Science.gov

Sample records for observed large circular

  1. Large-amplitude circularly polarized electromagnetic waves in magnetized plasma

    SciTech Connect

    Vasko, I. Y. Artemyev, A. V.; Zelenyi, L. M.

    2014-05-15

    We consider large-amplitude circularly polarized (LACP) waves propagating in a magnetized plasma. It is well-known that the dispersion relation for such waves coincides with the dispersion relation given by the linear theory. We develop the model of LACP wave containing a finite population of Cerenkov resonant particles. We find that the current of resonant particles modifies the linear dispersion relation. Dispersion curves of low-frequency (i.e., whistler and magnetosonic) waves are shifted toward larger values of the wave vector, i.e., waves with arbitrarily large wavelengths do not exist in this case. Dispersion curves of high-frequency waves are modified so that the wave phase velocity becomes smaller than the speed of light.

  2. Large quasi-circular features beneath frost on Triton

    NASA Technical Reports Server (NTRS)

    Helfenstein, Paul; Veverka, Joseph; Mccarthy, Derek; Lee, Pascal; Hillier, John

    1992-01-01

    Specially processed Voyager 2 images of Neptune's largest moon, Triton, reveal three large quasi-circular features ranging in diameter from 280 to 935 km within Triton's equatorial region. The largest of these features contains a central irregularly shaped area of comparatively low albedo about 380 km in diameter, surrounded by crudely concentric annuli of higher albedo materials. None of the features exhibit significant topographic expression, and all appear to be primarily albedo markings. The features are located within a broad equatorial band of anomalously transparent frost that renders them nearly invisible at the large phase angles (alpha greater than 90 deg) at which Voyager obtained its highest resolution coverage of Triton. The features can be discerned at smaller phase angles (alpha = 66 deg) at which the frost only partially masks underlying albedo contrasts. The origin of the features is uncertain but may have involved regional cryovolcanic activity.

  3. Large-eddy simulation of flow past a circular cylinder

    NASA Technical Reports Server (NTRS)

    Mittal, R.

    1995-01-01

    Some of the most challenging applications of large-eddy simulation are those in complex geometries where spectral methods are of limited use. For such applications more conventional methods such as finite difference or finite element have to be used. However, it has become clear in recent years that dissipative numerical schemes which are routinely used in viscous flow simulations are not good candidates for use in LES of turbulent flows. Except in cases where the flow is extremely well resolved, it has been found that upwind schemes tend to damp out a significant portion of the small scales that can be resolved on the grid. Furthermore, it has been found that even specially designed higher-order upwind schemes that have been used successfully in the direct numerical simulation of turbulent flows produce too much dissipation when used in conjunction with large-eddy simulation. The objective of the current study is to perform a LES of incompressible flow past a circular cylinder at a Reynolds number of 3900 using a solver which employs an energy-conservative second-order central difference scheme for spatial discretization and compare the results obtained with those of Beaudan & Moin (1994) and with the experiments in order to assess the performance of the central scheme for this relatively complex geometry.

  4. Observations of circumstellar circular polarization in four more infrared stars.

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Martin, P. G.

    1973-01-01

    Circular polarization at 0.84 micron has been discovered for four stars with characteristics similar to VY CMa and NML Cyg. This polarization is attributed to multiple scattering in an asymmetric circumstellar dust cloud. Some common properties of the class of stars expected to show circumstellar circular polarization are discussed.

  5. Some Solutions for the Large Deflections of Uniformly Loaded Circular Membranes

    NASA Technical Reports Server (NTRS)

    Fichter, W. B.

    1997-01-01

    Inconsistent citations in the literature and questions about convergence prompt reexamination of Hencky's classic solution for the large deflections of a clamped, circular isotropic membrane under uniform pressure. This classic solution is observed actually to be for uniform lateral loading because the radial component of the pressure acting on the deformed membrane is neglected. An algebraic error in Hencky's solution is corrected, additional terms are retained in the power series to assess convergence, and results are obtained for two additional values of Poisson's ratio. To evaluate the importance of the neglected radial component of the applied pressure, the problem is reformulated with this component included and is solved, with escalating algebraic complexity, by a similar power-series approach. The two solutions agree quite closely for lightly loaded membranes and diverge slowly as the load intensifies. Differences in maximum stresses and deflections are substantial only when stresses are very high. The more nearly spherical deflection shape of the membrane under true pressure loading suggests that a near-parabolic membrane reflector designed on the basis of the more convenient Hencky theory would not perform as well as expected. In addition, both theories are found to yield closed-form, nonuniform membrane-thickness distributions that produce parabolic middle-surface deflections under loading. Both distributions require that the circular boundary expand radially in amounts that depend on material and loading parameters.

  6. Large-eddy simulation of turbulent circular jet flows

    SciTech Connect

    Jones, S. C.; Sotiropoulos, F.; Sale, M. J.

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  7. The Role of Erupting Sigmoid in Triggering a Flare with Parallel and Large-scale Quasi-circular Ribbons

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Liu, Chang; Sun, Xudong; Wang, Haimin; Magara, Tetsuya; Moon, Y.-J.

    2015-10-01

    In this paper, we present observations and analysis of an interesting sigmoid formation, eruption, and the associated flare that occurred on 2014 April 18 using multi-wavelength data sets. We discuss the possible role of the sigmoid eruption in triggering the flare, which consists of two different sets of ribbons: parallel ribbons and a large-scale quasi-circular ribbon. Several observational evidence and nonlinear force-free field extrapolation results show the existence of a large-scale fan-spine type magnetic configuration with a sigmoid lying under a section of the fan dome. The event can be explained with the following two phases. During the preflare phase, we observed the formation and appearance of the sigmoid via tether-cutting reconnection between the two sets of sheared fields under the fan dome. The second, main flare phase features the eruption of the sigmoid, the subsequent flare with parallel ribbons, and a quasi-circular ribbon. We propose the following multi-stage successive reconnection scenario for the main flare. First, tether-cutting reconnection is responsible for the formation and the eruption of the sigmoid structure. Second, the reconnection occurring in the wake of the erupting sigmoid produces the parallel flare ribbons on the both sides of the circular polarity inversion line. Third, the null-type reconnection higher in the corona, possibly triggered by the erupting sigmoid, leads to the formation of a large quasi-circular ribbon. For the first time, we suggest a mechanism for this type of flare consisting of a double set of ribbons triggered by an erupting sigmoid in a large-scale fan-spine-type magnetic configuration.

  8. Circularity measuring system: A shape gauge designed especially for use on large objects

    NASA Technical Reports Server (NTRS)

    Rohrkaste, G. R.

    1990-01-01

    The Circularity Measuring System (CMS) was developed to make an in-situ determination of shape similarity for selected fit large cylinders (RSRM segments). It does this to a repeatable accuracy of 0.10 mm (0.004 inch). This is less that the goal of 0.07 mm (0.003 inch), but was determined adequate because of the addition of an assembly aid that increased the entry chamfer of the clevis side of the joint. The usefulness of the CMS is demonstrated by the application to measurements other than its specified design purpose, such as submarine hull circularity, SRM mid-case circularity, as well as circularity of interfacing SRM tooling, specifically the rounding devices and horizontal disassembly devices. Commercialization of the tool is being pursued, since it is an enhancement of metrology technology for circularity determination. The most accurate in-situ technology it replaces is determined from a template. The CMS is an improvement in accuracy and operation.

  9. A pattern recognition scheme for large curvature circular tracks and an FPGA implementation using hash sorter

    SciTech Connect

    Wu, Jin-Yuan; Shi, Z.; /Fermilab

    2004-12-01

    Strong magnetic field in today's colliding detectors causes track recognition more difficult due to large track curvatures. In this document, we present a global track recognition scheme based on track angle measurements for circular tracks passing the collision point. It uses no approximations in the track equation and therefore is suitable for both large and small curvature tracks. The scheme can be implemented both in hardware for lower-level trigger or in software for higher-level trigger or offline analysis codes. We will discuss an example of FPGA implementations using ''hash sorter''.

  10. Large-Scale periodic solar velocities: An observational study

    NASA Technical Reports Server (NTRS)

    Dittmer, P. H.

    1977-01-01

    Observations of large-scale solar velocities were made using the mean field telescope and Babcock magnetograph of the Stanford Solar Observatory. Observations were made in the magnetically insensitive ion line at 5124 A, with light from the center (limb) of the disk right (left) circularly polarized, so that the magnetograph measures the difference in wavelength between center and limb. Computer calculations are made of the wavelength difference produced by global pulsations for spherical harmonics up to second order and of the signal produced by displacing the solar image relative to polarizing optics or diffraction grating.

  11. Intensity-dependent circular polarization and circumstellar magnetic fields from the observation of SiO masers

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Watson, William D.

    1994-01-01

    A new aspect of the propagation of astrophysical maser radiation in the presence of a magnetic field is described in which circular polarization is created. The resulting antisymmetric spectral line profile for this circular polarization resembles that produced by the ordinary Zeeman effect when the Zeeman splittings are much less than the spectral line breadth. It is caused by the change, with increasing maser intensity, in the axis of symmetry for the molecular quantum states from a direction that is parallel to the magnetic field to a direction that is parallel to the direction of propagation. When the maser is radiatively saturated, and the rate for stimulated emission is within an order of magnitude of the Zeeman splitting in frequency units, this 'intensity-dependent circular polarization' is greater than that due to the ordinary Zeeman effect by factors as large as 1000. The circular polarization that is observed in the spectra of circumstellar SiO (J = 1-0) masers associated with late-type giants and supergiants may then be caused by magnetic fields as weak as about 10 mG. With the standard Zeeman interpretation of the observations, magnetic fields of 10-100 G are indicated. The lower fields are similar to the limits obtained from the observation of the 22 GHz water masers which are typically somewhat further from the central star. The observed tendency for the fractional linear polarization of SiO masers to increase with increasing angular momentum of the molecular state is shown to be a likely result of anisotropic pumping. Errors are identified that invalidate a recent conflicting claim in the literature about the basic theory of maser polarization in the regime that is relevant here.

  12. Semi-circular microgrooves to observe active movements of individual Navicula pavillardii cells.

    PubMed

    Umemura, Kazuo; Haneda, Takahiro; Tanabe, Masashi; Suzuki, Akira; Kumashiro, Yoshikazu; Itoga, Kazuyoshi; Okano, Teruo; Mayama, Shigeki

    2013-03-01

    We performed a trajectory analysis of movements of Navicula pavillardii diatom cells that were confined to semi-circular microgrooves with several different curvature radii. Using the semi-circular micropattern, we succeeded in observing change of velocity of the same cell before and after the stimulation by N,N-dimethyl-p-toluidine (DMT). Because the looped grooves had longer contour length than straight grooves, it was effective to achieve the long term observation of the stimulated active cells. Although average velocity of 150 cells was significantly increased with DMT, the maximum velocity (19 μm/s) of the cells was not increased after the DMT injection. This may suggest that existence of the mechanical limit of the velocity of the diatom cells. Secondly, trajectories of individual cell movements along the walls of the semi-circular microgrooves were analyzed in detail. As a result, the velocity of the cells was not affected by the curvature radii of the grooves although the trajectories indicated an obvious restriction of area of the cell motion. This suggests that the surface of the diatom is effective in minimizing the frictional force between the cell body and the wall of a groove. Finally, a simple model of cell motion in the semi-circular groove was proposed to clarify the relationships among the forces that determine cell movement. PMID:23337812

  13. Experimental study of noise emitted by circular cylinders with large roughness

    NASA Astrophysics Data System (ADS)

    Alomar, Antoni; Angland, David; Zhang, Xin; Molin, Nicolas

    2014-12-01

    The aerodynamic noise generated by high Reynolds number flow around a bluff body with large surface roughness was investigated. This is a relevant problem in many applications, in particular aircraft landing gear noise. A circular cylinder in cross-flow and a zero-pressure-gradient turbulent boundary layer with various types of roughness was tested in a series of wind tunnel experiments. It has been shown that distributed roughness covering a circular cylinder affects the spectra over the entire frequency range. Roughness noise is dominant at high frequencies, and the peak frequency is well described by Howe's roughness noise model when scaled with the maximum outer velocity. There are differences between hemispherical and cylindrical roughness elements for both the circular cylinder and the zero-pressure-gradient turbulent boundary layer cases, indicating a dependence on roughness shape, not described by the considered roughness noise models. Cylindrical roughness generates higher noise levels at the highest frequencies, especially for the zero-pressure-gradient turbulent boundary layer case. Cable-type roughness aligned with the mean flow does not generate roughness noise, and its spectrum has been found to collapse with the smooth cylinder at medium and high frequencies. At low and medium frequencies the noise spectra have the same features as the smooth cylinder, but with higher shedding peak levels and fall-off levels, despite the decrease in spanwise correlation length. Roughness induces early separation, and thus a shift of the spectra to lower frequencies.

  14. Linear and circular polarimetry of recent comets: Observational results for eight comets

    NASA Astrophysics Data System (ADS)

    Rosenbush, V.; Ivanova, A.; Kiselev, N.; Afanasiev, V.; Kolesnikov, S.; Shakhovskoy, D.

    2014-07-01

    We present the results of polarimetric observations for a number of recent comets carried out at the 6-m telescope of the Special Astrophysical Observatory (Russia) and the 2.6-m telescope of the Crimean Astrophysical Observatory (Ukraine) during 2011--2013. Comets 103P/Hartley 2, C/2009 P1 (Garradd), C/2011 L4 (PANSTARRS), C/2012 S1 (ISON), C/2013 R1 (Lovejoy), 29P/Schwassmann-Wachmann 1, C/2010 S1 (LINEAR), and C/2011 R1 (McNaught) were observed at different distances from the Sun (0.9--6.3 au) and at different phase angles (6.2--83.5 deg). The results obtained are compared with the phase-angle dependencies of linear polarization typical for the high-polarization and low-polarization comets. The linear polarization of comet S1 (LINEAR) and Schwassmann-Wachmann 1 are the first ever measured at the heliocentric distances larger than 6 au. The maps of circular polarization over the coma and its variations with the distance from the nucleus of comets P1 (Garradd), L4 (PANSTARRS), R1 (McNaught), and Schwassmann-Wachmann 1 are obtained. In all cases, left-handed circular polarization is detected and its value is within the range from -0.04 % up to -0.3 %. Detection of left-handed circular polarization in these comets has confirmed our previous conclusion that circular polarization of comets is predominantly left-handed. We will discuss the possible reasons for the diversity and similarity of linear and circular polarization in comets.

  15. Vibrational Circular Dichroism Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.

    PubMed

    Jose, K V Jovan; Beckett, Daniel; Raghavachari, Krishnan

    2015-09-01

    We present the first implementation of the vibrational circular dichroism (VCD) spectrum of large molecules through the Molecules-in-Molecules (MIM) fragment-based method. An efficient projection of the relevant higher energy derivatives from smaller fragments to the parent molecule enables the extension of the MIM method for the evaluation of VCD spectra (MIM-VCD). The overlapping primary subsystems in this work are constructed from interacting fragments using a number-based scheme and the dangling bonds are saturated with link hydrogen atoms. Independent fragment calculations are performed to evaluate the energies, Hessian matrix, atomic polar tensor (APT), and the atomic axial tensor (AAT). Subsequently, the link atom tensor components are projected back onto the corresponding host and supporting atoms through the Jacobian projection method, as in the ONIOM approach. In the two-layer model, the long-range interactions between fragments are accounted for using a less computationally intensive lower level of theory. The performance of the MIM model is calibrated on the d- and l-enantiomers of 10 carbohydrate benchmark molecules, with strong intramolecular interactions. The vibrational frequencies and VCD intensities are accurately reproduced relative to the full, unfragmented, results for these systems. In addition, the MIM-VCD method is employed to predict the VCD spectra of perhydrotriphenylene and cryptophane-A, yielding spectra in agreement with experiment. The accuracy and performance of the benchmark systems validate the MIM-VCD model for exploring vibrational circular dichroism spectra of large molecules. PMID:26575919

  16. Circular depressions on 67P/Churyumov-Gerasimenko observed by the OSIRIS instrument

    NASA Astrophysics Data System (ADS)

    Besse, S. B.; Guilbert-Lepoutre, A.; Vincent, J.-B.; Bodewits, D.; Pajola, M.

    2015-10-01

    Since it close encounter with comet 67P/Churyumov- Gerasimenko (67P) in August 2014, the OSIRIS instrument [1] on-board the Rosetta Spacecraft has imaged the surface of the nucleus with unprecedented resolution. From its global morphology description, numerous circular depressions of different sizes and shapes have been observed [2, 3]. Few of these circular depressions, also called pits, have shown sign of activity with the detection of faint jet-like features originated most likely from their walls [4]. The mechanism responsible for the formation of these morphological features is not yet well understood, although different hypotheses have been raised such as the collapse of a ceiling above internal voids [4]. These voids could either be due to primordial structure of the comet's interior, or they could have been created with subsequentevolution of the nucleus. In both case, these features provide important constrains on the formation and evolution of cometary nucleus. Follow-up observations of the OSIRIS instrument should both confirm the nature of the activity (i.e., sporadic vs. regular) and the number of active depressions. In this analysis, we provide a thorough identificationand description of the circular depressions on the surface of the comet nucleus. These circular depressions exhibit different shapes, from pits to alcoves, with sizes varying from tens to hundred of meters, and ultimately with different texture on their walls (i.e., with fractures and polygons, or not). The accumulation of boulders at the bottom of some of these depressions indicates that whatever is creating these features, they are changing and evolving significantly trough time. These variations may reflect different formation mechanisms, or/and time of formation and evolution, and also probably internal heterogeneities below the comet's surface.

  17. Controlling the near-wake of a circular cylinder with a single, large-scale tripwire

    NASA Astrophysics Data System (ADS)

    Aydin, Tayfun Besim

    Control of the flow past a circular cylinder using a single tripwire on its surface has been studied experimentally as a function of the wire angular location for different wire-to-cylinder diameter ratios (0.029 ≤ d/D ≤ 0.059) and Reynolds numbers (5,000 ≤ Re D ≤ 30,000). The use of an endplate with a sharp leading edge on each end of the cylinder yields adequate level of quasi two-dimensionality in the near wake. For each Reynolds number and wire size considered, two types of critical angular locations for the implementation of the large-scale wire on the cylinder surface were shown to exist based on the changes in the flow features in accord with the existing literature. At the first critical wire angle, the vortex shedding ceases for the majority of the time during which the vortex formation length extends, and there exists short time intervals where regular shedding resumes similar to the smooth cylinder. The second critical wire angle is found to encompass a range of angles (50° to 70°) where significant increase in spectral amplitude of Karman frequency is observed together with contraction of the near-wake. The angular location of the first critical wire angle decreases with the wire size, and increases with Reynolds number up to ReD = 15,000, after which it remains unaffected by the Reynolds number. Furthermore, the variations of the Strouhal number and the coherency of Karman vortex shedding are found to be, roughly, inversely related with each other. This investigation explains the relationship between different sets of critical wire angles previously defined by other researchers. Finally, a model is established for the estimation of the Strouhal number as a function of the wire angle. This model requires only the wire size (d), cylinder diameter (D), and Reynolds number (Re D) as inputs, and, therefore, is applicable without any prior knowledge on the flow structures. It yields a low average error (<6.2%) when compared with the experimental data.

  18. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae

    PubMed Central

    Burman, Robert; Yeshak, Mariamawit Y.; Larsson, Sonny; Craik, David J.; Rosengren, K. Johan; Göransson, Ulf

    2015-01-01

    During the last decade there has been increasing interest in small circular proteins found in plants of the violet family (Violaceae). These so-called cyclotides consist of a circular chain of approximately 30 amino acids, including six cysteines forming three disulfide bonds, arranged in a cyclic cystine knot (CCK) motif. In this study we map the occurrence and distribution of cyclotides throughout the Violaceae. Plant material was obtained from herbarium sheets containing samples up to 200 years of age. Even the oldest specimens contained cyclotides in the preserved leaves, with no degradation products observable, confirming their place as one of the most stable proteins in nature. Over 200 samples covering 17 of the 23–31 genera in Violaceae were analyzed, and cyclotides were positively identified in 150 species. Each species contained a unique set of between one and 25 cyclotides, with many exclusive to individual plant species. We estimate the number of different cyclotides in the Violaceae to be 5000–25,000, and propose that cyclotides are ubiquitous among all Violaceae species. Twelve new cyclotides from six phylogenetically dispersed genera were sequenced. Furthermore, the first glycosylated derivatives of cyclotides were identified and characterized, further increasing the diversity and complexity of this unique protein family. PMID:26579135

  19. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae.

    PubMed

    Burman, Robert; Yeshak, Mariamawit Y; Larsson, Sonny; Craik, David J; Rosengren, K Johan; Göransson, Ulf

    2015-01-01

    During the last decade there has been increasing interest in small circular proteins found in plants of the violet family (Violaceae). These so-called cyclotides consist of a circular chain of approximately 30 amino acids, including six cysteines forming three disulfide bonds, arranged in a cyclic cystine knot (CCK) motif. In this study we map the occurrence and distribution of cyclotides throughout the Violaceae. Plant material was obtained from herbarium sheets containing samples up to 200 years of age. Even the oldest specimens contained cyclotides in the preserved leaves, with no degradation products observable, confirming their place as one of the most stable proteins in nature. Over 200 samples covering 17 of the 23-31 genera in Violaceae were analyzed, and cyclotides were positively identified in 150 species. Each species contained a unique set of between one and 25 cyclotides, with many exclusive to individual plant species. We estimate the number of different cyclotides in the Violaceae to be 5000-25,000, and propose that cyclotides are ubiquitous among all Violaceae species. Twelve new cyclotides from six phylogenetically dispersed genera were sequenced. Furthermore, the first glycosylated derivatives of cyclotides were identified and characterized, further increasing the diversity and complexity of this unique protein family. PMID:26579135

  20. Post Main Sequence Orbital Circularization of Binary Stars in the Large and Small Magellanic Clouds.

    SciTech Connect

    Faccioli, L; Alcock, C; Cook, K

    2007-11-20

    We present results from a study of the orbits of eclipsing binary stars (EBs) in the Magellanic Clouds. The samples comprise 4510 EBs found in the Large Magellanic Cloud (LMC) by the MACHO project, 2474 LMC EBs found by the OGLE-II project (of which 1182 are also in the MACHO sample), 1380 in the Small Magellanic Cloud (SMC) found by the MACHO project, and 1317 SMC EBs found by the OGLE-II project (of which 677 are also in the MACHO sample); we also consider the EROS sample of 79 EBs in the bar of the LMC. Statistics of the phase differences between primary and secondary minima allow us to infer the statistics of orbital eccentricities within these samples. We confirm the well-known absence of eccentric orbit in close binary stars. We also find evidence for rapid circularization in longer period systems when one member evolves beyond the main sequence, as also found by previous studies.

  1. Null reconstruction of orthogonal circular polarization hologram with large recording angle.

    PubMed

    Wu, An'an; Kang, Guoguo; Zang, Jinliang; Liu, Ying; Tan, Xiaodi; Shimura, Tsutomu; Kuroda, Kazuo

    2015-04-01

    We report on the null reconstruction of polarization volume hologram recorded by orthogonal circularly polarized waves with a large cross angle. Based on the recently developed tensor theory for polarization holography, the disappearance of the reconstruction was analytically verified, where a nice agreement was found between the experimental and theoretical results. When the polarization and intensity hologram attain a balance, not only the null reconstruction but also the faithful reconstruction can be realized by the illumination of the orthogonal reference wave and original reference wave. As a consequence of the hologram recorded without paraxial approximation, the null reconstruction may lead to important applications, such as a potential enhancement in optical storage capacity for volume holograms. PMID:25968725

  2. Molecular Design Guidelines for Large Magnetic Circular Dichroism Intensities in Lanthanide Complexes.

    PubMed

    Kitagawa, Yuichi; Wada, Satoshi; Yanagisawa, Kei; Nakanishi, Takayuki; Fushimi, Koji; Hasegawa, Yasuchika

    2016-03-16

    Magneto optical devices based on the Faraday effects of lanthanide ion have attracted much attention. Recently, large Faraday effects were found in nano-sized multinuclear lanthanide complexes. In this study, the Faraday rotation intensities were estimated for lanthanide nitrates [Ln(III) (NO3 )3 ⋅n H2 O: Ln=Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm) and Eu(III) complexes with β-diketone ligands, using magnetic circular dichroism. Eu ions exhibit the largest Faraday rotation intensity for (7) F0 →(5) D1 transitions, and high-symmetry fields around the Eu ions induce larger Faraday effects. The molecular design for the enhancement of Faraday effects in lanthanide complexes is discussed. PMID:26789658

  3. Comparison of turbulent flow through hexagram and hexagon orifices in circular pipes using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Nicolleau, Franck C. G. A.; Qin, Ning

    2016-04-01

    Characteristics of turbulent flow through a circular, a hexagon and a hexagram orifice with the same flow area in circular pipes are investigated using wall-modelled large-eddy simulation. Good agreements to available experimental data were obtained in both the mean velocity and turbulent kinetic energy. The hexagram orifice with alternating convex and concave corners introduces outwards radial velocity around the concave corners downstream of the orifice plate stronger than the hexagon orifice. The stronger outwards radial velocity transfers high momentum from the pipe centre towards the pipe wall to energize the orifice-forced vortex sheet rolling-up and leads to a delayed vortex break-down. Correspondingly, the hexagram has a more gradual flow recovery to a pipe flow and a reduced pressure drop than the hexagon orifice. Both the hexagon and hexagram orifices show an axis-switching phenomenon, which is observed from both the streamwise velocity and turbulent kinetic energy contours. To the best knowledge of the authors, this is the first comparison of orifice-forced turbulence development, mixing and flow dynamics between a regular and a fractal-based polygonal orifice.

  4. Capacity of the circular plate condenser: analytical solutions for large gaps between the plates

    NASA Astrophysics Data System (ADS)

    Rao, T. V.

    2005-11-01

    A solution of Love's integral equation (Love E R 1949 Q. J. Mech. Appl. Math. 2 428), which forms the basis for the analysis of the electrostatic field due to two equal circular co-axial parallel conducting plates, is considered for the case when the ratio, τ, of distance of separation to radius of the plates is greater than 2. The kernel of the integral equation is expanded into an infinite series in odd powers of 1/τ and an approximate kernel accurate to {\\cal O}(\\tau^{-(2N+1)}) is deduced therefrom by terminating the series after an arbitrary but finite number of terms, N. The approximate kernel is rearranged into a degenerate form and the integral equation with this kernel is reduced to a system of N linear equations. An explicit analytical solution is obtained for N = 4 and the resulting analytical expression for the capacity of the circular plate condenser is shown to be accurate to {\\cal O}(\\tau^{-9}) . Analytical expressions of lower orders of accuracy with respect to 1/τ are deduced from the four-term (i.e., N = 4) solution and predictions (of capacity) from the expressions of different orders of accuracy (with respect to 1/τ) are compared with very accurate numerical solutions obtained by solving the linear system for large enough N. It is shown that the {\\cal O}(\\tau^{-9}) approximation predicts the capacity extremely well for any τ >= 2 and an {\\cal O}(\\tau^{-3}) approximation gives, for all practical purposes, results of adequate accuracy for τ >= 4. It is further shown that an approximate solution, applicable for the case of large distances of separation between the plates, due to Sneddon (Sneddon I N 1966 Mixed Boundary Value Problems in Potential Theory (Amsterdam: North-Holland) pp 230-46) is accurate to {\\cal O}(\\tau^{-6}) for τ >= 2.

  5. Interplay of Exciton Coupling and Large-Amplitude Motions in the Vibrational Circular Dichroism Spectrum of Dehydroquinidine.

    PubMed

    Nicu, Valentin P; Domingos, Sérgio R; Strudwick, Benjamin H; Brouwer, Albert M; Buma, Wybren J

    2016-01-11

    A detailed analysis of the computed structure, energies, vibrational absorption (VA) and circular dichroism (VCD) spectra of 30 low-energy conformers of dehydroquinidine reveals the existence of families of pseudo-conformers, the structures of which differ mostly in the orientation of a single O-H bond. The pseudo-conformers in a family are separated by very small energy barriers (i.e., 1.0 kcal mol(-1) or smaller) and have very different VCD spectra. First, we demonstrate the unreliable character of the Boltzmann factors predicted with DFT. Then, we show that the large differences observed between the VCD spectra of the pseudo-conformers in a family are caused by large-amplitude motions involving the O-H bond, which trigger the appearance/disappearance of strong VCD exciton-coupling bands in the fingerprint region. This interplay between exciton coupling and large-amplitude-motion phenomena demonstrates that when dealing with flexible molecules with polar bonds, vibrational averaging of VCD spectra should not be neglected. In this regard, the dehydroquinidine molecule considered here is expected to be a typical example and not the exception to the rule. PMID:26611817

  6. Nonlinear characteristics of a circular plate piezoelectric harvester with relatively large deflection near resonance.

    PubMed

    Xue, Huan; Hu, Hongping

    2008-09-01

    Based on the von Karman thin circular plate theory, we report in this paper the analysis of the nonlinear behavior of a power harvester consisting of a circular piezoelectric plate and an electric resistance. Dependence of the output power of the harvester upon driving frequency for different electric loads and different applied forces is obtained. Numerical results show that the output power exhibits multi-valuedness and a jump phenomenon near resonance. PMID:18986906

  7. An observational view of large scale structure

    NASA Technical Reports Server (NTRS)

    Davis, Marc

    1986-01-01

    A summary of recent observations of galaxy clustering is presented, including a brief review of redshift maps and galaxy clustering statistics. Simple arguments are presented that argue the underlying mass fluctuations are most likely associated with a clustering scale no larger than that of individual galaxies. The acceleration of the local group from the comoving frame of the universe and its connection to the microwave dipole anisotropy are also discussed. A final topic for consideration is the existence of large voids and clusters, and whether they are consistent with Gaussian initial conditions. The extreme size and depth of the Bootes void, if real, do present a puzzle. Finally, future directions for observational study of large scale structure are discussed.

  8. Sidewall-box airlift pump provides large flows for aeration, CO2 stripping, and water rotation in large dual-drain circular tanks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require a considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular culture tank can interfere with the hydrodynamics of water rotation a...

  9. Infrasonic observations of large scale HE events

    SciTech Connect

    Whitaker, R.W.; Mutschlecner, J.P.; Davidson, M.B.; Noel, S.D.

    1990-01-01

    The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, we work between 0.1 Hz to 10 Hz; however, much of our work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. This discussion will concentrate on measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because the equipment is well suited for mobile deployments, it can easily establish temporary observing sites for special events. The measurements in this report are from our permanent sites, as well as from various temporary sites. In this short report will not give detailed data from all sites for all events, but rather will present a few observations that are typical of the full data set. The Defense Nuclear Agency sponsors these large explosive tests as part of their program to study airblast effects. A wide variety of experiments are fielded near the explosive by numerous Department of Defense (DOD) services and agencies. This measurement program is independent of this work; use is made of these tests as energetic known sources, which can be measured at large distances. Ammonium nitrate and fuel oil (ANFO) is the specific explosive used by DNA in these tests. 6 refs., 6 figs.

  10. ELF Sferics Observed at Large Distances

    NASA Astrophysics Data System (ADS)

    Dupree, N. A.; Moore, R. C.

    2012-12-01

    Model predictions of the ELF radio atmospheric generated by rocket-triggered lightning are compared with observations performed at at large (>1 Mm) distances. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. ELF observations performed in Alaska and Antarctica during rocket-triggered lightning experiments at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida are presented. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with LWPC to predict the sferic waveform observed at the receiver locations under various ionospheric conditions. This paper critically compares observations with model predictions.

  11. Calibration of mixed-polarization interferometric observations. Tools for the reduction of interferometric data from elements with linear and circular polarization receivers

    NASA Astrophysics Data System (ADS)

    Martí-Vidal, I.; Roy, A.; Conway, J.; Zensus, A. J.

    2016-03-01

    Heterodyne receivers register the sky signal on either a circular polarization basis (where it is split into left-hand and right-hand circular polarization) or a linear polarization basis (where it is split into horizontal and vertical linear polarization). We study the problem of interferometric observations performed with telescopes that observe on different polarization bases, hence producing visibilities that we call "mixed basis" (i.e., linear in one telescope and circular in the other). We present novel algorithms for the proper calibration and treatment of such interferometric observations and test our algorithms with both simulations and real data. The use of our algorithms will be important for the optimum calibration of forthcoming observations with the Atacama Large Mm/submm Array (ALMA) in very-long-baseline interferometry (VLBI) mode. Our algorithms will also allow us to optimally calibrate future VLBI observations at very high data rates (i.e., wide bandwidths), where linear-polarization feeds will be preferable at some stations, to overcome the polarimetric limitations due to the use of quarter-wave plates.

  12. Observations of large transient magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Aggson, T. L.; Heppner, J. P.

    1977-01-01

    Transient electric field events were observed with the long, double probe instrumentation carried by the IMP-6 satellite. Nine, clearly defined, exceptionally large amplitude events are presented here. The events are observed in the midnight sector at geocentric distances 3.5 to .5.5 R sub e at middle latitudes within a magnetic L-shell range of 4.8 to 7.5. They usually have a total duration of one to several minutes, with peak power spectra amplitudes occurring at a frequency of about 0.3 Hz. The events occur under magnetically disturbed conditions, and in most cases they can be associated with negative dH/dt excursions at magnetic observatories located near the foot of the magnetic field line intersecting IMP-6. The magnetospheric motions calculated for these electric fields indicated a quasi-stochastical diffusive process rather than the general inward magnetospheric collapsing motion expected during the expansive phases of auroral substorm activity.

  13. Large deflections of circular isotropic membranes subjected to arbitrary axisymmetric loading

    NASA Technical Reports Server (NTRS)

    Kelkar, A.; Elber, W.; Raju, I. S.

    1984-01-01

    Circular membranes with fixed peripheral edges, subjected to arbitrary axisymmetric loading are analyzed. A single governing differential equation in terms of radial stress is used. This nonlinear governing equation is solved using the finite difference method in conjunction with Newton-Raphson method. Three loading cases, namely (1) uniformly loaded membrane, (2) a membrane with uniform load over an inner portion, and (3) a membrane with ring load, are analyzed. Calculated central displacement and the central and edge radial stresses for uniformly loaded membrane, agree extremely well with the classical solution.

  14. Observations of large transient magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Aggson, T. L.; Heppner, J. P.

    1977-01-01

    Transient electric field events were studied by means of the long double-probe instrumentation carried by the Imp 6 satellite, and nine clearly defined exceptionally large amplitude events are described. The events were observed in the midnight sector at geocentric distances of 3.5 to 5.5 earth radii at middle latitudes within a magnetic L shell range of 4.8 to 7.5; the duration is from one to several minutes with peak power spectra amplitudes occurring at a frequency of about 0.3 Hz. The events occur under magnetically disturbed conditions and are often associated with negative dH/dt excursions. The magnetospheric motions calculated for these electric fields indicate a quasi-stochastical diffusive process rather than the general inward magnetospheric collapsing motion expected during the expansive phases of auroral substorm activity. It is likely that the transient electric fields are responsible for the impulsive acceleration and injection of plasma to populate the outer radiation belt.

  15. Relativistic mergers of black hole binaries have large, similar masses, low spins and are circular

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Chen, Xian

    2016-05-01

    Gravitational waves are a prediction of general relativity, and with ground-based detectors now running in their advanced configuration, we will soon be able to measure them directly for the first time. Binaries of stellar-mass black holes are among the most interesting sources for these detectors. Unfortunately, the many different parameters associated with the problem make it difficult to promptly produce a large set of waveforms for the search in the data stream. To reduce the number of templates to develop, one must restrict some of the physical parameters to a certain range of values predicted by either (electromagnetic) observations or theoretical modelling. In this work, we show that `hyperstellar' black holes (HSBs) with masses 30 ≲ MBH/M⊙ ≲ 100, i.e black holes significantly larger than the nominal 10 M⊙, will have an associated low value for the spin, i.e. a < 0.5. We prove that this is true regardless of the formation channel, and that when two HSBs build a binary, each of the spin magnitudes is also low, and the binary members have similar masses. We also address the distribution of the eccentricities of HSB binaries in dense stellar systems using a large suite of three-body scattering experiments that include binary-single interactions and long-lived hierarchical systems with a highly accurate integrator, including relativistic corrections up to O(1/c^5). We find that most sources in the detector band will have nearly zero eccentricities. This correlation between large, similar masses, low spin and low eccentricity will help to accelerate the searches for gravitational-wave signals.

  16. Relativistic mergers of black hole binaries have large, similar masses, low spins and are circular

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Chen, Xian

    2016-03-01

    Gravitational waves are a prediction of general relativity, and with ground-based detectors now running in their advanced configuration, we will soon be able to measure them directly for the first time. Binaries of stellar-mass black holes are among the most interesting sources for these detectors. Unfortunately, the many different parameters associated with the problem make it difficult to promptly produce a large set of waveforms for the search in the data stream. To reduce the number of templates to develop, one must restrict some of the physical parameters to a certain range of values predicted by either (electromagnetic) observations or theoretical modeling. In this work we show that "hyperstellar" black holes (HSBs) with masses 30 ≲ MBH/M⊙ ≲ 100, i.e black holes significantly larger than the nominal 10 M⊙, will have an associated low value for the spin, i.e. a < 0.5. We prove that this is true regardless of the formation channel, and that when two HSBs build a binary, each of the spin magnitudes is also low, and the binary members have similar masses. We also address the distribution of the eccentricities of HSB binaries in dense stellar systems using a large suite of three-body scattering experiments that include binary-single interactions and long-lived hierarchical systems with a highly accurate integrator, including relativistic corrections up to O(1/c^5). We find that most sources in the detector band will have nearly zero eccentricities. This correlation between large, similar masses, low spin and low eccentricity will help to accelerate the searches for gravitational-wave signals.

  17. Amplicon structure in multidrug-resistant murine cells: a nonrearranged region of genomic DNA corresponding to large circular DNA.

    PubMed Central

    Sthl, F; Wettergren, Y; Levan, G

    1992-01-01

    Multidrug resistance (MDR) in tumor cell lines is frequently correlated with amplification of one or more mdr genes. Usually the amplified domain also includes several neighboring genes. Using pulsed-field gel electrophoresis, we have established a restriction map covering approximately 2,200 kb in the drug-sensitive mouse tumor cell line TC13K. The mapped region is located on mouse chromosome 5 and includes the three mdr genes, the gene for the calcium-binding sorcin protein, and a gene with unknown function designated class 5. Long-range maps of the amplified DNA sequences in five of six MDR sublines that had been independently derived from TC13K generally displayed the same pattern as did the parental cell line. All six MDR sublines exhibited numerous double minutes, and one of them displayed a homogeneously staining region in a subpopulation. Large circular molecules, most likely identical to one chromatid of the double minutes, were detected in four of the sublines by linearization with gamma irradiation. The size of the circles was about 2,500 kb, which correlated to a single unit of the amplified domain. We therefore propose that in four independent instances of MDR development, a single unit of about 2,500 kb has been amplified in the form of circular DNA molecules. The restriction enzyme map of the amplified unit is unchanged compared with that of the parental cell line, whereas the joining sites of the circular DNA molecules are not identical but are in the same region. Images PMID:1545798

  18. Crowder/grader units improve harvest efficiency in large circular tanks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of larger and deeper tanks can reduce building, labor and other aquaculture production costs. However, the ability to grade and transfer large numbers of fish is more challenging when using large tanks. At The Conservation Fund Freshwater Institute, the authors have developed and evaluated i...

  19. Launch window analysis of satellites in high eccentricity or large circular orbits

    NASA Technical Reports Server (NTRS)

    Renard, M. L.; Bhate, S. K.; Sridharan, R.

    1973-01-01

    Numerical methods and computer programs for studying the stability and evolution of orbits of large eccentricity are presented. Methods for determining launch windows and target dates are developed. Mathematical models are prepared to analyze the characteristics of specific missions.

  20. Large-eddy simulation of circular cylinder flow at subcritical Reynolds number: Turbulent wake and sound radiation

    NASA Astrophysics Data System (ADS)

    Guo, Li; Zhang, Xing; He, Guowei

    2016-02-01

    The flows past a circular cylinder at Reynolds number 3900 are simulated using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier-Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale (SGS) model is used to compute the sub-grid stresses. Curle's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctuations obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the -5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise.

  1. Large-eddy simulation of circular cylinder flow at subcritical Reynolds number: Turbulent wake and sound radiation

    NASA Astrophysics Data System (ADS)

    Guo, Li; Zhang, Xing; He, Guowei

    2015-10-01

    The flows past a circular cylinder at Reynolds number 3900 are simulated using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier-Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale (SGS) model is used to compute the sub-grid stresses. Curle's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctuations obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the -5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise.

  2. Very large array observations of Jupiter's nonthermal radiation

    NASA Technical Reports Server (NTRS)

    De Pater, I.; Jaffe, W. J.

    1984-01-01

    The VLA has been used at 18 and 20 cm to obtain observational data on Jupiter at all rotational aspects in all four Stokes parameters, yielding maps of the total, linearly polarized and circularly polarized intensity with a resolution of 0.25 Jupiter radii. These maps reveal such previously undetected phenomena as an emission feature close to the planetary surface north and south of each of the two main radiation peaks. The emission from 1.8 to about 3 Jupiter radii from the planet's center is sharply confined to the magnetic equator.

  3. Large deflection of clamped circular plate and accuracy of its approximate analytical solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Yin

    2016-02-01

    A different set of governing equations on the large deflection of plates are derived by the principle of virtual work (PVW), which also leads to a different set of boundary conditions. Boundary conditions play an important role in determining the computation accuracy of the large deflection of plates. Our boundary conditions are shown to be more appropriate by analyzing their difference with the previous ones. The accuracy of approximate analytical solutions is important to the bulge/blister tests and the application of various sensors with the plate structure. Different approximate analytical solutions are presented and their accuracies are evaluated by comparing them with the numerical results. The error sources are also analyzed. A new approximate analytical solution is proposed and shown to have a better approximation. The approximate analytical solution offers a much simpler and more direct framework to study the plate-membrane transition behavior of deflection as compared with the previous approaches of complex numerical integration.

  4. A model for simulating the influence of a spatial distribution of large circular macropores on surface runoff

    NASA Astrophysics Data System (ADS)

    Léonard, J.; Perrier, E.; de Marsily, G.

    2001-12-01

    This paper reports the development and test, at the scale of 1 m2, of an event- based model that aims at simulating the influence of a spatial distribution of large circular macropores on surface runoff. The main originality of this model is that it focuses on the way macropores are supplied with water at the soil surface, by coupling an original model for water interception by individual macropores to a high-resolution spatialized overland flow model. A three-step evaluation of the model was carried out, involving (1) an experimental test of the model for water interception by macropores; (2) a sensitivity analysis of the model to time and space discretization; and (3) a comparison between numerical and field results in the case of runoff on a crusted soil surface with a population of large macropores made by termites in the Sahel. The model was found to accurately simulate the effect of a spatial distribution of large macropores on runoff, and it showed that small heterogeneities, like macropores or areas where a crust has been destroyed, which cover a very limited proportion of the soil surface, can have a high impact on runoff.

  5. On the stability of self-consistent large amplitude waves in a cold plasma. I - Transverse circularly polarized waves in the absence of a large scale magnetic field

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Lerche, I.

    1978-01-01

    It is demonstrated that a self-consistent circularly polarized wave in an otherwise field-free homogeneous cold plasma is unstable to small amplitude perturbations. For either an electron-positron plasma or an electron-proton plasma the instability rate is at least about the order of the effective plasma frequency when the bulk flow speed is zero. For finite bulk flow speeds of the plasma, it is shown that the electron-positron plasma is unstable, again with a growth rate of the order of the effective plasma frequency; it is also shown that the electron-proton plasma is unstable (at least at small wave numbers, k) with a growth rate proportional to k. The calculated instability rates are conservative, for other modes not investigated here may be more unstable. The results of these calculations bear directly on the understanding of plasma systems thought to be driven by large amplitude waves.

  6. Thermal Stability of Magnetic States in Circular Thin-Film Nanomagnets with Large Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Chaves-O'Flynn, Gabriel

    The scaling of the energy barrier to magnetization reversal in thin-film nanomagnets with perpendicular magnetization as a function of their lateral size is of great interest and importance for high-density magnetic random access memory devices. Experimental studies of such elements show either a quadratic or linear dependence of the energy barrier on element diameter. I will discuss a theoretical model we developed to determine the micromagnetic configurations that set the energy barrier for thermally activated reversal of a thin disk with perpendicular magnetic anisotropy as a function of disk diameter. We find a critical length in the problem that is set by the exchange and effective perpendicular magnetic anisotropy energies, with the latter including the size dependence of the demagnetization energy. For diameters smaller than this critical length, the reversal occurs by nearly coherent magnetization rotation and the energy barrier scales with the square of the diameter normalized to the critical length (for fixed film thickness), while for larger diameters, the transition state has a domain wall, and the energy barrier depends linearly on the normalized diameter. Simple analytic expressions are derived for these two limiting cases and verified using full micromagnetic simulations with the string method. Further, the effect of an applied field is considered and shown to lead to a plateau in the energy barrier versus diameter dependence at large diameters. Based on these finding I discuss the prospects and material challenges in the scaling of magnetic memory devices based on thin films with strong perpendicular magnetic anisotropy. In collaboration with G. Wolf, J. Z. Sun and A. D. Kent. Supported by NSF-DMR-1309202 and in part by Spin Transfer Technologies Inc. and the Nanoelectronics Research Initiative through the Institute for Nanoelectronics Discovery and Exploration.

  7. Circular Coinduction

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)

    2001-01-01

    Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.

  8. Grid-independent large-eddy simulation (LES) of turbulent flow around a circular cylinder using explicit filtering

    NASA Astrophysics Data System (ADS)

    Singh, Satbir; You, Donghyun

    2013-11-01

    The explicit filtering technique has the potential to provide grid-independent and error-quantified large-eddy-simulation (LES) solutions. recently obtained grid-independent LES solutions for turbulent channel flow using one-dimensional discrete filter functions implemented on Cartesian grids. Many complex flow configurations, however, employ arbitrary shape grids, for which it is difficult to design such discrete filter functions. In the present work, we employ an elliptic differential filter to solve explicit-filter LES equations on arbitrary shaped grids. The coefficients of the elliptic filter are determined by comparing its filtering characteristics with those of a Gausian filter. The elliptic filter is applied to a homogeneous isotropic turbulence flow field and the coefficient is adjusted until a filtered energy spectra similar to that of the Gaussian filter is obtained. The filter coefficients thus obtained are then employed to solve explicit-filter LES equations for turbulent channel flow at Re? = 395 and turbulent flow over a circular cylinder at ReD = 3900 . Grid-independent solutions are obtained for both flow configurations.

  9. Genome Analysis of a Glossina pallidipes Salivary Gland Hypertrophy Virus Reveals a Novel, Large, Double-Stranded Circular DNA Virus▿

    PubMed Central

    Abd-Alla, Adly M. M.; Cousserans, François; Parker, Andrew G.; Jehle, Johannes A.; Parker, Nicolas J.; Vlak, Just M.; Robinson, Alan S.; Bergoin, Max

    2008-01-01

    Several species of tsetse flies can be infected by the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). Infection causes salivary gland hypertrophy and also significantly reduces the fecundity of the infected flies. To better understand the molecular basis underlying the pathogenesis of this unusual virus, we sequenced and analyzed its genome. The GpSGHV genome is a double-stranded circular DNA molecule of 190,032 bp containing 160 nonoverlapping open reading frames (ORFs), which are distributed equally on both strands with a gene density of one per 1.2 kb. It has a high A+T content of 72%. About 3% of the GpSGHV genome is composed of 15 sequence repeats, distributed throughout the genome. Although sharing the same morphological features (enveloped rod-shaped nucleocapsid) as baculoviruses, nudiviruses, and nimaviruses, analysis of its genome revealed that GpSGHV differs significantly from these viruses at the level of its genes. Sequence comparisons indicated that only 23% of GpSGHV genes displayed moderate homologies to genes from other invertebrate viruses, principally baculoviruses and entomopoxviruses. Most strikingly, the GpSGHV genome encodes homologues to the four baculoviral per os infectivity factors (p74 [pif-0], pif-1, pif-2, and pif-3). The DNA polymerase encoded by GpSGHV is of type B and appears to be phylogenetically distant from all DNA polymerases encoded by large double-stranded DNA viruses. The majority of the remaining ORFs could not be assigned by sequence comparison. Furthermore, no homologues to DNA-dependent RNA polymerase subunits were detected. Taken together, these data indicate that GpSGHV is the prototype member of a novel group of insect viruses. PMID:18272583

  10. Multi-Wavelength Observations of Large Amplitude Prominence Oscillations

    NASA Astrophysics Data System (ADS)

    Shen, Yuandeng; Shibata, Kazunari; Ichimoto, Kiyoshi; Liu, Yu

    Multi-Wavelength observations of large amplitude prominence oscillations are important in diagnosing the physical property and eruption mechanism of prominences, as well as their ambient coronal magnetic fields. Such studies has led to a new discipline dubbed ‘’Prominence Seismology’’. However, up to the present, high-resolution and multi-wavelength observations of large amplitude oscillations are very scarce. Using high-resolution spectroscopic Halpha observations taken by the Solar Magnetic Activity Research Telescope (SMART) and the Solar Dynamics Observatory, we studied a series of intriguing large amplitude prominence (filament) oscillation events. We find that large amplitude horizontal and vertical prominence oscillations are often launched by large-scale shock waves associated with remote flares, while large amplitude longitudinal prominence oscillations are often associated with nearby micro jets or flare activities. Sometimes, longitudinal oscillations can also be launched by large-scale shocks. With the spectroscopic observations taken by the SMART, we can measure the Doppler velocity and even the three-dimensional velocity of the oscillations, with the so-called ``Clould Model’’. The oscillation period, amplitude, and damping time are also determined from the Halpha observations. These prominence parameters are used to estimate the magnetic fields of the prominence and the surrounding corona using the method of prominence seismology. Other property of large amplitude oscillation prominences such as restoring forces and damping mechanisms are also discussed in our study.

  11. Large-amplitude, circularly polarized, compressive, obliquely propagating electromagnetic proton cyclotron waves throughout the Earth's magnetosheath: low plasma β conditions

    SciTech Connect

    Remya, B.; Reddy, R. V.; Lakhina, G. S.; Tsurutani, B. T.; Falkowski, B. J.; Echer, E.; Glassmeier, K.-H.

    2014-09-20

    During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf} > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.

  12. Evolutionary outcomes for pairs of planets undergoing orbital migration and circularization: second-order resonances and observed period ratios in Kepler's planetary systems

    NASA Astrophysics Data System (ADS)

    Xiang-Gruess, M.; Papaloizou, J. C. B.

    2015-05-01

    In order to study the origin of the architectures of low-mass planetary systems, we perform numerical surveys of the evolution of pairs of coplanar planets in the mass range (1-4) M⊕. These evolve for up to 2 × 107 yr under a range of orbital migration torques and circularization rates assumed to arise through interaction with a protoplanetary disc. Near the inner disc boundary, significant variations of viscosity, interaction with density waves or with the stellar magnetic field could occur and halt migration, but allow circularization to continue. This was modelled by modifying the migration and circularization rates. Runs terminated without an extended period of circularization in the absence of migration torques gave rise to either a collision, or a system close to a resonance. These were mostly first order with a few per cent terminating in second-order resonances. Both planetary eccentricities were small <0.1 and all resonant angles liberated. This type of survey produced only a limited range of period ratios and cannot reproduce Kepler observations. When circularization alone operates in the final stages, divergent migration occurs causing period ratios to increase. Depending on its strength the whole period ratio range between 1 and 2 can be obtained. A few systems close to second-order commensurabilities also occur. In contrast to when arising through convergent migration, resonant trapping does not occur and resonant angles circulate. Thus, the behaviour of the resonant angles may indicate the form of migration that led to near resonance.

  13. Solvation dependence observed in the electronic dissymmetry factor spectra: how much information are we missing by analyzing the circular dichroism spectra alone?

    PubMed

    Covington, Cody L; Polavarapu, Prasad L

    2016-05-18

    A study utilizing the newly developed electronic dissymmetry factor (EDF) spectral analysis reveals that for [1,1'-binaphthalene]-2,2'-diol (BN) the experimental EDF spectra show differences due to solvent complexation following the trend in solvent polarity, that are not apparent in the electronic circular dichroism (ECD) or corresponding electronic absorption (EA) spectra. Large experimental EDF spectral magnitudes for BN are seen to peak in regions with no corresponding peaks in the EA spectrum and only a shoulder in the ECD spectrum. This observation indicates that EDF analysis is a new complementary method to conventional ECD analysis of chiral molecules. TD-DFT calculations predict similar EDF peaks as in the experimental EDF spectra, however, the experimentally observed solvation dependent behaviour of the EDF peaks was not reproduced in the calculations. Studies on 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol also show similar characteristics in the EDF spectra, though not as pronounced and with different solvent effects. This report thus identifies a new means of chiral molecular structural analysis, hitherto unnoticed, and establishes the use of the dissymmetry factor spectrum as yielding new insight, but at no added cost. PMID:27149694

  14. Photoelectron circular dichroism observed in the above-threshold ionization signal from chiral molecules with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lux, Christian; Senftleben, Arne; Sarpe, Cristian; Wollenhaupt, Matthias; Baumert, Thomas

    2016-01-01

    Photoelectron circular dichroism is investigated experimentally as a function of the number of absorbed circularly polarized photons. Three structurally different chiral molecules yet showing similar absorption spectra are studied. They are isotropically distributed in the gas phase and ionized with femtosecond laser pulses. We measure and analyze the photoelectron angular distribution of threshold electrons ionized with three photons and compare them to those of above-threshold (ATI) electrons ionized with four photons. Additionally to an increase in high even order Legendre polynomials the coefficients of the high odd order Legendre polynomials rise with increasing photon number. Consequently, the ATI electrons also carry the chirality signature. All investigated chiral molecules reveal an individual set of coefficients for the threshold and ATI signatures despite their similarities in chemical structure. The presented data set can serve as a guideline for theoretical modeling of the interaction of circularly polarized light with chiral molecules in the multiphoton regime.

  15. Large deployable reflectors for telecom and earth observation applications

    NASA Astrophysics Data System (ADS)

    Scialino, L.; Ihle, A.; Migliorelli, M.; Gatti, N.; Datashvili, L.; 't Klooster, K.; Santiago Prowald, J.

    2013-12-01

    Large deployable antennas are one of the key components for advanced missions in the fields of telecom and earth observation. In the recent past, missions have taken on board large deployable reflector (LDR) up to 22 m of diameter and several missions have already planned embarking large reflectors, such as the 12 m of INMARSAT XL or BIOMASS. At the moment, no European LDR providers are available and the market is dominated by Northrop-Grumman and Harris. Consequently, the development of European large reflector technology is considered a key step to maintain commercial and strategic competitiveness (ESA Large Reflector Antenna Working Group Final Report, TEC-EEA/2010.595/CM, 2010). In this scenario, the ESA General Study Project RESTEO (REflector Synergy between Telecom and Earth Observation), starting from the identification of future missions needs, has identified the most promising reflector concepts based on European heritage/technology, able to cover the largest range of potential future missions for both telecom and earth observation. This paper summarizes the activities and findings of the RESTEO Study.

  16. Quantum tunneling observed without its characteristic large kinetic isotope effects

    PubMed Central

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-01-01

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle’s ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1–1.5) despite the large intrinsic H/D KIE of tunneling (≳100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system. PMID:26034285

  17. Quantum tunneling observed without its characteristic large kinetic isotope effects.

    PubMed

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-06-16

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle's ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1-1.5) despite the large intrinsic H/D KIE of tunneling (≳ 100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system. PMID:26034285

  18. Observation of a large parity nonconserving analyzing power in Xe

    NASA Astrophysics Data System (ADS)

    Szymanski, J. J.; Snow, W. M.; Bowman, J. D.; Cain, B.; Crawford, B. E.; Delheij, P. P.; Hartman, R. D.; Haseyama, T.; Keith, C. D.; Knudson, J. N.; Komives, A.; Leuschner, M.; Lowie, L. Y.; Masaike, A.; Matsuda, Y.; Mitchell, G. E.; Penttilä, S. I.; Postma, H.; Rich, D.; Roberson, N. R.; Seestrom, S. J.; Sharapov, E. I.; Stephenson, S. L.; Yen, Y. F.; Yuan, V. W.

    1996-06-01

    A large parity nonconserving longitudinal analyzing power was discovered in polarized-neutron transmission through Xe. An analyzing power of 4.3+/-0.2% was observed in a p-wave resonance at En=3.2 eV. The measurement was performed with a liquid Xe target of natural isotopic abundance that was placed in the polarized epithermal neutron beam, flight path 2, at the Manuel Lujan Neutron Science Center. This apparatus was constructed by the TRIPLE Collaboration, and has been used for studies of parity symmetry in compound nuclear resonances. Part of the motivation of the experiment was to discover a nucleus appropriate for a sensitive test of time-reversal invariance in polarized-neutron transmission. The large analyzing power of the observed resonance may make it possible to design a test of time reversal invariance using a polarized-Xe target.

  19. Considerations for Observational Research using Large Datasets in Radiation Oncology

    PubMed Central

    Jagsi, Reshma; Bekelman, Justin E.; Chen, Aileen; Chen, Ronald C.; Hoffman, Karen; Shih, Ya-Chen Tina; Smith, Benjamin D.; Yu, James B.

    2014-01-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based datasets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the Red Journal assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytic challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold substantial promise for advancing our understanding of many unanswered questions of importance to the field of radiation oncology. PMID:25195986

  20. Local layer structures in circular domains of an achiral bent-core mesogen observed by x-ray microbeam diffraction

    NASA Astrophysics Data System (ADS)

    Takanishi, Yoichi; Ogasawara, Toyokazu; Ishikawa, Ken; Takezoe, Hideo; Watanabe, Junji; Takahashi, Yumiko; Iida, Atsuo

    2003-07-01

    The local layer structures have been investigated by x-ray microbeam diffraction in the circular domains of the SmCP phase of a banana-shaped molecule. Originally, the molecules form tilted layers with a certain tilt angle as well as nontilted ones. The application of a low electric field induces a tilted layer with a continuous change of the tilt angle; i.e., the tilted layer gradually changes the tilt angle, finally being upright at the center of circular domains. Upon application of a high electric field, the smectic layer forms a cylindrical-type structure. The layer structure changes from cylindrical to onionlike after turning off the high field.

  1. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF GRB 110625A

    SciTech Connect

    Tam, P. H. T.; Kong, A. K. H.; Fan Yizhong

    2012-08-01

    Gamma-ray bursts (GRBs) that emit photons at GeV energies form a small but significant population of GRBs. However, the number of GRBs whose GeV-emitting period is simultaneously observed in X-rays remains small. We report {gamma}-ray observations of GRB 110625A using Fermi's Large Area Telescope in the energy range 100 MeV-20 GeV. Gamma-ray emission at these energies was clearly detected using data taken between 180 s and 580 s after the burst, an epoch after the prompt emission phase. The GeV light curve differs from a simple power-law decay, and probably consists of two emission periods. Simultaneous Swift X-Ray Telescope observations did not show flaring behaviors as in the case of GRB 100728A. We discuss the possibility that the GeV emission is the synchrotron self-Compton radiation of underlying ultraviolet flares.

  2. Doppler lidar observations of plume dynamics from large wildfires

    NASA Astrophysics Data System (ADS)

    Lareau, N.; Clements, C. B.

    2014-12-01

    Novel Doppler lidar observations of smoke plumes from large wildfires are made from a mobile atmospheric profiling system. Few quantitative observations exist that resolve the plume dynamics of active wildfires. Our observations elucidate three important and poorly understood aspects of convective columns: (1) column rotation, (2) penetrative convection, and (3) deep pyrocumulus clouds. Our first observational case examines vigorus anti-cyclonic rotation that occurred in a rapidly developing wildfire. The convective column was first purely convergent, then as the fire intensified, the column acquired strong (+/- 15 m s-1) anticyclonic rotation. The Doppler lidar recorded the vortex structure, strength, and evolution, including the merger of smaller vorticies into a single long-lived vortex. The second case examines the interaction of the convective plumes with shear layers and capping stable layers. These data show explosive convective growth as fire-induced buoyancy penetrated into the free troposphere. Observations of entrainment into the plumes is expecitly resolved in the lidar scans. The final case examines rarely observed deep pyrocumulus clouds associated with an intense forest fire. The lidar data reveal plume structure, including t the height of the lifted condensation level and the full height of the plume top which was in excess of 8 km AGL.

  3. Interferometric observations of large biologically interesting interstellar and cometary molecules.

    PubMed

    Snyder, Lewis E

    2006-08-15

    Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have substantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled "biomolecules." Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated interstellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to understanding hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from observations with the next generation of sensitive, high-resolution arrays. PMID:16894168

  4. Interferometric observations of large biologically interesting interstellar and cometary molecules

    PubMed Central

    Snyder, Lewis E.

    2006-01-01

    Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have substantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled “biomolecules.” Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated interstellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to understanding hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from observations with the next generation of sensitive, high-resolution arrays. PMID:16894168

  5. Circular motion

    NASA Astrophysics Data System (ADS)

    Newton, Isaac; Henry, Richard Conn

    2000-07-01

    An extraordinarily simple and transparent derivation of the formula for the acceleration that occurs in uniform circular motion is presented, and is advocated for use in high school and college freshman physics textbooks.

  6. Very Large Array (VLA) observations of coronal loops

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1992-01-01

    Advances in ground based Very Large Array (VLA) observations of the Sun, and how they complement and extend EUV and X-ray observations from space are reviewed. The VLA provides high resolution, full disk images that include hot, dense coronal loops within individual active regions (at 20 cm), and cooler, higher, more extended structures (at 90 cm) that can connect widely separated active regions, describe high lying noise storms, or act as a transition sheath between cool dark filaments and the hot enveloping corona. VLA images of both cool and hot corona loops can be compared with data from most of the SOHO (Solar and Heliospheric Observatory) instruments, thereby enhancing the scientific return of the SOHO mission beyond that expected from using its instruments alone.

  7. Infrasonic observations of large-scale HE events

    NASA Technical Reports Server (NTRS)

    Whitaker, Rodney W.; Mutschlecner, J. Paul; Davidson, Masha B.; Noel, Susan D.

    1990-01-01

    The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, the authors work between 0.1 Hz to 10 Hz; however, much of the work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. For the purposes of this discussion, the authors concentrate on their measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because their equipment is well suited for mobile deployments, they can easily establish temporary observing sites for special events. The measurements are from the permanent sites, as well as from various temporary sites. A few observations that are typical of the full data set are given.

  8. Linking very short arcs from large database of asteroid observations

    NASA Astrophysics Data System (ADS)

    Gronchi, Giovanni Federico

    2015-08-01

    With the improvements of the observational technology for the new surveys the number of asteroid detections is rapidly increasing. For this reason we must use very efficient methods to compute orbits with these data. We have to identify observations taken in different nights as belonging to the same asteroid. If we do not have an efficient algorithm for that, the unidentifiedobservation database can increase without control, and we risk to detect the same objects multiple times without being able to realize it.If a short arc of asteroid observations is not enough to compute an orbit we usually can compute an 'attributable', i.e. a vector whose components are the topocentric angular position and velocity of the asteroid at the mean epoch of the observations. To define an orbit we only need to know the topocentric radial distance and velocity of the observed body at that epoch.Solving the linkage problem means to use the information encoded in two attributables to compute one or more preliminary orbits. Among the different ways to deal with this problem, we can use the first integrals of Kepler's motion to derive polynomial equations for this purpose.We present a recent achievement with this approach: we can derive a polynomial equation of degree 9 in the topocentric radial distance of the asteroid at the mean epoch of one of the two attributables.Note that the classical orbit determination method by Gauss, using three angular positions of the asteroid, employs a polynomial equation of degree 8.However, if N is the number of observations per night of a survey, we have to check O(N^2) pairs of data with the linkage method and O(N^3) triples with Gauss method.We also show the results of the application of this new method to a large database of asteroid detections.

  9. Observation of large-amplitude magnetosonic waves at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Zhou, Meng; Ni, Binbin; Huang, Shiyong; Deng, Xiaohua; Ashour-Abdalla, Maha; Nishimura, Yukitoshi; Yuan, Zhigang; Pang, Ye; Li, Huimin

    2014-06-01

    Various plasma waves have been observed in the vicinity of dipolarization fronts (DFs) and the rarefaction regions behind them. It was suggested that these waves not only play crucial roles in regulating particle kinetics at the DFs but also may potentially affect the large-scale dynamics of the magnetotail. In this paper, we present the observations of large-amplitude electromagnetic waves at DFs that occurred during magnetospheric substorms. The DFs were embedded in either the tailward or earthward flows in the near-Earth magnetotail. The wave frequencies were near the local proton cyclotron frequency. The waves propagated at highly oblique angles with respect to the ambient magnetic field (~80-100). Their corresponding wavelengths were on the order of the local ion gyroradii. The major magnetic field fluctuations were along the background magnetic field, while the electric field fluctuations were predominantly perpendicular to the background magnetic field. The waves were compressional waves as there was an anticorrelation between the plasma density and the wave magnetic field strength. The electric potential associated with the waves reached to more than half of the electron temperature, indicating the waves are nonlinear. We suggest that the waves were magnetosonic or ion Bernstein mode waves driven by the ion ring distribution. The waves were able to provide significant anomalous resistivity at the front, with major contributions from the electric field fluctuations. The effects of these waves on the electron pitch angle scattering and energy diffusion are also discussed.

  10. Observational Signatures of Modified Gravity on Ultra-large Scales

    NASA Astrophysics Data System (ADS)

    Baker, Tessa; Bull, Philip

    2015-10-01

    Extremely large surveys with future experiments like Euclid and the SKA will soon allow us to access perturbation modes close to the Hubble scale, with wavenumbers k∼ {H}. If a modified gravity (MG) theory is responsible for cosmic acceleration, then the Hubble scale is a natural regime for deviations from General Relativity (GR) to become manifest. However, the majority of studies to date have concentrated on the consequences of alternative gravity theories for the subhorizon, quasi-static regime. In this paper, we investigate how modifications to the gravitational field equations affect perturbations around the Hubble scale. We choose functional forms to represent the generic scale-dependent behavior of gravity theories that modify GR at long wavelengths, and study the resulting deviations of ultra-large-scale relativistic observables from their GR behavior. We find that these are small unless modifications to the field equations are drastic. The angular dependence and redshift evolution of the deviations is highly parameterization- and survey-dependent, however, and so they are possibly a rich source of MG phenomenology if they can be measured.

  11. Testing coupled dark energy with large scale structure observation

    SciTech Connect

    Yang, Weiqiang; Xu, Lixin E-mail: lxxu@dlut.edu.cn

    2014-08-01

    The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is Q-bar =3Hξ{sub x}ρ-bar {sub x}. In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and fσ{sub 8}(z) data points from redshift-space distortion. The results show the interaction rate in σ regions: ξ{sub x} = 0.00328{sub -0.00328-0.00328-0.00328}{sup +0.000736+0.00549+0.00816}, which means that the recently cosmic observations favor a small interaction rate which is up to the order of 10{sup -2}, meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the σ region.

  12. Testing coupled dark energy with large scale structure observation

    NASA Astrophysics Data System (ADS)

    Yang, Weiqiang; Xu, Lixin

    2014-08-01

    The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is bar Q=3Hξxbar rhox. In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and fσ8(z) data points from redshift-space distortion. The results show the interaction rate in σ regions: ξx = 0.00328-0.00328-0.00328-0.00328+0.000736+0.00549+0.00816, which means that the recently cosmic observations favor a small interaction rate which is up to the order of 10-2, meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the σ region.

  13. The flux of large meteoroids observed with lunar impact monitoring

    NASA Astrophysics Data System (ADS)

    Cooke, W.; Suggs, R.; Moser, D.; Suggs, R. J.

    2014-07-01

    The flux of large meteoroids is not well determined due to relatively low number statistics, due mainly to the lack of collecting area available to meteor camera systems (10^2-10^5 km^2). Larger collecting areas are needed to provide reasonable statistics for flux calculations. The Moon, with millions of square kilometers of lunar surface, can be used as a detector for observing the population of large meteoroids in the tens of grams to kilogram mass range. This is accomplished by observing the flash of light produced when a meteoroid impacts the lunar surface, converting a portion of its kinetic energy to visible light detectable from the Earth. A routine monitoring program at NASA's Marshall Space Flight Center has recorded over 300 impact flashes since early 2006. The program utilizes multiple 0.35-m (14-inch) Schmidt-Cassegrain telescopes, outfitted with video cameras using the 1⁄2 inch Sony EXview HAD CCDTM chip, to perform simultaneous observations of the earthshine hemisphere of the Moon when the lunar phase is between 0.1 and 0.5. This optical arrangement permits monitoring of approximately 3.8×10^6 km^2 of lunar surface. A selection of 126 flashes recorded in 266.88 hours of photometric skies was analyzed, creating the largest and most homogeneous dataset of lunar impact flashes to date. Standard CCD photometric techniques outlined in [1] were applied to the video to determine the luminous energy, kinetic energy, and mass for each impactor, considering a range of luminous efficiencies. The flux to a limiting energy of 2.5×10^{-6} kT TNT or 1.05×10^7 J is 1.03×10^{-7} km^{-2} hr^{-1} and the flux to a limiting mass of 30 g is 6.14×10^{-10} m^{-2} yr^{-1}. Comparisons made with measurements and models of the meteoroid population indicate that the flux of objects in this size range is slightly lower (but within the error bars) than the power law distribution determined for the near-Earth-object population by [2].

  14. The Flux of Large Meteoroids Observed with Lunar Impact Monitoring

    NASA Technical Reports Server (NTRS)

    Cooke, W. J.; Suggs, R. M.; Moser, D. E.; Suggs, R. J.

    2014-01-01

    The flux of large meteoroids is not well determined due to relatively low number statistics, due mainly to the lack of collecting area available to meteor camera systems (10(2)-10(5) km2). Larger collecting areas are needed to provide reasonable statistics for flux calculations. The Moon, with millions of square kilometers of lunar surface, can be used as a detector for observing the population of large meteoroids in the tens of grams to kilogram mass range. This is accomplished by observing the flash of light produced when a meteoroid impacts the lunar surface, converting a portion of its kinetic energy to visible light detectable from Earth. A routine monitoring program at NASA's Marshall Space Flight Center has recorded over 300 impact flashes since early 2006. The program utilizes multiple 0.35 m (14 inch) Schmidt-Cassegrain telescopes, outfitted with video cameras using the 1/2 inch Sony EXview HAD CCDTM chip, to perform simultaneous observations of the earthshine hemisphere of the Moon when the lunar phase is between 0.1 and 0.5. This optical arrangement permits monitoring of approximately 3.8x10(6) km2 of lunar surface. A selection of 126 flashes recorded in 266.88 hours of photometric skies was analyzed, creating the largest and most homogeneous dataset of lunar impact flashes to date. Standard CCD photometric techniques outlined in [1] were applied to the video to determine the luminous energy, kinetic energy, and mass for each impactor, considering a range of luminous efficiencies. The flux to a limiting energy of 2.5x10(-6) kT TNT or 1.05×10(7) J is 1.03×10(-7) km(-2) hr(-1) and the flux to a limiting mass of 30 g is 6.14×10(-10) m(-2) yr(-1). Comparisons made with measurements and models of the meteoroid population indicate that the flux of objects in this size range is slightly lower (but within the error bars) than the power law distribution determined for the near Earth object population by [2].

  15. Observing Planetary Nebulae with JWST and Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2015-01-01

    Most stars in the Universe that leave the main sequence in a Hubble time will end their lives evolving through the Planetary Nebula (PN) evolutionary phase. The heavy mass loss which occurs during the preceding AGB phase is important across astrophysics, dramatically changing the course of stellar evolution, dominantly contributing to the dust content of the interstellar medium, and influencing its chemical composition. The evolution from the AGB phase to the PN phases remains poorly understood, especially the dramatic transformation that occurs in the morphology of the mass-ejecta as AGB stars and their round circumstellar envelopes evolve into mostly PNe, the majority of which deviate strongly from spherical symmetry. In addition, although the PN [OIII] luminosity function (PNLF) has been used as a standard candle (on par with distance indicators such as Cepheids), we do not understand why it works. It has been argued that the resolution of these issues may be linked to binarity and associated processes such as mass transfer and common envelope evolution.Thus, understanding the formation and evolution of PNe is of wide astrophysical importance. PNe have long been known to emit across a very large span of wavelengths, from the radio to X-rays. Extensive use of space-based observatories at X-ray (Chandra/ XMM-Newton), optical (HST) and far-infrared (Spitzer, Herschel) wavelengths in recent years has produced significant new advances in our knowledge of these objects. Given the expected advent of the James Webb Space Telescope in the near future, and ground-based Extremely Large Telescope(s) somewhat later, this talk will focus on future high-angular-resolution, high-sensitivity observations at near and mid-IR wavelengths with these facilities that can help in addressing the major unsolved problems in the study of PNe.

  16. Land Surface Albedo of Large Urban Agglomerations from Landsat Observations

    NASA Astrophysics Data System (ADS)

    Fuller, D. O.; Roy, S. S.; Cohen, A.

    2006-05-01

    The world's urban population is expected to rise to 5 billion by the year 2030 and urban climates are expected to have a growing influence on surface energy budgets at regional-to-global scales. A key component of surface energy balance is shortwave reflectivity or albedo, which can be measured and modeled with optical satellite imagery such as Landsat. In this study, we processed Landsat ETM+ imagery of world's 20 largest urban areas as of the early 2000s. To derive robust albedo estimates for each urban area, we applied an atmospheric correction and BRDF modeling using the 6s atmospheric radiative transfer model as well as an empirically based narrow-to-broadband conversion involving ETM+ bands 2, 4, and 7. A spatial analysis of the resultant albedo images was performed using various statistical and geostatistical methods. The results reveal moderate variability of land-surface albedo values among the various urban areas with mean values for urban land surfaces ranging between 0.12 for Cairo to 0.23 for Buenos Aires. As expected, in most instances we found that the albedo of these large urban areas was less than what we observed for nearby non-urban land cover types. The absolute differences in albedo between urban areas and adjacent non-urban areas within each ETM+ scene ranged from large (0.21 for Cairo) to very small (0.02 for Shanghai). Our preliminary conclusion is that the albedo difference (or the "urban albedo effect") between urban and adjacent non-urban land surfaces was greater for cities situated in arid environments than "green" cities that are situated in mesic, temperate regions.

  17. Circularity-Measuring System

    NASA Technical Reports Server (NTRS)

    WHIPPO. WALTER B.; Rohrkaste, G. R.; Miller, John E.

    1989-01-01

    Shape gauge and associated computer constitute system measuring deviations of large cylinders from roundness. Shaped and held somewhat like crossbow, measures relative locations of three points on surface of large, round object. By making connected series of measurements around periphery technician using gauge determines deviation of object from perfect circularity. Used to measure straightness, roundness, or complicated shapes of such large geometrical objects as surfaces of aircraft and hulls of ships.

  18. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Atwood, W. B.; Bagagli, R.; Baldini, L.; Bellardi, F.; Bellazzini, R.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bisello, D.; Baughman, B. M. E-mail: massimiliano.razzano@pi.infn.it

    2009-05-10

    The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new {gamma}-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E {>=} 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of {gamma} = 1.51{sup +0.05} {sub -0.04} with an exponential cutoff at E{sub c} = 2.9 {+-} 0.1 GeV. Spectral fits with generalized cutoffs of the form e{sup -(E/E{sub c}){sup b}} require b {<=} 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.

  19. Spitzer Sage Observations of Large Magellanic Cloud Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Hora, J. L.; Cohen, M.; Ellis, R. G.; Meixner, M.; Blum, R. D.; Latter, W. B.; Whitney, B. A.; Meade, M. R.; Babler, B. L.; Indebetouw, R.; Gordon, K.; Engelbracht, C. W.; For, B.-Q.; Block, M.; Misselt, K.; Vijh, U.; Leitherer, C.

    2008-02-01

    We present IRAC and MIPS images and photometry of a sample of previously known planetary nebulae (PNe) from the Surveying the Agents of a Galaxy's Evolution (SAGE) survey of the Large Magellanic Cloud (LMC) performed with the Spitzer Space Telescope. Of the 233 known PNe in the survey field, 185 objects were detected in at least two of the IRAC bands, and 161 detected in the MIPS 24 μm images. Color-color and color-magnitude diagrams are presented using several combinations of IRAC, MIPS, and Two Micron All Sky Survey magnitudes. The location of an individual PN in the color-color diagrams is seen to depend on the relative contributions of the spectral components which include molecular hydrogen, polycyclic aromatic hydrocarbons (PAHs), infrared forbidden line emission from the ionized gas, warm dust continuum, and emission directly from the central star. The sample of LMC PNe is compared to a number of Galactic PNe and found not to significantly differ in their position in color-color space. We also explore the potential value of IR PNe luminosity functions (LFs) in the LMC. IRAC LFs appear to follow the same functional form as the well-established [O III] LFs although there are several PNe with observed IR magnitudes brighter than the cut-offs in these LFs.

  20. Observations Regarding Small Eolian Dunes and Large Ripples on Mars

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.

    2001-01-01

    Eolian bedforms occur at the interface between a planetary surface and its atmosphere; they present a proxy record of the influence of climate, expressed in sediment transport, over that surface. High resolution images (1.5 - 12 m/pixel) from the Mars Global Surveyor (MGS) Mars Orbiter Camera provide glimpses of the most recent events shaping the martian landscape. Thousands of images exhibit small transverse dunes or large eolian ripples that have crest-to-crest spacings of 10 to 60 m, heights of a few to 10 m. Bedforms of the size and patterns seen in the Mars photographs are rarely described among Earth's eolian landforms; in terms of size and morphology, most of these fall between traditional definitions of "ripples" and "dunes". Dunes are composed chiefly of materials transported by saltation, ripples are smaller forms moved along by the impact of saltating grains (traction). The largest reported eolian ripples on Earth (granule ripples, megaripples) are typically smaller than the bedforms observed on Mars; likewise, most dunes are typically larger. The small dunes and large ripples on Mars come in a variety of relative albedos, despite an early MGS impression that they are all of high albedo. Some ripples occur on the surfaces of sand dunes; these are most likely true granule ripples. However, most of these bedforms occur in troughs, pits, craters, and on deflated plains. Despite impressions early in the MGS mission, they do not occur everywhere (e.g., they are rare on the northern plains) but they do occur at a range of elevations from the highest volcanoes to the deepest basins. Where they occur on a hard substrate among larger sand dunes, the big dunes have over-ridden the smaller bedforms, indicating that the smaller features are older and perhaps indurated or very coarse-grained. At other locales, the small bedforms have been mantled by material settled from suspension, in other cases they are being exhumed and may be lithified. Still other examples are peppered with small impact craters, implying considerable age. These bedforms present a complicated record of the geologically-recent past, one that has involved changes in climate, sediment transport capabilities, and sediment sources and sinks over time.

  1. Large breast compressions: Observations and evaluation of simulations

    SciTech Connect

    Tanner, Christine; White, Mark; Guarino, Salvatore; Hall-Craggs, Margaret A.; Douek, Michael; Hawkes, David J.

    2011-02-15

    Purpose: Several methods have been proposed to simulate large breast compressions such as those occurring during x-ray mammography. However, the evaluation of these methods against real data is rare. The aim of this study is to learn more about the deformation behavior of breasts and to assess a simulation method. Methods: Magnetic resonance (MR) images of 11 breasts before and after applying a relatively large in vivo compression in the medial direction were acquired. Nonrigid registration was employed to study the deformation behavior. Optimal material properties for finite element modeling were determined and their prediction performance was assessed. The realism of simulated compressions was evaluated by comparing the breast shapes on simulated and real mammograms. Results: Following image registration, 19 breast compressions from 8 women were studied. An anisotropic deformation behavior, with a reduced elongation in the anterior-posterior direction and an increased stretch in the inferior-superior direction was observed. Using finite element simulations, the performance of isotropic and transverse isotropic material models to predict the displacement of internal landmarks was compared. Isotropic materials reduced the mean displacement error of the landmarks from 23.3 to 4.7 mm, on average, after optimizing material properties with respect to breast surface alignment and image similarity. Statistically significantly smaller errors were achieved with transverse isotropic materials (4.1 mm, P=0.0045). Homogeneous material models performed substantially worse (transverse isotropic: 5.5 mm; isotropic: 6.7 mm). Of the parameters varied, the amount of anisotropy had the greatest influence on the results. Optimal material properties varied less when grouped by patient rather than by compression magnitude (mean: 0.72 vs 1.44). Employing these optimal materials for simulating mammograms from ten MR breast images of a different cohort resulted in more realistic breast shapes than when using established material models. Conclusions: Breasts in the prone position exhibited an anisotropic compression behavior. Transverse isotropic materials with an increased stiffness in the anterior-posterior direction improved the prediction of these deformations and produced more realistic mammogram simulations from MR images.

  2. Circular dichroism in double photoionization

    SciTech Connect

    Berakdar, J.; Klar, H. )

    1992-08-24

    One-photon two-electron ionization of an atom by circularly polarized light yields triplet differential cross sections different for left and right circular polarization. Necessary kinematical conditions for a finite dichroism are worked out. A numerical calculation for helium which employs correlated wave functions shows the angular correlations of the escaping electron pair to be very different for left and right circular polarization such that the effect should be observable in a coincidence experiment.

  3. 17 CFR 230.253 - Offering circular.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... in boldfaced type at least as large as that used generally in the body of such offering circular: THE... COMPLETENESS OF ANY OFFERING CIRCULAR OR OTHER SELLING LITERATURE. THESE SECURITIES ARE OFFERED PURSUANT TO...

  4. 17 CFR 230.253 - Offering circular.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in boldfaced type at least as large as that used generally in the body of such offering circular: THE... COMPLETENESS OF ANY OFFERING CIRCULAR OR OTHER SELLING LITERATURE. THESE SECURITIES ARE OFFERED PURSUANT TO...

  5. 17 CFR 230.253 - Offering circular.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... in boldfaced type at least as large as that used generally in the body of such offering circular: THE... COMPLETENESS OF ANY OFFERING CIRCULAR OR OTHER SELLING LITERATURE. THESE SECURITIES ARE OFFERED PURSUANT TO...

  6. 17 CFR 230.253 - Offering circular.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... in boldfaced type at least as large as that used generally in the body of such offering circular: THE... COMPLETENESS OF ANY OFFERING CIRCULAR OR OTHER SELLING LITERATURE. THESE SECURITIES ARE OFFERED PURSUANT TO...

  7. Cluster observations of hot flow anomalies with large flow deflections

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zong, Q.; Zhang, H.

    2012-12-01

    Case and statistical studies have been performed to investigate hot flow anomalies (HFAs) with large flow deflections using the Cluster-C1 spacecraft data from 2003 to 2009. We have selected 87 events with Vy or Vz in GSE coordinates larger than 200 km\\ s-1. Observations of these HFAs indicate a "Location Dependent Deflection": Vy or Vz deflects to a positive value when the event is located in the positive Y or Z side relative to the sub-solar point, and to a negative value when it is located in the negative Y or Z side relative to the sub-solar point; the amplitude of the deflection increases with the increasing distance in Y or Z direction; the decrease in Vx at the event center is larger when the location is closer to the Sun-Earth line. The "Location Dependent Deflection" might be due to a near-specularly reflection of ions at the Earth's bow shock. The results also suggest that HFAs can be formed at both quasi-parallel and quasi-perpendicular shocks. The HFAs studied in this paper are close to the bow shock with the distance from the event to the bow shock ranging from 0.03 to 3.51 RE, which might help the reflected ions remain as a coherent near-specular reflected beam. In addition, HFAs with both edges at quasi-perpendicular shocks are closer to the bow shock than those with both edges at quasi-parallel shocks. This might help the reflected ions at a quasi-perpendicular shock interact with the incident solar wind immediately after the reflection and increase the possibility of HFA formation. The HFAs with both the leading and trailing edges at quasi-perpendicular shocks show a high gyration velocity and a high fast magneto-sonic Mach number, increasing the gyro-radius and the possibility of pitch angle scattering, which might help the ions escape from the bow shock and move upstream.

  8. Linking very short arcs from large database of asteroid observations

    NASA Astrophysics Data System (ADS)

    Gronchi, Giovanni F.; Baù, Giulio; Marò, Stefano

    2016-01-01

    With the improvements of the observational technology for the new surveys the number of asteroid detections is rapidly increasing. For this reason we must use very efficient methods to compute orbits with these data. We have to identify observations taken in different nights as belonging to the same asteroid. If we do not have an efficient algorithm for that, the unidentified observation database can increase without control, and we risk to detect the same objects multiple times.

  9. Large Scale Surface Radiation Budget from Satellite Observation

    NASA Technical Reports Server (NTRS)

    Pinker, R. T.

    1995-01-01

    During the current reporting period, the focus of our work was on preparing and testing an improved version of our Surface Radiation Budget algorithm for processing the ISCCP D1 data routinely at the SRB Satellite Data Analysis Center (SDAC) at NASA Langley Research Center. The major issues addressed are related to gap filling and to testing whether observations made from ERBE could be used to improve current procedures of converting narrowband observations, as available from ISCCP, into broadband observations at the TOA. The criteria for selecting the optimal version are to be based on results of intercomparison with ground truth.

  10. SEARCH Workshop on Large-Scale Atmosphere/Cryosphere Observations

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The purpose of the workshop held in Seattle during 27-29 November 2001 was to review existing land, sea ice, and atmospheric observations and the prospect for an Arctic System Reanalysis, through white papers, invited speakers, and panels. A major task for SEARCH was to determine how existing observation systems can be best used and enhanced to understand and anticipate the course of the ongoing changes in the Arctic. The primary workshop conclusion is that there is no cohesion among various Arctic disciplines and data types to form a complete observation set of Arctic change; a second workshop conclusion is that present data sets are vastly underutilized in understanding Arctic change; a third conclusion is that a distributed observing system must accommodate a wide range of spatial patterns of variability.

  11. Observations of the supernova in the Large Magellanic Cloud.

    NASA Astrophysics Data System (ADS)

    Vid'machenko, A. P.

    Spectrograms of the Supernova 1987A in the Large Magellanic Cloud obtained at the Tarija Observatory (Bolivia) during March 5 - 23, 1987 in the spectral region of 390 - 640 nm with resolution 0.5 - 5 nm are presented. The estimates of the magnitudes V are also given.

  12. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins.

    PubMed

    Kramer, Marianne C; Liang, Dongming; Tatomer, Deirdre C; Gold, Beth; March, Zachary M; Cherry, Sara; Wilusz, Jeremy E

    2015-10-15

    Thousands of eukaryotic protein-coding genes are noncanonically spliced to produce circular RNAs. Bioinformatics has indicated that long introns generally flank exons that circularize in Drosophila, but the underlying mechanisms by which these circular RNAs are generated are largely unknown. Here, using extensive mutagenesis of expression plasmids and RNAi screening, we reveal that circularization of the Drosophila laccase2 gene is regulated by both intronic repeats and trans-acting splicing factors. Analogous to what has been observed in humans and mice, base-pairing between highly complementary transposable elements facilitates backsplicing. Long flanking repeats (∼ 400 nucleotides [nt]) promote circularization cotranscriptionally, whereas pre-mRNAs containing minimal repeats (<40 nt) generate circular RNAs predominately after 3' end processing. Unlike the previously characterized Muscleblind (Mbl) circular RNA, which requires the Mbl protein for its biogenesis, we found that Laccase2 circular RNA levels are not controlled by Mbl or the Laccase2 gene product but rather by multiple hnRNP (heterogeneous nuclear ribonucleoprotein) and SR (serine-arginine) proteins acting in a combinatorial manner. hnRNP and SR proteins also regulate the expression of other Drosophila circular RNAs, including Plexin A (PlexA), suggesting a common strategy for regulating backsplicing. Furthermore, the laccase2 flanking introns support efficient circularization of diverse exons in Drosophila and human cells, providing a new tool for exploring the functional consequences of circular RNA expression across eukaryotes. PMID:26450910

  13. Very Large Array observations of Uranus at 2. 0 cm

    SciTech Connect

    Berge, G.L.; Muhleman, D.O.; Linfield, R.P.

    1988-07-01

    Radio observations of Uranus obtained at 2.0 cm with the B configuration of the VLA during April 1985 are reported. The calibration and data-reduction procedures are described in detail, and the results are presented in tables, maps, and graphs and compared with IRIS 44-micron observations (Hanel et al., 1986). Features discussed include highest brightness centered on the pole rather than on the subearth point, a decrease in brightness temperature (by up to 9 K) at latitudes between -20 and -50 deg (well correlated with the IRIS data), and disk-center position (corrected for the observed radio asymmetry) in good agreement with that found on the basis of the outer contours of the image. 15 references.

  14. MESSENGER Observations of Large Flux Transfer Events at Mercury

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Lepping, Ronald P.; Wu, Chin-Chun; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Killen, Rosemary M.; Korth, Haje; Krimigis, Stamatios M.; McClintock, William E.; McNutt, Ralph L., Jr.; Sarantos, Menelaos; Schriver, David; Solomon, Sean C.; Travnicek, Pavel; Zurbuchen, Thomas H.

    2010-01-01

    Six flux transfer events (FTEs) were encountered during MESSENGER's first two flybys of Mercury (M1 and M2). For M1 the interplanetary magnetic field (IMF) was predominantly northward and four FTEs with durations of 1 to 6 s were observed in the magnetosheath following southward IMF turnings. The IMF was steadily southward during M2, and an FTE 4 s in duration was observed just inside the dawn magnetopause followed approx. 32 s later by a 7 s FTE in the magnetosheath. Flux rope models were fit to the magnetic field data to determine FTE dimensions and flux content. The largest FTE observed by MESSENGER had a diameter of approx. 1 R(sub M) (where R(sub M) is Mercury s radius), and its open magnetic field increased the fraction of the surface exposed to the solar wind by 10 - 20 percent and contributed up to approx. 30 kV to the cross-magnetospheric electric potential.

  15. MESSENGER Observations of Large Flux Transfer Events at Mercury

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Lepping, Ronald P.; Wu, Chin-Chun; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Killen, Rosemary M.; Korth, Haje; Krimigis, Stamatios M.; McClintock, William E.; McNutt, Ralph L., Jr.; Sarantos, Menelaos; Schriver, David; Solomon, Sean C.; Travnicek, Pavel; Zurbuchen, Thomas H.

    2010-01-01

    Six flux transfer events (FTEs) were encountered during MESSENGER's first two flybys of Mercury (MI and M2). For MI the interplanetary magnetic field (IMF) was predominantly northward and four FTEs with durations of 1 to 6 s were observed in the magnetosheath following southward 1M F turnings. The IMF was steadily southward during M2, and an FTE 4 s in duration was observed just inside the dawn magnetopause followed approx.32 s later by a 7-s FTE in the magnetosheath. Flux rope models were fit to the magnetic field data to detem11ne PTE dimensions and flux content The largest FTE observed by MESSENGER had a diameter of approx. 1 R(sub M) (where R(sub M) is Mercury's radius), and its open magnetic field increased the fraction of the surface exposed to the solar wind by 10 - 20 percent and contributed up to approx.30 kV to the cross-magnetospheric electric potential.

  16. Parallel Large-Scale Computation of an Oldroyd-B Fluid Past a Confined Circular Cylinder in a Rectangular Channel using an Unstructured Finite Volume Method

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet

    2010-11-01

    A new stable unstructured finite volume method is presented for parallel large-scale simulation of viscoelastic fluid flows. The numerical method based on side-centered finite volume method where the velocity vector components are defined at the mid-point of each cell face, while the pressure term and the extra stress tensor are defined at element centroids. The present arrangement of the primitive variables leads to a stable numerical scheme and it does not require any ad-hoc modifications in order to enhance the pressure-velocity-stress coupling. The log-conformation representation has been implemented in order improve the limiting Weissenberg numbers in the proposed finite volume method. The time stepping algorithm used decouples the calculation of the extra stresses from the evaluation of the velocity and pressure fields by solving a generalised Stokes problem. The present numerical method is verified for the three-dimensional flow of an Oldroyd-B fluid past a confined sphere in a cylindrical tube. Then the method is applied to the three-dimensional flow of an Oldroyd-B fluid past a confined circular cylinder in a rectangular channel. The computed results at relatively high Weissenberg numbers are discussed and compared to those obtained for Newtonian fluids.

  17. Observation of a Large Atomic Parity Violation Effect in Ytterbium

    NASA Astrophysics Data System (ADS)

    Tsigutkin, K.; Dounas-Frazer, D.; Family, A.; Stalnaker, J. E.; Yashchuk, V. V.; Budker, D.

    2009-08-01

    Atomic parity violation has been observed in the 6s2S01→5d6sD13 408-nm forbidden transition of ytterbium. The parity-violating amplitude is found to be 2 orders of magnitude larger than in cesium, where the most precise experiments to date have been performed. This is in accordance with theoretical predictions and constitutes the largest atomic parity-violating amplitude yet observed. This also opens the way to future measurements of neutron distributions and anapole moments by comparing parity-violating amplitudes for various isotopes and hyperfine components of the transition.

  18. Experimental Observation of Large Chern Numbers in Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Skirlo, Scott A.; Lu, Ling; Igarashi, Yuichi; Yan, Qinghui; Joannopoulos, John; Soljačić, Marin

    2015-12-01

    Despite great interest in the quantum anomalous Hall phase and its analogs, all experimental studies in electronic and bosonic systems have been limited to a Chern number of one. Here, we perform microwave transmission measurements in the bulk and at the edge of ferrimagnetic photonic crystals. Band gaps with large Chern numbers of 2, 3, and 4 are present in the experimental results, which show excellent agreement with theory. We measure the mode profiles and Fourier transform them to produce dispersion relations of the edge modes, whose number and direction match our Chern number calculations.

  19. Large perpendicular velocity fluctuations observed in the topside ionosphere

    NASA Astrophysics Data System (ADS)

    Forme, F.; Fontaine, D.; Persson, M. A. L.

    1998-03-01

    We present observations by the European incoherent scatter radar (EISCAT) of a sporadic event (less than 20 s) occurring near a substorm onset, characterized by a strong apparent ion temperature increase in the auroral F region and associated with significant anisotropy and distorted incoherent scatter spectra. The simultaneously observed electric field is too weak to account for the temperature increase by frictional heating. Indeed, it is interpreted as a spurious effect of the standard analysis procedure in the presence of short-lived ion drift velocity fluctuations, perpendicular to the background magnetic field, which are unresolved by the radar because of space or timescales smaller than the measurement resolution. A standard analysis of such spectra overestimates the ion temperature and underestimates the electron temperature. Similar observation and interpretation were first reported by Swartz et al. [1988] and Knudsen et al. [1993]. In this paper we develop a modified analysis of incoherent scatter spectra to infer, self-consistently, the real temperatures and the amplitude of velocity fluctuations. This modified analysis can be applied systematically on a routine basis. The first results confirm the earlier works by Swartz et al. [1988] and Knudsen et al. [1993] and show that the geomagnetic orientation of the velocity structure is mainly in the north-south direction and its maximum amplitude reaches up to about 2000 m/s at 350 km altitude. Coordinated satellite and ground-based data tend to argue in favor of a time-varying electric field (possibly a standing Alfvén wave) as the origin of the observed EISCAT spectral distortions.

  20. Cold Rydberg atoms in circular states

    NASA Astrophysics Data System (ADS)

    Anderson, David; Schwarzkopf, Andrew; Raithel, Georg

    2012-06-01

    Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).

  1. Solar wind stream structure at large heliocentric distances Pioneer observations

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.

    1987-01-01

    Time profiles and histograms of plasma data from Pioneers 10 and 11 are examined for the period between 1975 and 1983. During this time, Pioneer 10 traveled between a heliocentric distance of 8.7 and 30.4 AU. The velocity structure of the solar wind at these heliocentric distances is found to have one of two distinct forms: approximately 70 percent of the time the solar wind has a nearly flat velocity profile. Occasionally, this flat velocity profile is accompanied by quasi-periodic variations in density and in thermal speed consistent with the concept that the 'corotating interaction regions' which are produced by the interaction of high- and low-speed streams at intermediate heliocentric distances are replaced by 'pressure regions' in the outer heliosphere. The remaining 30 percent of the time the solar wind is marked by large (50-200 km/s) long-term (30-120 days) shifts in the average solar wind velocity.

  2. Observation of EAS using a large water tank

    NASA Technical Reports Server (NTRS)

    Inoue, K.; Sakuyama, H.; Suzuki, N.; Suzuki, T.

    1985-01-01

    Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984.

  3. Observation of EAS using a large water tank

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Sakuyama, H.; Suzuki, N.; Suzuki, T.

    1985-08-01

    Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984.

  4. Magnetic trapping of circular Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Anderson, David; Schwarzkopf, Andrew; Raithel, Georg

    2013-05-01

    Circular Rydberg atoms exhibit a unique combination of properties: long lifetimes ( n5), large magnetic moments and angular momenta (|m | = l =n - 1), and no first order Stark shift. Here, n , l and m are the principal, orbital and magnetic quantum numbers, respectively. Several of these features have made circular Rydberg atoms attractive for a number of applications including photon-atom interaction and Rydberg interaction experiments. We present here the realization of a magnetic trap for circular Rydberg atoms. The Rydberg-atom trap is characterized using state-selective electric-field ionization, direct spatial imaging of the atom distributions and time-of-flight analysis of the ion signal. At room temperature, we observe 70 percent of the trapped atoms remaining after 6ms. We measure an increase of the center-of-mass trap oscillation frequency by the expected factor of √{ | m | }. Simulations of the state-evolution of circular-state atoms in our magnetic trap, held at 300K radiation temperature, are performed and results are in good agreement with the observed phenomena. This work was supported by the AFOSR (FA9550-10-1-0453).

  5. FERMI LARGE AREA TELESCOPE OBSERVATION OF SUPERNOVA REMNANT S147

    SciTech Connect

    Katsuta, J.; Uchiyama, Y.; Tanaka, T.; Tajima, H.; Bechtol, K.; Funk, S.; Lande, J.; Ballet, J.; Lemoine-Goumard, M.

    2012-06-20

    We present an analysis of gamma-ray data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region around supernova remnant (SNR) S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 Multiplication-Sign 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with the prominent H{alpha} filaments of SNR S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. The reacceleration of the pre-existing cosmic rays and subsequent adiabatic compression in the filaments is sufficient to provide the energy density required of high-energy protons.

  6. Cosmological parameter estimation with large scale structure observations

    SciTech Connect

    Dio, Enea Di; Montanari, Francesco; Durrer, Ruth; Lesgourgues, Julien E-mail: Francesco.Montanari@unige.ch E-mail: Julien.Lesgourgues@cern.ch

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, C{sub ℓ}(z{sub 1},z{sub 2}), calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard P(k) analysis with the new C{sub ℓ}(z{sub 1},z{sub 2}) method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the P(k) analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, C{sub 0}(z{sub 1},z{sub 2})

  7. Circular RNA Is Expressed across the Eukaryotic Tree of Life

    PubMed Central

    Wang, Peter L.; Bao, Yun; Yee, Muh-Ching; Barrett, Steven P.; Hogan, Gregory J.; Olsen, Mari N.; Dinneny, José R.; Brown, Patrick O.; Salzman, Julia

    2014-01-01

    An unexpectedly large fraction of genes in metazoans (human, mouse, zebrafish, worm, fruit fly) express high levels of circularized RNAs containing canonical exons. Here we report that circular RNA isoforms are found in diverse species whose most recent common ancestor existed more than one billion years ago: fungi (Schizosaccharomyces pombe and Saccharomyces cerevisiae), a plant (Arabidopsis thaliana), and protists (Plasmodium falciparum and Dictyostelium discoideum). For all species studied to date, including those in this report, only a small fraction of the theoretically possible circular RNA isoforms from a given gene are actually observed. Unlike metazoans, Arabidopsis, D. discoideum, P. falciparum, S. cerevisiae, and S. pombe have very short introns (∼100 nucleotides or shorter), yet they still produce circular RNAs. A minority of genes in S. pombe and P. falciparum have documented examples of canonical alternative splicing, making it unlikely that all circular RNAs are by-products of alternative splicing or ‘piggyback’ on signals used in alternative RNA processing. In S. pombe, the relative abundance of circular to linear transcript isoforms changed in a gene-specific pattern during nitrogen starvation. Circular RNA may be an ancient, conserved feature of eukaryotic gene expression programs. PMID:24609083

  8. Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA

    SciTech Connect

    Finn, Lee Samuel; Thorne, Kip S.

    2000-12-15

    Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco) -- more particularly, on orbits for which the angular velocity {Omega} is 0.03{approx}<{Omega}/{Omega}{sub isco}{<=}1.0. The computations are based on the Teuksolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to LISA is presented: Signal to noise ratios S/N are computed and graphed as functions of the time-evolving gravitational-wave frequency for the lowest three harmonics of the orbital period, and for various representative values of the hole's mass M and spin a and the inspiraling object's mass {mu}, with the distance to Earth chosen to be r{sub o}=1 Gpc. These S/N's show a very strong dependence on the black-hole spin, as well as on M and {mu}. Graphs are presented showing the range of the {l_brace}M,a,{mu}{r_brace} parameter space, for which S/N>10 at r{sub 0}=1 Gpc during the last year of inspiral. The hole's spin a has a factor of {approx}10 influence on the range of M (at fixed {mu}) for which S/N>10, and the presence or absence of a white-dwarf--binary background has a factor of {approx}3 influence. A comparison with predicted event rates shows strong promise for detecting these waves, but not beyond about 1 Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest lowering of LISA's noise floor. A brief discussion is given of the prospects for extracting information from the observed waves.

  9. Negative circular polarization as a universal property of quantum dots

    SciTech Connect

    Taylor, Matthew W.; Spencer, Peter; Murray, Ray

    2015-03-23

    This paper shows that negative circular polarization, a spin flip of polarized carriers resulting in emission of opposite helicity, can be observed in undoped, n-doped, and p-doped InAs/GaAs quantum dots. These results contradict the usual interpretation of the effect. We show using power dependent and time resolved spectroscopy that the generation of negative circular polarization correlates with excited state emission. Furthermore, a longer spin lifetime of negatively polarized excitons is observed where emission is largely ground state in character.

  10. The circularly symmetric grille spectrometer.

    PubMed

    Tinsley, B A

    1966-07-01

    A grille spectrometer, with grilles formed of alternately transparent and nontransparent concentric circular zones, has been constructed. The quantity of light that can be accepted from an extended source with such an instrument is orders of magnitude greater than that of a slit spectrometer with the same resolution, and greater even than that of a scanning Fabry-Perot spectrometer of the same resolution. For extended sources of brightness insufficient to bring the photon shot noise above detector noise, the grille spectrometer offers an advantage over the slit spectrometer and Fabry-Perot in greater signal to noise. In cases where the photon shot noise is greater than the detector noise, the better signal to noise applied for emission-line sources, and also for continuum sources if a large interference filter premonochromator is used. The spectrometer is being used in airglow observation. PMID:20049035

  11. Circular inferences in schizophrenia.

    PubMed

    Jardri, Renaud; Denève, Sophie

    2013-11-01

    A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia. PMID:24065721

  12. Real time observation of proteolysis with Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy: Watching a protease eat a protein

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Džafić, Enela; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2011-06-01

    Fourier transform infrared (FT-IR)- and UV-circular dichroism (UV-CD) spectroscopy have been used to study real-time proteolytic digestion of β-lactoglobulin (β-LG) and β-casein (β-CN) by trypsin at various substrate/enzyme ratios in D 2O-buffer at 37 °C. Both techniques confirm that protein substrate looses its secondary structure upon conversion to the peptide fragments. This perturbation alters the backbone of the protein chain resulting in conformational changes and degrading of the intact protein. Precisely, the most significant spectral changes which arise from digestion take place in the amide I and amide II regions. The FT-IR spectra for the degraded β-LG show a decrease around 1634 cm -1, suggesting a decrease of β-sheet structure in the course of hydrolysis. Similarly, the intensity around the 1654 cm -1 band decreases for β-CN digested by trypsin, indicating a reduction in the α-helical part. On the other hand, the intensity around ˜1594 cm -1 and ˜1406 cm -1 increases upon enzymatic breakdown of both substrates, suggesting an increase in the antisymmetric and symmetric stretching modes of free carboxylates, respectively, as released digestion products. Observation of further H/D exchange in the course of digestion manifests the structural opening of the buried groups and accessibility to the core of the substrate. On the basis of the UV-CD spectra recorded for β-LG and β-CN digested by trypsin, the unordered structure increases concomitant with a decrease in the remaining structure, thus, revealing breakdown of the intact protein into smaller fragments. This model study in a closed reaction system may serve as a basis for the much more complex digestion processes in an open reaction system such as the stomach.

  13. A circular twin paradox

    NASA Astrophysics Data System (ADS)

    Cranor, Maria B.; Heider, Elizabeth M.; Price, Richard H.

    2000-11-01

    In the special relativistic twin paradox presented here, each twin lives on one ring of a counterrotating pair of infinitesimally separated rings, so that the twins travel on the same circular path but in opposite directions. The observers on the ring of one twin should see the clock of the other twin slowed by time dilation, but at each meeting of the twins symmetry demands that they agree on the amount of time that has passed since their previous meeting. The resolution of the paradox focuses attention on the relation of time dilation to clock synchronization.

  14. An observer for a deployable antenna. [for large space structure flight experiment

    NASA Technical Reports Server (NTRS)

    Waites, H. B.

    1981-01-01

    An observer is derived for use on an Orbiter-Deployable Antenna configuration. The unique feature of this observer design for this flight experiment is that all the plant inputs are not required to be directly accessible for the observer to ferret out the system states. The observer uses state and rate of the state information to reconstruct the plant states. Results are presented which show how effectively this observer design works for this large space structure flight experiment.

  15. Observation of low-energy electrons in the photoelectron energy distribution from strong-field ionization of naphthalene by circularly polarized pulses

    NASA Astrophysics Data System (ADS)

    Dimitrovski, D.; Maurer, J.; Stapelfeldt, H.; Madsen, L. B.

    2015-06-01

    In a joint experimental and theoretical study we reveal the presence of low-energy photoelectrons created by strong circularly polarized laser pulses for both 3D aligned and randomly oriented naphthalene molecules. The analysis within a semiclassical model highlights the essential role of the induced dipole of the molecular cation in the creation of these low-energy electrons. The detailed comparison of experiment and theory points to significant modification of the molecular orbital nodal planes in strong fields.

  16. Synthetic-Aperture Coherent Imaging From A Circular Path

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1995-01-01

    Imaging algorithms based on exact point-target responses. Developed for use in reconstructing image of target from data gathered by radar, sonar, or other transmitting/receiving coherent-signal sensory apparatus following circular observation path around target. Potential applications include: Wide-beam synthetic-aperture radar (SAR) from aboard spacecraft in circular orbit around target planet; SAR from aboard airplane flying circular course at constant elevation around central ground point, toward which spotlight radar beam pointed; Ultrasonic reflection tomography in medical setting, using one transducer moving in circle around patient or else multiple transducers at fixed positions on circle around patient; and Sonar imaging of sea floor to high resolution, without need for large sensory apparatus.

  17. Modeling a decrease in hydraulic losses during turbulent flow in a U-bend channel with a circular cavern with a large opening angle

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Kalinin, E. I.; Tereshkin, A. A.; Usachov, A. E.

    2015-03-01

    The Reynolds equations for incompressible viscous fluid, closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow lines, have been numerically solved using multiblock computational technologies. The obtained solution has been used to calculate the turbulent flow in a U-bend channel containing a circular cavern with a variable opening angle. Predictions based on the results of numerical simulations agree well with the experimental data of Savelsberg and Castro at moderate cavern opening angles. It is established that hydraulic losses in a U-bend channel with completely open cavern are significantly (by ˜25%) decreased as compared to those in a smooth channel at Re = 105.

  18. A LEKID-based CMB instrument design for large-scale observations in Greenland

    NASA Astrophysics Data System (ADS)

    Araujo, D. C.; Ade, P. A. R.; Bond, J. R.; Bradford, K. J.; Chapman, D.; Che, G.; Day, P. K.; Didier, J.; Doyle, S.; Eriksen, H. K.; Flanigan, D.; Groppi, C. E.; Hillbrand, Seth N.; Johnson, B. R.; Jones, G.; Limon, Michele; Miller, A. D.; Mauskopf, P.; McCarrick, H.; Mroczkowski, T.; Reichborn-Kjennerud, B.; Smiley, B.; Sobrin, Joshua; Wehus, I. K.; Zmuidzinas, J.

    2014-08-01

    We present the results of a feasibility study, which examined deployment of a ground-based millimeter-wave polarimeter, tailored for observing the cosmic microwave background (CMB), to Isi Station in Greenland. The instrument for this study is based on lumped-element kinetic inductance detectors (LEKIDs) and an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The telescope is mounted inside the receiver and cooled to < 4 K by a closed-cycle 4He refrigerator to reduce background loading on the detectors. Linearly polarized signals from the sky are modulated with a metal-mesh half-wave plate that is rotated at the aperture stop of the telescope with a hollow-shaft motor based on a superconducting magnetic bearing. The modular detector array design includes at least 2300 LEKIDs, and it can be configured for spectral bands centered on 150 GHz or greater. Our study considered configurations for observing in spectral bands centered on 150, 210 and 267 GHz. The entire polarimeter is mounted on a commercial precision rotary air bearing, which allows fast azimuth scan speeds with negligible vibration and mechanical wear over time. A slip ring provides power to the instrument, enabling circular scans (360 degrees of continuous rotation). This mount, when combined with sky rotation and the latitude of the observation site, produces a hypotrochoid scan pattern, which yields excellent cross-linking and enables 34% of the sky to be observed using a range of constant elevation scans. This scan pattern and sky coverage combined with the beam size (15 arcmin at 150 GHz) makes the instrument sensitive to 5 < ` < 1000 in the angular power spectra.

  19. Large scale evaluation of soil moisture retrievals from passive microwave observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several years passive microwave observations have been used to retrieve surface soil moisture from the Earth’s surface. Several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and WindSat have been used for this purpose using multi-channel observations. Large sc...

  20. Large 0/12 GMT Differences of US Vaisala RS80 Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert (Technical Monitor)

    2002-01-01

    Large differences been observations taken at 0 and 12 GMT have been revealed during routine monitoring of observations at the Data Assimilation Office (DAO) at NASA's Goddard Space Flight Center (GSFC). As a result, an investigation has been conducted to confirm the large differences and isolate its source. The data clearly shows that 0/12 GMT differences are largely artificial especially over the central US and that the differences largely originate in the post processing software at the observing stations. In particular, the release time of the rawinsonde balloon may be misspecified to be the synoptic time which would lead to the miscalculation of the bias correction that accounts for solar radiation effects on the thermistor.

  1. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1993-01-01

    We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X DataSlice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.

  2. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1992-01-01

    We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X Data Slice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.

  3. Virtualization of Command and Control of Large-scale Observing Systems Using SOA (USArray Case Study)

    NASA Astrophysics Data System (ADS)

    Cotofana, C.; Ding, L.; Shin, P.; Tilak, S.; Fountain, T.; Eakins, J.; Vernon, F.

    2006-12-01

    Large-scale observing systems are poised to become the dominant means of study for a variety of natural phenomena. These systems are comprised of hundreds to thousands of instruments that must be queried, managed, and shared in a scalable fashion. Services-oriented architectures (SOAs) are widely recognized as the preferred framework for building scalable and extensible cyberinfrastructure. By applying SOA concepts, we created a framework for organizing observing system resources and virtualizing command and control. We developed a suite of web services, custom workflow applications, and an integrated user interface of monitors and controls for managing instruments in large-scale sensor network observing systems. In particular, by virtualizing command and control, were able to decouple deployment processes from the target computer hosting the sensor network middleware, thus enabling more efficient administration. This poster illustrates our approach and its application to the NSF EarthScope USArray large-scale seismic observing system.

  4. SPITZER, VERY LARGE TELESCOPE, AND VERY LARGE ARRAY OBSERVATIONS OF THE GALACTIC LUMINOUS BLUE VARIABLE CANDIDATE HD 168625

    SciTech Connect

    Umana, G.; Buemi, C. S.; Trigilio, C.; Leto, P.; Hora, J. L.

    2010-08-01

    We present mid-IR and radio observations of the Galactic luminous blue variables (LBVs) candidate HD 168625 and its associated nebula. We obtained mid-IR spectroscopic observations using the Infrared Spectrograph on board the Spitzer Space Telescope, and performed mid-IR and radio imaging observations using VISIR on the Very Large Telescope and the Very Large Array with comparable angular resolution. Our spectroscopic observations detected spectral features attributable to polycyclic aromatic hydrocarbons (PAHs) and therefore indicate the presence of a photodissociation region (PDR) around the ionized nebula. This result increases the number of LBVs and LBV candidates where a PDR has been found, confirming the importance of such a component in the total mass-loss budget of the central object during this elusive phase of massive star evolution. We have analyzed and compared the mid-IR and radio maps, and derive several results concerning the associated nebula. There is evidence for grain distribution variations across the nebula, with a predominant contribution from bigger grains in the northern part of the nebula while PAH and smaller grains are more concentrated in the southern part. A compact radio component located where there is a lack of thermal dust grains corroborates the presence of a shock in the southern nebula, which could arise as a consequence of the interaction of a fast outflow with the slower, expanding dusty nebula. Such a shock would be a viable means for PAH production as well as for changes in the grain size distribution. Finally, from the detection of a central radio component probably associated with the wind from the central massive supergiant, we derive a current mass-loss rate of M-dot =(1.46{+-}0.15)x10{sup -6} M{sub sun} yr{sup -1}.

  5. Study of a prototypical convective boundary layer observed during BLLAST: contributions by large-scale forcings

    NASA Astrophysics Data System (ADS)

    Pietersen, H. P.; Vilà-Guerau de Arellano, J.; Augustin, P.; van de Boer, A.; de Coster, O.; Delbarre, H.; Durand, P.; Fourmentin, M.; Gioli, B.; Hartogensis, O.; Lohou, F.; Lothon, M.; Ouwersloot, H. G.; Pino, D.; Reuder, J.

    2015-04-01

    We study the influence of the large-scale atmospheric contribution to the dynamics of the convective boundary layer (CBL) in a situation observed during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign. We employ two modeling approaches, the mixed-layer theory and large-eddy simulation (LES), with a complete data set of surface and upper-air atmospheric observations, to quantify the contributions of the advection of heat and moisture, and subsidence. We find that by only taking surface and entrainment fluxes into account, the boundary-layer height is overestimated by 70%. Constrained by surface and upper-air observations, we infer the large-scale vertical motions and horizontal advection of heat and moisture. Our findings show that subsidence has a clear diurnal pattern. Supported by the presence of a nearby mountain range, this pattern suggests that not only synoptic scales exert their influence on the boundary layer, but also mesoscale circulations. LES results show a satisfactory correspondence of the vertical structure of turbulent variables with observations. We also find that when large-scale advection and subsidence are included in the simulation, the values for turbulent kinetic energy are lower than without these large-scale forcings. We conclude that the prototypical CBL is a valid representation of the boundary-layer dynamics near regions characterized by complex topography and small-scale surface heterogeneity, provided that surface- and large-scale forcings are representative for the local boundary layer.

  6. Spectra of circularly polarized radiation from astrophysical OH masers

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Watson, William D.

    1990-01-01

    A striking feature of astrophysical masers is the tendency for either one or the other of the circular polarizations to dominate in the radiation from the strong, widely observed masing transitions of OH at 18 cm. Spectral line profiles are calculated for polarized maser radiation due to the combined effects of a velocity gradient and, as is indicated for these transitions, a Zeeman splitting that is at least comparable with the thermal contributions to the breadths of the spectral lines. The resulting spectral features are similar in appearance, including the presence of large net circular polarization and narrow line breadths, to the commonly observed spectra of OH masers in molecular clouds. The calculations presented here are performed as a function of frequency without making the approximations of a large velocity gradient. Rapid cross relaxation, which has been advocated by others for the OH masers, is assumed.

  7. Very Large Array H92α and H53α Radio Recombination Line Observations of M82

    NASA Astrophysics Data System (ADS)

    Rodriguez-Rico, C. A.; Viallefond, F.; Zhao, J.-H.; Goss, W. M.; Anantharamaiah, K. R.

    2004-12-01

    We present high angular resolution (0.6") observations made with the Very Large Array of the radio continuum at 8.3 and 43 GHz, as well as H92α and H53α radio recombination lines from the nearby (~3 Mpc) starburst galaxy M82. In the continuum we identify 58 sources at 8.3 GHz, of which 19 have no counterparts in catalogs published at other frequencies. At 43 GHz we identify 18 sources, unresolved at 0.6" resolution, of which five were unknown previously. The spatial distribution of the H92α line is inhomogeneous; we identify 27 features; about half of them are associated with continuum emission sources. Their sizes are typically in the range 2-10 pc. Although observed with poorer signal-to-noise ratio, the H53α line is detected. The line and continuum emission are modeled using a collection of H II regions at different distances from the nucleus. The observations can be interpreted assuming a single-density component, but equally well with two components if constraints originating from previous high-resolution continuum observations are used. The high-density component has a density of ~4×104 cm-3. However, the bulk of the ionization is in regions with densities that are typically a factor of 10 lower. The gas kinematics, using the H92α line, confirms the presence of steep velocity gradient (26 km s-1 arcsec-1) in the nuclear region, as previously reported, in particular from observations of the [Ne II] line at 12 μm. This gradient has about the same amplitude on both sides of the nucleus. Since this steep gradient is observed not only on the major axis but also at large distances along a band at P.A.~150deg, the interpretation in terms of x2 orbits elongated along the minor axis of the bar, which would be observed at an angle close to the inclination of the main disk, seems inadequate. The observed kinematics cannot be modeled using a simple model that consists of a set of circular orbits observed at different tilt angles. Ad hoc radial motions must be introduced to reproduce the pattern of the velocity field. Different families of orbits are indicated since we detect a signature in the kinematics at the transition between the two plateaus observed in the NIR light distribution. These H92α data also reveal the base of the outflow where the injection toward the halo on the northern side occurs. The outflow has a major effect on the observed kinematics, present even in the disk at distances close to the nucleus. The kinematic pattern suggests a connection between the gas flowing in the plane of M82 toward the center; this behavior most likely is due to the presence of a bar and the outflow out of the plane.

  8. Circular photon drag effect in bulk tellurium

    NASA Astrophysics Data System (ADS)

    Shalygin, V. A.; Moldavskaya, M. D.; Danilov, S. N.; Farbshtein, I. I.; Golub, L. E.

    2016-01-01

    The circular photon drag effect is observed in a bulk semiconductor. The photocurrent caused by a transfer of both translational and angular momenta of light to charge carriers is detected in tellurium in the midinfrared frequency range. Dependencies of the photocurrent on the light polarization and on the incidence angle agree with the symmetry analysis of the circular photon drag effect. Microscopic models of the effect are developed for both intra- and intersubband optical absorption in the valence band of tellurium. The shift contribution to the circular photon drag current is calculated. An observed decrease of the circular photon drag current with the increase of the photon energy is explained by the theory for intersubband optical transitions. Theoretical estimates of the circular photon drag current agree with the experimental data.

  9. Keck Observations of Solar System Objects: Perspectives for Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Conrad, A. R.; Goodrich, R. W.; Campbell, R. D.; Merline, W. J.; Drummond, J. D.; Dumas, C.; Carry, B.

    2009-09-01

    From differential tracking techniques, required for appulse observations of KBOs with Laser Guide Star Adaptive Optics (LGSAO), to developing methods for collecting spectra at the precise moment of a predicted impact, each Solar System observation conducted on a large telescope presents a unique set of challenges. We present operational details and some key science results from our science program, adaptive optics observations of main belt asteroids and near earth objects; as well as the technical and operational details of several Keck Solar System observations conducted by other teams: the impact of Shoemaker-Levy 9 on Jupiter, volcanoes on Io, the Deep Impact mission to Comet 9P/Tempel 1, and recent observations of Pluto’s moons Nix and Hydra. For each of these observations, we draw from our Keck experience to predict what challenges may lie ahead when similar observations are conducted on next generation telescopes.

  10. Time-resolved demagnetization of Co2MnSi observed using x-ray magnetic circular dichroism and an ultrafast streak camera.

    PubMed

    Opachich, Y P; Comin, A; Bartelt, A F; Young, A T; Scholl, A; Feng, J; Schmalhorst, J; Shin, H J; Engelhorn, K; Risbud, S H; Reiss, G; Padmore, H A

    2010-04-21

    The demagnetization dynamics of the Heusler alloy Co(2)MnSi was studied using picosecond time-resolved x-ray magnetic circular dichroism. The sample was excited using femtosecond laser pulses. In contrast to the sub-picosecond demagnetization of the metal ferromagnet Ni, substantially slower demagnetization with a time constant of 3.5 ± 0.5 ps was measured. This could be explained by a spin-dependent band gap inhibiting the spin-flip scattering of hot electrons in Co(2)MnSi, which is predicted to be half-metallic. A universal demagnetization time constant was measured across a range of pump power levels. PMID:21389561

  11. Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap

    SciTech Connect

    Zamudio-Bayer, V.; Hirsch, K.; Langenberg, A.; Kossick, M.; Ławicki, A.; Lau, J. T.; Terasaki, A.; Issendorff, B. von

    2015-06-21

    The electronic structure and magnetic moments of free Mn{sub 2}{sup +} and Mn{sub 3}{sup +} are characterized by 2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results directly show that localized magnetic moments of 5 μ{sub B} are created by 3d{sup 5}({sup 6}S) states at each ionic core, which are coupled ferromagnetically to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly occupied 4s derived antibonding molecular orbital with an unpaired spin. This leads to total magnetic moments of 11 μ{sub B} for Mn{sub 2}{sup +} and 16 μ{sub B} for Mn{sub 3}{sup +}, with no contribution of orbital angular momentum.

  12. Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap.

    PubMed

    Zamudio-Bayer, V; Hirsch, K; Langenberg, A; Kossick, M; Ławicki, A; Terasaki, A; von Issendorff, B; Lau, J T

    2015-06-21

    The electronic structure and magnetic moments of free Mn2 (+) and Mn3 (+) are characterized by 2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results directly show that localized magnetic moments of 5 μB are created by 3d(5)((6)S) states at each ionic core, which are coupled ferromagnetically to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly occupied 4s derived antibonding molecular orbital with an unpaired spin. This leads to total magnetic moments of 11 μB for Mn2 (+) and 16 μB for Mn3 (+), with no contribution of orbital angular momentum. PMID:26093553

  13. Study of a prototypical convective boundary layer observed during BLLAST: contributions by large-scale forcings

    NASA Astrophysics Data System (ADS)

    Pietersen, H.; Vilà-Guerau de Arellano, J.; Augustin, P.; de Coster, O.; Delbarre, H.; Durand, P.; Fourmentin, M.; Gioli, B.; Hartogensis, O.; Lothon, M.; Lohou, F.; Pino, D.; Ouwersloot, H. G.; Reuder, J.; van de Boer, A.

    2014-07-01

    We study the disturbances of CBL dynamics due to large-scale atmospheric contributions for a representative day observed during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) campaign. We first reproduce the observed boundary-layer dynamics by combining the Dutch Atmospheric Large-Eddy Simulation (DALES) model with a mixed-layer theory based model. We find that by only taking surface and entrainment fluxes into account, the boundary-layer height is overestimated by 70%. If we constrain our numerical experiments with the BLLAST comprehensive data set, we are able to quantify the contributions of advection of heat and moisture, and subsidence. We find that subsidence has a clear diurnal pattern. Supported by the presence of a nearby mountain range, this pattern suggests that not only synoptic scales exert their influence on the boundary layer, but also mesoscale circulations. Finally, we study whether the vertical and temporal evolution of turbulent variables are influenced by these large-scale forcings. Our model results show good correspondence of the vertical structure of turbulent variables with observations. Our findings further indicate that when large-scale advection and subsidence are applied, the values for turbulent kinetic are lower than without these large-scale forcings. We conclude that the prototypical CBL can still be used as a valid representation of the boundary-layer dynamics near regions characterized by complex topography and small-scale surface heterogeneity, provided that surface- and large-scale forcings are well characterized.

  14. ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO STEREO OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION

    SciTech Connect

    Moestl, C.; Rollett, T.; Temmer, M.; Veronig, A. M.; Biernat, H. K.; Lugaz, N.; Farrugia, C. J.; Galvin, A. B.; Davies, J. A.; Harrison, R. A.; Crothers, S.; Luhmann, J. G.; Zhang, T. L.; Baumjohann, W.

    2011-11-01

    One of the goals of the NASA Solar TErestrial RElations Observatory (STEREO) mission is to study the feasibility of forecasting the direction, arrival time, and internal structure of solar coronal mass ejections (CMEs) from a vantage point outside the Sun-Earth line. Through a case study, we discuss the arrival time calculation of interplanetary CMEs (ICMEs) in the ecliptic plane using data from STEREO/SECCHI at large elongations from the Sun in combination with different geometric assumptions about the ICME front shape [fixed-{Phi} (FP): a point and harmonic mean (HM): a circle]. These forecasting techniques use single-spacecraft imaging data and are based on the assumption of constant velocity and direction. We show that for the slow (350 km s{sup -1}) ICME on 2009 February 13-18, observed at quadrature by the two STEREO spacecraft, the results for the arrival time given by the HM approximation are more accurate by 12 hr than those for FP in comparison to in situ observations of solar wind plasma and magnetic field parameters by STEREO/IMPACT/PLASTIC, and by 6 hr for the arrival time at Venus Express (MAG). We propose that the improvement is directly related to the ICME front shape being more accurately described by HM for an ICME with a low inclination of its symmetry axis to the ecliptic. In this case, the ICME has to be tracked to >30{sup 0} elongation to obtain arrival time errors < {+-} 5 hr. A newly derived formula for calculating arrival times with the HM method is also useful for a triangulation technique assuming the same geometry.

  15. Wideband very large array observations of A2256. I. Continuum, rotation measure, and spectral imaging

    SciTech Connect

    Owen, Frazer N.; Rau, Urvashi; Bhatnagar, Sanjay; Kogan, Leonid; Rudnick, Lawrence; Jean Eilek

    2014-10-10

    We report new observations of A2256 with the Karl G. Jansky Very Large Array (VLA) at frequencies between 1 and 8 GHz. These observations take advantage of the 2:1 bandwidths available during a single observation to study the spectral index, polarization, and rotation measure as well as using the associated higher sensitivity per unit time to image total intensity features down to ∼0.''5 resolution. We find that the Large Relic, which dominates the cluster, is made up of a complex of filaments that show correlated distributions in intensity, spectral index, and fractional polarization. The rotation measure varies across the face of the Large Relic but is not well correlated with the other properties of the source. The shape of individual filaments suggests that the Large Relic is at least 25 kpc thick. We detect a low surface brightness arc connecting the Large Relic to the Halo and other radio structures, suggesting a physical connection between these features. The center of the F-complex is dominated by a very steep-spectrum, polarized, ring-like structure, F2, without an obvious optical identification, but the entire F-complex does have interesting morphological similarities to the radio structure of NGC 1265. Source C, the Long Tail, is unresolved in width near the galaxy core and is ≲ 100 pc in diameter there. This morphology suggests either that C is a one-sided jet or that the bending of the tails takes place very near the core, consistent with the parent galaxy having undergone extreme stripping. Overall it seems that many of the unusual phenomena can be understood in the context of A2256 being near the pericenter of a slightly off-axis merger between a cluster and a smaller group. Given the lack of evidence for a strong shock associated with the Large Relic, other models should be considered, such as reconnection between two large-scale magnetic domains.

  16. The x ray properties of a large, uniform QSO sample: Einstein observations of the LBQS

    NASA Technical Reports Server (NTRS)

    Margon, B.; Anderson, S. F.; Xu, X.; Green, P. J.; Foltz, C. B.

    1992-01-01

    Although there are large numbers of Quasi Stellar Objects (QSO's) now observed in X rays, extensive X-ray observations of uniformly selected, 'complete' QSO samples are more rare. The Large Bright QSO Survey (LBQS) consists of about 1000 objects with well understood properties, most brighter than B = 18.8 and thus amenable to X-ray detections in relatively brief exposures. The sample is thought to be highly complete in the range 0.2 less than z less than 3.3, a significantly broader interval than many other surveys. The Einstein IPC observed 150 of these objects, mostly serendipitously, during its lifetime. We report the results of an analysis of these IPC data, considering not only the 20 percent of the objects we find to have positive X-ray detections, but also the ensemble X-ray properties derived by 'image stacking'.

  17. Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.

    2010-01-01

    We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  18. Elastic spin observables and proton wave function normalization at large t

    SciTech Connect

    Ramsey, G.P. |

    1993-11-29

    We summarize the role of spin observables in testing the foundations of exclusive QCD at large t. Polarized elastic scattering experiments can shed light on fundamental properties of protons, such as helicity conservation, normalization of the wave function and structure. Specific QCD motivated predictions for the spin observables are presented, which can be tested at polarized proton beam facilities. In this paper, two kinematic regions are considered: 90{degrees} c.m. at large {vert_bar} t {vert_bar} and the intermediate hard scattering regime: m{sub p}{sup 2} {much_lt}{vert_bar} t {vert_bar}{much_lt} s. Theoretical models, which predict the spin observables in these regions, are reviewed. These are compared with present elastic pp data and a program is suggested for future elastic polarized pp scattering experiments, which can be used to further our knowledge of proton structure.

  19. Taming of the Slew: Optimization of the Large Scale X-Ray Surveys with Observing Strategy

    NASA Technical Reports Server (NTRS)

    Ptak, Andrew

    2010-01-01

    We will discuss simulations intended to address the relative efficiency of observing large areas with a slew observing strategy as opposed to pointing at fields individually. We will emphasize observing with the Wide Field X-ray Telescope (WFXT) but will also discuss optimization of observing strategy with the IXO Wide-Field Imager (WFI) and eRosita. The slew survey simulation is being implemented by translating the point direction along an arbitrary direction which addresses the impact of smoothing the telescope response during a given slew. However the simulation software is being designed to also allow the visibility of the sky to also be incorporated, in which case long-term observing plans could be developed to optimize the total sky coverage at a given depth and spatial resolution.

  20. Simultaneous Solar Maximum Mission and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Lang, K. R.

    1985-01-01

    Simultaneous observations of solar active regions with the Solar Maximum Mission (SMM) Satellite and the Very Large Array (VLA) have been obtained and analyzed. Combined results enhance the scientific return for beyond that expeted from using either SMM or VLA alone. A total of two weeks of simultaneous SMM/VLA data were obtained. The multiple wavelength VLA observations were used to determine the temperature and magnetic structure at different heights within coronal loops. These data are compared with simultaneous SMM observations. Several papers on the subject are in progress. They include VLA observations of compact, transient sources in the transition region; simultaneous SMM/VLA observations of the coronal loops in one active region and the evolution of another one; and sampling of the coronal plasma using thermal cyclotron lines (magnetic field - VLA) and soft X ray spectral lines (electron density and electron temperaure-SMM).

  1. 2. Northwest circular bastion, seen from edge of southwest circular ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Northwest circular bastion, seen from edge of southwest circular bastion wall. Metal roof beams extend up to form peak. World War II gun installation at right. - Fort Hamilton, Northwest Circular Bastion, Rose Island, Newport, Newport County, RI

  2. Direct observation of ferromagnetism in grain boundary phase of Nd-Fe-B sintered magnet using soft x-ray magnetic circular dichroism

    SciTech Connect

    Nakamura, T.; Yasui, A.; Kotani, Y.; Iwai, H.; Akiya, T.; Ohkubo, T.; Hono, K.; Hirosawa, S.; Gohda, Y.

    2014-11-17

    We have investigated the magnetism of the grain boundary (GB) phase in a Nd{sub 14.0}Fe{sub 79.7}Cu{sub 0.1}B{sub 6.2} sintered magnet using soft x-ray magnetic circular dichroism (XMCD) at the Fe L{sub 2,3}-edges. Soft XMCD spectra were measured from the fractured surface that was confirmed to be covered with a thin GB phase by Auger electron spectroscopy. The magnetic moment of Fe in the GB phase was estimated to be m{sub GB}=1.4 μ{sub B} at 30 °C using the sum rule analysis for XMCD spectra, which is 60% of that of Fe in the Nd{sub 2}Fe{sub 14}B compound. The temperature dependence of m{sub GB} evaluated with reference to Fe in the Nd{sub 2}Fe{sub 14}B phase indicated that the Curie temperature of the GB phase is more than 50 °C lower compared to that of Nd{sub 2}Fe{sub 14}B.

  3. Observations of large scale steady magnetic fields in the dayside Venus ionosphere

    SciTech Connect

    Luhmann, J.G.; Elphic, R.C.; Russell, C.T.; Mihalov, J.D.; Wolfe, J.H.

    1980-11-01

    Although the dayside ionosphere of Venus is often field-free except for fine scale features, large scale, steady iosospheric magnetic fields with magnitudes sometimes exceeding 100 gammas are occasionally observed by the Pioneer Venus Orbiter magnetometer. These fields are mainly horizontal and can assume any angle in the horizontal plane. The orientation of the field may change along the spacecraft trajectory. The field magnitude in the upper ionosphere usually shows a distinct minimum near approx.200 km altitude, but the altitude profile is otherwise arbitrary. With few exceptions, the observations of these large scale fields occur when periapsis is at solar zenith angles < 50/sup 0/. The occurrences of large scale fields is often coincident with the observation of high solar wind dynamic pressures by the Pioneer Venus Orbiter plasma analyzer closely following the ionosphere encounter. However, the detection of this phenomenon even during some orbits for which the dynamic pressure is not extraordinarly high suggests that other factors, such as hysteresis effects, must also play a role in determining the occurrence frequency of large scale magnetic fields in the dayside Venus ionosphere.

  4. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; Jiang, Jonathan H.

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  5. Observation of large magnetocaloric effect in HoRu{sub 2}Si{sub 2}

    SciTech Connect

    Paramanik, Tapas Das, Kalipada; Das, I.

    2014-02-28

    Detailed magnetic, magnetotransport, and magnetocaloric measurements on HoRu{sub 2}Si{sub 2} have been performed. In this Letter, we report presence of spin reorientation transition below paramagnetic to antiferromagnetic transition temperature (T{sub N} = 19 K). Large magnetic entropy change 9.1 J/kg K and large negative magnetoresistance ∼21% in a magnetic field of 5 T has been observed around T{sub N}, which is associated with field induced spin-flip metamagnetic transition.

  6. Observation of coherent pi0 electroproduction on deuterons at large momentum transfer

    SciTech Connect

    Tomasi, Egle; Bimbot, Louis; Danagoulian, Samuel; Gustafsson, Kenneth; Mack, David; Mkrtchyan, Hamlet; Rekalo, M.P.

    2003-03-01

    The first experimental results for coherent $\\pi^0$-electroproduction on the deuteron, $e+d\\to e+d +\\pi^0$, at large momentum transfer, are reported. The experiment was performed at Jefferson Laboratory at an incident electron energy of 4.05 GeV. A large pion production yield has been observed in a kinematical region for 1.1$

  7. Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope

    NASA Astrophysics Data System (ADS)

    Yamashita, Masatsugu; Otani, Chiko; Kawase, Kodo; Matsumoto, Toru; Nikawa, Kiyoshi; Kim, Sunmi; Murakami, Hironaru; Tonouchi, Masayoshi

    2009-05-01

    We have developed a laser terahertz emission microscope utilizing excitation laser pulses at 1.06 μm wavelength for the inspection and localization of electrical failures in large-scale integrated circuits with multilayered interconnection structures. The system enables to measure terahertz emission images from the backside of a large-scale integrated circuits chip with a multilayered interconnection structure that prevents the observation from the front side. By comparing the terahertz emission images, we successfully distinguish a normal circuit from damaged ones with different positions of the interconnection defects without any electrical probing.

  8. Explorer 45 wave observations during the large magnetic storm of August 4-5, 1972

    NASA Technical Reports Server (NTRS)

    Taylor, W. W. L.; Anderson, R. G.

    1977-01-01

    The magnetospheric compression associated with the very large magnetic storm of August 4-5, 1972, provided an opportunity for Explorer 45 to observe plasma waves in the magnetosphere and the magnetosheath during extremely disturbed conditions. Electrostatic noise bursts were observed near the plasmapause in electric-field channels from 35 Hz to 5.62 kHz. In the outer magnetosphere, electric-field noise bands apparently harmonically related to the electron gyrofrequency with components as low as 3 kHz and as high as 50 kHz were observed. The electric field of the fundamental was perpendicular to the magnetic-field vector. A mechanism including the electron cyclotron instability may generate the noise band. Hiss of 100-1000 Hz was observed in the outer magnetosphere. The electromagnetic hiss was generally weak and was observed in the magnetic wide-band data only when it was strong. In the magnetosheath broad band, incoherent noise (hiss) was observed from 1 Hz to 100 kHz. This magnetosheath hiss was the strongest phenomenon observed by the plasma-wave detectors during the lifetime of Explorer 45. The highest intensities of magnetosheath hiss occurred at the magnetopause. Its broad-band nature suggests that magnetosheath hiss was generated locally. Broad-band noise bursts and short bursts of chorus were also observed in the magnetosheath.

  9. Comparing GOSAT observations of localized CO2 enhancements by large emitters with inventory-based estimates

    NASA Astrophysics Data System (ADS)

    Janardanan, Rajesh; Maksyutov, Shamil; Oda, Tomohiro; Saito, Makoto; Kaiser, Johannes W.; Ganshin, Alexander; Stohl, Andreas; Matsunaga, Tsuneo; Yoshida, Yukio; Yokota, Tatsuya

    2016-04-01

    We employed an atmospheric transport model to attribute column-averaged CO2 mixing ratios (XCO2) observed by Greenhouse gases Observing SATellite (GOSAT) to emissions due to large sources such as megacities and power plants. XCO2 enhancements estimated from observations were compared to model simulations implemented at the spatial resolution of the satellite observation footprint (0.1° × 0.1°). We found that the simulated XCO2 enhancements agree with the observed over several continental regions across the globe, for example, for North America with an observation to simulation ratio of 1.05 ± 0.38 (p < 0.1), but with a larger ratio over East Asia (1.22 ± 0.32; p < 0.05). The obtained observation-model discrepancy (22%) for East Asia is comparable to the uncertainties in Chinese emission inventories (~15%) suggested by recent reports. Our results suggest that by increasing the number of observations around emission sources, satellite instruments like GOSAT can provide a tool for detecting biases in reported emission inventories.

  10. Characteristics of Electron Distributions Observed During Large Amplitude Whistler Wave Events in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn B., III

    2010-01-01

    We present a statistical study of the characteristics of electron distributions associated with large amplitude whistler waves inside the terrestrial magnetosphere using waveform capture data as an addition of the study by Kellogg et al., [2010b]. We identified three types of electron distributions observed simultaneously with the whistler waves including beam-like, beam/flattop, and anisotropic distributions. The whistlers exhibited different characteristics dependent upon the observed electron distributions. The majority of the waveforms observed in our study have f/fce < or = 0.5 and are observed primarily in the radiation belts outside the plasmapause simultaneously with anisotropic electron distributions. We also present an example waveform capture of the largest magnetic field amplitude (> or = 8 nT pk-pk) whistler wave measured in the radiation belts. The majority of the largest amplitude whistlers occur during magnetically active periods (AE > 200 nT).

  11. Orbital Circularization of a Planet Accreting Disk Gas: The Formation of Distant Jupiters in Circular Orbits Based on a Core Accretion Model

    NASA Astrophysics Data System (ADS)

    Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru

    2014-12-01

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ~ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at <~ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ~10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  12. Orbital circularization of a planet accreting disk gas: the formation of distant jupiters in circular orbits based on a core accretion model

    SciTech Connect

    Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru E-mail: higuchia@geo.titech.ac.jp

    2014-12-10

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  13. ISIS observations of auroral particles and large-scale Birkeland currents

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.

    1981-01-01

    Simultaneous electron and positive ion observations made with single-component magnetic perturbations on the ISIS-2 satellite are used to compare and contrast the relationships between primary and secondary auroral particle distributions at 5 eV-15 keV, and the large-scale Birkeland currents, in the pre- and post-midnight local time sectors. No unique relation is found between the regions of the Birkeland current system and regions of auroral particle distribution, though repeatable systematics in the region of upward-directed current are observed, and little evidence exists in either local time sector for the direct detection of the downward current-associated current carriers.

  14. Ultraviolet interstellar extinction in the large Magellanic Cloud using observations with the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Koornneef, J.; Code, A. D.

    1981-01-01

    Ten early-type supergiants in the Large Magellanic Cloud (LMC) have been observed with the International Ultraviolet Explorer (IUE). The spectra (1150-3200 A) are shown, and their photometric properties are discussed. It is confirmed that the LMC interstellar extinction law for these stars deviates significantly from the average galactic law in the sense that the 2200 A feature is deficient in strength and that, in the far-ultraviolet (wavelength less than 2000 A), the observed LMC extinction law is significantly above the galactic curve.

  15. Exotic high-isospin baryons in the Skyrme model: Experimental observable or large- N artifact

    SciTech Connect

    Cohen, T.D.; Griegel, D.K. )

    1991-05-01

    The Skyrme model and other models based on hedgehog intrinsic states predict a band of exotic baryon resonances with {ital I}={ital J}=5/2 and higher. We discuss whether these states are artifacts of the implicit large-{ital N} physics of the Skyrme model, and estimate the production cross section and width of the lowest lying of these resonances (with {ital I}={ital J}=5/2), which we denote the {Gamma} baryon. Although the cross section is sufficiently large to be experimentally observed, the resonance, to leading order in 1/{ital N}, is much too wide to separate from the background. We discuss the breakdown of the 1/{ital N} expansion for these states, and suggest that the width is very sensitive to sub-leading-order 1/{ital N} effects, which could decrease the width sufficiently to make the {Gamma} baryon observable.

  16. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    SciTech Connect

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.

  17. Observation of large group index enhancement in Doppler-broadened rubidium vapor.

    PubMed

    Wang, Bo-Xun; Liu, Chih-Yuan; Han, D J

    2015-07-27

    We report experimental observation of large group index across the Lamb dips of ground hyperfine states in Doppler-broadened 87Rb vapor. By sweeping the laser frequency through each hyperfine transition we measure the saturated absorption and optical phase shift using a phase-locked Mach-Zehnder interferometer. Our measurements provide a direct demonstration of the theoretical prediction by Agarwal et al. [G. S. Agarwal and T. N. Dey, Phys. Rev. A 68, 063816, (2003)] for the first time. An enhancement factor as large as 1005 in group index was observed for Rb vapor at temperature of 85 °C. The experimental data are in good agreement with the theory. PMID:26367544

  18. Very Large Array and Ratan 600 Observations in Support of the Coronas I Mission

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1997-01-01

    The world's two largest radio telescopes, the VLA and RATAN 600, were used to observe the Sun in support of the Terek Soft X-ray telescope aboard CORONA-1 spacecraft, thereby enhancing the scientific return of all three instruments beyond that expected from using each one alone. The large collecting areas of these radio telescopes were uniquely suited for investigating quiescent coronal structures, and they each provided unique perspectives of high spatial resolution (VLA) and high frequency resolution with polarization (RATAN 600).

  19. Direct observation of magnetic depth profiles of thin Fe films on Cu(100) and Ni/Cu(100) with the depth-resolved x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Amemiya, K.; Kitagawa, S.; Matsumura, D.; Abe, H.; Ohta, T.; Yokoyama, T.

    2004-02-01

    A depth-resolved technique in the x-ray magnetic circular dichroism (XMCD) has been developed and applied to Fe/Cu(100) and Fe/Ni/Cu(100) in order to observe the magnetic depth profile directly. It was confirmed that the surface two layers of the 7 ML Fe/Cu(100) are ferromagnetically coupled, while the inner layers are in the spin density wave (SDW) state at 130 K. The technique enables one to extract the XMCD spectra from the surface ferromagnetic (FM) and inner SDW regions separately, indicating that the FM/SDW interface has an antiparallel magnetic coupling, and that the SDW region has the bulk-like feature. For Fe/Ni/Cu(100), we have observed magnetically live surface layers and some thickness dependent magnetic coupling between the Fe surface and Ni film.

  20. Radiometer requirements for Earth-observation systems using large space antennas

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Harrington, R. F.

    1983-01-01

    Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100.

  1. Survey of the ionospheric disturbances related with large seismic events in multi-satellite ionospheric observations

    NASA Astrophysics Data System (ADS)

    Ryu, K.; Chae, J.; Lee, E.; Kil, H.

    2013-12-01

    We survey the ionospheric disturbances in the plasma and electro-magnetic wave measurements during the simultaneous observation period of DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions), CHAMP (CHAllenging Minisatellite Payload) and DMSP(Defense Meteorological Satellite Program) missions. The multi-satellite observation around three large earthquakes that occurred between 2004 and 2005 were investigated. The observational evidences of the earth-quake precursory phenomena and the recent progress of physical modeling of the ionospheric disturbances caused by the coupling of the stressed rock, Earth surface charges, atmosphere, and ionosphere system are reviewed. Then, we focus on identifying the precursory disturbances from the well-studied plasma disturbances in the ionosphere, which are known to originate from various physical mechanism other than the seismic activities. Electron density/temperature, ion density/temperature, and electro-magnetic field/wave data measured by various instruments equipped in the satellites were analyzed in finding specific examples of anomaly caused by large seismic activities. Finally, the possibility of forecasting or predicting large earthquakes using the plasma measurements of LEO (low earth orbit) satellites will be discussed.

  2. CPDB: a database of circular permutation in proteins.

    PubMed

    Lo, Wei-Cheng; Lee, Chi-Ching; Lee, Che-Yu; Lyu, Ping-Chiang

    2009-01-01

    Circular permutation (CP) in a protein can be considered as if its sequence were circularized followed by a creation of termini at a new location. Since the first observation of CP in 1979, a substantial number of studies have concluded that circular permutants (CPs) usually retain native structures and functions, sometimes with increased stability or functional diversity. Although this interesting property has made CP useful in many protein engineering and folding researches, large-scale collections of CP-related information were not available until this study. Here we describe CPDB, the first CP DataBase. The organizational principle of CPDB is a hierarchical categorization in which pairs of circular permutants are grouped into CP clusters, which are further grouped into folds and in turn classes. Additions to CPDB include a useful set of tools and resources for the identification, characterization, comparison and visualization of CP. Besides, several viable CP site prediction methods are implemented and assessed in CPDB. This database can be useful in protein folding and evolution studies, the discovery of novel protein structural and functional relationships, and facilitating the production of new CPs with unique biotechnical or industrial interests. The CPDB database can be accessed at http://sarst.life.nthu.edu.tw/cpdb. PMID:18842637

  3. Considerations for observational research using large data sets in radiation oncology.

    PubMed

    Jagsi, Reshma; Bekelman, Justin E; Chen, Aileen; Chen, Ronald C; Hoffman, Karen; Shih, Ya-Chen Tina; Smith, Benjamin D; Yu, James B

    2014-09-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold substantial promise for advancing our understanding of many unanswered questions of importance to the field of radiation oncology. PMID:25195986

  4. Considerations for Observational Research Using Large Data Sets in Radiation Oncology

    SciTech Connect

    Jagsi, Reshma; Bekelman, Justin E.; Chen, Aileen; Chen, Ronald C.; Hoffman, Karen; Tina Shih, Ya-Chen; Smith, Benjamin D.; Yu, James B.

    2014-09-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold substantial promise for advancing our understanding of many unanswered questions of importance to the field of radiation oncology.

  5. Can Large Time Delays Observed in Light Curves of Coronal Loops Be Explained in Impulsive Heating?

    NASA Astrophysics Data System (ADS)

    Lionello, Roberto; Alexander, Caroline E.; Winebarger, Amy R.; Linker, Jon A.; Mikić, Zoran

    2016-02-01

    The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delay is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored.

  6. Very Large Array and Jansky Very Large Array observations of the compact radio sources in M8

    SciTech Connect

    Masqué, Josep M.; Rodríguez, Luis F.; Dzib, Sergio

    2014-12-10

    We analyze high-resolution Very Large Array continuum observations of the M8 region carried out at several epochs that span a period of 30 yr. Our maps reveal two compact sources. One is associated with Her 36 SE, a possible companion of the O7 luminous massive star Her 36, and the other is associated with G5.97–1.17, whose proplyd nature was previously established. Using the analyzed data, we do not find significant time variability in any of these sources. The derived spectral index of ≥0.1 for Her 36 SE, the marginal offset of the radio emission with the previous infrared detection, and the associated X-ray emission previously reported suggest the presence of an unresolved interaction region between the strong winds of Her 36 and Her 36 SE. This region would contribute non-thermal contamination to the global wind emission of Her 36, flattening its spectral index. On the other hand, the emission of G5.97–1.17 can also be explained by a mixture of thermal and non-thermal emission components, with different relative contributions of both emission mechanisms along the proplyd. We argue that the shock created by the photo-evaporation flow of the proplyd with the collimated stellar wind of Her 36 accelerates charged particles in G5.97–1.17, producing considerable synchrotron emission. On the contrary, an electron density enhancement at the southwest of G5.97–1.17 makes the thermal emission dominant over this region.

  7. Dione - circular impact craters

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Circular impact craters up to about 100 kilometers (60 miles) in diameter are seen in this view of Saturn's icy moon Dione. The image was taken by Voyager 1 from a range of 790,000 kilometers (500,000 miles) at 2:20 a.m. PST on November 12. Bright, wispy markings form complex arcuate patterns on the surface. These markings are slightly brighter than the brightest features seen by Voyager on Jupiter's moons, suggesting that they are surface frost deposits. The patterns of the bright bands hint at an origin due to internal geologic activity, but the resolution is not yet sufficient to prove or disprove this idea. Dione's diameter is only 1100 kilometers (700 miles), much smaller than any of Jupiter's icy moons. It thus belongs to a class of small, icy objects never observed before the Voyager I Saturn encounter. The view here is of the face which trails in orbit. The Voyager Project is managed by the Jet Propulsion Laboratory for NASA.

  8. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  9. Simulating observations with HARMONI: the integral field spectrograph for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Zieleniewski, Simon; Thatte, Niranjan; Kendrew, Sarah; Houghton, Ryan; Tecza, Matthias; Clarke, Fraser; Fusco, Thierry; Swinbank, Mark

    2014-07-01

    With the next generation of extremely large telescopes commencing construction, there is an urgent need for detailed quantitative predictions of the scientific observations that these new telescopes will enable. Most of these new telescopes will have adaptive optics fully integrated with the telescope itself, allowing unprecedented spatial resolution combined with enormous sensitivity. However, the adaptive optics point spread function will be strongly wavelength dependent, requiring detailed simulations that accurately model these variations. We have developed a simulation pipeline for the HARMONI integral field spectrograph, a first light instrument for the European Extremely Large Telescope. The simulator takes high-resolution input data-cubes of astrophysical objects and processes them with accurate atmospheric, telescope and instrumental effects, to produce mock observed cubes for chosen observing parameters. The output cubes represent the result of a perfect data reduc- tion process, enabling a detailed analysis and comparison between input and output, showcasing HARMONI's capabilities. The simulations utilise a detailed knowledge of the telescope's wavelength dependent adaptive op- tics point spread function. We discuss the simulation pipeline and present an early example of the pipeline functionality for simulating observations of high redshift galaxies.

  10. CARMA LARGE AREA STAR FORMATION SURVEY: OBSERVATIONAL ANALYSIS OF FILAMENTS IN THE SERPENS SOUTH MOLECULAR CLOUD

    SciTech Connect

    Fernández-López, M.; Looney, L.; Lee, K.; Segura-Cox, D.; Arce, H. G.; Plunkett, A.; Mundy, L. G.; Storm, S.; Teuben, P. J.; Pound, M.; Isella, A.; Kauffmann, J.; Tobin, J. J.; Rosolowsky, E.; Kwon, W.; Ostriker, E.; Tassis, K.; Shirley, Y. L.

    2014-08-01

    We present the N{sub 2}H{sup +} (J = 1 → 0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey. The observations cover 250 arcmin{sup 2} and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s{sup –1}, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N{sub 2}H{sup +} emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N{sub 2}H{sup +} filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.

  11. High-resolution infrared maps from IRAS observations of large galaxies.

    NASA Astrophysics Data System (ADS)

    Ghosh, S. K.; Verma, R. P.; Rengarajan, T. N.; Das, B.; Saraiya, H. T.

    1993-06-01

    A sample of 18 large optical galaxies from the Large Galaxy Catalog, has been studied for structural properties by processing the IR images taken by IRAS pointed observations. Survey detectors (POSD) observations at 12, 25, 60, and 100 microns, as well as the Chopped Photometric Channel observations (CPC) at 50 and 100 microns, have been used for IRAS pointed observations. High angular resolution intensity maps of several of these galaxies have been obtained using a self-adaptive dynamically controlled image deconvolution scheme based on the maximum entropy method. From a comparative study of the processed CPC and POSD maps in the FIR, it has been shown that the CPC maps do give new reliable structural information, although only for sufficiently strong sources. The flux densities as well as the color temperatures correlate quite well. The POSD intensity maps have been additionally used to obtain maps of interband temperature and optical depth. From the optical depth maps at 25, 60, and 100 microns, it is found that for most of these cases the peaks are close to the galactic nuclei.

  12. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…

  13. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian

  14. Estimating the Concentration of Large Raindrops from Polarimetric Radar and Disdrometer Observations

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Petersen, Walter A; Gatlink, Patrick N.

    2013-01-01

    Estimation of rainfall integral parameters, including radar observables, and empirical relations between them are sensitive to the truncation of the drop size distribution (DSD), particularly at the large drop end. The sensitivity of rainfall integral parameters to the maximum drop diameter (D(sub max)) is exacerbated at C-band since resonance effects are pronounced for large drops in excess of 5 mm diameter (D). Due to sampling limitations, it is often difficult to reliably estimate D(sub max) with disdrometers. The resulting uncertainties in D(sub max0 potentially increase errors in radar retrieval methods, particularly at C-band, that rely on disdrometer observations for DSD input to radar models. In fact, D(sub max) is typically an assumed DSD parameter in the development of radar retrieval methods. Because of these very uncertainties, it is difficult to independently confirm disdrometer estimates of D(sub max) with polarimetric radar observations. A couple of approaches can be taken to reduce uncertainty in large drop measurement. Longer integration times can be used for the collection of larger disdrometer samples. However, integration periods must be consistent with a radar resolution volume (RRV) and the temporal and spatial scales of the physical processes affecting the DSD therein. Multiple co-located disdrometers can be combined into a network to increase the sample size within a RRV. However, over a reasonable integration period, a single disdrometer sample volume is many orders of magnitudes less than a RRV so it is not practical to devise a network of disdrometers that has an equivalent volume to a typical RRV. Since knowledge of DSD heterogeneity and large drop occurrence in time and space is lacking, the specific accuracy or even general representativeness of disdrometer based D(sub max) and large drop concentration estimates within a RRV are currently unknown. To address this complex issue, we begin with a simpler question. Is the frequency of occurrence of large rain drops (D > 5 mm) in disdrometer observations, either stand alone or networked, generally representative and consistent with polarimetric radar observations? We first show from simulations that the concentration of large (D > 5 mm) rain drops (N(sub T5)) can be estimated from polarimetric observations of specific differential phase (K(sub dp)) and differential reflectivity (Z(sub dr)), N(sub T5)=F(K(sub dp),Z(sub dr)), or horizontal reflectivity (Z(sub h)) and Z(sub dr), N(sub T5)=(Z(sub h),Z(sub dr)). We assess the error associated with polarimetric retrieval of N(sub T5), including sensitivity to D(sub max) parameterization assumptions and measurement error in the radar simulations. Polarimetric measurements at S-band and C-band will then be used to retrieve estimates of N(sub T5) and compared to disdrometer estimates of N(sub T5). After careful consideration of retrieval error, we will check consistency between disdrometer and polarimetric radar estimates of N(sub T5) and the frequency of occurrence of large rain drops in a variety of precipitating regimes using data from NASA's Global Precipitation Measurement (GPM) Ground Validation (GV) program, including field campaigns such as MC3E (Oklahoma) and IFloodS (Iowa) and extended measurements over Huntsville, Alabama and NASA Wallops Flight Facility in coastal Virginia.

  15. Simultaneous Solar Maximum Mission (SMM) and very large array observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Lang, K. R.

    1986-01-01

    The research deals mainly with Very Large Array and Solar Maximum Mission observations of the ubiquitous coronal loops that dominate the structure of the low corona. As illustrated, the observations of thermal cyclotron lines at microwave wavelengths provide a powerful new method of accurately specifying the coronal magnetic field strength. Processes are delineated that trigger solar eruptions from coronal loops, including preburst heating and the magnetic interaction of coronal loops. Evidence for coherent burst mechanisms is provided for both the Sun and nearby stars, while other observations suggest the presence of currents that may amplify the coronal magnetic field to unexpectedly high levels. The existence is reported of a new class of compact, variable moving sources in regions of apparently weak photospheric field.

  16. Observation of shock waves in a large Bose-Einstein condensate

    SciTech Connect

    Meppelink, R.; Koller, S. B.; Vogels, J. M.; Straten, P. van der; Ooijen, E. D. van; Heckenberg, N. R.; Rubinsztein-Dunlop, H.; Haine, S. A.; Davis, M. J.

    2009-10-15

    We observe the formation of shock waves in a Bose-Einstein condensate containing a large number of sodium atoms. The shock wave is initiated with a repulsive blue-detuned light barrier, intersecting the Bose-Einstein condensate, after which two shock fronts appear. We observe breaking of these waves when the size of these waves approaches the healing length of the condensate. At this time, the wave front splits into two parts and clear fringes appear. The experiment is modeled using an effective one-dimensional Gross-Pitaevskii-like equation and gives excellent quantitative agreement with the experiment, even though matter waves with wavelengths two orders of magnitude smaller than the healing length are present. In these experiments, no significant heating or particle loss is observed.

  17. Climatic physical snowpack properties for large-scale modeling examined by observations and a physical model

    NASA Astrophysics Data System (ADS)

    Saito, Kazuyuki; Yamaguchi, Satoru; Iwata, Hiroki; Harazono, Yoshinobu; Kosugi, Kenji; Lehning, Michael; Shulski, Martha

    2012-04-01

    Here we have conducted an integral study using site observations and a model with detailed snow dynamics, to examine the capability of the model for deriving a simple relationship between the density and thermal conductivity of the snowpack within different climatic zones used in large-scale climate modeling. Snow and meteorological observations were conducted at multiple sites in different climatic regions (two in Interior Alaska, two in Japan). A series of thermal conductivity measurements in snow pit observations done in Alaska provided useful information for constructing the relationship. The one-dimensional snow dynamics model, SNOWPACK, simulated the evolution of the snowpack and compared observations between all sites. Overall, model simulations tended to underestimate the density and overestimate the thermal conductivity, and failed to foster the relationship evident in the observations from the current and previous research. The causes for the deficiency were analyzed and discussed, regarding a low density of the new snow layer and a slow compaction rate. Our working relationships were compared to the equations derived by previous investigators. Discrepancy from the regression for the melting season observations in Alaska was found in common.

  18. Small vs. Large Convective Cloud Objects from CERES Aqua Observations: Where are the Intraseasonal Variation Signals?

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2016-01-01

    During inactive phases of Madden-Julian oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES observations for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation directions/speeds.

  19. The Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey

    NASA Astrophysics Data System (ADS)

    Squires, Gordon K.; Lubin, L. M.; Gal, R. R.

    2007-05-01

    We present the motivation, design, and latest results from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 Mpc around 20 known galaxy clusters at z > 0.6. When complete, the survey will cover nearly 5 square degrees, all targeted at high-density regions, making it complementary and comparable to field surveys such as DEEP2, GOODS, and COSMOS. For the survey, we are using the Large Format Camera on the Palomar 5-m and SuPRIME-Cam on the Subaru 8-m to obtain optical/near-infrared imaging of an approximately 30 arcmin region around previously studied high-redshift clusters. Colors are used to identify likely member galaxies which are targeted for follow-up spectroscopy with the DEep Imaging Multi-Object Spectrograph on the Keck 10-m. This technique has been used to identify successfully the Cl 1604 supercluster at z = 0.9, a large scale structure containing at least eight clusters (Gal & Lubin 2004; Gal, Lubin & Squires 2005). We present the most recent structures to be photometrically and spectroscopically confirmed through this program, discuss the properties of the member galaxies as a function of environment, and describe our planned multi-wavelength (radio, mid-IR, and X-ray) observations of these systems. The goal of this survey is to identify and examine a statistical sample of large scale structures during an active period in the assembly history of the most massive clusters. With such a sample, we can begin to constrain large scale cluster dynamics and determine the effect of the larger environment on galaxy evolution.

  20. Challenging Large-scale Hydrological Simulations with Streamflow Observations: Response versus Persistence

    NASA Astrophysics Data System (ADS)

    Stahl, K.

    2014-12-01

    Land surface models and large-scale hydrological models are often used to study climate change impacts on hydrology at regional to global scales. These impacts are then presented as maps of change in specific runoff metrics that are relevant to basin management and water resources planning. Knowing the limits of model performance for the respective metrics of interest at different spatial and temporal scales is thus important, but often performance is only known for annual or long-term means. This contribution summarizes and reflects on the challenge of continental hydrological model simulations from the WATCH multi-model ensemble with distributed streamflow observations from small basins of reference networks in Europe. Characteristics of hydrological dynamics that were compared include spatial and temporal runoff persistence, high and low flows, and long-term trends and variability. Whereas common annual statistics between models and observations correlate well even if the amounts disagree, larger differences were found for metrics that focus on the dynamics of streamflow response and persistence. For example, models appear to respond comparably fast to precipitation, and as a consequence underestimate the duration of streamflow drought events. Investigating the general streamflow persistence in time and space, however, also showed large differences among the different models. Long-term trends in annual flow and annual weekly peak flow in Europe agreed on the large-scale patterns, but particularly seasonal trends and trends in extremes in regions with mixed observed runoff trends or in complex terrain revealed discrepancies to the observations even regarding the sign of the trend. Before the display of changes in hydrological characteristics related to response and persistence of flow situations, models should therefore always be tested specifically for their limits to represent such metrics.

  1. Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.

    PubMed

    Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta

    2014-07-01

    We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general. PMID:26357360

  2. Observing Large Ionospheric Spatial Decorrelation for Ground-Based Augmentation System in the Brazilian Region

    NASA Astrophysics Data System (ADS)

    Kim, D.; Yoon, M.; Choi, P.; Lee, J.

    2014-12-01

    Ground-Based Augmentation Systems (GBAS) support aircraft precision approach and landing by broadcasting differential Global Positioning System (GPS) corrections and integrity information to aviation users. Under anomalous ionospheric condition, unacceptably large residual errors can occur due to anomalously large ionospheric spatial decorrelation, and this can pose integrity threats to GBAS users. Thus, the development of an ionospheric anomaly threat model is required to simulate worst-case ionospheric errors and develop mitigation strategies. Ionosphere in low latitudes is known to be much more intense than that in mid latitudes due to active geomagnetic effect, and investigation of low latitude ionospheric anomalies must take precedence before operation of GBAS. In this paper, ionospheric spatial decorrelation is investigated for GBAS operation in the Brazilian region. Dual-frequency observation data are collected from Brazilian GPS reference stations. This analysis is performed using data sets collected on scintillating days, less-scintillating days, and storm days from 2012 to 2014. Precise ionospheric spatial gradient on the L1 signal is automatically estimated from dual-frequency observation data using simple truth method and station pair method. In the Brazilian region, however, intense ionospheric scintillations cause a large numbers of cycle slips in carrier-phase data. The simple truth process removes a considerably large number of those data through short-arc and outlier removals, and thus potential ionospheric gradients may not be detected. This motivates a data recovery process which skips short-arc and outlier removals if there appears a large ionospheric spatial gradient in the removed data. We also use a series of methods to validate anomalous ionospheric spatial gradients using manual validation with L1 single frequency measurement, station-wide check, satellite-wide check, and time-step check. In particular, the time-step check validates localized ionospheric anomalies in a scale of several tens of kilometers. This method is useful when the anomalies are not validated by station-wide and satellite-wide checks due to the sparse distribution of Brazilian GPS reference stations. Using the above methods, we observe and validate large ionospheric spatial gradients.

  3. VizieR Online Data Catalog: VLTI/MIDI AGN Large Program observations (Burtscher+, 2013)

    NASA Astrophysics Data System (ADS)

    Burtscher, L.; Meisenheimer, K.; Tristram, K. R. W.; Jaffe, W.; Honig, S. F.; Davies, R. I.; Kishimoto, M.; Pott, J.-U.; Rottgering, H.; Schartmann, M.; Weigelt, G.; Wolf, S.

    2013-10-01

    All interferometric observations were carried out with MIDI, the MID-infrared interferometric Instrument at the European Southern Observatory's (ESO's) Very Large Telescope Interferometer (VLTI) on Cerro Paranal, Chile. The MIDI AGN Large Program (ESO program number 184.B-0832) consisted of 13.1 nights of Visitor Mode observations. Between December 2009 and August 2011, in total 228 science fringe track observations of 15 AGNs have been observed in this program. For this paper, we also include from the archive 159 previously observed tracks for these sources, 156 fringe tracks of other weak AGNs and 132 tracks for the two mid-IR brightest AGNs (NGC 1068 and the Circinus galaxy). The observing logs of each galaxy can be upload in the subdirectory log. OIFITS is the standard for the exchange of reduced optical interferometry data. It is an IAU accepted standard and defined in Pauls et al. (2005PASP..117.1255P). Since we use a special observing technique, detailed in the paper, our primary observable is not the visibility but the "correlated flux". This is not yet part of the OIFITS specification (version 1), but is currently discussed for OIFITS version 2.0 (http://ipag.obs.ujf-grenoble.fr/twiki/bin/view/Jmmc/OIFITSTwoProject# Proposalforcorrelated_flux). For the attached data I include both the standard VISAMP/VISAMPERR fields which is the corr. flux divided by the spectrum used for this source (from VISIR, if available, for all sources except Mrk 1239, see the paper) and also new CFLUX/CFLUXERR fields that are proposed for OIFITS version 2.0. These fields comply with the FITS standard and are ignored by strict OIFITS viewers; less strict OIFITS readers like MIA+EWS's oirgetvis() routine will read these fields. For NGC 1068, I have downsampled the early GRISM observations to PRISM resolution so that they can be combined in one file. The total flux can be retrieved from CFLUX/VISAMP and its error from flux * sqrt((VISAMPERR/VISAMP)2 - (CFLUXERR/CFLUX)2). (5 data files).

  4. Active Control of Jet Noise Using Observable Inferred Decomposition and Large Window PIV

    NASA Astrophysics Data System (ADS)

    Berger, Zachary; Berry, Matthew; Low, Kerwin; Cordier, Laurent; Noack, Bernd; Gogineni, Sivaram; Glauser, Mark

    2012-11-01

    In this investigation, we seek to find sources of noise created in the near-region of a highly subsonic jet, with a nozzle diameter of 2''. Using large window PIV alongside simultaneous hydrodynamic and acoustic pressure, we focus on observing flow structures created in the collapse of the potential core. Correlations can be made between the low-dimensional velocity field (using POD) and the far-field acoustics in an effort to identify loud modes in the flow. An advanced reduced order model known as Observable Inferred Decomposition (OID) is used to form closed-loop controllers for noise reduction in the far-field. With this technique, we find low-dimensional representations of near-field velocity and far-field pressure - finding a linear mapping between the two fields. Then, we obtain acoustically optimized modes in the flow field and seek to drive these modes to zero using active control strategies. For flow control, synthetic jet actuators are used as shear layer excitation. A large range of tests are explored, varying Mach number and flow control configurations. Finally, large PIV windows will allow us to investigate several diameters of the flow field in the streamwise plane.

  5. EXPANDED VERY LARGE ARRAY CONTINUUM OBSERVATIONS TOWARD HOT MOLECULAR CORE CANDIDATES

    SciTech Connect

    Hofner, P.; Kurtz, S.; Loinard, L.; RodrIguez, L. F.; Ellingsen, S. P.; Menten, K. M.; Wyrowski, F.; Araya, E. D.; Cesaroni, R.

    2011-09-20

    We have used the Expanded Very Large Array (EVLA) with two 1 GHz wide bands to obtain K-band (1.3 cm) continuum observations toward the following five hot molecular core candidates: IRAS 18151 - 1208, IRAS 18182 - 1433, IRAS 18345 - 0641, IRAS 18470 - 0044, and IRAS 19012 + 0536. The sources were selected from the 2002 list of Sridharan et al. and are characterized by high FIR luminosity, dense molecular and dust condensations, massive large-scale CO flows, and the absence of strong cm continuum emission. These properties are indicative of massive star-forming regions in an evolutionary phase prior to ultra- or hypercompact H II regions. We detect a total of 10 individual 1.3 cm continuum sources toward this sample, and derive in-band spectral indices between 19.3 and 25.5 GHz consistent with thermal free-free emission, for all sources except component A in IRAS 18182 - 1433, which has a negative spectral index indicative of synchrotron emission. We suggest that in most cases the 1.3 cm sources are due to shock-induced ionization, rather than direct photoionization by massive objects. The momentum rate present in these ionized flows is sufficient to drive the large-scale molecular flows. We discuss a number of morphological features supporting this hypothesis. The present observations demonstrate that the EVLA has sufficient sensitivity to study the regions near very young massive stars in the cm continuum.

  6. Observations of Neutrons in Association with the Large Solar Flare of 6 November 1997

    NASA Astrophysics Data System (ADS)

    Tsuchiya, H.; Matsubara, Y.; Muraki, Y.; Murakami, K.; Sako, T.; Kakimoto, F.; Ogio, S.; Tsunesada, Y.; Tokuno, H.; Yoshii, H.; Tajima, N.; Martinic, N.; Miranda, P.; Ticona, R.; Velarde, A.

    2001-08-01

    Solar neutrons were detected by the Mt. Chacaltaya neutron detector in Bolivia (S E, 5250 m above sea level) in association with solar flares on 1997 November 6th. A clear signal was observed in association with a C4.7 solar flare which occurred at about 10 minutes before the X9.4 large solar flare. Previously, there have been no observation of solar neutrons in association with C class solar flares. Moreover, the signal was detected at early in the morning(7:41 Local Time). Therefore, solar neutrons which arrive at the earth must travel through a thick atmosphere to reach the detector because of large incident angle (?) to the atmosphere. In the thick atmosphere, it has been believed that solar neutrons could not arrive at the detector if we applied the usual attenuation model. However, calculations based on a new attenuation model for solar neutrons in the atmosphere, which takes account of multiple and/or large scattering, gives us a new possibility for us detecting solar neutrons under extreme conditions.

  7. Large-Amplitude Oscillation of an Erupting Filament as Seen in EUV, Hα, and Microwave Observations

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Tripathi, D.; Asai, A.; Jain, R.

    2007-11-01

    We present multiwavelength observations of a large-amplitude oscillation of a polar-crown filament on 15 October 2002, which has been reported by Isobe and Tripathi ( Astron. Astrophys. 449, L17, 2006). The oscillation occurred during the slow rise (≈1 km s-1) of the filament. It completed three cycles before sudden acceleration and eruption. The oscillation and following eruption were clearly seen in observations recorded by the Extreme-Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). The oscillation was seen only in a part of the filament, and it appears to be a standing oscillation rather than a propagating wave. The amplitudes of velocity and spatial displacement of the oscillation in the plane of the sky were about 5 km s-1 and 15 000 km, respectively. The period of oscillation was about two hours and did not change significantly during the oscillation. The oscillation was also observed in Hα by the Flare Monitoring Telescope at the Hida Observatory. We determine the three-dimensional motion of the oscillation from the Hα wing images. The maximum line-of-sight velocity was estimated to be a few tens of kilometers per second, although the uncertainty is large owing to the lack of line-profile information. Furthermore, we also identified the spatial displacement of the oscillation in 17-GHz microwave images from Nobeyama Radio Heliograph (NoRH). The filament oscillation seems to be triggered by magnetic reconnection between a filament barb and nearby emerging magnetic flux as was evident from the MDI magnetogram observations. No flare was observed to be associated with the onset of the oscillation. We also discuss possible implications of the oscillation as a diagnostic tool for the eruption mechanisms. We suggest that in the early phase of eruption a part of the filament lost its equilibrium first, while the remaining part was still in an equilibrium and oscillated.

  8. CONTEMPORANEOUS VLBA 5 GHz OBSERVATIONS OF LARGE AREA TELESCOPE DETECTED BLAZARS

    SciTech Connect

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Helmboldt, J. F.; Readhead, A. C. S.; Reeves, R.; Richards, J. L.

    2012-01-10

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed contemporaneously by the Very Long Baseline Array (VLBA). In total, 232 sources were observed with the VLBA. Ninety sources that were previously observed as part of the VLBA Imaging and Polarimetry Survey (VIPS) have been included in the sample, as well as 142 sources not found in VIPS. This very large, 5 GHz flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong {gamma}-ray emission. In particular, we see that {gamma}-ray emission is related to strong, uniform magnetic fields in the cores of the host AGN. Included in this sample are non-blazar AGNs such as 3C84, M82, and NGC 6251. For the blazars, the total VLBA radio flux density at 5 GHz correlates strongly with {gamma}-ray flux. The LAT BL Lac objects tend to be similar to the non-LAT BL Lac objects, but the LAT flat-spectrum radio quasars (FSRQs) are significantly different from the non-LAT FSRQs. Strong core polarization is significantly more common among the LAT sources, and core fractional polarization appears to increase during LAT detection.

  9. Strongly sheared stratocumulus convection: an observationally based large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zheng, X.; Jiang, Q.

    2012-02-01

    Unusually large wind shears across the inversion in the stratocumulus-topped marine boundary layer (MBL) were frequently observed during VOCALS-REx. To investigate the impact of wind shear on the MBL turbulence structure, a large-eddy simulation (LES) model is used to simulate the strongly sheared MBL observed from Twin-Otter RF 18 on 13 November 2008. The LES simulated turbulence statistics agree in general with those derived from the measurements, with the MBL exhibiting a decoupled structure characterized by an enhanced entrainment and a turbulence intensity minimum just below the clouds. Sensitivity simulations show that the shear tends to reduce the dynamic stability of the inversion, enhance the entrainment mixing, and decrease the cloud water. Consequently, the turbulence intensity in the MBL is significantly weakened by the intense wind shear. The inversion thickens considerably and the MBL top separates from the cloud top, creating a finite cloud-free sublayer of 10-50 m thickness within the inversion, depending on the shear intensity. The wind shear enhances the turbulence buoyant consumption within the inversion, and simultaneously weakens the buoyant production in the cloud layer. These effects may result in different heating rates between the cloud and subcloud layer, leading to a process that tends to decouple the cloud from the subcloud layer. The decoupling process occurs even without solar radiation in the case of an intense wind shear similar to the observations.

  10. On the observation of large mixing ratios of total alkyl nitrates

    NASA Astrophysics Data System (ADS)

    Day, D. A.; Dillon, M. B.; Wooldridge, P. J.; Thornton, J. A.; Rosen, R. S.; Wood, E. C.; Cohen, R. C.

    2003-04-01

    Measurements of NO2, total peroxy nitrates, total alkyl nitrates, and HNO3 using thermal dissociation followed by laser-induced fluorescence detection of NO2 have been made at three continental locations. At a rural site in California, measurements over a full annual cycle show that total alkyl nitrates are routinely 10-20% of NOy. At this rural site, at a suburban site in California and an urban site in Houston, Texas, both the absolute concentration of total alkyl nitrates and the fraction of the higher oxides of nitrogen, NOz, represented by total alkyl nitrates are greater than or equal to values reported in any prior observations. Although the contrast with prior observations is striking, we show that large abundances of total alkyl nitrates are consistent with simple chemical models of tropospheric ozone production and with the few prior comprehensive model studies. We also show that total alkyl nitrates are a large part, if not all, of the "missing NOy" reported in many prior experiments and emphasize that the ratio of total alkyl nitrates to NOz and of O3 to total alkyl nitrates are especially useful for evaluating chemical models and comparing observations at different sites.

  11. The Large Aperture Gamma Ray Observatory as an Observational Alternative at High Altitude

    NASA Astrophysics Data System (ADS)

    Rosales, M.

    2011-10-01

    Although satellite observations have revealed some mysteries about the origin and location of cosmic rays at low energies, questions remain to be resolved in higher energy ranges (>1 GeV). However, the flow of particles at high energies is very low, large sensitive areas are necessary, so that the detection of secondary particles from observatories on the surface of the earth is a technically viable solution. While the Pierre Auger Observatory has such capacity given its 16000 m^2 of detectors, low height above sea level greatly reduces its detection capability. The Large Aperture Gamma Ray Observatory (LAGO) is an observational alternative that attempts to overcome this limitation. This project was started in 2005, placing water Cherenkov Detectors at high altitude. Observation sites have been selected with some basic requirements: altitude, academic and technical infrastructure, existence of a research group responsible for assembly and maintenance of the detectors and the analysis, visualization, divulgation and data storage. This paper presents the general status of the observatories of Sierra Negra-México, Chacaltaya-Bolívia, Marcapomacocha-Perú, Mérida-Venezuela and Bucaramanga-Colombia.

  12. Large Deployable Reflector Technologies for Future European Telecom and Earth Observation Missions

    NASA Astrophysics Data System (ADS)

    Ihle, A.; Breunig, E.; Dadashvili, L.; Migliorelli, M.; Scialino, L.; van't Klosters, K.; Santiago-Prowald, J.

    2012-07-01

    This paper presents requirements, analysis and design results for European large deployable reflectors (LDR) for space applications. For telecommunications, the foreseeable use of large reflectors is associated to the continuous demand for improved performance of mobile services. On the other hand, several earth observation (EO) missions can be identified carrying either active or passive remote sensing instruments (or both), in which a large effective aperture is needed e.g. BIOMASS. From the European point of view there is a total dependence of USA industry as such LDRs are not available from European suppliers. The RESTEO study is part of a number of ESA led activities to facilitate European LDR development. This paper is focused on the structural-mechanical aspects of this study. We identify the general requirements for LDRs with special emphasis on launcher accommodation for EO mission. In the next step, optimal concepts for the LDR structure and the RF-Surface are reviewed. Regarding the RF surface, both, a knitted metal mesh and a shell membrane based on carbon fibre reinforced silicon (CFRS) are considered. In terms of the backing structure, the peripheral ring concept is identified as most promising and a large number of options for the deployment kinematics are discussed. Of those, pantographic kinematics and a conical peripheral ring are selected. A preliminary design for these two most promising LDR concepts is performed which includes static, modal and kinematic simulation and also techniques to generate the reflector nets.

  13. Expanded Very Large Array Nova Project Observations of the Classical NovaV1723 Aquilae

    NASA Technical Reports Server (NTRS)

    Krauss, Miriam I.; Chomiuk, Laura; Rupen, Michael; Roy, Nirupam; Mioduszewski, Amy J.; Sokoloski, J. L.; Nelson, Thomas; Mukai, Koji; Bode, M. F.; Eyres, S. P. S.; OBrien, T. J.

    2011-01-01

    We present radio light curves and spectra of the classical nova VI723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of VI723 Aql span 1-37 GHz in frequency, and we report on data from 14 to 175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of VI723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.

  14. EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE BARNARD 5 STAR-FORMING CORE: EMBEDDED FILAMENTS REVEALED

    SciTech Connect

    Pineda, Jaime E.; Longmore, Steven; Goodman, Alyssa A.; Arce, Hector G.; Caselli, Paola; Corder, Stuartt

    2011-09-20

    We present {approx}6.'5 x 8' Expanded Very Large Array (EVLA) mosaic observations of the NH{sub 3} (1,1) emission in the Barnard 5 region in Perseus, with an angular resolution of 6''. This map covers the coherent region, where the dense gas presents subsonic non-thermal motions (as seen from single dish observations with the Green Bank Telescope, GBT). The combined EVLA and GBT observations reveal, for the first time, a striking filamentary structure (20'' wide or 5000 AU at the distance of Perseus) in this low-mass star-forming region. The integrated intensity profile of this structure is consistent with models of an isothermal filament in hydrostatic equilibrium. The observed separation between the B5-IRS1 young stellar object (YSO), in the central region of the core, and the northern starless condensation matches the Jeans length of the dense gas. This suggests that the dense gas in the coherent region is fragmenting. The observed region displays a narrow velocity dispersion, where most of the gas shows evidence for subsonic turbulence and where little spatial variations are present. It is only close to the YSO where an increase in the velocity dispersion is found, but still displaying subsonic non-thermal motions.

  15. EXPANDED VERY LARGE ARRAY NOVA PROJECT OBSERVATIONS OF THE CLASSICAL NOVA V1723 AQUILAE

    SciTech Connect

    Krauss, Miriam I.; Chomiuk, Laura; Rupen, Michael; Roy, Nirupam; Mioduszewski, Amy J. E-mail: lchomiuk@nrao.edu E-mail: nroy@nrao.edu

    2011-09-20

    We present radio light curves and spectra of the classical nova V1723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of V1723 Aql span 1-37 GHz in frequency, and we report on data from 14 to 175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of V1723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.

  16. Interstellar Chemistry Special Feature: Interferometric observations of large biologically interesting interstellar and cometary molecules

    NASA Astrophysics Data System (ADS)

    Snyder, Lewis E.

    2006-08-01

    Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have substantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled "biomolecules." Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated interstellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to understanding hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from observations with the next generation of sensitive, high-resolution arrays. biomolecules | comets | chemistry

  17. Bursts of energetic electron induced large surface charging observed by Chang'E-1

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Zhang, A. B.; Zhang, X. G.; Reme, H.; Kong, L. G.; Zhang, S. Y.; Yu, D. J.; Wang, S. J.; Zhu, G. W.

    2012-10-01

    A relationship between surface charging and bursts of energetic electron (BEE) event is presented in this paper. In a 200 km lunar polar orbit, during quiet time, 0.1-2.0 MeV BEE events were observed by High Energetic Particles Detectors (HPD) on board Chang'E-1, on December 22, 2007, when the spacecraft was within the inner terrestrial magnetosheath. At the same time, a large surface charging of ∼-5.4 kV was observed by Chang'E-1, which was evidenced by increasing the ions energy observed by Solar Wind Ion Detectors (SWIDs). We found that the surface charging is strongly correlated with BEE events, and the potentials of spacecraft surface charging was experientially expressed as U≈3.6×10-5·fT (kV). The BEE events did occur in the solar wind, geomagnetic tail and magnetosheath alternately, whereas the surface charging during the BEE events is in the magnetosheath or transition region of boundaries. Though the observed surface charging was fewer than the BEE events, it is expected that the occurrence of the charging events caused by the bursts of energetic electrons should be more frequent than the Chang'E-1 observations. Meanwhile, the spacecraft charging indicates the lunar surface can be charged to negative kilovolt-scale by the BEE events even in quiet times.

  18. Expanded Very Large Array Observations of the Barnard 5 Star-forming Core: Embedded Filaments Revealed

    NASA Astrophysics Data System (ADS)

    Pineda, Jaime E.; Goodman, Alyssa A.; Arce, Héctor G.; Caselli, Paola; Longmore, Steven; Corder, Stuartt

    2011-09-01

    We present ~6farcm5 × 8' Expanded Very Large Array (EVLA) mosaic observations of the NH3 (1,1) emission in the Barnard 5 region in Perseus, with an angular resolution of 6''. This map covers the coherent region, where the dense gas presents subsonic non-thermal motions (as seen from single dish observations with the Green Bank Telescope, GBT). The combined EVLA and GBT observations reveal, for the first time, a striking filamentary structure (20'' wide or 5000 AU at the distance of Perseus) in this low-mass star-forming region. The integrated intensity profile of this structure is consistent with models of an isothermal filament in hydrostatic equilibrium. The observed separation between the B5-IRS1 young stellar object (YSO), in the central region of the core, and the northern starless condensation matches the Jeans length of the dense gas. This suggests that the dense gas in the coherent region is fragmenting. The observed region displays a narrow velocity dispersion, where most of the gas shows evidence for subsonic turbulence and where little spatial variations are present. It is only close to the YSO where an increase in the velocity dispersion is found, but still displaying subsonic non-thermal motions.

  19. Large Binocular Telescope Observations of Europa Occulting Io's Volcanoes at 4.8 μm

    NASA Astrophysics Data System (ADS)

    Skrutskie, Michael F.; Conrad, Albert; Resnick, Aaron; Leisenring, Jarron; Hinz, Phil; de Pater, Imke; de Kleer, Katherine; Spencer, John; Skemer, Andrew; Woodward, Charles E.; Davies, Ashley Gerard; Defrére, Denis

    2015-11-01

    On 8 March 2015 Europa passed nearly centrally in front of Io. The Large Binocular Telescope observed this event in dual-aperture AO-corrected Fizeau interferometric imaging mode using the mid-infrared imager LMIRcam operating behind the Large Binocular Telescope Interferometer (LBTI) at a broadband wavelength of 4.8 μm (M-band). Occultation light curves generated from frames recorded every 123 milliseconds show that both Loki and Pele/Pillan were well resolved. Europa's center shifted by 2 kilometers relative to Io from frame-to-frame. The derived light curve for Loki is consistent with the double-lobed structure reported by Conrad et al. (2015) using direct interferometric imaging with LBTI.

  20. Observing trans-Planckian ripples in the primordial power spectrum with future large scale structure probes

    SciTech Connect

    Hamann, Jan; Hannestad, Steen; Sloth, Martin S; Wong, Yvonne Y Y E-mail: sth@phys.au.dk E-mail: ywong@mppmu.mpg.de

    2008-09-15

    We revisit the issue of ripples in the primordial power spectra caused by trans-Planckian physics, and the potential for their detection by future cosmological probes. We find that for reasonably large values of the first slow-roll parameter {epsilon} ({approx}>0.001), a positive detection of trans-Planckian ripples can be made even if the amplitude is as low as 10{sup -4}. Data from the Large Synoptic Survey Telescope (LSST) and the proposed future 21 cm survey with the Fast Fourier Transform Telescope (FFTT) will be particularly useful in this regard. If the scale of inflation is close to its present upper bound, a scale of new physics as high as {approx}0.2 M{sub P} could lead to observable signatures.

  1. Observations of two peculiar emission objects in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Allen, D. A.; Stencel, R. E.

    1983-01-01

    Ultraviolet and visual wavelength spectra were obtained of two peculiar emission objects, Henize S63 and Sanduleak's star in the Large Magellanic Cloud. Previously not observed in the near- or far-ultraviolet, both objects exhibit strong permitted and semiforbidden line emissions. Estimates based on the absolute continuum flux of the hot companion star in Hen S63 indicate that it rivals the luminosity of the carbon star primary. The emission-line profile structure in both objects does not suggest Wolf-Rayet type emission. Carbon in Sanduleak's star (LMC anonymous) is conspicuously absent, while N V, semiforbidden N IV, and semiforbidden N III dominate the UV emission-line spectrum. Nitrogen is overabundant with respect to carbon and oxygen in both objects. The large overabundance of nitrogen in Sanduleak's star suggests evidence for CNO processes material similar to that seen in Nu Car.

  2. Rater Calibration when Observational Assessment Occurs at Large Scale: Degree of Calibration and Characteristics of Raters Associated with Calibration

    ERIC Educational Resources Information Center

    Cash, Anne H.; Hamre, Bridget K.; Pianta, Robert C.; Myers, Sonya S.

    2012-01-01

    Observational assessment is used to study program and teacher effectiveness across large numbers of classrooms, but training a workforce of raters that can assign reliable scores when observations are used in large-scale contexts can be challenging and expensive. Limited data are available to speak to the feasibility of training large numbers of…

  3. Interpreting observed northern hemisphere snow trends with large ensembles of climate simulations

    NASA Astrophysics Data System (ADS)

    Mudryk, L. R.; Kushner, P. J.; Derksen, C.

    2014-07-01

    Simulated variability and trends in Northern Hemisphere seasonal snow cover are analyzed in large ensembles of climate integrations of the National Center for Atmospheric Research's Community Earth System Model. Two 40-member ensembles driven by historical radiative forcings are generated, one coupled to a dynamical ocean and the other driven by observed sea surface temperatures (SSTs) over the period 1981-2010. The simulations reproduce many aspects of the observed climatology and variability of snow cover extent as characterized by the NOAA snow chart climate data record. Major features of the simulated snow water equivalent (SWE) also agree with observations (GlobSnow Northern Hemisphere SWE data record), although with a lesser degree of fidelity. Ensemble spread in the climate response quantifies the impact of natural climate variability in the presence and absence of coupling to the ocean. Both coupled and uncoupled ensembles indicate an overall decrease in springtime snow cover that is consistent with observations, although springtime trends in most climate realizations are weaker than observed. In the coupled ensemble, a tendency towards excessive warming in wintertime leads to a strong wintertime snow cover loss that is not found in observations. The wintertime warming bias and snow cover reduction trends are reduced in the uncoupled ensemble with observed SSTs. Natural climate variability generates widely different regional patterns of snow trends across realizations; these patterns are related in an intuitive way to temperature, precipitation and circulation trends in individual realizations. In particular, regional snow loss over North America in individual realizations is strongly influenced by North Pacific SST trends (manifested as Pacific Decadal Oscillation variability) and by sea level pressure trends in the North Pacific/North Atlantic sectors.

  4. Circular free-electron laser

    DOEpatents

    Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  5. Observation of MHD Instabilities Driven by Energetic Electrons in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Mitsutaka, Isobe; Kunihiro, Ogawa; Akihiro, Shimizu; Masaki, Osakabe; Shin, Kubo; Toi, K.; LHD Experiment Group

    2015-04-01

    Coherent magnetic fluctuations in an acoustic range of frequency have been regularly observed in low-density (ne < 0.2×1019 m-3) plasmas with strong second harmonic electron cyclotron resonance heating (ECRH) on the Large Helical Device. Hard X-ray measurements indicated that energetic electrons are generated in these ECRH discharges. The magnetic fluctuations are suppressed in higher density discharges where energetic electrons are not present. The ECRH power modulation experiment indicated that the observed magnetohydrodynamic (MHD) mode has an acoustic nature rather than an Alfvénic nature. supported by the Grant-in-Aid for Encouragement of Scientists from the Japan Society for the Promotion of Science (No. 20656150). This work was also partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC: No. 11261140328 and NRF: No. 2012K2A2A6000443)

  6. Observing Growth and Division of Large Numbers of Individual Bacteria by Image Analysis

    PubMed Central

    Elfwing, A.; LeMarc, Y.; Baranyi, J.; Ballagi, A.

    2004-01-01

    We describe a method that enabled us to observe large numbers of individual bacterial cells during a long period of cell growth and proliferation. We designed a flow chamber in which the cells attached to a transparent solid surface. The flow chamber was mounted on a microscope equipped with a digital camera. The shear force of the flow removed the daughter cells, making it possible to monitor the consecutive divisions of a single cell. In this way, kinetic parameters and their distributions, as well as some physiological characteristics of the bacteria, could be analyzed based on more than 1,000 single-cell observations. The method which we developed enabled us to study the history effect on the distribution of the lag times of single cells. PMID:14766541

  7. Colour recognition at large visual eccentricities in normal observers and patients with low vision.

    PubMed

    Naïli, Fatima; Despretz, Pascal; Boucart, Muriel

    2006-10-23

    When we look at our spatial environment we have the feeling that the whole visual field is coloured, yet the density of cone photoreceptors decreases considerably as eccentricity increases. We investigated colour perception (coloured/noncoloured), colour naming and whether colour helps object recognition at eccentricities varying from 0 degrees to 80 degrees in healthy observers and patients with low vision. We found that colours can be perceived and even identified above chance at very large eccentricities (60 degrees). When asked to categorize coloured and grey level objects as edible/nonedible, both healthy observers and patients with low vision showed better performance for coloured edible objects at 50 degrees suggesting that colour is used for object recognition in conditions of degraded form perception. PMID:17001270

  8. Large scale 21 CM H I observations of the CYG OB1/OB3 supershell

    NASA Astrophysics Data System (ADS)

    Dewdney, P. E.; Lozinskaya, T. A.

    1994-12-01

    We present new large-scale 21 cm H I observations of the Cyg OB1/OB3 supershell, which is visible with varying degrees of prominence in the IR, radio, and optical ranges. Our data reveal a 4.6x6.1 deg H I feature, larger than the IR and optical supershell. A shell-like structure of neutral gas is seen over a wide velocity range (+30 to -70 km/s) with a possible expansion velocity up to about 30 to 50 km/s. The H I morphology varies substantially in different velocity ranges, implying a very irregular shape of the shell. The mass of the H I supershell is estimated to be 5400 to 13,000 solar masses. The H I supershell that we have detected most likely represents the huge superbubble hypothesized by Nichols-Bohlin & Fesen (1993) from observations along individual lines of sight to stars in Cygnus region.

  9. Fermi Large Area Telescope Observations of the Cosmic-Ray Induced

    SciTech Connect

    Abdo, A.

    2012-02-29

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The LAT has observed the Earth during its commissioning phase and with a dedicated Earth-limb following observation in September 2008. These measurements yielded {approx} 6.4 x 10{sup 6} photons with energies > 100 MeV and {approx} 250 hours total livetime for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission - often referred to as Earth albedo gamma-ray emission - has a power-law shape up to 500 GeV with spectral index {Lambda} = 2.79 {+-} 0.06.

  10. STEREO observations of large amplitude electrostatic waves at the Earth's bowshock

    NASA Astrophysics Data System (ADS)

    Breneman, A. W.; Cattell, C. A.; Wilson, L. B., III; Kersten, K.; Goetz, K.

    2011-12-01

    The Earth's bowshock as well as interplanetary shocks host a variety of mechanisms that provide for the dissipation of bulk flow energy. Wilson et al., 2007 suggested that wave-particle interactions, in addition to previously suggested particle reflection, may be an important part of the energy dissipation at high mach number shocks. Supporting this idea, two recent papers have identified very large amplitude electrostatic waves upstream of the Earth's bowshock and an interplanetary shock. These waves are expected to contribute significantly to particle scattering and heating. Large amplitude turbulent electrostatic waveforms (up to 40 mV/m), identified as ion acoustic waves, were first observed by Hull et al., 2006 from Polar spacecraft data upstream of the Earth's bowshock during active solar wind conditions. Similar waveforms were observed on Wind by Wilson et al., 2010 (up to 100 mV/m) at a supercritical interplanetary shock and were identified as electron Bernstein waves. These studies were limited to two bowshock crossings and a single interplanetary shock, respectively. We present a preliminary study of a much larger data set of these waves from high time resolution STEREO burst waveform data. Over 200 burst capture electric field waveforms are seen in twelve separate groups on all four Earth swing-by orbits in 2006. They are observed not only at each bowshock crossing, but also within the magnetosheath and at the magnetopause. Wave amplitudes range from ~20 to 200 mV/m. With this dataset we will provide statistical context to the observations of the aforementioned papers and attempt to resolve the discrepancy in wave identification. The results of this study will elucidate the plasma conditions under which these waves are generated and constrain possible generation mechanisms. The ubiquity of these waves, under a variety of solar wind conditions, suggests that they may indeed play an important role in the dissipation of energy at the bowshock.

  11. Large Amplitude Whistlers in the Magnetosphere Observed with Wind-Waves

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III

    2011-01-01

    We describe the results of a statistical survey of Wind-Waves data motivated by the recent STEREO/Waves discovery of large-amplitude whistlers in the inner magnetosphere. Although Wind was primarily intended to monitor the solar wind, the spacecraft spent 47 h inside 5 R(sub E) and 431 h inside 10 R(sub E) during the 8 years (1994-2002) that it orbited the Earth. Five episodes were found when whistlers had amplitudes comparable to those of Cattell et al. (2008), i.e., electric fields of 100 m V/m or greater. The whistlers usually occurred near the plasmapause. The observations are generally consistent with the whistlers observed by STEREO. In contrast with STEREO, Wind-Waves had a search coil, so magnetic measurements are available, enabling determination of the wave vector without a model. Eleven whistler events with useable magnetic measurements were found. The wave vectors of these are distributed around the magnetic field direction with angles from 4 to 48deg. Approximations to observed electron distribution functions show a Kennel-Petschek instability which, however, does not seem to produce the observed whistlers. One Wind episode was sampled at 120,000 samples/s, and these events showed a signature that is interpreted as trapping of electrons in the electrostatic potential of an oblique whistler. Similar waveforms are found in the STEREO data. In addition to the whistler waves, large amplitude, short duration solitary waves (up to 100 mV/m), presumed to be electron holes, occur in these passes, primarily on plasma sheet field lines mapping to the auroral zone.

  12. The deterioration of Circular Mausoleum, Roman Necropolis of Carmona, Spain.

    PubMed

    Cañaveras, Juan C; Fernandez-Cortes, Angel; Elez, Javier; Cuezva, Soledad; Jurado, Valme; Miller, Ana Zelia; Rogerio-Candelera, Miguel A; Benavente, David; Hernandez-Marine, Mariona; Saiz-Jimenez, Cesareo; Sanchez-Moral, Sergio

    2015-06-15

    The Circular Mausoleum tomb in the Roman Necropolis of Carmona was carved on a calcarenite sequence in an ancient quarry located in the town of Carmona, Southern Spain. This rock-cut tomb, representative of Roman burial practices, currently suffers from serious deterioration. A detailed survey over several years permitted the identification of the main tomb's pathologies and damaging processes, which include loss of material (scaling, flaking, granular disintegration), surface modifications (efflorescences, crusts and deposits) and extensive biological colonization. The results obtained in this study indicated that anthropogenic changes were largely responsible and enhanced the main alteration mechanisms observed in the Circular Mausoleum. Based on the deterioration diagnosis, effective corrective actions were proposed. This study shows that any conservative intervention in the interior of the tomb should be preceded by accurate in situ measurements and laboratory analyses to ascribe the source of the deterioration damages and thus designing effective treatments. PMID:25747366

  13. Marine Stratocumulus during VOCALS: Comparing Microphysical Observations to Large-Eddy Simulation Results

    NASA Astrophysics Data System (ADS)

    Petters, J.; Rossiter, D. L.; Feingold, G.; Jiang, H.; Chuang, P. Y.

    2010-12-01

    Large-eddy simulation (LES) is a tool capable of resolving cloud-scale processes and has been used extensively for study of the stratocumulus-topped boundary layer. Understanding the strengths and deficiencies of LES is crucial if we are to use it effectively. The ability of LES to accurately represent detailed microphysics has been sparsely investigated (Khairoutdinov and Kogan, 1999), and we seek to advance knowledge in this area. Here we study how well LES coupled with an explicit binned resolving model can simulate daytime observations of stratocumulus dynamics and microphysics during VOCALS. Our observations were acquired from the CIRPAS Twin Otter on October 19th, 2008 centered around 20 S, 72 W. During this day a well-mixed, non-drizzling stratus-topped boundary layer of ~300m thickness was observed. The cloud top height, thermodynamic profile, and wind profile all remained relatively stationary throughout the observation period. Potential temperature and moisture content jumps were 15.2 K and -6.55 g/kg, respectively. The Passive Cavity Aerosol Spectrometer Probe (PCASP) showed aerosol concentrations elevated (~600 cm^-3) from what is expected for clean maritime conditions. The Twin Otter was outfitted an airborne phase Doppler Interferometer (PDI) providing detailed microphysical information about the cloud layer. The PDI data show a monomodal drop size distribution that exhibits little change in shape with change in liquid water content (LWC), consistent with extreme inhomogeneous mixing of air parcels. For our numerical model we employ the Regional Atmospheric Modeling System (RAMS, Cotton et al., 2001) in LES mode. So that the results of our LES best matched the detailed microphysical data from the PDI, we coupled a binned microphysical model to our LES (Feingold et al., 1996; Tzivion et al., 1987). Our LES cloud top height after model spin-up then matches the observations while model cloud base is 25 m than observations. Comparisons between probability distribution functions of LWC at matched heights in the observations and the LES results show reasonable agreement. The strength of simulated boundary-layer circulations is substantially weaker than what the observations suggest. These weak circulations are associated with a somewhat decoupled cloud layer in the LES which was not evident in our daytime observations. We suggest that this decoupling could be related to modeled overentrainment of free tropospheric air. Our model cloud top increases by 10 m over one hour of simulation, while no cloud top height increase was observed. For large LWCs (0.3 g/kg or greater) LES predicts drop size distribution remarkably well. For lower LWCs, the LES shows a substantial tail to smaller drop sizes not present in the observations. We attribute this discrepancy to the assumption of purely homogeneous mixing in the LES model. The LES also predicts a substantial number of small cloud droplets (~ 2 micron diameter) that are not observed by the PDI.

  14. VERY LARGE ARRAY OBSERVATIONS OF DG TAU'S RADIO JET: A HIGHLY COLLIMATED THERMAL OUTFLOW

    SciTech Connect

    Lynch, C.; Mutel, R. L.; Gayley, K. G.; Guedel, M.; Ray, T.; Skinner, S. L.; Schneider, P. C.

    2013-03-20

    The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new Very Large Array (VLA) full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size of 42 AU (0.''35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral index {alpha} = +0.46 {+-} 0.05, which combined with the lack of polarization is consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find that our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7'' from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.

  15. BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.; Horack, John M.; Brock, Martin N.; Kouveliotou, Chryssa; Hartmann, Dieter H.; Hakkila, Jon

    1996-01-01

    We use dipole and quadrupole statistics to test the large-scale isotropy of the first 1005 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE). In addition to the entire sample of 1005 gamma-ray bursts, many subsets are examined. We use a variety of dipole and quadrupole statistics to search for Galactic and other predicted anisotropies and for anisotropies in a coordinate-system independent manner. We find the gamma-ray burst locations to be consistent with isotropy, e.g., for the total sample the observed Galactic dipole moment (cos theta) differs from the value predicted for isotropy by 0.9 sigma and the observed Galactic quadrupole moment (sin(exp 2) b - 1/3) by 0.3 sigma. We estimate for various models the anisotropies that could have been detected. If one-half of the locations were within 86 deg of the Galactic center, or within 28 deg of the Galactic plane, the ensuing dipole or quadrupole moment would have typically been detected at the 99% confidence level. We compare the observations with the dipole and quadrupole moments of various Galactic models. Several Galactic gamma-ray bursts models have moments within 2 sigma of the observations; most of the Galactic models proposed to date are no longer in acceptable agreement with the data. Although a spherical dark matter halo distribution could be consistent with the data, the required core radius is larger than the core radius of the dark matter halo used to explain the Galaxy's rotation curve. Gamma-ray bursts are much more isotropic than any observed Galactic population, strongly favoring but not requiring an origin at cosmological distances.

  16. First definitive observations of meteor shower particles using a high-power large-aperture radar

    NASA Astrophysics Data System (ADS)

    Chau, Jorge L.; Galindo, Freddy

    2008-03-01

    We present the first clear observations of meteor shower activity from meteor-head echoes detected by a high-power large-aperture radar (HPLAR). Such observations have been performed at the Jicamarca VHF radar using its interferometric capabilities allowing the discrimination of meteor shower echoes from the much more frequent sporadic meteors. Until now, HPLARs were unable to distinguish meteor shower from the much more common sporadic meteor ones. In this work we have been able to detect and characterize the η-Aquariids (ETA) as well as the Perseids (PER) showers. The shower activity is more conspicuous for the ETA than for the PER shower due to the more favorable geometry. Namely, PER meteors come from low elevation angles, experiencing more filtering due to the combined Earth-atmosphere-radar instrument. In both cases, there is an excellent agreement between the measured mean velocity of the shower echoes and their expected velocity, within a fraction of 1 km s -1. Besides the good agreement with expected visual results, HPLARs observe meteors with a variety of particles sizes and masses, not observed by any other technique. Taking into account the different viewing volumes, compare to optical observations Jicamarca observes more than 1000 times more ETA meteors. Our results indicate that Jicamarca and other HPLARs are able to detect the echoes from meteor showers, but without interferometric capabilities such populations are difficult to identify just from their velocity distributions, particularly if their velocity distributions are expected to be similar to the more dominant distributions of sporadic meteors.

  17. Strongly sheared stratocumulus convection: an observationally based large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zheng, X.; Jiang, Q.

    2012-06-01

    Unusually large wind shears across the inversion in the stratocumulus-topped marine boundary layer (MBL) were frequently observed during VOCALS-REx. To investigate the impact of wind shear on the MBL turbulence structure, a large-eddy simulation (LES) model is used to simulate the strongly sheared MBL observed from Twin-Otter RF 18 on 13 November 2008. The LES simulated turbulence statistics agree in general with those derived from the measurements, with the MBL exhibiting a decoupled structure characterized by an enhanced entrainment and a turbulence intensity minimum just below the clouds. Sensitivity simulations show that the shear forcing tends to reduce the dynamic stability of the inversion, characterized by the bulk (or gradient) Richardson number. This decrease enhances the entrainment mixing, leading to reduced cloud water. Consequently, the turbulence intensity in the MBL is significantly weakened by the intense wind shear. The inversion thickens considerably and the MBL top separates from the cloud top, creating a finite cloud-free sublayer of 10-50 m thickness within the inversion, depending on the Richardson number. The weakened inversion tends to enhance the turbulence buoyant consumption and simultaneously lead to a reduced buoyant production in the cloud layer due to less radiative cooling. These effects may result in a decoupling process that creates the different heating/moistening rates between the cloud and subcloud layer, leading to a two-layered structure in the strongly sheared stratocumulus-topped MBL.

  18. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons

    NASA Technical Reports Server (NTRS)

    Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam

    2013-01-01

    We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.

  19. A Large Biogenic Source of Formic Acid Revealed From Space Observations

    NASA Astrophysics Data System (ADS)

    Stavrakou, T.; Muller, J. J.; Peeters, J.; Razavi, A.; Clarisse, L.; Clerbaux, C.; Coheur, P.; Hurtmans, D.

    2011-12-01

    Formic acid (HCOOH) is a ubiquitous trace gas in ambient air and a major contributor to acidic rain in remote environments. Its sources, however, are far from being fully understood. Along with direct emissions from human activities, vegetation fires and green plants, its major and most uncertain source is photochemical, and predominantly biogenic. Severe underpredictions of observed formic acid concentrations by large scale models in earlier studies pointed to the existence of missing sources. New insights into our understanding of the formic acid budget are brought forward by recent measurements of global tropospheric columns of formic acid retrieved from the thermal infrared IASI satellite sensor. In this communication, we use the IASI observations as input to an advanced source inversion algorithm coupled with a global chemistry transport model to build constraints on the formic acid budget. We deduce an annual formic acid source much higher than estimated from known sources, with a biogenic contribution of about 90%, mostly from tropical and boreal forests. We evaluate the derived fluxes against an extensive compilation of independent formic acid measurements, and investigate the implications of the large formic acid source on precipitation acidity on the global scale.

  20. Confronting the relaxation mechanism for a large cosmological constant with observations

    SciTech Connect

    Basilakos, Spyros; Bauer, Florian; Solà, Joan E-mail: fbauerphysik@eml.cc

    2012-01-01

    In order to deal with a large cosmological constant a relaxation mechanism based on modified gravity has been proposed recently. By virtue of this mechanism the effect of the vacuum energy density of a given quantum field/string theory (no matter how big is its initial value in the early universe) can be neutralized dynamically, i.e. without fine tuning, and hence a Big Bang-like evolution of the cosmos becomes possible. Remarkably, a large class (F{sup n}{sub m}) of models of this kind, namely capable of dynamically adjusting the vacuum energy irrespective of its value and size, has been identified. In this paper, we carefully put them to the experimental test. By performing a joint likelihood analysis we confront these models with the most recent observational data on type Ia supernovae (SNIa), the Cosmic Microwave Background (CMB), the Baryonic Acoustic Oscillations (BAO) and the high redshift data on the expansion rate, so as to determine which ones are the most favored by observations. We compare the optimal relaxation models F{sup n}{sub m} found by this method with the standard or concordance ΛCDM model, and find that some of these models may appear as almost indistinguishable from it. Interestingly enough, this shows that it is possible to construct viable solutions to the tough cosmological fine tuning problem with models that display the same basic phenomenological features as the concordance model.

  1. Very Large Rain Drops from 2D Video Disdrometers and Concomitant Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Gatlin, Patrick; Bringi, V. N.; Carey, Lawrence

    2014-01-01

    Drop size distribution (DSD) measurements using ground-based disdrometers (point measurements) have often been used to derive equations to relate radar observations to the integral rainfall parameters (Atlas et al. 1999, Bringi et al., 2003, Kozu et al., 2006, Tokay and Short, 1996, Ajayi and Owolabi, 1987, Battan, 1973). Disdrometers such as JWD, MRR and several others have a major limitation in measuring drops with equi-volume diameters (D(sub eq)) larger than 5 mm because they often rely on the velocity-diameter relationship which plateaus beyond this diameter range (Atlas et al., 1973, Gunn & Kinzer, 1949). Other disdrometers such as Parsivel also lack accuracy beyond this diameter range. The 2D video disdrometer (2DVD: Schönhuber et al., 2008) on the other hand gives drop-shape contours and velocities for each individual drop/hydrometeor falling through its sensor area; this provides a unique opportunity to study the role of very-large drops on radar measurements in particular those with polarimetric radar capability where DSDs with a significant component of very large drops may require special consideration given that the differential reflectivity and other polarimetric radar parameters including attenuation-correction methods will be sensitive to the concentrations of these large drops. A recent study on the occurrence of large drops by Gatlin et al. (2014) has compiled a large and diverse set of measurements made with the 2D video disdrometers from many locations around the globe. Some of the largest drops found in this study were 9 mm D(sub eq) and larger, and in this paper, we report on three such events, with maximum D(sub eq's) of 9.0, 9.1 and 9.7 mm, which occurred in Colorado, Northern Alabama, and Oklahoma, respectively. Detailed examination of the 2DVD data - in terms of shapes and fall velocities - has confirmed that these are fully-melted hydrometeors, although for the last case in Oklahoma, a bigger and non-fully-melted hydrometeor was also observed. All three events were also captured by polarimetric radars, namely the S-band CHILL radar operated by Colorado State University (Brunkow et al., 2000), the C-band ARMOR radar (Petersen et al., 2007) operated by University of Alabama in Huntsville, and NEXRADKVNX, operated by the US National Weather Service, respectively. For the last event, several other radar observations were also made, including two X-band radars operated by the US Dept. of Energy. Analyses of 2DVD data in conjunction with the corresponding radar observations are presented, along with some discussion on sampling issues related to the measurements of such large rain drops. The latter is addressed using maximum diameter D(sub max) measurements from 1-minute DSDs using two collocated 2DVDs for 37 events in Huntsville.

  2. New challenges for the maintenance strategies on large astronomical facilities at remote observing sites

    NASA Astrophysics Data System (ADS)

    Silber, Armin

    2012-09-01

    The Change from a reacting to a proactive maintenance concept represents for large Observatories at remote operational sites a new challenge, considering the increasing numbers of complex subsystems. Conventional operational maintenance models will not cover all the requirements, will lead to more down time and the operational cost cannot be reduced. For the successful astronomical observation with large telescope facilities new strategies have to be applied. In this contribution we will demonstrate on the example of the 78 Cryogenic Sub-systems of ALMA how a proactive maintenance strategy help to increase the efficiency, to reduce the operational cost and the required staff resources. With respect to the growing number of complex subsystems on future telescope facilities the operational staff needs proper diagnostic and monitoring tools to allow a precise prediction respectively synchronization of the service activities. This leads away from a pure scheduling of preventive maintenance and enables a longer availability of the subsystems as tendencies and performance are monitored and controlled. Having this strategy considered during the developing phase of future large astronomical facilities allows the optimization of the required Infrastructure, a proper definition of the LRU1 strategy and to which level maintenance can be cost efficient on site.

  3. Fiber circular polarizer.

    PubMed

    Hosaka, T; Okamoto, K; Edahiro, T

    1983-12-01

    A fiber circular polarizer, composed of a metal-coated fiber polarizer and a lambda/4 platelet fabricated on a birefringent fiber, has been demonstrated. The lambda/4 platelet was made by cutting a birefringent fiber to an appropriate length. The device structure was designed by stress analysis simulation using a finite element method to set the angle theta = pi/4 between the fiber polarizer axis and the birefringent fiber major axis. The 17.6-dB maximum extinction ratio was obtained when the left- and right-circularly polarized light was launched into the device. It is assumed that such a fiber circular polarizer will operate as a quasi-isolator, because the light reflected from the output, the main factor backing the light source, is eliminated. PMID:18200276

  4. What controls drizzle initiation? Insights from a comparison of large-eddy simulations with observations

    NASA Astrophysics Data System (ADS)

    Witte, M.; Chuang, P. Y.; Wang, L. P.; Ayala, O.

    2014-12-01

    Drizzle occurs frequently in shallow, warm boundary layer clouds. For example, in stratocumulus it occurs approximately 1/3 of the time in full cloud cover conditions (Wood 2012). Drizzle affects moisture and energy budgets, and cloud albedo, morphology and lifetime. At the cloud scale, processes that control drizzle formation include turbulence production via radiative cooling and/or shear, entrainment, and surface moisture fluxes. At the micro-scale, collision-coalescence is the primary process relevant to warm drizzle formation. Differential gravitational sedimentation and turbulent air motions cause cloud droplets to collide, creating drops much larger than can be formed by condensation alone. Other factors, such as preferential concentration and entrainment mixing may also be relevant. The process is typically subdivided into three regimes: autoconversion (small drops self-collide), accretion (large drops collect small drops), and hydrometeor self-collection (large drops self-collide). Of these regimes, autoconversion is the rate-limiting step in existing analytical representations. This study (i) evaluates whether our best theoretical understanding of collision-coalescence in the autoconversion regime can replicate observations, with a broader goal of (ii) exploring which cloud-scale factors are most important for drizzle initiation. A state-of-the-art turbulent collisional growth model is applied to a bin microphysics scheme within a large-eddy simulation such that the full range of cloud drop growth mechanisms are represented (i.e. CCN activation, condensation, collision-coalescence, mixing, etc.) at realistic atmospheric conditions. We compare cloud drop spectra produced by the LES with observations to assess the quality and limits of our theoretical knowledge. The comparison will be performed over a range of observational cases that span a range of drizzle rates. These cases differ in their radiative cooling rates, shear, cloud-top temperature and moisture jumps, and entrainment rates. Using these diverse cases, we will begin to tease apart the cloud-scale factors governing drizzle rates. Initial results for question (i) suggest that in some cases enhancements of 1 to 2 orders of magnitude over predicted collision rates are necessary to reproduce observations.

  5. Circular Ribbon Flares and Homologous Jets

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence Hα blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing "round-trip" motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  6. CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS

    SciTech Connect

    Wang Haimin; Liu Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  7. Forthcoming Coronal Mass Ejection Observations with the Very Large Array (VLA)

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Kooi, Jason E.; Sink, Joseph R.

    2015-04-01

    It is widely recognized that measurement of Faraday rotation through a coronal mass ejection (CME) provides unique information on the internal plasma structure of the CME, particularly the form of the magnetic field. The Faraday rotation measure is proportional to the path integral through the CME of the electron density and the line-of-sight component of the magnetic field. In spite of this importance, there are relatively few measurements of Faraday rotation produced by a CME. The Very Large Array (VLA) of the National Radio Astronomy Observatory is an outstanding instrument for measurement of Faraday rotation, and its capabilities have been greatly improved by an upgrade over the past decade. In the case of VLA observations, the trans-coronal sources of radio waves are radio galaxies and quasars. A difficulty in measuring Faraday rotation of a CME is the unpredictability of the CME phenomenon. It is difficult to predict whether a given line of sight to a background source will be occulted by a CME on a given day. We have received approval to carry out ``triggered'' CME observations with the VLA in the summer of 2015. In these observations, we will rely on coronagraph detections of a CME to initiate VLA observations of select background sources. This observing mode will improve on one previously used, in which a decision to observe had to be made a day or more in advance. The goal of these observations will be to secure Faraday rotation measurements on one or more lines of sight that pass through critical parts of a CME. In this paper, we will describe our planned triggering scheme, the selection of background sources, choice of observing frequency and selection of lines of sight that can best determine the plasma structure of a CME. Our planning also depends on prior experience in measurement of coronal Faraday rotation, and Faraday rotation ``transients'' associated with CMEs. This work was supported at the University of Iowa by grant ATM09-56901 from the National Science Foundation.

  8. Sunyaev-Zel'dovich Observations Using Large-Format Millimeter Arrays

    NASA Astrophysics Data System (ADS)

    Czakon, Nicole G.

    Galaxy clusters are the largest gravitationally bound objects in the observable universe, and they are formed from the largest perturbations of the primordial matter power spectrum. During initial cluster collapse, matter is accelerated to supersonic velocities, and the baryonic component is heated as it passes through accretion shocks. This process stabilizes when the pressure of the bound matter prevents further gravitational collapse. Galaxy clusters are useful cosmological probes, because their formation progressively freezes out at the epoch when dark energy begins to dominate the expansion and energy density of the universe. A diverse set of observables, from radio through X-ray wavelengths, are sourced from galaxy clusters, and this is useful for self-calibration. The distributions of these observables trace a cluster's dark matter halo, which represents more than 80% of the cluster's gravitational potential. One such observable is the Sunyaev-Zel'dovich effect (SZE), which results when the ionized intercluster medium blueshifts the cosmic microwave background via Compton scattering. Great technical advances in the last several decades have made regular observation of the SZE possible. Resolved SZE science, such as is explored in this analysis, has benefitted from the construction of large-format camera arrays consisting of highly sensitive millimeter-wave detectors, such as Bolocam. Bolocam is a submillimeter camera, sensitive to 140 GHz and 268 GHz radiation, located at one of the best observing sites in the world: the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. Bolocam fielded 144 of the original spider web NTD bolometers used in an entire generation of ground-based, balloon-borne, and satellite-borne millimeter wave instrumention. Over approximately six years, our group at Caltech has developed a mature galaxy cluster observational program with Bolocam. This thesis describes the construction of the instrument's full cluster catalog: BOXSZ. Using this catalog, I have scaled the Bolocam SZE measurements with X-ray mass approximations in an effort to characterize the SZE signal as a viable mass probe for cosmology. This work has confirmed the SZE to be a low-scatter tracer of cluster mass. The analysis has also revealed how sensitive the SZE-mass scaling is to small biases in the adopted mass approximation. Future Bolocam analysis efforts are set on resolving these discrepancies by approximating cluster mass jointly with different observational probes.

  9. Observer-based higher order sliding mode control for large optical astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Zhou, Wangping; Ye, Xiaoling; Guo, Wei; Wu, Zhonghua

    2009-05-01

    In order to study more remote universe and the detailed structures of near stars, large-scale astronomical telescopes are very needed with the development of astronomy and astrophysics. In this trend, astronomical telescope becomes more and more huge, which leads its driving system to bear heavy nonlinear disturbances. The increased nonlinear disturbances especially caused by friction torque in the control system can easily bring tingle and stick-slip phenomena when the telescope tracks an object with an ultra-low velocity. However, conventional control approaches are difficult to realize high-precision controls and can decrease the quality of a telescope's observations. Therefore, it will be of significance in theory and in practice to develop an advanced new control method to restrain nonlinear disturbance and improve telescope's observation performance. Sliding mode approach has been applied in many other mechanical control systems since it is invariable to various disturbances. However, conventional sliding mode approach may cause dangerous high-frequency vibrations in corresponding control system, which may influence control performance or even lead the system unstable. To counteract the effect of above nuisance, a high-order sliding mode (HOSM) controller of third-order has been suggested in the large telescope's drive system through theoretic deduction and analysis. On account of that the HOSM approach needs all system states available, a sliding mode observer has then been designed in order to get the acceleration state of the drive system. Simulation results show that this approach can obtain high control precision and may satisfy the requirements of a telescope for a nicely ultra-low velocity.

  10. Determining large-scale heliospheric structure using ultraviolet resonance line observations

    NASA Technical Reports Server (NTRS)

    Hall, Doyle T.

    1995-01-01

    Currently the Pioneer 10 and Voyager 1 and 2 spacecraft are beyond the orbit of Pluto, traveling outward from the Sun. Each is capable of detecting ultraviolet radiation resonantly scattered from hydrogen and helium atoms in the heliosphere and local interstellar medium. These observations are particularly well suited for the investigation of the large-scale heliospheric H and He distributions because the Voyager spacecraft are heading upstream, into the direction of local interstellar flow, whereas Pioneer 10 is heading downstream. Observations of the brightest resonance line, H Lyman-alpha, reveals that beyond about 20 AU from the Sun, upstream intensities decrease less quickly as a function of solar distance than downstream intensities. This implies that the heliospheric H distributions in the upstream and downstream directions are significantly different. Heliospheric H atoms originate in the local interstellar flow, and must penetrate through the heliospheric interface, where they are subject to charge exchange collisions with solar wind and interstellar protons. Models indicate that this process is probably responsible for the upstream/downstream difference in H Lyman-alpha. In addition, a recent spectroscopic determination of the H atom velocity distribution in the inner heliosphere implies a significant deceleration in the bulk flow speed of the heliospheric hydrogen gas relative to the helium flow, an effect that is also likely due to H-p charge exchange occurring in the upstream heliospheric interface region. In this presentation, recent heliospheric resonance line observations and their interpretations will be reviewed, focusing on their sensitivity to large-scale heliospheric structure.

  11. Rapid formation of large aggregates during the spring bloom of Kerguelen Island: observations and model comparisons

    NASA Astrophysics Data System (ADS)

    Jouandet, M.-P.; Jackson, G. A.; Carlotti, F.; Picheral, M.; Stemmann, L.; Blain, S.

    2014-08-01

    While production of aggregates and their subsequent sinking is known to be one pathway for the downward movement of organic matter from the euphotic zone, the rapid transition from non-aggregated to aggregated particles has not been reported previously. We made one vertical profile of particle size distributions (PSD; sizes ranging from 0.052 to several millimeters in equivalent spherical diameter) at pre-bloom stage and seven vertical profiles 3 weeks later over a 48 h period at early bloom stage using the Underwater Vision Profiler during the Kerguelen Ocean and Plateau Compared Study cruise 2 (KEOPS2, October-November 2011). In these naturally iron-fertilized waters southeast of Kerguelen Island (Southern Ocean), the total particle numerical abundance increased by more than fourfold within this time period. A massive total volume increase associated with particle size distribution changes was observed over the 48 h survey, showing the rapid formation of large particles and their accumulation at the base of the mixed layer. The results of a one-dimensional particle dynamics model support coagulation as the mechanism responsible for the rapid aggregate formation and the development of the VT subsurface maxima. The comparison of VT profiles between early bloom stage and pre-bloom stage indicates an increase of particulate export below 200 m when bloom has developed. These results highlight the role of coagulation in forming large particles and triggering carbon export at the early stage of a naturally iron-fertilized bloom, while zooplankton grazing may dominate later in the season. The rapid changes observed illustrate the critical need to measure carbon export flux with high sampling temporal resolution. Our results are the first published in situ observations of the rapid accumulation of marine aggregates and their export and the general agreement of this rapid event with a model of phytoplankton growth and coagulation.

  12. Very Large Telescope observations of Gomez's Hamburger: Insights into a young protoplanet candidate

    NASA Astrophysics Data System (ADS)

    Berné, O.; Fuente, A.; Pantin, E.; Bujarrabal, V.; Baruteau, C.; Pilleri, P.; Habart, E.; Ménard, F.; Cernicharo, J.; Tielens, A. G. G. M.; Joblin, C.

    2015-06-01

    Planets are thought to form in the gas and dust disks around young stars. In particular, it has been proposed that giant planets can form through the gravitational instability of massive extended disks around intermediate-mass stars. However, we still lack direct observations to constrain this mechanism. We have spatially resolved the 8.6 and 11.2 μm emission of a massive protoplanetary disk seen edge on around an A star, Gomez's Hamburger (GoHam), using VISIR at the Very Large Telescope. A compact region situated at a projected distance of 350 ± 50 AU south of the central star is found to have a reduced emission. This asymmetry is fully consistent with the presence of a cold density structure, or clump, identified in earlier CO observations, and we derive physical characteristics consistent with those observations: a mass of 0.8-11.4 Jupiter masses (for a dust-to-gas mass ratio of 0.01), a radius of about 102 astronomical units, and a local density of about 107 cm-3. Based on this evidence, we argue that this clump, which we call GoHam b, is a promising candidate for a young protoplanet formed by gravitational instability that might be representative of the precursors of massive planets observed around A stars, such as HR 8799 or Beta pictoris. More detailed studies at high angular resolution are needed to better constrain the physical properties of this object to confirm this proposal. Based on observations collected at the European Southern Observatory, Chile under program ID 385.C-0762A.Appendices are available in electronic form at http://www.aanda.org

  13. Large Eddy Simulations of Continental Boundary Layer Clouds Observed during the RACORO Field Campaign

    NASA Astrophysics Data System (ADS)

    Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.

    2013-12-01

    Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.

  14. Spectral Decay Characteristics in High Frequency Range of Observed Records from Crustal Large Earthquakes (Part 2)

    NASA Astrophysics Data System (ADS)

    Tsurugi, M.; Kagawa, T.; Irikura, K.

    2012-12-01

    Spectral decay characteristics in high frequency range of observed records from crustal large earthquakes occurred in Japan is examined. It is very important to make spectral decay characteristics clear in high frequency range for strong ground motion prediction in engineering purpose. The authors examined spectral decay characteristics in high frequency range of observed records among three events, the 2003 Miyagi-Ken Hokubu earthquake (Mw 6.1), the 2005 Fukuoka-Ken Seiho-oki earthquake (Mw 6.6), and the 2008 Iwate-Miyagi Nairiku earthquake (Mw 6.9) in previous study [Tsurugi et al.(2010)]. Target earthquakes in this study are two events shown below. *EQ No.1 Origin time: 2011/04/11 17:16, Location of hypocenter: East of Fukushima pref., Mj: 7.0, Mw: 6.6, Fault type: Normal fault *EQ No.2 Origin time: 2011/03/15 22:31, Location of hypocenter: East of Shizuoka pref., Mj: 6.4, Mw: 5.9, Fault type: Strike slip fault The borehole data of each event are used in the analysis. The Butterworth type high-cut filter with cut-off frequency, fmax and its power coefficient of high-frequency decay, s [Boore(1983)], are assumed to express the high-cut frequency characteristics of ground motions. The four parameters such as seismic moment, corner frequency, cut-off frequency and its power coefficient of high-frequency decay are estimated by comparing observed spectra at rock sites with theoretical spectra. The theoretical spectra are calculated based on the omega squared source characteristics convolved with propagation-path effects and high-cut filter shapes. In result, the fmax's of the records from the earthquakes are estimated 8.0Hz for EQ No.1 and 8.5Hz for EQ No.2. These values are almost same with those of other large crustal earthquakes occurred in Japan. The power coefficient, s, are estimated 0.78 for EQ No.1 and 1.65 for EQ No.2. The value for EQ No.2 is notably larger than those of other large crustal earthquakes. It is seems that the value of the power coefficient, s, became large under the effect of complex ground structure and volcanic front. The obtained results may contribute to strong ground motion prediction in high frequency range for crustal earthquakes. Acknowledgement: This study commissioned by Japan Nuclear Energy Safety Organization. We thank the National Research Institute for Earth Science Disaster Prevention to provide the strong-motion data. References: Hanks,T.C. : fmax, Bulletin of Seismological Society of America, 72, 1867-1879, 1982. Boore,D.M. : Stochastic simulation of high-frequency ground motion based on seismological models of the radiated spectra, Bulletin of Seismological Society of America, 73, 1865-1894, 1983. Tsurugi,M., Kagawa,T., and Irikura,K. : Spectral Decay Characteristics in High Frequency Range of Observed Records from Crustal Large Earthquakes, AGU Fall Meeting, 2010.

  15. Reduction of Cloud Water in Ship Tracks: Observations and Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Stevens, D. E.; Toon, O. B.; Coakley, J. A., Jr.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Ship tracks represent a natural laboratory to study the effects of aerosols on clouds. A number of observations and simulations have shown that increased droplet concentrations in ship tracks increase their total cross-sectional area, thereby enhancing cloud albedo and providing a negative radiative forcing at the surface and the top of the atmosphere. In some cases, cloud water has been found to be enhanced in ship tracks, which has been attributed to suppression of drizzle and implies an enhanced susceptibility of cloud albedo to droplet concentrations. However, more recently compiled observations indicate that cloud water is instead reduced in daytime ship tracks on average. Such a response is consistent with cloud-burning due to solar absorption by soot (the semi-direct radiative forcing of aerosols), recently suggested to be suppressing trade cumulus cloud coverage over the Indian Ocean. We will summarize observational evidence and present large-eddy simulations that consider these competing mechanisms in the effects of aerosols on cloud albedo.

  16. From AGBs to PNe: understanding the observations of evolved stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Dell'Agli, Flavia

    2015-08-01

    Asymptotic Giant Branch (AGB) stars represent one of the main stellar sources for dust production in the Universe. We provide a description of the formation and growth of dust particles in the circumstellar envelope of AGBs, based on detailed calculations of the AGB evolutionary phase. We use stellar population synthesis to interpret the Spitzer observations of dusty AGBs in the Large Magellanic Cloud (LMC). Our results show that carbon-rich and oxygen-rich stars evolve into different and separated regions of the observational diagrams obtained with the Spitzer bands. This allows a straight comparison with the spectroscopically confirmed samples of AGBs in the LMC present in the literature. The overall impact of AGBs on the dust production rate in the LMC is also discussed.The interpretation of the AGB population of the LMC is used to describe the observed chemical abundances of the Planetary Nebulae in the same galaxy. This analysis outlines a clear distinction between stars which experience Hot Bottom Burning and those the Third Dredge Up.

  17. A Method for Observing Soil Re-Deposition and Soil Loss Rates in Large Field Experiments

    NASA Astrophysics Data System (ADS)

    Hsieh, Y. P.; Bugna, G. C.; Nemours, D.

    2014-12-01

    The lack of quality soil erosion field data, which is required for the verification and calibration of soil erosion models, has been one of the serious problems in the soil conservation modeling today. Observing soil erosion of a relatively large field under truly unobstructed runoff conditions has rarely been done and doccumented. Report here is the results of our observation of soil erosion in a 7.3 ha peanut-cotton cropping system in the Mears Farm of Grand Ridge, FL. We used the mesh-pad method to quantify soil loss from the field and soil re-deposition in the field over the cropping season of 2010. The main slope (1-3 %) of the field is about 210 m long. We show that the amount of soil re-deposition was 50-150 times of the soil loss from the slope. The corresponding organic matter, nitrogen, phosphorous and silt and clay contents of the lost soil, however, were 20.9%, 21%, 17.6% and 14.2%, respectively, of the total amounts re-deposited on the slope. The amounts of soil loss predicted by a SWAT model was 10-20 times greater than our observed values. Soil erosion process was quite heterogeneous, as shown by the mesh-pad method, even on a seemingly uniform cultivated field. Soil erosion models need to be verified and calibrated by extensive quality field data in order to improve their performance.

  18. Sensitivity of Stratocumulus Optical Depths to Droplet Concentrations: Satellite Observations and Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Stevens, D. E.; Toon, O. B.; Coakley, J. A., Jr.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A number of observations and simulations have shown that increased droplet concentrations in ship tracks increase their total cross-sectional area, thereby enhancing cloud albedo and providing a negative (cooling) radiative forcing at the surface and the top of the atmosphere. In some cases cloud water has been found to be enhanced in ship tracks, which has been attributed to suppression of drizzle and implies an enhanced susceptibility of cloud albedo to droplet concentrations. However, observations from aircraft and satellite indicate that on average cloud water is instead reduced in daytime ship tracks. Such a reduction in liquid water may be attributable to cloud-burning caused by solar heating by soot within the ship exhaust, or by increased precipitation resulting from giant nuclei in the ship exhaust. We will summarize the observational evidence and present results from large-eddy simulations that evaluate these mechanisms. Along the way we will present our insights into the interpretation of satellite retrievals of cloud microphysical properties.

  19. Spitzer SAGE Observations of Young Stellar Objects in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Whitney, Barbara; Sewilo, M.; Indebetouw, R.; Robitaille, T.; Meixner, M.; Vijh, U.; Srinivasan, S.; Meade, M.; Babler, B.; Churchwell, E.; Hora, J.; Gordon, K.; Engelbracht, C.; For, B.; Block, M.; Misselt, K.; Leitherer, C.; Kawamura, A.; Onishi, T.; Mizuno, A.; Fukui, Y.

    2006-12-01

    We have identified thousands of new Young Stellar Objects (YSOs) in the Large Magellanic Cloud. The observations were made with the Spitzer Space Telescope as part of the SAGE Legacy project. The YSOs were selected from the SAGE point source catalog by locating regions of color-magnitude space unoccupied by known sources such as galaxies and evolved stars. Our YSO list is not complete, since those with similar colors and magnitudes to other populations are not included. However, our initial goal is to produce a list that is dominated by YSOs. The spatial distribution of the YSOs correlates with CO, H I, and especially 3 cm observations. We will show analysis of the YSOs based on radiation transfer models. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

  20. A new analysis of the ESO Very Large Telescope (VLT) observations of Titan's at 2 µm.

    NASA Astrophysics Data System (ADS)

    Cours, T.; Rannou, P.; Stelandre, J.; Negrão, A.; Hirtzig, M.; Coustenis, A.; Boudon, V.

    2008-09-01

    In this presentation, we report a new analysis of ESO Very Large Telescope (VLT) observations of Titan at about 2 m m, in the methane band and window. The VLT data consist in two north-south cuts of Titan's disk sampled with about twenty points each point being a spectrum. In this work, we essentially focus on the distribution of the airborn scatterers (e.g, haze aerosols, clouds, mist). In a first step, we compute the outgoing intensity using the prediction of the GCM database for the haze, and we compare the results with the VLT observations. These comparisons allow us to check the validity of the haze layers provided by the GCM database. In a second step, we modify the haze properties and we include a layer of bright scatterers in the troposphere (liquid droplets as observed by DISR) to improve the fit. This work yields a latitude-altitude map of Titan's haze and mist from the VLT data, and we estimate the impact of the haze and the mist layers on the surface albedo retrieval.

  1. Changes in the Molar Ellipticities of HEWL Observed by Circular Dichroism and Quantitated by Time Resolved Fluorescence Anisotropy Under Crystallizing Conditions

    NASA Technical Reports Server (NTRS)

    Sumida, John

    2002-01-01

    Fluid models for simple colloids predict that as the protein concentration is increased, crystallization should occur at some sufficiently high concentration regardless of the strength of attraction. However, empirical measurements do not fully support this assertion. Measurements of the second virial coefficient (B22) indicate that protein crystallization occurs only over a discrete range of solution parameters. Furthermore, observations of a strong correlation between protein solubility and B22, has led to an ongoing debate regarding the relationship between the two. Experimental work in our lab, using Hen Egg White Lysozyme (HEWL), previously revealed that the rotational anisotropy of the protein under crystallizing conditions changes systematically with pH, ionic strength and temperature. These observations are now supported by recent work revealing that small changes in the molar ellipticity also occur systematically with changes in ionic strength and temperature. This work demonstrates that under crystallization conditions, the protein native state is characterized by a conformational heterogeneity that may prove fundamental to the relationship between protein crystallization and protein solubility.

  2. {gamma}-RAY SPECTRAL EVOLUTION OF NGC 1275 OBSERVED WITH FERMI LARGE AREA TELESCOPE

    SciTech Connect

    Kataoka, J.; Stawarz, L.; Cheung, C. C.; Tosti, G.; Cavazzuti, E.; Celotti, A.; Nishino, S.; Fukazawa, Y.; Thompson, D. J.; McConville, W. F.

    2010-05-20

    We report on a detailed investigation of the high-energy {gamma}-ray emission from NGC 1275, a well-known radio galaxy hosted by a giant elliptical located at the center of the nearby Perseus cluster. With the increased photon statistics, the center of the {gamma}-ray-emitting region is now measured to be separated by only 0.46 arcmin from the nucleus of NGC 1275, well within the 95% confidence error circle with radius {approx_equal}1.5 arcmin. Early Fermi Large Area Telescope (LAT) observations revealed a significant decade-timescale brightening of NGC 1275 at GeV photon energies, with a flux about 7 times higher than the one implied by the upper limit from previous EGRET observations. With the accumulation of one year of Fermi-LAT all-sky-survey exposure, we now detect flux and spectral variations of this source on month timescales, as reported in this paper. The average >100 MeV {gamma}-ray spectrum of NGC 1275 shows a possible deviation from a simple power-law shape, indicating a spectral cutoff around an observed photon energy of {epsilon}{sub {gamma}} = 42.2 {+-} 19.6 GeV, with an average flux of F{sub {gamma}} = (2.31 {+-} 0.13) x 10{sup -7} photons cm{sup -2} s{sup -1} and a power-law photon index, {Gamma}{sub {gamma}} = 2.13 {+-} 0.02. The largest {gamma}-ray flaring event was observed in 2009 April-May and was accompanied by significant spectral variability above {epsilon}{sub {gamma} {approx}}> 1-2 GeV. The {gamma}-ray activity of NGC 1275 during this flare can be described by a hysteresis behavior in the flux versus photon index plane. The highest energy photon associated with the {gamma}-ray source was detected at the very end of the observation, with the observed energy of {epsilon}{sub {gamma}} = 67.4 GeV and an angular separation of about 2.4 arcmin from the nucleus. In this paper we present the details of the Fermi-LAT data analysis, and briefly discuss the implications of the observed {gamma}-ray spectral evolution of NGC 1275 in the context of {gamma}-ray blazar sources in general.

  3. A new analysis of the ESO Very Large Telescope (VLT) observations of Titan

    NASA Astrophysics Data System (ADS)

    Cours, T.; Rannou, P.; Coustenis, A.; Negrao, A.; Hirtzig, M.

    2009-04-01

    In this presentation, we report a new analysis of ESO Very Large Telescope (VLT) observations of Titan at about 2 m, in the methane band and window. The VLT data consists in two north-south cuts of Titan's disk with about twenty points in resolution, each point being a spectrum. To analyze this observation, we use the atmospheric properties of Titan recently measured by Huygens, the methane coefficients proposed by Boudon et al. (2006), while the description of the haze layer is from a database derived from the simulations of the Titan Global Climate of the IPSL. We used the radiative transfer model SHDOMPP developed by Evans. This work is hence a significant improvement over the previous analysis by Negrão et al. (2007) In this work, we essentially focus on the distribution of the airborn scatterers (e.g, haze aerosols, clouds, mist). In a first step, we compute the outgoing intensity using the prediction of the GCM database for the haze, and we compare the results with the VLT observations. These comparisons allow us to check the validity of the haze layer provided by the GCM database. In a second step, we modify the haze properties and we include a layer of bright scatterers in the troposphere (liquid droplets as observed by DISR) to improve the fit. This work yields a latitude-altitude map of Titan's haze from the VLT data, and we estimate the impact of the haze and the cloud layer on the surface albedo retrieval. 1) Boudon, V., M. Rey, and M. Loete (2006), The Vibrational Levels of Methane Obtained from Analyses of High- Resolution Spectra, J. Quant Spectrosc., 98, 394-404. 2) Negrão, A., Hirtzig, M., Coustenis, A., Gendron, E., Drossart, P., Rannou, Combes, M., Boudon, V. (2007), 2-micron spectroscopy of Huygens' landing site on Titan with VLT/NACO. J. Geophys. Res. Planets, 112, E02S92.

  4. Observation of the saturation of Langmuir waves driven by ponderomotive force in a large scale plasma

    SciTech Connect

    Kirkwood, R. K.; Moody, J. D.; MacGowan, B. J.; Glenzer, S. H.; Kruer, W. L.; Estabrook, K. G.; Wharton, K. B.; Williams, E. A.; Berger, R. L.

    1997-06-22

    We report the observation of amplification of a probe laser beam (I {le} 1 {times} 10{sup 14} W/cm{sup 2}) in a large scale ({approximately} 1 mm) plasma by interaction with a pumping laser beam (I = 2 {times} 10{sup 15} W/cm{sup 2}) and a stimulated Langmuir wave. When the plasma density is adjusted to allow the Langmuir wave dispersion to match the difference frequency and wave number of the two beams, amplification factors as high as {times} 2.5 result. Interpretation of this amplification as scattering of pump beam energy by the Langmuir wave that is produced by the ponderomotive force of the two beams, allows the dependence of Langmuir wave amplitude on ponderomotive force to be measured. It is found that the Langmuir wave amplitude saturates at a level that depends on ion wave damping, and is generally consistent with secondary ion wave instabilities limiting its growth. 20 refs., 4 figs.

  5. Large Angular Jump Mechanism Observed for Hydrogen Bond Exchange in Aqueous Perchlorate Solution

    SciTech Connect

    Ji, Minbiao; Odelius3, Michael; Gaffney1, K.J.; /aff SLAC, PULSE

    2010-06-11

    The mechanism for hydrogen bond (H-bond) switching in solution has remained subject to debate despite extensive experimental and theoretical studies. We have applied polarization-selective multidimensional vibrational spectroscopy to investigate the H-bond exchange mechanism in aqueous NaClO{sub 4} solution. The results show that a water molecule shifts its donated H-bonds between water and perchlorate acceptors by means of large, prompt angular rotation. Using a jump-exchange kinetic model, we extract an average jump angle of 49 {+-} 4{sup o}, in qualitative agreement with the jump angle observed in molecular dynamics simulations of the same aqueous NaClO{sub 4} solution.

  6. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-01-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  7. Observation of collision and oscillation of microdroplets with extremely large shear deformation

    NASA Astrophysics Data System (ADS)

    Yamada, Tatsuya; Sakai, Keiji

    2012-02-01

    We measured the viscosity and surface tension of various liquids under large (˜106 s-1) shear deformation. Oscillation of a 10-μm size microdroplet is brought about by the head-on collision of two droplets. Since the Reynolds number is as small as 100, the motion of the liquid is stable and the dynamic image is obtained with high reproducibility by the stroboscopic method. By observing and evaluating the mechanical oscillation of the microdroplet, of which frequency ranges typically in 100 - 300 kHz, we found that the viscosity of ethylene glycol and diethylene glycol is smaller than the known literature value, which is considered to be the viscosity at zero-frequency. This phenomena can be attributed to the slow viscous relaxation of associated liquids due to the re-combination dynamics of the network of H-bonds.

  8. Metrics for Optimization of Large Synoptic Survey Telescope Observations of Stellar Variables and Transients

    NASA Astrophysics Data System (ADS)

    Lund, Michael B.; Siverd, Robert J.; Pepper, Joshua A.; Stassun, Keivan G.

    2016-02-01

    The Large Synoptic Survey Telescope (LSST) will be the largest time-domain photometric survey ever. In order to maximize the LSST science yield for a broad array of transient stellar phenomena, it is necessary to optimize the survey cadence, coverage, and depth via quantitative metrics that are specifically designed to characterize the time-domain behavior of various types of stellar transients. In this paper, we present three such metrics built on the LSST Metric Analysis Framework model. Two of the metrics quantify the ability of LSST to detect non-periodic and/or non-recurring transient events and the ability of LSST to reliably measure periodic signals of various timescales. The third metric provides a way to quantify the range of stellar parameters in the stellar populations that LSST will probe. We provide example uses of these metrics and discuss some implications based on these metrics for optimization of the LSST survey for observations of stellar variables and transients.

  9. A secure and reliable monitor and control system for remote observing with the Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Wallace, Gary; Souccar, Kamal; Malin, Daniella

    2004-09-01

    Remote access to telescope monitor and control capabilities necessitates strict security mechanisms to protect the telescope and instruments from malicious or unauthorized use, and to prevent data from being stolen, altered, or corrupted. The Large Millimeter Telescope (LMT) monitor and control system (LMTMC) utilizes the Common Object Request Broker Architecture (CORBA) middleware technology to connect remote software components. The LMTMC provides reliable and secure remote observing by automatically generating SSLIOP enabled CORBA objects. TAO, the ACE open source Object Request Broker (ORB), now supports secure communications by implementing the Secure Socket Layer Inter-ORB Protocol (SSLIOP) as a pluggable protocol. This capability supplies the LMTMC with client and server authentication, data integrity, and encryption. Our system takes advantage of the hooks provided by TAO SSLIOP to implement X.509 certificate based authorization. This access control scheme includes multiple authorization levels to enable granular access control.

  10. Observation of the low to high confinement transition in the large helical device

    NASA Astrophysics Data System (ADS)

    Toi, K.; Ohdachi, S.; Yamamoto, S.; Sakakibara, S.; Narihara, K.; Tanaka, K.; Morita, S.; Morisaki, T.; Goto, M.; Takagi, S.; Watanabe, F.; Nakajima, N.; Watanabe, K. Y.; Ida, K.; Ikeda, K.; Inagaki, S.; Kaneko, O.; Kawahata, K.; Komori, A.; Masuzaki, S.; Matsuoka, K.; Miyazawa, J.; Nagaoka, K.; Nagayama, Y.; Oka, Y.; Osakabe, M.; Ohyabu, N.; Takeiri, Y.; Tokuzawa, T.; Tsumori, K.; Yamada, H.; Yamada, I.; Yoshinuma, K.; LHD Experimental Group

    2005-02-01

    The low to high confinement transition has been observed on the large helical device [A. Iiyoshi, A. Komori, A. Ejiri et al., Nucl. Fusion 39, 1245 (1999)], exhibiting rapid increase in edge electron density with sharp depression of Hα emission. The transition occurs in low toroidal field (Bt=0.5-0.75T) discharges and are heated by high power neutral beam injection. The plasma thus has a relatively high value (˜1.5%) of the volume averaged β value. The electron temperature and density profiles have steep gradients at the edge region which has high magnetic shear but is at a magnetic hill. Formation of the edge transport barrier leads to enhanced activities of the interchange type of modes with m =2/n=3 (m ,n are the poloidal and toroidal mode numbers) in the edge region. At present, these magnetohydrodynamic activities limit the rise of the stored energy; the resultant increment of the stored energy remains modest.

  11. Merged interaction regions and large-scale magnetic field fluctuations during 1991: Voyager 2 observations

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    1994-01-01

    This paper analyzes Voyager 2 observations of the magnetic field between 33.6 AU and 36.2 AU during 1991 when extraordinary events were observed on the Sun and in the heliosphere. The magnetic field strength signal B(t) has the unusual form of two large transient merged interaction regions (MIRs) on a fluctuating background. The two MIRs moved past the spacecraft in 32 days and 18 days, respectively. The mean field strength in each transient MIR was approx. equals 2.6 times the mean field during the remaining part of the year (0.11 nT). Each of the MIRs is related to a fast stream. The magnetic field is strong throughout each stream, suggesting that the strong fields are carried by the streams as well as produced by shock and stream compression. The fluctuations in B(t) during 1991 are not multifractal, and the MIRs cannot be approximated as multifractal clusters of intense magnetic fields. The distribution of the hour-averaged magnetic field strengths is approximately lognormal over 90% of its intermediate range, and it has an exponential tail for B greater than the average magnetic field strength. The elevation angles of B have a normal distribution with a standard deviation of 16 deg +/- 4 deg. The distributions of the azimuthal angles of B in the ranges 1 deg - 180 deg and 180 deg - 360 deg are approximately normal over a more limited range, and non-Gaussian tails associated with nearly radial magnetic fields; the standard deviations are approx. equal to 40 deg. Individual sectors are present throughout most of the interval, even in the MIRs, but there is no recurrent sector pattern. A model of the large-scale fluctuations in 1991 will have to include both determinaistic and statistical factors.

  12. Observing the Moon at Microwave Frequencies Using a Large-Diameter Deep Space Network Antenna

    NASA Astrophysics Data System (ADS)

    Morabito, David D.; Imbriale, William; Keihm, Stephen

    2008-03-01

    The Moon radiates energy at infrared and microwave wavelengths, in addition to reflecting sunlight at optical wavelengths. As a result, an antenna pointed at or near the Moon will result in an increase in system operating noise temperature, which needs to be accounted for in RF telecommunications, radio science or radiometric link calculations. The NASA Deep Space Network (DSN) may use its large-diameter antennas in future lunar robotic or human missions, and thus it is important to understand the nature of this temperature incre ase as a function of observing frequency, lunar phase, and angular position of the antenna beam on the lunar disk. This paper reports on a comprehensive lunar noise temperature measurement campaign and associated theoretical treatment for a 34-m diameter Deep Space Network antenna observing an extended source such as the Moon. A set of measurements over a wide range of lunar phase angles was acquired at DSS-13, a 34-m diameter beam waveguide antenna (BWG) located at Goldstone, California at 2.3 GHz (S-band), 8.4 GHz (X-band) and 32 GHz (Ka-band). For validation purposes, independent predictions of noise temperature increase were derived using a physical optics characterization of the 34-m diameter antenna gain patterns and Apollo model-based brightness temperature maps of the Moon as input. The model-based predictions of noise temperature increase were compared with the measurements at all three frequencies. In addition, a methodology is presented that relates noise temperature increase due to the Moon to disk-centered or disk-averaged brightness temperature of the Moon at the microwave frequencies of interest. Comparisons were made between the measurements and models in the domain of lunar disk-centered and disk-averaged brightness temperatures. It is anticipated that the measurements and associated theoretical development will be useful in developing telecommunications strategies for future high-rate Ka-band communications where large diameter DSN antennas will be required.

  13. The kinematics in the large-scale environment of Betelgeuse from radio HI-line observations

    NASA Astrophysics Data System (ADS)

    Le Bertre, T.; Gérard, E.; Matthews, L. D.

    2013-05-01

    The observations of mass losing stellar sources in the H i line at 21 cm allow us to study in detail the kinematics in their large size circumstellar shells. We report on the results that have been obtained on Betelgeuse with the Nançay Radiotelescope (NRT) and with the Very Large Array (VLA). On the stellar position, we find a double-horn line profile characteristic of a freely expanding wind at a velocity of ~ 14 km s-1. We find also that the stellar outflow is slowed down by the pressure from the ambient medium, and forms a quasi-stationary detached shell of ~ 4' in diameter (0.24 pc at a distance of 200 pc). The H i line profile from this detached shell has a width of 3 km s-1, and is centered at a velocity close to the star radial velocity (Vlsr = +3 km s-1). The bulk of the material detected in H i ( ~ 0.05 M⊙) has been heated at a temperature ~ 6000 K, and is cooling down to ~ 200 K. Furthermore, due to the motion relative to the local interstellar medium, the detached shell is distorted and elongated in a direction close to the space motion. Finally, we have detected H i emission associated with the 6' radius far-infrared arc seen by IRAS, and with a counterpart to this arc that we have recently discovered in the far-ultraviolet. This H i emission is found in a velocity range (from +6 to +10 km s-1) which matches that of the interstellar medium observed on the same line-of-sight.

  14. Wiimote Experiments: Circular Motion

    ERIC Educational Resources Information Center

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  15. Wiimote Experiments: Circular Motion

    NASA Astrophysics Data System (ADS)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-03-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.

  16. The quasiperpendicular environment of large magnetic pulses in Earth's quasiparallel foreshock - ISEE 1 and 2 observations

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Moses, S. L.; Coroniti, F. V.; Farris, M. H.; Russell, C. T.

    1993-01-01

    ULF waves in Earth's foreshock cause the instantaneous angle theta-B(n) between the upstream magnetic field and the shock normal to deviate from its average value. Close to the quasi-parallel (Q-parallel) shock, the transverse components of the waves become so large that the orientation of the field to the normal becomes quasi-perpendicular (Q-perpendicular) during applicable phases of each wave cycle. Large upstream pulses of B were observed completely enclosed in excursions of Theta-B(n) into the Q-perpendicular range. A recent numerical simulation included Theta-B(n) among the parameters examined in Q-parallel runs, and described a similar coincidence as intrinsic to a stage in development of the reformation process of such shocks. Thus, the natural environment of the Q-perpendicular section of Earth's bow shock seems to include an identifiable class of enlarged magnetic pulses for which local Q-perpendicular geometry is a necessary association.

  17. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1994-01-01

    Envision is an interactive environment that provides researchers in the earth sciences convenient ways to manage, browse, and visualize large observed or model data sets. Its main features are support for the netCDF and HDF file formats, an easy to use X/Motif user interface, a client-server configuration, and portability to many UNIX workstations. The Envision package also provides new ways to view and change metadata in a set of data files. It permits a scientist to conveniently and efficiently manage large data sets consisting of many data files. It also provides links to popular visualization tools so that data can be quickly browsed. Envision is a public domain package, freely available to the scientific community. Envision software (binaries and source code) and documentation can be obtained from either of these servers: ftp://vista.atmos.uiuc.edu/pub/envision/ and ftp://csrp.tamu.edu/pub/envision/. Detailed descriptions of Envision capabilities and operations can be found in the User's Guide and Reference Manuals distributed with Envision software.

  18. Large NAT particle formation by mother clouds: Analysis of SOLVE/THESEO-2000 observations

    NASA Astrophysics Data System (ADS)

    Fueglistaler, S.; Luo, B. P.; Buss, S.; Wernli, H.; Voigt, C.; Mller, M.; Neuber, R.; Hostetler, C. A.; Poole, L. R.; Flentje, H.; Fahey, D. W.; Northway, M. J.; Peter, Th.

    2002-06-01

    During the SOLVE/THESEO-2000 Arctic stratospheric campaign in the winter 1999/2000 widespread occurrences of very large HNO3-containing particles, probably composed of nitric acid trihydrate (NAT), were observed in situ by instruments on board the ER-2 stratospheric research aircraft. These large NAT particles were found with low number densities (n ~ 10-4 cm-3) in vast regions, in air generally supersaturated with respect to NAT. Within the same campaign other instruments have performed airborne and ground-based measurements of polar stratospheric clouds (PSCs), often showing the existence of type 1a and type 1a-enh clouds. Such PSCs often occur on the mesoscale with particle number densities n >~ 10-2cm-3 and are also most likely composed of NAT. We use forward trajectories for the path of NAT particles, which are advected by winds based on ECMWF analyses and sediment due to gravity, to show that high number density NAT PSCs (mother clouds) could give rise to low number density NAT particle populations several days downstream.

  19. Rapid formation of large aggregates during the spring bloom of Kerguelen Island: observations and model comparisons

    NASA Astrophysics Data System (ADS)

    Jouandet, M.-P.; Jackson, G. A.; Carlotti, F.; Picheral, M.; Stemmann, L.; Blain, S.

    2014-03-01

    We recorded vertical profiles of particle size distributions (PSD, sizes ranging from 0.052 to several mm in equivalent spherical diameter) in the natural iron-fertilized bloom southeast of Kerguelen Island (Southern Ocean) from pre-bloom to early bloom stage. PSD were measured by the Underwater Vision Profiler during the Kerguelen Ocean and Plateau Compared Study cruise 2 (KEOPS 2, October-November 2011). The total particle numerical abundance was more than 4 fold higher during the early bloom phase compared to pre-bloom conditions as a result of the 2-weeks bloom development. We witnessed the rapid formation of large particles and their accumulation at the base of the mixed layer within a two days period, as indicated by changes in total particle volume (VT) and particle size distribution. The VT profiles suggest sinking of particles from the mixed layer to 200 m, but little export deeper than 200 m during the observation period. The results of a one dimensional particles dynamic model support coagulation as the mechanism responsible for the rapid aggregate formation and the development of the VT subsurface maxima. Comparison with KEOPS1, which investigated the same area during late summer, and previous iron fertilization experiments highlights physical aggregation as the primary mechanism for large particulate production during the earlier phase of iron fertilized bloom and its export from the surface mixed layer.

  20. Geophysical characterization of two circular structures at Bajada del Diablo (Patagonia, Argentina): Indication of impact origin

    NASA Astrophysics Data System (ADS)

    Prezzi, Claudia B.; Orgeira, María Julia; Acevedo, Rogelio D.; Ponce, Juan Federico; Martinez, Oscar; Rabassa, Jorge O.; Corbella, Hugo; Vásquez, Carlos; González-Guillot, Mauricio; Subías, Ignacio

    2012-02-01

    An impact origin has been proposed for the circular structures found in Bajada del Diablo, Patagonia, Argentina. Taking into account its extension and the number of impact structures, Bajada del Diablo would be the largest meteoritic impact areas known on Earth, being an extremely interesting area for the research of impact events and processes. Moreover, the global distribution of known impact structures shows a surprising asymmetry. Particularly, South America has only seven described areas. It is evident that this situation is an artifact, highlighting the importance of intensifying the research in the least studied areas such as Argentina. Circular structures in Bajada del Diablo have been identified on two rock types: the Quiñelaf eruptive complex and Pampa Sastre Formation. In the first case, circular structures are placed in olivine basalts. On the other hand, Pampa Sastre Formation (late Pliocene/early Pleistocene) corresponds to conglomerate layers with basalt clasts boulder and block in size in a coarse sandy matrix. With the aim of further the investigation of the proposed impact origin for these circular structures, we carried out detailed topographic, magnetic and electromagnetic ground surveys in two circular structures ("8" and "A") found in Pampa Sastre conglomerates. Both circular structures are simple, bowl-shaped with rim diameters of 300 m and maximum depths of 10 m. They have been partially filled in by debris flows from the rims and wind-blown sands. Two preliminary magnetic profiles have also been carried out in circular structure "G" found in Quiñelaf basalts. The magnetic anomalies show a circular pattern with a slightly negative and relatively flat signal in the circular structures' bases. Furthermore in the circular structures' rims, high-amplitude, conspicuous and localized (short wavelength) anomalies are observed. Such large amplitude and short wavelength anomalies are not detected outside the circular structures. For all used frequencies, the electromagnetic profiles show lower apparent electrical conductivities in the circular structures' base, while the rims present notably higher values. Curvature attributes, analytic signal, horizontal gradient and Euler solutions were calculated for the magnetic data. 2.5D magnetic models were developed across the studied circular structures. Our results suggest that in the circular structures' bases up to 12 m of Pampa Sastre conglomerate would have been removed. On the contrary, the circular structures' rims exhibit high-amplitude, localized magnetic anomalies and higher apparent electrical conductivities, which would be related to the anomalous accumulation of basalt boulders and blocks remanently magnetized. Such high-amplitude anomalies are not present outside the surveyed circular structures. The geomorphological, geological and geophysical features of the studied circular structures can only be explained by means of an extra-terrestrial projectile impact. We conclude that, considering the results obtained to date, Bajada del Diablo should be envisaged as a focus of further research, which could provide novel information about impact events, associated processes and their evidences. Particularly, the data produced in this study could represent one of the first documented geophysical signatures of the impact of a comet nucleus on Earth.

  1. Solar Observations with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; ALMA Solar Development Team

    2016-04-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint North American, European, and East Asian project that opens the mm-sub mm wavelength part of the electromagnetic spectrum for general astrophysical exploration, providing high-resolution imaging in frequency bands currently ranging from 84 GHz to 950 GHz (300 microns to 3 mm). It is located in the Atacama desert in northern Chile at an elevation of 5000 m. Despite being a general purpose instrument, provisions have been made to enable solar observations with ALMA. Radiation emitted at ALMA wavelengths originates mostly from the chromosphere, which plays an important role in the transport of matter and energy, and the in heating the outer layers of the solar atmosphere. Despite decades of research, the solar chromosphere remains a significant challenge: both to observe, owing to the complicated formation mechanisms of currently available diagnostics; and to understand, as a result of the complex nature of the structure and dynamics of the chromosphere. ALMA has the potential to change the scene substantially as it serves as a nearly linear thermometer at high spatial and temporal resolution, enabling us to study the complex interaction of magnetic fields and shock waves and yet-to-be-discovered dynamical processes. Moreover, ALMA will play an important role in the study of energetic emissions associated with solar flares at sub-THz frequencies.

  2. SDO/AIA OBSERVATIONS OF LARGE-AMPLITUDE LONGITUDINAL OSCILLATIONS IN A SOLAR FILAMENT

    SciTech Connect

    Li Ting; Zhang Jun E-mail: zjun@nao.cas.cn

    2012-11-20

    We present the first Solar Dynamics Observatory/Atmospheric Imaging Assembly observations of the large-amplitude longitudinal (LAL) oscillations in the south and north parts (SP and NP) of a solar filament on 2012 April 7. Both oscillations are triggered by flare activities close to the filament. The period varies with filamentary threads, ranging from 44 to 67 minutes. The oscillations of different threads are out of phase, and their velocity amplitudes vary from 30 to 60 km s{sup -1}, with a maximum displacement of about 25 Mm. The oscillations of the SP repeat for about four cycles without any significant damping and then a nearby C2.4 flare causes the transition from the LAL oscillations of the filament to its later eruption. The filament eruption is also associated with a coronal mass ejection and a B6.8 flare. However, the oscillations of the NP damp with time and die out at last. Our observations show that the activated part of the SP repeatedly shows a helical motion. This indicates that the magnetic structure of the filament is possibly modified during this process. We suggest that the restoring force is the coupling of the magnetic tension and gravity.

  3. Catalogue of Large Magellanic Cloud star clusters observed in the Washington photometric system

    NASA Astrophysics Data System (ADS)

    Palma, T.; Gramajo, L. V.; Clariá, J. J.; Lares, M.; Geisler, D.; Ahumada, A. V.

    2016-02-01

    Aims: The main goal of this study is to compile a catalogue of the fundamental parameters of a complete sample of 277 star clusters (SCs) of the Large Magellanic Cloud (LMC) observed in the Washington photometric system. A set of 82 clusters was recently studied by our team. Methods: All the clusters' parameters such as radii, deprojected distances, reddenings, ages, and metallicities were obtained by applying essentially the same procedures, which are briefly described here. We used empirical cumulative distribution functions to examine age, metallicity and deprojected distance distributions for different cluster subsamples of the catalogue. Results: Our new sample of 82 additional clusters represents about a 40% increase in the total number of LMC SCs observed to date in the Washington photometric system. In particular, we report here the fundamental parameters obtained for the first time for 42 of these clusters. We found that single LMC SCs are typically older than multiple SCs. Both single and multiple SCs exhibit asymmetrical distributions in log (age). We compared cluster ages derived through isochrone fittings obtained using different models of the Padova group. Although ages obtained using recent isochrones are consistent in general terms, we found that there is some disagreement in the obtained values and their uncertainties.

  4. Microwave observations of late-type stars with the Very Large Array

    NASA Technical Reports Server (NTRS)

    Pallavicini, R.; Willson, R. F.; Lang, K. R.

    1985-01-01

    The Very Large Array was used to search for microwave emission from 32 stars of late spectral type including RS CVn type stars, dwarf M stars, and stars with active chromospheres, coronae, or intense magnetic fields. The RS CVn stars were detected at 6 cm wavelength, and upper limits are established for another six. Radio emission was detected from three dwarf M flare stars, UV Cet, EQ Peg and YZ CMi. Both impulsive (no more than 20 s) and more gradual (at least ten minutes) bursts were observed from the flare star YZ CMi. Radio emission was not confirmed at 6 cm from the solar type star Chi(1) Ori, with an upper limit that is three times lower than the detections reported by other observers. Microwave emission could not be detected from any other solar type star of spectral class F to K. The quiescent radio emission from dwarf M flare stars was interpreted as nonthermal gyrosynchrotron emission by mildly relativistic electrons accelerated more or less continuously in the magnetic fields of starspots.

  5. Dust-obscured star formation in the Frontier Fields: New observations from the Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Pope, Alexandra

    2016-01-01

    Millimeter observations are crucial to complete the census of star formation in the Universe since we know that the majority occurs behind dust. We present a new 1.1 mm survey of two of the HST Frontier Fields clusters taken with AzTEC on the Large Millimeter Telescope. The clusters act as cosmic telescopes to amplify lower-luminosity galaxies, probing further down the millimeter luminosity function than possible with blank-field observations, and detecting dust in galaxies with star formation rates as low as <10 solar masses per year. We present our deep number counts, including detailed simulations to account for the magnifications, and the multi-wavelength properties of our millimeter detections. We discuss the nature of these sources relative to previous (sub)millimeter surveys. Finally, we highlight the discovery of dust in multiply-imaged systems that allows us to measure the dust-obscured star formation in the typical galaxies that dominated the star formation rate density.

  6. Mechanical and hydrologic basis for the rapid motion of a large tidewater glacier. 1: Observations

    NASA Technical Reports Server (NTRS)

    Meier, Mark; Lundstrom, Scott; Stone, Dan; Kamb, Barclay; Engelhardt, Hermann; Humphrey, Neil; Dunlap, William W.; Fahnestock, Mark; Krimmel, Robert M.; Walters, Roy

    1994-01-01

    Measurements of glacier flow velocity and basal water pressure at two sites on Columbia Glacier, Alaska, are combined with meteorological and hydrologic data to provide an observational basis for assessing the role of water storage and basal water pressure in the rapid movement of this large glacier. During the period from July 5 to August 31, 1987, coordinated observations were made of glacier surface motion and of water level in five boreholes drilled to (or in one case near to) the glacier bed at two sites, 5 and 12 km from the terminus. Glacier velocities increased downglacier in this reach from about 4 m/d to about 7 m/d. Three types of time variation in velocity and other variables were revealed: (1) Diurnal fluctuation in water input/output, borehole water level, and ice velocity (fluctuation amplitude 5 to 8%); (2) Speed-up events in glacier motion (15-30% speed-up), lasting about three days, and ocurring at times of enhanced input of water, in some cases from rain and in others from ice ablation enhanced by strong, warm winds; (3) 'Extra-slowdown' events, in which, after a speed-up event, the ice velocity decreased in about 3 days to a level consistently lower than that prior to the speed-up event. All of the time variations were due, directly or indirectly, to variations in water input to the glacier.

  7. SEISMOLOGY OF A LARGE SOLAR CORONAL LOOP FROM EUVI/STEREO OBSERVATIONS OF ITS TRANSVERSE OSCILLATION

    SciTech Connect

    Verwichte, E.; Van Doorsselaere, T.; Foullon, C.; Nakariakov, V. M.; Aschwanden, M. J.

    2009-06-10

    The first analysis of a transverse loop oscillation observed by both Solar TErrestrial RElations Observatories (STEREO) spacecraft is presented, for an event on the 2007 June 27 as seen by the Extreme Ultraviolet Imager (EUVI). The three-dimensional loop geometry is determined using a three-dimensional reconstruction with a semicircular loop model, which allows for an accurate measurement of the loop length. The plane of wave polarization is found from comparison with a simulated loop model and shows that the oscillation is a fundamental horizontally polarized fast magnetoacoustic kink mode. The oscillation is characterized using an automated method and the results from both spacecraft are found to match closely. The oscillation period is 630 {+-} 30 s and the damping time is 1000 {+-} 300 s. Also, clear intensity variations associated with the transverse loop oscillations are reported for the first time. They are shown to be caused by the effect of line-of-sight integration. The Alfven speed and coronal magnetic field derived using coronal seismology are discussed. This study shows that EUVI/STEREO observations achieve an adequate accuracy for studying long-period, large-amplitude transverse loop oscillations.

  8. Large-Field CO(J = 1→0) Observations of the Starburst Galaxy M 82

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Miyamoto, Yusuke; Yamauchi, Aya; Tsuru, Takeshi G.

    2013-06-01

    We present large-field (15.7 × 16.9 arcmin2) CO(J = 1→0) observations of the starburst galaxy M 82, at an angular resolution of 22" with the NRO 45-m telescope. The CO emission was detected in the galactic disk, outflow (driven by the galactic wind) up to ˜2 kpc above the galactic plane in the halo, and in tidal streams. The kinematics of the outflow (including CO line splitting) suggests that it has the shape of a cylinder that is diverging outwards. The mass and kinetic energy of the molecular gas outflow are estimated to be (0.26-1.0) × 109 M⊙ and (1-4) × 1056 erg. A clump of CO gas was discovered 3.5 kpc above the galactic plane; it coincides with a dark lane previously found in X-ray observations, and a peak in H I emission. A comparison with H I, hot molecular hydrogen and dust suggests that the molecular gas shows signatures of warm and cool components in the outflow and tidal streams, respectively.

  9. Method for optimizing channelized quadratic observers for binary classification of large-dimensional image datasets

    PubMed Central

    Kupinski, M. K.; Clarkson, E.

    2015-01-01

    We present a new method for computing optimized channels for channelized quadratic observers (CQO) that is feasible for high-dimensional image data. The method for calculating channels is applicable in general and optimal for Gaussian distributed image data. Gradient-based algorithms for determining the channels are presented for five different information-based figures of merit (FOMs). Analytic solutions for the optimum channels for each of the five FOMs are derived for the case of equal mean data for both classes. The optimum channels for three of the FOMs under the equal mean condition are shown to be the same. This result is critical since some of the FOMs are much easier to compute. Implementing the CQO requires a set of channels and the first- and second-order statistics of channelized image data from both classes. The dimensionality reduction from M measurements to L channels is a critical advantage of CQO since estimating image statistics from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. In a simulation study we compare the performance of ideal and Hotelling observers to CQO. The optimal CQO channels are calculated using both eigenanalysis and a new gradient-based algorithm for maximizing Jeffrey's divergence (J). Optimal channel selection without eigenanalysis makes the J-CQO on large-dimensional image data feasible. PMID:26366764

  10. Observations of supernova remnants in the Large Magellanic Cloud with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.; Long, K. S.

    1980-01-01

    Consideration is given to the Large Magellanic Cloud (LMC), noting that above 2 keV, the X-ray luminosity of the LMC is dominated by emission from 3-5 point sources similar to the bright sources near the center of our own Galaxy. The imaging proportional counter aboard the Einstein Observatory has been used to locate about 40 X-ray sources in the LMC. Supernova remnants observed in the LMC are presented, noting X-ray position, X-ray counting rate, and radio flux. For the six brightest sources, X-ray spectra have been analyzed to determine temperatures and intrinsic luminosity corrected for the interstellar absorption. These data are compared for parameters for the young galactic remnant of Tycho's supernova. Attention is given to the ratio of X-ray luminosity to radio luminosity, and the data are discussed within the framework of the standard blast-wave theory. The results of applying the model to recorded observations are numerically presented. In addition to providing a sample of objects for investigations of supernova remnants, the data are applicable to studies of galaxies of other morphological types and individual objects, such as N49.

  11. Temperature dependent EUV spectra of Gd, Tb and Dy ions observed in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.

    2015-07-01

    We have observed a number of different types of extreme ultraviolet (EUV) spectra from highly charged gadolinium (Gd), terbium (Tb) and dysprosium (Dy) ions in optically thin plasmas produced in the Large Helical Device at the National Institute for Fusion Science. Temporal changes in EUV spectra in the 6-9 nm region subsequent to the injections of solid pellets were measured by a grazing incidence spectrometer. The spectra rapidly change from discrete features into unresolved transition arrays (UTAs) following a drop in the electron temperature after the heating power is reduced. In particular, extremely narrowed UTA features, which comprise spectral lines of Ag-like, Pd-like and neighboring ion stages, are observed when the peak electron temperature is less than 0.45 keV due to the formation of hollow plasmas. Some discrete spectral lines of Cu-like and Ag-like ions have been identified in the high and low temperature plasmas, respectively, some of which are experimentally identified for the first time.

  12. The topology of large-scale structure. III - Analysis of observations. [in universe

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Weinberg, David H.; Miller, John; Thuan, Trinh X.; Schneider, Stephen E.

    1989-01-01

    A recently developed algorithm for quantitatively measuring the topology of large-scale structures in the universe was applied to a number of important observational data sets. The data sets included an Abell (1958) cluster sample out to Vmax = 22,600 km/sec, the Giovanelli and Haynes (1985) sample out to Vmax = 11,800 km/sec, the CfA sample out to Vmax = 5000 km/sec, the Thuan and Schneider (1988) dwarf sample out to Vmax = 3000 km/sec, and the Tully (1987) sample out to Vmax = 3000 km/sec. It was found that, when the topology is studied on smoothing scales significantly larger than the correlation length (i.e., smoothing length, lambda, not below 1200 km/sec), the topology is spongelike and is consistent with the standard model in which the structure seen today has grown from small fluctuations caused by random noise in the early universe. When the topology is studied on the scale of lambda of about 600 km/sec, a small shift is observed in the genus curve in the direction of a 'meatball' topology.

  13. Production and trapping of cold circular Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Anderson, D. A.; Schwarzkopf, A.; Sapiro, R. E.; Raithel, G.

    2013-09-01

    Cold circular Rydberg atoms are produced and magnetically trapped. The trap is characterized by direct spatial imaging of ion distributions, ion counting, and state-selective field ionization. At room temperature, we observe about 70% of the trapped atoms remaining after 6 ms. We measure a trap oscillation frequency increase of the circular Rydberg atom trap relative to the ground-state atom trap due to the larger magnetic moment of the circular Rydberg atoms. Simulations of the center-of-mass and internal-state evolution of circular states in our magnetic trap are performed and results are in good agreement with experimental observations.

  14. Deep view of the Large Magellanic Cloud with six years of Fermi-LAT observations

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonino, R.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Drell, P. S.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hill, A. B.; Horan, D.; Jóhannesson, G.; Knödlseder, J.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Maldera, S.; Martin, P.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Murgia, S.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Romani, R. W.; Sánchez-Conde, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, M.; Zimmer, S.

    2016-02-01

    Context. The nearby Large Magellanic Cloud (LMC) provides a rare opportunity of a spatially resolved view of an external star-forming galaxy in γ-rays. The LMC was detected at 0.1-100 GeV as an extended source with CGRO/EGRET and using early observations with the Fermi-LAT. The emission was found to correlate with massive star-forming regions and to be particularly bright towards 30 Doradus. Aims: Studies of the origin and transport of cosmic rays (CRs) in the Milky Way are frequently hampered by line-of-sight confusion and poor distance determination. The LMC offers a complementary way to address these questions by revealing whether and how the γ-ray emission is connected to specific objects, populations of objects, and structures in the galaxy. Methods: We revisited the γ-ray emission from the LMC using about 73 months of Fermi-LAT P7REP data in the 0.2-100 GeV range. We developed a complete spatial and spectral model of the LMC emission, for which we tested several approaches: a simple geometrical description, template-fitting, and a physically driven model for CR-induced interstellar emission. Results: In addition to identifying PSR J0540-6919 through its pulsations, we find two hard sources positionally coincident with plerion N 157B and supernova remnant N 132D, which were also detected at TeV energies with H.E.S.S. We detect an additional soft source that is currently unidentified. Extended emission dominates the total flux from the LMC. It consists of an extended component of about the size of the galaxy and additional emission from three to four regions with degree-scale sizes. If it is interpreted as CRs interacting with interstellar gas, the large-scale emission implies a large-scale population of ~1-100 GeV CRs with a density of ~30% of the local Galactic value. On top of that, the three to four small-scale emission regions would correspond to enhancements of the CR density by factors 2 to 6 or higher, possibly more energetic and younger populations of CRs compared to the large-scale population. An alternative explanation is that this is emission from an unresolved population of at least two dozen objects, such as pulsars and their nebulae or supernova remnants. This small-scale extended emission has a spatial distribution that does not clearly correlate with known components of the LMC, except for a possible relation to cavities and supergiant shells. Conclusions: The Fermi-LAT GeV observations allowed us to detect individual sources in the LMC. Three of the newly discovered sources are associated with rare and extreme objects. The 30 Doradus region is prominent in GeV γ-rays because PSR J0540-6919 and N 157B are strong emitters. The extended emission from the galaxy has an unexpected spatial distribution, and observations at higher energies and in radio may help to clarify its origin. FITS file of Fig. 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A71

  15. Statics of circular-ring stiffeners for monocoque fuselages

    NASA Technical Reports Server (NTRS)

    Stieda, W

    1942-01-01

    For circular-ring stiffeners in monocoque fuselages the bending moments, axial forces, and shear forces under the action of applied external forces or a moment are accurately computed by known methods. Circular-ring stiffeners with variable moments of inertia are likewise considered. In comparison with the step-by-step and partially graphical procedure, the one here described is a more accurate and at the same time a simpler method.

  16. Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Stein, Ariel F.; Castell, Nuria; de la Rosa, Jesus D.; Sanchez de la Campa, Ana M.; Gonzalez-Castanedo, Yolanda; Draxler, Roland R.

    2012-03-01

    Arsenic is a toxic element for human health. Consequently, a mean annual target level for arsenic at 6 ng m-3 in PM10 was established by the European Directive 2004/107/CE to take effect January 2013. Cu-smelters can contribute to one-third of total emissions of arsenic in the atmosphere. Surface observations taken near a large Cu-smelter in the city of Huelva (Spain) show hourly arsenic concentrations in the range of 0-20 ng m-3. The arsenic peaks of 20 ng m-3 are higher than values normally observed in urban areas around Europe by a factor of 10. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model has been employed to predict arsenic emissions, transport, and dispersion from the Cu-smelter. The model utilized outputs from different meteorological models and variations in the model physics options to simulate the uncertainty in the dispersion of the arsenic plume. Modeling outputs from the physics ensemble for each meteorological model driving HYSPLIT show the same number of arsenic peaks. HYSPLIT coupled with the Weather Research and Forecasting (WRF-ARW) meteorological output predicted the right number of peaks for arsenic concentration at the observation site. The best results were obtained when the WRF simulation used both four-dimensional data assimilation and surface analysis nudging. The prediction was good in local sea breeze circulations or when the flow was dominated by the synoptic scale prevailing winds. However, the predicted peak was delayed when the transport and dispersion was under the influence of an Atlantic cyclone. The calculated concentration map suggests that the plume from the Cu-smelter can cause arsenic pollution events in the city of Huelva as well as other cities and tourist areas in southwestern Spain.

  17. EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE NEBULA AROUND G79.29+0.46

    SciTech Connect

    Umana, G.; Buemi, C. S.; Trigilio, C.; Leto, P.; Agliozzo, C.; Ingallinera, A.; Noriega-Crespo, A.; Hora, J. L.

    2011-09-20

    We have observed the radio nebula surrounding the Galactic luminous blue variable candidate G79.29+0.46 with the Expanded Very Large Array (EVLA) at 6 cm. These new radio observations allow a morphological comparison between the radio emission, which traces the ionized gas component, and the mid-IR emission, a tracer of the dust component. The InfraRed Array Camera (8 {mu}m) and the Multiband Imaging Photometer for Spitzer (24 {mu}m and 70 {mu}m) images have been reprocessed and compared with the EVLA map. We confirm the presence of a second shell at 24 {mu}m and also provide evidence for its detection at 70 {mu}m. The differences between the spatial morphology of the radio and mid-IR maps indicate the existence of two dust populations, the cooler one emitting mostly at longer wavelengths. Analysis of the two dusty, nested shells have provided us with an estimate of the characteristic timescales for shell ejection, providing important constraints for stellar evolutionary models. Finer details of the ionized gas distribution can be appreciated thanks to the improved quality of the new 6 cm image, most notably the highly structured texture of the nebula. Evidence of interaction between the nebula and the surrounding interstellar medium can be seen in the radio map, including brighter features that delineate regions where the shell structure is locally modified. In particular, the brighter filaments in the southwest region appear to frame the shocked southwestern clump reported from CO observations.

  18. FIRST OBSERVATIONS OF A DOME-SHAPED LARGE-SCALE CORONAL EXTREME-ULTRAVIOLET WAVE

    SciTech Connect

    Veronig, A. M.; Muhr, N.; Kienreich, I. W.; Temmer, M.; Vrsnak, B.

    2010-06-10

    We present first observations of a dome-shaped large-scale extreme-ultraviolet coronal wave, recorded by the Extreme Ultraviolet Imager instrument on board STEREO-B on 2010 January 17. The main arguments that the observed structure is the wave dome (and not the coronal mass ejection, CME) are (1) the spherical form and sharpness of the dome's outer edge and the erupting CME loops observed inside the dome; (2) the low-coronal wave signatures above the limb perfectly connecting to the on-disk signatures of the wave; (3) the lateral extent of the expanding dome which is much larger than that of the coronal dimming; and (4) the associated high-frequency type II burst indicating shock formation low in the corona. The velocity of the upward expansion of the wave dome (v {approx} 650 km s{sup -1}) is larger than that of the lateral expansion of the wave (v {approx} 280 km s{sup -1}), indicating that the upward dome expansion is driven all the time, and thus depends on the CME speed, whereas in the lateral direction it is freely propagating after the CME lateral expansion stops. We also examine the evolution of the perturbation characteristics: first the perturbation profile steepens and the amplitude increases. Thereafter, the amplitude decreases with r {sup -2.5{+-}0.3}, the width broadens, and the integral below the perturbation remains constant. Our findings are consistent with the spherical expansion and decay of a weakly shocked fast-mode MHD wave.

  19. Observations of a large flare in GX 1+4 with the Compton gamma ray observatory

    NASA Technical Reports Server (NTRS)

    Staubert, R.; Maisack, M.; Kendziorra, E.; Draxler, T.; Finger, M. H.; Fishman, G. J.; Strickman, M. S.; Starr, C. H.

    1995-01-01

    The pulsating X-ray binary GX 1+4 (4U 1728-24) was observed by Oriented Scintillation Spectrometer Experiment (OSSE) onboard the Compton Gamma Ray Observatory (CGRO) from 9 to 21 September 1993 as a target of oppurtunity after Burst and Transient Source Experiment (BATSE) had detected the onset of a large flare by the greatly increased pulsed flux at the period of approximately 2 min. The total flux in the 40-100 keV range as observed by the OSSE reached its maximum of 83 mCrab on 14/15 September, after which it fell sharply to about 31 mCrab within 2 days. The spectrum is well described by thermal type spectra. The characteristic temperature of the average OSSE spectrum for a thermal Bremsstrahlung model is kT = (35.5 +/- 0.5) keV. A single power law can be ruled out. There is evidence for a hardening of the spectrum with decreasing intensity at the end of the flare. The barycentric pulse period was (120.567 +/- 0.005) s on 5 September. The average spin-down rate as taken from the standard BATSE analysis was dP/dt = 0.0105 s/day, and constant over the time of the flare. A further target of oppurtunity (TOO) observation with the ROSAT Position Sensitive Proportional Counter (PSPC) on 18 September led to the first detection of the source with a reflecting X-ray telescope and to a signifcantly improved position: RA(2000) = 17h 32m 2.1s and DEC(2000) = -24 deg 44 min 44 sec. This position 3.5 sec from V2116 Oph, with a 90% error radius of 8 sec is the most accurate so far obtained with an X-ray instrument, thus confirming the identification with the suspected stellar counterpart.

  20. Fermi Large Area Telescope observation of high-energy solar flares: constraining emission scenarios

    NASA Astrophysics Data System (ADS)

    Omodei, Nicola; Pesce-Rollins, Melissa; Petrosian, Vahe; Liu, Wei; Rubio da Costa, Fatima

    2015-08-01

    The Fermi Large Area Telescope (LAT) is the most sensitive instrument ever deployed in space for observing gamma-ray emission >100 MeV. This has also been demonstrated by its detection of quiescent gamma-ray emission from pions produced by cosmic-ray protons interacting in the solar atmosphere, and from cosmic-ray electron interactions with solar optical photons. The Fermi LAT has also detected high-energy gamma-ray emission associated with GOES M-class and X-class X-ray flares, each accompanied by a coronal mass ejection and a solar energetic particle event increasing the number of detected solar flares by almost a factor of 10 with respect to previous space observations. During the impulsive phase, gamma rays with energies up to several hundreds of MeV have been recorded by the LAT. Emission up to GeV energies lasting several hours after the flare has also been recorded by the LAT. Of particular interest are the recent detections of two solar flares whose position behind the limb was confirmed by the STEREO-B satellite. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources.

  1. Characteristics of large-scale wave structure observed from African and Southeast Asian longitudinal sectors

    NASA Astrophysics Data System (ADS)

    Tulasi Ram, S.; Yamamoto, M.; Tsunoda, R. T.; Chau, H. D.; Hoang, T. L.; Damtie, B.; Wassaie, M.; Yatini, C. Y.; Manik, T.; Tsugawa, T.

    2014-03-01

    The spatial large-scale wave structure (LSWS) at the base of F layer is the earliest manifestation of seed perturbation for Rayleigh-Taylor instability, hence, found to play a deterministic role in the development of Equatorial Plasma Bubbles (EPBs). Except for a few case studies, a comprehensive investigation has not been conducted on the characteristics of LSWS because of the complexity involved in detecting the LSWS, particularly, in spatial domain. In this scenario, a comprehensive study is carried out, for the first time, on the spatial and temporal characteristics of LSWS observed in spatial domain over African and Southeast Asian longitudinal sectors during the year 2011. The observations indicate that these wave structures can be detected a few degrees west of E region sunset terminator and found to grow significantly at longitudes past the sunset terminator. The phase fronts of these spatial structures are found to align with the geomagnetic field (B?) lines over a latitudinal belt for at least 5-6 (~500-600 km) centered on dip equator. The zonal wavelengths of these structures are found to vary from 100 to 700 km, which is consistent with the earlier reports, and the EPBs were consistently observed when the amplitudes of LSWS were grown to sufficient strengths. These results would provide better insights on the underlying physical processes involved in excitation of LSWS in terms of important roles being played by E region electrical loading and polarization electric fields induced via spatially varying dynamo current due to neutral wind perturbations associated with atmospheric gravity waves.

  2. VERY LARGE ARRAY OH ZEEMAN OBSERVATIONS OF THE STAR-FORMING REGION S88B

    SciTech Connect

    Sarma, A. P.; Eftimova, M.; Brogan, C. L.; Bourke, T. L.; Troland, T. H.

    2013-04-10

    We present observations of the Zeeman effect in OH thermal absorption main lines at 1665 and 1667 MHz taken with the Very Large Array toward the star-forming region S88B. The OH absorption profiles toward this source are complicated, and contain several blended components toward a number of positions. Almost all of the OH absorbing gas is located in the eastern parts of S88B, toward the compact continuum source S88B-2 and the eastern parts of the extended continuum source S88B-1. The ratio of 1665/1667 MHz OH line intensities indicates the gas is likely highly clumped, in agreement with other molecular emission line observations in the literature. S88-B appears to present a similar geometry to the well-known star-forming region M17, in that there is an edge-on eastward progression from ionized to molecular gas. The detected magnetic fields appear to mirror this eastward transition; we detected line-of-sight magnetic fields ranging from 90 to 400 {mu}G, with the lowest values of the field to the southwest of the S88B-1 continuum peak, and the highest values to its northeast. We used the detected fields to assess the importance of the magnetic field in S88B by a number of methods; we calculated the ratio of thermal to magnetic pressures, we calculated the critical field necessary to completely support the cloud against self-gravity and compared it to the observed field, and we calculated the ratio of mass to magnetic flux in terms of the critical value of this parameter. All these methods indicated that the magnetic field in S88B is dynamically significant, and should provide an important source of support against gravity. Moreover, the magnetic energy density is in approximate equipartition with the turbulent energy density, again pointing to the importance of the magnetic field in this region.

  3. Exploring the origin of a large cavity in Abell 1795 using deep Chandra observations

    NASA Astrophysics Data System (ADS)

    Walker, S. A.; Fabian, A. C.; Kosec, P.

    2014-12-01

    We examine deep stacked Chandra observations of the galaxy cluster Abell 1795 (over 700 ks) to study in depth a large (34 kpc radius) cavity in the X-ray emission. Curiously, despite the large energy required to form this cavity (4PV = 4 × 1060 erg), there is no obvious counterpart to the cavity on the opposite side of the cluster, which would be expected if it has formed due to jets from the central active galactic nucleus (AGN) inflating bubbles. There is also no radio emission associated with the cavity, and no metal enhancement or filaments between it and the brightest cluster galaxy, which are normally found for bubbles inflated by AGN which have risen from the core. One possibility is that this is an old ghost cavity, and that gas sloshing has dominated the distribution of metals around the core. Projection effects, particularly the long X-ray bright filament to the south-east, may prevent us from seeing the companion bubble on the opposite side of the cluster core. We calculate that such a companion bubble would easily have been able to uplift the gas in the southern filament from the core. Interestingly, it has recently been found that inside the cavity is a highly variable X-ray point source coincident with a small dwarf galaxy. Given the remarkable spatial correlation of this point source and the X-ray cavity, we explore the possibility that an outburst from this dwarf galaxy in the past could have led to the formation of the cavity, but find this to be an unlikely scenario.

  4. A Summary of Large Raindrop Observations from GPM GV Field Campaigns

    NASA Technical Reports Server (NTRS)

    Gatlin, Patrick N.; Petersen, Walter; Tokay, Ali; Thurai, Merhala; Bringi, V. N.; Carey, Lawrence; Wingo, Matthew

    2013-01-01

    NASA's Global Precipitation Measurement Mission (GPM) has conducted as series of Ground Validation (GV) studies to assist algorithm development for the GPM core satellite. Characterizing the drop size distribution (DSD) for different types of precipitation systems is critical in order to accurately estimate precipitation across the majority of the planet. Thus far, GV efforts have sampled DSDs in a variety of precipitation systems from Finland to Oklahoma. This dataset consists of over 33 million raindrops sampled by GPM GV's two-dimensional video disdrometers (2DVD) and includes RSD observations from the LPVEx, MC3E, GCPEx, HyMEx and IFloodS campaigns as well as from GV sites in Huntsville, AL and Wallops Island, VA. This study focuses on the larger end of the raindrop size spectrum, which greatly influences radar reflectivity and has implications for moment estimation. Thus knowledge of the maximum diameter is critical to GPM algorithm development. There are over 24,000 raindrops exceeding 5 mm in diameter contained within this disdrometer dataset. The largest raindrops in the 2DVD dataset (>7-8 mm in diameter) are found within intense convective thunderstorms, and their origins are believed to be hailstones. In stratiform rainfall, large raindrops have also been found to fall from lower and thicker melting layers. The 2DVD dataset will be combined with that collected by dual-polarimetric radar and aircraft particle imaging probes to "follow" the vertical evolution of the DSD tail (i.e., retrace the large drops from the surface to their origins aloft).

  5. Small Earth Observing Satellites Flying with Large Satellites in the A-Train

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Loverro, Adam; Case, Warren F.; Queruel, Nadege; Marechal, Chistophe; Barroso, Therese

    2009-01-01

    This paper/poster presents a real-life example of the benefits of flying small satellites with other satellites, large or small, and vice versa. Typically, most small satellites fly payloads consisting of one or two instruments and fly in orbits that are independent from that of other satellites. The science data from these satellites are either used in isolation or correlated with instrument data from other satellites. Data correlation with other satellites is greatly improved when the measurements of the same point or air mass are taken at approximately the same time. Scientists worldwide are beginning to take advantage of the opportunities for improved data correlation, or coincidental science, offered by the international Earth Observing Constellation known as the A-Train (sometimes referred to as the Afternoon Constellation). Most of the A-Train satellites are small - the A-Train is anchored by two large NASA satellites (EOS-Aqua and EOS-Aura), but consists also of 5 small satellites (CloudSat, CALIPSO, PARASOL, OCO and Glory these last two will join in 2009). By flying in a constellation, each mission benefits from coincidental observations from instruments on the other satellites in the constellation. Essentially, from a data point of view, the A-Train can be envisioned as a single, virtual science platform with multiple instruments. Satellites in the A-Train fly at 705 km in sun-synchronous orbits. Their mean local times at the equator are within seconds to a few minutes of each other. This paper describes the challenges of operating an international constellation of independent satellites from the U.S. and Europe to maximize the coincidental science opportunities while at the same time minimizing the level of operational interactions required between team members. The A-Train mission teams have been able to demonstrate that flying as members of an international constellation does not take away the flexibility to accommodate new requirements. Specific examples will be cited, including CloudSat's relocation (to accommodate a new viewing angle for the CALIPSO satellite), Glory's replan to move closer to PARASOL, and OCO's long term plans to minimize on-orbit operations costs while maintaining safety. In all cases, safety is ensured, science returns are enhanced, and operational flexibility is retained to the maximum extent possible.

  6. CARIBIC DOAS observations of nitrous acid and formaldehyde in a large convective cloud

    NASA Astrophysics Data System (ADS)

    Heue, K.-P.; Riede, H.; Walter, D.; Brenninkmeijer, C. A. M.; Wagner, T.; Frieß, U.; Platt, U.; Zahn, A.; Stratmann, G.; Ziereis, H.

    2014-07-01

    The chemistry in large thunderstorm clouds is influenced by local lightning-NOx production and uplift of boundary layer air. Under these circumstances trace gases like nitrous acid (HONO) or formaldehyde (HCHO) are expected to be formed or to reach the tropopause region. However, up to now only few observations of HONO at this altitude have been reported. Here we report on a case study where enhancements in HONO, HCHO and nitrogen oxides (NOx) were observed by the CARIBIC flying laboratory (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). The event took place in a convective system over the Caribbean Sea in August 2011. Inside the cloud the light path reaches up to 100 km. Therefore the DOAS instrument on CARIBIC was very sensitive to the tracers inside the cloud. Based on the enhanced slant column densities of HONO, HCHO and NO2, average mixing ratios of 37, 468 and 210 ppt, respectively, were calculated. These data represent averages for constant mixing ratios inside the cloud. However, a large dependency on the assumed profile is found; for HONO a mixing ratio of 160 ppt is retrieved if the total amount is assumed to be situated in the uppermost 2 km of the cloud. The NO in situ instrument measured peaks up to 5 ppb NO inside the cloud; the background in the cloud was about 1.3 ppb, and hence clearly above the average outside the cloud (≈ 150 ppt). The high variability and the fact that the enhancements were observed over a pristine marine area led to the conclusion that, in all likelihood, the high NO concentrations were caused by lighting. This assumption is supported by the number of flashes that the World Wide Lightning Location Network (WWLLN) counted in this area before and during the overpass. The chemical box model CAABA is used to estimate the NO and HCHO source strengths which are necessary to explain our measurements. For NO a source strength of 10 × 109 molec cm-2 s-1 km-1 is found, which corresponds to the lightning activity as observed by the World Wide Lightning Location network, and lightning emissions of 5 × 1025 NO molec flash-1 (2.3-6.4 × 1025). The uncertainties are determined by a change of the input parameters in the box model, the cloud top height and the flash density. The emission rate per flash is scaled up to a global scale and 1.9 (1.4-2.5) tg N a-1 is estimated. The HCHO updraught is of the order of 120 × 109 molec cm-2 s-1 km-1. Also isoprene and CH3OOH as possible HCHO sources are discussed.

  7. Multiwavelength observation of a large-scale flux rope eruption above a kinked small filament

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Cho, Kyung-Suk

    2014-12-01

    We analyzed multiwavelength observations of a western limb flare (C3.9) that occurred in AR NOAA 111465 on 30 April 2012. The high-resolution images recorded by SDO/AIA 304, 1600 Å and Hinode/SOT Hα show the activation of a small filament (rising speed ~40 km s-1) associated with a kink instability and the onset of a C-class flare near the southern leg of the filament. The first magnetic reconnection occurred at one of the footpoints of the filament and caused the breaking of its southern leg. The filament shows unwinding motion of the northern leg and apex in counterclockwise direction and failed to erupt. A flux-rope structure (visible only in hot channels, i.e., AIA 131 and 94 Å and Hinode/SXT) appeared along the neutral line during the second magnetic reconnection that occurred above the kinked filament. The formation of the RHESSI hard X-ray source (12-25 keV) above the kinked filament and the simultaneous appearance of the hot 131 Å loops associated with photospheric brightenings (AIA 1700 Å) indicates the particle acceleration along these loops from the top of the filament. In addition, extreme ultraviolet disturbances or waves observed above the filament in 171 Å also show a close association with magnetic reconnection. The flux rope rises slowly (~100 km s-1), which produces a very large twisted structure possibly through reconnection with the surrounding sheared magnetic fields within ~15-20 min, and showed an impulsive acceleration reaching a height of about 80-100 Mm. AIA 171 and SWAP 174 Å images reveal a cool compression front (or coronal mass ejection frontal loop) surrounding the hot flux rope structure. Movies associated with Figs. 2 and 7 are available in electronic form at http://www.aanda.org

  8. Constraints on Lorentz Invariance Violation from Fermi -Large Area Telescope Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Courturier, C.; Granot, J.; Stecker, Floyd William; Cohen-Tanugi, J.; Longo, F.

    2013-01-01

    We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E(sub QG)) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB 090510 and are E(sub QG,1) > 7.6 times the Planck energy (E(sub Pl)) and E(sub QG,2) > 1.3×10(exp 11) GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of approx. 2. Our results disfavor any class of models requiring E(sub QG,1) < or approx. E(sub Pl)

  9. The European Large Area ISO Survey - I. Goals, definition and observations

    NASA Astrophysics Data System (ADS)

    Oliver, Seb; Rowan-Robinson, Michael; Alexander, D. M.; Almaini, O.; Balcells, M.; Baker, A. C.; Barcons, X.; Barden, M.; Bellas-Velidis, I.; Cabrera-Guerra, F.; Carballo, R.; Cesarsky, C. J.; Ciliegi, P.; Clements, D. L.; Crockett, H.; Danese, L.; Dapergolas, A.; Drolias, B.; Eaton, N.; Efstathiou, A.; Egami, E.; Elbaz, D.; Fadda, D.; Fox, M.; Franceschini, A.; Genzel, R.; Goldschmidt, P.; Graham, M.; Gonzalez-Serrano, J. I.; Gonzalez-Solares, E. A.; Granato, G. L.; Gruppioni, C.; Herbstmeier, U.; Hraudeau, P.; Joshi, M.; Kontizas, E.; Kontizas, M.; Kotilainen, J. K.; Kunze, D.; La Franca, F.; Lari, C.; Lawrence, A.; Lemke, D.; Linden-Vrnle, M. J. D.; Mann, R. G.; Mrquez, I.; Masegosa, J.; Mattila, K.; McMahon, R. G.; Miley, G.; Missoulis, V.; Mobasher, B.; Morel, T.; Nrgaard-Nielsen, H.; Omont, A.; Papadopoulos, P.; Perez-Fournon, I.; Puget, J.-L.; Rigopoulou, D.; Rocca-Volmerange, B.; Serjeant, S.; Silva, L.; Sumner, T.; Surace, C.; Vaisanen, P.; van der Werf, P. P.; Verma, A.; Vigroux, L.; Villar-Martin, M.; Willott, C. J.

    2000-08-01

    We describe the European Large Area ISO Survey (ELAIS). ELAIS was the largest single Open Time project conducted by ISO, mapping an area of 12deg2 at 15?m with ISOCAM and at 90?m with ISOPHOT. Secondary surveys in other ISO bands were undertaken by the ELAIS team within the fields of the primary survey, with 6deg2 being covered at 6.7?m and 1deg2 at 175?m. This paper discusses the goals of the project and the techniques employed in its construction, as well as presenting details of the observations carried out, the data from which are now in the public domain. We outline the ELAIS `preliminary analysis' which led to the detection of over 1000 sources from the 15 and 90-?m surveys (the majority selected at 15?m with a flux limit of ~3mJy), to be fed into a ground-based follow-up campaign, as well as a programme of photometric observations of detected sources using both ISOCAM and ISOPHOT. We detail how the ELAIS survey complements other ISO surveys in terms of depth and areal coverage, and show that the extensive multi-wavelength coverage of the ELAIS fields resulting from our concerted and on-going follow-up programme has made these regions amongst the best studied areas of their size in the entire sky, and, therefore, natural targets for future surveys. This paper accompanies the release of extremely reliable subsets of the `preliminary analysis' products. Subsequent papers in this series will give further details of our data reduction techniques, reliability and completeness estimates and present the 15- and 90-?m number counts from the `preliminary analysis', while a further series of papers will discuss in detail the results from the ELAIS `final analysis', as well as from the follow-up programme.

  10. Solar Observations with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Bastian, Timothy S.

    2015-04-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint North American, European, and East Asian project that opens the mm-submm wavelength part of the electromagnetic spectrum for general astrophysical exploration, providing high-resolution imaging in frequency bands currently ranging from 84 GHz to 950 GHz (300 microns to 3 mm). Despite being a general purpose instrument, provisions have been made to enable solar observations with ALMA. Radiation emitted at ALMA wavelengths originates mostly from the chromosphere, which plays an important role in the transport of matter and energy, and the in heating the outer layers of the solar atmosphere. Despite decades of research, the solar chromosphere remains a significant challenge: both to observe, owing to the complicated formation mechanisms of currently available diagnostics; and to understand, as a result of the complex nature of the structure and dynamics of the chromosphere. ALMA has the potential to change the scene substantially as it serves as a nearly linear thermometer at high spatial and temporal resolution, enabling us to study the complex interaction of magnetic fields and shock waves and yet-to-be-discovered dynamical processes. Moreover, ALMA will play an important role in the study of energetic emissions associated with solar flares at sub-THz frequencies.In this paper we describe recent efforts to ensure that ALMA can be usefully exploited by the scientific community to address outstanding questions in solar physics. We summarize activities by the ALMA solar development team comprised of scientists from the East Asia, North America, and Europe. These activities include instrument testing, development of calibration and imaging strategies, software requirements development, and science simulations. Opportunities for the wider community to contribute to these efforts will be highlighted.

  11. Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    1997-01-01

    The following is the final technical report for grant NAGW-3442, 'Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere'. Research efforts in the first year concentrated on transport and mixing processes in the polar vortices. Three papers on mixing in the Antarctic were published. The first was a numerical modeling study of wavebreaking and mixing and their relationship to the period of observed stratospheric waves (Bowman). The second paper presented evidence from TOMS for wavebreaking in the Antarctic (Bowman and Mangus 1993). The third paper used Lagrangian trajectory calculations from analyzed winds to show that there is very little transport into the Antarctic polar vortex prior to the vortex breakdown (Bowman). Mixing is significantly greater at lower levels. This research helped to confirm theoretical arguments for vortex isolation and data from the Antarctic field experiments that were interpreted as indicating isolation. A Ph.D. student, Steve Dahlberg, used the trajectory approach to investigate mixing and transport in the Arctic. While the Arctic vortex is much more disturbed than the Antarctic, there still appears to be relatively little transport across the vortex boundary at 450 K prior to the vortex breakdown. The primary reason for the absence of an ozone hole in the Arctic is the earlier warming and breakdown of the vortex compared to the Antarctic, not replenishment of ozone by greater transport. Two papers describing these results have appeared (Dahlberg and Bowman; Dahlberg and Bowman). Steve Dahlberg completed his Ph.D. thesis (Dahlberg and Bowman) and is now teaching in the Physics Department at Concordia College. We also prepared an analysis of the QBO in SBUV ozone data (Hollandsworth et al.). A numerical study in collaboration with Dr. Ping Chen investigated mixing by barotropic instability, which is the probable origin of the 4-day wave in the upper stratosphere (Bowman and Chen). The important result from this paper is that even in the presence of growing, unstable waves, the mixing barriers around

  12. Chandra and Very Large Array Observations of the Nearby Sd Galaxy NGC 45

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas G.; Swartz, Douglas A.; Laine, Seppo; Schlegel, Eric M.; Lacey, Christina K.; Moffitt, William P.; Sharma, Biswas; Lackey-Stewart, Aaron M.; Kosakowski, Alekzander R.; Filipović, Miroslav D.; Payne, Jeffrey L.

    2015-09-01

    We present an analysis of high angular resolution observations made in the X-ray and the radio with the Chandra X-ray Observatory and the Karl Jansky Very Large Array (VLA), respectively, of the nearby spiral galaxy NGC 45. This galaxy is the third that we have considered in a study of the supernova remnant (SNR) populations of nearby spiral galaxies and the present work represents the first detailed analysis of the discrete X-ray and radio source populations of this galaxy. We analyzed data sets from the three pointed observations made of this galaxy with Chandra along with a merged data set obtained from combining these data sets: the total effective exposure time of the merged data set is 63515 s. A total of 25 discrete X-ray sources are found in the entire field of view of the ACIS-S3 chip, with 16 sources found within the visual extent of the galaxy. We estimate that as many as half of the sources detected in the entire field of view of the ACIS-S3 chip and seven of the sources detected in the optical extent of NGC 45 may be background sources. We analyzed the spectral properties of the discrete X-ray sources within the galaxy and conclude that the majority of these sources are X-ray binaries. We have searched for counterparts at different wavelengths to the discrete X-ray sources and we find two associations: one with a star cluster and the other with a background galaxy. We have found one source that is clearly variable within one observation and seven that are seen to vary from one observation to another. We also conduct a photometric analysis to determine the near-infrared fluxes of the discrete X-ray sources in Spitzer Infrared Array Camera channels. We constructed a cumulative luminosity function of the discrete X-ray sources seen toward NGC 45: taking into account simultaneously the luminosity function of background sources, the fitted slope of the cumulative luminosity function Γ = -1.3{}-1.6+0.7 (all error bounds correspond to 90% confidence intervals). The VLA observations reveal seven discrete radio sources: we find no overlaps between these sources and the X-ray detected sources. Based on their measured spectral indices and their locations with respect to the visible extent of NGC 45, we classify one source as a candidate radio SNR associated with the galaxy and the others as likely background galaxies seen in projection toward NGC 45. Finally, we discuss the properties of a background cluster of galaxies (denoted as CXOU J001354.2-231254.7) seen in projection toward NGC 45 and detected by the Chandra observations. The fit parameters to the extracted Chandra spectra of this cluster are a column density {N}{{H}} = 0.07(<0.14) × 1022 cm-2, a temperature kT = 4.22{}-1.42+2.08 keV, an abundance Z = 0.30(<0.75) relative to solar and a redshift z = 0.28 ± 0.14. From the fit parameters we derive an electron number density {n}{{e}} = 4(±1) × 10-3 cm-3, an unabsorbed X-ray luminosity {L}0.5-7.0 {keV} ˜ 8.77(±0.96) × 1043 erg s-1 for the cluster and an X-ray emitting mass M = 2.32(±1.75) × 1012 {M}⊙ .

  13. Geo-reCAPTCHA: Crowdsourcing large amounts of geographic information from earth observation data

    NASA Astrophysics Data System (ADS)

    Hillen, Florian; Höfle, Bernhard

    2015-08-01

    The reCAPTCHA concept provides a large amount of valuable information for various applications. First, it provides security, e.g., for a form on a website, by means of a test that only a human could solve. Second, the effort of the user for this test is used to generate additional information, e.g., digitization of books or identification of house numbers. In this work, we present a concept for adapting the reCAPTCHA idea to create user-generated geographic information from earth observation data, and the requirements during the conception and implementation are depicted in detail. Furthermore, the essential parts of a Geo-reCAPTCHA system are described, and afterwards transferred, to a prototype implementation. An empirical user study is conducted to investigate the Geo-reCAPTCHA approach, assessing time and quality of the resulting geographic information. Our results show that a Geo-reCAPTCHA can be solved by the users of our study on building digitization in a short amount of time (19.2 s on average) with an overall average accuracy of the digitizations of 82.2%. In conclusion, Geo-reCAPTCHA has the potential to be a reasonable alternative to the typical reCAPTCHA, and to become a new data-rich channel of crowdsourced geographic information.

  14. WFPC2 observations of the double cluster NGC 1850 in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Gilmozzi, R.; Kinney, E. K.; Ewald, S. P.; Panagia, N.; Romaniello, M.

    1994-01-01

    Hubble Space Telescope-Wide Field/Planetary Camera-2 (HST-WFPC2) optical and ultraviolet imaging observations of the young double cluster NGC 1850 in the Large Magellanic Cloud (LMC) are presented. The main cluster, NGC 1850A, is a globular-like cluster and has an age of 50 +/- 10 Myr, while the subcluster, NGC 1850B, which is more loosely distributed, is very young at 4.3 +/- 0.9 Myr. Its young age is confirmed by the detection of a pre-main-sequence population of stars associated to it. The two clusters have considerably different IMF slopes, with the main cluster having a flat slope (f(m) proportional to m(exp -1.4 +/- 0.2)) and the young cluster a much steeper one (f(m) proportional to m(exp -2.6 +/- -0.1)). The LMC field star population displays a broad range of ages, from approximately 0.5 Gyr up to more than 4 Gyr.

  15. Observations of short large-amplitude magnetic structures at a quasi-parallel shock

    NASA Technical Reports Server (NTRS)

    Schwartz, Steven J.; Burgess, David; Wilkinson, William P.; Kessel, Ramona L.; Dunlop, Malcolm; Luehr, Herman

    1992-01-01

    Results of a detailed analysis of short large-amplitude magnetic structures (SLAMS) observed at an encounter of the quasi-parallel blow shock by the AMPTE UKS and IRM satellites are presented. Isolated SLAMS, surrounded by solar wind conditions, and embedded SLAMS, which lie within or form the boundary with regions of significant heating and deceleration, are identified. The duration, polarization, and other characteristics of SLAMS are all consistent with their growth directly out of the ULF wave field, including the common occurrence of an attached whistler as found in ULF shocklets. The plasma rest frame propagation speeds and two-spacecraft time delays for all cases show that the SLAMS attempt to propagate upstream against the oncoming flow, but are convected back downstream. The speeds and delays vary systematically with SLAMS amplitude in the way anticipated from nonlinear wave theory, as do their polarization features. Inter-SLAMS regions and boundary regions with solar wind contain hot deflected ions of lesser density than within the SLAMS.

  16. Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations

    SciTech Connect

    Lonsdale, C.J.; Hacking, P.B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs.

  17. Interactive Browsing, Filtering, Visualization, and Retrieval from Large Collections of Near Real-Time Satellite Observations

    NASA Astrophysics Data System (ADS)

    Boller, R. A.; Murphy, K. J.; Teague, M.; Schmaltz, J. E.; Ilavajhala, S.; Davies, D.

    2011-12-01

    The recent availability of vast quantities of near real-time, global satellite observations through the NASA/GSFC Land Atmospheres Near real-time Capability for EOS (LANCE) has provided a compelling opportunity to use that data to improve response to natural hazards and disasters. Given the sheer volume of data (40+ image-based products, 90+ total) and their associated application areas (14 currently identified), this prototype framework provides a web-based user interface to enable efficient browsing, filtering, visualization, and retrieval of the most relevant products available for a given scenario. While this large number of available products can initially be reduced by selecting an application area, the remainder of the user workflow generally follows Shneiderman's visual information seeking mantra, "overview first, zoom and filter, then details-on-demand." In this case, "overview first" and "zoom" capabilities are provided by standard mapping tools such as Google Earth and OpenLayers. Once a region of interest is found, an overlaid custom interface displays all relevant data products for that region from the past week, facilitating a rapid visual "filtering" and selection by the user of the most suitable product and time step. That selected solution then can be further analyzed (e.g., with "before/after" comparisons) and downloaded in the subsequent "details-on-demand" phase. Once complete, the product and time step are applied to the initial global view for broader analyses, enabling a restart or refinement of the investigative process.

  18. Large volume collapse observed in the phase transition in cubic PbCrO3 perovskite

    PubMed Central

    Xiao, Wansheng; Tan, Dayong; Xiong, Xiaolin; Liu, Jing; Xu, Jian

    2010-01-01

    When cubic PbCrO3 perovskite (Phase I) is squeezed up to ∼1.6 GPa at room temperature, a previously undetected phase (Phase II) has been observed with a 9.8% volume collapse. Because the structure of Phase II can also be indexed into a cubic perovskite as Phase I, the transition between Phases I and II is a cubic to cubic isostructural transition. Such a transition appears independent of the raw materials and synthesizing methods used for the cubic PbCrO3 perovskite sample. In contrast to the high-pressure isostructural electronic transition that appears in Ce and SmS, this transition seems not related with any change of electronic state, but it could be possibly related on the abnormally large volume and compressibility of the PbCrO3 Phase I. The physical mechanism behind this transition and the structural and electronic/magnetic properties of the condensed phases are the interesting issues for future studies. PMID:20660782

  19. Cluster observations of hot flow anomalies with large flow deflections: 1. Velocity deflections

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Zong, Qiugang; Zhang, Hui

    2013-02-01

    Case and statistical studies have been performed to investigate hot flow anomalies (HFAs) with large flow deflections using data from the Cluster-C1 spacecraft from 2003 to 2009. We have selected 87 events with Vy or Vz in GSE coordinates larger than 200 km s-1. Observations of these HFAs indicate a "location-dependent deflection": Vy or Vz deflect to a positive value when the event is located in the positive Y or Z side relative to the subsolar point and to a negative value when it is located in the negative Y or Z side relative to the subsolar point. The amplitude of the deflection increases with increasing distance in Y or Z direction. The decrease in Vx at the event center is larger when the location is closer to the Sun-Earth line. The location-dependent deflection might be due to a near-specular reflection of ions at the Earth's bow shock. The HFAs studied in this paper are close to the bow shock with the distance of the event location to the bow shock ranging from 0.03 to 3.51 RE, which might cause the reflected ions to remain as a coherent near-specular reflected beam.

  20. Search for Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    SciTech Connect

    Berenji, Bijan; /Stanford U., Appl. Phys. Dept. /SLAC

    2012-09-19

    Large extra dimensions (LED) have been proposed to account for the apparent weakness of gravitation. These theories also indicate that the postulated massive Kaluza-Klein (KK) gravitons may be produced by nucleon-nucleon bremsstrahlung in the course of core collapse of supernovae. Hannestad and Raffelt have predicted energy spectra of gamma ray emission from the decay of KK gravitons trapped by the gravity of the remnant neutron stars (NS). These and other authors have used EGRET data on NS to obtain stringent limits on LED. Fermi-LAT is observing radio pulsar positions obtained from radio and x-ray catalogs. NS with certain characteristics are unlikely emitter of gamma rays, and emit in radio and perhaps x-rays. This talk will focus on the blind analysis we plan to perform, which has been developed using the 1st 2 months of all sky data and Monte Carlo simulations, to obtain limits on LED based on about 1 year of Fermi-LAT data. Preliminary limits from this analysis using these first 2 months of data will be also be discussed.

  1. Observed and Aogcm Simulated Relationships Between us Wind Speeds and Large Scale Modes of Climate Variability

    NASA Astrophysics Data System (ADS)

    Schoof, J. T.; Pryor, S. C.; Barthelmie, R. J.

    2013-12-01

    Previous research has indicated that large-scale modes of climate variability, such as El Niño - Southern Oscillation (ENSO), the Arctic Oscillation (AO) and the Pacific-North American pattern (PNA), influence the inter-annual and intra-annual variability of near-surface and upper-level wind speeds over the United States. For example, we have shown that rawinsonde derived wind speeds indicate that 90th percentile of wind speeds at 700 hPa over the Pacific Northwest and Southwestern USA are significantly higher under the negative phase of the PNA, and the Central Plains experiences higher wind speeds at 850 hPa under positive phase Southern Oscillation index while the Northeast exhibits higher wind speeds at 850 hPa under positive phase NAO. Here, we extend this research by further investigating these relationships using both reanalysis products and output from coupled atmosphere-ocean general circulation models (AOGCMs) developed for the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). The research presented has two specific goals. First, we evaluate the AOGCM simulations in terms of their ability to represent the temporal and spatial representations of ENSO, the AO, and the PNA pattern relative to historical observations. The diagnostics used include calculation of the power spectra (and thus representation of the fundamental frequencies of variability) and Taylor diagrams (for comparative assessment of the spatial patterns and their intensities). Our initial results indicate that most AOGCMs produce modes that are qualitatively similar to those observed, but that differ slightly in terms of the spatial pattern, intensity of specific centers of action, and variance explained. Figure 1 illustrates an example of the analysis of the frequencies of variability of two climate modes for the NCEP-NCAR reanalysis (NNR) and a single AOGCM (BCC CSM1). The results show a high degree of similarity in the power spectra but for this AOGCM the variance of the PNA associated with high frequencies are amplified relative to those in NNR. Second, we quantify the observed and AOGCM-simulated relationships between ENSO, AO, and PNA indices and zonal and meridional wind components at multiple levels for the contiguous United States. The results are presented in form of maps displaying the strength of the relationship at different timescales, from daily to annual, and at multiple atmospheric levels, from 10m to 500 mb. The results of the analysis are used to provide context for regional wind climate projections based on 21st century AOGCM simulations.

  2. The circular velocity function of group galaxies

    SciTech Connect

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-20

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v {sub c} ≲ 200 km s{sup –1}. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v {sub c} estimators, we find no transition from field to ΛCDM-shaped CVF above v {sub c} = 50 km s{sup –1} as a function of group halo mass. All groups with 12.4 ≲ log M {sub halo}/M {sub ☉} ≲ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v {sub c} compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v {sub c} slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  3. Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial.

    PubMed

    Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei Qing; Cai, Tong; Cui, Tie Jun

    2013-10-21

    We propose a kind of chiral metamaterial inspired from the fractal concept. The Hilbert fractal perturbation in the twisted split ring resonator element results in compact metamaterial and breaking mirror symmetry, which readily forms chirality over triple bands. The discrepancy between co-polarization conversion and cross-polarization conversion over multiple bands can be explored for multifunctional devices. A multiband circular polarizer is then numerically and experimentally studied in the X band based on the bilayered twisted Hilbert resonator with mutual 90° rotation. The ability of transforming linearly polarized incident waves to circularly polarized waves is unambiguously demonstrated with high conversion efficiency and large polarization extinction ratio of more than 20 dB across dual bands. Moreover, exceptionally strong optical activity and circular dichroism are also observed. PMID:24150334

  4. Switchable circular beam deflectors

    NASA Astrophysics Data System (ADS)

    Shang, Xiaobing; Joshi, Pankaj; Tan, Jin-Yi; De Smet, Jelle; Cuypers, Dieter; Baghdasaryan, Tigran; Vervaeke, Michael; Thienpont, Hugo; De Smet, Herbert

    2016-04-01

    In this work, we report two types of electrically tunable photonic devices with circularly symmetric polarization independent beam steering performance (beam condensing resp. beam broadening). The devices consist of circular micro grating structures combined with nematic liquid crystal (LC) layers with anti-parallel alignment. A single beam deflector converts a polarized and monochromatic green laser beam (λ =543.5 nm) into a diffraction pattern, with the peak intensity appearing at the third order when 0~{{V}\\text{pp}} is applied and at the zeroth order (no deflection) for voltages above 30~{{V}\\text{pp}} . Depending on the shape of the grating structure (non-inverted or inverted), the deflection is inwards or outwards. Both grating types can be made starting from the same diamond-tooled master mold. A polarized white light beam is symmetrically condensed resp. broadened over 2° in the off state and is passed through unchanged in the on state. By stacking two such devices with mutually orthogonal LC alignment layers, polarization independent switchable circular beam deflectors are realized with a high transmittance (>80%), and with the same beam steering performance as the polarization dependent single devices.

  5. Efficient circular thresholding.

    PubMed

    Lai, Yu-Kun; Rosin, Paul L

    2014-03-01

    Otsu's algorithm for thresholding images is widely used, and the computational complexity of determining the threshold from the histogram is O(N) where N is the number of histogram bins. When the algorithm is adapted to circular rather than linear histograms then two thresholds are required for binary thresholding. We show that, surprisingly, it is still possible to determine the optimal threshold in O(N) time. The efficient optimal algorithm is over 300 times faster than traditional approaches for typical histograms and is thus particularly suitable for real-time applications. We further demonstrate the usefulness of circular thresholding using the adapted Otsu criterion for various applications, including analysis of optical flow data, indoor/outdoor image classification, and non-photorealistic rendering. In particular, by combining circular Otsu feature with other colour/texture features, a 96.9% correct rate is obtained for indoor/outdoor classification on the well known IITM-SCID2 data set, outperforming the state-of-the-art result by 4.3%. PMID:24464614

  6. Recollision with circular polarization

    NASA Astrophysics Data System (ADS)

    Mauger, Francois; Kamor, Adam; Bandrauk, Andre; Chandre, Cristel; Uzer, Turgay

    2013-05-01

    Since its identification in the 90s, the recollision scenario has revealed to be very helpful in explaining many phenomena in atomic and molecular systems subjected to strong and short laser pulses, and it is now at the core of the strong field physics and attosecond science. For linearly polarized laser fields, the recollision scenario has been able to explain nonsequential double ionization (NSDI), high harmonic generation (HHG) and laser induced diffraction (LIED), just to cite them. The same scenario also predicts the absence of recollision when the field is circularly polarized, therefore leading to the absence of NSDI, HHG or LIED. Recently, the influence of the ellipticity of the laser has drawn an increasing level of interest in the strong field community as it is seen as a way to control the electronic dynamics and, for instance, HHG. Using classical models, the common belief of the absence of recollision with circularly polarized laser fields has been proven wrong. In my talk I will present classical and quantum evidence of the presence of recollision with circular polarization. I will discuss the conditions under which such recollisions happen and what they imply.

  7. Felyx : A Free Open Software Solution for the Analysis of Large Earth Observation Datasets

    NASA Astrophysics Data System (ADS)

    Piolle, Jean-Francois; Shutler, Jamie; Poulter, David; Guidetti, Veronica; Donlon, Craig

    2014-05-01

    GHRSST project, by assembling large collections of earth observation data from various sources and agencies, has also raised the need for providing the user community with tools to inter-compare them, assess and monitor their quality. The ESA /Medspiration project, which implemented the first operating node of GHRSST system for Europe, also paved the way successfully towards such generic analytics tools by developing the High Resolution Diagnostic Dataset System (HR-DDS) and Satellite to In situ Multi-sensor Match-up Databases. Building on this heritage, ESA is now funding the development by IFREMER, PML and Pelamis of felyx, a web tool merging the two capabilities into a single software solution. It will consist in a free open software solution, written in python and javascript, whose aim is to provide Earth Observation data producers and users with an open-source, flexible and reusable tool to allow the quality and performance of data streams (satellite, in situ and model) to be easily monitored and studied. The primary concept of Felyx is to work as an extraction tool, subsetting source data over predefined target areas (which can be static or moving) : these data subsets, and associated metrics, can then be accessed by users or client applications either as raw files, automatic alerts and reports generated periodically, or through a flexible web interface enabling statistical analysis and visualization. Felyx presents itself as an open-source suite of tools, written in python and javascript, enabling : * subsetting large local or remote collections of Earth Observation data over predefined sites (geographical boxes) or moving targets (ship, buoy, hurricane), storing locally the extracted data (refered as miniProds). These miniProds constitute a much smaller representative subset of the original collection on which one can perform any kind of processing or assessment without having to cope with heavy volumes of data. * computing statistical metrics over these miniProds using for instance a set of usual statistical operators (mean, median, rms, ...), fully extensible and applicable to any variable of a dataset. These metrics are stored in a fast search engine, queryable by humans and automated applications. * reporting or alerting, based on user-defined inference rules, through various media (emails, twitter feeds,..) and devices (phones, tablets). * analysing miniProds and metrics through a web interface allowing to dig into this base of information and extracting useful knowledge through multidimensional interactive display functions (time series, scatterplots, histograms, maps). The services provided by felyx will be generic, deployable at users own premises and adaptable enough to integrate any kind of parameters. Users will be able to operate their own felyx instance at any location, on datasets and parameters of their own interest, and the various instances will be able to interact with each other, creating a web of felyx systems enabling aggregation and cross comparison of miniProds and metrics from multiple sources. Initially two instances will be operated simultaneously during a 6 months demonstration phase, at IFREMER - on sea surface temperature (for GHRSST community) and ocean waves datasets - and PML - on ocean colour. We will present results from the Felyx project, demonstrate how the GHRSST community can exploit Felyx and demonstrate how the wider community can make use of the GHRSST data within Felyx.

  8. Large rivers in sedimentary basins: Morphology and form observed from satellite imagery

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Davidson, S. K.

    2010-12-01

    Preservation of the deposits of big rivers, like any other river, can only occur where the river crosses an area of net aggradation in a sedimentary basin. Many of the world’s big rivers are systems that transfer sediment load from erosional realms to the sea, depositing fluvial successions only where there is accommodation on the coastal plain. However, many of the big rivers (e.g., Parana, Paraguay, Brahmaputra, Ganges, Indus, and Yukon Rivers) also cross continental sedimentary basins (e.g., sedimentary basins with minimal marine influence that lie inside continents) on their way to the oceans. We use satellite imagery to observe the large-scale morphology of big rivers in these continental sedimentary basins. As with other rivers, big rivers lose confinement of their valleys and form distributive fluvial systems (DFS) as they enter the continental sedimentary basins. Commonly, channel size decreases down-DFS, either through infiltration, bifurcation, or evaporation. Several active and/or old channels radiate outward from a DFS apex, and where the river is incised into its DFS, several paleochannel deposits are visible radiating outward from the DFS apex. Between and adjacent to channels, a significant amount of fine-grained sediment is deposited across the DFS surface, leaving high potential for preservation of floodplain deposits, even on large river DFS dominated by braided river systems. Commonly, the big rivers become the axial river in the sedimentary basin, continuing along strike of the basin. In this position, the river becomes confined between opposing DFS or between transverse DFS and the basin edge. In several examples, the river morphology changes upon reaching the sedimentary basin and across the DFS and this morphology may change once again at the toe of the DFS where the river takes the axial position in the basin. For example, the Brahamaputra River upstream from the sedimentary basin is a relatively narrow, single thread channel that is confined in its valley. Upon entering the sedimentary basin, the Brahmaputra River develops a DFS and becomes broadly braided in form. Distally on the DFS, the braided system bifurcates, leaving relatively large areas where floodplain deposits may be preserved. At the toe of the DFS, the Brahmaputra River becomes the axial system for this portion of the foreland basin. In this axial position, it is held between opposing DFS, thus the channel system migrates back and forth between these DFS and fills this portion of the basin with coarse-grained material. Other large rivers show similar change as they enter a continental sedimentary basin. In areal extent, DFS from smaller rivers occupy more of the modern continental sedimentary basins than the big rivers (either in axial or DFS position), therefore deposits of all rivers in sedimentary basins must be considered in order to fully interpret the rock record.

  9. Observable consequences of the strong coupling phase of QED hypothesized near the surface of large-Z nuclei

    SciTech Connect

    Inoue, M. ); Muta, T.; Saito, J. . Dept. of Physics); Yu, H.L. . Inst. of Physics)

    1990-02-20

    This paper discusses observable effects of the assumption that the strong coupling phase of quantum electrodynamics is realized in the surface region of heavy nuclei with large atomic number Z under a suitable external disturbance. The authors present some comments on anomalous peaks in electron-positron systems observed in heavy ion reactions and on effects expected in electron and positron scatterings off large-Z nuclei. The authors propose some experiments to test their assumption: coincidence measurement of e{sup +}e{sup {minus}} and {gamma} signals from the decays of large-Z nuclei, and spectroscopy of large-Z muonic atoms.

  10. Charged Particle Optics in Circular Higgs Factory

    SciTech Connect

    Cai, Yunhai

    2015-02-26

    Similar to a super B-factory, a circular Higgs factory will require strong focusing systems near the interaction points and a low-emittance lattice in arcs to achieve a factory luminosity. At electron beam energy of 120 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at 2 percent level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of circular Higgs factory. In this paper, an example will be provided to illustrate the beam dynamics in circular Higgs factory, emphasizing on the chromatic optics. Basic optical modules and advanced analysis will be presented. Most important, we will show that 2% momentum aperture is achievable

  11. Observations and Large-Eddy Simulations of Wave-Induced Boundary-Layer Separation

    NASA Astrophysics Data System (ADS)

    Grubisic, V.; Serafin, S.; Strauss, L.

    2011-12-01

    Wave-induced boundary-layer separation in flow over orography has received significant attention in recent years, especially in relation to the formation of atmospheric rotors. Traditionally depicted as horizontal eddies in the lee of mountain ranges, rotors are characterized by intense turbulence and pose a known threat to aviation. This study focuses on the first observationally documented case of wave-induced boundary-layer separation, which occurred on Jan 26 2006 in the lee of the Medicine Bow Mountains in SE Wyoming. Observations from the University of Wyoming King Air (UWKA) aircraft, in particular, the remote sensing measurements with the dual-Doppler Wyoming Cloud Radar (WCR), indicate strong wave activity, downslope winds in excess of 30 m s-1 within 200 m above the ground, and near-surface flow reversal in the lee of the mountain range. The fine resolution of WCR data (on the order of 40x40 m2 for two-dimensional velocity fields) reveals fine-scale coherent vortical structures which are embedded within the rotor zone and whose intensity contributes to the severity of turbulence therein. A series of semi-idealized three-dimensional large-eddy simulations of the Medicine Bow case was carried out using the CM1 model. Simulations represent the flow of an air mass with invariant profiles of wind speed and potential temperature over an isolated mountain ridge: the atmospheric soundings match the available observations and the ridge has the same size and shape as the Medicine Bow range. Model runs consider a simplified two-dimensional geometry where the complex topographic obstacle is represented as a smooth linear mountain ridge, but they are fully three-dimensional allowing for realistic turbulence dynamics. The simulated flow field is strikingly similar to the observed, with the simulations reproducing strong downslope flow detaching from the ground, with a patch of considerably lower wind intensities and embedded reverse flow further downstream. The near-surface rotor circulation is associated with an undular bore near the mountain top level that is triggered by breaking of a hydrostatic mountain wave aloft, at an altitude between 2000 and 5000 m. Once separated from the ground, the thin sheet of positive horizontal vorticity breaks down into several small vortices within the rotor region. Several phenomena of interest can be discerned in the simulated flow, including non-steadiness in the position of boundary-layer separation and shooting downslope flow, the latter associated with Kelvin-Helmholtz instability developing upstream of the obstacle along a stable shear layer above the mountain top height. A set of sensitivity experiments with increasing surface friction have been carried out to assess the impact of surface friction on the onset of BLS, through the deceleration of the surface flow and reduction of the wave amplitudes downstream of the obstacle.

  12. XMM-Newton observation of SNR J0533-7202 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kavanagh, P. J.; Sasaki, M.; Whelan, E. T.; Maggi, P.; Haberl, F.; Bozzetto, L. M.; Filipović, M. D.; Crawford, E. J.

    2015-07-01

    Aims: We present an X-ray study of the supernova remnant SNR J0533-7202 in the Large Magellanic Cloud (LMC) and determine its physical characteristics based on its X-ray emission. Methods: We observed SNR J0533-7202 with XMM-Newton (background flare-filtered exposure times of 18 ks EPIC-pn and 31 ks EPIC-MOS1, EPIC-MOS2). We produced X-ray images of the supernova remnant, performed an X-ray spectral analysis, and compared the results to multi-wavelength studies. Results: The distribution of X-ray emission is highly non-uniform, with the south-west region much brighter than the north-east. The detected X-ray emission is correlated with the radio emission from the remnant. We determine that this morphology is most likely due to the supernova remnant expanding into a non-uniform ambient medium and not an absorption effect. We estimate the remnant size to be 53.9 (±3.4) × 43.6 (±3.4) pc, with the major axis rotated ~64° east of north. We find no spectral signatures of ejecta emission and infer that the X-ray plasma is dominated by swept up interstellar medium. Using the spectral fit results and the Sedov self-similar solution, we estimate the age of SNR J0533-7202 to be ~17-27 kyr, with an initial explosion energy of (0.09-0.83) × 1051 erg. We detected an X-ray source located near the centre of the remnant, namely XMMU J053348.2-720233. The source type could not be conclusively determined due to the lack of a multi-wavelength counterpart and low X-ray counts. We found that it is likely either a background active galactic nucleus or a low-mass X-ray binary in the LMC. Conclusions: We detected bright thermal X-ray emission from SNR J0533-7202 and determined that the remnant is in the Sedov phase of its evolution. The lack of ejecta emission prohibits us from typing the remnant with the X-ray data. Therefore, the likely Type Ia classification based on the local stellar population and star formation history reported in the literature cannot be improved upon. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  13. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE CRAB PULSAR AND NEBULA

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Baring, M. G.; Bastieri, D.; Bonamente, E.; Brigida, M. E-mail: mazziotta@ba.infn.i E-mail: lemoine@cenbg.in2p3.f

    2010-01-10

    We report on gamma-ray observations of the Crab Pulsar and Nebula using 8 months of survey data with the Fermi Large Area Telescope (LAT). The high quality light curve obtained using the ephemeris provided by the Nancay and Jodrell Bank radio telescopes shows two main peaks stable in phase with energy. The first gamma-ray peak leads the radio main pulse by (281 +- 12 +- 21) mus, giving new constraints on the production site of non-thermal emission in pulsar magnetospheres. The first uncertainty is due to gamma-ray statistics, and the second arises from the rotation parameters. The improved sensitivity and the unprecedented statistics afforded by the LAT enable precise measurement of the Crab Pulsar spectral parameters: cut-off energy at E{sub c} = (5.8 +- 0.5 +- 1.2) GeV, spectral index of GAMMA = (1.97 +- 0.02 +- 0.06) and integral photon flux above 100 MeV of (2.09 +- 0.03 +- 0.18) x 10{sup -6} cm{sup -2} s{sup -1}. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Pulsed gamma-ray photons are observed up to approx 20 GeV which precludes emission near the stellar surface, below altitudes of around 4-5 stellar radii in phase intervals encompassing the two main peaks. A detailed phase-resolved spectral analysis is also performed: the hardest emission from the Crab Pulsar comes from the bridge region between the two gamma-ray peaks while the softest comes from the falling edge of the second peak. The spectrum of the nebula in the energy range 100 MeV-300 GeV is well described by the sum of two power laws of indices GAMMA{sub sync} = (3.99 +- 0.12 +- 0.08) and GAMMA{sub IC} = (1.64 +- 0.05 +- 0.07), corresponding to the falling edge of the synchrotron and the rising edge of the inverse Compton (IC) components, respectively. This latter, which links up naturally with the spectral data points of Cherenkov experiments, is well reproduced via IC scattering from standard magnetohydrodynamic nebula models, and does not require any additional radiation mechanism.

  14. Very large array observations of ammonia in high-mass star formation regions

    SciTech Connect

    Lu, Xing; Gu, Qiusheng; Zhang, Qizhou; Liu, Hauyu Baobab; Wang, Junzhi

    2014-08-01

    We report systematic mapping observations of the NH{sub 3} (1, 1) and (2, 2) inversion lines toward 62 high-mass star-forming regions using the Very Large Array (VLA) in its D and DnC array configurations. The VLA images cover a spatial dynamic range from 40'' to 3'', allowing us to trace gas kinematics from ∼1 pc scales to ≲0.1 pc scales. Based on the NH{sub 3} morphology and the infrared nebulosity on 1 pc scales, we categorize three subclasses in the sample: filaments, hot cores, and NH{sub 3}-dispersed sources. The ubiquitous gas filaments found on 1 pc scales have a typical width of ∼0.1 pc and often contain regularly spaced fragments along the major axis. The spacing of the fragments and the column densities is consistent with the turbulent supported fragmentation of cylinders. Several sources show multiple filaments that converge toward a center where the velocity field in the filaments is consistent with gas flows. We derive rotational temperature maps for the entire sample. For the three hot core sources, we find a projected radial temperature distribution that is best fit by power-law indices from –0.18 to –0.35. We identify 174 velocity-coherent ∼0.1 pc scale dense cores from the entire sample. The mean physical properties for these cores are 1.1 km s{sup –1} in intrinsic linewidth, 18 K in NH{sub 3} rotational temperature, 2.3 × 10{sup 15} cm{sup –2} in NH{sub 3} gas column density, and 67 M{sub ☉} in molecular mass. The dense cores identified from the filamentary sources are closer to being virialized. Dense cores in the other two categories of sources appear to be dynamically unstable.

  15. EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE RADIO EVOLUTION OF SN 2011dh

    SciTech Connect

    Krauss, M. I.; Chomiuk, L.; Brunthaler, A.; Rupen, M.; Soderberg, A. M.; Zauderer, B. A.; Bietenholz, M. F.; Chevalier, R. A.; Fransson, C.

    2012-05-10

    We report on Expanded Very Large Array observations of the Type IIb supernova 2011dh, performed over the first 100 days of its evolution and spanning 1-40 GHz in frequency. The radio emission is well described by the self-similar propagation of a spherical shockwave, generated as the supernova ejecta interact with the local circumstellar environment. Modeling this emission with a standard synchrotron self-absorption (SSA) model gives an average expansion velocity of v Almost-Equal-To 0.1c, supporting the classification of the progenitor as a compact star (R{sub *} Almost-Equal-To 10{sup 11} cm). We find that the circumstellar density is consistent with a {rho}{proportional_to}r{sup -2} profile. We determine that the progenitor shed mass at a constant rate of Almost-Equal-To 3 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}, assuming a wind velocity of 1000 km s{sup -1} (values appropriate for a Wolf-Rayet star), or Almost-Equal-To 7 Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} assuming 20 km s{sup -1} (appropriate for a yellow supergiant [YSG] star). Both values of the mass-loss rate assume a converted fraction of kinetic to magnetic energy density of {epsilon}{sub B} = 0.1. Although optical imaging shows the presence of a YSG, the rapid optical evolution and fast expansion argue that the progenitor is a more compact star-perhaps a companion to the YSG. Furthermore, the excellent agreement of the radio properties of SN 2011dh with the SSA model implies that any YSG companion is likely in a wide, non-interacting orbit.

  16. Are large Trojan asteroids salty? An observational, theoretical, and experimental study

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Lucey, Paul; Glotch, Timothy

    2013-03-01

    With a total mass similar to the main asteroid belt, the jovian Trojan asteroids are a major feature in the Solar System. Based upon the thermal infrared spectra of the largest Trojans obtained with the Spitzer space telescope, Emery et al. (Emery, J.P., Cruikshank, D.P., van Cleve, J. [2006]. Icarus 182, 496) suggested that the surfaces of these Trojans may consist of fine-grained silicates suspended in a transparent matrix. To explore the transparent matrix hypothesis, we adopted a modified radiative transfer model to fit the Trojan spectra simultaneously both in the near and the thermal infrared regions. Our model shows that the Trojan spectra over a wide wavelength range can be consistently explained by fine grained silicates (1-5 wt.%) and highly absorbing material (e.g. carbon or iron, 2-10 wt.%) suspended in a transparent matrix. The matrix is consistent with a deposit of salt on the surfaces of the large Trojans. However, this consistency is not an actual detection of salt and other alternatives may still be possible. We suggest that early in the Solar System history, short-lived radionuclides heated ice-rich Trojans and caused melting, internal circulation of water and dissolution of soluble materials. Briny water volcanism were facilitated by internal volatiles and a possibly global sill of frozen brine was formed beneath the cold primitive crust. The frozen brine layer was likely to be evacuated by impact erosions and evaporation of the exposed brines eventually left a lag deposit of salt. Over the Solar System’s history, fine dust from comets or impacts contaminated and colored these salty surfaces of the Trojans to produce the spectral properties observed today.

  17. Gamma-Ray Observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Enoto, T.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Fukui, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hayashi, K.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Lee, S.-H.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makishima, K.; Mazziotta, M. N.; Mehault, J.; Mitthumsiri, W.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Orienti, M.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Razzano, M.; Reimer, A.; Reimer, O.; Roth, M.; Sadrozinski, H. F.-W.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Zimmer, S.

    2012-09-01

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between ~100 MeV and ~100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to ~10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W CO) at a 1° × 1° pixel level. The correlation is found to be linear over a W CO range of ~10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W CO-to-mass conversion factor, X CO, is found to be ~2.3 × 1020 cm-2(K km s-1)-1 for the high-longitude part of Orion A (l > 212°), ~1.7 times higher than ~1.3 × 1020 found for the rest of Orion A and B. We interpret the apparent high X CO in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas. W CO decreases faster than the H2 column density in the region making the gas "darker" to W CO.

  18. Fermi Large Area Telescope observations of the supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Yang, Rui-zhi; Zhang, Xiao; Yuan, Qiang; Liu, Siming

    2014-07-01

    Context. HESS J1731-347 has been identified as one of the few TeV-bright shell-type supernova remnants (SNRs). These remnants are dominated by nonthermal emission, and the nature of TeV emission has been continuously debated for nearly a decade. Aims: We carry out the detailed modeling of the radio to γ-ray spectrum of HESS J1731-347 to constrain the magnetic field and energetic particles sources, which we compare with those of the other TeV-bright shell-type SNRs explored before. Methods: Four years of data from Fermi Large Area Telescope (LAT) observations for regions around this remnant are analyzed, leading to no detection correlated with the source discovered in the TeV band. The Markov chain Monte Carlo method is used to constrain parameters of one-zone models for the overall emission spectrum. Results: Based on the 99.9% upper limits of fluxes in the GeV range, one-zone hadronic models with an energetic proton spectral slope greater than 1.8 can be ruled out, which favors a leptonic origin for the γ-ray emission, making this remnant a sibling of the brightest TeV SNR RX J1713.7-3946, the Vela Junior SNR RX J0852.0-4622, and RCW 86. The best-fit leptonic model has an electron spectral slope of 1.8 and a magnetic field of ~30 μG, which is at least a factor of 2 higher than those of RX J1713.7-3946 and RX J0852.0-4622, posing a challenge to the distance estimate and/or the energy equipartition between energetic electrons and the magnetic field of this source. A measurement of the shock speed will address this challenge and has implications on the magnetic field evolution and electron acceleration driven by shocks of SNRs.

  19. Gamma-Ray Observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Ferrara, E. C.; Harding, A. K.; Troja, E.

    2012-01-01

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between approx 100 MeV and approx 100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to approx 10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W(sub CO)) at a 1 deg 1 deg pixel level. The correlation is found to be linear over a W(sub CO) range of approx 10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W(sub CO)-to-mass conversion factor, X(sub CO), is found to be approx 2.3 10(exp 20) / sq cm (K km/s)(exp -1) for the high-longitude part of Orion A (l > 212 deg), approx 1.7 times higher than approx 1.3 10(exp 20) found for the rest of Orion A and B. We interpret the apparent high X(sub CO) in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas.W(sub CO) decreases faster than the H2 column density in the region making the gas "darker" to W(sub CO).

  20. Circular analysis in complex stochastic systems

    NASA Astrophysics Data System (ADS)

    Valleriani, Angelo

    2015-12-01

    Ruling out observations can lead to wrong models. This danger occurs unwillingly when one selects observations, experiments, simulations or time-series based on their outcome. In stochastic processes, conditioning on the future outcome biases all local transition probabilities and makes them consistent with the selected outcome. This circular self-consistency leads to models that are inconsistent with physical reality. It is also the reason why models built solely on macroscopic observations are prone to this fallacy.

  1. Circularly Polarized Persistent Room-Temperature Phosphorescence from Metal-Free Chiral Aromatics in Air.

    PubMed

    Hirata, Shuzo; Vacha, Martin

    2016-04-21

    Circularly polarized room-temperature phosphorescence (RTP) with persistent emission characteristics was observed from metal-free chiral binaphthyl structures. Enantiomers of the binaphthyl compounds doped into an amorphous hydroxylated steroid matrix produced blue fluorescence and yellow persistent RTP in air. The lifetime and quantum yield of the yellow persistent RTP were 0.67 s and 2.3%, respectively. The dissymmetry factors of circular dichroism (CD) in the first absorption band, circularly polarized fluorescence (CPF), and circularly polarized persistent RTP were |1.1 × 10(-3)|, |4.5 × 10(-4)|, and |2.3 × 10(-3)|, respectively. A comparison between the experimental data and calculations by time-dependent density functional theory for transient CD spectra confirmed that the binaphthyl conformations in the lowest singlet excited state (S1) and the lowest triplet state (T1) were different. The large difference in the dissymmetry factors for the CPF and the circularly polarized persistent RTP was likely caused by this conformational change between S1 and T1. PMID:27058743

  2. Electron capture from circular Rydberg atoms

    SciTech Connect

    Lundsgaard, M.F.V.; Chen, Z.; Lin, C.D. ); Toshima, N. )

    1995-02-01

    Electron capture cross sections from circular Rydberg states as a function of the angle [ital cphi] between the ion velocity and the angular momentum of the circular orbital have been reported recently by Hansen [ital et] [ital al]. [Phys. Rev. Lett. 71, 1522 (1993)]. We show that the observed [ital cphi] dependence can be explained in terms of the propensity rule that governs the dependence of electron capture cross sections on the magnetic quantum numbers of the initial excited states. We also carried out close-coupling calculations to show that electron capture from the circular H(3[ital d],4[ital f],5[ital g]) states by protons at the same scaled velocity has nearly the same [ital cphi] dependence.

  3. VERY LARGE ARRAY OBSERVATIONS OF THE INFRARED DARK CLOUD G19.30+0.07

    SciTech Connect

    Devine, K. E.; Churchwell, E.; Chandler, C. J.; Borg, K. J.; Brogan, C.; Indebetouw, R.; Shirley, Y.

    2011-05-20

    We present Very Large Array observations of ammonia (NH{sub 3}) (1,1), (2,2), and dicarbon sulfide (CCS) (2{sub 1}-1{sub 0}) emission toward the infrared dark cloud (IRDC) G19.30+0.07 at {approx}22 GHz. The NH{sub 3} emission closely follows the 8 {mu}m extinction. The NH{sub 3} (1,1) and (2,2) lines provide diagnostics of the temperature and density structure within the IRDC, with typical rotation temperatures of {approx}10-20 K and NH{sub 3} column densities of {approx}10{sup 15} cm{sup -2}. The estimated total mass of G19.30+0.07 is {approx}1130 M{sub sun}. The cloud comprises four compact NH{sub 3} clumps of mass {approx}30-160 M{sub sun}. Two coincide with 24 {mu}m emission, indicating heating by protostars, and show evidence of outflow in the NH{sub 3} emission. We report a water maser associated with a third clump; the fourth clump is apparently starless. A non-detection of 8.4 GHz emission suggests that the IRDC contains no bright H II regions and places a limit on the spectral type of an embedded zero-age main-sequence star to early-B or later. From the NH{sub 3} emission, we find that G19.30+0.07 is composed of three distinct velocity components or 'subclouds'. One velocity component contains the two 24 {mu}m sources and the starless clump, another contains the clump with the water maser, while the third velocity component is diffuse, with no significant high-density peaks. The spatial distribution of NH{sub 3} and CCS emission from G19.30+0.07 is highly anti-correlated, with the NH{sub 3} predominantly in the high-density clumps and the CCS tracing lower-density envelopes around those clumps. This spatial distribution is consistent with theories of evolution for chemically young low-mass cores, in which CCS has not yet been processed to other species and/or depleted in high-density regions.

  4. Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43

    NASA Astrophysics Data System (ADS)

    Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.

    2013-12-01

    We aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12''. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104 M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106 M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas. Appendices are available in electronic form at http://www.aanda.orgThe final datacubes (13CO and C18O) for the entire survey are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A24

  5. Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.

    2014-12-01

    Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface. Finally, we compare characteristics of wakes at the outside of the row of turbines to wakes from turbines in the interior of the row, quantifying how wakes from outer turbines erode faster than those from interior.

  6. Circularly polarized waves in a plasma with vacuum polarization effects

    SciTech Connect

    Lundin, J.; Stenflo, L.; Brodin, G.; Marklund, M.; Shukla, P. K.

    2007-06-15

    The theory for large amplitude circularly polarized waves propagating along an external magnetic field is extended in order to also include vacuum polarization effects. A general dispersion relation, which unites previous results, is derived.

  7. Integrated observations of processes and products of large scale cratering experiments

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.; Sonder, I.; Valentine, G.; Ross, P.; White, J. D.; Taddeucci, J.; Zimanowski, B.; Lube, G.; Kueppers, U.; Bowman, D. C.

    2013-12-01

    Detailed analysis of volcanic craters and ballistic deposits can provide insight into eruption dynamics and evolution. As fully exposed craters and associated unmodified deposits are rarely preserved, the dynamics involved can only be inferred. Large-scale blast experiments conducted at the University at Buffalo Geohazards Field Station produced deposits from single and multiple subsurface explosions at individual craters, along with a range of observational data, and provide a unique opportunity to link dynamics with geologic structures and deposits. Meter-scale craters were produced through repeated blasts using chemical explosives in 15 cm thick strata constructed of compacted aggregates (e.g. sands and gravels). Each experiment had 1-3 individual explosions with the same epicenter to form a single crater, with a total of 12 blasts and five craters. Three craters were produced through a series of shallow blasts (34-75 cm depth, six blasts) and two additional craters were produced by deeper blasts (75-100 cm, six blasts). The experiments successfully reproduced crater structures similar to those of maar volcanoes, which are the product of one or more subsurface explosions resulting from the interaction of magma with groundwater. Deep explosion tests successfully reproduced mixing and structures similar to maar-diatremes. The ballistics produced were collected in sample boxes up to 18 m from the blast center. The pits were later excavated and the vertical structures and deposits were described and sampled. Deposits can be described as bedded-diatreme (fallback/inter-crater deposits), unbedded diatreme (disturbed subsurface material), tephra ring (debris on the pre-blast surface) and distal extra-crater deposits. Granulometry and componentry were acquired for all samples. The diatreme structures and deposit componentry were interpreted using high-speed video recordings of the blasts. A comparison of ballistic source depth and collection location revealed the importance of multiple blasts in the excavation of deeper layers, suggesting that componentry of extra-crater deposits does not accurately indicate the depth of explosions, and would yield underestimates of the depth of activity. Additionally, material derived from the surface/shallow depths is deposited farther from the crater than deeper-derived material, suggesting an important lateral control on deposition from explosions at depth. Fallback deposits are critical to interpreting the evolution of the diatreme and crater, because only with the shallowest blasts does material escape the crater. Sampling of deposits from multiple blasts revealed mixing of subsurface material, and the influence of early fallback deposits and a pre-blast crater on the deposits preserved below, within and outside of the crater. Experiments such as these reveal links between explosions and their deposits unattainable from geological studies, and advance our ability to reconstruct processes of real eruptions from their deposits.

  8. Study of Interplanetary Magnetic Reconnection with Circularly Polarized Light

    NASA Astrophysics Data System (ADS)

    Boehle, Anna

    2010-05-01

    Modern grain alignment theory predicts that Zodiacal dust must be aligned and the scattering of solar light on it should result in circularly polarized light. We analyze the existing circularly polarized data and observe that the pattern of observed polarization can be explained only if substantial deviations from the Parker spiral are present. We conjecture that turbulent magnetic reconnection may influence the observed magnetic field pattern.

  9. Theoretical performance of solar coronagraphs using sharp-edged or apodized circular external occulters

    NASA Astrophysics Data System (ADS)

    Aime, C.

    2013-10-01

    Context. This study focuses on an instrument able to monitor the corona close to the solar limb. Aims: We study the performance of externally occulted solar coronagraphs. We compute the shape of the umbra and penumbra produced by the occulter at the entrance aperture of the telescope and compare levels of rejection obtained for a circular occulter with a sharp or smooth transmission at the edge. Methods: We show that the umbral pattern in an externally occulted coronagraph can be written as a convolution product between the occulter diffraction pattern and an image of the Sun. We then focus on the analysis to circular symmetric occulters. We first derive an analytical expression using two Lommel series for the Fresnel diffraction pattern produced by a sharp-edged circular occulter. Two different expressions are used for inside and outside the occulter's geometric shadow. We verify that a numerical approach that directly solves the Huygens-Fresnel integral gives the same result. This suggests that the numerical computation can be used for a circular occulter with any variable transmission. Results: With the objective of observing the solar corona a few minutes from limb, a sharp-edged circular occulter of a few meters cannot produce an umbra darker than 10-4 of the direct sunlight. The same occulter, having an apodization zone of a few percent of the diameter (3 cm for a 1.5 m occulter), darkers the umbra down to 10-8 of the direct sunlight for linear transmission and to 10-12 for Sonine or cosine bell transmissions. An investigation for an apodized occulter with manufacturing defaults is quickly performed. Conclusions: It has been possible to numerically demonstrate the large superiority of apodized circular occulters with respect to the sharp-edged ones. These occulters allow the theoretical observation of the very limb-close corona with not yet obtained contrast ratios.

  10. Large-Amplitude Whistler Waves and Electron Acceleration in the Earth's Radiation Belts: A Review of STEREO and Wind Observations

    NASA Astrophysics Data System (ADS)

    Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Kersten, K.; Wygant, J. R.; Wilson, L. B., III; Looper, M. D.; Blake, J. B.; Roth, I.

    2012-12-01

    One of the critical problems for understanding the dynamics of Earth's radiation belts is determining the physical processes that energize and scatter relativistic electrons. We review measurements from the Wind/Waves and STEREO S/Waves waveform capture instruments of large-amplitude whistler mode waves. These observations have provided strong evidence that large amplitude (100s of mV/m) whistler mode waves are common during magnetically active periods. The large-amplitude whistler mode waves are usually nondispersive and obliquely propagating, with a large longitudinal electric field and significant parallel electric field. These characteristics are different than those of typical chorus, though it remains to be seen whether the large-amplitude whistler mode waves are a subpopulation of chorus or something else entirely. We will also review comparisons of STEREO and Wind wave observations with SAMPEX observations of electron microbursts. Simulations show that the waves can result in electron energization by many MeV and/or scattering by large pitch angles during a single wave packet encounter due to coherent, nonlinear processes including trapping. The experimental observations combined with simulations suggest that quasilinear theoretical models of electron energization and scattering via small-amplitude waves, with timescales of hours to days, may be inadequate for understanding radiation belt dynamics.

  11. Large anisotropic thermal transport properties observed in bulk single crystal black phosphorus

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Xu, Guizhou; Hou, Zhipeng; Yang, Bingchao; Zhang, Xiaoming; Liu, Enke; Xi, Xuekui; Liu, Zhongyuan; Zeng, Zhongming; Wang, Wenhong; Wu, Guangheng

    2016-02-01

    The anisotropy of thermal transport properties for bulk black phosphorus (BP) single crystal, which might be of particular interest in the fabrication of thermoelectric/optoelectronic devices, was investigated by using angular dependent thermal conductivity and Seebeck coefficient measurements at various temperatures. We found that the maximum thermal conductivities in x (zigzag), y (armchair), and z (perpendicular to the puckered layers) directions are 34, 17, and 5 W m-1 K-1, respectively, exhibiting large anisotropy. At temperature around 200 K, a large Seebeck coefficient up to +487 ± 10 μV/K has been obtained in x direction, which is 1.5 times higher than that in z direction. The large anisotropy of thermal transport properties can be understood from the crystal structure and bonding characters of BP. In addition, the energy gap has been obtained from nuclear spin lattice relaxation measurements, which is consistent with the value derived from temperature-dependent Seebeck coefficient measurements.

  12. Some Notes on Jack Welch's Contributions to Interferometer Observations of Large Interstellar Biomolecules

    NASA Astrophysics Data System (ADS)

    Snyder, L. E.

    2006-12-01

    It is now generally accepted that the interstellar molecular clouds that produce detectable amounts of large, highly saturated molecules provide the material for star formation. Consequently, those molecules may provide insight for presolar nebular chemistry, and their subset, the biomolecules, may provide information about the biological potential of the associated chemistry for seeding newly formed planets. This research has utilized important properties of interferometric arrays such as high angular resolution over a large field of view, sideband separation, and structural filtering to obtain molecular data on interstellar biomolecules that would have been difficult or impossible to obtain otherwise. In addition, this paper notes some of Jack Welch's important contributions, which helped lead to the interferometric studies of large interstellar biomolecules.

  13. Radar Observation of Large Attenuation in Convective Storms: Implications for the Dropsize Distribution

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.

    2000-01-01

    Airborne meteorological radars typically operate at attenuating wavelengths. The path integrated attenuation (PIA) can be estimated using the surface reference technique (SRT). In this method, an initial value is determined for the radar cross section of the earth surface in a rain-free area in relatively close proximity to the rain cloud. During subsequent observations of precipitation any decrease 'in the observed surface cross section from the reference value s assumed to be a result of the two-way attenuation along the propagation path. In this paper we present selected instances of high PIA observed over land by an airborne radar. The observations were taken in Brazil and Florida during TRMM (Tropical Rainfall Measurement Mission) field campaigns. We compared these observations with collocated and nearly simultaneous ground-based radar observations by an S-band radar that is not subject to significant attenuation. In this preliminary evaluation, a systematic difference in the attenuation in the two storms is attributed to a difference in the raindrop size distributions; this is supported by observations of ZDR (differential reflectivity).

  14. Circular states of atomic hydrogen

    SciTech Connect

    Lutwak, R.; Holley, J.; Chang, P.P.; Paine, S.; Kleppner, D.; Ducas, T.

    1997-08-01

    We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29{r_arrow}n=30 transition. {copyright} {ital 1997} {ital The American Physical Society}

  15. Observations and numerical simulations of large-eddy circulation in the ocean surface mixed layer

    NASA Astrophysics Data System (ADS)

    Sundermeyer, Miles A.; Skyllingstad, Eric; Ledwell, James R.; Concannon, Brian; Terray, Eugene A.; Birch, Daniel; Pierce, Stephen D.; Cervantes, Brandy

    2014-11-01

    Two near-surface dye releases were mapped on scales of minutes to hours temporally, meters to order 1 km horizontally, and 1-20 m vertically using a scanning, depth-resolving airborne lidar. In both cases, dye evolved into a series of rolls with their major axes approximately aligned with the wind and/or near-surface current. In both cases, roll spacing was also of order 5-10 times the mixed layer depth, considerably larger than the 1-2 aspect ratio expected for Langmuir cells. Numerical large-eddy simulations under similar forcing showed similar features, even without Stokes drift forcing. In one case, inertial shear driven by light winds induced large aspect ratio large-eddy circulation. In the second, a preexisting lateral mixed layer density gradient provided the dominant forcing. In both cases, the growth of the large-eddy structures and the strength of the resulting dispersion were highly dependent on the type of forcing.

  16. Condensation of circular DNA

    NASA Astrophysics Data System (ADS)

    Starostin, E. L.

    2013-04-01

    A simple model of a circularly closed double-stranded DNA in a poor solvent is considered as an example of a semi-flexible polymer with self-attraction. To find the ground states, the conformational energy is computed as a sum of the bending and torsional elastic components and the effective self-attraction energy. The model includes a relative orientation or sequence dependence of the effective attraction forces between different pieces of the polymer chain. Two series of conformations are analysed: a multicovered circle (a toroid) and a multifold two-headed racquet. The results are presented as a diagram of state. It is suggested that the stability of particular conformations may be controlled by proper adjustment of the primary structure. Application of the model to other semi-flexible polymers is considered.

  17. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  18. Large XCH4 anomaly in summer 2013 over Northeast Asia observed by GOSAT

    NASA Astrophysics Data System (ADS)

    Ishizawa, M.; Uchino, O.; Morino, I.; Inoue, M.; Yoshida, Y.; Mabuchi, K.; Shirai, T.; Tohjima, Y.; Maksyutov, S.; Ohyama, H.; Kawakami, S.; Takizawa, A.

    2015-09-01

    Extremely high levels of column-averaged dry-air mole fractions of atmospheric methane (XCH4) were detected in August and September 2013 over Northeast Asia (~ 20 ppb above the averaged summertime XCH4 over 2009-2012, after removing a long-term trend), as being retrieved from the Short-Wavelength InfraRed (SWIR) spectral data observed with the Thermal And Near-infrared Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT). Similar enhancements of XCH4 were also observed by the ground-based measurements at two Total Carbon Column Observing Network (TCCON) sites in Japan. The analysis of surface CH4 concentrations observed at three monitoring sites around the Japan islands suggest that the extreme increase of XCH4 has occurred in a limited area. The model analysis was conducted to investigate this anomalously high XCH4 event, using an atmospheric transport model. The results indicate that the extreme increase of XCH4 is attributed to the anomalous atmospheric pressure pattern over East Asia during the summer of 2013, which effectively transported the CH4-rich air to Japan from the strong CH4 source areas in East China. The two Japanese TCCON sites, ~ 1000 km east-west apart each other, coincidentally located along the substantially CH4-rich air flow from East China. The GOSAT orbiting with three-day recurrence successfully observed the synoptic-scale XCH4 enhancement in the comparable accuracy to the TCCON data. This analysis demonstrates the capability of GOSAT to monitor an XCH4 event on a synoptic scale.

  19. How historic simulation-observation discrepancy affects future warming projections in a very large model ensemble

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip

    2016-01-01

    Projections of future climate made by model-ensembles have credibility because the historic simulations by these models are consistent with, or near-consistent with, historic observations. However, it is not known how small inconsistencies between the ranges of observed and simulated historic climate change affects the future projections made by a model ensemble. Here, the impact of historical simulation-observation inconsistencies on future warming projections is quantified in a 4-million member Monte Carlo ensemble from a new efficient Earth System Model (ESM). Of the 4-million ensemble members, a subset of 182,500 are consistent with historic ranges of warming, heat uptake and carbon uptake simulated by the Climate Model Intercomparison Project 5 (CMIP5) ensemble. This simulation-consistent subset projects similar future warming ranges to the CMIP5 ensemble for all four RCP scenarios, indicating the new ESM represents an efficient tool to explore parameter space for future warming projections based on historic performance. A second subset of 14,500 ensemble members are consistent with historic observations for warming, heat uptake and carbon uptake. This observation-consistent subset projects a narrower range for future warming, with the lower bounds of projected warming still similar to CMIP5, but the upper warming bounds reduced by 20-35 %. These findings suggest that part of the upper range of twenty-first century CMIP5 warming projections may reflect historical simulation-observation inconsistencies. However, the agreement of lower bounds for projected warming implies that the likelihood of warming exceeding dangerous levels over the twenty-first century is unaffected by small discrepancies between CMIP5 models and observations.

  20. Aperiodic Large-Scale Disturbances in the Lower Ionosphere. Ionosonde Observation Results

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.; Frolov, V. L.; Barabash, V. V.

    2014-07-01

    We present the observed disturbances of the parameters of the ionosphere affected by high-power radio waves from the SURA heating facility. Ionosondes located in Nizhny Novgorod and Moscow (Russia), Kharkov (Ukraine), and Pruhonice (Czechia) were used for the observations. The diagnostic tools were from 560 to 2200 km away from SURA. Additional ionization layers with a cutoff frequency of 2.6-3.4 MHz were occasionally observed on the ionograms of the Nizhny Novgorod and Moscow stations. The effective altitude of these layers was 120-160 km and the true altitude was about 110-130 km. The occurrence of additional ionization layers below 100-130 km was controlled by an increase in the minimum observable frequency (MOF). For the Moscow station, the MOF increased by about 1 MHz in the daytime and almost did not change in the night time. MOF variations on the ionograms of the Kharkov and Pruhonice stations were less significant (0.3-0.4 MHz) in all time of the day. The observed effects are most probably due to the midlatitude precipitation of electrons from the inner radiation belt, which increased the electron number density in the ionosphere, absorption of the sounding radio waves, and the MOF. Estimated particle flux density was 108-109 m-2 ·s-1. The electron number density in the daytime increased by a factor of 2-3.

  1. Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Young, Roy M.

    2011-01-01

    The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.

  2. Observation of collisionless shocks in a large current-free laboratory plasma

    NASA Astrophysics Data System (ADS)

    Niemann, C.; Gekelman, W.; Constantin, C. G.; Everson, E. T.; Schaeffer, D. B.; Bondarenko, A. S.; Clark, S. E.; Winske, D.; Vincena, S.; Van Compernolle, B.; Pribyl, P.

    2014-11-01

    We report the first measurements of the formation and structure of a magnetized collisionless shock by a laser-driven magnetic piston in a current-free laboratory plasma. This new class of experiments combines a high-energy laser system and a large magnetized plasma to transfer energy from a laser plasma plume to the ambient ions through collisionless coupling, until a self-sustained MA˜ 2 magnetosonic shock separates from the piston. The ambient plasma is highly magnetized, current free, and large enough (17 m × 0.6 m) to support Alfvén waves. Magnetic field measurements of the structure and evolution of the shock are consistent with two-dimensional hybrid simulations, which show Larmor coupling between the debris and ambient ions and the presence of reflected ions, which provide the dissipation. The measured shock formation time confirms predictions from computational work.

  3. Very Large Array observations of Uranus at 2.0 cm

    NASA Technical Reports Server (NTRS)

    Berge, G. L.; Muhleman, D. O.; Linfield, R. P.

    1988-01-01

    Radio observations of Uranus obtained at 2.0 cm with the B configuration of the VLA during April 1985 are reported. The calibration and data-reduction procedures are described in detail, and the results are presented in tables, maps, and graphs and compared with IRIS 44-micron observations (Hanel et al., 1986). Features discussed include highest brightness centered on the pole rather than on the subearth point, a decrease in brightness temperature (by up to 9 K) at latitudes between -20 and -50 deg (well correlated with the IRIS data), and disk-center position (corrected for the observed radio asymmetry) in good agreement with that found on the basis of the outer contours of the image.

  4. Twelve thousand laser-AO observations: first results from the Robo-AO large surveys

    NASA Astrophysics Data System (ADS)

    Law, Nicholas M.; Baranec, Christoph; Riddle, Reed L.

    2014-07-01

    Robo-AO is the first AO system which can feasibly perform surveys of thousands of targets. The system has been operating in a fully robotic mode on the Palomar 1.5m telescope for almost two years. Robo-AO has completed nearly 12,000 high-angular-resolution observations in almost 20 separate science programs including exoplanet characterization, field star binarity, young star binarity and solar system observations. We summarize the Robo-AO surveys and the observations completed to date. We also describe the data-reduction pipeline we developed for Robo-AO—the first fully-automated AO data-reduction, point-spread-function subtraction and companion-search pipeline.

  5. Search for Electromagnetic Counterparts to LIGO-Virgo Candidates: Expanded Very Large Array Observations

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Keating, Katie; Jenet, F. A.; Kassim, N. E.

    2011-01-01

    This paper summarizes a search for radio wavelength counterparts to candidate gravitational wave events. The identification of an electromagnetic counterpart could provide a more complete understanding of a gravitational wave event, including such characteristics as the location and the nature of the progenitor. We used the Expanded Very Large Array (EVLA) to search six galaxies which were identified as potential hosts for two candidate gravitational wave events. We summarize our procedures and discuss preliminary results.

  6. Observation and analysis of high-speed human motion with frequent occlusion in a large area

    NASA Astrophysics Data System (ADS)

    Wang, Yuru; Liu, Jiafeng; Liu, Guojun; Tang, Xianglong; Liu, Peng

    2009-12-01

    The use of computer vision technology in collecting and analyzing statistics during sports matches or training sessions is expected to provide valuable information for tactics improvement. However, the measurements published in the literature so far are either unreliably documented to be used in training planning due to their limitations or unsuitable for studying high-speed motion in large area with frequent occlusions. A sports annotation system is introduced in this paper for tracking high-speed non-rigid human motion over a large playing area with the aid of motion camera, taking short track speed skating competitions as an example. The proposed system is composed of two sub-systems: precise camera motion compensation and accurate motion acquisition. In the video registration step, a distinctive invariant point feature detector (probability density grads detector) and a global parallax based matching points filter are used, to provide reliable and robust matching across a large range of affine distortion and illumination change. In the motion acquisition step, a two regions' relationship constrained joint color model and Markov chain Monte Carlo based joint particle filter are emphasized, by dividing the human body into two relative key regions. Several field tests are performed to assess measurement errors, including comparison to popular algorithms. With the help of the system presented, the system obtains position data on a 30 m × 60 m large rink with root-mean-square error better than 0.3975 m, velocity and acceleration data with absolute error better than 1.2579 m s-1 and 0.1494 m s-2, respectively.

  7. Large Amplitude Whistler Waves and Electron Acceleration in the Earth's Radiation Belts: A Review of STEREO and Wind Observations

    NASA Technical Reports Server (NTRS)

    Cattell, Cynthia; Breneman, A.; Goetz, K.; Kellogg, P.; Kersten, K.; Wygant, J.; Wilson, L. B., III; Looper, Mark D.; Blake, J. Bernard; Roth, I.

    2012-01-01

    One of the critical problems for understanding the dynamics of Earth's radiation belts is determining the physical processes that energize and scatter relativistic electrons. We review measurements from the Wind/Waves and STEREO S/Waves waveform capture instruments of large amplitude whistler-mode waves. These observations have provided strong evidence that large amplitude (100s mV/m) whistler-mode waves are common during magnetically active periods. The large amplitude whistlers have characteristics that are different from typical chorus. They are usually nondispersive and obliquely propagating, with a large longitudinal electric field and significant parallel electric field. We will also review comparisons of STEREO and Wind wave observations with SAMPEX observations of electron microbursts. Simulations show that the waves can result in energization by many MeV and/or scattering by large angles during a single wave packet encounter due to coherent, nonlinear processes including trapping. The experimental observations combined with simulations suggest that quasilinear theoretical models of electron energization and scattering via small-amplitude waves, with timescales of hours to days, may be inadequate for understanding radiation belt dynamics.

  8. Observations and implications of large-amplitude longitudinal oscillations in a solar filament

    SciTech Connect

    Luna, M.; Knizhnik, K.; Muglach, K.; Karpen, J.; Gilbert, H.; Kucera, T. A.; Uritsky, V.

    2014-04-10

    On 2010 August 20, an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work, we analyze this periodic motion in a large fraction of the filament to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we used the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of cohesiveness throughout the filament channel. Moreover, the estimated mass accretion rate implies that the footpoint heating responsible for the thread formation, according to the thermal nonequilibrium model, agrees with previous coronal heating estimates. We estimate the magnitude of the energy released in the nearby event by studying the dynamic response of the filament threads, and discuss the implications of our study for filament structure and heating.

  9. Pioneer and Voyager observations of the solar wind at large heliocentric distances and latitudes

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Mihalov, J. D.; Barnes, A.; Lazarus, A. J.; Smith, E. J.

    1989-01-01

    Data obtained from the electrostatic analyzers aboard the Pioneer 10 and 11 spacecraft and from the Faraday cup aboard Voyager 2 were used to study spatial gradients in the distant solar wind. Prior to mid-1985, both spacecraft observed nearly identical solar wind structures. After day 150 of 1985, the velocity structure at Voyager 2 became flatter, and the Voyager 2 velocities were smaller than those observed by Pioneer 11. It is suggested that these changes in the solar wind at low latitudes may be related to a change which occurred in the coronal hole structure in early 1985.

  10. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light in weight. A 300 meter diameter MIC mirror in orbit for example, would weigh 20 metric tons and MIC structures can be easily developed and tested on Earth at small scale in existing evacuated chambers followed by larger scale tests in the atmosphere, using a vacuum tight enclosure on the small diameter superconducting cable to prevent air leakage into the evacuated thermal insulation around the superconducting cable.

  11. Circularization pathway of a bacterial group II intron

    PubMed Central

    Monat, Caroline; Cousineau, Benoit

    2016-01-01

    Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3′ splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria. PMID:26673697

  12. Circularization pathway of a bacterial group II intron.

    PubMed

    Monat, Caroline; Cousineau, Benoit

    2016-02-29

    Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3' splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria. PMID:26673697

  13. Nonlinear magnetization dynamics under circularly polarized field.

    PubMed

    Bertotti, G; Serpico, C; Mayergoyz, I D

    2001-01-22

    Exact analytical results are presented for the nonlinear large motion of the magnetization vector in a body with uniaxial symmetry subject to a circularly polarized field. The absence of chaos, the existence of pure time-harmonic magnetization modes with no generation of higher-order harmonics, and the existence of quasiperiodic magnetization modes with spontaneous breaking of the rotational symmetry are proven. Application to ferromagnetic resonance and connection with the Stoner-Wohlfarth model are discussed. PMID:11177922

  14. A large Italian observational multicentre study on vascular ulcers of the lower limbs (Studio Ulcere Vascolari).

    PubMed

    Apollonio, Alessandro; Antignani, Pier L; Di Salvo, Michelangelo; Failla, Giacomo; Guarnera, Giorgio; Mosti, Giovanni; Ricci, Elia

    2016-02-01

    An observational study of 2 years was promoted by the Italian Association for Cutaneous Ulcers (AIUC) in order to monitor the epidemiology of leg ulcers, the trend of healing and the more frequent therapeutic approaches in lower limb ulcers. Fifty-nine sites in 14 different Italian regions involved in the study, with 1333 enrolled patients (1163 patients fully evaluated and followed up for 9 months). A prevalence of females (62%) was observed with a mean age of 70 years and a high rate of hypertension (62%), diabetes (38%) and obesity (29%). Venous ulcer was most frequent (55%), followed by mixed (25%) and diabetic (8·3%) ulcers. Basically, all patients received a local therapy (LT) (compression and advanced local therapies), while 63% of patients have an associated systemic pharmaceutical treatment. Ulcer healing rates progressively increased throughout the study and despite the type of observational study does not allow conclusions on the treatment, it was observed that the patients receiving additional systemic drugs were associated with a more rapid acceleration of healing rates of ulcers compared to LT alone (3 months: 39·7% versus 29·2%; 6 months: 62·0% versus 47·0%; 9 months: 74·7% versus 63·8%). In particular, the Studio Ulcere Vascolari (SUV) study showed that a combination treatment with sulodexide and compression therapy allows for a greater increase in the healing rates in venous ulcers. PMID:24618175

  15. The large-scale observational signatures of low-mass galaxies during reionization

    NASA Astrophysics Data System (ADS)

    Dixon, Keri L.; Iliev, Ilian T.; Mellema, Garrelt; Ahn, Kyungjin; Shapiro, Paul R.

    2016-03-01

    Observations of the epoch of reionization give us clues about the nature and evolution of the sources of ionizing photons, or early stars and galaxies. We present a new suite of structure formation and radiative transfer (RT) simulations from the PRACE4LOFAR project designed to investigate whether the mechanism of radiative feedback, or the suppression of star formation in ionized regions from UV radiation, can be inferred from these observations. Our source halo mass extends down to 108 M⊙, with sources in the mass range 108-109 M⊙ expected to be particularly susceptible to feedback from ionizing radiation, and we vary the aggressiveness and nature of this suppression. Not only do we have four distinct source models, we also include two box sizes (67 and 349 Mpc), each with two grid resolutions. This suite of simulations allows us to investigate the robustness of our results. All of our simulations are broadly consistent with the observed electron-scattering optical depth of the cosmic microwave background and the neutral fraction and photoionization rate of hydrogen at z ˜ 6. In particular, we investigate the redshifted 21-cm emission in anticipation of upcoming radio interferometer observations. We find that the overall shape of the 21-cm signal and various statistics are robust to the exact nature of source suppression, the box size, and the resolution. There are some promising model discriminators in the non-Gaussianity and small-scale power spectrum of the 21-cm signal.

  16. AQUAPORINS ARE OBSERVED IN THE DUCT EPITHELIA OF THE EPIDIDYMAL REGION OF THE LARGE WHITE TURKEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cellular and molecular mechanisms regulating the re-uptake of the testicular fluid supporting sperm exiting the testes is not known in the bird. The presence of aquaporin, a protein involved in the transmembrane water transport, was investigated. Observations were limited to the ductuli efferent...

  17. Circular polarization of AGNs on the parsec VLBI scales

    NASA Astrophysics Data System (ADS)

    Vitrishchak, V. M.; Pashchenko, I. N.; Gabuzda, D. C.

    2011-01-01

    Faraday effects possibly plays the major role in generation of circular polarization observed on Very Long Base Interferometry scales. Multi-frequency circular polarization measurementrs can become the desired breakthrough in understanding the active galactic nuclei jet physics and the only possibility to estimate some of their vital parameters. We review the possible mechanisms of circular polarization generation and their connection to the jet parameters. We throw a glimpse on the methods of data reduction and finally discuss our current observational progress and its possible interpretation.

  18. Placement of the dam for the no. 2 kambaratinskaya HPP by large-scale blasting: some observations

    SciTech Connect

    Shuifer, M. I.; Argal, E. S.

    2011-11-15

    Results of complex instrument observations of large-scale blasting during construction of the dam for the No. 2 Kambaratinskaya HPP on the Naryn River in the Republic of Kirgizia are analyzed. The purpose of these observations was: to determine the actual parameters of the seismic process, evaluate the effect of air and acoustic shock waves, and investigate the kinematics of the surface formed by the blast in its core region within the mass of fractured rocks.

  19. Limits on large extra dimensions based on observations of neutron stars with the Fermi-LAT

    SciTech Connect

    Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E.D.; Borgland, A.W.; Buehler, R.; Cameron, R.A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bonamente, E.; Cecchi, C.; Brigida, M.; Bruel, P.; Caraveo, P.A.; Casandjian, J.M. E-mail: elliott@slac.stanford.edu [Laboratoire AIM, CEA-IRFU Collaboration: Fermi-LAT collaboration; and others

    2012-02-01

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to γγ should contribute to the flux from NSs. Considering 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.

  20. Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; Scargle, J. D.; Troja, E.

    2012-01-01

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to should contribute to the flux from NSs. Considering 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.

  1. Tilt Angle and Footpoint Separation of Small and Large Bipolar Sunspot Regions Observed with HMI

    NASA Astrophysics Data System (ADS)

    McClintock, B. H.; Norton, A. A.

    2016-02-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. (2015) results that the sunspots appear to be two distinct populations.

  2. Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    SciTech Connect

    Ajello, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G.A.; Cameron, R.A.; Caraveo, P.A.; Casandjian, J.M.; Cecchi, C.; Charles, E.; /more authors..

    2012-08-17

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to {gamma}{gamma} should contribute to the flux from NSs. Considering 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.

  3. Observable T{sub 7} Lepton Flavor Symmetry at the Large Hadron Collider

    SciTech Connect

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-04-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T{sub 7} and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  4. A stacked analysis of brightest cluster galaxies observed with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Dutson, K. L.; White, R. J.; Edge, A. C.; Hinton, J. A.; Hogan, M. T.

    2013-03-01

    We present the results of a search for high-energy γ-ray emission from a large sample of galaxy clusters sharing the properties of three existing Fermi Large Area Telescope detections (in Perseus, Virgo and A3392), namely a powerful radio source within their brightest cluster galaxy (BCG). From a parent, X-ray flux-limited sample of 863 clusters, we select 114 systems with a core-dominated BCG radio flux above 50/75 mJy (in the National Radio Astronomy Observatory Very Large Array Sky Survey and the Sydney University Molonglo Sky Survey, respectively), stacking data from the first 45 months of the Fermi mission in three energy bands, to determine statistical limits on the γ-ray fluxes of the ensemble of candidate sources. For a >300 MeV selection, the distribution of detection significance across the sample is consistent with that across control samples for significances <3σ, but has a tail extending to higher values, including three >4σ signals which are not associated with previously identified γ-ray emission. Modelling of the data in these fields results in the detection of four non-2FGL Fermi sources, though none of these appear to be unambiguously associated with the BCG candidate. Only one is sufficiently close to be a plausible counterpart (RXC J0132.6-0804) and the remaining three appear to be background active galactic nuclei. A search at energies >3 GeV hints at emission from the BCG in A2055, which hosts a BL Lac object. There is no evidence for a signal in the stacked data, and the upper limit derived on the γ-ray flux of an average radio-bright BCG in each band is at least an order of magnitude more constraining than that calculated for individual objects. F1 GeV/F1.4 GHz for an average BCG in the sample is <15, compared with ≈120 for NGC 1275 in Perseus, which might indicate a special case for those objects detected at high energies. The tentative suggestion that point-like beamed emission from member galaxies comprise the dominant bright γ-ray sources in clusters implies searches for evidence of dark matter annihilation or large-scale merger shock signatures, for example, need to account for a significant level of contamination from within each cluster that is both highly stochastic and varies significantly over time.

  5. CARIBIC DOAS observations of nitrous acid and formaldehyde in a large convective cloud

    NASA Astrophysics Data System (ADS)

    Heue, K.-P.; Riede, H.; Walter, D.; Brenninkmeijer, C. A. M.; Wagner, T.; Frieß, U.; Platt, U.; Zahn, A.; Stratmann, G.; Ziereis, H.

    2013-09-01

    The CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) flying laboratory measures once per month the chemical composition at cruise altitude (10...12 km) during 4 consecutive Lufthansa flights. Here we present a case study of enhanced nitrogen oxides (NOx), nitrous acid (HONO), and formaldehyde (HCHO) in a thunderstorm cloud over the Caribbean islands of Guadeloupe in August 2011. Nitrous acid is an important reservoir gas for OH radicals, and only few observations of HONO at cruise altitude exist. CARIBIC is designed as a long period atmospheric observation system, the actual system has been flying almost monthly since 8 yr now. During this period only very few similar events (one since 2008) were observed. Due to multiple scattering the light path inside clouds is enhanced, thereby lowering the detection limit of the DOAS instrument. Under background conditions the detection limits are 46 ppt for HONO, 387 ppt for \\chem{HCHO}, and 100 ppt for NO2 and are roughly three times lower inside the cloud. Based on radiative transfer simulations we estimate the path length to 90{ldots}100 km and the cloud top height to ≈15 km. The inferred mixing ratios of HONO, HCHO and NO2 are 37 ppt, 400 ppt and 170 ppt, respectively. Bromine monoxide (BrO) remained below the detection limit of 1 ppt. Because the uplifted air masses originated from the remote marine boundary layer and lightning was observed in the area by the World Wide Lightning Location Network several hours prior to the measurement, the NO (≈1.5 ppb) enhancement was in all likelihood caused by lightning. The main source for the observed HCHO is probably updraught from the boundary layer, because the chemical formation of formaldehyde due to methane oxidation is too weak. Besides HCHO also CH3OOH and isoprene are considered as precursors. The chemical box model CAABA is used to estimate the \\chem{NO} and HCHO source strengths, which are necessary to explain our measurements. For NO a source strength of 8.25 × 109 molec cm-2 s-1 km-1 is found, which corresponds to the lightning activity as observed by the World Wide Lightning Location network and a lightning emission of 4.2 × 1025 NO molec/flash. The HCHO updraught is of the order of 121 × 109 molec cm-2 s-1 km-1. Also isoprene and CH3OOH as possible HCHO sources were studied and similar source strengths were found.

  6. Spacewatch Observations of Asteroids and Comets Supporting the Large-Scale Surveys

    NASA Astrophysics Data System (ADS)

    McMillan, Robert S.; Bressi, Terrence H.; Scotti, James V.; Larsen, Jeffrey A.; Mastaler, Ronald A.

    2014-11-01

    We specialize in followup astrometry of Near-Earth Objects (NEOs) of high priority while they are faint, including recently discovered objects on the MPC's Confirmation Page, objects with potential close encounters with Earth, NEOs for which NEOWISE determined albedos and diameters, targets of radar, potential destinations for spacecraft, and special requests by the MPC or JPL. The present era of Spacewatch observations began on 2011 Oct 15 with a new imaging camera on our 1.8-meter telescope. From then, the MPC has been accepting an annual average of 8,492 lines of astrometry of 1,018 different NEOs from Spacewatch, including 177 different PHAs per year. Thus we observe half of all such objects that are observed by anyone in the same interval. We make twice as many measurements of PHAs while they are fainter than V=22 than the next most productive astrometry group. We have contributed to the removal of half of the objects that were retired from JPL's impact risk list. Per year we observe about 35 radar targets, 50 NEOs that were measured by NEOWISE, and 100 potential rendezvous destinations. We also average 400 observations of comets per year. Since 2004 we have increased our efficiency by a factor of six in terms of observations per unit personnel work year by means of new hardware, software, and the automation of the 0.9-m telescope. Last year we received a grant to upgrade our 0.9-m telescope and develop a public archive of image data dating back to 1990. New grants from the NEOO Program now support our use of telescopes larger than the 1.8-meter of Spacewatch and improvement of the efficiency of the Spacewatch 1.8-m. Support of Spacewatch was/is from JPL subcontract 100319 (2010-2011), NASA/NEOO grants NNG06GJ42G, NNX11AB52G, NNX12AG11G, NNX13AP99G, NNX14AL13G, and NNX14AL14G, the Lunar and Planetary Laboratory, Steward Observatory, the Brinson Foundation of Chicago, IL, the estates of R. S. Vail and R. L. Waland, and other private donors. We are also indebted to the MPC of the IAU for their web services.

  7. Circular chemiresistors for microchemical sensors

    DOEpatents

    Ho, Clifford K. (Albuquerque, NM)

    2007-03-13

    A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.

  8. Large-scale earth surface thermal radiative features in space observation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Han, Yuge; Xuan, Yimin

    2015-08-01

    It is necessary to complete the earth thermal radiative modeling, since it is the most important background in space infrared observation. A new method was proposed to calculate the earth thermal infrared radiation combined with remote sensing technology. The simplified model also was proposed when the solar radiative impact is neglected properly. The practical split-window algorithm was used to retrieve the global surface temperature from MODIS data products. Integrated with MODTRAN code to calculate the atmospheric radiation and transmittance, the earth thermal infrared features were calculated in typical months. Moreover the radiance dependence on viewing angle was discussed. Through the comparison with CERES measurement results, this model has been proved effective and practicable, and that it would have a further application in space thermal environment analysis or space infrared observation technology.

  9. Large-scale outflow in quasar LBQS J1206+1052: HST/COS observations

    NASA Astrophysics Data System (ADS)

    Chamberlain, Carter; Arav, Nahum

    2015-11-01

    Using two orbits of HST/COS archival observations, we measure the location and energetics of a quasar outflow from LBQS J1206+1052. From separate collisional excitation models of observed N III/N III* and S III/S III* troughs, we measure the electron number density n_e of the outflow. Both independent determinations are in full agreement and yield n_e =10^{3.0} cm^{-3}. Combining this value of n_e with photoionization simulations, we determine that the outflow is located 840 pc from the central source. The outflow has a velocity of 1400 km s-1, a mass flux of 9 M⊙ yr-1 and a kinetic luminosity of 1042.8 erg s-1. The distance finding is much larger than predicted from radiative acceleration models, but is consistent with recent empirical distance determinations.

  10. Very Large Array-RATAN 600 observations of a solar active region

    NASA Technical Reports Server (NTRS)

    Bogod, V. M.; Gel'freikh, G. B.; Willson, R. F.; Lang, K. R.; Opeikina, L. V.; Shatilov, V.; Tsvetkov, S. V.

    1992-01-01

    VLA-RATAN-600 observations of the sun around the partial solar eclipse in July 1990 are discussed. The relatively flat spectrum of the extended emission is attributed to the optically thin thermal bremsstrahlung of electrons trapped in a magnetic loop at coronal temperatures. Step-spectrum sunspot-associated emission is attributed to thermal gyroresonance radiation at different heights along the leg of a loop joining regions of positive magnetic polarity. Comparisons with predicted distributions of gyroresonance radio indicate that compact sunspot-associated sources lie at heights of 2500-17,500 km above the photosphere. Differences in the observed and predicted microwave emission suggest an inhomogeneous distribution of thermal plasma in the corona above the sunspot or the presence of localized flux tubes containing higher density plasma or nonpotential fields.

  11. Fermi large area telescope observations of blazar 3C 279 occultations by the sun

    SciTech Connect

    Barbiellini, G.; Bastieri, D.; Buson, S.; Bechtol, K.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Chiang, J.; Bellazzini, R.; Bregeon, J.; Bruel, P.; Caraveo, P. A.; Cavazzuti, E.; Ciprini, S.; Cecchi, C.; Chaves, R. C. G.; Cheung, C. C. E-mail: phdmitry@stanford.edu; and others

    2014-04-01

    Observations of occultations of bright γ-ray sources by the Sun may reveal predicted pair halos around blazars and/or new physics, such as, e.g., hypothetical light dark matter particles—axions. We use Fermi Gamma-Ray Space Telescope (Fermi) data to analyze four occultations of blazar 3C 279 by the Sun on October 8 each year from 2008 to 2011. A combined analysis of the observations of these occultations allows a point-like source at the position of 3C 279 to be detected with significance of ≈3σ, but does not reveal any significant excess over the flux expected from the quiescent Sun. The likelihood ratio test rules out complete transparency of the Sun to the blazar γ-ray emission at a 3σ confidence level.

  12. VLA observations of stellar planetary nebulae. [using Very Large Array at National Radio Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.; Balick, B.; Thompson, A. R.

    1979-01-01

    Coordinates, dimensions, 4885-MHz flux densities, and brightness temperatures of K3-2, NGC 6833, Ps 1, II 5117, Me 2-2, Hb 12, Vy 1-1, and M1-5 are reported. In two other cases, H3-29 and H3-75, confused extended structure was detected in which the nebula could not be identified with certainty. He 2-467, M1-2, and Peterson's H-alpha object in M15 were also included in the observations but not detected with an upper limit of less than 10 mJy. The observations are compared with some of the previous optical and radio data, such as log S(H-beta). Distances are computed from the present data with standard assumptions. Corresponding linear radii range below 0.1 pc, among the smallest in previous distributions of radius.

  13. Satellite Observed Widespread Decline in Mongolian Grasslands Largely Due to Overgrazing

    NASA Technical Reports Server (NTRS)

    Hilker, Thomas; Natsagdorj, Enkhjargal; Waring, Richard H.; Lyapustin, Alexei; Wang, Yujie

    2014-01-01

    The Mongolian Steppe is one of the largest remaining grassland ecosystems. Recent studies have reported widespread decline of vegetation across the steppe and about 70 percent of this ecosystem is now considered degraded. Among the scientific community there has been an active debate about whether the observed degradation is related to climate, or overgrazing, or both. Here, we employ a new atmospheric correction and cloud screening algorithm (MAIAC) to investigate trends in satellite observed vegetation phenology. We relate these trends to changes in climate and domestic animal populations. A series of harmonic functions is fitted to MODIS observed phenological curves to quantify seasonal and inter-annual changes in vegetation. Our results show a widespread decline (of about 12 percent on average) in MODIS observed NDVI across the country but particularly in the transition zone between grassland and the Gobi desert, where recent decline was as much as 40 percent below the 2002 mean NDVI. While we found considerable regional differences in the causes of landscape degradation, about 80 percent of the decline in NDVI could be attributed to increase in livestock. Changes in precipitation were able to explain about 30 percent of degradation across the country as a whole but up to 50 percent in areas with denser vegetation cover (p0.05). Temperature changes, while significant, played only a minor role (r20.10, p0.05). Our results suggest that the cumulative effect of overgrazing is a primary contributor to the degradation of the Mongolian steppe and is at least partially responsible for desertification reported in previous studies.

  14. Observations of Jupiter at 26.3 MHz using a large array

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Carr, T. D.; Levy, J.

    1975-01-01

    A 640 element phase-steerable dipole array has been used to make highly sensitive observations of the planet Jupiter during the 1973 apparition. The satellite Io is found to have very little influence at the low flux levels, whereas the definition of sources A and B appears to be relatively flux independent. A two-dimensional analysis of the data in the Jupiter-Io plane has revealed considerable source B activity at low intensities which is not influenced by Io.

  15. Large-scale structure and coronal dynamics from joint radio, SOHO/EIT and coronagraph observations

    NASA Astrophysics Data System (ADS)

    Pick, M.; Maia, D.; Vourlidas, A.; Benz, A. O.; Howard, R.; Thompson, B. J.

    1999-06-01

    This study presents joint observations of an `halo' coronal mass ejection from the EIT telescope and LASCO coronagraphs on SOHO, from the Nançay Radioheliograph (NRH) and the Zurich ETH radiospectrograph (Phoenix-2). This event includes different manifestations: a coronal wave and a dimming region detected by EIT, a CME showing bright discrete portions above east and west limbs. Radio signatures of all these manifestations are found and the interpretation is briefly discussed.

  16. Pan-Chromatic Observations of the Remarkable Nova Large Magellanic Cloud 2012

    NASA Astrophysics Data System (ADS)

    Schwarz, Greg J.; Shore, Steven N.; Page, Kim L.; Osborne, Julian P.; Beardmore, Andrew P.; Walter, Frederick M.; Bode, Michael F.; Drake, Jeremy J.; Ness, Jan-Uwe; Starrfield, Sumner; Van Rossum, Daniel R.; Woodward, Charles E.

    2015-03-01

    We present the results of an intensive multiwavelength campaign on nova LMC 2012. This nova evolved very rapidly in all observed wavelengths. The time to fall two magnitudes in the V band was only 2 days. In X-rays the super soft phase began 13 ± 5 days after discovery and ended around day 50 after discovery. During the super soft phase, the Swift/XRT and Chandra spectra were consistent with the underlying white dwarf (WD) being very hot, ˜1 MK, and luminous, ˜1038 erg s-1. The UV, optical, and near-IR photometry showed a periodic variation after the initial and rapid fading had ended. Timing analysis revealed a consistent 19.24 ± 0.03 hr period in all UV, optical, and near-IR bands with amplitudes of ˜0.3 mag which we associate with the orbital period of the central binary. No periods were detected in the corresponding X-ray data sets. A moderately high inclination system, i = 60 ± 10{\\circ{}}, was inferred from the early optical emission lines. The HST/STIS UV spectra were highly unusual with only the N v (1240 Å) line present and superposed on a blue continuum. The lack of emission lines and the observed UV and optical continua from four epochs can be fit with a low mass ejection event, ˜10-6 {{M}⊙ }, from a hot and massive WD near the Chandrasekhar limit. The WD, in turn, significantly illuminated its subgiant companion which provided the bulk of the observed UV/optical continuum emission at the later dates. The inferred extreme WD characteristics and low mass ejection event favor nova LMC 2012 being a recurrent nova of the U Sco subclass. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  17. Energetic delayed hadrons in large air showers observed at 5200m above sea level

    NASA Technical Reports Server (NTRS)

    Kaneko, T.; Hagiwara, K.; Yoshii, H.; Martinic, N.; Siles, L.; Miranda, P.; Kakimoto, F.; Tsuchimoto, I.; Inoue, N.; Suga, K.

    1985-01-01

    Energetic delayed hadrons in air showers with electron sizes in the range 10 to the 6th power to 10 to the 9th power were studied by observing the delayed bursts produced in the shield of nine square meter scintillation detectors in the Chacaltaya air-shower array. The frequency of such delayed burst is presented as a function of electron size, core distance and sec theta.

  18. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing.

    PubMed

    Hilker, Thomas; Natsagdorj, Enkhjargal; Waring, Richard H; Lyapustin, Alexei; Wang, Yujie

    2014-02-01

    The Mongolian Steppe is one of the largest remaining grassland ecosystems. Recent studies have reported widespread decline of vegetation across the steppe and about 70% of this ecosystem is now considered degraded. Among the scientific community there has been an active debate about whether the observed degradation is related to climate, or over-grazing, or both. Here, we employ a new atmospheric correction and cloud screening algorithm (MAIAC) to investigate trends in satellite observed vegetation phenology. We relate these trends to changes in climate and domestic animal populations. A series of harmonic functions is fitted to Moderate Resolution Imaging Spectroradiometer (MODIS) observed phenological curves to quantify seasonal and inter-annual changes in vegetation. Our results show a widespread decline (of about 12% on average) in MODIS observed normalized difference vegetation index (NDVI) across the country but particularly in the transition zone between grassland and the Gobi desert, where recent decline was as much as 40% below the 2002 mean NDVI. While we found considerable regional differences in the causes of landscape degradation, about 80% of the decline in NDVI could be attributed to increase in livestock. Changes in precipitation were able to explain about 30% of degradation across the country as a whole but up to 50% in areas with denser vegetation cover (P < 0.05). Temperature changes, while significant, played only a minor role (r(2)  = 0.10, P < 0.05). Our results suggest that the cumulative effect of overgrazing is a primary contributor to the degradation of the Mongolian steppe and is at least partially responsible for desertification reported in previous studies. PMID:23966315

  19. Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Hui, C. Y.; Yeung, P. K. H.; Ng, C. W.; Lin, L. C. C.; Tam, P. H. T.; Cheng, K. S.; Kong, A. K. H.; Chernyshov, D. O.; Dogiel, V. A.

    2016-04-01

    We report the results from a detailed γ-ray investigation in the field of two `dark accelerators', HESS J1745-303 and HESS J1741-302, with 6.9 yr of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we found that its MeV-GeV emission is mainly originated from the `Region A' of the TeV feature. Its γ-ray spectrum can be modelled with a single power law with a photon index of Γ ˜ 2.5 from few hundreds MeV-TeV. Moreover, an elongated feature, which extends from `Region A' towards north-west for ˜1.3°, is discovered for the first time. The orientation of this feature is similar to that of a large-scale atomic/molecular gas distribution. For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for this unidentified TeV source. On the other hand, we have detected a new point source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved which resembles that of a γ-ray pulsar. This makes it possibly associated with PSR B1737-20 or PSR J1739-3023.

  20. MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury's magnetopause

    NASA Astrophysics Data System (ADS)

    Sundberg, Torbjörn; Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; Raines, Jim M.; Solomon, Sean C.

    2012-04-01

    We present a survey of Kelvin-Helmholtz (KH) waves at Mercury's magnetopause during MESSENGER's first Mercury year in orbit. The waves were identified on the basis of the well-established sawtooth wave signatures that are associated with nonlinear KH vortices at the magnetopause. MESSENGER frequently observed such KH waves in the dayside region of the magnetosphere where the magnetosheath flow velocity is still subsonic, which implies that instability growth rates at Mercury's magnetopause are much larger than at Earth. We attribute these greater rates to the limited wave energy dissipation in Mercury's highly resistive regolith. The wave amplitude was often on the order of 100 nT or more, and the wave periods were ˜10-20 s. A clear dawn-dusk asymmetry is present in the data, in that all of the observed wave events occurred in the postnoon and duskside sectors of the magnetopause. This asymmetry is likely related to finite Larmor-radius effects and is in agreement with results from particle-in-cell simulations of the instability. The waves were observed almost exclusively during periods when the north-south component of the magnetosheath magnetic field was northward, a pattern similar to that for most terrestrial KH wave events. Accompanying plasma measurements show that the waves were associated with the transport of magnetosheath plasma into the magnetosphere.

  1. MESSENGER Orbital Observations of Large-Amplitude Kelvin-Helmholtz Waves at Mercury's Magnetopause

    NASA Technical Reports Server (NTRS)

    Sundberg, Torbjorn; Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; Raines, Jim M.; Solomon, Sean C.

    2012-01-01

    We present a survey of Kelvi\\ n-Helmholtz (KH) waves at Mercury's magnetopause during MESSENGER's first Mercury year in orb it. The waves were identified on the basis of the well-established sawtooth wave signatures that are associated with non-linear KH vortices at the magnetopause. MESSENGER frequently observed such KH waves in the dayside region of the magnetosphere where the magnetosheath flow velocity is still sub -sonic, which implies that instability growth rates at Mercury's magnetopau are much larger than at Earth. We attribute these greater rates to the limited wave energy dissipation in Mercury's highly resistive regolith. The wave amplitude was often on the order of ' 00 nT or more, and the wave periods were - 10- 20 s. A clear dawn-dusk asymmetry is present in the data, in that all of the observed wave events occurred in the post-noon and dusk-side sectors of the magnetopause. This asymmetry is like ly related to finite Larmor-radius effects and is in agreement with results from particle-in-cell simulations of the instability. The waves were observed almost exclusively during periods when the north-south component of the magnetosheath magnetic field was northward, a pattern similar to that for most terrestrial KH wave events. Accompanying plasma measurements show that the waves were associated with the transport of magnetosheath plasma into the magnetosphere.

  2. Large-scale longitudinal variation in ionospheric height and equatorial spread F occurrences observed by ionosondes

    NASA Astrophysics Data System (ADS)

    Saito, S.; Maruyama, T.

    2007-08-01

    Variations in ionospheric height associated with the prereversal enhancement (PRE) at two equatorial ionosonde stations separated by 6.34 in longitude were studied for the first time. The stations used were in Chumphon (10.7N, 99.4E, 3.3 Mag. Lat.), Thailand and Bac Lieu (9.3N, 105.7E, 1.6 Mag. Lat.), Vietnam. Variations in the virtual height of the bottomside of the F region (h'F) at 2.5 MHz observed at these two stations were analyzed for a period in March and April 2006. When the equatorial spread F (ESF) was not observed, h'F variations at the two stations were very similar, with a local time shift corresponding to the longitude separation. However, when ESF was observed, they were often significantly different. Our results show that h'F enhancement, which could be interpreted as being due to the eastward electric field enhancement, is quite localized in longitude when ESF occurs.

  3. Electronic properties and photoelectron circular dichroism of adsorbed chiral molecules

    NASA Astrophysics Data System (ADS)

    Ferrari, L.; Moras, P.; Gori, P.; Turchini, S.; Zema, N.; Palma, A.; Fujii, J.; Vobornik, I.; Alejandro, G.; Catone, D.; Prosperi, T.; Carbone, C.

    2015-02-01

    We report on an angle-resolved photoemission investigation of the valence states and chiral properties of a nonchirally oriented phase of tartaric acid deposited on a Cu ( 110 ) surface, observed with circularly polarized light. The two optical enantiomers R ,R and S ,S of tartaric acid, separately deposited, produce (40,23) overlayers which show a large dichroic effect and enantiomeric behavior all over the valence energies. The dichroic effects are displayed by native chiral molecular states and molecule-copper interface states. Density-functional theory calculations of the site-resolved density of states analyze the formation of hybrid states at the tartaric acid-copper interface and suggest that an observed interface state acquires chirality on binding.

  4. Interplanetary Shock Waves and Large-Scale Structures: Ulysses' Observations in and out of the Ecliptic Plane

    NASA Technical Reports Server (NTRS)

    Gonzalez-Esparza, J. A.; Balogh, A.; Forsyth, R. J.; Neugebauer, M.; Smith, E. J.; Phillips, J. L.

    1995-01-01

    A study is presented of 153 fast shock waves and their relation to other large-scale features in the solar wind: corotating interaction regions (CIRs), interplanetary counterparts of coronal mass ejections (ICMEs) and the magnetic sector structure, observed by Ulysses from October 1990 to the south solar pass in the summer of 1994.

  5. LARGE MAGELLANIC CLOUD DISTANCE AND STRUCTURE FROM NEAR-INFRARED RED CLUMP OBSERVATIONS

    SciTech Connect

    Koerwer, Joel F.

    2009-07-15

    We have applied the Infrared Survey Facility Magellanic Clouds Point-Source Catalog to the mapping of the red clump (RC) distance modulus across the Large Magellanic Cloud (LMC). Using the J- (1.25 {mu}m) and H- (1.63 {mu}m) band data to derive a reddening free luminosity function and a theoretical RC absolute magnitude from stellar evolution libraries, we estimate a distance modulus to the LMC of {mu} = 18.54 {+-} 0.06. The best fitting plane inclination, i, and the position angle of the line of nodes, {phi}, have little dependence on the assumed RC absolute magnitude; we find i = 23.{sup 0}5 {+-} 0.{sup 0}4 and {phi} = 154.{sup 0}6 {+-} 1.{sup 0}2. It was also noted that many fields included a significant asymptotic giant branch bump population that must be accounted for.

  6. Radius and brightness temperature observations of Titan at centimeter wavelengths by the Very Large Array

    NASA Technical Reports Server (NTRS)

    Jaffe, W.; Caldwell, J.; Owen, T.

    1980-01-01

    Brightness and radius measurements of the surface of Titan at 6, 2, and 1.3 cm wavelengths obtained with the Very Large Array radio interferometer are presented. Combined results for the three wavelengths indicate that the radius is 2400 + or - 250 km, implying a density of 2.4 + or - 0.7 g/cu cm, and that the brightness temperature is 87 + or - 9 K. The surface temperature may be somewhat higher if the emissivity is less than unity. The new data do not permit a choice between an inversion model for the atmosphere of Titan that predicts a surface temperature of 78 K and a model with both a stratospheric temperature inversion and a modest greenhouse effect that would increase the surface temperature by 10-40 K.

  7. Large-Range Movements of Neotropical Orchid Bees Observed via Radio Telemetry

    PubMed Central

    Wikelski, Martin; Moxley, Jerry; Eaton-Mordas, Alexander; López-Uribe, Margarita M.; Holland, Richard; Moskowitz, David; Roubik, David W.; Kays, Roland

    2010-01-01

    Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42–115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators. PMID:20520813

  8. Large-range movements of neotropical orchid bees observed via radio telemetry.

    PubMed

    Wikelski, Martin; Moxley, Jerry; Eaton-Mordas, Alexander; López-Uribe, Margarita M; Holland, Richard; Moskowitz, David; Roubik, David W; Kays, Roland

    2010-01-01

    Neotropical orchid bees (Euglossini) are often cited as classic examples of trapline-foragers with potentially extensive foraging ranges. If long-distance movements are habitual, rare plants in widely scattered locations may benefit from euglossine pollination services. Here we report the first successful use of micro radio telemetry to track the movement of an insect pollinator in a complex and forested environment. Our results indicate that individual male orchid bees (Exaerete frontalis) habitually use large rainforest areas (at least 42-115 ha) on a daily basis. Aerial telemetry located individuals up to 5 km away from their core areas, and bees were often stationary, for variable periods, between flights to successive localities. These data suggest a higher degree of site fidelity than what may be expected in a free living male bee, and has implications for our understanding of biological activity patterns and the evolution of forest pollinators. PMID:20520813

  9. Spitzer/SAGE Observations of Planetary Nebulae in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hora, Joseph L.; Cohen, M.; Meixner, M.; Blum, R. D.; Whitney, B.; Ellis, R. G.; Meade, M.; Babler, B.; Indebetouw, R.; Gordon, K.; Engelbracht, C.; For, B.; Block, M.; Misselt, K.; Vijh, U.; Leitherer, C.

    2006-12-01

    We present initial results of a program to determine the properties of Planetary Nebulae (PNe) in the Spitzer SAGE survey of the Large Magellanic Cloud (LMC). We have constructed IRAC mosaics of a sample of previously identified PNe in the LMC. Of the 233 PNe in the SAGE survey area, we found 213 that had IRAC sources within 1.5 arcsec of the catalog positions, and 118 had detections in all four IRAC bands. The IRAC colors of the PNe span a similar range as a sample of Galactic PNe. IRS spectra of the LMC PNe reveal several classes of spectral types, including ones dominated by warm dust continuum, PAH features, or emission lines from the ionized gas, including [Ne VI] at 7.65 microns. Several of the PNe are resolved with IRAC, and we compare the images to previous HST imaging at optical wavelengths. We present color-color plots and IRAC images of the detected PNe.

  10. MESSENGER Observations of Large Dayside Flux Transfer Events: Do They Drive Mercury's Substorm Cycle?

    NASA Technical Reports Server (NTRS)

    Imber, Suzanne M.; Slavin, James A.; Boardsen, Scott A.; Anderson, Brian J.; Korth, Haje; McNutt, Ralph L., Jr.; Solomon, Sean C.

    2014-01-01

    The large-scale dynamic behavior of Mercury's highly compressed magnetosphere is predominantly powered by magnetic reconnection, which transfers energy and momentum from the solar wind to the magnetosphere. The contribution of flux transfer events (FTEs) at the dayside magnetopause to the redistribution of magnetic flux in Mercury's magnetosphere is assessed with magnetic field data acquired in orbit about Mercury by the Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. FTEs with core fields greater than the planetary field just inside the magnetopause are prevalent at Mercury. Fifty-eight such large-amplitude FTEs were identified during February and May 2012, when MESSENGER sampled the subsolar magnetosheath. The orientation of each FTE was determined by minimum variance analysis, and the magnetic flux content of each was estimated using a force-free flux rope model. The average flux content of the FTEs was 0.06 MWb, and their durations imply a transient increase in the cross-polar cap potential of approx. 25 kV. For a substorm timescale of 2-3min, as indicated by magnetotail flux loading and unloading, the FTE repetition rate (10 s) and average flux content (assumed to be 0.03 MWb) imply that FTEs contribute at least approx. 30% of the flux transport required to drive the Mercury substorm cycle. At Earth, in contrast, FTEs are estimated to contribute less than 2% of the substorm flux transport. This result implies that whereas at Earth, at which steady-state dayside reconnection is prevalent, multiple X-line dayside reconnection and associated FTEs at Mercury are a dominant forcing for magnetospheric dynamics.

  11. Cryo-SEM method for the observation of entrapped bubbles and degree of water filling in large wet powder compacts.

    PubMed

    Mouzon, J; Bhuiyan, I U; Forsmo, S P E; Hedlund, J

    2011-05-01

    There are generally two problems associated with cryogenic scanning electron microscopy (cryo-SEM) observations of large wet powder compacts. First, because water cannot be vitrified in such samples, formation of artefacts is unavoidable. Second, large frozen samples are difficult to fracture but also to machine into regular pieces which fit in standard holders, especially if made of hard materials like ceramics. In this article, we first describe a simple method for planning hard cryo-samples and a low-cost technique for cryo-fracture and transfer of large specimens. Subsequently, after applying the entire procedure to green pellets of iron ore produced by balling, we compare the influence of plunge- and unidirectional freezing on large entrapped bubbles throughout the samples as well as the degree of water filling at the outer surface of the pellets. By carefully investigating the presence of artefacts in large areas of the samples and by controlling the orientation of the sample during freezing and preparation, we demonstrate that unidirectional freezing enables the observation of large entrapped bubbles with minimum formation of artefacts, whereas plunge freezing is preferable for the characterization of the degree of water filling at the outer surface of wet powder compacts. The minimum formation of artefacts was due to the high packing density of the iron ore particles in the matrix. PMID:21118249

  12. Implementation and management of a biomedical observation dictionary in a large healthcare information system

    PubMed Central

    Vandenbussche, Pierre-Yves; Cormont, Sylvie; André, Christophe; Daniel, Christel; Delahousse, Jean; Charlet, Jean; Lepage, Eric

    2013-01-01

    Objective This study shows the evolution of a biomedical observation dictionary within the Assistance Publique Hôpitaux Paris (AP-HP), the largest European university hospital group. The different steps are detailed as follows: the dictionary creation, the mapping to logical observation identifier names and codes (LOINC), the integration into a multiterminological management platform and, finally, the implementation in the health information system. Methods AP-HP decided to create a biomedical observation dictionary named AnaBio, to map it to LOINC and to maintain the mapping. A management platform based on methods used for knowledge engineering has been put in place. It aims at integrating AnaBio within the health information system and improving both the quality and stability of the dictionary. Results This new management platform is now active in AP-HP. The AnaBio dictionary is shared by 120 laboratories and currently includes 50 000 codes. The mapping implementation to LOINC reaches 40% of the AnaBio entries and uses 26% of LOINC records. The results of our work validate the choice made to develop a local dictionary aligned with LOINC. Discussion and Conclusions This work constitutes a first step towards a wider use of the platform. The next step will support the entire biomedical production chain, from the clinician prescription, through laboratory tests tracking in the laboratory information system to the communication of results and the use for decision support and biomedical research. In addition, the increase in the mapping implementation to LOINC ensures the interoperability allowing communication with other international health institutions. PMID:23635601

  13. Pan-chromatic observations of the remarkable nova Large Magellanic Cloud 2012

    SciTech Connect

    Schwarz, Greg J.; Shore, Steven N.; Page, Kim L.; Osborne, Julian P.; Beardmore, Andrew P.; Walter, Frederick M.; Bode, Michael F.; Drake, Jeremy J.; Ness, Jan-Uwe; Starrfield, Sumner; Rossum, Daniel R. Van; Woodward, Charles E.

    2015-03-01

    We present the results of an intensive multiwavelength campaign on nova LMC 2012. This nova evolved very rapidly in all observed wavelengths. The time to fall two magnitudes in the V band was only 2 days. In X-rays the super soft phase began 13 ± 5 days after discovery and ended around day 50 after discovery. During the super soft phase, the Swift/XRT and Chandra spectra were consistent with the underlying white dwarf (WD) being very hot, ∼1 MK, and luminous, ∼10{sup 38} erg s{sup −1}. The UV, optical, and near-IR photometry showed a periodic variation after the initial and rapid fading had ended. Timing analysis revealed a consistent 19.24 ± 0.03 hr period in all UV, optical, and near-IR bands with amplitudes of ∼0.3 mag which we associate with the orbital period of the central binary. No periods were detected in the corresponding X-ray data sets. A moderately high inclination system, i = 60 ± 10{sup ∘}, was inferred from the early optical emission lines. The HST/STIS UV spectra were highly unusual with only the N v (1240 Å) line present and superposed on a blue continuum. The lack of emission lines and the observed UV and optical continua from four epochs can be fit with a low mass ejection event, ∼10{sup −6} M{sub ⊙}, from a hot and massive WD near the Chandrasekhar limit. The WD, in turn, significantly illuminated its subgiant companion which provided the bulk of the observed UV/optical continuum emission at the later dates. The inferred extreme WD characteristics and low mass ejection event favor nova LMC 2012 being a recurrent nova of the U Sco subclass.

  14. Observation of large-angle quasimonoenergetic electrons from a laser wakefield.

    PubMed

    Kaganovich, D; Gordon, D F; Ting, A

    2008-05-30

    A relativistically intense laser pulse is focused into a helium jet and quasimonoenergetic electrons emitted at a 40 degrees angle with respect to the laser axis are observed. The average electron energy is between 1 and 2 MeV and the total accelerated charge is about 1 nC emitted in a 10 degrees cone angle. Three dimensional particle-in-cell simulations reproduce key features of the experimental results and show that the interaction between ionization heating and nonlinear cavitation wakefields is responsible for the acceleration. PMID:18518612

  15. Large-scale waves in the ionosphere observed by the AE satellite

    NASA Technical Reports Server (NTRS)

    Gross, S. H.; Reber, C. A.; Huang, F.

    1981-01-01

    Atmospheric Explorer (AE) satellite data were used to establish whether coherent waves in the gravity wave range are present in both neutral and ionized media in the thermosphere. The AE-C data in particular are shown. Data consist of the in situ argon, helium, nitrogen, and oxygen densities, plasma density, and ion and electron temperatures. Filtering provides the fluctuation signals for each which are spectrum analyzed for power and cross spectra. The observed frequencies are essentially proportional to the spatial wavenumbers along the satellite track. Scale sizes range from thousands to tens of kilometers.

  16. Pioneer and voyager observations of the solar wind at large heliocentric distances and lattitudes

    SciTech Connect

    Gazis, P.R.; Mihalov, J.D.; Barnes, A.; Lazarus, A.J.; Smith, E.J.

    1989-03-01

    The Pioneer 10, 11, and Voyager 2 spacecraft are well suited for exploring spatial gradients in the distant solar wind. Between 1984 and 1986 Pioneer 11 and Voyager 2 were located at nearly the same heliocentric distance (approx. =20 AU) and longitude but were widely separated in latitude; Pioneer 11 was at a heliographic latitude of greater than or equal to15/sup 0/ while Voyager 2 was near the solar equator. Pioneer 10 was located near the solar equator but at a considerably greater heliocentric distance (approx. =40 AU). IMP observations at 1 AU provide an inner heliosphere baseline.

  17. 76 FR 62148 - Title VI; Proposed Circular, Environmental Justice; Proposed Circular

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Circular'' (76 FR 60593) and ``Environmental Justice; Proposed Circular'' (76 FR 60590). Corrections The... Federal Transit Administration Title VI; Proposed Circular, Environmental Justice; Proposed Circular... information sessions, as published in the September 29, 2011, Federal Register Notices titled ``Title...

  18. Implications from clean observables for the binned analysis of B → K ∗ μ + μ - at large recoil

    NASA Astrophysics Data System (ADS)

    Descotes-Genon, Sébastien; Matias, Joaquim; Ramon, Marc; Virto, Javier

    2013-01-01

    We perform a frequentist analysis of q 2-dependent B → K ∗(→ Kπ) ℓ + ℓ - angular observables at large recoil, aiming at bridging the gap between current theoretical analyses and the actual experimental measurements. We focus on the most appropriate set of observables to measure and on the role of the q 2-binning. We highlight the importance of the observables P i exhibiting a limited sensitivity to soft form factors for the search for New Physics contributions. We compute predictions for these binned observables in the Standard Model, and we compare them with their experimental determination extracted from recent LHCb data. Analysing b → s and b → sℓ + ℓ - transitions within four different New Physics scenarios, we identify several New Physics benchmark points which can be discriminated through the measurement of P i observables with a fine q 2-binning. We emphasise the importance (and risks) of using observables with (un)suppressed dependence on soft form factors for the search of New Physics, which we illustrate by the different size of hadronic uncertainties attached to two related observables ( P 1 and S 3). We illustrate how the q 2-dependent angular observables measured in several bins can help to unravel New Physics contributions to B → K ∗(→ Kπ) ℓ + ℓ -, and show the extraordinary constraining power that the clean observables will have in the near future. We provide semi-numerical expressions for these observables as functions of the relevant Wilson coefficients at the low scale.

  19. X-ray observations of a large sample of cataclysmic variable stars using the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Cordova, F. A.; Mason, K. O.

    1984-01-01

    This paper presents the results of an X-ray survey of 31 known or suspected cataclysmic variables. Eighteen of these close binary systems are detected with inferred luminosities in the 0.1-4.0 keV band of between 10 to the 30th and 10 to the 32nd erg/sec. The majority have relatively hard X-ray spectra (kT greater than 2 keV) irrespective of luminosity state. Of seven dwarf novae observed during optical outbursts only U Gem exhibited enhanced ultrasoft X-ray emission (kT of about 10 eV) in addition to weak, hard X-ray emission. Variability of the X-ray flux is observed in many of these stars, on time-scales ranging from tens of seconds to hours. The contribution to the flux from extended X-ray emission is investigated for SU UMa and GK Per. Several possibilities for the origin of the hard X-rays are considered.

  20. Constraints on shock acceleration physics from the Chandra Large Project observations of SN 1006

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen; Katsuda, Satoru; Petre, Robert; Long, Knox S.; Winkler, P. Frank; Ressler, Sean; Williams, Brian

    The remnant of the supernova of 1006 C.E., the brightest historical supernova ever recorded, has provided a laboratory for the study of shock acceleration since the discovery and modeling of nonthermal X-rays over 30 years ago. It has now been observed with the Chandra X-ray Observatory for a total of over 1 Ms, including a full mapping of the remnant in 2012. Chandra's sub-arcsecond angular resolution has allowed detailed study of expansion proper motions, constraints on upstream precursor emission, and ``thin-rim" filamentary morphology at the remnant edges and its energy-dependence, among other properties. I shall summarize the observational data and their consequences for our understanding of the nature of fast shock waves and particle acceleration. The absence of clear upstream ``halo" emission requires that the shock precursor be very narrow, in turn implying amplification of magnetic field in the precursor. Rim thicknesses shrink rapidly with energy, confirming strong post-shock magnetic-field amplification and demanding surprisingly small diffusion coefficients downstream.

  1. ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) - Merging Observations and Laboratory Data

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2016-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of 500 absorption bands that are detected in the spectra of stars with interstellar clouds in the line of sight. DIBs are found from the NUV to the NIR in the spectra of reddened stars spanning different interstellar environments in our local, and in other galaxies. DIB carriers are a significant part of the interstellar chemical inventory. They are stable and ubiquitous in a broad variety of environments and play a unique role in interstellar physics/chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics, and astrophysical modeling of line-of-sights. PAHs are among the molecular species that have been proposed as DIB carriers. We will present an assessment of the PAH-DIB model in view of the progress and the advances that have been achieved over the past years through a series of studies involving astronomical observations of DIBs, laboratory simulation of interstellar analogs for neutrals and ionized PAHs, theoretical calculations of PAH spectra and the modelization of diffuse and translucent interstellar clouds. We will present a summary of what has been learned from these complementary studies, the constraints that can now be derived for the PAHs as DIB carriers in the context of the PAH-DIB model and how these constraints can be applied to the EDIBLES project. The spectra of several neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under experimental conditions that mimic interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of specific neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations alone. We present the characteristics of the laboratory facilities, MIS and COSmIC, that have been developed for this study and discuss the findings resulting from the comparison of the laboratory data with high resolution, high S/N ratio astronomical observations. MIS stands for Matrix Isolation Spectroscopy, a well-proven technique for isolating cold molecular species in inert solid environments. COSmIC stands for Cosmic Simulation Chamber. It combines a supersonic free jet expansion with discharge plasma and high-sensitivity cavity ringdown spectroscopy and time-of-flight mass spectrometry detection tools for the generation and the detection of cold, isolated gas-phase molecules and ions under experimental conditions that closely mimic interstellar conditions. The column densities of the individual neutral PAH molecules and ions probed in these surveys are derived from the comparison of these unique laboratory data with high resolution, high S/N ratio astronomical observations. The comparisons of astronomical and laboratory data lead to clear and unambiguous conclusions regarding the expected abundances for PAHs of various sizes and charge states in the interstellar environments probed in the surveys. Band profile comparisons between laboratory and astronomical spectra lead to information regarding the molecular structures and characteristics associated with the DIB carriers in the corresponding lines-of-sight. These quantitative surveys of neutral and ionized PAHs in the optical range open the way for unambiguous quantitative searches of PAHs and complex organics in a variety of interstellar and circumstellar environments.

  2. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  3. Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants Observed by the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.

  4. A statistical model of magnetic islands in a large current layer: validation from Hall MHD simulations and Cluster FTE observations

    NASA Astrophysics Data System (ADS)

    Fermo, R. L.; Drake, J. F.; Swisdak, M. M.; Hwang, K.; Wang, Y.

    2010-12-01

    Magnetic islands have been observed in large current layers for various space plasmas, including the magnetopause and solar corona. Since the direct simulation of very large systems is not possible, we have developed a statistical model which describes the formation, growth, convection and coalescence of these magnetic islands. An integral-differential equation is derived for the island distribution function, which characterizes islands by the flux they contain ψ and the area they enclose A. This evolution equation therefore scales the behavior of magnetic islands observed in kinetic simulations up to global scales. We use Hall MHD simulations to validate the model and to benchmark its parameters. The steady-state solution of the evolution equation predicts a distribution of islands. A database of 1,098 flux transfer events observed by Cluster between 2001 and 2003 is shown to be consistent with the model's predictions.

  5. Melt production in large-scale impact events: Implications and observations at terrestrial craters

    NASA Technical Reports Server (NTRS)

    Grieve, Richard A. F.; Cintala, Mark J.

    1992-01-01

    The volume of impact melt relative to the volume of the transient cavity increases with the size of the impact event. Here, we use the impact of chondrite into granite at 15, 25, and 50 km s(sup -1) to model impact-melt volumes at terrestrial craters in crystalline targets and explore the implications for terrestrial craters. Figures are presented that illustrate the relationships between melt volume and final crater diameter D(sub R) for observed terrestrial craters in crystalline targets; also included are model curves for the three different impact velocities. One implication of the increase in melt volumes with increasing crater size is that the depth of melting will also increase. This requires that shock effects occurring at the base of the cavity in simple craters and in the uplifted peaks of central structures at complex craters record progressively higher pressures with increasing crater size, up to a maximum of partial melting (approx. 45 GPa). Higher pressures cannot be recorded in the parautochthonous rocks of the cavity floor as they will be represented by impact melt, which will not remain in place. We have estimated maximum recorded pressures from a review of the literature, using such observations as planar features in quartz and feldspar, diaplectic glasses of feldspar and quartz, and partial fusion and vesiculation, as calibrated with estimates of the pressures required for their formation. Erosion complicates the picture by removing the surficial (most highly shocked) rocks in uplifted structures, thereby reducing the maximum shock pressures observed. In addition, the range of pressures that can be recorded is limited. Nevertheless, the data define a trend to higher recorded pressures with crater diameter, which is consistent with the implications of the model. A second implication is that, as the limit of melting intersects the base of the cavity, central topographic peaks will be modified in appearance and ultimately will not occur. That is, the peak will first develop a central depression, due to the flow of low-strength melted materials, when the melt volume begins to intersect the transient-cavity base.

  6. Very-large-array observations of a complex gradual solar burst at 6 cm wavelength

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Mcconnell, D.; White, S. M.; Shevgaonkar, R. K.

    1987-01-01

    A 6-cm VLA observation of a burst from a solar active region is reported. The burst shows a normal impulsive rise and fall superimposed on a gradual component. The peak brightness temperature of the burst remains relatively constant, and the flux variations are due to changes in the source structure. It appears as though an arcade of loops is gradually heated or filled with hot plasma. The burst is weakly polarized but unipolar; the possible reasons for this structure are considered. Depolarization of optically thin emission due to twisted magnetic fields within the source can produce significant depolarization, but is probably not active in this event. Instead, it is suggested that the flare emission is optically thick, and that hot overlying material preferentially absorbs one polarization.

  7. Large-scale waves in the thermosphere observed by the AE-C satellite

    NASA Technical Reports Server (NTRS)

    Gross, S. H.; Reber, C. A.; Huang, F. T.

    1984-01-01

    Wavelike perturbations in the ionosphere are known as traveling ionospheric disturbances (TID's). For the detection of wavelike perturbations in neutral density, velocity, and temperature, it is necessary to employ satellite-borne experiments. Experiments conducted with the aid of satellites so far provide little evidence that wavelike perturbations in the neutrals and the ions are correlated. The present investigation is concerned with a detailed examination of the wavelike perturbations observed during a representative Atmosphere Explorer C satellite orbit. Details regarding the analyzed data are discussed along with the employed data processing procedures. Attention is given to coherent relationships between the ion variations and the neutral variations over a wide range of scale sizes and over global distances.

  8. Melt production in large-scale impact events: Planetary observations and implications

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Grieve, Richard A. F.

    1992-01-01

    Differences in scaling relationships for crater formation and the generation of impact melt should lead to a variety of observable features and phenomena. These relationships infer that the volume of the transient cavity (and final crater) relative to the volume of impact melt (and the depth to which melting occurs) decreases as the effects of gravity and impact velocity increase. Since planetary gravity and impact velocity are variables in the calculation of cavity and impact-melt volumes, the implications of the model calculation will vary between planetary bodies. Details of the model calculations of impact-melt generation as a function of impact and target physical conditions were provided elsewhere, as were attempts to validate the model through ground-truth data on melt volumes, shock attenuation, and morphology from terrestrial impact craters.

  9. Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules

    PubMed Central

    Imai, Hiroshi; Shima, Tomohiro; Sutoh, Kazuo; Walker, Matthew L.; Knight, Peter J.; Kon, Takahide; Burgess, Stan A.

    2015-01-01

    Cytoplasmic dynein is a dimeric AAA+ motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA+ rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour. PMID:26365535

  10. Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules

    NASA Astrophysics Data System (ADS)

    Imai, Hiroshi; Shima, Tomohiro; Sutoh, Kazuo; Walker, Matthew L.; Knight, Peter J.; Kon, Takahide; Burgess, Stan A.

    2015-09-01

    Cytoplasmic dynein is a dimeric AAA+ motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA+ rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour.

  11. Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules.

    PubMed

    Imai, Hiroshi; Shima, Tomohiro; Sutoh, Kazuo; Walker, Matthew L; Knight, Peter J; Kon, Takahide; Burgess, Stan A

    2015-01-01

    Cytoplasmic dynein is a dimeric AAA(+) motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA(+) rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour. PMID:26365535

  12. Observations of Energetic High Magnetic Field Pulsars with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Parent, D.; Kerr, M.; DenHartog, P. R.; Baring, M. G.; DeCesar, M. E.; Espinoza, C. M.; Harding, A. K.; Romani, R. W.; Stappers, B. W.; Watters, K.; Weltevrde, P.; Abdo, A. A.; Craig, H. A.; Kramer, M.; Lyne, A. G.

    2011-01-01

    We report the detection of gamma-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119.6127 using data from the Fermi Large Area Telescope. The gamma-ray light curve of PSR J1119.6127 shows a single, wide peak offset from the radio peak by 0.43 +/- 0.02 in phase. Spectral analysis suggests a power law of index 1.0 +/- 0.3(+0.4 -0.2) with an energy cut-off at 0.8 +/- 0.2(+2.0 -0.5) GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119.6127 and demonstrate that despite the object's high surface magnetic field--near that of magnetars -- the field strength and structure in the gamma-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the gamma-ray pulsed emission for the magnetically active PSR J1846.0258 in the supernova remnant Kesteven 75 and two other energetic high-Beta pulsars, PSRs J1718.3718 and J1734.3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.

  13. VERY LARGE ARRAY OBSERVATIONS OF AMMONIA IN INFRARED-DARK CLOUDS. II. INTERNAL KINEMATICS

    SciTech Connect

    Ragan, Sarah E.; Bergin, Edwin A.; Heitsch, Fabian; Wilner, David

    2012-02-20

    Infrared-dark clouds (IRDCs) are believed to be the birthplaces of rich clusters and thus contain the earliest phases of high-mass star formation. We use the Green Bank Telescope and Very Large Array maps of ammonia (NH{sub 3}) in six IRDCs to measure their column density and temperature structure (Paper 1), and here, we investigate the kinematic structure and energy content. We find that IRDCs overall display organized velocity fields, with only localized disruptions due to embedded star formation. The local effects seen in NH{sub 3} emission are not high-velocity outflows but rather moderate (few km s{sup -1}) increases in the linewidth that exhibit maxima near or coincident with the mid-infrared emission tracing protostars. These linewidth enhancements could be the result of infall or (hidden in NH{sub 3} emission) outflow. Not only is the kinetic energy content insufficient to support the IRDCs against collapse, but also the spatial energy distribution is inconsistent with a scenario of turbulent cloud support. We conclude that the velocity signatures of the IRDCs in our sample are due to active collapse and fragmentation, in some cases augmented by local feedback from stars.

  14. Large amplitude wave packets observed in the ionosphere in association with transverse ion acceleration

    NASA Technical Reports Server (NTRS)

    Labelle, J.; Kintner, P. M.; Yau, A. W.; Whalen, B. A.

    1986-01-01

    Very short duration, large amplitude bursts of monochromatic waves ('spikelets') were detected by the electric field experiment on the sounding rocket MARIE, launched in February 1985 from Churchill, Manitoba. About 35 events were detected, with an average time scale of 5 ms and an average amplitude of 100-150 mV/m. Their frequency varied between 7 and 18 kHz, and there is some evidence that the frequency is a decreasing function of altitude. The bursts are not correlated with any events on the payload, and their occurrence is not related to the rocket's spin or coning. The events were confined to the altitude range 450-650 kilometers. This coincides exactly with the altitude range for which perpendicular (90 deg) ion conics were detected by the particle experiment on the same payload. The 'spikelets' were also correlated one-to-one with small (10-100 mV/m) double-layerlike or shocklike features of similar time scale in the dc electric field data.

  15. Large Millimeter Telescope Observations of Extremely Luminous High Redshift Infrared Galaxies Detected by the Planck Survey

    NASA Astrophysics Data System (ADS)

    Corneilus Harrington, Kevin; Yun, Min Su; Cybulski, John R.; Wilson, Grant; Large Millimeter Telescope (LMT) Team

    2015-01-01

    We present 8‧‧resolution, 1.1mm, continuum imaging and CO spectroscopic redshift measurements of extremely bright sub-millimeter galaxies identified from the Planck and Herschel surveys, taken with the Large Millimeter Telescope's AzTEC and Redshift Search Receiver instruments. Due to their exceedingly high flux density in the Herschel/SPIRE 250, 350, and 500 micron bands (S_250 ~ S_350 ~ S_500 > 100 mJy), these sources are likely to be strongly lensed dusty galaxies at high redshift. We compiled this target list of lens candidates after cross-correlating the Planck Surveyor mission's highest frequency channel (857 GHz/350 μm, FWHM = 4.5‧) data with archival data taken with the Herschel Spectral and Photometric Imaging Receiver (SPIRE). Every Planck-Herschel counterpart found within a 150‧‧radius is further examined using the higher angular resolution Herschel and WISE images to identify only dusty, high-z starburst galaxies.

  16. Observation of abnormally large radii of nuclei in excited states in the vicinity of neutron thresholds

    SciTech Connect

    Ogloblin, A. A. Danilov, A. N.; Belyaeva, T. L.; Demyanova, A. S.; Goncharov, S. A.; Trzaska, W.

    2011-11-15

    Differential cross sections for inelastic scattering leading to the excitation of some nuclear states situated near neutron-emission thresholds were analyzed. With the aid of a modified diffraction model, abnormally large radii were found for the 1/2{sub 1}{sup +} state of the {sup 13}C nucleus at 3.09 MeV, for the first levels of positive-parity rotational bands in the {sup 9}Be (1/2{sup +} level at 1.68 MeV and 5/2{sup +} level at 3.05 MeV) and {sup 11}Be (5/2{sup +} level at 1.78 MeV and 3/2{sup +} level at 3.41 MeV) nuclei, and for the 2{sub 1}{sup +} state of the {sup 14}Be nucleus at 1.54 MeV and 1{sub 1}{sup -} state of the {sup 12}Be nucleus at 2.7 MeV. All of these states possess signatures typical of neutron halos.

  17. H2 emission as a tracer of molecular hydrogen: Large-scale observations of Orion

    NASA Technical Reports Server (NTRS)

    Luhman, M. L.; Jaffe, D. T.; Keller, L. D.; Pak, Soojong

    1994-01-01

    We have detected extremely extended (greater than 1.5 deg, or 12 pc) near-infrared H2 line emission from the Orion A molecular cloud. We have mapped emission in the 1.601 micrometer(s) upsilon = 6 - 4 Q(1) and 2.121 micrometer(s) upsilon = 1 - 0 S(1) lines of H2 along a approx. 2 deg R.A. cut and from a 6' x 6' region near theta(sup 1) Ori C. The surface brightness of the extended H2 line emission is 10(exp -6) to 10(exp -5) ergs/s/sq. cm/sr. Based on the distribution and relative strengths of the H2 lines, we conclude that UV fluorescene is most likely the dominant H2 emission mechanism in the outer parts of the Orion cloud. Shock-heated gas does not make a major contribution to the H2 emission in this region. The fluorescent component of the total H2 upsilon = 1 - 0 S(1) luminosity from Orion is 30-40 solar luminosity. Molecular hydrogen excited by UV radiation from nearby OB stars contributes 98%-99% of the global H2 line emission from the Orion molecular cloud, even though this cloud has a powerful shock-excited H2 source in its core. The ability to detect large-scale H2 directly opens up new possibilities for the study of molecular clouds.

  18. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets.

    PubMed

    Gruber, Susan; Logan, Roger W; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A

    2015-01-15

    Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results. PMID:25316152

  19. The breakup of large tabular icebergs - direct observations and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Wadhams, P.

    2013-12-01

    Peter Wadhams and Till Wagner Dept. of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge. We review the factors governing the stability, dynamics and decay of icebergs and describe areas where current models are inadequate. These include questions such as draft changes in capsizing icebergs; iceberg trajectory modelling; the melt rate of the ice underside and ways of reducing it; and wave-induced flexure and its role in the break-up of tabular icebergs. In July 2012 the authors worked on a very large (42 sq km) tabular iceberg in Baffin Bay, which had calved from the Petermann Glacier in NW Greenland. We measured incoming swell spectrum and the iceberg response; also the role of buoyancy forces due to erosion of a waterline wave cut and the creation of an underwater ram. The iceberg broke up while we were on it, allowing an instrumental measurement of the calving event. The experiments were included in the BBC-2 film 'Operation Iceberg' shown on Nov 1 2012 and repeated on Nov 18. We conclude that two processes interacted in the break-up event: increased bending stress due to buoyancy of underwater rams; and direct flexural strain due to incidence of ocean swell. Implications for icebergs in the open sea are estimated.

  20. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars

    NASA Astrophysics Data System (ADS)

    Berenji, B.; Gaskins, J.; Meyer, M.

    2016-02-01

    We present constraints on the nature of axions and axionlike particles (ALPs) by analyzing gamma-ray data from neutron stars using the Fermi Large Area Telescope. In addition to axions solving the strong C P problem of particle physics, axions and ALPs are also possible dark matter candidates. We investigate axions and ALPs produced by nucleon-nucleon bremsstrahlung within neutron stars. We derive a phenomenological model for the gamma-ray spectrum arising from subsequent axion decays. By analyzing five years of gamma-ray data (between 60 and 200 MeV) for a sample of four nearby neutron stars, we do not find evidence for an axion or ALP signal; thus we obtain a combined 95% confidence level upper limit on the axion mass of 7.9 ×10-2 eV , which corresponds to a lower limit for the Peccei-Quinn scale fa of 7.6 ×107 GeV . Our constraints are more stringent than previous results probing the same physical process, and are competitive with results probing axions and ALPs by different mechanisms.

  1. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria.

    PubMed

    Cui, Longzhu; Neoh, Hui-min; Iwamoto, Akira; Hiramatsu, Keiichi

    2012-06-19

    Genome inversions are ubiquitous in organisms ranging from prokaryotes to eukaryotes. Typical examples can be identified by comparing the genomes of two or more closely related organisms, where genome inversion footprints are clearly visible. Although the evolutionary implications of this phenomenon are huge, little is known about the function and biological meaning of this process. Here, we report our findings on a bacterium that generates a reversible, large-scale inversion of its chromosome (about half of its total genome) at high frequencies of up to once every four generations. This inversion switches on or off bacterial phenotypes, including colony morphology, antibiotic susceptibility, hemolytic activity, and expression of dozens of genes. Quantitative measurements and mathematical analyses indicate that this reversible switching is stochastic but self-organized so as to maintain two forms of stable cell populations (i.e., small colony variant, normal colony variant) as a bet-hedging strategy. Thus, this heritable and reversible genome fluctuation seems to govern the bacterial life cycle; it has a profound impact on the course and outcomes of bacterial infections. PMID:22645353

  2. Spitzer observations of dust emission from H II regions in the Large Magellanic Cloud

    SciTech Connect

    Stephens, Ian W.; Evans, Jessica Marie; Xue, Rui; Chu, You-Hua; Gruendl, Robert A.; Segura-Cox, Dominique M.

    2014-04-01

    Massive stars can alter physical conditions and properties of their ambient interstellar dust grains via radiative heating and shocks. The H II regions in the Large Magellanic Cloud (LMC) offer ideal sites to study the stellar energy feedback effects on dust because stars can be resolved, and the galaxy's nearly face-on orientation allows us to unambiguously associate H II regions with their ionizing massive stars. The Spitzer Space Telescope survey of the LMC provides multi-wavelength (3.6-160 μm) photometric data of all H II regions. To investigate the evolution of dust properties around massive stars, we have analyzed spatially resolved IR dust emission from two classical H II regions (N63 and N180) and two simple superbubbles (N70 and N144) in the LMC. We produce photometric spectral energy distributions (SEDs) of numerous small subregions for each region based on its stellar distributions and nebular morphologies. We use DustEM dust emission model fits to characterize the dust properties. Color-color diagrams and model fits are compared with the radiation field (estimated from photometric and spectroscopic surveys). Strong radial variations of SEDs can be seen throughout the regions, reflecting the available radiative heating. Emission from very small grains drastically increases at locations where the radiation field is the highest, while polycyclic aromatic hydrocarbons (PAHs) appear to be destroyed. PAH emission is the strongest in the presence of molecular clouds, provided that the radiation field is low.

  3. Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant

    SciTech Connect

    Katagiri, H.; Tibaldo, L.; Ballet, J.; Giordano, F.; Grenier, I.A.; Porter, T.A.; Roth, M.; Tibolla, O.; Uchiyama, Y.; Yamazaki, R.; /Sagamihara, Aoyama Gakuin U.

    2011-11-08

    We present an analysis of the gamma-ray measurements by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is {approx} 1 x 10{sup 33} erg s{sup -1} between 1-100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0{sup o}.7 {+-} 0{sup o}.1 and 1{sup o}.6 {+-} 0{sup o}.1. Given the association among X-ray rims, H{alpha} filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.

  4. THE FAINTEST RADIO SOURCE YET: EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE GRAVITATIONAL LENS SDSS J1004+4112

    SciTech Connect

    Jackson, N.

    2011-09-20

    We present new radio observations of the large-separation gravitationally lensed quasar SDSS J1004+4112, taken in a total of 6 hr of observations with the Expanded Very Large Array. The maps reach a thermal noise level of approximately 4 {mu}Jy. We detect four of the five lensed images at the 15-35 {mu}Jy level, representing a source of intrinsic flux density, after allowing for lensing magnification, of about 1 {mu}Jy, intrinsically probably the faintest radio source yet detected. This reinforces the utility of gravitational lensing in potentially allowing us to study nJy-level sources before the advent of the Square Kilometre Array. In an optical observation taken three months after the radio observation, image C is the brightest image, whereas the radio map shows flux density ratios consistent with previous optical observations. Future observations separated by a time delay will give the intrinsic flux ratios of the images in this source.

  5. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    SciTech Connect

    Andersson, V.; Chen, P.; Kamae, T.; Madejski, G.; Mizuno, T.; Ng, J.; Tajima, H.; Thurston, T.; Bogaert, G.; Fukazawa, Y.; Saito, Y.; Takahashi, T.; Barbier, L.; Bloser, P.; Harding, A.; Hunter, S.; Krizmanic, J.; Mitchell, J.; Streitmatter, R.; Fernholz, R.; Groth, E.; /NASA, Goddard /Princeton U. /Royal Inst. Tech., Kista /Stockholm U. /Tokyo Inst. Tech. /Yamagata U.

    2005-06-30

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view ({approx} 5 deg{sup 2}) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected.

  6. Observations of the Large Magellanic Cloud in high-energy gamma rays

    NASA Technical Reports Server (NTRS)

    Sreekumar, P.; Bertsch, D. L.; Dingus, B. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1992-01-01

    The LMC provides a valuable site to study gamma-ray production, intensity, and distribution in an external galaxy. Using 4 weeks of data from the Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory, high-energy gamma-ray emission was detected for the first time from the LMC region. These gamma rays are believed to be produced primarily through the interaction of cosmic rays with interstellar matter. Hence, combined with a knowledge of the interstellar matter distribution, they can provide a direct measure of the cosmic-ray density in an external galaxy. The results obtained from EGRET observations indicate that the level of cosmic rays in the LMC is comparable to that in our Galaxy. The integrated flux above 100 MeV is (1.9 +/- 0.4) x 10 exp -7 photons/(sq cm s). The measured flux suggests a cosmic-ray density level consistent with that expected from a quasi-stable equilibrium model. This is the first detection of a normal galaxy outside the Milky Way in high-energy gamma rays.

  7. Data Curation for the Exploitation of Large Earth Observation Products Databases - The MEA system

    NASA Astrophysics Data System (ADS)

    Mantovani, Simone; Natali, Stefano; Barboni, Damiano; Cavicchi, Mario; Della Vecchia, Andrea

    2014-05-01

    National Space Agencies under the umbrella of the European Space Agency are performing a strong activity to handle and provide solutions to Big Data and related knowledge (metadata, software tools and services) management and exploitation. The continuously increasing amount of long-term and of historic data in EO facilities in the form of online datasets and archives, the incoming satellite observation platforms that will generate an impressive amount of new data and the new EU approach on the data distribution policy make necessary to address technologies for the long-term management of these data sets, including their consolidation, preservation, distribution, continuation and curation across multiple missions. The management of long EO data time series of continuing or historic missions - with more than 20 years of data available already today - requires technical solutions and technologies which differ considerably from the ones exploited by existing systems. Several tools, both open source and commercial, are already providing technologies to handle data and metadata preparation, access and visualization via OGC standard interfaces. This study aims at describing the Multi-sensor Evolution Analysis (MEA) system and the Data Curation concept as approached and implemented within the ASIM and EarthServer projects, funded by the European Space Agency and the European Commission, respectively.

  8. Observation of electron plasma waves inside large amplitude electromagnetic pulses in a temporally growing plasma

    SciTech Connect

    Pandey, Shail; Bhattacharjee, Sudeep; Sahu, Debaprasad

    2012-01-15

    Observation of electron plasma waves excited inside high power ({approx}10 kW) short pulse ({approx}20 {mu}s) electromagnetic (em) waves interacting with a gaseous medium (argon) in the pressure range 0.2-2.5 mTorr is reported. The waves have long wavelength ({approx}13 cm) and get damped at time scales slower ({approx}3 {mu}s) than the plasma period (0.1-0.3 {mu}s), the energy conveyed to the medium lead to intense ionization (ion density n{sub i} {approx} 10{sup 11} cm{sup -3} and electron temperature T{sub e} {approx} 6-8 eV) and rapid growth of the plasma ({approx}10{sup 5} s{sup -1}) beyond the waves. Time frequency analysis of the generated oscillations indicate the presence of two principal frequencies centered around 3.8 MHz and 13.0 MHz with a spread {Delta}f {approx} 4 MHz, representing primarily two population of electrons in the plasma wave. The experimental results are in reasonable agreement with a model that considers spatiotemporal forces of the em wave on the medium, space charges and diffusion.

  9. Constraining hydrological parameters using GRACE ``water-mass observations'' over large river basins of Southern Africa

    NASA Astrophysics Data System (ADS)

    Krogh, P. E.; Andersen, O. B.; Rowlands, D. D.; Luthcke, S. B.; Bauer-Gottwein, P.; Milzow, C.

    2010-12-01

    A novel method to constrain hydrological parameters using GRACE data are used to study water mass variations in Southern Africa. Traditional GRACE mascon solutions, shows little detail in the temporal and spatial distribution of terrestrial water masses over the larger river basins in Southern Africa due to the nessesity of applying non-physical spatial and temporal constrains. Here we have derived a system in which the physics of hydrological models are used to constrain the inversion of GRACE data and estimate perturbations to the hydrological parameters directly. This is established by determining the sensitivity of these parameters with respect to mass changes and subsequently estimate the perturbations to these parameters using range-rate observations from the GRACE satellites. This way the set of physical hydrological constraints replaces the traditionally non-physical constraints. For this study, hydrological models of major river basins in Southern Africa was built using SWAT (Soil and Water Assessment Tool) and outside these basins the system was augmented using mascon blocks with a spatial and temporal resolution of 1.5 x 1.5 deg and 10 days respectively in order to model mass variations on regional scale (3000 by 3000 km). This study is a part of the HYDROGRAV project which explores the utility of time-lapse gravity surveys for hydrological model calibration and terrestrial water storage monitoring

  10. Circular Scan Streak Tube Development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1980-01-01

    A streak tube having circular scan was designed, built and tested. Continuous circular scan, easily derived from out of phase sine waves applied to the conventional deflection plates, permits the timing of pulses traveling long baselines. At the tube's output a circular array of 720 elements is scanned to provide 30 to 40 picosecond resolution. Initial difficulties with electron bombarded silicon arrays were circumvented by using microchannel plates within the streak tube to provide the needed electronic amplification and digital sensitivity and coupling the 720 element arrays to the electron beam by means of a phosphor on a fiber optics. Two ceramic body tubes with S-20 photocathodes were tested and delivered.

  11. Circular RNAs in Eukaryotic Cells

    PubMed Central

    Chen, Liang; Huang, Chuan; Wang, Xiaolin; Shan, Ge

    2015-01-01

    Circular RNAs (circRNAs) are now recognized as large species of transcripts in eukaryotic cells. From model organisms such as C. elegans, Drosophila, mice to human beings, thousands of circRNAs formed from back-splicing of exons have been identified. The known complexity of transcriptome has been greatly expanded upon the discovery of these RNAs. Studies about the biogenesis and physiological functions have yielded substantial knowledge for the circRNAs, and they are now more likely to be viewed as regulatory elements coded by the genome rather than unavoidable noise of gene expression. Certain human diseases may also relate to circRNAs. These circRNAs show diversifications in features such as sequence composition and cellular localization, and thus we propose that they may be divided into subtypes such as cytoplasmic circRNAs, nuclear circRNAs, and exon-intron circRNAs (EIciRNAs). Here we summarize and discuss knowns and unknowns for these RNAs, and we need to keep in mind that the whole field is still at the beginning of exciting explorations.

  12. Electron capture from circular Rydberg atoms

    SciTech Connect

    Hansen, S.B.; Ehrenreich, T.; Horsdal-Pedersen, E. ); MacAdam, K.B. ); Dube, L.J. )

    1993-09-06

    Capture cross sections for circular Rydberg states have been measured as a function of the angle, [ital cphi], between ion velocity and angular momentum of the circular orbital. The system studied is 2.5 keV [sup 23]Na[sup +] on Li(1[ital s][sup 2],[ital nlm]) with [ital n]=25, [ital l]=[ital n][minus]1, and [ital m]=+[ital l], where [ital m] is defined relative to a weak, external magnetic field. A strong dependence on [ital cphi] is found. It is expected that studies such as the present will lead to an improved understanding of the three-body problem in the region of sufficiently large quantum numbers and impact velocities for classical physics to be accurate.

  13. Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Escande, L.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Fukuyama, T.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pearson, T. J.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Reyes, L. C.; Richards, J. L.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wehrle, A. E.; Winer, B. L.; Wood, K. S.; Yang, Z.; Yatsu, Y.; Ylinen, T.; Zensus, J. A.; Ziegler, M.; Fermi LAT Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; de Angelis, A.; De Cea del Pozo, E.; Delgado Mendez, C.; De Lotto, B.; De Maria, M.; De Sabata, F.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinovi, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, E.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, J.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, T.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L. O.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Villata, M.; Raiteri, C.; Aller, H. D.; Aller, M. F.; Chen, W. P.; Jordan, B.; Koptelova, E.; Kurtanidze, O. M.; Lähteenmäki, A.; McBreen, B.; Larionov, V. M.; Lin, C. S.; Nikolashvili, M. G.; Reinthal, R.; Angelakis, E.; Capalbi, M.; Carramiñana, A.; Carrasco, L.; Cassaro, P.; Cesarini, A.; Falcone, A.; Gurwell, M. A.; Hovatta, T.; Kovalev, Yu. A.; Kovalev, Y. Y.; Krichbaum, T. P.; Krimm, H. A.; Lister, M. L.; Moody, J. W.; Maccaferri, G.; Mori, Y.; Nestoras, I.; Orlati, A.; Pace, C.; Pagani, C.; Pearson, R.; Perri, M.; Piner, B. G.; Ros, E.; Sadun, A. C.; Sakamoto, T.; Tammi, J.; Zook, A.

    2011-08-01

    We report on the γ-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78 ± 0.02 and average photon flux F(> 0.3 GeV) = (7.23 ± 0.16) × 10-8 ph cm-2 s-1. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ~3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

  14. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1

    SciTech Connect

    Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G.A.; Cameron, R.A.; Caraveo, P.A.; /more authors..

    2012-09-14

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of p0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  15. GeV Observations of Star-forming Galaxies with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Cillis, A. N.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Martin, P.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nishino, S.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ozaki, M.; Parent, D.; Persic, M.; Pesce-Rollins, M.; Petrosian, V.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Ritz, S.; Roth, M.; Sbarra, C.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Stawarz, Łukasz; Strong, A. W.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Vianello, G.; Vitale, V.; Waite, A. P.; Wood, M.; Yang, Z.

    2012-08-01

    Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1-100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values <~ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L 0.1-100 GeV/L 1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L 0.1-100 GeV/L 8-1000 μm) = -4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M ⊙ yr-1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4-2.4 × 10-6 ph cm-2 s-1 sr-1 (4%-23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ~10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.

  16. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT G8.7-0.1

    SciTech Connect

    Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Buson, S.; Bonamente, E.; Brigida, M.; Bruel, P.; and others

    2012-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of {pi}{sup 0}s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  17. Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Ferrara, E. C.; Harding, A. K.; Hays, E.; Moiseev, A. A.; Troja, E.

    2011-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.l and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.l and a lesser part located outside the western boundary of G8.7-0.l. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of 2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.l4 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of 1IoS produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  18. Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; Hays, E.; Troja, E.; Moiseev, A. A.

    2012-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission ofG8.7-0.1, and the molecular clouds, the decay of pions produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS Jl804-2l6 and that the spectrum in the Ge V band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV-spectrum originates from the interaction of particles accelerated in G8.7-0.l with molecular clouds, and we constrain the diffusion coefficient of the particles.

  19. Do recent observations of very large electromagnetic dissociation cross sections signify a transition towards non-perturbative QED?

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    The very large electromagnetic dissociation (EMD) cross section recently observed by Hill, Wohn, Schwellenbach, and Smith do not agree with Weizsacker-Williams (WW) theory or any simple modification thereof. Calculations are presented for the reaction probabilities for this experiment and the entire single and double nucleon removal EMD data set. It is found that for those few reactions where theory and experiment disagree, the probabilities are exceptionally large. This indicates that WW theory is not valid for these reactions and that one must consider higher order corrections and perhaps even a non-perturbative approach to quantum electrodynamics (QED).

  20. Observations of large-amplitude internal wave of the second mode in Luzon Strait

    NASA Astrophysics Data System (ADS)

    Serebryany, A. N.; Liu, C.-T.

    2012-04-01

    Among the regions of the World Ocean where intense internal waves occur, the South China Sea is known as an area where the largest internal waves can be met. Comprehensive studies of internal waves, which were carried out there during the last decade, reveal the substantial effects of both the first and second modes. The place where the record amplitude waves are generated is Luzon Strait. In May, 2006, we performed the studies in Luzon Strait, aboard the "Ocean Researcher 1" vessel of the National Taiwan University. In those experiments, we could detect a passage of a solitary internal wave of the second mode in deep water, and to measure its parameters. The observations were carried out at a calm sea, after some days of the passage of a big typhoon Chanchu through the South China Sea. In the measurements, a 150-kHz acoustic Doppler current profiler, the EK 500 echo-sounder, radar that registered the pattern of the sea surface, and a neutral-buoyancy body with temperature and depth sensors were used. In addition, ambient underwater noises were measured by a hydrophone. On May 23, a solitary internal wave passed under the vessel, with a height of 50 m and apparent features of the second mode, was found. The undersurface 200-m water layer suffered from an elevation. At the same time, the deep water layers were depressed. The internal wave moved with an extraordinarily high speed of more than 3 m/s in the north-west direction. The passage of the internal wave was accompanied by a wide rip band that was detected by the vessel radar and the digital camera. The passage also caused the underwater noise. This work was supported by National Science Council of Taiwan in Taiwan-Russia two-side research projects (No. NSC96-2923-E-002-002-MYZ) and by Russian Foundation for Basic Research.

  1. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT W28 (G6.4-0.1)

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Bonamente, E.; Brandt, T. J.; Bruel, P. E-mail: ttanaka@slac.stanford.ed E-mail: katagiri@hep01.hepl.hiroshima-u.ac.j

    2010-07-20

    We present detailed analysis of two gamma-ray sources, 1FGL J1801.3-2322c and 1FGL J1800.5-2359c, that have been found toward the supernova remnant (SNR) W28 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. 1FGL J1801.3-2322c is found to be an extended source within the boundary of SNR W28, and to extensively overlap with the TeV gamma-ray source HESS J1801-233, which is associated with a dense molecular cloud interacting with the SNR. The gamma-ray spectrum measured with the LAT from 0.2 to 100 GeV can be described by a broken power-law function with a break at {approx}1 GeV and photon indices of 2.09 {+-} 0.08 (stat) {+-} 0.28 (sys) below the break and 2.74 {+-} 0.06 (stat) {+-} 0.09 (sys) above the break. Given the clear association between HESS J1801-233 and the shocked molecular cloud and a smoothly connected spectrum in the GeV-TeV band, we consider the origin of the gamma-ray emission in both GeV and TeV ranges to be the interaction between particles accelerated in the SNR and the molecular cloud. The decay of neutral pions produced in interactions between accelerated hadrons and dense molecular gas provides a reasonable explanation for the broadband gamma-ray spectrum. 1FGL J1800.5-2359c, located outside the southern boundary of SNR W28, cannot be resolved. An upper limit on the size of the gamma-ray emission was estimated to be {approx}16' using events above {approx}2 GeV under the assumption of a circular shape with uniform surface brightness. It appears to coincide with the TeV source HESS J1800-240B, which is considered to be associated with a dense molecular cloud that contains the ultra compact H II region W28A2 (G5.89-0.39). We found no significant gamma-ray emission in the LAT energy band at the positions of TeV sources HESS J1800-230A and HESS J1800-230C. The LAT data for HESS J1800-230A combined with the TeV data points indicate a spectral break between 10 GeV and 100 GeV.

  2. Beam Rounders for Circular Colliders

    SciTech Connect

    A. Burov; S. Nagaitsev; Ya. Derbenev

    2001-07-01

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  3. Cover Image: USGS Circular 1381

    Cover image: USGS Circular 1381. View of Boulder Basin, Lake Mead, at sunset looking east. The flat topped mountain in the background is Fortification Hill, a well-known landmark in the viewshed from Hoover Dam....

  4. A statistical model of magnetic islands in a large current layer: validation from Hall MHD simulations and Cluster FTE observations

    NASA Astrophysics Data System (ADS)

    Fermo, Raymond; Drake, James; Swisdak, Marc; Hwang, Kyoung-Joo; Wang, Yongli

    2010-11-01

    Magnetic islands have been observed in large current layers for various space plasmas, including the magnetopause and solar corona. Since the direct simulation of very large systems is not possible, we have developed a statistical model which describes the formation, growth, convection and coalescence of these magnetic islands. An integral- differential equation is derived for the island distribution function, which characterizes islands by the flux they contain ψ and the area they enclose A. We use Hall MHD simulations to validate the model and to benchmark its parameters. The steady- state solution of the evolution equation predicts a distribution of islands. A database of 1,098 flux transfer events observed by Cluster between 2001 and 2003 is shown to be consistent with the model's predictions.

  5. Fermi large area telescope observations of the cosmic-ray induced {gamma}-ray emission of the Earth's atmosphere

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; Couto e Silva, E. do; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.

    2009-12-15

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded {approx}6.4x10{sup 6} photons with energies >100 MeV and {approx}250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission--often referred to as Earth albedo gamma-ray emission--has a power-law shape up to 500 GeV with spectral index {gamma}=2.79{+-}0.06.

  6. Potential of a Future Large Aperture UVOIR Space Observatory for Breakthrough Observations of Star and Planet Formation

    NASA Astrophysics Data System (ADS)

    Danchi, William C.; Grady, Carol A.; Padgett, Deborah

    2015-01-01

    A future large aperture space observatory operating from the UV to the near-infrared with a diameter between 10 and 15 meters will provide a unique opportunity for observations of star and planet formation, from nearby moving groups and associations to star formation in galaxies in the local universe. Our newly formed working group will examine the unique opportunities that such a telescope will give observers in a post-JWST/WFIRST-AFTA era that includes extremely large ground-based observatories such as the TMT, E-ELT, ALMA, and the VLTI. Given a potential suite of instruments for this observatory we will discuss some of the key areas of star and planet formation science where breakthroughs might occur.

  7. Report on the analysis of the large propagation velocities observed in the full-length SSC (Superconducting Super Collider) dipoles

    SciTech Connect

    Dresner, L.; Lue, J.W.; Lubell, M.

    1990-09-01

    Very large propagation velocities have been observed in the Superconducting Super Collider (SSC) 17-m dipoles: from 75 m/s to 225 m/s, depending on the current. These velocities are much larger than those predicted by the classical conduction theory of normal zone propagation. A plausible explanation for such rapid propagation is hydrodynamic mechanism called thermal hydraulic quenchback (THQ) that has been proposed by Luongo et al. This report supplies an approximate analytic theory of THQ, which is used to analyze the data taken on the SSC 17-m dipoles. It is concluded that THQ in the helium in the interstices of the cable can explain the large propagation velocities observed. Additional experiments are proposed to test the hydrodynamic explanation. 17 refs., 5 figs.

  8. Observing large-scale temporal variability of ocean currents by satellite altimetry - With application to the Antarctic circumpolar current

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.; Chelton, D. B.

    1985-01-01

    A new method is developed for studying large-scale temporal variability of ocean currents from satellite altimetric sea level measurements at intersections (crossovers) of ascending and descending orbit ground tracks. Using this method, sea level time series can be constructed from crossover sea level differences in small sample areas where altimetric crossovers are clustered. The method is applied to Seasat altimeter data to study the temporal evolution of the Antarctic Circumpolar Current (ACC) over the 3-month Seasat mission (July-October 1978). The results reveal a generally eastward acceleration of the ACC around the Southern Ocean with meridional disturbances which appear to be associated with bottom topographic features. This is the first direct observational evidence for large-scale coherence in the temporal variability of the ACC. It demonstrates the great potential of satellite altimetry for synoptic observation of temporal variability of the world ocean circulation.

  9. Fermi large area telescope observations of the cosmic-ray induced γ-ray emission of the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; de Palma, F.; Digel, S. W.; Do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Sadrozinski, H. F.-W.; Sander, A.; Saz Parkinson, P. M.; Sgrò, C.; Share, G. H.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    We report on measurements of the cosmic-ray induced γ-ray emission of Earth’s atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded ˜6.4×106 photons with energies >100MeV and ˜250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission—often referred to as Earth albedo gamma-ray emission—has a power-law shape up to 500 GeV with spectral index Γ=2.79±0.06.

  10. Scattering matrix of infrared radiation by ice finite circular cylinders.

    PubMed

    Xu, Lisheng; Ding, Jilie; Cheng, Andrew Y S

    2002-04-20

    Scattering matrix characteristics of polydisperse, randomly oriented, small ice crystals modeled by finite circular cylinders with various ratios of the length to diameter (L/D) ratio are calculated by use of the exact T-matrix approach, with emphasis on the thermal infrared spectral region that extends from the atmospheric short-wave IR window to the far-IR wavelengths to as large as 30 microm. The observed ice crystal size distribution and the well-known power-law distribution are considered. The results of the extensive calculations show that the characteristics of scattering matrix elements of small ice circular cylinders depend strongly on wavelengths and refractive indices, particle size distributions, and the L/D ratios. The applicability of the power-law distribution and particle shapes for light scattering calculations for small ice crystals is discussed. The effects of the effective variance of size distribution on light scattering characteristics are addressed. It seems from the behavior of scattering matrix elements of small ice crystals that the combination of 25 and 3.979 microm has some advantages and potential applications for remote sensing of cirrus and other ice clouds. PMID:12003228

  11. NEAR-INFRARED CIRCULAR POLARIZATION IMAGES OF NGC 6334-V

    SciTech Connect

    Kwon, Jungmi; Tamura, Motohide; Hashimoto, Jun; Kusakabe, Nobuhiko; Kandori, Ryo; Lucas, Phil W.; Hough, James H.; Nakajima, Yasushi; Nagayama, Takahiro; Nagata, Tetsuya

    2013-03-01

    We present results from deep imaging linear and circular polarimetry of the massive star-forming region NGC 6334-V. These observations show high degrees of circular polarization (CP), as much as 22% in the K{sub s} band, in the infrared nebula associated with the outflow. The CP has an asymmetric positive/negative pattern and is very extended ({approx}80'' or 0.65 pc). Both the high CP and its extended size are larger than those seen in the Orion CP region. Three-dimensional Monte Carlo light-scattering models are used to show that the high CP may be produced by scattering from the infrared nebula followed by dichroic extinction by an optically thick foreground cloud containing aligned dust grains. Our results show not only the magnetic field orientation of around young stellar objects, but also the structure of circumstellar matter such as outflow regions and their parent molecular cloud along the line of sight. The detection of the large and extended CP in this source and the Orion nebula may imply the CP origin of the biological homochirality on Earth.

  12. Monitoring observations of the interaction between Sgr A* and G2 with the Karl G. Jansky Very Large Array

    NASA Astrophysics Data System (ADS)

    Sjouwerman, Loránt O.; Chandler, Claire J.

    2014-05-01

    We report on an ongoing community service observing program to follow the expected encounter of the G2 cloud with the black hole Sgr A* in 2013. The NRAO Karl G. Jansky Very Large Array (VLA) has been observing the Sgr A region since 2012 October on roughly a bi-monthly interval, each for two hours, cycling through eight observing bands at their default continuum frequencies, using 2 GHz of bandwidth. The data from the monitoring program are publicly available through the NRAO data archive immediately after observing has completed, and the flux densities are published by NRAO staff as soon as the data are reduced. The cumulative results of the monitoring effort are posted on the service observing web page observing" xlink:type="simple">https://science.nrao.edu/science/service-observing and so far do not indicate a significant brightening of the emission from the direction of Sgr A* over the period 2012 October to 2013 September, within the calibration uncertainties.

  13. Observations of a High-Latitude Stable Electron Auroral Emission at Approximately 16 MLT During a Large Substorm

    NASA Technical Reports Server (NTRS)

    Cattell, C.; Dombeck, J.; Preiwisch, A.; Thaller, S.; Vo, P.; Wilson, L. B., III; Wygant, J.; Mende, S. B.; Frey, H. U.; Ilie, R.; Lu, G.

    2011-01-01

    During an interval when the interplanetary magnetic field was large and primarily duskward and southward, a stable region of auroral emission was observed on 17 August 2001 by IMAGE at 16 magnetic local time, poleward of the main aurora, for 1 h, from before the onset of a large substorm through the recovery phase. In a region where ions showed the energy dispersion expected for the cusp, strong field \\aligned currents and Poynting flux were observed by Polar (at 1.8 RE in the Southern Hemisphere) as it transited field lines mapping to the auroral spot in the Northern Hemisphere. The data are consistent with the hypothesis that the long \\lasting electron auroral spot maps to the magnetopause region where reconnection was occurring. Under the assumption of conjugacy between the Northern and Southern hemispheres on these field lines, the Polar data suggest that the electrons on these field lines were accelerated by Alfven waves and/or a quasi \\static electric field, primarily at altitudes below a few RE since the in situ Poynting flux (mapped to 100 km) is comparable to the energy flux of the emission while the mapped in situ electron energy flux is much smaller. This event provides the first example of an emission due to electrons accelerated at low altitudes at the foot point of a region of quasi \\steady dayside reconnection. Cluster data in the magnetotail indicate that the Poynting flux from the reconnection region during this substorm is large enough to account for the observed nightside aurora.

  14. Diffuse Optical Intracluster Light as a Measure of Stellar Tidal Stripping: The Cluster CL0024+17 at z ~ 0.4 Observed at the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Giallongo, E.; Menci, N.; Grazian, A.; Gallozzi, S.; Castellano, M.; Fiore, F.; Fontana, A.; Pentericci, L.; Boutsia, K.; Paris, D.; Speziali, R.; Testa, V.

    2014-01-01

    We have evaluated the diffuse intracluster light (ICL) in the central core of the galaxy cluster CL0024+17 at z ~ 0.4 observed with the prime focus camera (Large Binocular Camera) at the Large Binocular Telescope. The measure required an accurate removal of the galaxies' light within ~200 kpc from the center. The residual background intensity has then been integrated in circular apertures to derive the average ICL intensity profile. The latter shows an approximate exponential decline as expected from theoretical cold dark matter models where the ICL is due to the integrated contribution of light from stars that are tidally stripped from the halo of their host galaxies due to encounters with other galaxies in the cluster cold dark matter (CDM) potential. The radial profile of the ICL over the galaxies intensity ratio (ICL fraction) is increasing with decreasing radius, but near the cluster center it starts to bend and then decreases where the overlap of the halos of the brightest cluster galaxies becomes dominant. Theoretical expectations in a simplified CDM scenario show that the ICL fraction profile can be estimated from the stripped over galaxy stellar mass ratio in the cluster. It is possible to show that the latter quantity is almost independent of the properties of the individual host galaxies but mainly depends on the average cluster properties. The predicted ICL fraction profile is thus very sensitive to the assumed CDM profile, total mass, and concentration parameter of the cluster. Adopting values very similar to those derived from the most recent lensing analysis in CL0024+17, we find a good agreement with the observed ICL fraction profile. The galaxy counts in the cluster core have then been compared with that derived from composite cluster samples in larger volumes, up to the clusters virial radius. The galaxy counts in the CL0024+17 core appear flatter and the amount of bending with respect to the average cluster galaxy counts imply a loss of total emissivity in broad agreement with the measured ICL fraction. The present analysis shows that the measure of the ICL fraction in clusters can quantitatively account for the stellar stripping activity in their cores and can be used to probe their CDM distribution and evolutionary status. Observations have been carried out using the Large Binocular Telescope at Mt. Graham, AZ. The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; the Ohio State University; and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.

  15. Observations of a large-scale vortex-like structure in the deep-tail plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Sanderson, T. R.; Daly, P.; Wenzel, K.-P.; Hones, E. W., Jr.; Smith, E. J.

    1986-01-01

    ISEE-3 observations of a large-scale vortexlike structure in the deep tail of the magnetosphere at X(GSM) = -217 earth radii are reported. The structure is characterized by two clockwise rotations of the energetic-ion anisotropy vector. Variations in the magnetic-field vector approximately 180 deg out of phase with the ion variations are observed. This structure is most likely the signature within the magnetosphere of a surface wave at the magnetopause driven by a Kelvin-Helmholtz instability. Conditions inside and outside of the magnetosphere, as observed by ISEE-3 and ISEE-2, respectively, are examined; these conditions suggest that the surface wave is most likely propagating in the slow mode.

  16. SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA

    SciTech Connect

    Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Nicula, Bogdan; Shearer, Paul

    2013-11-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.

  17. SWAP Observations of the Long-term, Large-scale Evolution of the Extreme-ultraviolet Solar Corona

    NASA Astrophysics Data System (ADS)

    Seaton, Daniel B.; De Groof, Anik; Shearer, Paul; Berghmans, David; Nicula, Bogdan

    2013-11-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.

  18. First observations of poleward large-scale traveling ionospheric disturbances over the African sector during geomagnetic storm conditions

    NASA Astrophysics Data System (ADS)

    Habarulema, John Bosco; Katamzi, Zama Thobeka; Yizengaw, Endawoke

    2015-08-01

    This paper presents first observations of poleward traveling ionospheric disturbances (TIDs) during strong geomagnetic conditions over the African sector. By analyzing different data sets we have observed both positive and negative ionospheric responses during the storm period of 08-10 March 2012. Considering the African region as a whole, three longitudinal sectors were strategically selected to establish the entire regional response. On both sides of the geomagnetic equator, results show poleward shift in peak total electron content (TEC) enhancements/depletions at different times which are associated to large-scale TIDs. The observed phenomena are linked to the global ionospheric response and electrodynamics. The understanding has been established using data from International GNSS Service receiver network, radio occultation electron density profiles, derived E×B drift measurements from magnetometer observations and regional ground-based and satellite data. Contrary to other related studies, generated regional TEC perturbation maps were not enough to show obvious directions of the large-scale TIDs due to insufficient data over the northern hemispheric part of the African sector. There appears to be a switch between positive and negative storm phases during the same storm period especially in the Southern Hemisphere part of the African region where "enough" data were available. However, a detailed analysis revealed that the positive storm phase corresponded to the expansion of the equatorial ionization anomaly (EIA) toward some parts of midlatitude regions (and possibly with the contribution from low-latitude electrodynamics associated to equatorial electrojet), while the other part recorded a negative storm phase due to storm-induced changes from the auroral origin. We have observed a simultaneous occurrence of both poleward and equatorward propagating TIDs over the African sector during the same geomagnetic storm period. Our results show that short-lived large-scale TIDs are possibly launched by the equatorial electrojet, while the EIA expansion contributes (through modulation) to the poleward propagation of the disturbances. Temporal variation of TEC perturbations on a storm day over the entire African sector showed the existence of large-scale TIDs during the main and recovery phases which can travel poleward up to 20° latitude. The amplitudes of the TIDs have range ±2 total electron content unit, 1 TECU = 1016 el m-2, period of 2 h and virtual velocities of 250 ± 59-750 ± 95 m/s in midlatitude regions and up to 990 ± 65 m/s within the EIA region.

  19. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.; Wang, Wenyi; Govorov, Alexander O.; Valentine, Jason

    2015-09-01

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform.

  20. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials

    PubMed Central

    Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.; Wang, Wenyi; Govorov, Alexander O.; Valentine, Jason

    2015-01-01

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform. PMID:26391292

  1. 325 MHz VERY LARGE ARRAY OBSERVATIONS OF ULTRACOOL DWARFS TVLM 513-46546 AND 2MASS J0036+1821104

    SciTech Connect

    Jaeger, T. R.; Kassim, N.; Osten, R. A.; Lazio, T. J.; Mutel, R. L.

    2011-12-15

    We present 325 MHz (90 cm wavelength) radio observations of ultracool dwarfs TVLM 513-46546 and 2MASS J0036+1821104 using the Very Large Array (VLA) in 2007 June. Ultracool dwarfs are expected to be undetectable at radio frequencies, yet observations at 8.5 GHz (3.5 cm) and 4.9 GHz (6 cm) have revealed sources with >100 {mu}Jy quiescent radio flux and >1 mJy pulses coincident with stellar rotation. The anomalous emission is likely a combination of gyrosynchrotron and cyclotron maser processes in a long-duration, large-scale magnetic field. Since the characteristic frequency for each process scales directly with the magnetic field magnitude, emission at lower frequencies may be detectable from regions with weaker field strength. We detect no significant radio emission at 325 MHz from TVLM 513-46546 or 2MASS J0036+1821104 over multiple stellar rotations, establishing 2.5{sigma} total flux limits of 795 {mu}Jy and 942 {mu}Jy, respectively. Analysis of an archival VLA 1.4 GHz observation of 2MASS J0036+1821104 from 2005 January also yields a non-detection at the level of <130 {mu}Jy. The combined radio observation history (0.3 GHz to 8.5 GHz) for these sources suggests a continuum emission spectrum for ultracool dwarfs that is either flat or inverted below 2-3 GHz. Further, if the cyclotron maser instability is responsible for the pulsed radio emission observed on some ultracool dwarfs, our low-frequency non-detections suggest that the active region responsible for the high-frequency bursts is confined within two stellar radii and driven by electron beams with energies less than 5 keV.

  2. Comparison of a statistical model for magnetic islands in large current layers with Hall MHD simulations and Cluster FTE observations

    NASA Astrophysics Data System (ADS)

    Fermo, R. L.; Drake, J. F.; Swisdak, M.; Hwang, K.-J.

    2011-09-01

    Magnetic islands have been observed in long current layers for various space plasmas, including the magnetopause and solar corona. In previous work exploring these magnetic islands, a statistical model was developed that described their formation, growth, convection, and coalescence in very large systems, for which simulations prove inadequate. An integro-differential equation was derived for the island distribution function, which characterized islands by the flux they contain ψ and the cross-sectional area they enclose A. The steady-state solution of the evolution equation predicted a distribution of islands. Here, we use a Hall MHD (magnetohydrodynamic) simulation of a very long current sheet with large numbers of magnetic islands to explore their dynamics, specifically their growth via two distinct mechanisms: quasi-steady reconnection and merging. We then use the simulation to validate the statistical model and benchmark its parameters. A database of 1,098 flux transfer events (FTEs) observed by Cluster between 2001 and 2003 is also compared with the model's predictions. In both simulations and observations, island merging plays a significant role. This suggests that the magnetopause is populated by many FTEs too small to be recognized by spacecraft instrumentation.

  3. Observations of Comet P/2003 T12 = 2012 A3 (SOHO) at large phase angle in STEREO-B

    NASA Astrophysics Data System (ADS)

    Hui, Man-To

    2014-11-01

    Comet P/2003 T12 = 2012 A3 (SOHO) was observed by the satellite STEREO-B during the period 2012 January 13-27. During its apparition, it ventured into the highest phase angle ever observed for a comet, and the forward-scattering enhancement in brightness was marked, as large as ˜8.5 mag. Therefore, it provided a precious opportunity to examine the compound Henyey-Greenstein (HG) comet-dust light-scattering model and it also offered valuable polarization data under an unprecedented observing geometry. Our analysis reveals that the compound HG model fits the observations very well until the phase angle exceeds ˜173°, where the brightness surge of the comet was obviously steeper than the prediction by the model. We have found that the reason for the greater steepness cannot be explained by contaminations from the proximal tail. Instead, the model of Mie spheres with radii greater than 1 μm, having a power-law distribution of power index ˜3, matches the observation very well, providing a best-fitting complex refractive index μ = 1.38 + i 0.006. The dust size was found to be consistent with the analysis of the comet's syndyne lines. The debiased polarization of the coma was ˜0 per cent in the phase angle range from 172.9° to 177.6°. No convincing evidence of temporal variation of the polarization was detected.

  4. Towards a better understanding of shallow convection over land using ground-based observation and large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Klein, S. A.

    2014-12-01

    It is very important and challenging for global climate models to represent a correct diurnal cycle of shallow cumuli over land. In this study, we build a new composite case for fair-weather shallow cumulus over land based on observational statistics. We aim to answer questions: 1) how well the can large-eddy simulation (LES) reproduce the observed cloud metrics? And 2) how well can the composite case represent the shallow cumuli regime compared with one "golden" day case study? These LES results, and the associated forcing and observations, will further serve as a benchmark test bed for the performance of the single column model version of large-scale models on simulating continental shallow cumulus. First, a case library of continental shallow cumulus clouds was established based on longterm observations at Southern Great Plains ARM site (Zhang and Klein 2010, 2013), which includes days of forced- and active-shallow cumulus clouds, and days of shallow convection that transits to deep convective precipitating events in late afternoon. Observational statistics was developed for each regime on cloud macrophysics, meteorological atmospheric and surface conditions. Particularly for active shallow cumulus clouds, in-cloud vertical velocity retrieval based on long-term radar measurements is used to derive cloud updraft and downdraft mass fluxes. Secondly, LES of the composite case is performed for active shallow cumulus clouds and it shows significantly less cloud fraction than observations. Sensitivity tests are then performed on grid resolution, domain size, microphysics scheme, surface fluxes and so on. LES is also done for each individual shallow cumulus day to investigate the possible non-linear effect due to the composite case. Thirdly, LES is used to study the effect of large-scale environmental controls, such as relative humidity and atmospheric stability, on the vertical extent of clouds, the transition between forced and active shallow cumulus and the transition from shallow to deep convection in the afternoon. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-658121

  5. Procedure for Detecting Outliers in a Circular Regression Model

    PubMed Central

    Rambli, Adzhar; Abuzaid, Ali H. M.; Mohamed, Ibrahim Bin; Hussin, Abdul Ghapor

    2016-01-01

    A number of circular regression models have been proposed in the literature. In recent years, there is a strong interest shown on the subject of outlier detection in circular regression. An outlier detection procedure can be developed by defining a new statistic in terms of the circular residuals. In this paper, we propose a new measure which transforms the circular residuals into linear measures using a trigonometric function. We then employ the row deletion approach to identify observations that affect the measure the most, a candidate of outlier. The corresponding cut-off points and the performance of the detection procedure when applied on Down and Mardia’s model are studied via simulations. For illustration, we apply the procedure on circadian data. PMID:27064566

  6. High circular polarization in electroluminescence from MoSe2

    NASA Astrophysics Data System (ADS)

    Onga, Masaru; Zhang, Yijin; Suzuki, Ryuji; Iwasa, Yoshihiro

    2016-02-01

    The coupling between the valley degree of freedom and the optical helicity is one of the unique phenomena in transition metal dichalcogenides. The significant valley polarization evaluated from circularly polarized photoluminescence (PL) has been reported in many transition metal dichalcogenides, except in MoSe2. This compound is an anomalous material showing ultra-fast relaxation of the valley polarized states, which causes negligible polarization in the PL. Meanwhile, circularly polarized electroluminescence (EL) has been recently reported in a WSe2 light-emitting transistor, providing another method for using the valley degree of freedom. Here, we report the EL properties of MoSe2, demonstrating electrical switching of the optical helicity. Importantly, we observed high circular polarization reaching 66%. The results imply that the dominant mechanism of circularly polarized EL is robust against intervalley scattering, in marked contrast to the PL.

  7. Circular forms of Uukuniemi virion RNA: an electron microscopic study.

    PubMed Central

    Hewlett, M J; Pettersson, R F; Baltimore, D

    1977-01-01

    Because the ribonucleoprotein forms of the segments of the Uukuniemi virus genome have previously been characterized as circular, we examined the isolated RNAs by electron microscopy under conditions of increasing denaturation. After spreading under moderately denaturing conditions (50 or 60% formamide), 50 to 70% of the molecules were circular. Increasing the formamide concentration to 70 and 85% decreased the number of circular forms, and only linear forms were observed after incubation of the RNA at 60 degrees C for 15 min in 99% formamide. When spread from 4 M urea-80% formamide--another condition known to denature RNA--only 5 to 30% circular molecules were observed. Pretreatment of the RNA with 0.5 M glyoxal at 37 degrees C for 15 min prior to spreading from 50% formamide gave less than 5% cirucular forms. Length measurement of the molecules showed that they were not significantly degraded by any of the methods employed. The circular molecules were destroyed by treatment with pancreatic RNase, but were unaffected by DNase or proteinase K treatment. After complete denaturation of the RNA, the circles could be reformed under reannealing conditions. We conclude that the three size classes of RNA that comprise the Uukuniemi virus genome are circular molecules probably maintained in that form by base pairing between inverted complementary sequences at the 3' and 5' ends of linear molecules. Images PMID:850304

  8. Observations of Large Scale Sidereal Anisotropy in 1 and 11 TeV cosmic rays from the MINOS experiment

    SciTech Connect

    de Jong, J.K.

    2012-01-01

    The MINOS Near and Far Detectors are two large, functionally-identical, steel-scintillating sampling calorimeters located at depths of 220 mwe and 2100 mwe respectively. The detectors observe the muon component of hadronic showers produced from cosmic ray interactions with nuclei in the earth's atmosphere. From the arrival direction of these muons, the anisotropy in arrival direction of the cosmic ray primaries can be determined. The MINOS Near and Far Detector have observed anisotropy on the order of 0.1% at 1 and 11 TeV respectively. The amplitude and phase of the first harmonic at 1 TeV are 8.2 {+-} 1.7(stat.) x 10{sup -4} and (8.9 {+-} 12.1(stat.)){sup o}, and at 11 TeV are 3.8 {+-} 0.5(stat.) x 10{sup -4} and (27.2 {+-} 7.2(stat.)){sup o}.

  9. Hα Line Impact Linear Polarization Observed in the 23 July 2002 Flare with the Large Solar Vacuum Telescope (LSVT)

    NASA Astrophysics Data System (ADS)

    Firstova, N. M.; Polyakov, V. I.; Firstova, A. V.

    2012-08-01

    We present the results of studying the proton flare 2B/X4.8 on 23 July 2002, observed with the Large Solar Vacuum Telescope (LSVT) at the Baikal Astrophysical Observatory in spectropolarimetric mode with high spatial and spectral resolution. We have found some evidence for Hα line impact linear polarization, predominantly during the initial moments of the flare. For the Hα line 606 cuts were made along the dispersion in 53 spectrograms, and a polarization signal was found more or less confidently in 60 cuts (13 spectrograms). Polarization was mainly observed in one of the kernels of the flare. A particular feature of this kernel was that the Hα line was observed to show a reversal in the central part of this kernel, which created a dip in the kernel center in the photometric cut. The size of these dips and the size of the sites with the linear polarization coincide and are equal to 3 - 6 arcsec. The maximum polarization degree in this kernel reached 15 %. The direction of the polarization in the kernel is radial, except for the first two frames, where the direction of the polarization was both radial and tangential. Furthermore, we found an analogy between the effects observed at the chromospheric level in this kernel (polarization and depression in Hα line) and the temporal variation of the HXR sources.

  10. SPATIAL SEISMOLOGY OF A LARGE CORONAL LOOP ARCADE FROM TRACE AND EIT OBSERVATIONS OF ITS TRANSVERSE OSCILLATIONS

    SciTech Connect

    Verwichte, E.; Foullon, C.; Van Doorsselaere, T.

    2010-07-01

    We present a study of transverse loop oscillations in a large coronal loop arcade, using observations from the Transition Region And Coronal Explorer (TRACE) and Extreme-ultraviolet Imaging Telescope (EIT). For the first time we reveal the presence of long-period transverse oscillations with periods between 24 minutes and 3 hr. One loop bundle, 690 Mm long and with an oscillation period of 40 minutes, is analyzed in detail and its oscillation characteristics are determined in an automated manner. The oscillation quality factor is similar to what has been found earlier for oscillations in much shorter loops. This indicates that the damping mechanism of transverse loop oscillations is independent of loop length or period. The displacement profile along the whole length of the oscillating loop is determined for the first time and consistently between TRACE and EIT. By comparing the observed profile with models of the three-dimensional geometry of the equilibrium and perturbed loop, we test the effect of longitudinal structuring (spatial seismology) and find that the observations cannot unambiguously distinguish between structuring and non-planarity of the equilibrium loop. Associated intensity variations with a similar periodicity are explained in terms of variations in the line-of-sight column depth. Also, we report intensity oscillations at the loop footpoint, which are in anti-phase with respect to the intensity oscillations in the loop body. Lastly, this observation offers the first opportunity to use the transverse oscillations of the arcade to model the Alfven speed profile in the global corona.

  11. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions

    NASA Astrophysics Data System (ADS)

    Idrus, Intan Izafina; Abdullah, Mardina; Hasbi, Alina Marie; Husin, Asnawi; Yatim, Baharuddin

    2013-09-01

    This paper presents the first results of large-scale traveling ionospheric disturbances (LSTIDs) observation during two moderate magnetic storm events on 28 May 2011 (SYM-H∼ -94 nT and Dst∼-80 nT) and 6 August 2011 (SYM-H∼-126 nT and Dst∼-113 nT) over the high-latitude region in Russia, Sweden, Norway, Iceland and Greenland and equatorial region in the Peninsular Malaysia using vertical total electron content (VTEC) from the Global Positioning System (GPS) observations measurement. The propagation of the LSTID signatures in the GPS TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTIDs were found to propagate both equatorward and poleward directions during these two events. The results showed that the LSTIDs propagated faster at high-latitude region with an average phase velocity of 1074.91 m/s than Peninsular Malaysia with an average phase velocity of 604.84 m/s. The LSTIDs at the high-latitude region have average periods of 150 min whereas the ones observed over Peninsular Malaysia have average periods of 115 min. The occurrences of these LSTIDs were also found to be the subsequent effects of substorm activities in the auroral region. To our knowledge, this is the first result of observation of LSTIDs over Peninsular Malaysia during the 24th solar cycle.

  12. TWO EPOCHS OF VERY LARGE ARRAY OBSERVATIONS OF WATER MASER EMISSION IN THE ACTIVE GALAXY NGC 6240

    SciTech Connect

    Hagiwara, Yoshiaki

    2010-12-15

    Studies of 22 GHz H{sub 2}O maser emission from the merging galaxy NGC 6240 with double nuclei are presented. Two epochs of Very Large Array (VLA) observations in the A-configuration in spectral-line mode were carried out at 0.1 arcsec resolution by covering the redshifted velocity range of {approx}300 km s{sup -1} with respect to the systemic velocity of the galaxy. The purpose of these new observations is twofold: to detect an H{sub 2}O maser that an earlier VLA observation pinpointed in the southern nucleus in the northern nucleus as well to clarify the kinematics of the double nuclei, and to understand the origin of the maser in the galaxy. In the second epoch, one velocity feature peaking at V{sub LSR} = 7491.1 km s{sup -1}, redshifted by {approx}200 km s{sup -1} relative to the systemic velocity, was detected only toward the southern nucleus. The detection of an H{sub 2}O maser feature at or near this velocity had never been reported in earlier observations. However, including the known velocity features at redshifted velocities, no other velocity features were observed toward either nuclei throughout these epochs. The maser remains unresolved at an angular resolution of {approx}0.''1, corresponding to a linear size of less than about 45 pc. The two epochs of VLA observations show that the maser intensity is variable on timescales of at least three months, while the correlation between the maser intensity and the radio continuum intensity is not certain from our data. It is plausible that the maser in NGC 6240 is associated with the activity of an active galactic nucleus in the southern nucleus. Alternatively, the maser can be explained by star-forming activity at the site of massive star formation in the galaxy.

  13. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    NASA Astrophysics Data System (ADS)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  14. Low Altitude Large Scale Magnetic Fields in the Venus Ionosphere: Complementary Observations from the Pioneer Venus Orbiter and Venus Express

    NASA Astrophysics Data System (ADS)

    Villarreal, M. N.; Russell, C. T.; Luhmann, J. G.; Strangeway, R. J.; Zhang, T.

    2013-12-01

    The ionosphere of Venus has two end member states: magnetized and unmagnetized. When the solar wind dynamic pressure is low and the EUV flux high, the magnetic barrier forms at high altitudes where the plasma is collisionless. In this case the dayside ionosphere shows average weak fields punctuated by small-scale flux ropes and the nightside shows large scale nearly vertical fields associated with depletions or holes in the ionospheric density. When the dynamic pressure is high and the EUV flux is low, the magnetic field barrier is formed at lower altitudes where the ionosphere is collisional. Here the magnetic field enters the ionosphere to be carried downward by the subsolar circulation of the ionosphere. A strong magnetic belt builds up at low altitudes that wraps the planet and wraps around into the night ionosphere, shutting off the trans-terminator source of the nightside ionosphere to create the ';disappearing ionosphere' state with large scale horizontal nightside fields. Venus Express has observed this belt in the polar ionosphere and because of the characteristic spatial pattern of the field along the path of the satellite this belt was initially interpreted as giant flux ropes. These structures are better described as thin magnetic layers and not flux ropes. We re-analyze the VEX data from this perspective to better illustrate the properties of the observed polar field layers and their relationship to the draped magnetosheath fields.

  15. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    SciTech Connect

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  16. Large-scale variations of the interplanetary magnetic field: Voyager 1 and 2 observations between 1-5 AU

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Lepping, R. P.; Behannon, K. W.; Klein, L. W.; Neubauer, F. M.

    1981-01-01

    Observations by the Voyager 1 and 2 spacecraft of the interplanetary magnetic field between 1 and 5 AU were used to investigate the large scale structure of the IMF in a period of increasing solar activity. The Voyager spacecraft found notable deviations from the Parker axial model. These deviations are attributed both to temporal variations associated with increasing solar activity, and to the effects of fluctuations of the field in the radial direction. The amplitude of the latter fluctuations were found to be large relative to the magnitude of the radial field component itself beyond approximately 3 AU. Both Voyager 1 and Voyager 2 observed decreases with increasing heliocentric distance in the amplitude of transverse fluctuations in the averaged field strength (B) which are consistent with the presence of predominantly undamped Alfven waves in the solar wind, although and necessarily implying the presence of them. Fluctuations in the strength of B (relative to mean field strength) were found to be small in amplitude, with a RMS which is approximately one third of that for the transverse fluctuations and they are essentially independent of distance from the Sun.

  17. On the 2012 October 23 Circular Ribbon Flare: Emission Features and Magnetic Topology

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Guo, Yang; Ding, M. D.

    2015-06-01

    Circular ribbon flares are usually related to spine-fan type magnetic topology containing null points. In this paper, we investigate an X-class circular ribbon flare on 2012 October 23, using the multiwavelength data from the Solar Dynamics Observatory, Hinode, and RHESSI. In Ca ii H emission, the flare showed three ribbons with two highly elongated ones inside and outside a quasi-circular one, respectively. A hot channel was displayed in the extreme-ultraviolet emissions that infers the existence of a magnetic flux rope. Two hard X-ray (HXR) sources in the 12-25 keV energy band were located at the footpoints of this hot channel. Using a nonlinear force-free magnetic field extrapolation, we identify three topological structures: (1) a three-dimensional null point, (2) a flux rope below the fan of the null point, and (3) a large-scale quasi-separatrix layer (QSL) induced by the quadrupolar-like magnetic field of the active region. We find that the null point is embedded within the large-scale QSL. In our case, all three identified topological structures must be considered to explain all the emission features associated with the observed flare. Besides, the HXR sources are regarded as the consequence of the reconnection within or near the border of the flux rope.

  18. Large-scale Desert Dust Deposition on the Himalayan Snow Cover: A Climatological Perspective from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Gautam, R.; Hsu, N. C.; Lau, W. K.

    2013-12-01

    The Himalaya-Tibetan Plateau (HTP) has a profound influence on the Asian climate. The HTP are also among the largest snow/ice-covered regions on the Earth and provide major freshwater resource to the downstream densely-populated regions of Asia. Recent studies indicate climate warming over the HTP amplified by atmospheric heating and deposition of absorbing aerosols (e.g. dust and soot) over the HTP snowpack and glaciers. Recently, greater attention has focused on the effects of soot deposition on accelerated snowmelt and glacier retreat in the HTP, associated with increasing anthropogenic emissions in Asia. On the other hand, the role of transported dust affecting snow albedo/melt is not well understood over the HTP, in spite of the large annual cycle of mineral dust loading, particularly over the northern parts of south Asia during pre-monsoon season. This study addresses the large-scale effects of dust deposition on snow albedo in the elevated HTP from a satellite observational perspective. Dust aerosol transport, from southwest Asian arid regions, is observed in satellite imagery as darkening of the Himalayan snowpack. Additionally, multi-year spaceborne lidar observations, from CALIPSO, also show dust advected to elevated altitudes (~5km) over the Himalayan foothills, and episodically reaching the top of the western Himalaya. Spectral surface reflectance analysis of dust-laden snow cover (from MODIS) indicates enhanced absorption in the shorter visible wavelengths, yielding a significant gradient in the visible-nearIR reflectance spectrum. While soot in snow is difficult to distinguish from remote sensing, our spectral reflectance analysis of dust detection in the snowpack is consistent with theoretical simulations of snow darkening due to dust impurity. We find that the western HTP, in general, is influenced by enhanced dust deposition due to its proximity to major dust sources (and prevailing dust transport pathways), compared to the eastern HTP. Coinciding with the snowmelt period, dust deposition appears to further cause snow reflectance reduction, i.e. snow darkening, from spring to summer months. Among the entire HTP, we show that the western Himalaya and the Hindu-Kush snowpack are subjected to greater dust deposition and snow albedo reduction. Thus, our satellite-based observational study addresses the spatial variability of large-scale dust deposition on snow cover in the extensive HTP. A climatological and inter-annual perspective of the spatial variability of dust-induced snow darkening over the HTP will be presented, using ~10 years of MODIS spectral reflectance data (at high spatial resolution of ~1km). Results from this study provide insight into the particular role of desert dust towards accelerated seasonal snowmelt in the HTP.

  19. Circular polarization of sunlight reflected by Jupiter. [caused by aerosol scattering

    NASA Technical Reports Server (NTRS)

    Kawata, Y.; Hansen, J. E.

    1976-01-01

    Circular-polarization observations of Jupiter are described, and the circular polarization of other planets is discussed to the extent that it aids interpretation of the Jupiter data. The evidence strongly supports the interpretation that the circular polarization arises from scattering by aerosols in a gaseous atmosphere. Accurate calculations of the circular polarization are made for multiple scattering by an atmosphere with spherical aerosols, as a function of particle size and refractive index as well as the mixing ratio of aerosols and gas. The calculations for spheres and the few available circular-polarization observations of Jupiter permit only very limited constraints to be placed on the haze and cloud properties of the atmosphere of Jupiter. However, multispectral circular-polarization observations, combined with measurements of linear polarization and intensity, would permit detailed analysis of atmospheric aerosol properties.

  20. Conversion from linear to circular polarization in FPGA

    NASA Astrophysics Data System (ADS)

    Das, K.; Roy, A. L.; Keller, R.; Tuccari, G.

    2010-01-01

    Context. Radio astronomical receivers are now expanding their frequency range to cover large (octave) fractional bandwidths for sensitivity and spectral flexibility, which makes the design of good analogue circular polarizers challenging. Better polarization purity requires a flatter phase response over increasingly wide bandwidth, which is most easily achieved with digital techniques. They offer the ability to form circular polarization with perfect polarization purity over arbitrarily wide fractional bandwidths, due to the ease of introducing a perfect quadrature phase shift. Further, the rapid improvements in field programmable gate arrays provide the high processing power, low cost, portability and reconfigurability needed to make practical the implementation of the formation of circular polarization digitally. Aims: Here we explore the performance of a circular polarizer implemented with digital techniques. Methods: We designed a digital circular polarizer in which the intermediate frequency signals from a receiver with native linear polarizations were sampled and converted to circular polarization. The frequency-dependent instrumental phase difference and gain scaling factors were determined using an injected noise signal and applied to the two linear polarizations to equalize the transfer characteristics of the two polarization channels. This equalization was performed in 512 frequency channels over a 512 MHz bandwidth. Circular polarization was formed by quadrature phase shifting and summing the equalized linear polarization signals. Results: We obtained polarization purity of -25 dB corresponding to a D-term of 0.06 over the whole bandwidth. Conclusions: This technique enables construction of broad-band radio astronomy receivers with native linear polarization to form circular polarization for VLBI.

  1. Maximal dinucleotide and trinucleotide circular codes.

    PubMed

    Michel, Christian J; Pellegrini, Marco; Pirillo, Giuseppe

    2016-01-21

    We determine here the number and the list of maximal dinucleotide and trinucleotide circular codes. We prove that there is no maximal dinucleotide circular code having strictly less than 6 elements (maximum size of dinucleotide circular codes). On the other hand, a computer calculus shows that there are maximal trinucleotide circular codes with less than 20 elements (maximum size of trinucleotide circular codes). More precisely, there are maximal trinucleotide circular codes with 14, 15, 16, 17, 18 and 19 elements and no maximal trinucleotide circular code having less than 14 elements. We give the same information for the maximal self-complementary dinucleotide and trinucleotide circular codes. The amino acid distribution of maximal trinucleotide circular codes is also determined. PMID:26382231

  2. Positions of equilibrium points for dust particles in the circular restricted three-body problem with radiation

    NASA Astrophysics Data System (ADS)

    Pástor, P.

    2014-11-01

    For a body with negligible mass moving in the gravitational field of a star with one planet in a circular orbit (the circular restricted three-body problem), five equilibrium points exist and are known as the Lagrangian points. The positions of the Lagrangian points are not valid for dust particles because in the derivation of the Lagrangian points it is assumed that no other forces besides the gravitation act on the body with negligible mass. Here, we determined positions of the equilibrium points for the dust particles in the circular restricted three-body problem with radiation. The equilibrium points are located on curves connecting the Lagrangian points in the circular restricted three-body problem. The equilibrium points for Jupiter are distributed in large interval of heliocentric distances due to its large mass. The equilibrium points for the Earth explain a cloud of dust particles trailing the Earth observed with the Spitzer Space Telescope. The dust particles moving in the equilibrium points are distributed in interplanetary space according to their properties.

  3. FERMI LARGE AREA TELESCOPE OBSERVATION OF A GAMMA-RAY SOURCE AT THE POSITION OF ETA CARINAE

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Bonamente, E.; Brandt, T. J.; Bruel, P. E-mail: hirotaka@hep01.hepl.hiroshima-u.ac.j

    2010-11-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope detected a {gamma}-ray source that is spatially consistent with the location of Eta Carinae. This source has been persistently bright since the beginning of the LAT survey observations (from 2008 August to 2009 July, the time interval considered here). The {gamma}-ray signal is detected significantly throughout the LAT energy band (i.e., up to {approx}100 GeV). The 0.1-100 GeV energy spectrum is well represented by a combination of a cutoff power-law model (<10 GeV) and a hard power-law component (>10 GeV). The total flux (>100 MeV) is 3.7{sup +0.3}{sub -0.1} x 10{sup -7} photons s{sup -1} cm{sup -2}, with additional systematic uncertainties of 10%, and consistent with the average flux measured by AGILE. The light curve obtained by Fermi is consistent with steady emission. Our observations do not confirm the presence of a {gamma}-ray flare in 2008 October, as reported by Tavani et al., although we cannot exclude that a flare lasting only a few hours escaped detection by the Fermi LAT. We also do not find any evidence for {gamma}-ray variability that correlates with the large X-ray variability of Eta Carinae observed during 2008 December and 2009 January. We are thus not able to establish an unambiguous identification of the LAT source with Eta Carinae.

  4. Observational requirements for Lyα forest tomographic mapping of large-scale structure at z ∼ 2

    SciTech Connect

    Lee, Khee-Gan; Hennawi, Joseph F.; White, Martin; Croft, Rupert A. C.; Ozbek, Melih

    2014-06-10

    The z ≳ 2 Lyα forest traces the underlying dark matter distribution on large scales and, given sufficient sightlines, can be used to create three-dimensional (3D) maps of large-scale structures. We examine the observational requirements to construct such maps and estimate the signal-to-noise as a function of exposure time and sightline density. Sightline densities at z = 2.25 are n {sub los} ≈ [360, 1200, 3300] deg{sup –2} at limiting magnitudes of g = [24.0, 24.5, 25.0], resulting in transverse sightline separations of (d ) ≈ [3.6, 1.9, 1.2] h {sup –1} Mpc, which roughly sets the reconstruction scale. We simulate these reconstructions using mock spectra with realistic noise properties and find that spectra with S/N ≈ 4 per angstrom can be used to generate maps that clearly trace the underlying dark matter at overdensities of ρ/(ρ) ∼ 1. For the VLT/VIMOS spectrograph, exposure times t {sub exp} = [4, 6, 10] hr are sufficient for maps with spatial resolution ε{sub 3D} = [5.0, 3.2, 2.3] h {sup –1} Mpc. Assuming ∼250 h {sup –1} Mpc is probed along the line of sight, 1 deg{sup 2} of survey area would cover a comoving volume of ≈10{sup 6} h {sup –3} Mpc{sup 3} at (z) ∼ 2.3, enabling the efficient mapping of large volumes with 8-10 m telescopes. These maps could be used to study galaxy environments, the topology of large-scale structures at high z, and to detect proto-clusters.

  5. Interaction effect of number of circular holes in a circular plate

    SciTech Connect

    Ukadgaonker, V.G.; Agnahotri, N.A.

    1996-12-01

    The problem of circular tubesheet with uniform tension at its circular boundary and nine holes in the circular pitch pattern at its center is solved using complex stress functions. The Schwarz Alternating Technique is used to find the interaction effect of the holes on each other and then the superposition method is used to obtain desired geometry of the nine holes. This superposition gives the stress free boundary at the central hole exactly satisfied. When these results are compared with those obtained by Ukadgaonker and Kale by Finite Element Method it is found that the theoretical solutions give higher stress concentration than FEM by about 20% for a large outer radius. When the outer radius is reduced the stress concentration factor increases considerably and the difference in the analytical and the FEM solution also increases to a large extent. The analytical solution found in the present paper is verified with the FEM and Photoelasticity solution obtained by Ukadgaonker and Kale (1996) earlier. This problem is further generalized for a rhombic pitch pattern, which can be reduced to particular cases such as square pitch pattern, triangular pitch pattern, diagonal pitch pattern by changing the angle of the rhombus. The stress concentration factor around the central hole varies very little for various ligament efficiencies which is given in percentage.

  6. Resonances in the population of circular Rydberg states formed in beam-foil excitation

    NASA Astrophysics Data System (ADS)

    Mishra, Adya P.; Nandi, T.; Jagatap, B. N.

    2013-05-01

    By directing fast moving 164 MeV F2656e ion beam on 90 μg/cm2 thick carbon foil we have studied the unresolved decay of short-lived 2p (τ2p≈3.3 fs) and long-lived 2s (τ2s≈350.6 ps) states of H-like Fe in the time range 1.6×104-9.2×105τ2p, where, τ2p and τ2s are, respectively, radiative lifetimes of the 2p and 2s levels. At such large times four resonances have been observed as the humps riding on the decay curve of the beam-foil-excited 2s state. This unusual behavior is explained as consequence of the sequential cascading of circular Rydberg states (l=n-1) to 2p state, which modifies the time dependent photon intensity, I(t), of the 2p→1s transition from an exponential to hump-like structures for t»τ2p. From the detailed study of the cascading process the relative population of circular Rydberg states is determined. It is observed that certain circular Rydberg states are unexpectedly and profusely populated when fast H-like Fe ions emerge from the back surface of a thin solid foil.

  7. EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE H66{alpha} AND He66{alpha} RECOMBINATION LINES TOWARD MWC 349A

    SciTech Connect

    Loinard, Laurent; Rodriguez, Luis F.

    2010-10-10

    We have used the greatly enhanced spectral capabilities of the Expanded Very Large Array to observe both the 22.3 GHz continuum emission and the H66{alpha} recombination line toward the well-studied Galactic emission-line star MWC 349A. The continuum flux density is found to be 411 {+-} 41 mJy in good agreement with previous determinations. The H66{alpha} line peak intensity is about 25 mJy, and the average line-to-continuum flux ratio is about 5%, as expected for local thermodynamic equilibrium conditions. This shows that the H66{alpha} recombination line is not strongly masing as had previously been suggested, although a moderate maser contribution could be present. The He66{alpha} recombination line is also detected in our observations; the relative strengths of the two recombination lines yield an ionized helium to ionized hydrogen abundance ratio y {sup +} = 0.12 {+-} 0.02. The ionized helium appears to share the kinematics of the thermally excited ionized hydrogen gas, so the two species are likely to be well mixed. The electron temperature of the ionized gas in MWC 349A deduced from our observations is 6300 {+-} 600 K.

  8. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch.

    PubMed

    Ishikawa, Ryo; Mishra, Rohan; Lupini, Andrew R; Findlay, Scott D; Taniguchi, Takashi; Pantelides, Sokrates T; Pennycook, Stephen J

    2014-10-10

    Diffusion is one of the fundamental processes that govern the structure, processing, and properties of materials and it plays a crucial role in determining device lifetimes. However, direct observations of diffusion processes have been elusive and limited only to the surfaces of materials. Here we use an aberration-corrected electron microscope to locally excite and directly image the diffusion of single Ce and Mn dopants inside bulk wurtzite-type AlN single crystals, identifying correlated vacancy-dopant and interstitial-dopant kick-out mechanisms. Using a 200 kV electron beam to supply energy, we observe a higher frequency of dopant jumps for the larger and heavier Ce atoms than the smaller Mn atoms. These observations confirm density-functional-theory-based predictions of a decrease in diffusion barrier for large substitutional atoms. The results show that combining depth sensitive microscopy with theoretical calculations represents a new methodology to investigate diffusion mechanisms, not restricted to surface phenomena, but within bulk materials. PMID:25375721

  9. Circular polarized leaky wave surface

    NASA Astrophysics Data System (ADS)

    Manene, Franklin; Lail, Brian A.; Kinzel, Edward C.

    2014-09-01

    A circular polarized (CP) infrared (IR) leaky wave surface design is presented. The metasurface consists of an array of rectangular patches connected by microstrip and operating over the long-wave infrared (LWIR) spectrum with directional wave emission and absorption. The surface is composed of periodically aligned arrays of sub-wavelength metal patches separated from a ground plane by a dielectric slab. The design combines the features of the conventional patch and leaky wave antenna leading to a metasurface that preferentially emits CP IR radiation by use of axial asymmetrical unit cells. This is a deviation from reported structures that mainly employ a phase shifter to combine linearly polarized waves in order to attain circular polarization. The performance of this leaky wave surface is verified through full-wave simulation using the ANSYS HFSS finite element analysis tool. The leaky wave phenomenon is demonstrated by the frequency and angular dependence of the absorption while circular polarization is characterized via stokes parameters. The main beam of this surface can be steered continuously by varying the frequency while maintaining circular polarization within the main beam direction. A CP leaky wave at 10.6 μm with a scanning angle of 30° is demonstrated. Metasurfaces exhibiting spectral and polarization selectivity in absorption/emission hold the potential for impact in IR applications including detection, imaging, thermal management, energy harvesting and tagging.

  10. Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations

    NASA Astrophysics Data System (ADS)

    Lopez Lopez, P.; Wanders, N.; Schellekens, J.; Renzullo, L. J.; Sutanudjaja, E. H.; Bierkens, M. F. P.

    2015-10-01

    The coarse spatial resolution of global hydrological models (typically > 0.25°) limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally-tuned river models. A possible solution to the problem may be to drive the coarse resolution models with locally available high spatial resolution meteorological data as well as to assimilate ground-based and remotely-sensed observations of key water cycle variables. While this would improve the resolution of the global model, the impact of prediction accuracy remains largely an open question. In this study we investigate the impact of assimilating streamflow and satellite soil moisture observations on the accuracy of global hydrological model estimations, when driven by either coarse- or high-resolution meteorological