level of protection that has been achieved in frontal impact. Three male human cadavers were successively impacted by an impactor system delivering a constant velocity impact from the left and the right sides at three levels (shoulder, upper chest and mid-chest). Different impact directions were also chosen for each side: lateral, +15° posterolateral, −15° anterolateral. One subject was impacted at 1, 3 and 6 m/s whereas the other two subjects were impacted at 3 m/s only. A total of nineteen tests was performed. The impact force and the chest lateral deflection were measured using respectively a standard data acquisition system and also an optoelectronic stereophotogrammetric system (OSS). After each test, attempts were made to detect rib fractures by palpation, and a necropsy of the torso was performed after the tests series to document the injuries produced by all the tests. Overall, the peak impact force increased from the lowest impact level (mid-chest) to the highest (shoulder) and was found to be rate-sensitive. The force-deflection relationship was non linear for the shoulder impacts (stiffness increased with increasing deflection) whereas stiffness was nearly constant for the mid- and upper-chest impacts. The anterolateral impacts to the mid- and upper-chest generated more rib fractures than the other impact directions. PMID:21050589

  13. A ballistic limit equation for hypervelocity impacts on composite honeycomb sandwich panel satellite structures

    NASA Astrophysics Data System (ADS)

    Ryan, S.; Schaefer, F.; Destefanis, R.; Lambert, M.

    During a recent experimental test campaign performed in the framework of ESA Contract 16721, the ballistic performance of multiple satellite-representative Carbon Fibre Reinforced Plastic (CFRP)/Aluminium honeycomb sandwich panel structural configurations (GOCE, Radarsat-2, Herschel/Planck, BeppoSax) was investigated using the two-stage light-gas guns at EMI. The experimental results were used to develop and validate a new empirical Ballistic Limit Equation (BLE), which was derived from an existing Whipple-shield BLE. This new BLE provided a good level of accuracy in predicting the ballistic performance of stand-alone sandwich panel structures. Additionally, the equation is capable of predicting the ballistic limit of a thin Al plate located at a standoff behind the sandwich panel structure. This thin plate is the representative of internal satellite systems, e.g. an Al electronic box cover, a wall of a metallic vessel, etc. Good agreement was achieved with both the experimental test campaign results and additional test data from the literature for the vast majority of set-ups investigated. For some experiments, the ballistic limit was conservatively predicted, a result attributed to shortcomings in correctly accounting for the presence of high surface density multi-layer insulation on the outer facesheet. Four existing BLEs commonly applied for application with stand-alone sandwich panels were reviewed using the new impact test data. It was found that a number of these common approaches provided non-conservative predictions for sandwich panels with CFRP facesheets.

  14. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils.

    SciTech Connect

    Graham, G A; Teslich, N; Dai, Z R; Bradley, J P; Kearsley, A T; Horz, F

    2005-11-04

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 {micro}m thick) that are wrapped around the sample tray assembly. Soda lime spheres ({approx}49 {micro}m in diameter) have been accelerated with a Light Gas Gun into flight-grade Al foils at 6.35 km s{sup -1} to simulate the capture of cometary debris. The experimental craters have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover ''pure'' melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  15. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Teslich, N.; Dai, Z. R.; Bradley, J. P.; Kearsley, A. T.; Horz, F.

    2006-01-01

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 micrometers thick) that are wrapped around the sample tray assembly. Soda lime spheres (approximately 49 m in diameter) have been accelerated with a light-gas-gun into flight-grade Al foils at 6.35 km s(sup -1) to simulate the potential capture of cometary debris. The preserved crater penetrations have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact penetration. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover pure melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  16. Angular momentum transfer in low velocity oblique impacts - Implications for asteroids

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Masahisa; Eluszkiewicz, Janusz; Ahrens, Thomas J.

    1991-12-01

    An experimental study has been conducted for the low-velocity oblique impact efficiency of angular momentum transfer, which is defined as that fraction of incident angular momentum that is transferred to the rotation of a target. The results obtained suggest that more energetic impacts are able to transfer angular momentum more efficiently. In the cases of ricochetted projectiles, the fraction of angular momentum carried off by the ejecta was noted to be less than 30 percent. It is suggested that, if asteroid spin rates are due to mutual noncatastrophic collisions and the taxonomic classes are indicative of bulk properties, the differences between corresponding spin rates will be smaller than expected from a consideration of relative strength and density alone.

  17. Angular momentum transfer in low velocity oblique impacts - Implications for asteroids

    NASA Technical Reports Server (NTRS)

    Yanagisawa, Masahisa; Eluszkiewicz, Janusz; Ahrens, Thomas J.

    1991-01-01

    An experimental study has been conducted for the low-velocity oblique impact efficiency of angular momentum transfer, which is defined as that fraction of incident angular momentum that is transferred to the rotation of a target. The results obtained suggest that more energetic impacts are able to transfer angular momentum more efficiently. In the cases of ricochetted projectiles, the fraction of angular momentum carried off by the ejecta was noted to be less than 30 percent. It is suggested that, if asteroid spin rates are due to mutual noncatastrophic collisions and the taxonomic classes are indicative of bulk properties, the differences between corresponding spin rates will be smaller than expected from a consideration of relative strength and density alone.

  18. Table-top Generation and Spectroscopic Study of ~10 TPa High-Energy Density Materials with C60 Hypervelocity (v ~ 100 km/s) Impact

    NASA Astrophysics Data System (ADS)

    Bae, Young

    2013-06-01

    Intense bursts of soft x-rays were discovered by Bae et al. in hypervelocity (v ~ 100 km/s) impact of bio and water nanoparticles at the Brookhaven National Lab (BNL) in 1994. In the experiment, the nanoparticles were directly impacted on and detected by Si particle detectors that also detected the soft x-rays. Energy deposition measurements through thin films revealed that the impact generated pressures were ~10 TPa, and the photon energies in the range of 75-100 eV for Si targets. The conversion efficiency from the kinetic energy to the radiation energy was unexpectedly high, ~38%, which was attributed to Dicke Superradiance of collective quantum states in High-Energy Density Materials (HEDM), Metastable Innershell Molecular States (MIMS). This talk presents recent experimental results obtained in a table-top apparatus completely different from and orders of magnitude smaller than that at BNL. In the new setup, hypervelocity (v 100 km/s) C60+ ions impacted on Al targets, and the impact generated soft x-rays were detected off-axis and analyzed using three Si photodiode detectors with selective energy response curves. The photon energy was determined to be ~70 eV with the kinetic-energy to photon-energy conversion efficiency of ~35% in confirmation of the results by Bae et al. at BNL. The present results demonstrate a new way of generation and spectroscopic study of HEDM with pressures exceeding 10 TPa, and show the pathway to scaling up the soft x-ray generation method for a wide range of applications from lithography to inertial fusion. This work was supported by DTRA under the contract HDTRA1-12-C-0094.

  19. Space Debris Surfaces (Computer Code): Probability of No Penetration Versus Impact Velocity and Obliquity

    NASA Technical Reports Server (NTRS)

    Elfer, N.; Meibaum, R.; Olsen, G.

    1995-01-01

    A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design that is best suited to the predominant penetration mechanism. The analysis also suggests the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs or Microsoft-EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII. The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs. Examples will be presented of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration.

  20. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris

    SciTech Connect

    Kawai, Nobuaki; Tsurui, Kenji; Hasegawa, Sunao; Sato, Eiichi

    2010-11-15

    A single microparticle launching method is described to simulate the hypervelocity impacts of micrometeoroids and microdebris on space structures at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. A microparticle placed in a sabot with slits is accelerated using a rifled two-stage light-gas gun. The centrifugal force provided by the rifling in the launch tube separates the sabot. The sabot-separation distance and the impact-point deviation are strongly affected by the combination of the sabot diameter and the bore diameter, and by the projectile diameter. Using this method, spherical projectiles of 1.0-0.1 mm diameter were launched at up to 7 km/s.

  1. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris.

    PubMed

    Kawai, Nobuaki; Tsurui, Kenji; Hasegawa, Sunao; Sato, Eiichi

    2010-11-01

    A single microparticle launching method is described to simulate the hypervelocity impacts of micrometeoroids and microdebris on space structures at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. A microparticle placed in a sabot with slits is accelerated using a rifled two-stage light-gas gun. The centrifugal force provided by the rifling in the launch tube separates the sabot. The sabot-separation distance and the impact-point deviation are strongly affected by the combination of the sabot diameter and the bore diameter, and by the projectile diameter. Using this method, spherical projectiles of 1.0-0.1 mm diameter were launched at up to 7 km/s. PMID:21133499

  2. Effects of barrel joints on hypervelocity projectiles

    SciTech Connect

    Shahinpoor, M.; Asay, J.R.; Dixon, W.R.; Hawke, R.S.

    1987-01-01

    Development of new hypervelocity launchers is necessary for equation of state (EOS) studies at high impact velocities. The requirements for barrel joint alignment and concentricity at high velocities place severe constraints on fabrication and assembly procedures; small steps or longitudinal direction changes at joints may cause major damage to precision projectiles. Research has been initiated to identify the technical limits of fabrication and assembly tolerances for hypervelocity gun barrels. Numerical and experimental studies have evaluated projectile performance at velocities of 6 to 15 km/s and have identified failure modes for Lexan projectiles with thin metal facings.

  3. Demonstration of Hazardous Hypervelocity Test Capability

    NASA Technical Reports Server (NTRS)

    Rodriquez, Karen M.

    1991-01-01

    NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) participated in a joint test program with NASA JSC Hypervelocity Impact Research Laboratory (HIRL) to determine if JSC was capable of performing hypervelocity impact tests on hazardous targets. Seven pressurized vessels were evaluated under hypervelocity impact conditions. The vessels were tested with various combinations of liquids and gasses at various pressures. Results from the evaluation showed that vessels containing 100-percent pressurized gas sustained more severe damage and had a higher potential for damaging nearby equipment, than vessels containing 75-percent liquid, 25-percent inert pressurized gas. Two water-filled test vessels, one of which was placed behind an aluminum shield, failed by bulging and splitting open at the impact point; pressure was relieved without the vessel fragmenting or sustaining internal damage. An additional water-filled test vessel, placed a greater distance behind an aluminum shield, sustained damage that resembled a shotgun blast, but did not bulge or split open; again, pressure was relieved without the vessel fragmenting. Two test vessels containing volatile liquids (nitro methane and hydrazine) also failed by bulging and splitting open; neither liquid detonated under hypervelocity test conditions. A test vessel containing nitrogen gas failed by relieving pressure through a circular entry hole; multiple small penetrations opposite the point of entry provided high velocity target debris to surrounding objects. A high-pressure oxygen test vessel fragmented upon impact; the ensuing fire and high velocity fragments caused secondary damage to surrounding objects. The results from the evaluation of the pressurized vessels indicated that JSC is capable of performing hypervelocity impact tests on hazardous targets.

  4. Hyper-velocity impact test and simulation of a double-wall shield concept for the Wide Field Monitor aboard LOFT

    NASA Astrophysics Data System (ADS)

    Perinati, E.; Rott, M.; Santangelo, A.; Suchy, S.; Tenzer, C.; Del Monte, E.; den Herder, J.-W.; Diebold, S.; Feroci, M.; Rachevski, A.; Vacchi, A.; Zampa, G.; Zampa, N.

    2014-07-01

    The space mission LOFT (Large Observatory For X-ray Timing) was selected in 2011 by ESA as one of the candidates for the M3 launch opportunity. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM), based on Silicon Drift Detectors (SDDs). In orbit, they would be exposed to hyper-velocity impacts by environmental dust particles, which might alter the surface properties of the SDDs. In order to assess the risk posed by these events, we performed simulations in ESABASE2 and laboratory tests. Tests on SDD prototypes aimed at verifying to what extent the structural damages produced by impacts affect the SDD functionality have been performed at the Van de Graaff dust accelerator at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg. For the WFM, where we expect a rate of risky impacts notably higher than for the LAD, we designed, simulated and successfully tested at the plasma accelerator at the Technical University in Munich (TUM) a double-wall shielding configuration based on thin foils of Kapton and Polypropylene. In this paper we summarize all the assessment, focussing on the experimental test campaign at TUM.

  5. Sharp Hypervelocity Aerodynamic Research Probe

    NASA Technical Reports Server (NTRS)

    Bull, Jeffrey; Kolodziej, Paul; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    The objective of this flight demonstration is to deploy a slender-body hypervelocity aerodynamic research probe (SHARP) from an orbiting platform using a tether, deorbit and fly it along its aerothermal performance constraint, and recover it intact in mid-air. To accomplish this objective, two flight demonstrations are proposed. The first flight uses a blunt-body, tethered reentry experiment vehicle (TREV) to prove out tethered deployment technology for accurate entries, a complete SHARP electronics suite, and a new soft mid-air helicopter recovery technique. The second flight takes advantage of this launch and recovery capability to demonstrate revolutionary sharp body concepts for hypervelocity vehicles, enabled by new Ultra-High Temperature Ceramics (UHTCs) recently developed by Ames Research Center. Successful demonstration of sharp body hypersonic vehicle technologies could have radical impact on space flight capabilities, including: enabling global reentry cross range capability from Station, eliminating reentry communications blackout, and allowing new highly efficient launch systems incorporating air breathing propulsion and zeroth staging.

  6. Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence

    NASA Technical Reports Server (NTRS)

    Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.

    2015-01-01

    under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.

  7. A system to damp the free piston oscillations in a two-stage light-gas gun used for hypervelocity impact experiments

    NASA Astrophysics Data System (ADS)

    Pavarin, D.; Francesconi, A.; Angrilli, F.

    2004-01-01

    Hypervelocity impact experiments that reproduce on-orbit collisions between micrometeoroids or orbital debris and space structures are commonly performed by means of propellant-driven two-stage light-gas guns. Such devices accelerate projectiles using the thrust of a light propellant gas that is compressed to high pressure and temperature by a piston running in a pump tube. Though these guns have the unique capability of accelerating particles up to 9 km/s, many components of the gun must be checked and/or substituted after each shot making test sessions long and expensive. In order to have a lot of and many different types of hypervelocity impact data, the Center of Studies and activities for Space CISAS "G. Colombo" of Padua University developed a high-shot-frequency two-stage light-gas gun that can increase the shot repetition rate of standard facilities by a factor of 5 or more and at the same time reduce the shot cost by a factor of 2 or more. This is made possible through the use of special mechanical and diagnostic solutions that were designed to operate the gun for more than 50 shots in sequence without having to carry out maintenance operations. This article presents the design and operation of the CISAS two-stage light-gas gun damping system, which is one of the subsystems that makes it possible to achieve high-shot frequency. The damping system is in charge of controlling the piston oscillations in the pump tube, making it possible for the piston to withstand more than 100 shots without any damage. In particular, the damping system avoids piston strikes onto the gun head at the end of each compression stroke and allows the piston to be positioned at the base of the pump tube after each shot. The sensitivity of the piston oscillations to the damping operations and main subsystem design parameters were identified using numerical simulations, carried out according to a model that describes every working phase of the gun. Moreover, in this paper, the

  8. On propagation of shock waves generated under hypervelocity impact (HVI) and application to characterizing orbital debris-induced damage in space vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Menglong; Su, Zhongqing

    2015-03-01

    The propagation characteristics of shock waves generated under hypervelocity impact (HVI) (an impact velocity leading to the case that inertial forces outweigh the material strength, usually on the order over 1 km/s) and guided by plate-like structures were interrogated. A hybrid numerical modeling approach, based on the Smoothed-Particle Hydrodynamics (SPH) and Finite Element Method, was developed, to scrutinize HVI scenarios in which a series of aluminum plates, 1.5- mm, 3-mm and 5-mm in thickness, was considered to be impacted by an aluminum sphere, 3.2-mm in diameter, at an initial velocity of 3100 m/s, 3050 m/s and 2490 m/s, respectively. The meshless nature of SPH algorithm circumvented the inefficiency and inaccuracy in simulating large structural distortion associated with HVI when traditional finite element methods used. The particle density was particularly intensified in order to acquire wave components of higher frequencies. With the developed modeling approach, shock waves generated under concerned HVI scenarios were captured at representative gauging points, and the signals were examined in both time and frequency domains. The simulation results resembled those from earlier experiment, demonstrating a capability of the developed modeling approach in canvassing shock waves under HVI. It has been concluded that in the regions near the impact point, the shock waves propagate with higher velocities than bulk waves; as propagation distance increases, the waves slow down and can be described as fundamental and higher-order symmetric and anti-symmetric plate-guided wave modes, propagating at distinct velocities in different frequency bands. The results will facilitate detection of orbital debris-induced damage in space vehicles.

  9. Cosmology with hypervelocity stars

    SciTech Connect

    Loeb, Abraham

    2011-04-01

    In the standard cosmological model, the merger remnant of the Milky Way and Andromeda (Milkomeda) will be the only galaxy remaining within our event horizon once the Universe has aged by another factor of ten, ∼ 10{sup 11} years after the Big Bang. After that time, the only extragalactic sources of light in the observable cosmic volume will be hypervelocity stars being ejected continuously from Milkomeda. Spectroscopic detection of the velocity-distance relation or the evolution in the Doppler shifts of these stars will allow a precise measurement of the vacuum mass density as well as the local matter distribution. Already in the near future, the next generation of large telescopes will allow photometric detection of individual stars out to the edge of the Local Group, and may target the ∼ 10{sup 5±1} hypervelocity stars that originated in it as cosmological tracers.

  10. Stabilization of Wave Formation on a Contact Boundary of Metal Layers at an Oblique Impact during Kelvin - Helmholtz Instability Development

    SciTech Connect

    Drennov, O. B.; Mikhailov, A. L.

    2006-07-28

    The elimination effect of disturbances and mutual mixing on a contact boundaries of metal layers at oblique impact during Kelvin - Helmholtz instability development was established and investigated. Thin layers of metal coatings ({delta}{approx}30 {mu}m) reduce amplitude of disturbance realization in 10 - 100 times and eliminate mutual mixing of contacting materials (eliminate the formation of a welded point). The foils of the same materials and thicknesses are not characterized by the same strong stabilizing properties. This stabilizing effect is explained by physical properties of a metal coating as a whole. Thermophysical limits for coating layers are pointed out.

  11. The impact of precession and obliquity on the Late-Devonian greenhouse climate

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, D.; Crucifix, M.; Bounceur, N.; Claeys, P. F.

    2012-12-01

    To date, only few general circulation model (GCM) have been used to simulate the extremely warm greenhouse climate of the Late-Devonian (~370 Ma). As a consequence, the current knowledge on Devonian climate dynamics comes almost exclusively from geological proxy data. Given the fragmentary nature of these data sources, the understanding of the Devonian climate is rather limited. Nonetheless, the Late-Devonian is a key-period in the evolution of life on Earth: the continents were no longer bare but were invaded by land plants, the first forests appeared, soils were formed, fish evolved to amphibians and 70-80% of all animal species were wiped out during the Late Devonian extinction (~376 Ma). In order to better understand the functioning of the climate system during this highly important period in Earth's history, we applied the HadSM3 climate model to the Devonian period under different astronomical configurations. This approach provides insight into the response of Late-Devonian climate to astronomical forcing due to precession and obliquity. Moreover, the assessment of the sensitivity of the Late-Devonian climate to astronomical forcing, presented here, will allow cyclostratigraphers to make better and more detailed interpretations of recurring patterns often observed in Late-Devonian sections. We simulated Late-Devonian climates by prescribing palaeogeography, vegetation distribution and pCO2 concentration (2180 ppm). Different experiments were carried out under 31 different astronomical configurations: three levels for obliquity (ɛ = 22°; 23.5° and 24.5°) and eccentricity (e = 0; 0.03 and 0.07) were chosen. For precession, 8 levels were considered (longitude of the perihelion= 0°; 45°; 90°; 135°; 180°; 235°; 270°). First results suggest that the intensity of precipitation on the tropical Euramerican continent (also known as Laurussia) is highly dependent on changes in precession: During precession maxima (= maximal insolation in SH during winter

  12. PENOB: a modification of the PENAP code to treat oblique impact of earth penetrators. [In extended FORTRAN (FLECS) for CDC 6600

    SciTech Connect

    Yarrington, P.; Norwood, F.R.; Ruiz, N.K.

    1980-02-01

    As a direct extension of the work on normal penetration, effort was directed to develop analytical techniques for treating oblique impact (nonzero angle of attack and impact angle). The PENOB code was developed for this purpose from the equations of the PENAP axisymmetric earth penetration program. To treat oblique impact problems, the boundary conditions on the penetrator-soil interface are allowed to vary around the penetrator circumference. In general, peak lateral loads predicted by PENOB were fond to be larger (by factors of 1.5 to 2.0) than those obtained by earlier approximate methods. 8 figures, 5 tables.

  13. Survival of organic materials in hypervelocity impacts of ice on sand, ice, and water in the laboratory.

    PubMed

    Burchell, Mark J; Bowden, Stephen A; Cole, Michael; Price, Mark C; Parnell, John

    2014-06-01

    The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ~2 and ~4 km s(-1) at targets that included water ice, water, and sand. This involved shock pressures in the range of 2-12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s(-1) and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies. PMID:24901745

  14. Survival of Organic Materials in Hypervelocity Impacts of Ice on Sand, Ice, and Water in the Laboratory

    PubMed Central

    Bowden, Stephen A.; Cole, Michael; Parnell, John

    2014-01-01

    Abstract The survival of organic molecules in shock impact events has been investigated in the laboratory. A frozen mixture of anthracene and stearic acid, solvated in dimethylsulfoxide (DMSO), was fired in a two-stage light gas gun at speeds of ∼2 and ∼4 km s−1 at targets that included water ice, water, and sand. This involved shock pressures in the range of 2–12 GPa. It was found that the projectile materials were present in elevated quantities in the targets after impact and in some cases in the crater ejecta as well. For DMSO impacting water at 1.9 km s−1 and 45° incidence, we quantify the surviving fraction after impact as 0.44±0.05. This demonstrates successful transfer of organic compounds from projectile to target in high-speed impacts. The range of impact speeds used covers that involved in impacts of terrestrial meteorites on the Moon, as well as impacts in the outer Solar System on icy bodies such as Pluto. The results provide laboratory evidence that suggests that exogenous delivery of complex organic molecules from icy impactors is a viable source of such material on target bodies. Key Words: Organic—Hypervelocity—Shock—Biomarkers. Astrobiology 14, 473–485. PMID:24901745

  15. The impact of implantation technique on frontal and sagittal alignment in total lumbar disc replacement: a comparison of anterior versus oblique implantation

    PubMed Central

    Obertacke, U.; Nothwang, J.; Ulrich, C.; Nowicki, J.; Reichel, H.; Cakir, B.

    2010-01-01

    The concept of total lumbar disc replacement (TDR) is gaining acceptance due to good clinical short-term outcome. Standard implantation is strict anterior, which poses especially above the segment L5/S1 sometimes difficulties due to the vessel configuration. Therefore, oblique implantable TDR have been invented. In oblique implantation the anterior longitudinal ligament (ALL) is only partially resected, with additional partial resection of lateral annulus fibers. This could have an impact on biomechanical properties, which has not been evaluated until now. We therefore compared the standing ap and lateral X-rays pre- and postoperative after anterior and oblique implantation of TDR in segment L4/5. Significant differences between the groups were not found. In both the anterior and oblique group, segmental lordosis showed a significant increase, whereas total lordosis as well as ap balance were unchanged. The absolute segmental lordosis increase was nearly double in the anterior group. In conclusion, both anterior and oblique implanted TDR significantly increase segmental lordosis while retaining total lordosis and ap balance. The segmental increase is lower in the oblique implanted group which is probably due to the remaining ALL. Further studies should evaluate whether this finding has any implication for the long-term outcome. PMID:20490873

  16. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; McNamara, H.

    2010-01-01

    Since early 2006 the Meteoroid Environment Office at NASA's Marshall Space Flight Center has been consistently monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 11 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-900 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated.

  17. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.

    2010-01-01

    Since early 2006 the Meteoroid Environment Office (MEO) at NASA s Marshall Space Flight Center has been consistently monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated.

  18. Luminous Efficiency of Hypervelocity Meteoroid Impacts on the Moon Derived from the 2006 Geminids, 2007 Lyrids, and 2008 Taurids

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Swift, W. R.; Suggs, R. J.; Cooke, W. J.; Diekmann, A. M.; Koehler, H. M.

    2011-01-01

    Since early 2006, NASA s Marshall Space Flight Center has been routinely monitoring the Moon for impact flashes produced by meteoroids striking the lunar surface. During this time, several meteor showers have produced multiple impact flashes on the Moon. The 2006 Geminids, 2007 Lyrids, and 2008 Taurids were observed with average rates of 5.5, 1.2, and 1.5 meteors/hr, respectively, for a total of 12 Geminid, 12 Lyrid, and 12 Taurid lunar impacts. These showers produced a sufficient, albeit small sample of impact flashes with which to perform a luminous efficiency analysis similar to that outlined in Bellot Rubio et al. (2000a, b) for the 1999 Leonids. An analysis of the Geminid, Lyrid, and Taurid lunar impacts is carried out herein in order to determine the luminous efficiency in the 400-800 nm wavelength range for each shower. Using the luminous efficiency, the kinetic energies and masses of these lunar impactors can be calculated from the observed flash intensity.

  19. MLITemp: A computer program to predict the thermal effects associated with hypervelocity impact damage to space station MLI

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Giridharan, V.

    1991-01-01

    A family of user-friendly, DOS PC based, Microsoft BASIC programs written to provide spacecraft designers with empirical predictions of space debris damage to orbiting spacecraft are described. Spacecraft wall temperatures and condensate formation is also predicted. The spacecraft wall configuration is assumed to consist of multilayered insulation (MLI) placed between a Whipple style bumper and the pressure wall. Impact damage predictions are based on data sets of experimental results obtained from simulating debris impacts on spacecraft using light gas guns on earth. A module of the program facilitates the creation of the database of experimental results that is used by the damage prediction modules to predict damage to the bumper, the MLI, and the pressure wall. A finite difference technique is used to predict temperature distributions in the pressure wall, the MLI, and the bumper. Condensate layer thickness is predicted for the case where the pressure wall temperature drops below the dew point temperature of the spacecraft atmosphere.

  20. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested.

    PubMed

    Horneck, Gerda; Stöffler, Dieter; Ott, Sieglinde; Hornemann, Ulrich; Cockell, Charles S; Moeller, Ralf; Meyer, Cornelia; de Vera, Jean-Pierre; Fritz, Jörg; Schade, Sara; Artemieva, Natalia A

    2008-02-01

    The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms. PMID:18237257

  1. Further analyses of Rio Cuarto impact glass

    NASA Technical Reports Server (NTRS)

    Schultz, Peter H.; Bunch, T. E.; Koeberl, C.; Collins, W.

    1993-01-01

    Initial analyses of the geologic setting, petrology, and geochemistry of glasses recovered from within and around the elongate Rio Cuarto (RC) craters in Argentina focused on selected samples in order to document the general similarity with impactites around other terrestrial impact craters and to establish their origin. Continued analysis has surveyed the diversity in compositions for a range of samples, examined further evidence for temperature and pressure history, and compared the results with experimentally fused loess from oblique hypervelocity impacts. These new results not only firmly establish their impact origin but provide new insight on the impact process.

  2. Space Weathering of airless bodies in the Solar System - Combining hypervelocity dust impacts with energetic irradiation experiments

    NASA Astrophysics Data System (ADS)

    Fiege, K.; Bennett, C.; Guglielmino, M.; Orlando, T. M.; Trieloff, M.; Srama, R.

    2015-12-01

    The chemical and mineralogical characterization of meteorites and their parent asteroids provides us with information about the processes and conditions during the formation of the inner Solar System. However, linking meteorites to their parent bodies is problematic. Astronomical observations aim to reconstruct the surface properties of these bodies primarily by visible and infrared spectra, but space weathering severely modifies the optical, compositional and physical properties of thin surface layers and thus precludes proper identification of chemistry and mineralogy. The effects of space weathering have been experimentally studied mainly with respect to ion bombardment and sputtering. Other studies aimed to simulate the influence of micrometeoroid bombardment by using laser ablation techniques. However, there is sufficient evidence that laser ablation does not realistically lead to the same effects as produced during real micrometeorite impacts. We performed micrometeorite bombardment using a 2MV dust accelerator at the Institute for Space Systems at University of Stuttgart, Germany, capable of generating impact speeds up to 100 km s-1. These results are combined with energetic irradiation experiments at the Electron and Photon Induced Chemistry on Surfaces (EPICS) laboratory at Georgia Institute of Technology, USA. By simulating highly realistic irradiation conditions, we are able to investigate the processes of particle and solar wind irradiation on solid planetary surfaces and study the formation of e.g., nanophase iron in minerals, the effects on hydrous minerals regarding their volatile budgets, or possible OH-formation in nominally anhydrous minerals and relate these to their optical properties. Using a variety of minerals, this work aims to contribute to a better understanding of the general alteration mechanisms in space environments in dependence of weathering agent and available material. We here present the results of initial comparison analysis and

  3. Computational design of hypervelocity launchers

    SciTech Connect

    Trucano, T.; Chhabildas, L.

    1993-12-31

    The Sandia Hypervelocity Launcher (HVL) uses impact techniques on a two-stage light-gas gun to launch flier plates to velocities in excess of 10 km/s. An important problem in designing successful third stage techniques for impact launching fliers to such velocities is detailed understanding of the interior ballistic performance of the third stage. This is crucial for preventing melt and fracture of the flier plates during the extraordinary accelerations that they undergo (accelerations on the order of 10{sup 9} g are typical on the HVL). We seek to optimize HVL launch conditions in order to achieve two major goals: first, to maximize the potential launch velocity for a given flier, and second, to allow different flier configurations. One tool that we can apply in studying HVL performance is the use of multi-dimensional wave propagation codes. We have used such codes, particularly the Sandia Eulerian code CTH, to study a variety of interior ballistics issues related to gun performance and launcher development for almost ten years. Recently this work has culminated in a major contribution to HVL design, namely the capability to launch ``chunk`` fliers. `Me initial phases of design development were solely devoted to CTH computations that studied potential designs, identified problems, and posed possible solutions for launching chunk fliers on the HVL. Our computations sufficiently narrowed the design space to the point that systematic experimental progress was possible. Our first experiment resulted in the successful launch of an intact 0.33 gram titanium alloy chunk flier to a velocity of 10.2 km/s. The thickness to diameter ratio of this flier was approximately 0.5.

  4. Hypervelocity impact testing of cables

    NASA Technical Reports Server (NTRS)

    Jex, D. W.; Adkinson, A. B.; English, J. E.; Linebaugh, C. E.

    1973-01-01

    The physics and electrical results obtained from simulated micrometeoroid testing of certain Skylab cables are presented. The test procedure, electrical circuits, test equipment, and cable types utilized are also explained.

  5. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    DOE PAGESBeta

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model ismore » based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.« less

  6. An analytical elastic plastic contact model with strain hardening and frictional effects for normal and oblique impacts

    SciTech Connect

    Brake, M. R. W.

    2015-02-17

    Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model is based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.

  7. HE friction sensitivity oblique impact sensitivity of explosives the skid test & half-inch gap sensitivity test. Quarterly report, April 1970--June 1970

    SciTech Connect

    Van Velkinburgh, J.H.

    1997-09-01

    Oblique impact tests were performed on RX-04-DS and on the extrusion cast explosive RX-08-AZ. Partial reactions were observed on RX-04-DS at 5.0{prime}, 45{degrees} and at 1.25{prime}, 14{degrees}; no reactions were observed with RX-08-AZ in the severest of tests. Vertical drop tests were performed on 6 inch-diameter hemispheres of LX-04-1. Results are tabulated. A series of accelerometer instrumented oblique impact tests were performed to obtain normal and rotational acceleration versus time. Half-inch gap test series were performed on RX-08-AZ. No experimental work with the friction test apparatus was done this period.

  8. A new technique for ground simulation of hypervelocity debris

    NASA Technical Reports Server (NTRS)

    Roybal, R.; Shively, J.; Stein, C.; Miglionico, C.; Robertson, R.

    1995-01-01

    A series of hypervelocity damage experiments were preformed on spacecraft materials. These experiments employed a technique which accelerates micro flyer plates simulating space debris traveling at 3 to 8 km/sec. The apparatus used to propel the micro flyer plates was compact and fit well into a space environmental chamber equipped with instrumentation capable of analyzing the vapor ejected from the sample. Mechanical damage to the sample was also characterized using optical and scanning electron microscpopy. Data for this work was obtained from hypervelocity impacts on a polysulfone resin and a graphite polysulfone composite. Polysulfone was selected because it was flown on the Long Duration Exposure Facility (LDEF) which spent several years in low earth orbit (LEO). Chemistry of the vapor produced by the impact was analyzed with a time of flight mass spectrometer, (TOFMS). This represents the first time that ejected vapors from hypervelocity collisions were trapped and analyzed with a mass spectrometer. With this approach we are able to study changes in the vapor chemistry as a function of time after impact, obtain a velocity measurement of the vapor, and estimate a temperature of the surface at time of impact using dynamic gas equations. Samples of the vapor plume may be captured and examined by transmission electron microscopy. Studies were also conducted to determine mechanical damage to a graphite polysulfone composite and a polysulfone resin. Impact craters were examined under optical and scanning electron microscopes. The collision craters in the matrix were typical of those shown in conventional shock experiments. However, the hypervelocity collisions with the graphite polysulfone composite were remarkably different than those with the resin.

  9. Experimental hypervelocity impacts: Implication for the analysis of material retrieved after exposure to space environment. Part I. Impacts on aluminium targets

    NASA Astrophysics Data System (ADS)

    Mandeville, Jean-Claude; Perrin, Jean-Marie; Vidal, Loïc

    2012-12-01

    During the last three decades a wide variety of surfaces have been brought back to Earth after being exposed to space environment. The impact features found on these surfaces are used to evaluate the damages caused to spacecraft and can give clues to the characteristics of the orbital debris and meteoroids that created them. In order to derive more precisely the particle parameters and to improve the analysis of projectile remnants, we have performed an extensive analysis of craters caused by the impact of high velocity particles on thick ductile targets, using a micro-particle accelerator. We show that from the geometry of the craters and from the analysis of the remnants it is possible to derive the main characteristics of the projectiles. In particular, using up-to-date instrumentation, scanning electron microscope (SEM) and Energy Dispersive X-ray (EDX) spectrometer, we found that even small residues inside craters can be identified. However, this study shows that a velocity resolution better than 1 km/s would be appropriate to obtain a fair calibration of the impact processes on a ductile target. This would allow to decipher with precision impact features on ductile surfaces exposed to space environment.

  10. Region-specific deflection responses of WorldSID and ES2-re devices in pure lateral and oblique side impacts.

    PubMed

    Yoganandan, Narayan; Humm, John R; Pintar, Frank A; Brasel, Karen

    2011-11-01

    The objective of this study was to determine region-specific deflection responses of the WorldSID and ES2 -re devices under pure lateral and oblique side impact loading. A modular, anthropometry-specific load wall was used. It consisted of the Shoulder, Thorax, Abdomen, superior Pelvis, and inferior Pelvis plates, termed the STAPP load wall design. The two devices were positioned upright on the platform of a bench seat, and sled tests were conducted at 3.4, 6.7, and 7.5 m/s. Two chestbands were used on each dummy at the thoracic and abdominal regions. Internal sensors were also used. Effective peak deflections were obtained from the chestband contours. Based on the preselected lateral-most point/location on the pretest contour, "internal sensor-type" peak deflections were also obtained using chestband contours. In addition, peak deflection data were obtained from internal sensor records. In oblique tests, the mean "IR-TRACC-type" peak deflections in the WorldSID device were 40 to 80% of effective peak deflections, whereas the mean "potentiometer-type" peak deflections in the ES2-device were 7 to 50%. The WorldSID device appears to better mimic region -specific responses to oblique loading than the ES2-re device, likely due to the differences in its des ign of the thoracic and abdominal regions. While the lateral -most point corresponding to the current 1D IR-TRACC location was found to replicate the pure lateral response, it was found to be less than optimal to track oblique loading. Although a laterally positioned sensor provides lower peak deflections in oblique loading, the addition of an angle-measuring sensor should allow modulating the translational metric for this mode. From this perspective, it may be worthwhile to use a 2D IR-TRACC or an optical sensor to verify these findings without chestband measures. Such an analysis has the potential to modify thoracic and abdominal injury criteria to account for obliqueness. PMID:22869314

  11. Characterization of Debris from the DebriSat Hypervelocity Test

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  12. Chunk projectile launch using the Sandia Hypervelocity Launcher Facility

    SciTech Connect

    Chhabildas, L.C.; Trucano, T.G.; Reinhart, W.D.; Hall, C.A.

    1994-07-01

    An experimental technique is described to launch an intact ``chunk,`` i.e. a 0.3 cm thick by 0.6 cm diameter cylindrical titanium alloy (Ti-6Al-4V) flyer, to 10.2 km/s. The ability to launch fragments having such an aspect ratio is important for hypervelocity impact phenomenology studies. The experimental techniques used to accomplish this launch were similar but not identical to techniques developed for the Sandia HyperVelocity Launcher (HVL). A confined barrel impact is crucial in preventing the two-dimensional effects from dominating the loading response of the projectile chunk. The length to diameter ratio of the metallic chunk that is launched to 10.2 km/s is 0.5 and is an order of magnitude larger than those accomplished using the conventional hypervelocity launcher. The multi-dimensional, finite-difference (finite-volume), hydrodynamic code CTH was used to evaluate and assess the acceleration characteristics i.e., the in-bore ballistics of the chunky projectile launch. A critical analysis of the CTH calculational results led to the final design and the experimental conditions that were used in this study. However, the predicted velocity of the projectile chunk based on CTH calculations was {approximately} 6% lower than the measured velocity of {approximately}10.2 km/S.

  13. Hypervelocity cutting machine and method

    DOEpatents

    Powell, J.R.; Reich, M.

    1996-11-12

    A method and machine are provided for cutting a workpiece such as concrete. A gun barrel is provided for repetitively loading projectiles therein and is supplied with a pressurized propellant from a storage tank. A thermal storage tank is disposed between the propellant storage tank and the gun barrel for repetitively receiving and heating propellant charges which are released in the gun barrel for repetitively firing projectiles therefrom toward the workpiece. In a preferred embodiment, hypervelocity of the projectiles is obtained for cutting the concrete workpiece by fracturing thereof. 10 figs.

  14. Hypervelocity cutting machine and method

    DOEpatents

    Powell, James R.; Reich, Morris

    1996-11-12

    A method and machine 14 are provided for cutting a workpiece 12 such as concrete. A gun barrel 16 is provided for repetitively loading projectiles 22 therein and is supplied with a pressurized propellant from a storage tank 28. A thermal storage tank 32,32A is disposed between the propellant storage tank 28 and the gun barrel 16 for repetitively receiving and heating propellant charges which are released in the gun barrel 16 for repetitively firing projectiles 22 therefrom toward the workpiece 12. In a preferred embodiment, hypervelocity of the projectiles 22 is obtained for cutting the concrete workpiece 12 by fracturing thereof.

  15. Ablative shielding for hypervelocity projectiles

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor)

    1993-01-01

    A hypervelocity projectile shield which includes a hollow semi-flexible housing fabricated from a plastic like, or otherwise transparent membrane which is filled with a fluid (gas or liquid) is presented. The housing has a inlet valve, similar to that on a tire or basketball, to introduce an ablating fluid into the housing. The housing is attached by a Velcro mount or double-sided adhesive tape to the outside surface of a structure to be protected. The housings are arrayed in a side-by-side relationship for complete coverage of the surface to be protected. In use, when a hypervelocity projectile penetrates the outer wall of a housing it is broken up and then the projectile is ablated as it travels through the fluid, much like a meteorite 'burns up' as it enters the earth's atmosphere, and the housing is deflated. The deflated housing can be easily spotted for replacement, even from a distance. Replacement is then accomplished by simply pulling a deflated housing off the structure and installing a new housing.

  16. The NASA Ames Hypervelocity Free Flight Aerodynamic Facility: Experimental Simulation of the Atmospheric Break-Up of Meteors

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.; Bogdanoff, D. W.

    2015-01-01

    The Hypervelocity Free Flight Aerodynamic Facility at NASA Ames Research Center provides a potential platform for the experimental simulation of meteor breakup at conditions that closely match full-scale entry condition for select parameters. The poster describes the entry environment simulation capabilities of the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center and provides example images of the fragmentation of a hypersonic projectile for which break-up was initiated by mechanical forces (impact with a thin polymer diaphragm).

  17. Multi-shock assembly for protecting a spacecraft surface from hypervelocity impactors

    NASA Technical Reports Server (NTRS)

    Dvorak, Bruce D. (Inventor)

    2001-01-01

    A hypervelocity impact shield assembly for protecting a spacecraft surface from hypervelocity impactors. The shield assembly includes at least one sacrificial impactor disrupting/shocking layer of hypervelocity impactor disrupting/shocking material. A primary spacing element, including space-rated open cell foam material, is positioned between the at least one sacrificial impactor disrupting/shocking layer and a spacecraft surface. A cover member is arranged and disposed relative to the sacrificial impactor disrupting/shocking layer and the primary spacing element to maintain the integrity of the hypervelocity impact shield assembly. In the event of exposure to a hypervelocity impactor, the sacrificial impactor disrupting/shocking layer is perforated while shocking the impactor breaking it into fragments, and/or melting it, and/or vaporizing it, thus providing a dispersion in the form of an expanding debris cloud/plume which spreads the impact energy of the impactor over a volume formed by the primary spacing element between the sacrificial impactor disrupting/shocking layer and the spacecraft surface. This significantly reduces impact lethality at the spacecraft surface. The space-rated open cell foam material provides an extremely lightweight, low-cost, efficient means of spacing and supporting the at least one sacrificial impactor disrupting/shocking layer before, during, and after launch. In a preferred embodiment, the invention is in the form of a multi-shock assembly including a plurality of sacrificial impactor disrupting/shocking layers. In such instance, the hypervelocity impact shield assembly includes a plurality of secondary spacing elements. Each secondary spacing element is positioned adjacent an associated sacrificial impactor disrupting/shocking layer to form a multi-shock subassembly. Thus, a plurality of multi-shock subassemblies are provided which include alternating layers of sacrificial impactor disrupting/shocking layers and secondary spacing

  18. Fragmentation of hypervelocity aluminum projectiles on fabrics

    NASA Astrophysics Data System (ADS)

    Rudolph, Martin; Schäfer, Frank; Destefanis, Roberto; Faraud, Moreno; Lambert, Michel

    2012-07-01

    This paper presents work performed for a study investigating the ability of different flexible materials to induce fragmentation of a hypervelocity projectile. Samples were chosen to represent a wide range of industrially available types of flexible materials like ceramic, aramid and carbon fabrics as well as a thin metallic mesh. Impact conditions and areal density were kept constant for all targets. Betacloth and multi-layer insulation (B-MLI) are mounted onto the targets to account for thermal system engineering requirements. All tests were performed using the Space light-gas gun facility (SLGG) of the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI. Projectiles were aluminum spheres with 5 mm diameter impacting at approximately 6.3 km/s. Fragmentation was evaluated using a witness plate behind the target. An aramid and a ceramic fabric lead the ranking of fabrics with the best projectile fragmentation and debris cloud dispersion performance. A comparison with an equal-density rigid aluminum plate is presented. The work presented can be applied to optimize the micrometeoroid and space debris (MM/SD) shielding structure of inflatable modules.

  19. Advanced Hypervelocity Aerophysics Facility Workshop

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)

    1989-01-01

    The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

  20. Intact capture of hypervelocity projectiles.

    PubMed

    Tsou, P

    1990-01-01

    The ability to capture projectiles intact at hypervelocities opens new applications in science and technology that would either not be possible or would be very costly by other means. This capability has been demonstrated in the laboratory for aluminum projectiles of 1.6 mm diameter, captured at 6 km/s, in one unmelted piece, and retaining up to 95% of the original mass. Furthermore, capture was accomplished passively using microcellular underdense polymer foam. Another advantage of capturing projectiles in an underdense medium is the ability of such a medium to preserve a record of the projectile's original velocity components of speed and direction. A survey of these experimental results is described in terms of a dozen parameters which characterize the amount of capture and the effect on the projectile due to different capture media. PMID:11538362

  1. On the Nature of Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Ginsburg, Idan

    2013-12-01

    Hypervelocity stars are stars ejected from the center of the Milky Way, never to return. Since first discovered in 2005, hypervelocity stars have greatly increased our understanding of the kinematics and dynamics at the Galactic Center. In this dissertation we show via gravitational N-body simulations that an encounter between a binary star and the massive black hole at the Galactic Center, Sgr A*, can produce a hypervelocity star for one component of the binary, while the companion star remains in a tight orbit around the black hole. Such an encounter can also result in the coalescence of both stars in a highly-eccentric orbit around the black hole. These mechanisms may explain the surprising appearance of massive stars within 1OEOE of Sgr A*. We further find that the disruption of a triple star system by the massive black hole can produce hypervelocity binaries, which may ultimately coalesce and evolve into unbound blue stragglers. The black hole may also capture a binary star system, or possibly all three stars when a triple system is disrupted. Such captures may lead to collisions between two or all three of the stars and the coalescence may result in the formation of rejuvenated stars. Oursimulations also predict that planets around stars can be ejected from the Galactic Center via the same mechanism that produces hypervelocity stars. However, typical velocities for such runaway planets are higher than their stellar counterparts, with velocities approaching 5% the speed of light in extreme cases. Planets may also collide with their host star and result in an enriched stellar atmosphere. Furthermore, hypervelocity stars may host planets that should have a detectable transit. The discovery of such a transit would have consequences for understanding planetary formation and evolution at the Galactic Center. It is difficult to positively identify hypervelocity stars since at the observed effective temperatures both main-sequence and blue horizontal branch stars

  2. Simple light gas guns for hypervelocity studies

    SciTech Connect

    Combs, S.K.; Haselton, H.H.; Milora, S.L.

    1990-01-01

    Two-stage light guns are used extensively in hypervelocity research. The applications of this technology include impact studies and special materials development. Oak Ridge National Laboratory (ORNL) has developed two-stage guns that accelerate small projectiles (4-mm nominal diameter) to velocities of up to {approx}5 km/s. These guns are relatively small and simple (thus, easy to operate), allowing a significant number of test shots to be carried out and data accumulated in a short time. Materials that have been used for projectiles include plastics, frozen isotopes of hydrogen, and lithium hydride. One gun has been used to demonstrate repetitive operation at a rate of 0.7 Hz; and, with a few design improvements, it appears capable of performing at firing frequencies of 1--2 Hz. A schematic of ORNL two-stage device is shown below. Unlike most such devices, no rupture disks are used. Instead, a fast valve (high-flow type) initiates the acceleration process in the first stage. Projectiles can be loaded into the gun breech via the slide mechanism; this action has been automated which allows repetitive firing. Alternatively, the device is equipped with pipe gun'' apparatus in which gas can be frozen in situ in the gun barrel to form the projectile. This equipment operates with high reliability and is well suited for small-scale testing at high velocity. 17 refs., 6 figs., 2 tabs.

  3. Calculations supporting HyperVelocity Launcher development

    SciTech Connect

    Trucano, T.G.; Chhabildas, L.C.

    1993-08-01

    Sandia National Laboratories has developed a HyperVelocity Launcher (also referred to as HVL) in which a thin flier plate (nominally 1 mm thick) is launched to velocities in excess of 12 km/s. The length to diameter ratio of these launched flier plates varies from 0.02 to 0.06. The launch technique is based upon using structured, time-dependant, high-pressure, high-acceleration pulses to drive the flier plates. Such pulses are achieved by using a graded-density material to impact a stationary flier. A computational and experimental program at Sandia seeks to extend this technique to allow launching thick plates whose length-to-diameter ratio is 10 to 20 times larger than thin plates. Hydrodynamic codes are used to design modifications to the basic technique. The authors have controlled and used these effects to successfully launch a chunk-flier, consisting of 0.33 gm of titanium alloy, 0.3 cm thick by 0.6 cm in diameter, to a velocity of 10.2 km/s. This is the largest chunky size ever launched at this velocity from a gas gun configuration.

  4. Formation of South Pole-Aitken Basin as the Result of an Oblique Impact: Implications for Melt Volume and Source of Exposed Materials

    NASA Technical Reports Server (NTRS)

    Petro, N. E.

    2012-01-01

    The South Pole-Aitken Basin (SPA) is the largest, deepest, and oldest identified basin on the Moon and contains surfaces that are unique due to their age, composition, and depth of origin in the lunar crust [1-3] (Figure 1). SPA has been a target of interest as an area for robotic sample return in order to determine the age of the basin and the composition and origin of its interior [3-6]. As part of the investigation into the origin of SPA materials there have been several efforts to estimate the likely provenance of regolith material in central SPA [5, 6]. These model estimates suggest that, despite the formation of basins and craters following SPA, the regolith within SPA is dominated by locally derived material. An assumption inherent in these models has been that the locally derived material is primarily SPA impact-melt as opposed to local basement material (e.g. unmelted lower crust). However, the definitive identification of SPA derived impact melt on the basin floor, either by remote sensing [2, 7] or via photogeology [8] is extremely difficult due to the number of subsequent impacts and volcanic activity [3, 4]. In order to identify where SPA produced impact melt may be located, it is important to constrain both how much melt would have been produced in a basin forming impact and the likely source of such melted material. Models of crater and basin formation [9, 10] present clear rationale for estimating the possible volumes and sources of impact melt produced during SPA formation. However, if SPA formed as the result of an oblique impact [11, 12], the volume and depth of origin of melted material could be distinct from similar material in a vertical impact [13].

  5. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1992-01-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  6. Aluminum 2219-T87 and 5456-H116 - A comparative study of spacecraft wall materials in dual-wall structures under hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Schonberg, William P.

    1992-11-01

    All earth-orbiting spacecraft are susceptible to high-speed impacts by pieces of orbital debris. To prevent mission failure and possibly loss of life, protection against perforation by high-speed orbital debris particles must be included in the spacecraft design. Although any number of materials can be used to manufacture perforation-resistant structures, aluminum is often used in such systems because of its relatively high strength-to-weight ratio. This paper presents the results of a study in which the high speed impact response characteristics of dual-wall structures made from two different aluminum alloys were analyzed to determine which alloy would be more suitable for use in a perforation-resistant dual-wall structural system that is to be exposed to the orbital debris environment. Impact response characteristics were obtained numerically and experimentally. At impact speeds below 7 km/s, it was found that the two aluminum alloys considered contributed similar levels of perforation resistance; at speeds in excess of 7 km/s, aluminum 2219-T87 was superior to aluminum 5546-H116 in preventing perforation of dual-wall structural systems.

  7. A study of the observed shift in the peak position of olivine Raman spectra as a result of shock induced by hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, M. J.

    2016-05-01

    Kuebler et al. () identified variations in olivine Raman spectra based on the composition of individual olivine grains, leading to identification of olivine composition from Raman spectra alone. However, shock on a crystal lattice has since been shown to result in a structural change to the original material, which produces a shift in the Raman spectra of olivine grains compared with the original unshocked olivine (Foster et al. ). This suggests that the use of the compositional calculations from the Raman spectra, reported in Kuebler et al. (), may provide an incorrect compositional value for material that has experienced shock. Here, we have investigated the effect of impact speed (and hence peak shock pressure) on the shift in the Raman spectra for San Carlos olivine (Fo91) impacting Al foil. Powdered San Carlos olivine (grain size 1-10 μm) was fired at a range of impact speeds from 0.6 to 6.1 km s-1 (peak shock pressures 5-86 GPa) at Al foil to simulate capture over a wide range of peak shock pressures. A permanent change in the Raman spectra was found to be observed only for impact speeds greater than ~5 km s-1. The process that causes the shift is most likely linked to an increase in the peak pressure produced by the impact, but only after a minimum shock pressure associated with the speed at which the effect is first observed (here 65-86 GPa). At speeds around 6 km s-1 (peak shock pressures ~86 GPa), the shift in Raman peak positions is in a similar direction (red shift) to that observed by Foster et al. () but of twice the magnitude.

  8. A study of the observed shift in the peak position of olivine Raman spectra as a result of shock induced by hypervelocity impacts

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, M. J.

    2016-07-01

    Kuebler et al. (2006) identified variations in olivine Raman spectra based on the composition of individual olivine grains, leading to identification of olivine composition from Raman spectra alone. However, shock on a crystal lattice has since been shown to result in a structural change to the original material, which produces a shift in the Raman spectra of olivine grains compared with the original unshocked olivine (Foster et al. 2013). This suggests that the use of the compositional calculations from the Raman spectra, reported in Kuebler et al. (2006), may provide an incorrect compositional value for material that has experienced shock. Here, we have investigated the effect of impact speed (and hence peak shock pressure) on the shift in the Raman spectra for San Carlos olivine (Fo91) impacting Al foil. Powdered San Carlos olivine (grain size 1-10 μm) was fired at a range of impact speeds from 0.6 to 6.1 km s-1 (peak shock pressures 5-86 GPa) at Al foil to simulate capture over a wide range of peak shock pressures. A permanent change in the Raman spectra was found to be observed only for impact speeds greater than ~5 km s-1. The process that causes the shift is most likely linked to an increase in the peak pressure produced by the impact, but only after a minimum shock pressure associated with the speed at which the effect is first observed (here 65-86 GPa). At speeds around 6 km s-1 (peak shock pressures ~86 GPa), the shift in Raman peak positions is in a similar direction (red shift) to that observed by Foster et al. (2013) but of twice the magnitude.

  9. Oblique effect in stereopsis?

    NASA Astrophysics Data System (ADS)

    Davis, Elizabeth T.; King, Robert A.; Anoskey, Alana M.

    1992-08-01

    Contrast thresholds are lower for detection of a vertical pattern than for an obliquely-oriented pattern. Is there an analogous oblique effect for the depth threshold of a stereoscopic luminance pattern? If so, why? Are the causes different from those for an oblique effect with monocular vision? To explore these issues, we used stereoscopic blurry bar (D6) luminance patterns with a peak spatial frequency of 2 or 4 cycles/degree (cpd) and either a vertical or an oblique orientation. We obtained psychometric functions for data obtained from a method of constant stimuli procedure, using 100 forced-choice trials for each datum. For each of three observers we estimated stereoacuity with a maximum-likelihood curve-fitting procedure. Subjects showed better stereoacuity for the vertical spatial patterns than for the oblique patterns. Some possible causes are that for oblique patterns (unlike vertical patterns) (1) the total vertical extent of the pattern is shrunk by a factor of sin((theta) ), where (theta) equals 90 degree(s) for vertical; (2) the pattern is 'stretched out' in the horizontal direction by a factor of csc((theta) ); (3) there are vertical as well as horizontal retinal disparities. Perhaps the resulting sparseness of horizontal disparity information or the potential vertical disparities in the oblique patterns reduce stereoacuity. To disentangle these causes, we used several different experimental conditions (e.g., elongation of oblique patterns) run in randomized blocks of trials. We will discuss these results and implications for stereopsis.

  10. Explosively driven hypervelocity launcher: Second-stage augmentation techniques

    NASA Technical Reports Server (NTRS)

    Baum, D. W.

    1973-01-01

    The results are described of a continuing study aimed at developing a two-stage explosively driven hypervelocity launcher capable of achieving projectile velocities between 15 and 20 km/sec. The testing and evaluation of a new cylindrical impact technique for collapsing the barrel of two-stage launcher are reported. Previous two-stage launchers have been limited in ultimate performance by incomplete barrel collapse behind the projectile. The cylindrical impact technique explosively collapses a steel tube concentric with and surrounding the barrel of the launcher. The impact of the tube on the barrel produces extremely high stresses which cause the barrel to collapse. The collapse rate can be adjusted by appropriate variation of the explosive charge and tubing parameters. Launcher experiments demonstrated that the technique did achieve complete barrel collapse and form a second-stage piston. However, jetting occurred in the barrel collapse process and was responsible for severe projectile damage.

  11. SU-E-T-596: Axillary Nodes Radiotherapy Boost Field Dosimetric Impact Study: Oblique Field and Field Optimization in 3D Conventional Breast Cancer Radiation Treatment

    SciTech Connect

    Su, M; Sura, S

    2014-06-01

    Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sums (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing.

  12. History of the earth's obliquity

    NASA Astrophysics Data System (ADS)

    Williams, George E.

    1993-03-01

    The evolution of the obliquity of the ecliptic (ɛ), the Earth's axial tilt of 23.5°, may have greatly influenced the Earth's dynamical, climatic and biotic development. For ɛ > 54°, climatic zonation and zonal surface winds would be reversed, low to equatorial latitudes would be glaciated in preference to high latitudes, and the global seasonal cycle would be greatly amplified. Phanerozoic palaeoclimates were essentially uniformitarian in regard to obliquity, with normal climatic zonation and zonal surface winds, circum-polar glaciation and little seasonal change in low latitudes. Milankovitch-band periodicity in early Palaeozoic evaporites implies ɛ¯≈ 26.4 ± 2.1°at ˜ 430 Ma, suggesting that the obliquity during most of Phanerozoic time was comparable to the present value. By contrast, the paradoxical Late Proterozoic (˜ 800-600Ma) glacial environment— frigid, strongly seasonal climates, with permafrost and grounded ice-sheets near sea level preferentially in low to equatorial palaeolatitudes—implies glaciation with ɛ > 54° (assuming a geocentric axial dipolar magnetic field). Palaeotidal data accord with a large obliquity in Late Proterozoic time. Indeed, Proterozoic palaeoclimates in general appear non-uniformitarian with respect to climatic zonation, consistent with ɛ > 54°. The primordial Earth's obliquity is unconstrained by the widely-accepted single-giant-impact hypothesis for the origin of the Moon; an impact-induced obliquity ≳ 70° is possible, depending on the impact parameters. Subsequent evolution of ɛ depends on the relative magnitudes of the rate of obliquity-increase ɛ caused by tidal friction, and the rate of decrease ɛ due to dissipative core-mantle torques during precession (ɛ < 90° is required for precessional torques to move ɛ toward 0°). Proterozoic palaeotidal data indicate ɛ ≈ 0.0003-0.0006″/cy (seconds of arc per century) during most of Earth history, only half the rate estimated using the modern, large

  13. Study of the Transformation of Meteoritic Organics during Hypervelocity Impacts in Support of Characterisation of Exogenous Organic Matter on the Surface of Icy Satellites

    NASA Astrophysics Data System (ADS)

    Zaitsev, Maxim; Gerasimov, Mikhail; Ivanova, Marina; Lorenz, Cyril; Aseev, Sergey; Korochantsev, Alexander

    The main goal of the planned missions to Jupiter's Galilean satellites Ganymede or Europa is the search for extraterrestrial life which can be reviled by characterization of surface organics at the landing site. Planets and satellites are exposed for steady meteoritic and cometary bombardment which delivers exogenous organic species. The exogenous organic matter on the satellites surfaces can be represented by both unaltered organic matter of meteorites and comets, and by organic matter which is synthesized from organic and/or mineral components of falling bodies during the impacts. Adequate interpretation of volatile organic compounds (VOCs) on the surface of Ganymede or Europa must take into account the presence of exogenous organic matter described above. The quantitative composition of exogenous organics is difficult to predict because it depends on the frequency of meteoritic/cometary bombardment, conditions and efficiency of organic synthesis in water mantle below the ice crust, speed of the ice crust renovation, and other factors. However, the qualitative composition of exogenous organics can be described through the study of organic matter in different classes of meteorites and products of their shock-evaporative transformation. We have carried out comparative studies of VOCs - products of pyrolysis of carbonaceous chondrites and condensed products of their high-temperature transformation in simulated shock-induced evaporation by pulse laser. We have investigated VOCs in samples of carbonaceous CM2 and CO3 chondrites (Murchison and Kainsaz respectively) and in condensed products of their high-temperature evaporation in neutral (helium) atmosphere using pyrolytic gas chromatography coupled with mass spectrometry (Pyr-GC/MS) [1, 2]. Condensates contained the same hydrocarbons that we extracted at 460(°) C from the bulk samples of meteorites (aliphatic, alicyclic and aromatic hydrocarbons) but sufficiently larger amount of nitrogen-containing compounds

  14. The obliquity of Enceladus

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Yseboodt, Marie; Van Hoolst, Tim

    2016-04-01

    The extraordinary activity at Enceladus' warm south pole indicates the presence of an internal global or local reservoir of liquid water beneath the surface. While Tyler (Tyler, R.H. [2009]. Geophys. Res. Lett. 36(15), L15205; Tyler, R.H. [2011]. Icarus 211(1), 770-779) has suggested that the geological activity and the large heat flow of Enceladus could result from tidal heating triggered by a large obliquity of at least 0.05-0.1°, theoretical models of the Cassini state predict the obliquity to be two to three orders of magnitude smaller for an entirely solid and rigid Enceladus. We investigate the influence of an internal subsurface ocean and of tidal deformations of the solid layers on the obliquity of Enceladus. Our Cassini state model takes into account the external torque exerted by Saturn on each layer of the satellite and the internal gravitational and pressure torques induced by the presence of the liquid layer. As a new feature, our model also includes additional torques that arise because of the periodic tides experienced by the satellite. We find that the upper limit for the obliquity of a solid Enceladus is 4.5 ×10-4 degrees and is negligibly affected by elastic deformations. The presence of an internal ocean decreases this upper limit by 13.1%, elasticity attenuating this decrease by only 0.5%. For larger satellites, such as Titan, elastic effects could be more significant because of their larger tidal deformations. As a consequence, it appears that it is easier to reconcile the theoretical estimates of Titan's obliquity with the measured obliquity than reported in previous studies wherein the solid layers or the entire satellite were assumed to be rigid. Since the obliquity of Enceladus cannot reach Tyler's requirement, obliquity tides are unlikely to be the source of the large heat flow of Enceladus. More likely, the geological activity at Enceladus' south pole results from eccentricity tides. Even in the most favorable case, the upper limit for

  15. Towards Efficiency of Oblique Images Orientation

    NASA Astrophysics Data System (ADS)

    Ostrowski, W.; Bakuła, K.

    2016-03-01

    Many papers on both theoretical aspects of bundle adjustment of oblique images and new operators for detecting tie points on oblique images have been written. However, only a few achievements presented in the literature were practically implemented in commercial software. In consequence often aerial triangulation is performed either for nadir images obtained simultaneously with oblique photos or bundle adjustment for separate images captured in different directions. The aim of this study was to investigate how the orientation of oblique images can be carried out effectively in commercial software based on the structure from motion technology. The main objective of the research was to evaluate the impact of the orientation strategy on both duration of the process and accuracy of photogrammetric 3D products. Two, very popular software: Pix4D and Agisoft Photoscan were tested and two approaches for image blocks were considered. The first approach based only on oblique images collected in four directions and the second approach included nadir images. In this study, blocks for three test areas were analysed. Oblique images were collected with medium-format cameras in maltan cross configuration with registration of GNSS and INS data. As a reference both check points and digital surface models from airborne laser scanning were used.

  16. Amelia Creek, Northern Territory, Australia: A 20 x 12 km Oblique Impact Structure with No Central Uplift

    NASA Astrophysics Data System (ADS)

    Macdonald, F. A.; Mitchell, K.

    2003-02-01

    The Amelia Creek Structure is located in the Davenport Ranges of the Northern Territory, Australia at lat. 20 deg. 55 sec.S, long. 134 deg. 50 sec.E. Shock metamorphic features are developed on the southern, downrange side of the structure. No central uplift is developed and the dimensions of the impact structure are at least 20 X 12 km.

  17. A research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators

    NASA Technical Reports Server (NTRS)

    Spight, C.

    1976-01-01

    A broadly-gauged research program in magnetogasdynamics utilizing hypervelocity coaxial plasma generators is presented. A complete hypervelocity coaxial plasma generator facility was assembled and tested. Significant progress was made in the direction of understanding the important processes in the interaction of hypervelocity MGD flow with transverse applied fields. It is now proposed to utilize the accumulated experimental capability and theoretical analysis in application to the analysis and design parameterization of pulsed magnetogasdynamic direct energy convertor configurations.

  18. Effect of impact angle on vaporization

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  19. Flash x-ray radiography using imaging plates for the observation of hypervelocity objects

    SciTech Connect

    Mizusako, F.; Ogasawara, K.; Kondo, K.; Saito, F.; Tamura, H.

    2005-02-01

    Flash x-ray radiography was conducted using imaging plates (IP) to observe high-speed thermal spray jets and debris clouds produced from hypervelocity impact. The radiographs of the spray jets or debris cloud shadows on the IPs were analyzed to estimate the distribution of mass per unit area, i.e., Areal mass density, due to the distribution of the intensities of stimulated emissions from the IPs. The wide dynamic range of the IPs led to the detection of an Areal mass density one hundred times as large as the minimum Areal mass density and the very detailed densities. The availability of the IPs for the flash x-ray radiography of a high-speed thermal spray jet and a hypervelocity-impact-produced debris cloud was demonstrated.

  20. The oblique electron lens.

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hallam, K. L.

    1973-01-01

    An oblique electron lens is described that is especially applicable to image converters and camera tubes employing flat opaque photocathodes. The use of optical lenses, corrector plates, and/or mirrors (often employed in other electron lenses designed for use with opaque photocathodes) are eliminated. The oblique electron lens is well suited to ultraviolet and vacuum ultraviolet image converters, and to image converters employing opaque negative electron affinity photocathodes. It is also possible to use this oblique electron lens for electronography. Measurements on an experimental tube show that a limiting resolution of 50 line pairs/mm is possible, but the intrinsic lens quality is believed to approach that of a conventional electromagnetic lens having uniform and colinear electric and magnetic fields.

  1. Nitric oxide emission spectroscopy measurements in a hypervelocity post-shock flow field

    NASA Astrophysics Data System (ADS)

    Swantek, Andrew; Austin, Joanna

    2012-11-01

    In hypervelocity flight conditions, typical of sub-orbital and reentry trajectories, the coupling between the fluid mechanics and the thermochemistry of the flow becomes important. In the current work, we use an expansion tube facility to accelerate air to hypervelocity test conditions (stagnation enthalpy 8MJ/kg, velocity 3.8 km/s). A double wedge model is used to generate an oblique shock, a strong bow shock, and a shock-boundary-layer interaction which is known to be very sensitive to the thermochemical state of the gas. We investigate the nitric oxide emission signal in the ultraviolet region (220-255 nm, A-X transition) at four spatial locations downstream of the bow shock (0, 2, 4, and 6 mm). An in-house code is used to simulate the spectrum in this region and thus obtain a temperature fit. Temperatures are observed to decrease when traversing downstream, starting at approximately the frozen temperature (about 7700 K) at the location of the shock (0 mm). The furthest downstream point deviates from this trend, potentially due to heating in a shear layer formed in the flow field. The flow field is seen to be in non-equilibrium in this region, as temperatures do not reach the equilibrium temperature (about 3900 K). This work was supported by an AFOSR award FA9550-11-1-0129 with Dr John Schmisseur as Program Manager.

  2. Comparison of the Thorax Dynamic Responses of Small Female and Midsize Male Post Mortem Human Subjects in Side and Forward Oblique Impact Tests.

    PubMed

    Baudrit, Pascal; Petitjean, Audrey; Potier, Pascal; Trosseille, Xavier; Vallencien, Guy

    2014-11-01

    Despite the increasing knowledge of the thorax mechanics in impact loadings, the effects of inter-individual differences on the mechanical response are difficult to take into account. For example, the biofidelity corridors for the small female or large male are extrapolated from the midsize male corridors. The present study reports on the results of new tests performed on small female Post Mortem Human Subjects (PMHS), and compares them with test results on midsize male PMHS. Three tests in pure side impact and three tests in forward oblique impact were performed on the thorax of small female specimens. The average weight and stature were 43 kg and 1.58 m for the small female specimens. The initial speed of the impactor was 4.3 m/s. The mass and the diameter of the impactor face were respectively 23.4 kg and 130 mm. The instrumentation and methodology was the same as for the tests published in 2008 by Trosseille et al. on midsize male specimens. The rib cages were instrumented with accelerometers on the T1, T4 and T12 vertebrae, upper and lower sternum, and the ribs were instrumented with up to 110 strain gauges. A force transducer and an accelerometer were mounted on the impactor in order to record the force applied onto the thorax. Targets fixed on vertebrae were tracked using high speed cameras in order to estimate the thoracic deflection. For the six midsize males, the test conditions were exactly the same as for the small female specimens, except for the diameter of the impactor face which was 152 mm. The average weight and stature were 70.3 kg and 1.70 m for the midsize male specimens. The force and thoracic deflection time-histories and the injury assessments are given for each specimen. The thorax force magnitude varied from 1.05 to 1.45 kN and from 1.63 to 2.34 kN, respectively for the small female and midsize male groups. The maximum deflection varied from 51 to 117 mm and from 59 to 81 mm, respectively for the small female and midsize male groups. The

  3. The effect of simulated hypervelocity space debris on polymers

    SciTech Connect

    Verker, R. . E-mail: rverker@soreq.gov.il; Eliaz, N.; Gouzman, I.; Eliezer, S.; Fraenkel, M.; Maman, S.; Beckmann, F.; Pranzas, K.; Grossman, E.

    2004-11-08

    Space debris population in low Earth orbit has been increasing constantly with the increase in spacecraft missions. Hypervelocity space debris impacts limit the functionality of polymeric outer surfaces and, in extreme cases, might cause a total loss of a spacecraft. In this work, the fracture of Kapton films by ultrahigh velocity impacts was studied. A laser-driven flyer ground simulation system was used to accelerate aluminum flyers to impact velocities as high as 2.9 km/s against polymer films with different thicknesses. Scanning electron microscopy was used to characterize the fracture morphology. Impact effects on the internal structure of the polymer were studied by means of X-ray microtomography. It was found that with an increase in debris velocity, a ductile-to-brittle transition occurred. However, fractures created by impacts at velocities above 1.7 km/s showed central impacts regions, which experienced the highest strain rate and were of ductile-type fracture, while the outer regions, which experienced a lower strain rate, failed through brittle cracking. A model explaining this phenomenon, based on the temperature gradient developed within the impacted region during collision, is presented.

  4. History of the earth's obliquity

    NASA Astrophysics Data System (ADS)

    Williams, George E.

    1993-03-01

    The evolution of the obliquity of the ecliptic (ɛ), the Earth's axial tilt of 23.5°, may have greatly influenced the Earth's dynamical, climatic and biotic development. For ɛ > 54°, climatic zonation and zonal surface winds would be reversed, low to equatorial latitudes would be glaciated in preference to high latitudes, and the global seasonal cycle would be greatly amplified. Phanerozoic palaeoclimates were essentially uniformitarian in regard to obliquity, with normal climatic zonation and zonal surface winds, circum-polar glaciation and little seasonal change in low latitudes. Milankovitch-band periodicity in early Palaeozoic evaporites implies ɛ¯≈ 26.4 ± 2.1°at ˜ 430 Ma, suggesting that the obliquity during most of Phanerozoic time was comparable to the present value. By contrast, the paradoxical Late Proterozoic (˜ 800-600Ma) glacial environment— frigid, strongly seasonal climates, with permafrost and grounded ice-sheets near sea level preferentially in low to equatorial palaeolatitudes—implies glaciation with ɛ > 54° (assuming a geocentric axial dipolar magnetic field). Palaeotidal data accord with a large obliquity in Late Proterozoic time. Indeed, Proterozoic palaeoclimates in general appear non-uniformitarian with respect to climatic zonation, consistent with ɛ > 54°. The primordial Earth's obliquity is unconstrained by the widely-accepted single-giant-impact hypothesis for the origin of the Moon; an impact-induced obliquity ≳ 70° is possible, depending on the impact parameters. Subsequent evolution of ɛ depends on the relative magnitudes of the rate of obliquity-increase ɛ caused by tidal friction, and the rate of decrease ɛ due to dissipative core-mantle torques during precession (ɛ < 90° is required for precessional torques to move ɛ toward 0°). Proterozoic palaeotidal data indicate ɛ ≈ 0.0003-0.0006″/cy (seconds of arc per century) during most of Earth history, only half the rate estimated using the modern, large

  5. A modular high precision digital system for hypervelocity projectile performance measurements

    NASA Astrophysics Data System (ADS)

    Nagarkar, Vivek V.; Singh, Bipin; Miller, Stuart; Campbell, Larry; Bishel, Ron; Rushing, Rick

    2008-04-01

    The performance measurement of hypervelocity projectiles in flight is critical in ensuring proper projectile operation, for designing new long-range missile systems with improved accuracy, and for assessing damage to the target upon impact to determine the projectile's lethality. We are developing a modular, low cost, digital X-ray imaging system to measure hypervelocity projectile parameters with high precision and to almost instantaneously map its trajectory in 3D space to compute its pitch, yaw, displacement from its path, and velocity. The preliminary data suggest that this system can render an accuracy of 0.25° in measuring pitch and yaw, an accuracy of 0.03" in estimating displacement from the centerline, and a precision of +/-0.0001% in measuring velocity, which is well beyond the capability of any existing system.

  6. The intact capture of hypervelocity dust particles using underdense foams

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Borg, J.; Tanner, William G.; Stevenson, T. J.; Bibring, J.-P.

    1994-01-01

    The impact of a hypervelocity projectile (greater than 3 km/s) is a process that subjects both the impactor and the impacted material to a large transient pressure distribution. The resultant stresses cause a large degree of fragmentation, melting, vaporization, and ionization (for normal densities). The pressure regime magnitude, however, is directly related to the density relationship between the projectile and target materials. As a consequence, a high-density impactor on a low-density target will experience the lowest level of damage. Historically, there have been three different approaches toward achieving the lowest possible target density. The first employs a projectile impinging on a foil or film of moderate density, but whose thickness is much less than the particle diameter. This results in the particle experiencing a pressure transient with both a short duration and a greatly reduced destructive effect. A succession of these films, spaced to allow nondestructive energy dissipation between impacts, will reduce the impactor's kinetic energy without allowing its internal energy to rise to the point where destruction of the projectile mass will occur. An added advantage to this method is that it yields the possibility of regions within the captured particle where a minimum of thermal modification has taken place. Polymer foams have been employed as the primary method of capturing particles with minimum degradation. The manufacture of extremely low bulk density materials is usually achieved by the introduction of voids into the material base. It must be noted, however, that a foam structure only has a true bulk density of the mixture at sizes much larger than the cell size, since for impact processes this is of paramount importance. The scale at which the bulk density must still be close to that of the mixture is approximately equal to the impactor. When this density criterion is met, shock pressures during impact are minimized, which in turn maximizes the

  7. Climates of Oblique Exoplanets

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.

    2008-12-01

    A previous paper (Dobrovolskis 2007; Icarus 192, 1-23) showed that eccentricity can have profound effects on the climate, habitability, and detectability of extrasolar planets. This complementary study shows that obliquity can have comparable effects. The known exoplanets exhibit a wide range of orbital eccentricities, but those within several million km of their suns are generally in near-circular orbits. This fact is widely attributed to the dissipation of tides in the planets, which is particularly effective for solid/liquid bodies like "Super-Earths". Along with friction between a solid mantle and a liquid core, tides also are expected to despin a planet until it is captured in the synchronous resonance, so that its rotation period is identical to its orbital period. The canonical example of synchronous spin is the way that our Moon always keeps nearly the same hemisphere facing the Earth. Tides also tend to reduce the planet's obliquity (the angle between its spin and orbital angular velocities). However, orbit precession can cause the rotation to become locked in a "Cassini state", where it retains a nearly constant non-zero obliquity. For example, our Moon maintains an obliquity of about 6.7° with respect to its orbit about the Earth. For comparison, stable Cassini states can exist for practically any obliquity up to 180° for planets of binary stars, or in multi-planet systems with high mutual inclinations, such as are produced by scattering or by the Kozai mechanism. This work considers planets in synchronous rotation with circular orbits. For obliquities greater than 90°, the ground track of the sub-solar point wraps around all longitudes on the surface of such a planet. For smaller obliquities, the sub-solar track takes the figure-8 shape of an analemma. This can be visualized as the intersection of the planet's spherical surface with a right circular cylinder, parallel to the spin axis and tangent to the equator from the inside. The excursion of the

  8. Railgun rail gouging by hypervelocity sliding contact

    SciTech Connect

    Barker, L.M.; Trucano, T.G. ); Susoeff, A.R. )

    1989-01-01

    A description is given of a recently resolved mechanisms of gouging which occurs during hypervelocity sliding contact between two materials. A parameter study based on computer modeling of the gouging mechanism is presented in which gouging velocity thresholds are determined for several combinations of sliding materials. Materials which can gouge each other are found to do so only within a certain range of velocities. Related calculations of gaseous material ahead of railgun projectiles are also presented. Gun bore gouging experience with the Lawrence Livermore National Laboratory railgun project is reviewed.

  9. Railgun rail gouging by hypervelocity sliding contact

    SciTech Connect

    Barker, L.M.; Trucano, T.G.; Susoeff, A.R.

    1988-01-01

    A description is given of a recently resolved mechanism of gouging which occurs during hypervelocity sliding contact between two materials. A parameter study based on computer modelling of the gouging mechanism is presented in which gouging velocity thresholds are determined for several combinations of sliding materials. Materials which can gouge each other are found to do so only within a certain range of velocities. Related calculations of gaseous material ahead of railgun projectiles are also presented. Gun bore gouging experience with the Lawrence Livermore National Laboratory railgun project is reviewed.

  10. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    NASA Astrophysics Data System (ADS)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  11. Measurement of incident position of hypervelocity particles on piezoelectric lead zirconate titanate detector

    SciTech Connect

    Takechi, Seiji; Onishi, Toshiyuki; Minami, Shigeyuki; Miyachi, Takashi; Fujii, Masayuki; Hasebe, Nobuyuki; Nogami, Ken-ichi; Ohashi, Hideo; Sasaki, Sho; Shibata, Hiromi; Iwai, Takeo; Gruen, Eberhard; Srama, Ralf; Okada, Nagaya

    2008-04-15

    A cosmic dust detector for use onboard a satellite is currently being developed by using piezoelectric lead zirconate titanate (PZT). The characteristics of the PZT detector have been studied by bombarding it with hypervelocity iron (Fe) particles supplied by a Van de Graaff accelerator. One central electrode and four peripheral electrodes were placed on the front surface of the PZT detector to measure the impact positions of the incident Fe particles. It was demonstrated that the point of impact on the PZT detector could be identified by using information on the time at which the first peak of the output signal obtained from each electrode appeared.

  12. NASA White Sands Test Facility Remote Hypervelocity Test Laboratory

    NASA Video Gallery

    Tour the NASA White Sands Test Facility's Remote Hypervelocity Test Laboratory in Las Cruces, New Mexico. To learn more about White Sands Test Facility, go to http://www.nasa.gov/centers/wstf/home/...

  13. Response of Hypervelocity Boundary Layers to Global and Local Distortion

    NASA Astrophysics Data System (ADS)

    Flaherty, William; Austin, Joanna

    2013-11-01

    Concave surface curvature can impose significant distortion to compressible boundary layer flows due to multiple, potentially coupled, effects including an adverse pressure gradient, bulk flow compression, and possible centrifugal instabilities. Approximate methods provide insight into dominant mechanisms, however few strategies are capable of treating heat transfer effects and predictions diverge significantly from the available experimental data at larger pressure gradient. In this work, we examine the response of boundary layers to global and local distortions in hypervelocity flows where thermochemical energy exchange has significant impact on boundary layer structure and stability. Experiments are carried out in a novel expansion tube facility built at Illinois. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle, even at the conditions of greatest distortion. As a model problem to study the evolution of large-scale structures under strained conditions, streamwise vortices are imposed into the boundary layer. The impact of the additional local distortion is investigated. The heat transfer scaling is found to be robust even in the presence of the imposed structures.

  14. Three-phase hypervelocity projectile launcher

    DOEpatents

    Fugelso, L. Erik; Langner, Gerald C.; Burns, Kerry L.; Albright, James N.

    1994-01-01

    A hypervelocity projectile launcher for use in perforating borehole casings provides improved penetration into the surrounding rock structure. The launcher includes a first cylinder of explosive material that defines an axial air-filled cavity, a second cylinder of explosive material defining an axial frustum-shaped cavity abutting and axially aligned with the first cylinder. A pliant washer is located between and axially aligned with the first and second cylinders. The frustum shaped cavity is lined with a metal liner effective to form a projectile when the first and second cylinders are detonated. The washer forms a unique intermediate projectile in advance of the liner projectile and enables the liner projectile to further penetrate into and fracture the adjacent rock structure.

  15. Theory and Observations of Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Ginsburg, Idan; Loeb, A.; Wegner, G. A.; Brown, W. R.; Perets, H.

    2013-01-01

    Since first discovered in 2005, stars ejected from the Milky Way, so-called hypervelocity stars (HVSs), have greatly increased our understanding of the kinematics and dynamics at the Galactic Center (GC). Using N-body simulations we show that an encounter between a binary star-system and the massive black hole (MBH) at the GC can result in the production of a HVS for one component of the binary, while the companion star remains in a tight orbit around the MBH. Such an encounter can also result in the coalescence of both stars in a highly-eccentric orbit around the MBH. These mechanisms may explain the suprising appearance of massive stars within 1'' of the GC. Continuing with our simulations, we find that the disruption of a triple system by the MBH can produce hypervelocity binaries. Such binaries may evolve into massive blue stragglers, while binaries captured by the MBH may be rejuvenated stars. Our simulations also predict that planets can be ejected from the GC at velocities approaching 5 percent the speed of light. Furthermore, HVSs can house planets that should be detectable as transits. The discovery of such a transit has important consequences for understanding planetary formation and evolution at the GC. We will also present photometry from 11 HVSs, taken February and May 2012, at the WIYN 3.5-meter and Hiltner 2.4-meter telescopes. Our photometry shows that many of the observed HVSs are likely slowly pulsating B stars, which constrains their nature and distance. Ongoing surveys for HVSs, including collaboration with the Australian Sky Mapper survey, as well as Hubble Space Telescope proper motion measurements promise to continue expanding our understanding of HVSs and consequently the dynamics within our galaxy.

  16. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  17. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  18. Capture of dusts from hypervelocity collision of planetary materials: Implication for dust size distribution in debris discs

    NASA Astrophysics Data System (ADS)

    Takasawa, Susumu; Nakamura, Akiko; Kadono, Toshihiko; Arakawa, Masahiko; Dohi, Hirotsugu; Seto, Yusuke; Maeda, Makoto; Shigemori, Keisuke; Hironaka, Yoichiro; Sakaiya, Tatsuhiro; Sano, Takayoshi; Watari, Takeshi; Fujioka, Shinsuke; Ohno, Sohsuke; Takeuchi, Taku; Sangen, Kazuyoshi

    2011-06-01

    In order to examine the size distribution of dust particles from collision of solid bodies, we conducted hypervelocity impact experiments. Sub-mm size metal spheres were accelerated to velocities from 9 to 61 km/s by laser ablation and were shot into rock targets. Dust particles were collected by aerogels and were analyzed by Electron Probe Micro Analyzer (EPMA). We derived the size distributions of ejecta ranging from five to tens of micron in diameter. The slope of cumulative ejecta size distribution was steeper than a purely collisional equilibrium distribution in a collision cascade. This suggests that a steep dust size distribution in a debris disc around an A5V star HD172555 can be due to a hypervelocity impact.

  19. Sensitivity of Martian circulation to obliquity changes

    NASA Astrophysics Data System (ADS)

    Segschneider, J.; Grieger, B.; Lunkeit, F.; Kirk, E.

    2003-04-01

    The obliquity of the Martian rotation axis varies between 15 and 35 degrees with main periods of 125 kyr and 1.3 My. This is thought to have similar impact on the Martian climate as the Milancovic cycles on Earth. The northern layered terrains indicate that climate cycles of yet unknown nature have led to varying accumulation and ablation rates. This study aims at investigating the impact of orbital changes on the Martian atmospheric circulation, while an accompanying study (CR5.05) aims at exploring the internal dynamics of the ice sheet. Here, PUMA, the Portable University Model of the Atmosphere, is used in the Martian set-up to perform sensitivity studies for minimum and maximum obliquity. PUMA is a spectral model with sigma co-ordinates that solves the dynamical equations for vorticity and divergence. Additional modules compute radiative transfers, the soil temperature and heat fluxes between the surface and the atmosphere. So far PUMA has been sucesfully used for modelling of the terrestial climate. As a first step towards a more complete simulation of the evolution of the Martian climate, simulations over one Martian year for minimum and maximum obliquity will be shown.

  20. Experimental technique to launch flier-plates representing orbital debris to hypervelocities

    SciTech Connect

    Chhabildas, L.C.; Boslough, M.B.

    1992-01-01

    Very high driving pressures (tens or hundreds of GPa), are required to accelerate flier plates to hypervelocities. This loading pressure pulse on the flier plates must be nearly shockless to prevent the plate from melting or vaporizing. This is accomplished by using graded-density impactors referred to as pillows.'' When this graded-density material is used to impact a flier-plate in a modified two-stage light gas gun, nearly shockless megabar pressures are introduced into the flier plate. The pressure pulses must also be tailored to prevent spallation of the flier-plate. This technique has been used to launch nominally 1-mm-thick aluminum, magnesium and titanium (gram-size) intact plates to 10.4 km/s, and 0.5-mm-thick aluminum and titanium (half-gram size) intact plates to 12.2 km/s. This is the highest mass-velocity capability attained with laboratory launchers to date, and should open up new regimes of impact physics and lethality studies related to space sciences for laboratory investigations. In particular, the mass-velocity capability of this newly developed hypervelocity launcher meets the average specifications of the space debris environment, and is therefore expected to be a useful tool to evaluate the effects of debris impact on space structures and debris shields.

  1. Experimental technique to launch flier-plates representing orbital debris to hypervelocities

    SciTech Connect

    Chhabildas, L.C.; Boslough, M.B.

    1992-12-31

    Very high driving pressures (tens or hundreds of GPa), are required to accelerate flier plates to hypervelocities. This loading pressure pulse on the flier plates must be nearly shockless to prevent the plate from melting or vaporizing. This is accomplished by using graded-density impactors referred to as ``pillows.`` When this graded-density material is used to impact a flier-plate in a modified two-stage light gas gun, nearly shockless megabar pressures are introduced into the flier plate. The pressure pulses must also be tailored to prevent spallation of the flier-plate. This technique has been used to launch nominally 1-mm-thick aluminum, magnesium and titanium (gram-size) intact plates to 10.4 km/s, and 0.5-mm-thick aluminum and titanium (half-gram size) intact plates to 12.2 km/s. This is the highest mass-velocity capability attained with laboratory launchers to date, and should open up new regimes of impact physics and lethality studies related to space sciences for laboratory investigations. In particular, the mass-velocity capability of this newly developed hypervelocity launcher meets the average specifications of the space debris environment, and is therefore expected to be a useful tool to evaluate the effects of debris impact on space structures and debris shields.

  2. A hypervelocity debris simulating technique with laser driven flyer

    NASA Astrophysics Data System (ADS)

    Tong, J.; Dong, H.; Wang, J.

    Theoretical models suggest that most of the space debris in LEO consist of particles are smaller than 0.5mm. LDEF exposed a total surface area of about 130m 2 for 69 months in the LEO environment. It provided a huge collection of impact data that covers a wide size range of impact crater. Total of 34336 impacts were found on the LDEF surface, of which 27385 impact craters were less than 0.5mm in diameter. The small space debris can cause a gradual degradation of a satellite surfaces, including mechanical damage and contamination generated by impacts. Moreover the small debris may cause greater synergistic effects with AO. AO undercutting of impact damage can further expand the damage areas. This paper describes a new method to simulate small space debris by the laser driven flyer technique. A neodymium-glass pulsed laser was used in this work, capable of up 20 joules in 20 nanoseconds. Tow bonding methods to adhere the aluminum foil to the glass substrate were used. One was a field assisted thermal diffusion bond. The other used silicon oil as the adhesive. In the diffusion bond, the laser is used to vaporize the interface of a aluminum foil diffusively bonded to a glass substrate. The vapor reaches high pressures and then cuts out and accelerates a aluminum disk in the diameter of the periphery of the laser beam. In the second flyer configuration, the silicon oil was vaporized by the laser beam and the expanding gas drove the aluminum disc to the hypervelocity. In our tests, both of methods were successful. In the method of silicon oil adhesion, a 2mm diameter, 60micron thick aluminum disc was accelerated to 3.2km/s. But the velocity data of diffusion bond could not be obtained because the meas uring appliance was improper. The method to measure velocity was very simple and cheap. First, the flight time of a particle was measured with a piezoelectric transducer and a digital oscilloscope. Then attaining the flight time and distance of the particle, its velocity

  3. Testing of a Plasmadynamic Hypervelocity Dust Accelerator

    NASA Astrophysics Data System (ADS)

    Ticos, Catalin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, G. A.

    2006-10-01

    A plasmadynamic accelerator for microparticles (or dust grains) has been designed, built and tested at Los Alamos National laboratory. The dust grains are expected to be accelerated to hypervelocities on the order of 1-30 km/s, depending on their size. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV, a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems. The coaxial plasma gun produces a high density (10^18 cm-3) and low temperature (˜ 1 eV) plasma in deuterium ejected by J x B forces, which provides drag on the dust particles in its path. Carbon dust particles will be used, with diameters from 1 to 50 μm. The plasma parameters produced in the coaxial gun are presented and their implication to dust acceleration is discussed. High speed dust will be injected in the National Spherical Torus Experiment to measure the pitch angle of magnetic field lines.

  4. Projectile development for railguns using hypervelocity preacceleration

    NASA Astrophysics Data System (ADS)

    Susoeff, A. R.; Hawke, R. S.; Ang, J. A.; Asay, J. R.; Hall, C. A.; Konrad, C. H.; Sauve, G. L.

    1992-03-01

    The STARFIRE Project is a joint Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) effort to achieve hypervelocity projectile launches up to 15 km/s. The apparatus used to achieve this goal is a three stage acceleration system made up of a two-stage light-gas gun (2SLGG) coupled to a railgun. The 2SLGG is used as a preaccelerator capable of injecting 2 gram projectiles at velocities of 6 km/s or more. Projectiles used in this environment are subject to many conditions. Some of these which effect projectile design include acceleration loading, structural response, barrel condition and alignment. Development of a projectile to satisfy the programmatic requirements is underway. This report covers the evolution of design and fabrication for railgun projectiles from previous experimentation at LLNL to the replenished plasma armature and projectile now used on STARFIRE. Projectile design, development and fabrication methods which use off-the-shelf materials and standard techniques to meet the operational criteria of the experimental program are discussed in this paper. Initial work involving the design and fabrication of skirted projectiles, which are expected to further reduce interaction phenomena between the plasma armature and railgun barrel, is also described.

  5. Projectile development for railguns using hypervelocity preacceleration

    SciTech Connect

    Susoeff, A.R.; Hawke, R.S.; Sauve, G.L.; Konrad, C.H.; Hickman, R.J.

    1991-02-01

    The STARFIRE Project is a joint Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) effort to achieve hypervelocity projectile launches up to 15 km/s. The apparatus used to achieve this goal is a three stage acceleration system made up of a two-stage light-gas gun (2SLGG) is used as a preaccelerator capable of injecting 2 gram projectiles at velocities of 6 km/s or more. Projectiles used in this environment are subject to many conditions. Some of these which effect projectile design include: acceleration loading, structural response, barrel condition and alignment. Development of a projectile to satisfy the programmatic requirements is underway. This report covers the evolution of design and fabrication for railgun projectiles from previous experience at LLNL to the replenished plasma armature and projectile now used on STARFIRE. Projectile design, development and fabrication methods which use off-the-shelf materials and standard techniques to meet the operational criteria of the experimental program are discussed in this paper. Initial work involving the design and fabrication of skirted projectiles, which are expected to further reduce interaction phenomena between the plasma armature and railgun barrel, is also described.

  6. Projectile development for railguns using hypervelocity preacceleration

    SciTech Connect

    Susoeff, A.R.; Hawke, R.S. ); Ang, J.A.; Asay, J.R.; Hall, C.A.; Konrad, C.H. ); Sauve, G.L. . Rocky Flats Plant); Hickman, R.J. )

    1992-03-20

    The STARFIRE Project is a joint Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) effort to achieve hypervelocity projectile launches up to 15 km/s. The apparatus used to achieve this goal is a three stage acceleration system made up of a two-stage light-gas gun (2SLGG) coupled to a railgun. The 2SLGG is used as a preaccelerator capable of injecting 2 gram projectiles at velocities of 6 km/s or more. Projectiles used in this environment are subject to many conditions. Some of these which effect projectile design include: acceleration loading, structural response, barrel condition and alignment. Development of a projectile to satisfy the programmatic requirements is underway. This report covers the evolution of design and fabrication for railgun projectiles from previous experiment at LLNL to the replenished plasma armature and projectile now used on STARFIRE. Projectile design, development and fabrication methods which use off-the-shelf materials and standard techniques to meet the operational criteria of the experimental program are discussed in this paper. Initial work involving the design and fabrication of skirted projectiles, which are expected to further reduce interaction phenomena between the plasma armature and railgun barrel, is also described.

  7. Oblique dust density waves

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus

    2007-11-01

    We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)

  8. Effects of extreme obliquity variations on the habitability of exoplanets.

    PubMed

    Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S

    2014-04-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. PMID:24611714

  9. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.

  10. Effects of Extreme Obliquity Variations on the Habitability of Exoplanets

    PubMed Central

    Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.

    2014-01-01

    Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714

  11. In-flight detection of small hypervelocity particles.

    NASA Technical Reports Server (NTRS)

    Robinson, D. M.; Goad, J. H.; Chu, W. P.

    1973-01-01

    A technique is described in which small (25-micron) hypervelocity (10-km/sec) in-flight particles can be detected in the presence of high background noise. The system is based on a spatial filtering principle whereby spurious noise effects are reduced by use of a beam stop in the entrance aperture of the system and a bandpass filter in the transform plane. A theoretical analysis of the system is presented, and some experimental results are obtained by detecting in-flight hypervelocity particles generated by an exploding lithium wire electrothermal accelerator.

  12. Habitable planets with high obliquities

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  13. Late Eocene obliquity domination and impact of the Eocene/Oligocene climate transition on central Asian climate at the northeastern margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xiao, Guoqiao; Abels, Hemmo A.; Yao, Zhengquan; Dupont-Nivet, Guillaume; Hilgen, Frederik J.

    2010-05-01

    At the boundary between the Eocene and Oligocene epochs, approximately 34 million years ago (Ma), the Earth experienced a significant change from a greenhouse world to an icehouse world. The present understanding of the triggering mechanisms, processes and environmental effects of this climatic event is mostly based upon ocean sediment records and climatic modeling results. Terrestrial records of the critical interval are rare and, where available, often poorly constrained in time. Here, we present a continuous continental record (Tashan section) from the Xining basin at the northeastern edge of Tibetan Plateau, covering the period between ~35 to 33 Ma. Lithology supplemented with high-resolution magnetic susceptibility (MS), median grain size (MGS) and color reflectance (a*) records show clear Late Eocene basic cyclicity of ~3.5 m in length. Our detailed magnetostratigraphic age model indicates that this cycle was most likely forced by the 41-kyr obliquity cycle driving drier and wetter periods in northern hemisphere Asian interior climates already 1 million year before the Eocene-Oligocene Climate Transition (EOCT). Detailed comparison of the E/O boundary interval in the Tashan section with marine records show that the most pronounced lithofacies change in the Xining Basin corresponds to the first of two widely recognized steps in oxygen isotopes making up the EOCT. This first step is reported to precede the major and second step (base of the Oi-1 phase) by around 0.2 to 0.3 Myr and has recently been suggested to be mainly related to atmospheric cooling rather than ice volume growth.

  14. The Velocity Distribution of Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Rossi, Elena M.; Kobayashi, Shiho; Sari, Re'em

    2014-11-01

    We consider the process of stellar binaries tidally disrupted by a supermassive black hole (BH). For highly eccentric orbits, as one star is ejected from the three-body system, the companion remains bound to the BH. Hypervelocity stars (HVSs) observed in the Galactic halo and S-stars observed orbiting the central BH may originate from such mechanism. In this paper, we predict the velocity distribution of the ejected stars of a given mass, after they have traveled out of the Galactic potential. We use both analytical methods and Monte Carlo simulations. We find that each part of the velocity distribution encodes different information. At low velocities <800 km s-1, the Galactic potential universally shapes the observed distribution, which rises toward a peak, related to the Galactic escape velocity. Beyond the peak, the velocity distribution depends on binary mass and separation distributions. Finally, the finite star life introduces a break related to their mass. A qualitative comparison of our models with current observations shows the great potential of HVSs to constrain bulge and Galactic properties. Standard choices for parameter distributions predict velocities below and above ~800 km s-1 with equal probability, while none are observed beyond ~700 km s-1 and the current detections are more clustered at low velocities 300-400 km s-1. These features may indicate that the separation distribution of binaries that reach the tidal sphere is not flat in logarithmic space, as observed in more local massive binaries, but has more power toward larger separations, enhancing smaller velocities. In addition, the binary formation/evolution process or the injection mechanism might also induce a cut-off a min ~ 10 R ⊙ in the separation distribution.

  15. Oblique Perforation of Thick Metallic Plates by Rigid Projectiles

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowei; Li, Qingming; Fan, Saucheong

    2006-08-01

    Oblique perforation of thick metallic plates by rigid projectiles with various nose shapes is studied in this paper. Two perforation mechanisms, i.e., the hole enlargement for a sharp projectile nose and the plugging formation for a blunt projectile nose, are considered in the proposed analytical model. It is shown that the perforation of a thick plate is dominated by several non-dimensional numbers, i.e., the impact function, the geometry function of projectile, the non-dimensional thickness of target and the impact obliquity. Explicit formulae are obtained to predict the ballistic limit, residual velocity and directional change for the oblique perforation of thick metallic plates. The proposed model is able to predict the critical condition for the occurrence of ricochet. The proposed model is validated by comparing the predictions with other existing models and independent experimental data.

  16. Hypervelocity capture of particles in aerogel: Dependence on aerogel properties

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Fairey, S. A. J.; Foster, N. J.; Cole, M. J.

    2009-01-01

    Capture of high-speed (hypervelocity) particles in aerogel at ambient temperatures of 175-763 K is reported. This extends previous work which has mostly focussed on conducting experiments at ambient laboratory temperatures, even though aerogels are intended for use in cosmic dust capture cells in space environments which may experience a range of temperatures (e.g., the NASA Stardust mission which collected dust at 1.81 AU and putative Mars atmospheric sampling missions). No significant change in track length (normalised to impactor size) was found over the range 175-600 K, although at 763 K a significant reduction (30%) was found. By contrast, entrance hole diameter remained constant only up to 400 K, above this sudden changes of up to 50% were observed. Experiments were also carried out at normal laboratory temperature using a wide range of aerogel densities and particle sizes. It was found that track length normalised to particle size varies inversely with aerogel density. This is a power law dependence and not linear as previously reported, with longer tracks at lower densities. Glass projectiles (up to 100 μm size) were found to undergo a variety of degrees of damage during capture. In addition to the well known acquisition of a coating (partial or complete) of molten aerogel the mechanical damage includes pitting and meridian fractures. Larger (500 μm diameter) stainless steel spheres also showed damage during capture. In this case melting and ablation occurs, suggesting surficial temperatures during impact in excess of 1400 °C. The response of the aerogel itself to passage of particles through it is reported. The presence of fan-like fractures around the tracks is attributed to cone cracking similar to that in glasses of normal density, with the difference that here it is a repetitive process as the particles pass through the aerogel.

  17. Generation and evolution of impact-induced vapor clouds: Spectroscopic observations and hydrodynamic calculations

    NASA Astrophysics Data System (ADS)

    Sugita, Seiji

    1999-11-01

    Generation of vapor is a natural consequence of hypervelocity collisions between major planets and small bodies in the Solar System. Resulting impact vapor clouds may induce a variety of processes on the surface of a planet. One of the key factors in impact-induced vaporization is energy partitioning. Conventional wisdom teaches that the energy partitioned during an impact is predicted completely by the Rankine-Hugoniot equations and equations of states. Consequently, extensive efforts have been made both to develop mathematical/numerical methods to solve these equations accurately and to determine material-dependent constants using 1- dimensional impact experiments (i.e., flyer-plate experiments). Recent laboratory experiments, however, revealed that 3- dimensional hypervelocity impacts show intriguing processes that highly sophisticated hydrocodes do not readily account for, such as enhanced vaporization at low impact angles (measured from the horizontal) and impactor survival. Radar mapping of Venus by the Magellan spacecraft also revealed that craters on Venus have features consistent with processes observed in laboratory experiments. In particular, morphological observations indicate that run-out flows around Venus craters may be contributed largely by condensates from the downrange component of impact vapor clouds observed in laboratory experiments. Based on these new findings, the work presented in this thesis attempts to understand energy partitioning mechanisms during both generation and subsequent evolution of impact vapor clouds. To achieve this goal, I took two approaches. First, I looked at run-out flows around impact craters on Venus to extract information on impact-induced vapor clouds at planetary scales. In order to decipher this geologic record, I carried out numerical calculations of the interactions between an atmosphere and vapor clouds induced by oblique impacts. The second approach is to go back to a laboratory to understand the basic physics

  18. Obliquely incident ion beam figuring

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Dai, Yifan; Xie, Xuhui; Li, Shengyi

    2015-10-01

    A new ion beam figuring (IBF) technique, obliquely incident IBF (OI-IBF), is proposed. In OI-IBF, the ion beam bombards the optical surface obliquely with an invariable incident angle instead of perpendicularly as in the normal IBF. Due to the higher removal rate in oblique incidence, the process time in OI-IBF can be significantly shortened. The removal rates at different incident angles were first tested, and then a test mirror was processed by OI-IBF. Comparison shows that in the OI-IBF technique with a 30 deg incident angle, the process time was reduced by 56.8%, while keeping the same figure correcting ability. The experimental results indicate that the OI-IBF technique is feasible and effective to improve the surface correction process efficiency.

  19. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    SciTech Connect

    Makowitz, H; Powell, J R; Wiswall, R

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from an LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R=1.0 to 3.0) requirements.

  20. Lost Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.; Stickle, A. M.

    2009-12-01

    The absence of a clearly identified crater (or craters) for the proposed YDB impact has raised questions concerning the reality of such an event. Geologic studies have identified impact deposits well before recognizing a causative crater (e.g., Chicxulub and Chesapeake Bay); some have yet to be discovered (e.g., Australasian tektite strewnfields). The absence of a crater, therefore, cannot be used as an argument against the reality of the YDB impact (and its possible consequences). The study here addresses how a large on-land impact during the late Pleistocene or early Holocene could avoid easy detection today. It does not argue the case for a YDB impact, since such evidence must come from the rock record. During the late Pleistocene, the receding Laurentide ice sheet still covered a significant portion of Canada. While a large (1km) body impacting vertically (90°) would penetrate such a low-impedance ice layer and excavate the substrate, an oblique impact couples more of its energy into the surface layer, thereby partially shielding the substrate. Three approaches address the effectiveness of this flak-jacket effect. First, hypervelocity impact experiments at the NASA Ames Vertical Gun Range investigated the effectiveness of low-impedance layers of different thicknesses for mitigating substrate damage. Second, selected experiments were compared with hydrocode models (see Stickle and Schultz, this volume) and extended to large scales. Third, comparisons were made with relict craters found in eroding sediment and ice covers on Mars. Oblique impacts (30 degrees) into soft particulates (no. 24 sand) covering a solid substrate (aluminum) have no effect on the final crater diameter for layer thicknesses exceeding a projectile diameter and result in only plastic deformation in the substrate. In contrast, a vertical impact requires a surface layer at least 3 times the projectile diameter to achieve the same diameter (with significant substrate damage). Oblique impacts

  1. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; He, Jia; Zhao, Jianheng; Tan, Fuli; Sun, Chengwei; Mo, Jianjun; Xong, Xin; Wu, Gang

    2011-09-01

    Electrical explosion of metallic foil or wire is widely used to the fields of material science (preparation of nao-meter materials), dynamics of materials, and high energy density physics. In this paper, the techniques of gaining hypervelocity flyer driven by electrical explosion of metallic foil were researched, which are used to study dynamics of materials and hypervelocity impact modeling of space debris. Based on low inductance technologies of pulsed storage energy capacitor, detonator switch and parallel plate transmission lines with solid films insulation, two sets of experimental apparatuses with storage energy of 14.4 kJ and 40 kJ were developed for launching hypervelocity flyer. By means of the diagnostic technologies of velocity interferometer system for any reflectors and fibre-optic pins, the hypervelocity polyester (Mylar) flyers were gained. For the apparatus of 14.4 kJ, flyer of diameter ϕ6 ˜ ϕ10 mm and thickness of 0.1 ˜ 0.2 mm was accelerated to the hypervelocity of 10 ˜ 14 km/s. And for the apparatus of 40 kJ, flyer of diameter ϕ20 ˜ 30 mm and thickness of 0.2 mm was launched to the velocity of 5 ˜ 8 km/s. The flatness of the flyer is not more than 34 ns for the flyer with diameter of 20 mm, and less than 22 ns for the flyer with diameter of 10 mm. Based on the Lagrange hydrodynamic code, one dimensional simulation was done by introducing database of equation of states, discharging circuit equation and Joule heat equation, and modifying energy equation. The simulation results are well agreed with the experimental results in accelerating processing. The simulation results can provide good advices in designing new experiments and developing new experimental devices. Finally, some experiments of materials dynamics and hypervelocity impact of space debris were done by using the apparatus above. The results show that the apparatus of metallic foil electrically exploding driving hypervelocity flyer is a good and versatile tool for shock dynamics.

  2. The techniques of metallic foil electrically exploding driving hypervelocity flyer to more than 10 km/s for shock wave physics experiments.

    PubMed

    Wang, Guiji; He, Jia; Zhao, Jianheng; Tan, Fuli; Sun, Chengwei; Mo, Jianjun; Xong, Xin; Wu, Gang

    2011-09-01

    Electrical explosion of metallic foil or wire is widely used to the fields of material science (preparation of nao-meter materials), dynamics of materials, and high energy density physics. In this paper, the techniques of gaining hypervelocity flyer driven by electrical explosion of metallic foil were researched, which are used to study dynamics of materials and hypervelocity impact modeling of space debris. Based on low inductance technologies of pulsed storage energy capacitor, detonator switch and parallel plate transmission lines with solid films insulation, two sets of experimental apparatuses with storage energy of 14.4 kJ and 40 kJ were developed for launching hypervelocity flyer. By means of the diagnostic technologies of velocity interferometer system for any reflectors and fibre-optic pins, the hypervelocity polyester (Mylar) flyers were gained. For the apparatus of 14.4 kJ, flyer of diameter φ6 ~ φ10 mm and thickness of 0.1 ~ 0.2 mm was accelerated to the hypervelocity of 10 ~ 14 km/s. And for the apparatus of 40 kJ, flyer of diameter φ20 ~ 30 mm and thickness of 0.2 mm was launched to the velocity of 5 ~ 8 km/s. The flatness of the flyer is not more than 34 ns for the flyer with diameter of 20 mm, and less than 22 ns for the flyer with diameter of 10 mm. Based on the Lagrange hydrodynamic code, one dimensional simulation was done by introducing database of equation of states, discharging circuit equation and Joule heat equation, and modifying energy equation. The simulation results are well agreed with the experimental results in accelerating processing. The simulation results can provide good advices in designing new experiments and developing new experimental devices. Finally, some experiments of materials dynamics and hypervelocity impact of space debris were done by using the apparatus above. The results show that the apparatus of metallic foil electrically exploding driving hypervelocity flyer is a good and versatile tool for shock dynamics

  3. A Hypervelocity Experimental Research Database (HERD): Support for the Wright Laboratory Armament Directorate Code Validation Program (COVAL)

    SciTech Connect

    Mullin, S.A.; Anderson, C.E. Jr.; Hertel, E.S. Jr.; Hunt, R.D.

    1994-10-01

    The Hypervelocity Experimental Research Database (HERD) described in this paper was developed to aid researchers with code validation for impacts that occur at velocities faster than the testable regime. Codes of concern include both hydrocodes and fast-running analytical or semi-empirical models used to predict the impact phenomenology and damage that results to projectiles and targets. There are several well documented experimental programs that can serve as benchmarks for code validation; these are identified and described. Recommendations for further experimentation (a canonical problem) to provide validation data are also discussed.

  4. Crustal Rock: Recorder of Oblique Impactor Meteoroid Trajectories

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.

    2005-07-01

    Oblique impact experiments in which 2g lead bullets strike samples of San Marcos granite and Bedford limestone at 1.2 km/s induce zones of increased crack density (termed shocked damage) which result in local decreases in bulk and shear moduli that results in maximum decreases of 30-40% in compressional and shear wave velocity (Budianski and O'Connell). Initial computer simulation of oblique impacts of meteorites (Pierazzo and Melosh) demonstrate the congruence of peak shock stress trajectory with the pre-impact meteoroid trajectory. We measure (Ai and Ahrens) via multi-beam (˜ 300) tomographic inversion, the sub-impact surface distribution of damage from the decreases in compressional wave velocity in the 20 x 20 x 15 cm rock target. The damage profiles for oblique impacts are markedly asymmetric (in plane of pre-impact meteoroid pre-impact trajectory) beneath the nearly round excavated craters. Thus, meteorite trajectory information can be recorded in planetary surfaces. Asymmetric sub-surface seismic velocity profiles beneath the Manson (Iowa) and Ries (Germany) impact craters demonstrate that pre-impact meteoroid trajectories records remain accessible for at least ˜ 10 ^ 8 years.

  5. Testing obliquity-tuned timescales

    NASA Astrophysics Data System (ADS)

    Zeeden, Christian; Meyers, Stephen R.; Lourens, Lucas J.; Hilgen, Frederik J.

    2016-04-01

    Astrochronology seeks to use rhythmic sedimentary alterations to provide high-resolution age models, and this method now provides a backbone for much of the Cenozoic and Mesozoic time scale. While a range of methods for orbital tuning are available, a common approach is to directly match observed sedimentary alternations to target curves from astronomical computations, followed by evaluation of amplitude modulations (AM) as a means of verification. A quantitative test for precession-eccentricity modulations in astronomically-tuned data has been recently developed, however, a similar test for obliquity is lacking. Here, we introduce an algorithm for obliquity AM assessment, which avoids effects of obliquity frequency modulation that can artificially mimic the expected AM. The approach can be used to test for correlation with the theoretical astronomical solution in a way similar to the precession AM method. Obliquity is an especially dominant component of orbitally-driven climate variability in the early Quaternary; here Quaternary models and climate proxy records are used to evaluate the reliability of the proposed method.

  6. Analytical Modeling of Pressure Wall Hole Size and Maximum Tip-to-Tip Crack Length for Perforating Normal and Oblique Orbital Debris Impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Mohamed, Essam

    1997-01-01

    This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.

  7. The Survival of Meteorite Organic Compounds with Increasing Impact Pressure

    NASA Technical Reports Server (NTRS)

    Cooper, George; Horz, Friedrich; Oleary, Alanna; Chang, Sherwood; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The majority of carbonaceous meteorites studied today are thought to originate in the asteroid belt. Impacts among asteroidal objects generate heat and pressure that may have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. Very little is known about the shock related chemical evolution of organic matter relevant to this stage of the cosmic history of biogenic elements and compounds. The present work continues our study of the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach was to subject mixtures of organic compounds, embedded in a matrix of the Murchison meteorite, to a simulated hypervelocity impact. The molecular compositions of products were then analyzed to determine the degree of survival of the original compounds. Insofar as results associated with velocities < 8 km/sec may be relevant to impacts on planetary surfaces (e.g., oblique impacts, impacts on small outer planet satellites) or grain-grain collisions in the interstellar medium, then our experiments will be applicable to these environments as well.

  8. Hyper Velocity Impact of a Non-pressurized Target

    NASA Video Gallery

    NASA White Sands Test Facility's Remote Hypervelocity Test Laboratory specializes in hyper velocity impact testing. This cylinder was impacted by an 3.17mm aluminum projectile traveling at 7.03 kil...

  9. Hypervelocity supersonic nozzle beam source of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Freedman, A.; Unkel, W.; Silver, J.; Kolb, C.

    1984-01-01

    A hypervelocity source of atomic oxygen was developed. Dissociation of molecular oxygen is accomplished by injection into a flow of helium and/or argon which has been heated in a commercial plasma torch. Atomic velocities of up to 4 kms(-1) were produced; recent improvements offer the possibility of even higher velocities. This source was utilized in studies of translational-to-vibrational energy transfer in carbon dioxide and in an investigation of the shuttle glow effect.

  10. Skin-friction gauge for use in hypervelocity impulse facilities

    NASA Technical Reports Server (NTRS)

    Kelly, G. M.; Simmons, J. M.; Paull, A.

    1992-01-01

    A transducer is presented which can measure as rise-time of about 20 microsec, and is thereby applicable to measurements in the high-enthalpy flows associated with hypervelocity impulse facilities. Results are presented which demonstrate the effectiveness of the concept in the case of skin-friction measurements conducted on a flat plate at Mach 3.2. The calibration used was against theoretical skin-friction values in a simple flow.

  11. Anaglyph videoanimations from oblique stereoimages

    NASA Astrophysics Data System (ADS)

    Vozenilek, Vit; Kralik, Tomas

    2015-03-01

    The paper deals with the approach of compiling of animations from a pair of oblique stereoimages. The authors investigated as simple and cheap way as possible to develop such approach which will be available for wide scope of ordinary users with common equipment. They concentrated on three procedures of oblique stereoimage handling to compile sets of images, animations and analogue documents. After capturing construction site by a pair of web cameras the data were corrected, photogrammetrically adjusted (due to radial distortion) and exported. Firstly, a set of anaglyphic images were compiled, then they were trimmed and timeline was inserted. The final anaglyph animations are compiled in various versions. In addition, an anaglyphic book containing 150 images was created in a special way that the user can easily browse through its content. The main outputs are several unique anaglyph products, but more beneficial outputs are developed procedures of anaglyph visualization that can be applied with minor modifications to photographing of any objects.

  12. Oblique focus ICCD laboratory evaluation

    NASA Technical Reports Server (NTRS)

    York, D. G.

    1982-01-01

    An oblique focus intensified charge coupled device (ICCD) was constructed and operated in a vacuum system. Special gratings were obtained and an optical system set up to try to model a candidate UV spectrometer (Milieu Interstellaire et Intergalactique-MISIG), and to produce small enough images to test the theoretical subpixel resolution capability of the ICCD system. The efforts were only partly successful. Based on the results, a similar detector was built and flown successfully on a Princeton rocket program.

  13. DEM simulation of oblique boudinage

    NASA Astrophysics Data System (ADS)

    Komoroczi, Andrea; Abe, Steffen; Urai, Janos L.

    2013-04-01

    Boudinage occurs in mechanically layered rocks if there is a component of lengthening parallel to a brittle layer in a ductile matrix. Asymmetric boudin structures develop if the extension is not layer-parallel, and the boudin blocks rotate. The amount of block rotation is commonly used as shear indicators; therefore, it has been well studied. However, full oblique boudinage has not been modeled yet. We simulated full boudinage processes during layer oblique extension using DEM simulation software. In our boudinage model, the initial setup consists of three layers: there is a brittle center oblique layer in a ductile matrix. We simulated horizontal extension by applying vertical displacement: the top and bottom boundaries of the model are moved at a constant velocity, while the side boundaries were force controlled by applying a constant confining force. By varying the cohesion of the competent layer, various type and shape of boudin blocks were developed. By varying the angle of the competent layer, the rotation of the boudin blocks changed. With higher dip of the competent layer, the rotation of the boudin blocks is more consistent. We also studied the stress field during the simulation. The results show, that in case of ductile material, the disruptions of the layer are driven by the angle of the layer and not the orientation of the external stress field.

  14. SILICATE DUST SIZE DISTRIBUTION FROM HYPERVELOCITY COLLISIONS: IMPLICATIONS FOR DUST PRODUCTION IN DEBRIS DISKS

    SciTech Connect

    Takasawa, S.; Nakamura, A. M.; Arakawa, M.; Seto, Y.; Sangen, K.; Setoh, M.; Machii, N.; Kadono, T.; Shigemori, K.; Hironaka, Y.; Fujioka, S.; Sano, T.; Watari, T.; Dohi, K.; Ohno, S.; Maeda, M.; Sakaiya, T.; Otani, K.; Takeuchi, T.

    2011-06-01

    Fragments generated by high-velocity collisions between solid planetary bodies are one of the main sources of new interplanetary dust particles. However, only limited ranges of collision velocity, ejecta size, and target materials have been studied in previous laboratory experiments, and the collision condition that enables the production of dust-sized particles remains unclear. We conducted hypervelocity impact experiments on silicate rocks at relative velocities of 9 to 61 km s{sup -1}, which is beyond the upper limit of previous laboratory studies. Sub-millimeter-diameter aluminum and gold spheres were accelerated by laser ablation and were shot into dunite and basalt targets. We analyzed the surfaces of aerogel blocks deployed near the targets using an electron probe micro analyzer and counted the number of particles that contained the target material. The size distributions of ejecta ranged from five to tens of microns in diameter. The total cross-sectional area of dust-sized ejecta monotonically increased with the projectile kinetic energy, independent of impact velocity, projectile diameter, and projectile and target material compositions. The slopes of the cumulative ejecta-size distributions ranged from -2 to -5. Most of the slopes were steeper than the -2.5 or -2.7 that is expected for a collisional equilibrium distribution in a collision cascade with mass-independent or mass-dependent catastrophic disruption thresholds, respectively. This suggests that the steep dust size-distribution proposed for the debris disk around HD172555 (an A5V star) could be due to a hypervelocity collision.

  15. Survival of the impactor during hypervelocity collisions - I. An analogue for low porosity targets

    NASA Astrophysics Data System (ADS)

    Avdellidou, C.; Price, M. C.; Delbo, M.; Ioannidis, P.; Cole, M. J.

    2016-03-01

    Recent observations of asteroidal surfaces indicate the presence of materials that do not match the bulk lithology of the body. A possible explanation for the presence of these exogenous materials is that they are products of interasteroid impacts in the Main Belt, and thus interest has increased in understanding the fate of the projectile during hypervelocity impacts. In order to gain insight into the fate of impactor, we have carried out a laboratory programme, covering the velocity range of 0.38-3.50 km s-1, devoted to measuring the survivability, fragmentation and final state of the impactor. Forsterite olivine and synthetic basalt projectiles were fired on to low porosity (<10 per cent) pure water-ice targets using the University of Kent's Light Gas Gun (LGG). We developed a novel method to identify impactor fragments which were found in ejecta and implanted into the target. We applied astronomical photometry techniques, using the SOURCE EXTRACTOR software, to automatically measure the dimensions of thousands of fragments. This procedure enabled us to estimate the implanted mass on the target body, which was found to be a few per cent of the initial mass of the impactor. We calculated an order of magnitude difference in the energy density of catastrophic disruption, Q*, between peridot and basalt projectiles. However, we found very similar behaviour of the size frequency distributions for the hypervelocity shots (>1 km s-1). After each shot, we examined the largest peridot fragments with Raman spectroscopy and no melt or alteration in the final state of the projectile was observed.

  16. New experimental capability to investigate the hypervelocity micrometeoroid bombardment of cryogenic surfaces

    NASA Astrophysics Data System (ADS)

    Nelson, Andrew Oakleigh; Dee, Richard; Gudipati, Murthy S.; Horányi, Mihály; James, David; Kempf, Sascha; Munsat, Tobin; Sternovsky, Zoltán; Ulibarri, Zach

    2016-02-01

    Ice is prevalent throughout the solar system and beyond. Though the evolution of many of these icy surfaces is highly dependent on associated micrometeoroid impact phenomena, experimental investigation of these impacts has been extremely limited, especially at the impactor speeds encountered in space. The dust accelerator facility at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) of NASA's Solar System Exploration Research Virtual Institute has developed a novel cryogenic system that will facilitate future study of hypervelocity impacts into ice and icy regolith. The target consists of a copper block, cooled by liquid nitrogen, upon which layers of vapor-deposited ice, pre-frozen ice, or icy regolith can be built in a controlled and quantifiable environment. This ice can be grown from a variety of materials, including H2O, CH3OH, NH3, and slurries containing nanophase iron. Ice temperatures can be varied between 96 K and 150 K and ice thickness greater than 150 nm can be accurately measured. Importantly, the composition of ion plumes created during micrometeoroid impacts onto these icy layers can be measured even in trace amounts by in situ time-of-flight mass spectroscopy. In this paper, we present the fundamental design components of the cryogenic target chamber at IMPACT and proof-of-concept results from target development and from first impacts into thick layers of water ice.

  17. New experimental capability to investigate the hypervelocity micrometeoroid bombardment of cryogenic surfaces.

    PubMed

    Nelson, Andrew Oakleigh; Dee, Richard; Gudipati, Murthy S; Horányi, Mihály; James, David; Kempf, Sascha; Munsat, Tobin; Sternovsky, Zoltán; Ulibarri, Zach

    2016-02-01

    Ice is prevalent throughout the solar system and beyond. Though the evolution of many of these icy surfaces is highly dependent on associated micrometeoroid impact phenomena, experimental investigation of these impacts has been extremely limited, especially at the impactor speeds encountered in space. The dust accelerator facility at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) of NASA's Solar System Exploration Research Virtual Institute has developed a novel cryogenic system that will facilitate future study of hypervelocity impacts into ice and icy regolith. The target consists of a copper block, cooled by liquid nitrogen, upon which layers of vapor-deposited ice, pre-frozen ice, or icy regolith can be built in a controlled and quantifiable environment. This ice can be grown from a variety of materials, including H2O, CH3OH, NH3, and slurries containing nanophase iron. Ice temperatures can be varied between 96 K and 150 K and ice thickness greater than 150 nm can be accurately measured. Importantly, the composition of ion plumes created during micrometeoroid impacts onto these icy layers can be measured even in trace amounts by in situ time-of-flight mass spectroscopy. In this paper, we present the fundamental design components of the cryogenic target chamber at IMPACT and proof-of-concept results from target development and from first impacts into thick layers of water ice. PMID:26931872

  18. The influence of obliquity in the early Holocene Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Wu, Chi-Hua; Lee, Shih-Yu; Chiang, John C. H.; Hsu, Huang-Hsiung

    2016-05-01

    The early Holocene climatic optimum is associated with perihelion precession and high obliquity, though most studies emphasize the former over the latter. Asian monsoon proxy records only decisively show the precessional impact. To explore the obliquity effect, four climate simulations are conducted by fixing orbital parameters of present-day (0K), early Holocene (11K), the lowest obliquity (31K), and 11K's precession and eccentricity with 31K's obliquity (11Kp31Ko). We show that high obliquity significantly augments the precessional impact by shifting the Asian monsoon farther north than present. By contrast, the present-day monsoon seasonality can still be identified in the simulations with low obliquity. We argue that the upper tropospheric (South Asian) and lower tropospheric (North Pacific) high-pressure systems are affected by the subtropical atmospheric heating changes responding to obliquity. As a consequence, associated with the changes in meridional gradients of geopotential height and temperature made by the heating, midlatitude transient eddies and monsoon-midlatitude interactions are modulated.

  19. HYPERFUSE: a hypervelocity inertial confinement system for fusion energy production and fission waste transmutation

    SciTech Connect

    Makowitz, H.; Powell, J.R.; Wiswall, R.

    1980-01-01

    Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm/sup 3/ are required for a practical fusion-based fission product transmutation system.

  20. Obliquity Variations of Extrasolar Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Chambers, John E.

    2004-01-01

    A planet's obliquity, which is the angle between its orbital angular momentum and its rotational angular momentum, is an important factor in determining its climate and habitability. For small obliquities, as well as obliquities close to 180 degrees, the planet receives more radiant energy from its star at equatorial latitudes than near its poles, whereas the poles are heated the most for obliquities near 90 degrees. Jacques Laskar has analyzed possible obliquity variations of the planets in our Solar System. His study also considers the same planets with different rotational periods, and the Earth without the Moon. He finds, using frequency map analysis, that the obliquity of the Earth is stabilized by the Moon, and can vary by at most a few degrees. In contrast, the obliquity of Mars can range from 0 to 60 degrees, and a hypothetical moonless Earth's axial tilt could be close to 0 degrees or as large as 85 degrees. Numerical integrations by Laskar and others have shown that Mars' obliquity indeed varies over most of its permitted range on time scales of tens of millions of years. In contrast, our analysis shows that the obliquity of a moonless Earth appears to be confined to the range of approximately 12 - 38 degrees over time scales of 100 million years. Results of ongoing longer integrations will be presented, and their implications discussed.

  1. Document segmentation via oblique cuts

    NASA Astrophysics Data System (ADS)

    Svendsen, Jeremy; Branzan-Albu, Alexandra

    2013-01-01

    This paper presents a novel solution for the layout segmentation of graphical elements in Business Intelligence documents. We propose a generalization of the recursive X-Y cut algorithm, which allows for cutting along arbitrary oblique directions. An intermediate processing step consisting of line and solid region removal is also necessary due to presence of decorative elements. The output of the proposed segmentation is a hierarchical structure which allows for the identification of primitives in pie and bar charts. The algorithm was tested on a database composed of charts from business documents. Results are very promising.

  2. The chaotic obliquity of Mars

    NASA Astrophysics Data System (ADS)

    Touma, J.; Wisdom, J.

    1993-02-01

    The discovery (by Laskar, 1989, 1990) that the evolution of the solar system is chaotic, made in a numerical integration of the averaged secular approximation of the equations of motions for the planets, was confirmed by Sussman and Wisdom (1992) by direct numerical integration of the whole solar system. This paper presents results of direct integrations of the rotation of Mars in the chaotically evolved planetary system, made using the same model as that used by Sussman and Wisdom. The numerical integration shows that the obliquity of Mars undergoes large chaotic variations, which occur as the system evolves in the chaotic zone associated with a secular spin-orbit resonance.

  3. A Plasma Drag Hypervelocity Particle Accelerator (HYPER)

    NASA Technical Reports Server (NTRS)

    Best, Steve R.; Rose, M. Frank

    1998-01-01

    Current debris models are able to predict the growth of the space debris problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now and that the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The velocity distribution of the man-made component peaks at 9-10 km/s with maximum velocity in the 14-16 km/s range. Experience in space has verified that the "high probability of impact" particles are in the microgram to milligram range. These particles can have very significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the impact events. In this paper, the HYPER facility is described which produces a reasonable simulation of the man-made space debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility has been used to study impact phenomena on Space Station Freedom's solar array structure, the calibration of space debris collectors, other solar array materials, potential structural materials for use in space, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on surfaces which have been exposed in space.

  4. Simulation of Hypervelocity Penetration in Limestone

    SciTech Connect

    Antoun, T; Glenn, L; Walton, O; Goldstein, P; Lomov, I; Liu, B

    2005-05-31

    A parameter study was performed to examine the (shock) damage obtained with long-rod and spherical mono-material penetrators impacting two varieties of limestone. In all cases, the impacts were assumed to be normal to the plane of the rock and at zero angle of attack (in the case of the rods). Impact velocities ranged to 15 km/s but most calculations were performed at 4 and 6 km/s and the penetrator mass was fixed at 1000 kg. For unlined underground structures, incipient damage was defined to occur when the peak stress, {sigma}{sub pk}, exceeds 1 kb (100 MPa) and the applied impulse per unit area, I{sub pk}, exceeds 1 ktap (1 kb-{micro}s). Severe damage was assumed to occur when {sigma}{sub pk} exceeds 1 kb and I{sub pk} exceeds 1000 ktaps. Using the latter definition it was found that severe damage in hard, non-porous limestone with spherical impactors extended to a depth of 9 m on-axis for an impact velocity of 4 km/s and 12 m at 6 km/s. Cylinders with length-to-diameter (L/D) ratio of 8.75 achieved depth to severe damage of 23 m and 40 m, respectively under the same conditions. For a limestone medium with 2% initial gas porosity, the latter numbers were reduced to 12 m and 18 m.

  5. Status Report for the Hypervelocity Free-Flight Aerodynamic Facility

    NASA Technical Reports Server (NTRS)

    Cornelison, Charles J.; Arnold, James O. (Technical Monitor)

    1997-01-01

    The Hypervelocity Free-Flight Aerodynamic Facility, located at Ames Research Center, is NASA's only aeroballistic facility. During 1997, its model imaging and time history recording systems were the focus of a major refurbishment effort. Specifically the model detection, spark gap (light source); Kerr cell (high speed shuttering); and interval timer sub-systems were inspected, repaired, modified or replaced as required. These refurbishment efforts have fully restored the HFFAF's capabilities to a much better condition, comparable to what it was 15 years ago. Details of this refurbishment effort along with a brief discussion of future upgrade plans are presented.

  6. Supernovae without host galaxies?. Hypervelocity stars in foreign galaxies

    NASA Astrophysics Data System (ADS)

    Zinn, P.-C.; Grunden, P.; Bomans, D. J.

    2011-12-01

    Context. Harvesting the SAI supernova catalog, the most complete list of supernovae (SNe) currently available, we search for SNe that apparently do not occur within a distinct host galaxy but lie a great distance (several arcmin) apart from the host galaxy given in the catalog or even show no sign of an identifiable galaxy in their direct vicinity. Aims: We attempt to distinguish between two possible explanations of this host-lessness of a fraction of reported SNe, namely (i) that a host galaxy is too faint (of too low surface brightness) to be detected within the limits of currently available surveys (presumably a low surface brightness galaxy) or (ii) the progenitor of the SN is a hypervelocity star (HVS) that exploded kiloparsecs away from its host galaxy. Methods: We use deep imaging to test the first explanation. If no galaxy is identified within our detection limit of ~27 mag arcsec-2, which is the central surface brightness of the faintest known LSB galaxy so far, we discard this explanation and propose that the SN, after several other checks, had a hypervelocity star progenitor. We focus on observations for which this is the case and give lower limits to the actual space velocities of the progenitors, making them the first hypervelocity stars known in galaxies other than our own Milky Way. Results: Analyzing a selected subsample of five host-less SNe, we find one, SN 2006bx in UGC 5434, is a possible hypervelocity progenitor category with a high probability, exhibiting a projected velocity of ~800 km s-1. SN 1969L in NGC 1058 is most likely an example of a very extended star-forming disk visible only in the far-UV, but not in the optical wavebands. Therefore, this SN is clearly due to in situ star formation. This mechanism may also apply to two other SNe that we investigated (SN 1970L and SN 1997C), but this cannot be determined with certainty. Another SN, SN 2005 nc which is associated with a gamma-ray burst (GRB 050525), is a special case that is not

  7. Hybrid Particle-Element Simulation of Impact on Composite Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    2004-01-01

    This report describes the development of new numerical methods and new constitutive models for the simulation of hypervelocity impact effects on spacecraft. The research has included parallel implementation of the numerical methods and material models developed under the project. Validation work has included both one dimensional simulations, for comparison with exact solutions, and three dimensional simulations of published hypervelocity impact experiments. The validated formulations have been applied to simulate impact effects in a velocity and kinetic energy regime outside the capabilities of current experimental methods. The research results presented here allow for the expanded use of numerical simulation, as a complement to experimental work, in future design of spacecraft for hypervelocity impact effects.

  8. The 3MV Hypervelocity Dust Accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Shu, A.; Collette, A.; Drake, K.; Horanyi, M.; Kempf, S.; Munsat, T.; Northway, P.; Robertson, S.; Sternovsky, Z.; Thomas, E.; Gruen, E.; Srama, R.

    2011-11-01

    Micrometeorite impacts and dusty plasma phenomena can be found in a wide variety of subjects. In many extraplanetary systems, such as in deep space and on airless bodies such as asteroids or the moon, dusty plasmas play a large role in the basic scientific evolution of the environment. Dust can also be captured and studied in dust astronomy in order to better understand the evolution of our universe, similarly to how photons are used in traditional astronomy. At the Colorado Center for Lunar Dust and Atmospheric Studies, we have developed a 3MV hypervelocity dust accelerator in order to study these and other applications of dust and dusty plasmas. This facility is capable of accelerating micron sized dust particles up to 10's of km/s. In addition to this we have several vacuum chambers used for dusty plasma experiments. The large Lunar Environment Impact Laboratory (LEIL) test chamber will be used to study dust levitation, space weathering, and lunar exosphere evolution. A smaller ultrahigh vacuum chamber will be used to detect neutral species in micrometeorite impact ejecta and detect and analyze impact flashes. In addition to this work, graphite tokamak wall tile material will be placed into the beam path to determine damage characteristics from dust in fusion systems.

  9. Evaluation of the oblique detonation wave ramjet

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.

    1978-01-01

    The potential performance of oblique detonation wave ramjets is analyzed in terms of multishock diffusion, oblique detonation waves, and heat release. Results are presented in terms of thrust coefficients and specific impulses for a range of flight Mach numbers of 6 to 16.

  10. Numerical Modeling of Porosity Alteration at the Sub-Surface of Impacts in Sandstone

    NASA Astrophysics Data System (ADS)

    Güldemeister, N.; Wünnemann, K.; Buhl, E.; Kenkmann, T.; Durr, N.; Hiermaier, S.

    2012-03-01

    In the framework of the MEMIN project the effects of hypervelocity impact shock compression and release in sandstone are investigated. The increase of porosity as a result of the rarefaction wave has been modeled and quantified in impact experiments.

  11. Analyzing RCD30 Oblique Performance in a Production Environment

    NASA Astrophysics Data System (ADS)

    Soler, M. E.; Kornus, W.; Magariños, A.; Pla, M.

    2016-06-01

    In 2014 the Institut Cartogràfic i Geològic de Catalunya (ICGC) decided to incorporate digital oblique imagery in its portfolio in response to the growing demand for this product. The reason can be attributed to its useful applications in a wide variety of fields and, most recently, to an increasing interest in 3d modeling. The selection phase for a digital oblique camera led to the purchase of the Leica RCD30 Oblique system, an 80MPixel multispectral medium-format camera which consists of one Nadir camera and four oblique viewing cameras acquiring images at an off-Nadir angle of 35º. The system also has a multi-directional motion compensation on-board system to deliver the highest image quality. The emergence of airborne oblique cameras has run in parallel to the inclusion of computer vision algorithms into the traditional photogrammetric workflows. Such algorithms rely on having multiple views of the same area of interest and take advantage of the image redundancy for automatic feature extraction. The multiview capability is highly fostered by the use of oblique systems which capture simultaneously different points of view for each camera shot. Different companies and NMAs have started pilot projects to assess the capabilities of the 3D mesh that can be obtained using correlation techniques. Beyond a software prototyping phase, and taking into account the currently immature state of several components of the oblique imagery workflow, the ICGC has focused on deploying a real production environment with special interest on matching the performance and quality of the existing production lines based on classical Nadir images. This paper introduces different test scenarios and layouts to analyze the impact of different variables on the geometric and radiometric performance. Different variables such as flight altitude, side and forward overlap and ground control point measurements and location have been considered for the evaluation of aerial triangulation and

  12. Obliquity Variations of a Moonless Earth

    NASA Astrophysics Data System (ADS)

    Lissauer, Jack J.; Barnes, J. W.; Chambers, J. E.

    2011-05-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1° and 24.5°. Without lunar influence, a frequency map analysis by Laskar et al. (1993 Nature 361, 615) showed that the obliquity could vary between 0° and 85°. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 billion years. We find many configurations in which obliquity variations are small. This implies that moonless extrasolar planets may well have the climate stability thought to be required for the development of advanced life.

  13. Obliquity variations of a moonless Earth

    NASA Astrophysics Data System (ADS)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2012-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1° and 24.5°. Without lunar influence, a frequency map analysis by Laskar et al. (Laskar, J., Joutel, F., Robutel, P. [1993]. Nature 361, 615-617) showed that the obliquity could vary between 0° and 85°. This has left an impression in the astrobiology community that a big moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25° in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of prograde rotators. The total obliquity range explored for moonless Earths with rotation periods less than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  14. STARFIRE: Hypervelocity railgun development for high-pressure research

    SciTech Connect

    Hawke, R.S.; Susoeff, A.R.; Asay, J.R.; Balk, J.K.; Hall, C.A.; Konrad, C.H.; McDonald, J.M.; Schuler, K.W.; Wellman, G.W.; Hickman, R.J.

    1988-09-20

    STARFIRE, a program based at Sandia National Laboratories, has as its goal the development of a hypervelocity railgun for use as a high-pressure research tool. The program has included efforts to identify and solve the problems that have inhibited reliable attainment of velocities greater than the 8 to 9 km/s attainable with two-stage light-gas guns (2SLGG). Issues studied include: (1) plasma arc formation and stabilization, (2) restrike inhibition, (3) viscous drag, (4) ratio of preload to operating stresses, (5) barrel joint design, and (6) barrel precision requirements. The system uses a 2SLGG as an injector to minimize barrel ablation and armature contamination. Hydrogen is used as the injection gas and will also serve to reduce the probability of forming secondary arcs. A VISAR optical Doppler system is used to continuously and precisely measure the projectile velocity from a standing start in the 2SLGG barrel, through several joints, the HELEOS (Hypervelocity Experimental Launcher for Equation of State) railgun barrel, and post-launch. The STARFIRE program is focused on the combined use of precision diagnostics and new experimental techniques. Results of tests are presented. 24 refs., 7 figs., 1 tab.

  15. Oblique View of Eros' Crater

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image, showing an oblique view of Eros' large central crater, was taken at a resolution of about 20 meters (65 feet) per pixel. The brightness or albedo patterns on the walls of this crater are clearly visible, with the brighter materials near the tops of the walls and darker materials on the lower walls. Boulders are seen inside this crater and the smaller nearby craters. The higher density of craters to the left of the large crater implies that this region is older than the smoother area seen associated with the saddle region on the opposite side of the asteroid.

    Built and managed by The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, NEAR was the first spacecraft launched in NASA's Discovery Program of low-cost, small-scale planetary missions. See the NEAR web page at http://near.jhuapl.edu for more details.

  16. Microwave Imaging under Oblique Illumination.

    PubMed

    Meng, Qingyang; Xu, Kuiwen; Shen, Fazhong; Zhang, Bin; Ye, Dexin; Huangfu, Jiangtao; Li, Changzhi; Ran, Lixin

    2016-01-01

    Microwave imaging based on inverse scattering problem has been attracting many interests in the microwave society. Among some major technical challenges, the ill-posed, multi-dimensional inversion algorithm and the complicated measurement setup are critical ones that prevent it from practical applications. In this paper, we experimentally investigate the performance of the subspace-based optimization method (SOM) for two-dimensional objects when it was applied to a setup designed for oblique incidence. Analytical, simulation, and experimental results show that, for 2D objects, neglecting the cross-polarization scattering will not cause a notable loss of information. Our method can be potentially used in practical imaging applications for 2D-like objects, such as human limbs. PMID:27399706

  17. Microwave Imaging under Oblique Illumination

    PubMed Central

    Meng, Qingyang; Xu, Kuiwen; Shen, Fazhong; Zhang, Bin; Ye, Dexin; Huangfu, Jiangtao; Li, Changzhi; Ran, Lixin

    2016-01-01

    Microwave imaging based on inverse scattering problem has been attracting many interests in the microwave society. Among some major technical challenges, the ill-posed, multi-dimensional inversion algorithm and the complicated measurement setup are critical ones that prevent it from practical applications. In this paper, we experimentally investigate the performance of the subspace-based optimization method (SOM) for two-dimensional objects when it was applied to a setup designed for oblique incidence. Analytical, simulation, and experimental results show that, for 2D objects, neglecting the cross-polarization scattering will not cause a notable loss of information. Our method can be potentially used in practical imaging applications for 2D-like objects, such as human limbs. PMID:27399706

  18. Oblique-incidence secondary emission from charged dielectrics

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.; Budd, P. A.

    1980-01-01

    Secondary electron emission coefficients were measured on FEP-Teflon for normal and oblique incidence in the presence of a normal electric field. Such measurements require knowledge of the electrostatic environment surrounding the specimen, and they require calculation of particle trajectories such that particle impact parameters can be known. A simulation using a conformal mapping, a Green's integral, and a trajectory generator provides the necessary mathematical support for the measurements, which were made with normal fields of 1.5 and 2.7 kV/mm. When incidence is normal and energy exceeds the critical energy, the coefficient is given by (V sub 0/V) to the .58 power, and for oblique incidence this expression may be divided by the cosine of the angle. The parameter V sub 0 is a function of normal field.

  19. Characterization of Orbital Debris via Hyper-Velocity Ground-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2016-01-01

    The purpose of the DebriSat project is to replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoDand NASA breakup models.

  20. MEMIN Project: The Search for Suitable Projectile Material in Meso-Scale Hypervelocity Cratering Experiments

    NASA Astrophysics Data System (ADS)

    Domke, I.; Deutsch, A.; Hecht, L.; Kenkmann, T.

    2010-03-01

    We report textural and geochemical data (EMP, LA-ICP-MS) for different types of steel and the iron meteorites Arispe (IC) and Campo del Cielo (IAB) that are evaluated as projectile materials in hypervelocity cratering experiments .

  1. Spacecraft wall design for increased protection against penetration by space debris impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Tullos, Randy J.

    1990-01-01

    All orbiting spacecraft are susceptible to impacts by meteoroids and pieces of orbital space debris. These impacts occur at extremely high speeds and can damage flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. The design of a spacecraft for a long-duration mission into the meteoroid and space debris environment must include adequate protection against perforation of pressurized components by such impacts. This paper presents the results of an investigation into the perforation resistance of dual-wall structural systems fabricated with monolithic bumper plates and with corrugated bumper plates of equal weight. A comparative analysis of the impact damage in dual-wall systems with corrugated bumper specimens and that in dual-wall specimens with monolithic bumpers of similar weight is performed to determine the advantages and disadvantages of employing corrugated bumpers in structural wall systems for long-duration spacecraft. The analysis indicates that a significant increase in perforation protection can be achieved if a monolithic bumper is replaced by a corrugated bumper of equal weight. The parameters of the corrugations in the corrugated bumper plates are optimized in a manner that minimizes the potential for the creation of ricochet debris in the event of an oblique hypervelocity impact. Several design examples using the optimization scheme are presented and discussed.

  2. Subsurface deformation in hypervelocity cratering experiments into high-porosity tuffs

    NASA Astrophysics Data System (ADS)

    Winkler, Rebecca; Poelchau, Michael H.; Moser, Stefan; Kenkmann, Thomas

    2016-08-01

    Hypervelocity impact experiments on porous tuff targets were carried out to determine the effect of porosity on deformation mechanisms in the crater's subsurface. Blocks of Weibern Tuff with about 43% porosity were impacted by 2.5 mm and 12.0 mm diameter steel spheres with velocities between 4.8 km s-1 and 5.6 km s-1. The postimpact subsurface damage was quantified with computer tomography as well as with meso- and microscale analyses of the bisected crater subsurface. The intensity and style of deformation in mineral clasts and the tuff matrix were mapped and their decay with subsurface depth was determined. Subsurface deformation styles include pore space compaction, clast rotation, as well as microfracture formation. Evaluation of the deformation indicates near-surface energy coupling at a calculated depth of burial of ~2 projectile diameters (dp), which is in conflict with the crater shape, which displays a deep, central penetration tube. Subsurface damage extends to ~2 dp beneath the crater floor in the experiments with 2.5 mm projectiles and increases to ~3 dp for 12 mm projectiles. Based on overprinting relationships and the geometrical orientation of deformation features, a sequence of subsurface deformation events was derived (1) matrix compaction, (2) intragranular crack formation in clasts, (3) deformation band formation in the compacted matrix, (4) tensile fracturing.

  3. Numerical Simulation of Interaction of Hypervelocity Particle Stream with a Target

    SciTech Connect

    Lomov, I; Liu, B; Georgevich, V; Antoun, T

    2007-07-31

    We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration.

  4. Numerical Simulation of Interaction of Hypervelocity Particle Stream with a Target

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Liu, Benjamin; Georgevich, Vlad; Antoun, Tarabay

    2007-12-01

    We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration.

  5. Numerical simulation of interaction of hypervelocity particle stream with a target

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Liu, Benjamin; Georgevich, Vlad; Antoun, Tarabay

    2007-06-01

    We present results of direct numerical simulations of impact of hypervelocity particle stream with a target. The stream of interest consists of submillimeter (30-300 micron) brittle ceramic particles. Current supercomputer capabilities make it possible to simulate a realistic size of streams (up to 20 mm in diameter and 500 mm in length) while resolving each particle individually. Such simulations make possible to study the damage of the target from synergistic effects of individual impacts. In our research we fixed the velocity distribution along the axis of the stream (1-4 km/s) and volume fraction of the solid material (1-10%) and study effects of particle size variation, particle and target material properties and surrounding air properties. We ran 3D calibration simulations with up to 10 million individual particles and conducted sensitivity studies with 2D cylindrically symmetric simulations. We used an Eulerian Godunov hydrocode with adaptive mesh refinement. The particles, target material and air are represented with volume-of-fluid approach. Brittle particle and target material has been simulated with pressure-dependent yield strength and Steinberg model has been used for metal targets. Simulations demonstrated penetration depth and a hole diameter similar to experimental observations and can explain the influence of parameters of the stream on the character of the penetration.

  6. Surviving Impact in Experiments and on Planets

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.

    2012-12-01

    speed objects hitting the Moon. As a result, some processes observed in laboratory experiments can guide further computer simulations and benchmarking. For example, vapor expansion scours away downrange surface materials while low-angle, hypervelocity projectile fragments melt and mix with the target downrange, thereby creating distinct compositions. At large scales on the Moon, the reduction in cratering efficiency exposes early-time processes and becomes even more obvious for oblique impacts where the these processes are mapped across the surface. Impacts on the edge of an adjacent basin or crater (e.g., King Crater on the Moon) expose the surviving impactor component in the downrange melt, rather than proposing a near-surface mafic intrusion. At basin scales, the disrupted inner ring and downrange extension create the appearance of a double impact (e.g., Orientale, Crisium and Moscoviense basins). Large basins formed also may preserve signatures of melt-mixed impactor components within the basin along the inner ring uprange, e.g., Mg-rich spinels within the inner ring of Moscoviense.

  7. Oblique interactions of dust density waves

    SciTech Connect

    Li Yangfang; Wang Zhehui; Hou Lujing; Jiang Ke; Thomas, Hubertus M.; Morfill, Gregor E.; Wu Dejin

    2010-06-16

    Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors.

  8. Graduated recession of the superior oblique muscle.

    PubMed Central

    Caldeira, J A

    1975-01-01

    Recession of the superior oblique was performed bilaterally in 12 patients with the A phenomenon and unilaterally in four patients with vertical imbalance. The results are discussed. Images PMID:1191613

  9. Oblique interactions of dust density waves

    SciTech Connect

    Wang, Zhelchui; Li, Yang - Fang; Hou, Lujing; Jiang, Ke; Wu, De - Jin; Thomas, Hubertus M; Morfill, Gregor E

    2010-01-01

    Self-excited dust density waves (DDWs) are studied in a striped electrode device. In addition to the usual perpendicularly (with respect to the electrode) propagating DDWs, which have been frequently observed in dusty plasma experiments on the ground, a low-frequency oblique mode is also observed. This low-frequency oblique DDW has a frequency much lower than the dust plasma frequency and its spontaneous excitation is observed even with a very low dust density. It is found that the low-frequency oblique mode can exist either separately or together with the usual perpendicular mode. In the latter case, a new mode arises as a result of the interactions between the perpendicular and the oblique modes. The experiments show that these three modes satisfy the wave coupling conditions in both the frequencies and the wave-vectors.

  10. Obliquity dependence of the tangential YORP

    NASA Astrophysics Data System (ADS)

    Ševeček, P.; Golubov, O.; Scheeres, D. J.; Krugly, Yu. N.

    2016-08-01

    Context. The tangential Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect is a thermophysical effect that can alter the rotation rate of asteroids and is distinct from the so-called normal YORP effect, but to date has only been studied for asteroids with zero obliquity. Aims: We aim to study the tangential YORP force produced by spherical boulders on the surface of an asteroid with an arbitrary obliquity. Methods: A finite element method is used to simulate heat conductivity inside a boulder, to find the recoil force experienced by it. Then an ellipsoidal asteroid uniformly covered by these types of boulders is considered and the torque is numerically integrated over its surface. Results: Tangential YORP is found to operate on non-zero obliquities and decreases by a factor of two for increasing obliquity.

  11. Obliquity-oblateness feedback on Mars

    NASA Astrophysics Data System (ADS)

    Bills, Bruce G.

    A simple model is presented for the coupled dynamics of the orbit-rotation-climate system of Mars. Changes in the orientation of the spin pole, relative to the orbit pole, influence the spatiotemporal pattern of incident radiation and thus drive climatic mass transport into and out of the polar regions on a variety of timescales. Changes in the mass distribution occur from direct climatic forcing and compensating viscous flow in the interior. The net change in mass distribution influences the rate of spin axis precession and thereby influences obliquity. The rate of secular obliquity drift depends on several poorly known parameters, including the magnitudes and response times of volatile inventories and viscosity structure within Mars. Even relatively modest secular obliquity drift can lead to trapping in nearby resonances. The dissipative nature of the coupled dynamical system makes reconstruction of past evolution much more difficult than for a purely inertial system. The long-term obliquity history of Mars is dominated by climate.

  12. Oblique orthographic projections and contour plots

    NASA Technical Reports Server (NTRS)

    Giles, G. L.

    1977-01-01

    Oblique orthographic projections allow model to be viewed in any selected orientation specified by Euler-angle transformation. This transformation resolves coordinate system of model to principal plane on which display is to be plotted.

  13. Obliquity Variations of a Rapidly Rotating Venus

    NASA Astrophysics Data System (ADS)

    Quarles, Billy L.; Barnes, Jason W.; Lissauer, Jack J.; Chambers, John E.; Hedman, Matthew M.

    2016-05-01

    Venus clearly differs from Earth in terms of its spin and atmospheric composition, where the former is controlled by solid-body and atmospheric thermal tides. However, this may have been different during earlier stages of planetary evolution, when the Sun was fainter and the Venusian atmosphere was less massive. We investigate how the axial tilt, or obliquity, would have varied during this epoch considering a rapidly rotating Venus. Through numerical simulation of an ensemble of hypothetical Early Venuses, we find the obliquity variation to be simpler than a Moonless Earth (Lissauer et al., 2012). Most low-obliquity Venuses show very low total obliquity variability comparable to that of the real Moon-influenced Earth.

  14. Red Shifts with Obliquely Approaching Light Sources.

    ERIC Educational Resources Information Center

    Head, C. E.; Moore-Head, M. E.

    1988-01-01

    Refutes the Doppler effect as the explanation of large red shifts in the spectra of distant galaxies and explains the relativistic effects in which the light sources approach the observer obliquely. Provides several diagrams and graphs. (YP)

  15. Plasmadynamic hypervelocity dust injector for the National Spherical Torus Experiment

    NASA Astrophysics Data System (ADS)

    Ticoş, Cǎtǎlin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, Glen A.

    2006-10-01

    The design and construction of a plasmadynamic device to accelerate dust to hypervelocities is presented. High speed dust will be used to measure magnetic field lines in the National Spherical Torus Experiment. The plasma gun produces a high density (ne≈1018cm-3) and low temperature (a few eV) deuterium plasma, ejected by J ×B forces which provide drag on the dust particles in its path. The dust will be entrained by the plasma to velocities of 1-30km/s, depending on the dust mass. Carbon dust particles will be used, with diameters from 1to50μm. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10kV (with an estimated discharge current of 200kA), a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems.

  16. Proton Acceleration at Oblique Shocks

    NASA Astrophysics Data System (ADS)

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-01

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  17. PROTON ACCELERATION AT OBLIQUE SHOCKS

    SciTech Connect

    Galinsky, V. L.; Shevchenko, V. I.

    2011-06-20

    Acceleration at the shock waves propagating oblique to the magnetic field is studied using a recently developed theoretical/numerical model. The model assumes that resonant hydromagnetic wave-particle interaction is the most important physical mechanism relevant to motion and acceleration of particles as well as to excitation and damping of waves. The treatment of plasma and waves is self-consistent and time dependent. The model uses conservation laws and resonance conditions to find where waves will be generated or damped, and hence particles will be pitch-angle-scattered. The total distribution is included in the model and neither introduction of separate population of seed particles nor some ad hoc escape rate of accelerated particles is needed. Results of the study show agreement with diffusive shock acceleration models in the prediction of power spectra for accelerated particles in the upstream region. However, they also reveal the presence of spectral break in the high-energy part of the spectra. The role of the second-order Fermi-like acceleration at the initial stage of the acceleration is discussed. The test case used in the paper is based on ISEE-3 data collected for the shock of 1978 November 12.

  18. Modal control of an oblique wing aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, James D.

    1989-01-01

    A linear modal control algorithm is applied to the NASA Oblique Wing Research Aircraft (OWRA). The control law is evaluated using a detailed nonlinear flight simulation. It is shown that the modal control law attenuates the coupling and nonlinear aerodynamics of the oblique wing and remains stable during control saturation caused by large command inputs or large external disturbances. The technique controls each natural mode independently allowing single-input/single-output techniques to be applied to multiple-input/multiple-output systems.

  19. Useful angular selectivity in oblique columnar aluminum

    NASA Astrophysics Data System (ADS)

    Ditchburn, R. J.; Smith, G. B.

    1991-03-01

    A useful magnitude of angular selective transmittance of incident unpolarized light is demonstrated in obliquely deposited aluminum. Required deposition procedures and anisotropic optical properties are discussed. Angular selectivity is very strong at visible wavelengths but both experiment and theory indicate that a single oblique layer with well defined columns gives high transmittance at near-infrared wavelengths compared with normal films. There are ways of reducing this to enhance the energy control capability. Both solar and luminous angular selectivity are reported.

  20. The effect of polar caps on obliquity

    NASA Technical Reports Server (NTRS)

    Lindner, B. L.

    1993-01-01

    Rubincam has shown that the Martian obliquity is dependent on the seasonal polar caps. In particular, Rubincam analytically derived this dependence and showed that the change in obliquity is directly proportional to the seasonal polar cap mass. Rubincam concludes that seasonal friction does not appear to have changed Mars' climate significantly. Using a computer model for the evolution of the Martian atmosphere, Haberle et al. have made a convincing case for the possibility of huge polar caps, about 10 times the mass of the current polar caps, that exist for a significant fraction of the planet's history. Since Rubincam showed that the effect of seasonal friction on obliquity is directly proportional to polar cap mass, a scenario with a ten-fold increase in polar cap mass over a significant fraction of the planet's history would result in a secular increase in Mars' obliquity of perhaps 10 degrees. Hence, the Rubincam conclusion of an insignificant contribution to Mars' climate by seasonal friction may be incorrect. Furthermore, if seasonal friction is an important consideration in the obliquity of Mars, this would significantly alter the predictions of past obliquity.

  1. The Formation of Asteroid Satellites in Catastrophic Impacts: Results from Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Durda, D. D.; Bottke, W. F., Jr.; Enke, B. L.; Asphaug, E.; Richardson, D. C.; Leinhardt, Z. M.

    2003-01-01

    We have performed new simulations of the formation of asteroid satellites by collisions, using a combination of hydrodynamical and gravitational dynamical codes. This initial work shows that both small satellites and ejected, co-orbiting pairs are produced most favorably by moderate-energy collisions at more direct, rather than oblique, impact angles. Simulations so far seem to be able to produce systems qualitatively similar to known binaries. Asteroid satellites provide vital clues that can help us understand the physics of hypervelocity impacts, the dominant geologic process affecting large main belt asteroids. Moreover, models of satellite formation may provide constraints on the internal structures of asteroids beyond those possible from observations of satellite orbital properties alone. It is probable that most observed main-belt asteroid satellites are by-products of cratering and/or catastrophic disruption events. Several possible formation mechanisms related to collisions have been identified: (i) mutual capture following catastrophic disruption, (ii) rotational fission due to glancing impact and spin-up, and (iii) re-accretion in orbit of ejecta from large, non-catastrophic impacts. Here we present results from a systematic investigation directed toward mapping out the parameter space of the first and third of these three collisional mechanisms.

  2. Investigation of Orbital Debris Impacts on Shuttle Radiator Panels

    NASA Technical Reports Server (NTRS)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.; Lyons, Frankel; Herrin, Jason H.; Ryan, Shannon J.

    2009-01-01

    This paper documents the data collected from two hypervelocity micro-meteoroid orbital debris (MMOD) impact events where the shuttle payload bay door radiator sandwich panel was completely perforated. Scanning Electron Microscope/Energy-Dispersive x-ray Spectroscopy (SEM/EDS) analysis of impact residue provided evidence to identify the source of each impact. Impact site features that indicate projectile directionality are discussed, along with hypervelocity impact testing on representative samples conducted to simulate the impact event. The paper provides results of a study of impact risks for the size of particles that caused the MMOD damage and the regions of the orbiter vehicle that would be vulnerable to an equivalent projectile

  3. Accurate method for measuring oblique astigmatism and oblique power of ophthalmic lenses

    NASA Astrophysics Data System (ADS)

    Wihardjo, Erning; Silva, Donald E.

    1991-12-01

    The measurement of oblique astigmatism error and its oblique power of ophthalmic lens under identical conditions of the human visual system--such as the distance from the center rotation of the eye to the back vertex surface of the lens--viewing distance, and lens aperture using a Mach Zehnder interferometer is describe.

  4. Hypervelocity launching of flyers at the SG-III prototype laser facility

    NASA Astrophysics Data System (ADS)

    Shui, Min; Chu, Genbai; Zhu, Bin; He, Weihua; Xi, Tao; Fan, Wei; Xin, Jianting; Gu, Yuqiu

    2016-01-01

    Experiments of laser-driven hypervelocity flyers have been conducted at the SG-III prototype laser facility. Using the continuum phase plate technique, four laser beams each with a 3-ns quadratic profile are configured to produce relatively uniform irradiated spots of diameter size either 500 μm or 2000 μm. With the former, specifically designed multi-layered flyers (polyimide/copper) were accelerated by shock impedance and reverberation techniques via direct laser ablation to a super-high averaged velocity of 55 km/s, much faster than recently reported results. Light-emission signals of shock breakout and flyer impact on flat or stepped windows were obtained that indicated good planarity and integrity for the flyer. In the latter, single-layered aluminum flyers were gradually accelerated to a terminal velocity of 11 km/s, as measured by optical velocimetry, without melting and vaporization. The results suggest that the SG-III prototype laser facility has the capability to launch high-speed flyers to create extreme conditions for investigating the science of shock compression and its equation of state.

  5. Conceptual Design of a Flight Validation Mission for a Hypervelocity Asteroid Intercept Vehicle

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    Near-Earth Objects (NEOs) are asteroids and comets whose orbits approach or cross Earth s orbit. NEOs have collided with our planet in the past, sometimes to devastating effect, and continue to do so today. Collisions with NEOs large enough to do significant damage to the ground are fortunately infrequent, but such events can occur at any time and we therefore need to develop and validate the techniques and technologies necessary to prevent the Earth impact of an incoming NEO. In this paper we provide background on the hazard posed to Earth by NEOs and present the results of a recent study performed by the NASA/Goddard Space Flight Center s Mission Design Lab (MDL) in collaboration with Iowa State University s Asteroid Deflection Research Center (ADRC) to design a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle (HAIV) as part of a Phase 2 NASA Innovative Advanced Concepts (NIAC) research project. The HAIV is a two-body vehicle consisting of a leading kinetic impactor and trailing follower carrying a Nuclear Explosive Device (NED) payload. The HAIV detonates the NED inside the crater in the NEO s surface created by the lead kinetic impactor portion of the vehicle, effecting a powerful subsurface detonation to disrupt the NEO. For the flight validation mission, only a simple mass proxy for the NED is carried in the HAIV. Ongoing and future research topics are discussed following the presentation of the detailed flight validation mission design results produced in the MDL.

  6. Conceptual design of a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle

    NASA Astrophysics Data System (ADS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2015-01-01

    Near-Earth Objects (NEOs) are asteroids and comets whose orbits approach or cross Earth's orbit. NEOs have collided with our planet in the past, sometimes to devastating effect, and continue to do so today. Collisions with NEOs large enough to do significant damage to the ground are fortunately infrequent, but such events can occur at any time and we therefore need to develop and validate the techniques and technologies necessary to prevent the Earth impact of an incoming NEO. In this paper we provide background on the hazard posed to Earth by NEOs and present the results of a recent study performed by the NASA/Goddard Space Flight Center's Mission Design Lab (MDL) in collaboration with Iowa State University's Asteroid Deflection Research Center (ADRC) to design a flight validation mission for a Hypervelocity Asteroid Intercept Vehicle (HAIV) as part of a Phase 2 NASA Innovative Advanced Concepts (NIAC) research project. The HAIV is a two-body vehicle consisting of a leading kinetic impactor and trailing follower carrying a Nuclear Explosive Device (NED) payload. The HAIV detonates the NED inside the crater in the NEO's surface created by the lead kinetic impactor portion of the vehicle, effecting a powerful subsurface detonation to disrupt the NEO. For the flight validation mission, only a simple mass proxy for the NED is carried in the HAIV. Ongoing and future research topics are discussed following the presentation of the detailed flight validation mission design results produced in the MDL.

  7. Consideration of some fundamental erosion processes encountered in hypervelocity electromagnetic propulsion

    SciTech Connect

    Buckingham, A.C.; Hawke, R.S.

    1982-09-30

    Experimental and theoretical research has been conducted jointly at the Livermore and Los Alamos National laboratories on dc electromagnetic railgun Lorentz accelerators. Pellets weighing a few grams to tens of grams have been launched at velocities up to better than 11 km/s. The research is addressed to attaining repeated launches of samples at hypervelocity in target impact experiments. In these experiments, shock-induced pressures in the tens of megabars range are obtained for high pressure equation-of-state research. Primary energy sources of the order of several hundred kJ to a MJ and induction currents of the order of 1 or more MA are necessary for these launches. Erosion and deformation of the conductor rails and the accelerated sample material are continuing problems. The heating, stress, and erosion resulting from simultaneous imposition of rail induction current, dense plasma (armature) interaction, current distribution, magnetic field stresses and projectile/rail contact friction are examined. It is found that while frictional heating and consequent sliding contact erosion are minor contributors to the overall erosion process, the same cannot be said for plasma impingement, penetration, and almost simultaneous induction current (Joule) heating.

  8. Characterization of Orbital Debris Via Hyper-Velocity Ground-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models. DebriSat is intended to be representative of modern LEO satellites.Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. A key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992 .Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  9. Bacterial Spores in Granite Survive Hypervelocity Launch by Spallation: Implications for Lithopanspermia

    NASA Astrophysics Data System (ADS)

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H. Jay; Nicholson, Wayne L.

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i. e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 Pa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10-5, which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.

  10. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia.

    PubMed

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H Jay; Nicholson, Wayne L

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory. PMID:19778276

  11. Oblique sounding of the ionosphere by powerful wave beams

    NASA Astrophysics Data System (ADS)

    Molotkov, I. A.; Atamaniuk, B.

    2011-04-01

    The article is devoted to modeling the impact on the ionosphere powerful obliquely incident wave beam. The basis of this analysis will be orbital variational principle for the intense wave beams-generalization of Fermat's principle to the case of a nonlinear medium (Molotkov and Vakulenko, 1988a,b; Molotkov, 2003, 2005). Under the influence of a powerful wave beam appears manageable the additional stratification of the ionospheric layer F2. Explicit expressions show how the properties of the test beam, with a shifted frequency, released in the same direction as the beam depend on the intensity of a powerful beam and the frequency shift.

  12. Impact-Induced Devolatilization or Melting of Calcite? Or Both? Answers from MEMIN Experiments

    NASA Astrophysics Data System (ADS)

    Hamann, C.; Hecht, L.; Deutsch, A.

    2015-07-01

    Calcite was experimentally shocked in a series of MEMIN hypervelocity impact and laser melting experiments. Evidence for the formation of calcite melts in both types of experiments is presented and discussed.

  13. SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN vSHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN SHARP OBLIQUE PERSPECTIVE OF DECK AND APPROACH SPANS ALONG WITH PRINCIPLE CANTILEVER SPAN - Snake River Bridge at Lyons' Ferry, State Route 261 spanning Snake River, Starbuck, Columbia County, WA

  14. Hypervelocity star candidates in the SEGUE G and K dwarf sample

    SciTech Connect

    Palladino, Lauren E.; Holley-Bockelmann, Kelly; Schlesinger, Katharine J.; Allende Prieto, Carlos; Beers, Timothy C.; Lee, Young Sun; Schneider, Donald P. E-mail: k.holley@vanderbilt.edu

    2014-01-01

    We present 20 candidate hypervelocity stars from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) G and K dwarf samples. Previous searches for hypervelocity stars have only focused on large radial velocities; in this study, we also use proper motions to select the candidates. We determine the hypervelocity likelihood of each candidate by means of Monte Carlo simulations, considering the significant errors often associated with high proper motion stars. We find that nearly half of the candidates exceed their escape velocities with at least 98% probability. Every candidate also has less than a 25% chance of being a high-velocity fluke within the SEGUE sample. Based on orbits calculated using the observed six-dimensional positions and velocities, few, if any, of these candidates originate from the Galactic center. If these candidates are truly hypervelocity stars, they were not ejected by interactions with the Milky Way's supermassive black hole. This calls for a more serious examination of alternative hypervelocity-star ejection scenarios.

  15. Relativistic electron acceleration by oblique whistler waves

    SciTech Connect

    Yoon, Peter H.; Pandey, Vinay S.; Lee, Dong-Hun

    2013-11-15

    Test-particle simulations of electrons interacting with finite-amplitude, obliquely propagating whistler waves are carried out in order to investigate the acceleration of relativistic electrons by these waves. According to the present findings, an efficient acceleration of relativistic electrons requires a narrow range of oblique propagation angles, close to the whistler resonance cone angle, when the wave amplitude is held constant at relatively low value. For a constant wave propagation angle, it is found that a range of oblique whistler wave amplitudes permits the acceleration of relativistic electrons to O(MeV) energies. An initial distribution of test electrons is shown to form a power-law distribution when plotted in energy space. It is also found that the acceleration is largely uniform in electron pitch-angle space.

  16. Comparison of AIS 1990 update 98 versus AIS 2005 for describing PMHS injuries in lateral and oblique sled tests

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Humm, John R.; Stadter, Gregory W.; Curry, William H.; Brasel, Karen J.

    2013-01-01

    This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990–1998 update and 2005. The Injury Severity Scores (ISS) were extracted for both loadings from both versions. Mean age, stature, total body mass and body mass index for pure lateral and oblique tests: 58 and 55 years, 1.7 and 1.8 m, 69 and 66 kg, and 24 and 21 kg/m2. Skeletal injuries (ribs, sternum) occurred in both impacts. However, oblique impacts resulted in more injuries. Pure lateral and oblique impacts ISS: 0 to 16 and 0 to 24, representing a greater potential for injury-related consequences in real-world situations in oblique impacts. Internal organs were more involved in oblique impacts. ISS decreased in AIS 2005, reflecting changes to scoring and drawing attention to potential effects for pre-hospital care/medical aspects. Mean AIS scores for the two load vectors and two AIS coding schemes are included. From automotive crashworthiness perspectives, decreases in injury severities might alter injury risk functions with a shift to lower metrics for the same risk level than current risk estimations. This finding influences dummy-based injury criteria and occupant safety as risk functions are used for countermeasure effectiveness and cost-benefit analyses by regulatory bodies. Increase in organ injuries in oblique loading indicate the importance of this vector as current dummies and injury criteria used in regulations are based on pure lateral impact data. PMID:24406958

  17. Comparison of AIS 1990 update 98 versus AIS 2005 for describing PMHS injuries in lateral and oblique sled tests.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Humm, John R; Stadter, Gregory W; Curry, William H; Brasel, Karen J

    2013-01-01

    This study analyzed skeletal and organ injuries in pure lateral and oblique impacts from 20 intact post mortem human surrogate (PMHS) sled tests at 6.7 m/s. Injuries to the shoulder, thorax, abdomen, pelvis and spine were scored using AIS 1990-1998 update and 2005. The Injury Severity Scores (ISS) were extracted for both loadings from both versions. Mean age, stature, total body mass and body mass index for pure lateral and oblique tests: 58 and 55 years, 1.7 and 1.8 m, 69 and 66 kg, and 24 and 21 kg/m(2). Skeletal injuries (ribs, sternum) occurred in both impacts. However, oblique impacts resulted in more injuries. Pure lateral and oblique impacts ISS: 0 to 16 and 0 to 24, representing a greater potential for injury-related consequences in real-world situations in oblique impacts. Internal organs were more involved in oblique impacts. ISS decreased in AIS 2005, reflecting changes to scoring and drawing attention to potential effects for pre-hospital care/medical aspects. Mean AIS scores for the two load vectors and two AIS coding schemes are included. From automotive crashworthiness perspectives, decreases in injury severities might alter injury risk functions with a shift to lower metrics for the same risk level than current risk estimations. This finding influences dummy-based injury criteria and occupant safety as risk functions are used for countermeasure effectiveness and cost-benefit analyses by regulatory bodies. Increase in organ injuries in oblique loading indicate the importance of this vector as current dummies and injury criteria used in regulations are based on pure lateral impact data. PMID:24406958

  18. F-8 oblique wing structural feasibility study

    NASA Technical Reports Server (NTRS)

    Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.

    1975-01-01

    The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.

  19. MMT HYPERVELOCITY STAR SURVEY. II. FIVE NEW UNBOUND STARS

    SciTech Connect

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. E-mail: mgeller@cfa.harvard.edu

    2012-05-20

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  20. THE FIRST HYPERVELOCITY STAR FROM THE LAMOST SURVEY

    SciTech Connect

    Zheng, Zheng; Carlin, Jeffrey L.; Newberg, Heidi Jo; Beers, Timothy C.; Deng, Licai; Zhang, Haotong; Liu, Chao; Grillmair, Carl J.; Guhathakurta, Puragra; Yanny, Brian; Jin, Ge; Zhang, Yong

    2014-04-20

    We report the first hypervelocity star (HVS) discovered from the LAMOST spectroscopic survey. It is a B-type star with a heliocentric radial velocity of about 620 km s{sup –1}, which projects to a Galactocentric radial velocity component of ∼477 km s{sup –1}. With a heliocentric distance of ∼13 kpc and an apparent magnitude of ∼13 mag, it is the closest bright HVS currently known. With a mass of ∼9 M {sub ☉}, it is one of the three most massive HVSs discovered so far. The star is clustered on the sky with many other known HVSs, and its position suggests a possible connection to Galactic center structures. With the current poorly determined proper motion, a Galactic center origin of this HVS remains consistent with the data at the 1σ level, while a disk runaway origin cannot be excluded. We discuss the potential of the LAMOST survey to discover a large statistical sample of HVSs of different types.