Science.gov

Sample records for obtaining gluon distribution

  1. Constraining the double gluon distribution by the single gluon distribution

    NASA Astrophysics Data System (ADS)

    Golec-Biernat, Krzysztof; Lewandowska, Emilia; Serino, Mirko; Snyder, Zachary; Staśto, Anna M.

    2015-11-01

    We show how to consistently construct initial conditions for the QCD evolution equations for double parton distribution functions in the pure gluon case. We use to momentum sum rule for this purpose and a specific form of the known single gluon distribution function in the MSTW parameterization. The resulting double gluon distribution satisfies exactly the momentum sum rule and is parameter free. We also study numerically its evolution with a hard scale and show the approximate factorization into product of two single gluon distributions at small values of x, whereas at large values of x the factorization is always violated in agreement with the sum rule.

  2. The Weighted GMD Model for multiplicity distributions. Probing gluon production at LHC energies

    NASA Astrophysics Data System (ADS)

    Wang, W. Y.; Seah, S.; Setianegara, J.; Chan, A. H.; Oh, C. H.

    2016-07-01

    A new distribution, the Weighted GMD (WGMD) is obtained from the Generalised Multiplicity Distribution (GMD), describing charged-particle multiplicity distributions as the hadronisation products of quark and gluon branching with fluctuations in the initial gluon numbers produced from the collision. The WGMD is shown to describe charged-particle multiplicity distributions in pp collisions at the Large Hadron Collider (LHC), and the average initial gluon number is obtained for Poisson distributed gluon multiplicities.

  3. The gluon Sivers distribution: Status and future prospects

    DOE PAGESBeta

    Boer, Daniël; Lorcé, Cédric; Pisano, Cristian; Zhou, Jian

    2015-06-28

    In this study, we review what is currently known about the gluon Sivers distribution and what are the opportunities to learn more about it. Because single transverse spin asymmetries in p↑p → πX provide only indirect information about the gluon Sivers function through the relation with the quark-gluon and tri-gluon Qiu-Sterman functions, current data from hadronic collisions at RHIC have not yet been translated into a solid constraint on the gluon Sivers function.

  4. Universality of Unintegrated Gluon Distributions at small x

    SciTech Connect

    Dominguez, Fabio; Marquet, Cyrille; Xiao, Bowen; Yuan, Feng

    2011-01-04

    We systematically study dijet production in various processes in the small-x limit and establish an effective kt-factorization for hard processes in a system with dilute probes scattering on a dense target. In the large-Nc limit, the unintegrated gluon distributions involved in different processes are shown to be related to two widely proposed ones: the Weizsacker-Williams gluon distribution and the dipole gluon distribution.

  5. QCD constraints on the shape of polarized quark and gluon distributions

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; Burkardt, Matthias; Schmidt, Ivan

    1995-02-01

    We develop simple analytic representations of the polarized quark and gluon distributions in the nucleon at low Q2 which incorporate general constraints obtained from the requirements of color coherence of gluon couplings at x ˜ 0 and the helicity retention properties of perturbative QCD couplings at x ˜ 1. The unpolarized predictions are similar to the Do' distributions given by Martin, Roberts, and Stirling. The predictions for the quark helicity distributions are compared with polarized structure functions measured by the E142 experiment at SLAC and the SMC experiment at CERN.

  6. Quark and gluon distribution functions in a viscous quark-gluon plasma medium and dilepton production via q q ¯ annihilation

    NASA Astrophysics Data System (ADS)

    Chandra, Vinod; Sreekanth, V.

    2015-11-01

    Viscous modifications to the thermal distributions of quark-antiquarks and gluons have been studied in a quasiparticle description of the quark-gluon-plasma medium created in relativistic heavy-ion collision experiments. The model is described in terms of quasipartons that encode the hot QCD medium effects in their respective effective fugacities. Both shear and bulk viscosities have been taken in to account in the analysis, and the modifications to thermal distributions have been obtained by modifying the energy-momentum tensor in view of the nontrivial dispersion relations for the gluons and quarks. The interactions encoded in the equation of state induce significant modifications to the thermal distributions. As an implication, the dilepton production rate in the q q ¯ annihilation process has been investigated. The equation of state is found to have a significant impact on the dilepton production rate along with the viscosities.

  7. Color neutrality and the gluon distribution in a very large nucleus

    NASA Astrophysics Data System (ADS)

    Lam, C. S.; Mahlon, Gregory

    2000-01-01

    We improve the McLerran-Venugopalan model for the gluon distribution functions in very large nuclei by imposing the condition that the nucleons should be color neutral. We find that enforcing color neutrality cures the infrared divergences in the transverse coordinates which are present in the McLerran-Venugopalan model. Since we obtain well-defined expressions for the distribution functions, we are able to draw unambiguous conclusions about various features of the model. In particular, we show that the gluon distribution functions in the absence of quantum corrections behave as 1/xF to all orders in the coupling constant. Furthermore, our distribution functions exhibit saturation at small transverse momenta. The normalization of the distribution function we obtain is not arbitrary but specified in terms of the nucleon structure. We derive a sum rule for the integral of the gluon distribution function over transverse momenta, and show that the non-Abelian contributions serve only to modify the shape of the transverse momentum distribution. We obtain a relatively simple expression for the mean value of the transverse momentum-squared. The connection between the McLerran-Venugopalan model and the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation is discussed quantitatively. Finally, we illustrate our results in terms of a simple nuclear model due to Kovchegov.

  8. QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q T -distribution

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Kasemets, Tomas; Mulders, Piet J.; Pisano, Cristian

    2015-07-01

    We provide the proper definition of all the leading-twist (un)polarized gluon transverse momentum dependent parton distribution functions (TMDPDFs), by considering the Higgs boson transverse momentum distribution in hadron-hadron collisions and deriving the factorization theorem in terms of them. We show that the evolution of all the (un)polarized gluon TMDPDFs is driven by a universal evolution kernel, which can be resummed up to next-to-next-to-leading-logarithmic accuracy. Considering the proper definition of gluon TMDPDFs, we perform an explicit next-to-leading-order calculation of the unpolarized ( f {1/ g }), linearly polarized ( h {1/⊥ g }) and helicity ( g {1/L g }) gluon TMDPDFs, and show that, as expected, they are free from rapidity divergences. As a byproduct, we obtain the Wilson coefficients of the refactorization of these TMDPDFs at large transverse momentum. In particular, the coefficient of g {1/L g }, which has never been calculated before, constitutes a new and necessary ingredient for a reliable phenomenological extraction of this quantity, for instance at RHIC or the future AFTER@LHC or Electron-Ion Collider. The coefficients of f {1/ g } and h {1/⊥ g } have never been calculated in the present formalism, although they could be obtained by carefully collecting and recasting previous results in the new TMD formalism. We apply these results to analyze the contribution of linearly polarized gluons at different scales, relevant, for instance, for the inclusive production of the Higgs boson and the C-even pseudoscalar bottomonium state η b . Applying our resummation scheme we finally provide predictions for the Higgs boson q T -distribution at the LHC.

  9. Gluon distribution functions and Higgs boson production at moderate transverse momentum

    SciTech Connect

    Sun Peng; Xiao Bowen; Yuan Feng

    2011-11-01

    We investigate the gluon distribution functions and their contributions to the Higgs boson production in pp collisions in the transverse momentum-dependent factorization formalism. In addition to the usual azimuthal symmetric transverse momentum-dependent gluon distribution, we find that the azimuthal correlated gluon distribution also contributes to the Higgs boson production. This explains recent findings on the additional contribution in the transverse momentum resummation for the Higgs boson production as compared to that for electroweak boson production processes. We further examine the small-x naive k{sub t}-factorization in the dilute region and find that the azimuthal correlated gluon distribution contribution is consistently taken into account. The result agrees with the transverse momentum-dependent factorization formalism. We comment on the possible breakdown of the naive k{sub t}-factorization in the dense medium region, due to the unique behaviors for the gluon distributions.

  10. Gluon distribution functions and Higgs boson production at moderate transverse momentum

    SciTech Connect

    Sun P.; Yuan F.; Xiao, B.W.

    2011-11-04

    We investigate the gluon distribution functions and their contributions to the Higgs boson production in pp collisions in the transverse momentum-dependent factorization formalism. In addition to the usual azimuthal symmetric transverse momentum-dependent gluon distribution, we find that the azimuthal correlated gluon distribution also contributes to the Higgs boson production. This explains recent findings on the additional contribution in the transverse momentum resummation for the Higgs boson production as compared to that for electroweak boson production processes. We further examine the small-x naive kt-factorization in the dilute region and find that the azimuthal correlated gluon distribution contribution is consistently taken into account. The result agrees with the transverse momentum-dependent factorization formalism. We comment on the possible breakdown of the naive kt-factorization in the dense medium region, due to the unique behaviors for the gluon distributions.

  11. From classical to quantum saturationin the nuclear gluon distribution

    NASA Astrophysics Data System (ADS)

    Triantafyllopoulos, D. N.

    2005-08-01

    We study the gluon content of a large nucleus (i) in the semi-classical McLerran-Venugopalan model and (ii) in the high-energy limit as given by the quantum evolution of the color glass condensate. We give a simple and qualitative description of the Cronin effect and high- pT suppression in proton-nucleus collisions.

  12. Prompt atmospheric neutrinos and muons: Dependence on the gluon distribution function

    SciTech Connect

    Gelmini, Graciela; Gondolo, Paolo; Varieschi, Gabriele

    2000-03-01

    We compute the next-to-leading order QCD predictions for the vertical flux of atmospheric muons and neutrinos from decays of charmed particles, for different PDF's (MRS-R1, MRS-R2, CTEQ-4M and MRST) and different extrapolations of these at a small partonic momentum fraction x. We find that the predicted fluxes vary up to almost two orders of magnitude at the largest energies studied, depending on the chosen extrapolation of the PDF's. We show that the spectral index of the atmospheric leptonic fluxes depends linearly on the slope of the gluon distribution function at very small x. This suggests the possibility of obtaining some bounds on this slope in ''neutrino telescopes,'' at values of x not reachable at colliders, provided the spectral index of atmospheric leptonic fluxes could be determined. (c) 2000 The American Physical Society.

  13. How large is the gluon polarization in the statistical parton distributions approach?

    SciTech Connect

    Soffer, Jacques; Bourrely, Claude; Buccella, Franco

    2015-04-10

    We review the theoretical foundations of the quantum statistical approach to parton distributions and we show that by using some recent experimental results from Deep Inelastic Scattering, we are able to improve the description of the data by means of a new determination of the parton distributions. We will see that a large gluon polarization emerges, giving a significant contribution to the proton spin.

  14. How large is the gluon polarization in the statistical parton distributions approach?

    NASA Astrophysics Data System (ADS)

    Soffer, Jacques; Bourrely, Claude; Buccella, Franco

    2015-04-01

    We review the theoretical foundations of the quantum statistical approach to parton distributions and we show that by using some recent experimental results from Deep Inelastic Scattering, we are able to improve the description of the data by means of a new determination of the parton distributions. We will see that a large gluon polarization emerges, giving a significant contribution to the proton spin.

  15. Inelastic leptoproduction of J/Ψ and the gluon distribution in the nucleon

    NASA Astrophysics Data System (ADS)

    Merabet, H.; Mathiot, J.-F.; Mendez-Galain, R.

    1994-12-01

    In view of the recent experimental results at CERN, we calculate exactly the Q 2-dependence of the inelastic leptoproduction cross-section of J/Ψ. We also make predictions for the high enegy (HERA) as well as low energy (30 GeV electron beam on a fixed target) regimes. The exact calculation of the Q 2-dependence of the cross-section is essential to extract the gluon distribution function from data. We find that using the exact leptoproduction cross-section amounts to increase the power in the parametrization of the gluon distribution function extracted so far in muoproduction experiments

  16. Investigation of the dynamics of gluon distributions in the production of heavy quarks and quarkonia at the LEP2 collider

    SciTech Connect

    Lipatov, A. V.

    2006-09-15

    The inclusive production of heavy quarks and quarkonia in photon-photon collisions at the LEP2 collider is considered within the semihard (k{sub T}-factorization) QCD approach. The dependence of the total and differential cross sections for the production of heavy (c and b) quarks and D* and J/{psi} mesons on the choice of unintegrated gluon distribution is studied. The transition of a cc-bar charmed pair to observed J/{psi} mesons is described on the basis of the color-singlet model. The results of the calculations are compared with currently available experimental data obtained by the L3, OPAL, ALEPH, and DELPHI Collaborations. It is shown that the polarization properties of J/{psi} mesons at the LEP2 collider are sensitive to the behavior of unintegrated gluon distributions. This means that experimental investigations of the polarization properties of quarkonia in photon-photon collisions may provide a direct test of the dynamics of gluon distributions in the photon.

  17. Gluons and the Quark Sea at High Energies: Distributions, Polarization, Tomography

    SciTech Connect

    Boer, Daniel; Diehl, Markus; Milner, Richard; Venugopalan, Raju; Vogelsang, Werner; Kaplan, David; Montgomery, Hugh; Vigdor, Steven; Accardi, A.; Aschenauer, E.C.; Burkardt, M.; Ent, R.; Guzey, V.; Hasch, D.; Kumar, K.; Lamont, M.A.C.; Li, Ying-chuan; Marciano, W.; Marquet, C.; Sabatie, F.; Stratmann, M.; /more authors..

    2012-06-07

    This report on the science case for an Electron-Ion Collider (EIC) is the result of a ten-week program at the Institute for Nuclear Theory (INT) in Seattle (from September 13-November 19, 2010), motivated by the need to develop a strong case for the continued study of the QCD description of hadron structure in the coming decades. Hadron structure in the valence quark region will be studied extensively with the Jefferson Lab 12 GeV science program, the subject of an INT program the previous year. The focus of the INT program was on understanding the role of gluons and sea quarks, the important dynamical degrees of freedom describing hadron structure at high energies. Experimentally, the most direct and precise way to access the dynamical structure of hadrons and nuclei at high energies is with a high luminosity lepton probe in collider mode. An EIC with optimized detectors offers enormous potential as the next generation accelerator to address many of the most important, open questions about the fundamental structure of matter. The goal of the INT program, as captured in the writeups in this report, was to articulate these questions and to identify golden experiments that have the greatest potential to provide definitive answers to these questions. At resolution scales where quarks and gluons become manifest as degrees of freedom, the structure of the nucleon and of nuclei is intimately connected with unique features of QCD dynamics, such as confinement and the self-coupling of gluons. Information on hadron sub-structure in DIS is obtained in the form of 'snapshots' by the 'lepton microscope' of the dynamical many-body hadron system, over different momentum resolutions and energy scales. These femtoscopic snapshots, at the simplest level, provide distribution functions which are extracted over the largest accessible kinematic range to assemble fundamental dynamical insight into hadron and nuclear sub-structure. For the proton, the EIC would be the brightest

  18. Cronin effect and high-p⊥ suppression in the nuclear gluon distribution at small x

    NASA Astrophysics Data System (ADS)

    Iancu, E.; Itakura, K.; Triantafyllopoulos, D. N.

    2004-09-01

    We present a systematic, and fully analytic, study of the ratio R between the gluon distribution in a nucleus and that in a proton scaled up by the atomic number A. We consider initial conditions of the McLerran-Venugopalan type, and quantum evolution in the Color Glass Condensate, with both fixed and running coupling. We perform an analytic study of the Cronin effect in the initial conditions and point out an interesting difference between saturating effects and twist effects in the nuclear gluon distribution. We show that the distribution of the gluons which make up the condensate in the initial conditions is localized at low momenta, but this particular feature does not survive after the quantum evolution. We demonstrate that the rapid suppression of the ratio R in the early stages of the evolution is due to the DGLAP-like evolution of the proton, whose gluon distribution grows much faster than that in the nucleus because of the large separation between the respective saturation momenta. The flattening of the Cronin peak, on the other hand, is due to the evolution of the nucleus. We show that the running coupling effects slow down the evolution, but eventually lead to a stronger suppression in R at sufficiently large energies.

  19. Initial energy density and gluon distribution from the glasma in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Fujii, Hirotsugu; Fukushima, Kenji; Hidaka, Yoshimasa

    2009-02-01

    We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of heavy-ion collisions. In the McLerran-Venugopalan model, we first decompose the energy density into the momentum components exactly, with the use of the Wilson line correlators. Then we evolve the energy density with the free-field equation, which is justified by the dominance of the ultraviolet modes near the collision point. We also discuss the improvement that occurs with the inclusion of nonlinear terms into the time evolution. Our numerical results at RHIC energy are fairly consistent with the empirical values.

  20. Initial energy density and gluon distribution from the glasma in heavy-ion collisions

    SciTech Connect

    Fujii, Hirotsugu; Fukushima, Kenji; Hidaka, Yoshimasa

    2009-02-15

    We estimate the energy density and the gluon distribution associated with the classical fields describing the early-time dynamics of heavy-ion collisions. In the McLerran-Venugopalan model, we first decompose the energy density into the momentum components exactly, with the use of the Wilson line correlators. Then we evolve the energy density with the free-field equation, which is justified by the dominance of the ultraviolet modes near the collision point. We also discuss the improvement that occurs with the inclusion of nonlinear terms into the time evolution. Our numerical results at RHIC energy are fairly consistent with the empirical values.

  1. The Higgs transverse momentum distribution in gluon fusion as a multiscale problem

    NASA Astrophysics Data System (ADS)

    Bagnaschi, E.; Vicini, A.

    2016-01-01

    We consider Higgs production in gluon fusion and in particular the prediction of the Higgs transverse momentum distribution. We discuss the ambiguities affecting the matching procedure between fixed order matrix elements and the resummation to all orders of the terms enhanced by log( p T H / m H ) factors. Following a recent proposal [1], we argue that the gluon fusion process, computed considering two active quark flavors, is a multiscale problem from the point of view of the resummation of the collinear singular terms. We perform an analysis at parton level of the collinear behavior of the O({α}_s) real emission amplitudes; relying on the collinear singularities structure of the latter, we derive an upper limit to the range of transverse momenta where the collinear approximation is valid. This scale is then used as the value of the resummation scale in the analytic resummation framework or as the value of the h parameter in the POWHEG-BOX code. A variation of this scale can be used to generate an uncertainty band associated to the matching procedure. Finally, we provide a phenomenological analysis in the Standard Model, in the Two Higgs Doublet Model and in the Minimal Supersymmetric Standard Model. In the two latter cases, we provide an ansatz for the central value of the matching parameters not only for a Standard Model-like Higgs boson, but also for heavy scalars and in scenarios where the bottom quark may play the dominant role.

  2. High energy resummation of transverse momentum distributions: Higgs in gluon fusion

    NASA Astrophysics Data System (ADS)

    Forte, Stefano; Muselli, Claudio

    2016-03-01

    We derive a general resummation formula for transverse-momentum distributions of hard processes at the leading logarithmic level in the high-energy limit, to all orders in the strong coupling. Our result is based on a suitable generalization of high-energy factorization theorems, whereby all-order resummation is reduced to the determination of the Born-level process but with incoming off-shell gluons. We validate our formula by applying it to Higgs production in gluon fusion in the infinite top mass limit. We check our result up to next-to-leading order by comparison to the high energy limit of the exact expression and to next-to-next-to leading order by comparison to NNLL transverse momentum (Sudakov) resummation, and we predict the high-energy behaviour at next3-to-leading order. We also show that the structure of the result in the small transverse momentum limit agrees to all orders with general constraints from Sudakov resummation.

  3. Evolution of heavy quark distribution function on quark-gluon plasma: Using the Iterative Laplace Transform Method

    NASA Astrophysics Data System (ADS)

    Mehrabi Pari, Sharareh; Javidan, Kurosh; Taghavi Shahri, Fatemeh

    2016-05-01

    The "Laplace Transform Method" is used to solve the Fokker-Plank equation for finding the time evolution of the heavy quarks distribution functions such as charm and bottom in quark gluon plasma. These solutions will lead us to calculation of nuclear suppression factor RAA. The results have good agreement with available experiment data from the PHENIX collaboration.

  4. Gluon TMD studies at EIC

    NASA Astrophysics Data System (ADS)

    Boer, Daniël

    2016-03-01

    A high-energy Electron-Ion Collider (EIC) would offer a most promising tool to study in detail the transverse momentum distributions of gluons inside hadrons. This applies to unpolarized as well as linearly polarized gluons inside unpolarized protons, and to left-right asymmetric distributions of gluons inside transversely polarized protons, the so-called gluon Sivers effect. The inherent process dependence of these distributions can be studied by comparing to similar, but often complementary observables at LHC.

  5. Rapidity distribution of photons from an anisotropic quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Lusaka; Roy, Pradip

    2010-05-01

    We calculate rapidity distribution of photons due to Compton and annihilation processes from quark gluon plasma with pre-equilibrium momentum-space anisotropy. We also include contributions from hadronic matter with late-stage transverse expansion. A phenomenological model has been used for the time evolution of hard momentum scale, phard(τ), and anisotropy parameter, ξ(τ). As a result of pre-equilibrium momentum-space anisotropy, we find significant modification of photons rapidity distribution. For example, with the fixed initial condition (FIC) free-streaming (δ=2) interpolating model we observe significant enhancement of photon rapidity distribution at fixed pT, where as for FIC collisionally broadened (δ=2/3) interpolating model the yield increases till y~1. Beyond that suppression is observed. With fixed final multiplicity (FFM) free-streaming interpolating model we predict enhancement of photon yield which is less than the case of FIC. Suppression is always observed for FFM collisionally broadened interpolating model.

  6. Scale evolution of gluon TMDPDFs

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Kasemets, Tomas; Mulders, Piet J.; Pisano, Cristian

    2015-01-01

    By applying the effective field theory machinery we factorize the transverse momentum spectrum of Higgs boson production, where the main hadronic quantities are the gluon transverse momentum dependent parton distribution functions (TMDPDFs). We properly define those quantities, showing explicitly, in the case of an unpolarized hadron, that they are free from rapidity divergences, and extract their evolution properties. It turns out that the evolution for all eight (un-)polarized leading-twist gluon TMDPDFs is driven by the same evolution kernel, for which we derive the necessary ingredients to obtain a resummation of large logarithms at next-tonext-to-leading-logarithmic accuracy. We make predictions for the contribution of linearly polarized gluons to the Higgs boson qT -spectrum.

  7. Distribution of Linearly Polarized Gluons and Elliptic Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy

    NASA Astrophysics Data System (ADS)

    Dumitru, Adrian; Lappi, Tuomas; Skokov, Vladimir

    2015-12-01

    We determine the distribution of linearly polarized gluons of a dense target at small x by solving the Balitsky-Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner rapidity evolution equations. From these solutions, we estimate the amplitude of ˜cos 2 ϕ azimuthal asymmetries in deep inelastic scattering dijet production at high energies. We find sizable long-range in rapidity azimuthal asymmetries with a magnitude in the range of v2=⟨cos 2 ϕ ⟩˜10 % .

  8. Significance of nonperturbative input to the transverse momentum dependent gluon density for hard processes at the LHC

    NASA Astrophysics Data System (ADS)

    Grinyuk, A. A.; Lipatov, A. V.; Lykasov, G. I.; Zotov, N. P.

    2016-01-01

    We study the role of the nonperturbative input to the transverse momentum dependent (TMD) gluon density in hard processes at the LHC. We derive the input TMD gluon distribution at a low scale μ02˜1 GeV2 from a fit of inclusive hadron spectra measured at low transverse momenta in p p collisions at the LHC and demonstrate that the best description of these spectra for larger hadron transverse momenta can be achieved by matching the derived TMD gluon distribution with the exact solution of the Balitsky-Fadin-Kuraev-Lipatov equation obtained at low x and small gluon transverse momenta outside the saturation region. Then, we extend the input TMD gluon density to higher μ2 numerically using the Catani-Ciafoloni-Fiorani-Marchesini gluon evolution equation. Special attention is paid to phenomenological applications of the obtained TMD gluon density to some LHC processes, which are sensitive to the gluon content of a proton.

  9. Gluon distributions and color charge correlations in a saturated light-cone wavefunction

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.

    2002-11-01

    We describe the light-cone wavefunction in the saturation regime in terms of the density of gluons per unit of transverse phase space, the occupation number, and in terms of the color charge correlator. The simple McLerran-Venugopalan model gives what are claimed to be general results for the phase space gluon density, but it does not well describe the general case for the charge correlator. We derive the general momentum dependence and rapidity dependence of the color charge correlator which exhibits strong color shielding. A simple physical picture which leads to these general results is described.

  10. Back-to-Back Isolated Photon-Quarkonium Production at the LHC and the Transverse-Momentum-Dependent Distributions of the Gluons in the Proton

    NASA Astrophysics Data System (ADS)

    Lansberg, J. P.

    2016-02-01

    The study of isolated heavy quarkonia, such as J/ψ and Υ, produced in association with a photon in proton-proton collisions at the LHC, is probably the optimal way to get right away a first experimental determination of two gluon transverse-momentum-dependent distribution (TMDs) in an unpolarized proton, f1g and h1⊥g, the latter giving the distribution of linearly polarized gluons. To substantiante this, we calculate the transverse-momentum-dependent effects that arise in the process under study and discuss the feasibility of their measurements.

  11. Sensitivity of isolated photon production at TeV hadron colliders to the gluon distribution in the proton

    SciTech Connect

    Ichou, Raphaeelle; D'Enterria, David

    2010-07-01

    We compare the single inclusive spectra of isolated photons measured at high transverse energy in proton-antiproton collisions at {radical}(s)=1.96 TeV with next-to-leading-order perturbative QCD predictions with various parametrizations of the parton distribution functions (PDFs). Within the experimental and theoretical uncertainties, the Tevatron data can be reproduced equally well by the recent CTEQ6.6, MSTW08, and NNPDF1.2 PDF sets. We also present the predictions for isolated {gamma} spectra in proton-proton collisions at {radical}(s)=14 TeV for central (y=0) and forward (y=4) rapidities relevant for LHC experiments. Different proton PDFs result in maximum variations of order {+-}30% in the expected E{sub T}{sup {gamma}-}differential isolated {gamma} cross sections. The inclusion of the isolated photon data in global PDF fits will place extra independent constraints on the gluon density.

  12. Gluons and the quark sea at high energies: distributions, polarization, tomography

    SciTech Connect

    Boer, D.; Venugopalan, R.; Diehl, M.; Milner, R.; Vogelsang, W.; et al.

    2011-09-30

    This report is based on a ten-week program on Gluons and the quark sea at high-energies, which took place at the Institute for Nuclear Theory (INT) in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics (QCD). This report is organized around the following four major themes: (i) the spin and flavor structure of the proton, (ii) three dimensional structure of nucleons and nuclei in momentum and configuration space, (iii) QCD matter in nuclei, and (iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.

  13. Gluon polarization in nucleon

    NASA Astrophysics Data System (ADS)

    Shahveh, Abolfazl; Taghavi-Shahri, Fatemeh; Arash, Firooz

    2010-07-01

    In the context of the so-called valon model, we calculate δg/g and show that although it is small and compatible with the measured values, the gluon contribution to the spin of nucleon can be sizable. The smallness of δg/g in the measured kinematical region should not be interpreted as δg being small. In fact, δg itself at small x, and the first moment of the polarized gluon distribution in the nucleon, Δg (Q2), are large.

  14. Unitarity bound for gluon shadowing

    SciTech Connect

    Kopeliovich, B. Z.; Levin, E.; Potashnikova, I. K.; Schmidt, Ivan

    2009-06-15

    Although at small Bjorken x gluons originated from different nucleons in a nucleus overlap in the longitudinal direction, most of them are still well separated in the transverse plane and therefore cannot fuse. For this reason the gluon density in nuclei cannot drop at small x below a certain bottom bound, which we evaluated in a model independent manner assuming the maximal strength of gluon fusion. We also calculated gluon shadowing in the saturated regime using the Balitsky-Kovchegov equation and found the nuclear ratio to be well above the unitarity bound. The recently updated analysis of parton distributions in nuclei, including BNL Relativistic Heavy Ion Collider (RHIC) data on high-p{sub T} hadron production at forward rapidities, led to strong gluon shadowing. Such strong shadowing and therefore the interpretation of the nuclear modification of the p{sub T} spectra in dA collisions at RHIC seem to be inconsistent with this unitarity bound.

  15. Determination of the gluon distribution function of the nucleon using energy-energy angular pattern in deep-inelastic muon-deuteron scattering

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Carroll, T. J.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jancso, G.; Jansen, D. M.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H. J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1996-03-01

    We have used the energy-energy angular pattern of hadrons in inelastic muon-deuteron scattering to study perturbative QCD effects and to extract the gluon distribution function ηG( η) of the nucleon, where η is the fractional momentum carried by the gluon. The data were taken with the E665 spectrometer using the Fermilab Tevatron muon beam with a mean beam energy of 490 GeV. We present ηG( η) for 0.005< η<0.05 and at an average Q 2 of 8 GeV2 using this new technique. We find that ηG( η) in this region can be described by ηG( η) α ηλ with λ=-0.87±0.09( stat.)±{0.37/0.32}( sys.). We compare our results to expectations from various parametrizations of the parton distribution function and also to results from HERA.

  16. Impact of parton distribution function and {alpha}{sub s} uncertainties on Higgs boson production in gluon fusion at hadron colliders

    SciTech Connect

    Demartin, Federico; Mariani, Elisa; Forte, Stefano; Vicini, Alessandro; Rojo, Juan

    2010-07-01

    We present a systematic study of uncertainties due to parton distributions (PDFs) and the strong coupling on the gluon-fusion production cross section of the standard model Higgs at the Tevatron and LHC colliders. We compare procedures and results when three recent sets of PDFs are used, CTEQ6.6, MSTW08, and NNPDF1.2, and we discuss specifically the way PDF and strong coupling uncertainties are combined. We find that results obtained from different PDF sets are in reasonable agreement if a common value of the strong coupling is adopted. We show that the addition in quadrature of PDF and {alpha}{sub s} uncertainties provides an adequate approximation to the full result with exact error propagation. We discuss a simple recipe to determine a conservative PDF+{alpha}{sub s} uncertainty from available global parton sets, and we use it to estimate this uncertainty on the given process to be about 10% at the Tevatron and 5% at the LHC for a light Higgs.

  17. The approximation method for calculation of the exponents of the gluon distribution, λ g , and the structure function, λ S ,at low x

    NASA Astrophysics Data System (ADS)

    Boroun, G. R.; Rezaie, B.

    2008-06-01

    We present a set of formulas using the solution of the QCD Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation to extract of the exponents of the gluon distribution, λ g , and structure function, λ S , from the Regge-like behavior at low x. The exponents are found to be independent of x and to increase linearly with ln Q 2 and are compared with the most data from the H1 Collaboration. We also calculated the structure function F 2( x,Q 2) and the gluon distribution G( x,Q 2) at low x assuming the Regge-like behavior of the gluon distribution function at this limit and compared them with an NLO-QCD fit to theH1 data, two-Pomeron fit, multipole Pomeron exchange fit, and MRST (A.D. Martin, R.G. Roberts, W.J. Stirling, and R.S. Thorne), DL (A. Donnachie and P.V. Landshoff), and NLO GRV (M. Glük, E. Reya, and A. Vogt) fit results.

  18. Quark-Gluon Plasma Model and Origin of Magic Numbers

    SciTech Connect

    Ghahramany, N.; Ghanaatian, M.; Hooshmand, M.

    2008-04-21

    Using Boltzman distribution in a quark-gluon plasma sample it is possible to obtain all existing magic numbers and their extensions without applying the spin and spin-orbit couplings. In this model it is assumed that in a quark-gluon thermodynamic plasma, quarks have no interactions and they are trying to form nucleons. Considering a lattice for a central quark and the surrounding quarks, using a statistical approach to find the maximum number of microstates, the origin of magic numbers is explained and a new magic number is obtained.

  19. Gluon mass generation without seagull divergences

    SciTech Connect

    Aguilar, Arlene C.; Papavassiliou, Joannis

    2010-02-01

    Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for the effective charge and one for the gluon mass. This system of integral equations has a unique solution, which unambiguously determines these two quantities. Most notably, the effective charge freezes in the infrared, and the gluon mass displays power-law running in the ultraviolet, in agreement with earlier considerations.

  20. Constraining gluon poles

    NASA Astrophysics Data System (ADS)

    Anikin, I. V.; Teryaev, O. V.

    2015-12-01

    In this letter, we revise the QED gauge invariance for the hadron tensor of Drell-Yan type processes with the transversely polarized hadron. We perform our analysis within the Feynman gauge for gluons and make a comparison with the results obtained within the light-cone gauge. We demonstrate that QED gauge invariance leads, first, to the need of a non-standard diagram and, second, to the absence of gluon poles in the correlators < ψ bar γ⊥A+ ψ > related traditionally to dT (x , x) / dx. As a result, these terms disappear from the final QED gauge invariant hadron tensor. We also verify the absence of such poles by analyzing the corresponding light-cone Dirac algebra.

  1. Silicon distribution on the lunar surface obtained by Kaguya GRS

    NASA Astrophysics Data System (ADS)

    Kim, Kyeong Ja; Kobayashi, Masanori; Elphic, Richard; Karouji, Yuzuru; Hamara, Dave; Kobayashi, Shingo; Nagaoka, Hiroshi; Rodriguez, Alexis; Yamashita, Naoyuki; Reedy, Robert; Hasebe, Nobuyuki

    Gamma ray spectrometry (GRS) provides a powerful tool to map and characterize the elemental composition of the upper tens centimeters of solid planetary surfaces. Elemental maps generated by the Kaguya GRS (KGRS) include natural radioactive as well as major elements maps (e.g., Fe, Ca, and Ti). Analysis of the Si gamma ray has been investigated using the 4934 keV Si peak produced by the thermal neutron interaction (28) Si(n,gammag) (29) Si, generated during the interaction of galactic cosmic rays and surface material containing Si. The emission rate of gamma rays is directly proportional to the abundance of Si from the lunar surface; however, it is also affected by the thermal neutron density in the lunar surface. Thus, we corrected the Si GRS data by a low energy neutron data (< 0.1 eV) obtained by Lunar Prospector because the Kaguya orbiter did not carry a neutron detector. We used the relative change in thermal neutron flux as a function of topography measured by Lunar Prospector. Normalization of Si elemental abundance using the Kaguya data was accomplished using Apollo 11, 12, 16, and 17 archive data. The normalized Si elemental abundance of the Kaguya GRS data ranged from about 15 to 27% Si. The lowest and highest SiO _{2} abundance correspond to mineral groups like pyroxene group (PKT region) and feldspar group (Northern highlands), respectively. The Si abundance permits the quantification of the relative abundance and distribution of mafic or non-mafic lunar surfaces materials. Our KGRS data analysis shows that highland terrains are Si-enriched relative to lower basins and plains regions, which appear to consist of primarily of mafic rocks. Our elemental map of Si using Kaguya GRS data shows that the highland areas of both near side and far side of the Moon have higher abundance of Si, and the mare regions of the near side of the Moon have the lowest Si abundance on the Moon. Our study clearly shows that there are a number of Si enriched areas compared to

  2. Jet calculus beyond leading order for the gluon sector

    SciTech Connect

    Gunion, J.F.; Kalinowski, J.

    1984-04-01

    We report results for the order-C/sub A/ /sup 2/..cap alpha../sub s/ /sup 2/ jet calculus three-, two-, and one-gluon distributions of the pure gluon singlet channel. Included is an independent calculation of the C/sub A/ /sup 2/ part of the gluon..-->..gluon inclusive distribution which has been a subject of controversy for several years. We confirm the results of Furmanski and Petronzio for scheme-independent observables.

  3. Asymptocic Freedom of Gluons in Hamiltonian Dynamics

    NASA Astrophysics Data System (ADS)

    Gómez-Rocha, María; Głazek, Stanisław D.

    2016-07-01

    We derive asymptotic freedom of gluons in terms of the renormalized SU(3) Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian {β} -function coincides with the one obtained in an earlier calculation using a different generator.

  4. Subtleties in obtaining the electrostatic energy of continuous distributions

    NASA Astrophysics Data System (ADS)

    Bezerra, M.; Souza, Reinaldo de Melo e.; Kort-Kamp, W. J. M.; Farina, C.

    2014-11-01

    The mathematical steps that generalize the expression for the electrostatic energy of a set of point charges to the corresponding expression for a continuous charge distribution involve a few subtleties that are not usually discussed in standard introductory or advanced electromagnetic textbooks. In this paper, we point out such subtleties and discuss how to deal with them in cases of volume and surface charge distributions. We also show explicitly that it is not possible to define electrostatic energy for a linear charge distribution, since this energy would be divergent. Finally, we use dimensional analysis to recover our results in a simpler and more elegant form.

  5. Significance of gluon density at soft and hard processes at LHC

    NASA Astrophysics Data System (ADS)

    Grinyuk, A. A.; Lipatov, A. V.; Lykasov, G. I.

    2015-11-01

    We study the role of the non-perturbative input to the transverse momentum dependent (TMD) gluon density in hard processes at the LHC. We derive the TMD gluon distribution from the fit of the inclusive hadron spectra measured at low transverse momenta in pp collisions at the LHC and demonstrate that the best description of these spectra for larger hadron transverse momenta can be achieved by matching the derived TMD gluon distribution with the exact solution of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation obtained at small transverse momenta outside the saturation region. A special attention is put to the phenomenological applications of presented TMD parton densities to some LHC processes, which are sensitive to the quark and gluon content of a proton.

  6. Enhanced Usage of Keys Obtained by Physical, Unconditionally Secure Distributions

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Granqvist, Claes-Göran

    2015-04-01

    Unconditionally secure physical key distribution schemes are very slow, and it is practically impossible to use a one-time-pad based cipher to guarantee unconditional security for the encryption of data because using the key bits more than once gives out statistical information, for example via the known-plain-text-attack or by utilizing known components of the protocol and language statistics. Here, we outline a protocol that reduces this speed problem and allows almost-one-time-pad based communication with an unconditionally secure physical key of finite length. The physical, unconditionally secure key is not used for data encryption but is employed in order to generate and share a new software-based key without any known-plain-text component. The software-only-based key distribution is then changed from computationally secure to unconditionally secure, because the communicated key-exchange data (algorithm parameters, one-way functions of random numbers, etc.) are encrypted in an unconditionally secure way with a one-time-pad. For practical applications, this combined physical/software key distribution based communication looks favorable compared to the software-only and physical-only key distribution based communication whenever the speed of the physical key distribution is much lower than that of the software-based key distribution. A mathematical security proof of this new scheme remains an open problem.

  7. Shining a gluon beam through quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.; Ho, Ying-Yu; Rajagopal, Krishna

    2012-06-01

    We compute the energy density radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills plasma. If it were in vacuum, this quark would radiate a beam of strongly coupled radiation whose angular distribution has been characterized and is very similar to that of synchrotron radiation produced by an electron in circular motion in electrodynamics. Here, we watch this beam of gluons getting quenched by the strongly coupled plasma. We find that a beam of gluons of momenta ˜q≫πT is attenuated rapidly, over a distance ˜q1/3(πT)-4/3 in a plasma with temperature T. As the beam propagates through the plasma at the speed of light, it sheds trailing sound waves with momenta ≲πT. Presumably these sound waves would thermalize in the plasma if they were not hit soon after their production by the next pulse of gluons from the lighthouselike rotating quark. At larger and larger q, the trailing sound wave becomes less and less prominent. The outward-going beam of gluon radiation itself shows no tendency to spread in angle or to shift toward larger wavelengths, even as it is completely attenuated. In this regard, the behavior of the beam of gluons which we analyze is reminiscent of the behavior of jets produced in heavy ion collisions at the LHC which lose a significant fraction of their energy without appreciable change in their angular distribution or their momentum distribution as they plow through the strongly coupled quark-gluon plasma produced in these collisions.

  8. A simple approximation method for obtaining the spanwise lift distribution

    NASA Technical Reports Server (NTRS)

    Schrenk, O

    1940-01-01

    The approximation method described makes possible lift-distribution computations in a few minutes. Comparison with an exact method shows satisfactory agreement. The method is of greater applicability than the exact method and includes also the important case of the wing with end plates.

  9. Obtaining an unbiased redshift distribution for submm galaxies

    NASA Astrophysics Data System (ADS)

    Ivison, Rob; Norris, Ray; Feain, Ilana; Huynh, Minh; Smail, Ian; Thomson, Alasdair

    2009-07-01

    We request 36hr with ATCA to test a new method for determining an unbiased redshift distribution for submm galaxies (SMGs) - a critical parameter capable of breaking degeneracies in galaxy evolution models. Our method is based on the expectation that dusty ULIRGs will exhibit maser activity similar to that observed in other IR-luminous AGN. As well as determining redshifts, detections will allow us to estimate the mass of the central black hole (to compare with X-ray-based estimates), to pinpoint the maser relative to the synchrotron emission, and to explore any correlation between L(FIR) and L(H2O). The key to our project is the largest deep submm survey undertaken thus far - LESS - in the Extended Chandra Deep Field South. We propose to piggyback on the Huynh et al. 5-GHz survey of ECDFS, going 2.3x deeper in two pointings centred on over-densities of bright SMGs.

  10. Properties of gluon jets

    SciTech Connect

    Sugano, K.

    1986-09-01

    The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed.

  11. On relevance of triple-gluon fusion in hadroproduction

    NASA Astrophysics Data System (ADS)

    Motyka, Leszek; Sadzikowski, Mariusz

    2015-05-01

    A contribution to hadroproduction is analyzed in which the meson production is mediated by three-gluon partonic state, with two gluons coming from the target and one gluon from the projectile. This mechanism involves double gluon density in one of the protons, hence this contribution enters at a non-leading twist. It is, however, relevant due to an enhancement factor coming from large double gluon density at small . We calculate the three-gluon contribution to hadroproduction within perturbative QCD in the -factorization framework. Results are obtained for differential -dependent cross sections for all polarizations and for the sum over the polarization components. The rescattering contribution is found to provide a significant correction to the standard leading twist cross section at the energies of the Tevatron or the LHC at moderate . We suggest production in proton-nucleus collision as a possible probe of the triple-gluon mechanism.

  12. Fully gauge-invariant maximally path-dependent gluon TMD: Coordinate representation

    NASA Astrophysics Data System (ADS)

    Cherednikov, Igor O.

    2016-02-01

    We propose an approach to obtain gauge-invariant maximally path-dependent operator definition of the gluon transverse-momentum dependent distribution function (gTMD). We demonstrate that the evolution equations for the gTMD can be derived from the shape- variation integral-differential equations formulated in the coordinate space.

  13. Gluon saturation in a saturated environment

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-07-15

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of Q{sub sA}{sup 2}, in AA compared with pA collisions.

  14. Gluon saturation in a saturated environment

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2011-07-01

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times, enhancement of QsA2, in AA compared with pA collisions.

  15. Gluon TMDs in Quarkonium Production

    NASA Astrophysics Data System (ADS)

    Signori, Andrea

    2016-04-01

    I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. η _b ) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the q_T spectrum of η _b produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log and next-to-leading order accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.

  16. Gluon TMDs in Quarkonium Production

    NASA Astrophysics Data System (ADS)

    Signori, Andrea

    2016-08-01

    I report on our investigations into the impact of (un)polarized transverse momentum dependent parton distribution functions (TMD PDFs or TMDs) for gluons at hadron colliders, especially at A Fixed Target Experiment at the LHC (AFTER@LHC). In the context of high energy proton-proton collisions, we look at final states with low mass (e.g. η _b) in order to investigate the nonperturbative part of TMD PDFs. We study the factorization theorem for the q_T spectrum of η _b produced in proton-proton collisions relying on the effective field theory approach, defining the tools to perform phenomenological investigations at next-to-next-to-leading log and next-to-leading order accuracy in the perturbation theory. We provide predictions for the unpolarized cross section and comment on the possibility of extracting nonperturbative information about the gluon content of the proton once data at low transverse momentum are available.

  17. Quarks and gluons at hadron colliders

    SciTech Connect

    Bodek, A.; CDF Collaboration

    1996-08-01

    Data from proton-antiproton collisions at high energy provide important information on constraining the quark and gluon distributions in the nucleon and place limits on quark substructure. The S asymmetry data constrains the slope of the d/u quark distributions and significantly reduces the systematic error on the extracted value of the W mass. Drell-Yan data at high invariant mass provides strong limits on quark substructure. Information on {alpha}{sub s} and the gluon distributions can be extracted from high P{sub T} jet data and direct photons.

  18. Nonperturbative gluon and ghost propagators in d = 3

    SciTech Connect

    Papavassiliou, Joannis

    2011-05-23

    We study the nonperturbative gluon and ghost propagators in d = 3 Yang-Mills, using the Schwinger-Dyson equations of the pinch technique. The use of the Schwinger mechanism leads to the dynamical generation of a gluon mass, which, in turn, gives rise to an infrared finite gluon propagator and ghost dressing function. The propagators obtained are in very good agreement with the results of SU(2) lattice simulations.

  19. Role of monopoles in a gluon plasma

    SciTech Connect

    Ratti, Claudia; Shuryak, Edward

    2009-08-01

    We study the role of magnetic monopoles at high enough temperature T>2T{sub c}, when they can be considered heavy, rare objects embedded into matter consisting mostly of the usual 'electric' quasiparticles, quarks, and gluons. We review available lattice results on monopoles at finite temperatures. Then we proceed to classical and quantum charge-monopole scattering, solving the problem of gluon-monopole scattering for the first time. The explicit calculations are performed in the framework of the Georgi-Glashow model; the results that we obtain are nevertheless quite general. Connections to QCD are carefully discussed. We find that, while the gluon-monopole scattering hardly influences thermodynamic quantities, it does produce a large transport cross section, significantly exceeding that for pQCD gluon-gluon scattering up to quite high T. Thus, in spite of their relatively small density at high T, monopoles are extremely important for quark-gluon plasma transport properties, keeping viscosity small enough for hydrodynamics to work at the LHC.

  20. Effect of photogrammetric reading error on slope-frequency distributions. [obtained from Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Wu, S. C.

    1973-01-01

    The effect of reading error on two hypothetical slope frequency distributions and two slope frequency distributions from actual lunar data in order to ensure that these errors do not cause excessive overestimates of algebraic standard deviations for the slope frequency distributions. The errors introduced are insignificant when the reading error is small and the slope length is large. A method for correcting the errors in slope frequency distributions is presented and applied to 11 distributions obtained from Apollo 15, 16, and 17 panoramic camera photographs and Apollo 16 metric camera photographs.

  1. EXPLORING THE POLARIZATION OF GLUONS IN THE NUCLEON.

    SciTech Connect

    STRATMANN,M.; VOGELSANG,W.

    2007-10-22

    We give an overview of the current status of investigations of the polarization of gluons in the nucleon. We describe some of the physics of the spin-dependent gluon parton distribution and its phenomenology in high-energy polarized hadronic scattering. We also review the recent experimental results.

  2. Gluon Evolution and Saturation Proceedings

    SciTech Connect

    McLerran, L.D.

    2010-05-26

    Almost 40 years ago, Gribov and colleagues at the Leningrad Nuclear Physics Institute developed the ideas that led to the Dokhsitzer-Gribov-Altarelli-Parisi the Baltisky-Fadin-Kuraev-Lipatov equations. These equations describe the evolution of the distributions for quarks and gluon inside a hadron to increased resolution scale of a probe or to smaller values of the fractional momentum of a hadronic constituent. I motivate and discuss the generalization required of these equations needed for high energy processes when the density of constituents is large. This leads to a theory of saturation realized by the Color Glass Condensate

  3. Dark matter searches employing asymmetric velocity distributions obtained via the Eddington approach

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Moustakidis, Ch. C.; Owen, D.

    2016-08-01

    Starting from WIMP density profiles, in the framework of the Eddington approach, we obtain the energy distribution f(E) of dark matter in our vicinity. Assuming a factorizable phase space function, f(E , L) = F(E) FL(L) , we obtain the velocity dispersions and the anisotropy parameter β in terms of the parameters describing the angular momentum dependence. By employing the derived expression f(E) we construct axially symmetric WIMP velocity distributions. The obtained distributions automatically have a velocity upper bound, as a consequence of the fact that they are associated with a gravitationally bound system, and are characterized by an anisotropy parameter β. We then show how such velocity distributions can be used in determining the event rates, including modulation, both in the standard as well directional WIMP searches.

  4. Thermalization of gluons with Bose-Einstein condensation.

    PubMed

    Xu, Zhe; Zhou, Kai; Zhuang, Pengfei; Greiner, Carsten

    2015-05-01

    We study the thermalization of gluons far from thermal equilibrium in relativistic kinetic theory. The initial distribution of gluons is assumed to resemble that in the early stage of ultrarelativistic heavy ion collisions. Only elastic scatterings in static, nonexpanding gluonic matter are considered. At first we show that the occurrence of condensation in the limit of vanishing particle mass requires a general constraint for the scattering matrix element. Then the thermalization of gluons with Bose-Einstein condensation is demonstrated in a transport calculation. We see a continuously increasing overpopulation of low energy gluons, followed by a decrease to the equilibrium distribution, when the condensation occurs. The times of the completion of the gluon condensation and of the entropy production are calculated. These times scale inversely with the energy density. PMID:26000996

  5. Multiplicity and transverse energy of produced gluon in relativistic heavy ion collision

    SciTech Connect

    Xiao Bowen

    2005-09-01

    We present a simple gluon production picture that is based on the McLerran-Venugopalan model and gluon BFKL evolution in relativistic heavy-ion collision. Results for the multiplicity and transverse energy distribution in both the central and forward rapidity regions for gluon production in early stages of heavy-ion collisions at the LHC are given. Finally, we provide a general qualitative discussion of the consequences of the forward rapidity behavior of produced gluons.

  6. Constituent gluons and the static quark potential

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff; Szczepaniak, Adam P.

    2016-04-01

    We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a truncated-basis treatment of hadronic states which include constituent gluons. As an illustration, we apply this hybrid approach to the heavy quark potential, for quark-antiquark separations up to 2.4 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of 4 times greater than the asymptotic string tension. In our approach we show that a single constituent gluon is in principle sufficient, up to 2.4 fm, to reduce this overshoot by the factor required. The static potential remains linear, although the precise value of the string tension depends on details of the Couloumb gauge ghost and gluon propagators in the infrared regime. In this connection we present new lattice results for the transverse gluon propagator in position space.

  7. Pore size distribution in porous glass: fractal dimension obtained by calorimetry

    NASA Astrophysics Data System (ADS)

    Neffati, R.; Rault, J.

    2001-05-01

    By differential Scanning Calorimetry (DSC), at low heating rate and using a technique of fractionation, we have measured the equilibrium DSC signal (heat flow) J q 0 of two families of porous glass saturated with water. The shape of the DSC peak obtained by these techniques is dependent on the sizes distribution of the pores. For porous glass with large pore size distribution, obtained by sol-gel technology, we show that in the domain of ice melting, the heat flow Jq is related to the melting temperature depression of the solvent, Δ T m , by the scaling law: J q 0˜Δ T m - (1 + D). We suggest that the exponent D is of the order of the fractal dimension of the backbone of the pore network and we discuss the influence of the variation of the melting enthalpy with the temperature on the value of this exponent. Similar D values were obtained from small angle neutron scattering and electronic energy transfer measurements on similar porous glass. The proposed scaling law is explained if one assumes that the pore size distribution is self similar. In porous glass obtained from mesomorphic copolymers, the pore size distribution is very sharp and therefore this law is not observed. One concludes that DSC, at low heating rate ( q? 2°C/min) is the most rapid and less expensive method for determining the pore distribution and the fractal exponent of a porous material.

  8. Amplitude for N-Gluon Superstring Scattering

    SciTech Connect

    Stieberger, Stephan; Taylor, Tomasz R.

    2006-11-24

    We consider scattering processes involving N gluonic massless states of open superstrings with a certain Regge slope {alpha}{sup '}. At the semiclassical level, the string world-sheet sweeps a disk and N gluons are created or annihilated at the boundary. We present exact expressions for the corresponding amplitudes, valid to all orders in {alpha}{sup '}, for the so-called maximally helicity violating configurations, with N=4, 5 and N=6. We also obtain the leading O({alpha}{sup '2}) string corrections to the zero-slope N-gluon Yang-Mills amplitudes.

  9. USING PARTIAL LEAST SQUARES REGRESSION TO OBTAIN COTTON FIBER LENGTH DISTRIBUTIONS FROM THE BEARD TESTING METHOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The beard testing method for measuring cotton fiber length is based on the fibrogram theory. However, in the instrumental implementations, the engineering complexity alters the original fiber length distribution observed by the instrument. This causes challenges in obtaining the entire original le...

  10. Rapidity evolution of gluon TMD from low to moderate x

    SciTech Connect

    Balitsky, Ian; Tarasov, A.

    2015-10-05

    In this article, we study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small $x \\ll 1$ to linear evolution at moderate $x \\sim 1$.

  11. Gluon TMD in particle production from low to moderate x

    DOE PAGESBeta

    Balitsky, I.; Tarasov, A.

    2016-06-28

    Here, we study the rapidity evolution of gluon transverse momentum dependent distributions appearing in processes of particle production and show how this evolution changes from small to moderate Bjorken x.

  12. Rapidity evolution of gluon TMD from low to moderate x

    DOE PAGESBeta

    Balitsky, Ian; Tarasov, A.

    2015-10-05

    In this article, we study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at smallmore » $$x \\ll 1$$ to linear evolution at moderate $$x \\sim 1$$.« less

  13. Gluon TMD in particle production from low to moderate x

    NASA Astrophysics Data System (ADS)

    Balitsky, I.; Tarasov, A.

    2016-06-01

    We study the rapidity evolution of gluon transverse momentum dependent distributions appearing in processes of particle production and show how this evolution changes from small to moderate Bjorken x.

  14. A new method to obtain uniform distribution of ground control points based on regional statistical information

    NASA Astrophysics Data System (ADS)

    Ma, Chao; An, Wei; Deng, Xinpu

    2015-10-01

    The Ground Control Points (GCPs) is an important source of fundamental data in geometric correction for remote sensing imagery. The quantity, accuracy and distribution of GCPs are three factors which may affect the accuracy of geometric correction. It is generally required that the distribution of GCP should be uniform, so they can fully control the accuracy of mapping regions. In this paper, we establish an objective standard of evaluating the uniformity of the GCPs' distribution based on regional statistical information (RSI), and get an optimal distribution of GCPs. This sampling method is called RSIS for short in this work. The Amounts of GCPs in different regions by equally partitioning the image in regions in different manners are counted which forms a vector called RSI vector in this work. The uniformity of GCPs' distribution can be evaluated by a mathematical quantity of the RSI vector. An optimal distribution of GCPs is obtained by searching the RSI vector with the minimum mathematical quantity. In this paper, the simulation annealing is employed to search the optimal distribution of GCPs that have the minimum mathematical quantity of the RSI vector. Experiments are carried out to test the method proposed in this paper, and sampling designs compared are simple random sampling and universal kriging model-based sampling. The experiments indicate that this method is highly recommended as new GCPs sampling design method for geometric correction of remotely sensed imagery.

  15. Gluon density in nuclei

    SciTech Connect

    Ayala, A.L.; Ducati, M.B.G.; Levin, E.M.

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  16. On modified finite difference method to obtain the electron energy distribution functions in Langmuir probes

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Ju; Choi, Hyeok; Kim, Jae-Hyun; Lee, Se-Hun; Yoo, Tae-Ho; Chung, Chin-Wook

    2016-06-01

    A modified central difference method (MCDM) is proposed to obtain the electron energy distribution functions (EEDFs) in single Langmuir probes. Numerical calculation of the EEDF with MCDM is simple and has less noise. This method provides the second derivatives at a given point as the weighted average of second order central difference derivatives calculated at different voltage intervals, weighting each by the square of the interval. In this paper, the EEDFs obtained from MCDM are compared to those calculated via the averaged central difference method. It is found that MCDM effectively suppresses the noises in the EEDF, while the same number of points are used to calculate of the second derivative.

  17. Quantitative Nanostructure Characterization Using Atomic Pair Distribution Functions Obtained From Laboratory Electron Microscopes

    SciTech Connect

    Abeykoon M.; Billinge S.; Malliakas, C.D.; Juhas, P.; Bozin, E.S.; Kanatzidis, M.G.

    2012-05-01

    Quantitatively reliable atomic pair distribution functions (PDFs) have been obtained from nanomaterials in a straightforward way from a standard laboratory transmission electron microscope (TEM). The approach looks very promising for making electron derived PDFs (ePDFs) a routine step in the characterization of nanomaterials because of the ubiquity of such TEMs in chemistry and materials laboratories. No special attachments such as energy filters were required on the microscope. The methodology for obtaining the ePDFs is described as well as some opportunities and limitations of the method.

  18. Neutron angular distribution in a plasma focus obtained using nuclear track detectors.

    PubMed

    Castillo-Mejía, F; Herrera, J J E; Rangel, J; Golzarri, J I; Espinosa, G

    2002-01-01

    The dense plasma focus (DPF) is a coaxial plasma gun in which a high-density, high-temperature plasma is obtained in a focused column for a few nanoseconds. When the filling gas is deuterium, neutrons can be obtained from fusion reactions. These are partially due to a beam of deuterons which are accelerated against the background hot plasma by large electric fields originating from plasma instabilities. Due to a beam-target effect, the angular distribution of the neutron emission is anisotropic, peaked in the forward direction along the axis of the gun. The purpose of this work is to illustrate the use of CR-39 nuclear track detectors as a diagnostic tool in the determination of the time-integrated neutron angular distribution. For the case studied in this work, neutron emission is found to have a 70% contribution from isotropic radiation and a 30% contribution from anisotropic radiation. PMID:12382811

  19. The cool potential of gluons

    NASA Astrophysics Data System (ADS)

    Peshier*, André; Giovannoni, Dino

    2016-01-01

    We put forward the idea that the quark-gluon plasma might exist way below the usual confinement temperature Tc. Our argument rests on the possibility that the plasma produced in heavy-ion collisions could reach a transient quasi-equilibrium with ‘over-occupied’ gluon density, as advocated by Blaizot et al. Taking further into account that gluons acquire an effective mass by interaction effects, they can have a positive chemical potential and therefore behave similarly to non-relativistic bosons. Relevant properties of this dense state of interacting gluons, which we dub serried glue, can then be inferred on rather general grounds from Maxwell's relation.

  20. Evidence for polarization of gluons in the proton.

    PubMed

    de Florian, Daniel; Sassot, Rodolfo; Stratmann, Marco; Vogelsang, Werner

    2014-07-01

    We discuss the impact of recent high-statistics Relativistic Heavy Ion Collider data on the determination of the gluon polarization in the proton in the context of a global QCD analysis of polarized parton distributions. We find evidence for a nonvanishing polarization of gluons in the region of momentum fraction and at the scales mostly probed by the data. Although information from low momentum fractions is presently lacking, this finding is suggestive of a significant contribution of gluon spin to the proton spin, thereby limiting the amount of orbital angular momentum required to balance the proton spin budget. PMID:25032920

  1. Diphoton excess at 750 GeV: gluon-gluon fusion or quark-antiquark annihilation?

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Zhang, Hao; Zhu, Hua Xing

    2016-06-01

    Recently, ATLAS and CMS collaborations reported an excess in the measurement of diphoton events, which can be explained by a new resonance with a mass around 750 GeV. In this work, we explored the possibility of identifying if the hypothetical new resonance is produced through gluon-gluon fusion or quark-antiquark annihilation, or tagging the beam. Three different observables for beam tagging, namely the rapidity and transverse-momentum distribution of the diphoton, and one tagged bottom-jet cross section, are proposed. Combining the information gained from these observables, a clear distinction of the production mechanism for the diphoton resonance is promising.

  2. Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Mcbride, Kathleen M.

    1995-01-01

    Among the hazards that must be negotiated by lunar-landing spacecraft are blocks on the surface of the Moon. Unfortunately, few data exist that can be used to evaluate the threat posed by such blocks to landing spacecraft. Perhaps the best information is that obtained from Surveyor photographs, but those data do not extend to the dimensions of the large blocks that would pose the greatest hazards. Block distributions in the vicinities of the Surveyor 1, 3, 6, and 7 sites have been determined from Lunar Orbiter photography and are presented here. Only large (i.e., greater than or equal to 2.5 m) blocks are measurable in these pictures, resulting in a size gap between the Surveyor and Lunar Orbiter distributions. Nevertheless, the orbital data are self-consistent, a claim supported by the similarity in behavior between the subsets of data from the Surveyor 1, 3, and 6 sites and by the good agreement in position (if not slopes) between the data obtained from the Surveyor 3 photography and those derived from the Lunar Orbiter photographs. Confidence in the results is also justified by the well-behaved distribution of large blocks at the surveyor site. Comparisons between the Surveyor distributions and those derived from the orbital photography permit these observations: (1) in all cases but that for Surveyor 3, the density of large blocks is overestimated by extrapolation of the Surveyor-derived trends; (2) the slopes of the Surveyor-derived distributions are consistently lower than those determined for the large blocks; and (3) these apparent disagreements could be mitigated if the overall shapes of the cumulative lunar block populations were nonlinear, allowing for different slopes over different size intervals. The relatively large gaps between the Surveyor-derived and Orbiter-derived data sets, however, do not permit a determination of those shapes.

  3. Recent COMPASS results on the gluon polarization

    SciTech Connect

    Quintans, Catarina

    2009-03-23

    The spin structure of the nucleon is studied in the COMPASS experiment at CERN/SPS, from the collisions of 160 GeV polarized muon beam with a {sup 6}LiD target. The data collected from 2002 to 2006 provide an accurate measurement of longitudinal double spin cross-section asymmetries. The latest results on the gluon polarization, accessed from two independent analyses of photon-gluon fusion selected events, are presented. The study of the open-charm production allows to extract the gluon polarization (in LO QCD) from the measurement of the asymmetry, the value obtained being {delta}g/g -0.49{+-}0.27(stat){+-}0.11(syst), at an average x{sub g} 0.11{sub -0.05}{sup +0.11} and a scale <{mu}{sup 2}> = 13(GeV/c){sup 2}. An alternative and independent way to study the gluon polarization, by studying the high transverse momentum hadron pairs produced, leads to a value {delta}g/g 0.08{+-}0.10(stat){+-}0.05(syst), at x{sub g}{sup a{nu}} 0.082{sub -0.027}{sup +0.041} and <{mu}{sup 2}> = 3(GeV/c){sup 2}.

  4. Quark Gluon Plasma

    SciTech Connect

    Lincoln, Don

    2015-05-07

    Matter is malleable and can change its properties with temperature. This is most familiar when comparing ice, liquid water and steam, which are all different forms of the same thing. However beyond the usual states of matter, physicists can explore other states, both much colder and hotter. In this video, Fermilab’s Dr. Don Lincoln explains the hottest known state of matter – a state that is so hot that protons and neutrons from the center of atoms can literally melt. This form of matter is called a quark gluon plasma and it is an important research topic being pursued at the LHC.

  5. Two bootstrapping routines for obtaining imprecision estimates for nonparametric parameter distributions in nonlinear mixed effects models.

    PubMed

    Baverel, Paul G; Savic, Radojka M; Karlsson, Mats O

    2011-02-01

    When parameter estimates are used in predictions or decisions, it is important to consider the magnitude of imprecision associated with the estimation. Such imprecision estimates are, however, presently lacking for nonparametric algorithms intended for nonlinear mixed effects models. The objective of this study was to develop resampling-based methods for estimating imprecision in nonparametric distribution (NPD) estimates obtained in NONMEM. A one-compartment PK model was used to simulate datasets for which the random effect of clearance conformed to a (i) normal (ii) bimodal and (iii) heavy-tailed underlying distributional shapes. Re-estimation was conducted assuming normality under FOCE, and NPDs were estimated sequential to this step. Imprecision in the NPD was then estimated by means of two different resampling procedures. The first (full) method relies on bootstrap sampling from the raw data and a re-estimation of both the preceding parametric (FOCE) and the nonparametric step. The second (simplified) method relies on bootstrap sampling of individual nonparametric probability distributions. Nonparametric 95% confidence intervals (95% CIs) were obtained and mean errors (MEs) of the 95% CI width were computed. Standard errors (SEs) of nonparametric population estimates were obtained using the simplified method and evaluated through 100 stochastic simulations followed by estimations (SSEs). Both methods were successfully implemented to provide imprecision estimates for NPDs. The imprecision estimates adequately reflected the reference imprecision in all distributional cases and regardless of the numbers of individuals in the original data. Relative MEs of the 95% CI width of CL marginal density when original data contained 200 individuals were equal to: (i) -22 and -12%, (ii) -22 and -9%, (iii) -13 and -5% for the full and simplified (n = 100), respectively. SEs derived from the simplified method were consistent with the ones obtained from 100 SSEs. In conclusion

  6. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  7. Distribution of Snow and Maximum Snow Water Equivalent Obtained by LANDSAT Data and Degree Day Method

    NASA Technical Reports Server (NTRS)

    Takeda, K.; Ochiai, H.; Takeuchi, S.

    1985-01-01

    Maximum snow water equivalence and snowcover distribution are estimated using several LANDSAT data taken in snowmelting season over a four year period. The test site is Okutadami-gawa Basin located in the central position of Tohoku-Kanto-Chubu District. The year to year normalization for snowmelt volume computation on the snow line is conducted by year to year correction of degree days using the snowcover percentage within the test basin obtained from LANDSAT data. The maximum snow water equivalent map in the test basin is generated based on the normalized snowmelt volume on the snow line extracted from four LANDSAT data taken in a different year. The snowcover distribution on an arbitrary day in snowmelting of 1982 is estimated from the maximum snow water equivalent map. The estimated snowcover is compared with the snowcover area extracted from NOAA-AVHRR data taken on the same day. The applicability of the snow estimation using LANDSAT data is discussed.

  8. Schwinger-Dyson Equations and Dynamical gluon mass generation

    SciTech Connect

    Aguilar, A.C.; Natale, A.A.

    2004-12-02

    We obtain a solution for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution.

  9. Obtaining the bidirectional transmittance distribution function of isotropically scattering materials using an integrating sphere

    NASA Astrophysics Data System (ADS)

    Jonsson, Jacob C.; Brandén, Henrik

    2007-09-01

    This paper demonstrates a method to determine the bidirectional transmittance distribution function (BTDF) using an integrating sphere. Information about the sample's angle-dependent scattering is obtained by making transmittance measurements with the sample at different distances from the integrating sphere. Knowledge about the illuminated area of the sample and the geometry of the sphere port in combination with the measured data combines to a system of equations that includes the angle-dependent transmittance. The resulting system of equations is an ill-posed problem which rarely gives a physical solution. A solvable system is obtained by using Tikhonov regularization on the ill-posed problem. The solution to this system can then be used to obtain the BTDF. Four bulk-scattering samples were characterised using two goniophotometers and the described method to verify the validity of the new method. The agreement shown is excellent for the more diffuse samples. The solution to the low-scattering samples contains unphysical oscillations, but still gives the correct shape of the solution. The origin of the oscillations and why they are more prominent in low-scattering samples are discussed.

  10. Quarks and gluons in hadrons and nuclei

    SciTech Connect

    Close, F.E. Tennessee Univ., Knoxville, TN )

    1989-12-01

    These lectures discuss the particle-nuclear interface -- a general introduction to the ideas and application of colored quarks in nuclear physics, color, the Pauli principle, and spin flavor correlations -- this lecture shows how the magnetic moments of hadrons relate to the underlying color degree of freedom, and the proton's spin -- a quark model perspective. This lecture reviews recent excitement which has led some to claim that in deep inelastic polarized lepton scattering very little of the spin of a polarized proton is due to its quarks. This lecture discusses the distribution functions of quarks and gluons in nucleons and nuclei, and how knowledge of these is necessary before some quark-gluon plasma searches can be analyzed. 56 refs., 2 figs.

  11. Quark and Gluon Tagging at the LHC

    NASA Astrophysics Data System (ADS)

    Gallicchio, Jason; Schwartz, Matthew D.

    2011-10-01

    Being able to distinguish light-quark jets from gluon jets on an event-by-event basis could significantly enhance the reach for many new physics searches at the Large Hadron Collider. Through an exhaustive search of existing and novel jet substructure observables, we find that a multivariate approach can filter out over 95% of the gluon jets while keeping more than half of the light-quark jets. Moreover, a combination of two simple variables, the charge track multiplicity and the pT-weighted linear radial moment (girth), can achieve similar results. Our study is only Monte Carlo based, so other observables constructed using different jet sizes and parameters are used to highlight areas that deserve further theoretical and experimental scrutiny. Additional information, including distributions of around 10 000 variables, can be found at http://jets.physics.harvard.edu/qvg/.

  12. A Numerical Method for Obtaining Monoenergetic Neutron Flux Distributions and Transmissions in Multiple-Region Slabs

    NASA Technical Reports Server (NTRS)

    Schneider, Harold

    1959-01-01

    This method is investigated for semi-infinite multiple-slab configurations of arbitrary width, composition, and source distribution. Isotropic scattering in the laboratory system is assumed. Isotropic scattering implies that the fraction of neutrons scattered in the i(sup th) volume element or subregion that will make their next collision in the j(sup th) volume element or subregion is the same for all collisions. These so-called "transfer probabilities" between subregions are calculated and used to obtain successive-collision densities from which the flux and transmission probabilities directly follow. For a thick slab with little or no absorption, a successive-collisions technique proves impractical because an unreasonably large number of collisions must be followed in order to obtain the flux. Here the appropriate integral equation is converted into a set of linear simultaneous algebraic equations that are solved for the average total flux in each subregion. When ordinary diffusion theory applies with satisfactory precision in a portion of the multiple-slab configuration, the problem is solved by ordinary diffusion theory, but the flux is plotted only in the region of validity. The angular distribution of neutrons entering the remaining portion is determined from the known diffusion flux and the remaining region is solved by higher order theory. Several procedures for applying the numerical method are presented and discussed. To illustrate the calculational procedure, a symmetrical slab ia vacuum is worked by the numerical, Monte Carlo, and P(sub 3) spherical harmonics methods. In addition, an unsymmetrical double-slab problem is solved by the numerical and Monte Carlo methods. The numerical approach proved faster and more accurate in these examples. Adaptation of the method to anisotropic scattering in slabs is indicated, although no example is included in this paper.

  13. Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Mcbride, Kathleen M.

    1994-01-01

    Enlargements of Lunar-Orbiter photography were used in conjunction with a digitizing tablet to collect the locations and dimensions of blocks surrounding the Surveyor 1, 3, 6, and 7 landing sites. Data were reduced to the location and the major axis of the visible portion of each block. Shadows sometimes made it difficult to assess whether the visible major axis corresponded with the actual principal dimension. These data were then correlated with the locations of major craters in the study areas, thus subdividing the data set into blocks obviously associated with craters and those in intercrater areas. A block was arbitrarily defined to be associated with a crater when its location was within 1.1 crater radii of the crater's center. Since this study was commissioned for the ultimate purpose of determining hazards to landing spacecraft, such a definition was deemed appropriate in defining block-related hazards associated with craters. Size distributions of smaller fragments as determined from Surveyor photography were obtained as measurements from graphical data. Basic comparisons were performed through use of cumulative frequency distributions identical to those applied to studies of crater-count data.

  14. Obtaining the Bidirectional Transfer Distribution Function ofIsotropically Scattering Materials Using an Integrating Sphere

    SciTech Connect

    Jonsson, Jacob C.; Branden, Henrik

    2006-10-19

    This paper demonstrates a method to determine thebidirectional transfer distribution function (BTDF) using an integratingsphere. Information about the sample's angle dependent scattering isobtained by making transmittance measurements with the sample atdifferent distances from the integrating sphere. Knowledge about theilluminated area of the sample and the geometry of the sphere port incombination with the measured data combines to an system of equationsthat includes the angle dependent transmittance. The resulting system ofequations is an ill-posed problem which rarely gives a physical solution.A solvable system is obtained by using Tikhonov regularization on theill-posed problem. The solution to this system can then be used to obtainthe BTDF. Four bulk-scattering samples were characterised using both twogoniophotometers and the described method to verify the validity of thenew method. The agreement shown is great for the more diffuse samples.The solution to the low-scattering samples contains unphysicaloscillations, butstill gives the correct shape of the solution. Theorigin of the oscillations and why they are more prominent inlow-scattering samples are discussed.

  15. A study of coherence of soft gluons in hadron jets

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Clarke, P. E. L.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D. J. P.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Harrus, I.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Humbert, R.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lehto, M. H.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McNutt, J. R.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Singh, P.; Siroli, G. P.; Skuia, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den plas, D.; VanDalen, G. J.; Vasseur, G.; Virtue, C. J.; von der Schmitt, H.; von Krogh, J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wells, P. S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; OPAL Collaboration

    1990-09-01

    We study the inclusive momentum distribution of charged particles in multihadronic events produced in e +e - annihilations at ECM∼ M(Z 0). We find agreement with the analytical formulae for gluon production that include the phenomena of soft gluon interference. Using data from CM energies between 14 and 91 GeV, we study the dependence of the inclusive momentum distribution on the centre of momentum energy. We find that the analytical formulae describe the data over the entire energy range. Both the momentum distribution at a fixed energy and the change with energy are described by QCD shower Monte Carlo's which include either coherent gluon branchings or string fragmentation. Simple incoherent models with independent fragmentation fail to reproduce the energy dependence and momentum spectra.

  16. Exact kinematics in the small-x evolution of the color dipole and gluon cascade

    SciTech Connect

    Motyka, Leszek; Stasto, Anna M.

    2009-04-15

    The problem of kinematic effects in gluon and color dipole cascades is addressed in the large N{sub c} limit of SU(N{sub c}) Yang-Mills theory. We investigate the tree-level multigluon components of the gluon light-cone wave functions in the light-cone gauge keeping the exact kinematics of the gluon emissions. We focus on the components with all helicities identical to the helicity of the incoming gluon. The recurrence relations for the gluon wave functions are derived. In the case when the virtuality of the incoming gluon is neglected the exact form of the multigluon wave function is obtained. Furthermore, we propose an approximate scheme to treat the kinematic effects in the color dipole evolution kernel. The new kernel entangles longitudinal and transverse degrees of freedom and leads to a reduced diffusion in the impact parameter. When evaluated in the next-to-leading logarithmic (NLL) accuracy, the kernel reproduces the correct form of the double logarithmic terms of the dipole size ratios present in the exact NLL dipole kernel. Finally, we analyze the scattering of the incoming gluon light-cone components off a gluon target and the fragmentation of the scattered state into the final state. The equivalence of the resulting amplitudes and the maximally helicity-violating amplitudes is demonstrated in the special case when the target gluon is far in rapidity from the evolved gluon wave function.

  17. T-Odd Gluon TMDs Inside a Transversely Polarized Hadron

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.

    2016-03-01

    We consider the relevant gluon transverse momentum dependent distributions (TMDs) in the spin asymmetries generated by the scattering off transversely polarized hadrons. At large transverse momentum they can be expressed in terms of different collinear distributions, via perturbatively calculable Wilson coefficients. We calculate these coefficients at next-to-leading order, and show that when the small-x limit is taken only one independent function remains for dipole-type gluon TMDs: the so-called spin-dependent odderon. This universal origin for the spin asymmetries is of importance to better understand hadron substructure.

  18. A simple approximate method for obtaining spanwise lift distributions over swept wings

    NASA Technical Reports Server (NTRS)

    Diederich, Franklin W

    1948-01-01

    It is shown how Schrenk's empirical method of estimating the lift distribution over straight wings can be adapted to swept wings by replacing the elliptical distribution by a new "ideal" distribution which varies with sweep.The application of the method is discussed in detail and several comparisons are made to show the agreement of the proposed method with more rigorous ones. It is shown how first-order compressibility corrections applicable to subcritical speeds may be included in this method.

  19. One gluon, two gluon: multigluon production via high energy evolution

    NASA Astrophysics Data System (ADS)

    Kovner, Alex; Lublinsky, Michael

    2006-11-01

    We develop an approach for calculating the inclusive multigluon production within the JIMWLK high energy evolution. We give a formal expression of multigluon cross section in terms of a generating functional for arbitrary number of gluons n. In the dipole limit the expression simplifies dramatically. We recover the previously known results for single and double gluon inclusive cross section and generalize those for arbitrary multigluon amplitude in terms of Feynman diagramms of Pomeron - like objects coupled to external rapidity dependent field s(η). We confirm the conclusion that the AGK cutting rules in general are violated in multigluon production. However we present an argument to the effect that for doubly inclusive cross section the AGK diagramms give the leading contribution at high energy, while genuine violation only occurs for triple and higher inclusive gluon production. We discuss some general properties of our expressions and suggest a line of argument to simplify the approach further.

  20. Draft Genome Sequences of Six Mycobacterium immunogenum, Obtained from a Chloraminated Drinking Water Distribution System Simulator

    EPA Science Inventory

    We report the draft genome sequences of six Mycobacterium immunogenum isolated from a chloraminated drinking water distribution system simulator subjected to changes in operational parameters. M. immunogenum, a rapidly growing mycobacteria previously reported as the cause of hyp...

  1. Particle Size Distributions Obtained Through Unfolding 2D Sections: Towards Accurate Distributions of Nebular Solids in the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Christoffersen, P. A.; Simon, Justin I.; Ross, D. K.; Friedrich, J. M.; Cuzzi, J. N.

    2012-01-01

    Size distributions of nebular solids in chondrites suggest an efficient sorting of these early forming objects within the protoplanetary disk. The effect of this sorting has been documented by investigations of modal abundances of CAIs (e.g., [1-4]) and chondrules (e.g., [5-8]). Evidence for aerodynamic sorting in the disk is largely qualitative, and needs to be carefully assessed. It may be a way of concentrating these materials into planetesimal-mass clumps, perhaps 100 fs of ka after they formed. A key parameter is size/density distributions of particles (i.e., chondrules, CAIs, and metal grains), and in particular, whether the radius-density product (rxp) is a better metric for defining the distribution than r alone [9]. There is no consensus between r versus rxp based models. Here we report our initial tests and preliminary results, which when expanded will be used to test the accuracy of current dynamical disk models.

  2. Approaches of using the beard testing method to obtain complete length distributions of the original samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fiber testing instruments such as HVI can rapidly measure fiber length by testing a tapered fiber beard of the sample. But these instruments that use the beard testing method only report a limited number of fiber length parameters instead of the complete length distribution that is important fo...

  3. Analysis of the spatial distribution of prostate cancer obtained from histopathological images

    NASA Astrophysics Data System (ADS)

    Diaz, Kristians; Castaneda, Benjamin; Montero, Maria Luisa; Yao, Jorge; Joseph, Jean; Rubens, Deborah; Parker, Kevin J.

    2013-03-01

    Understanding the spatial distribution of prostate cancer and how it changes according to prostate specific antigen (PSA) values, Gleason score, and other clinical parameters may help comprehend the disease and increase the overall success rate of biopsies. This work aims to build 3D spatial distributions of prostate cancer and examine the extent and location of cancer as a function of independent clinical parameters. The border of the gland and cancerous regions from wholemount histopathological images are used to reconstruct 3D models showing the localization of tumor. This process utilizes color segmentation and interpolation based on mathematical morphological distance. 58 glands are deformed into one prostate atlas using a combination of rigid, affine, and b-spline deformable registration techniques. Spatial distribution is developed by counting the number of occurrences in a given position in 3D space from each registered prostate cancer. Finally a difference between proportions is used to compare different spatial distributions. Results show that prostate cancer has a significant difference (SD) in the right zone of the prostate between populations with PSA greater and less than 5ng/ml. Age does not have any impact in the spatial distribution of the disease. Positive and negative capsule-penetrated cases show a SD in the right posterior zone. There is SD in almost all the glands between cases with tumors larger and smaller than 10% of the whole prostate. A larger database is needed to improve the statistical validity of the test. Finally, information from whole-mount histopathological images may provide better insight into prostate cancer.

  4. The evolution of the small x gluon TMD

    NASA Astrophysics Data System (ADS)

    Zhou, Jian

    2016-06-01

    We study the evolution of the small x gluon transverse momentum dependent (TMD) distribution in the dilute limit. The calculation has been carried out in the Ji-Ma-Yuan scheme using a simple quark target model. As expected, we find that the resulting small x gluon TMD simultaneously satisfies both the Collins-Soper (CS) evolution equation and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution equation. We thus confirmed the earlier finding that the high energy factorization (HEF) and the TMD factorization should be jointly employed to resum the different type large logarithms in a process where three relevant scales are well separated.

  5. Quark and Gluon Orbital Angular Momentum: Where Are We?

    NASA Astrophysics Data System (ADS)

    Lorcé, Cédric; Liu, Keh-Fei

    2016-06-01

    The orbital angular momentum of quarks and gluons contributes significantly to the proton spin budget and attracted a lot of attention in the recent years, both theoretically and experimentally. We summarize the various definitions of parton orbital angular momentum together with their relations with parton distributions functions. In particular, we highlight current theoretical puzzles and give some prospects.

  6. Antiangular Ordering of Gluon Radiation in QCD Media

    SciTech Connect

    Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2011-03-25

    We investigate angular and energy distributions of medium-induced gluon emission off a quark-antiquark antenna in the framework of perturbative QCD as an attempt toward understanding, from first principles, jet evolution inside the quark-gluon plasma. In-medium color coherence between emitters, neglected in all previous calculations, leads to a novel mechanism of soft-gluon radiation. The structure of the corresponding spectrum, in contrast with known medium-induced radiation, i.e., off a single emitter, retains some properties of the vacuum case; in particular, it exhibits a soft divergence. However, as opposed to the vacuum, the collinear singularity is regulated by the pair opening angle, leading to a strict angular separation between vacuum and medium-induced radiation, denoted as antiangular ordering. We comment on the possible consequences of this new contribution for jet observables in heavy-ion collisions.

  7. Gluon polarization in the proton

    SciTech Connect

    Bass, Steven D.; Casey, Andrew; Thomas, Anthony W.

    2011-03-15

    We combine heavy-quark renormalization group arguments with our understanding of the nucleon's wave function to deduce a bound on the gluon polarization {Delta}g in the proton. The bound is consistent with the values extracted from spin experiments at COMPASS and RHIC.

  8. Gluon polarization in the proton: Constraints at low x from the measurement of the double longitudinal spin asymmetry for forward-rapidity hadrons with the PHENIX detector at RHIC

    NASA Astrophysics Data System (ADS)

    McKinney, Cameron Palmer

    In the 1980s, polarized deep inelastic lepton-nucleon scattering experiments revealed that only about a third of the proton's spin of ½ h is carried by the quarks and antiquarks, leaving physicists with the puzzle of how to account for the remaining spin. As gluons carry roughly 50% of the proton's momentum, it seemed most logical to look to the gluon spin as another significant contributor. However, lepton-nucleon scattering experiments only access the gluon helicity distribution, Delta g, through effects on the quark distributions via scaling violations. Constraining Deltag through scaling violations requires experiments that together cover a large range of Q 2. Such experiments had been carried out with unpolarized beams, leaving g(x) (the unpolarized gluon distribution) relatively well-known, but the polarized experiments have only thus far provided weak constraints on Deltag in a limited momentum fraction range. With the commissioning in 2000 of the Relativistic Heavy Ion Collider, the first polarized proton-proton (pp) collider, and the first polarized pp running in 2002, the gluon distributions could be accessed directly by studying quark-gluon and gluon-gluon interactions. In 2009, data from measurements of double longitudinal spin asymmetries, ALL, at the STAR and PHENIX experiments through 2006 were included in a QCD global analysis performed by Daniel de Florian, Rodolfo Sassot, Marco Stratmann, and Werner Vogelsang (DSSV), yielding the first direct constraints on the gluon helicity. The DSSV group found that the contribution of the gluon spin to the proton spin was consistent with zero, but the data provided by PHENIX and STAR was all at mid-rapidity, meaning Delta g was constrained by data only a range in x from 0.05 to 0.2, leaving out helicity contributions from the huge number of low- x gluons. A more recent analysis by DSSV from 2014 including RHIC data through 2009 for the first time points to significant gluon polarization at intermediate

  9. The Radial Distribution Function (RDF) of Amorphous Selenium Obtained through the Vacuum Evaporator

    SciTech Connect

    Guda, Bardhyl; Dede, Marie

    2010-01-21

    After the amorphous selenium obtained through the vacuum evaporator, the relevant diffraction intensity is taken and its processing is made. Further on the interferential function is calculated and the radial density function is defined. For determining these functions are used two methods, which were compared with each other and finally are received results for amorphous selenium RDF.

  10. Distribution of aflatoxin M1 in cheese obtained from milk artificially contaminated.

    PubMed

    López, C; Ramos, L; Ramadán, S; Bulacio, L; Perez, J

    2001-02-28

    Small-scale manufacture of cheese using artificially AFM1 contaminated milk as raw material to study the distribution of such toxin both in whey and in cheese, was carried out. Whole milk with undetectable levels of AFM1 was used. The toxin was added in concentration that varied from 1.7 to 2.0 microg/l of milk. After the home-made production of cheese, the concentration of AFM1 was determined both in whey and in cheese, using the enzymatic immunoassay technique. The greatest proportion, 60%, was detected in whey while 40% AFM1 remained in cheese. PMID:11252507

  11. The gift of life. Ethical problems and policies in obtaining and distributing organs for transplantation.

    PubMed

    Childress, J F

    1986-01-01

    The supply of organs and tissues is inadequate to meet the need and demand for transplantation. The article argues for an effective and efficient system for obtaining cadaveric organs that can reduce and perhaps even eliminate scarcity, without violating the principles of justice and respect for persons. The article also examines policies and problems regarding living donors, and analyzes some issues in macroallocation and microallocation. PMID:3331305

  12. On effects of multiple gluons in J/ψ hadroproduction

    SciTech Connect

    Motyka, Leszek; Sadzikowski, Mariusz

    2015-04-10

    The three-gluon contribution to J/ψ hadroproduction is calculated within perturbative QCD in the k{sub T}-factorization framework. This mechanism involves double gluon density and enters at a non-leading twist, but it is enhanced at large energies due to large double gluon density at small x. We obtain results for differential p{sub T}-dependent cross-sections for all J/ψ polarisations. The rescattering contribution is found to provide a significant correction to the standard leading twist cross-section at the energies of the Tevatron or the LHC at moderate p{sub T}. We also discuss a possible contribution of the rescattering correction to the anti-shadowing effect for J/ψ production in proton - nucleus collisions.

  13. Worldline calculation of the three-gluon vertex

    SciTech Connect

    Ahmadiniaz, N.; Schubert, C.

    2012-10-23

    The three-gluon vertex is a basic object of interest in nonabelian gauge theory. At the one-loop level, it has been calculated and analyzed by a number of authors. Here we use the worldline formalism to unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an extremely compact representation in terms of field strength tensors. We verify its equivalence with previously obtained representations, and explain the relation of its structure to the low-energy effective action. The sum rule found by Binger and Brodsky for the scalar, spinor and gluon loop contributions in the present approach relates to worldline supersymmetry.

  14. Solar wind acceleration obtained from kinetic models based on electron velocity distribution functions with suprathermal particles

    NASA Astrophysics Data System (ADS)

    Pierrard, V.; Pieters, M.; Lazar, M.; Voitenko, Y.; Lamy, H.; Echim, M.

    2014-12-01

    Astrophysical and space plasmas are commonly found to be out ofthermal equilibrium, i.e., the velocity distribution functions (VDF)of plasma particles cannot be described well enough by Maxwelliandistribution functions. The suprathermal populations are ubiquitousenhancing the high-energy tail of the distribution. A kinetic model has been developed to successfullydescribe such plasmas with tails decreasing as a power law of thevelocity. In the present work, we show that a natural heating ofsolar and stellar coronas automatically appears when an enhancedpopulation of suprathermal particles is present at low altitude inthe solar (or stellar) atmosphere. This is true not only forelectrons and protons, but also for the minor ions which exhibit atemperature increase proportional to their mass. Moreover,suprathermal electrons contribute to the acceleration of stellarwinds to high bulk velocities when Coulomb collisions are neglected.These results are illustrated by using a global model of the solarcorona and solar wind based on VDF with suprathermal tails for thedifferent particle species. The energetic particles are non-collisional (without Coulomb collisions) even when thermalparticles are submitted to collisions. In the presence of long-rangecorrelations supplied by the fields and plasma instabilities,turbulence can play a role in the generation of such suprathermaltails. Solar wind observations are used as boundary conditions to determine the VDF in the other regions of the heliosphere. Consequences of suprathermal particles are also illustratedfor other space plasmas like the plasmasphere and the polar wind ofthe Earth and other planets.

  15. Shadowing of gluons in perturbative QCD: A comparison of different models

    SciTech Connect

    Jalilian-Marian, Jamal; Wang, Xin-Nian

    2001-05-01

    We investigate the different perturbative QCD-based models for nuclear shadowing of gluons. We show that, in the kinematic region appropriate to the BNL relativistic heavy ion collider experiment, all models give similar estimates for the magnitude of gluon shadowing. At scales relevant to CERN large hadron collider (LHC), there is a sizable difference between the predictions of the different models. However, the uncertainties in gluon shadowing coming from a different parametrization of the gluon distribution in nucleons, are larger than those due to different perturbative QCD models of gluon shadowing. We also investigate the effect of initial nonperturbative shadowing on the magnitude of perturbative shadowing and show that the magnitudes of perturbative and nonperturbative shadowing are comparable at RHIC but perturbative shadowing dominates over nonperturbative shadowing at smaller values of x reached at LHC.

  16. LPM Interference and Cherenkov-like Gluon Bremsstrahlung in DenseMatter

    SciTech Connect

    Majumder, Abhijit; Wang, Xin-Nian

    2005-07-26

    Gluon bremsstrahlung induced by multiple parton scattering in a finite dense medium has a unique angular distribution with respect to the initial parton direction. A dead-cone structure with an opening angle; theta2{sub 0}; approx 2(1-z)/(zLE) for gluons with fractional energy z arises from the Landau-Pomeran chuck-Migdal (LPM) interference. In a medium where the gluon's dielectric constant is; epsilon>1, the LPM interference pattern is shown to become Cherenkov-like with an increased opening angle determined by the dielectric constant$/cos2/theta{sub c}=z+(1-z)//epsilon$. For a large dielectric constant/epsilon; gg 1+2/z2LE, the corresponding total radiative parton energy loss is about twice that from normal gluon bremsstrahlung. Implications of this Cherenkov-like gluon bremsstrahlung to the jet correlation pattern in high-energy heavy-ion collisions is discussed.

  17. Gluon transverse momenta and charm quark-antiquark pair production in p-p collisions at the Fermilab Tevatron

    SciTech Connect

    Luszczak, M.; Szczurek, A.

    2006-03-01

    We discuss and compare different approaches to include gluon transverse momenta for heavy quark-antiquark pair production. The correlations in azimuthal angle and in the heavy quark, heavy antiquark transverse momenta are studied in detail. The results are illustrated with the help of different unintegrated gluon distribution functions (UGDF) from the literature. We compare results obtained with on-shell and off-shell matrix elements and kinematics and quantify where these effects are negligible and where they are essential. We concentrate on the region of asymmetric transverse momenta of charm quark and charm antiquark. Most of UGDFs lead in this corner of the phase space to almost full decorrelation in the azimuthal angle. We propose correlation observables to be best suited in order to test the existing models of UGDFs.

  18. Methods for obtaining true particle size distributions from cross section measurements

    SciTech Connect

    Lord, Kristina Alyse

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a plane section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.

  19. Critical Evaluation of Particle Size Distribution Models Using Soil Data Obtained with a Laser Diffraction Method

    PubMed Central

    Weipeng, Wang; Jianli, Liu; Bingzi, Zhao; Jiabao, Zhang; Xiaopeng, Li; Yifan, Yan

    2015-01-01

    Mathematical descriptions of classical particle size distribution (PSD) data are often used to estimate soil hydraulic properties. Laser diffraction methods (LDM) now provide more detailed PSD measurements, but deriving a function to characterize the entire range of particle sizes is a major challenge. The aim of this study was to compare the performance of eighteen PSD functions for fitting LDM data sets from a wide range of soil textures. These models include five lognormal models, five logistic models, four van Genuchten models, two Fredlund models, a logarithmic model, and an Andersson model. The fits were evaluated using Akaike’s information criterion (AIC), adjusted R2, and root-mean-square error (RMSE). The results indicated that the Fredlund models (FRED3 and FRED4) had the best performance for most of the soils studied, followed by one logistic growth function extension model (MLOG3) and three lognormal models (ONLG3, ORLG3, and SHCA3). The performance of most PSD models was better for soils with higher silt content and poorer for soils with higher clay and sand content. The FRED4 model best described the PSD of clay, silty clay, clay loam, silty clay loam, silty loam, loam, and sandy loam, whereas FRED3, MLOG3, ONLG3, ORLG3, and SHCA3 showed better performance for most soils studied. PMID:25927441

  20. 25 CFR 1000.100 - May a Tribe/Consortium obtain discretionary or competitive funding that is distributed on a...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false May a Tribe/Consortium obtain discretionary or competitive funding that is distributed on a discretionary or competitive basis? 1000.100 Section 1000.100 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT...

  1. An Oil-Stream Photomicrographic Aeroscope for Obtaining Cloud Liquid-Water Content and Droplet Size Distributions in Flight

    NASA Technical Reports Server (NTRS)

    Hacker, Paul T.

    1956-01-01

    An airborne cloud aeroscope by which droplet size, size distribution, and liquid-water content of clouds can be determined has been developed and tested in flight and in wind tunnels with water sprays. In this aeroscope the cloud droplets are continuously captured in a stream of oil, which Is then photographed by a photomicrographic camera. The droplet size and size distribution can be determined directly from the photographs. With the droplet size distribution known, the liquid-water content of the cloud can be computed from the geometry of the aeroscope, the airspeed, and the oil-flow rate. The aeroscope has the following features: Data are obtained semi-automatically, and permanent data are taken in the form of photographs. A single picture usually contains a sufficient number of droplets to establish the droplet size distribution. Cloud droplets are continuously captured in the stream of oil, but pictures are taken at Intervals. The aeroscope can be operated in icing and non-icing conditions. Because of mixing of oil in the instrument, the droplet-distribution patterns and liquid-water content values from a single picture are exponentially weighted average values over a path length of about 3/4 mile at 150 miles per hour. The liquid-water contents, volume-median diameters, and distribution patterns obtained on test flights and in the Lewis icing tunnel are similar to previously published data.

  2. Inversion of photometric He+ (30.4 nm) intensities to obtain He+ distributions

    NASA Astrophysics Data System (ADS)

    Garrido, Dante E.; Smith, Roger W.; Marsh, C. A.; Christensen, Andrew B.; Chakrabarti, Supriya

    1993-07-01

    Radiation at He(superscript +) at 30.4 nm, which is emitted close to the Earth, comes from three distinct regions; the ionosphere, the plasmasphere and the polar cap. Published observational data on He(superscript +) 30.4 nm have shown that the intensities from polar regions are relatively smaller than the other regions. Polar emissions are believed to be due to resonant scattering of ion outflow in sunlight. A 1982 rocket flight from Poker Flat, Alaska has shown that line-of-sight 30.4 nm emission rates are relatively strong in the direction of the pole. Since the roll of the rocket afforded many different observing directions, we have used the variety of viewing geometries to extract ionospheric source densities from the photometric intensity data. We have assumed that the He(superscript +) densities vary with distance along dipole field lines according to a particular functional form, and then we proceeded to extract the source densities by a matrix inversion method. The results give density variations over a range of latitudes including samples from each of the regions mentioned above. The method obtains good fits of the observed profiles of intensity versus observation angle.

  3. Strongly coupled quark gluon plasma (SCQGP)

    NASA Astrophysics Data System (ADS)

    Bannur, Vishnu M.

    2006-07-01

    We propose that the reason for the non-ideal behaviour seen in lattice simulation of quark gluon plasma (QGP) and ultrarelativistic heavy ion collision experiments is that the QGP near Tc and above is a strongly coupled plasma (SCP), i.e., a strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include colour degrees of freedom and the running coupling constant. Results on pressure in pure gauge, 2-flavours and 3-flavours QGP can all be explained by treating QGP as SCQGP, as demonstrated here. Energy density and speed of sound are also presented for all three systems. We further extend the model to systems with finite quark mass and reasonably good fits to lattice results are obtained for (2+1)-flavours and 4-flavours QGP. Hence it is a unified model, namely SCQGP, to explain the non-ideal QGP seen in lattice simulations with just two system dependent parameters.

  4. Measurements of gluon spin-sensitive quantities at the Z{sup 0} resonance

    SciTech Connect

    Fan, C.G.

    1993-10-01

    Measurements have been made of the scaled jet energies (x{sub 1}, x{sub 2}, x{sub 3}) and the Ellis-Karliner angle (cos{theta}{sub EK}), which are sensitive to the spill of the gluon, in the 3-jet hadronic events from the e{sup +}e{sup {minus}} annihilation at the Z{sup 0} resonance. The experiment is performed with the SLD detector at the Stanford Linear Accelerator Center (SLAC). The data used in this analysis was collected during the 1992 physics run, which includes 10,252 hadronic Z{sup 0} events that have CDC information written out. Only charged tracks measured in the central drift chamber are used for the measurements of the above variables. The raw data are found to be in good agreement with the Monte Carlo simulations passing the same set of track and event selection cuts. A bin-to-bin correction is done for the distributions of x{sub 1}, x{sub 2}, x{sub 3}, and cos{theta}{sub EK} to account for the effects of hadronization, detector acceptance and resolution. The corrected data is compared to the parton level distributions of x{sub 1}, x{sub 2}, x{sub 3}, and cos{theta}{sub EK} simulated from the vector QCD model and the scalar gluon model respectively. The systematic errors, calculated for all the bins in these distributions, are obtained by comparing the results from different sets of track and event selection cuts, from different hadronization models and from different Monte Carlo programs. Good agreement is found between data and the vector QCD model. The scalar gluon model strongly disagrees with the data.

  5. Spatial and Temporal Distribution of Escherichia coli on Beef Trimmings Obtained from a Beef Packing Plant.

    PubMed

    Visvalingam, Jeyachchandran; Wang, Hui; Youssef, Mohamed K; Devos, Julia; Gill, Colin O; Yang, Xianqin

    2016-08-01

    The objective of this study was to determine the immediate source of Escherichia coli on beef trimmings produced at a large packing plant by analyzing the E. coli on trimmings at various locations of a combo bin filled on the same day and of bins filled on different days. Ten 2,000-lb (907-kg) combo bins (B1 through B10) of trimmings were obtained from a large plant on 6 days over a period of 5 weeks. Thin slices of beef with a total area of approximately 100 cm(2) were excised from five locations (four corners and the center) at each of four levels of the bins: the top surface and 30, 60, and 90 cm below the top. The samples were enriched for E. coli in modified tryptone soya broth supplemented with 20 mg/liter novobiocin. The positive enrichment cultures, as determined by PCR, were plated on E. coli/coliform count plates for recovery of E. coli. Selected E. coli isolates were genotyped using multiple-locus variable-number tandem repeat analysis (MLVA). Of the 200 enrichment cultures, 43 were positive by PCR for E. coli, and 32 of these cultures yielded E. coli isolates. Two bins did not yield any positive enrichment cultures, and three PCR-positive bins did not yield any E. coli isolates. MLVA of 165 E. coli isolates (30, 62, 56, 5, and 12 from B6 through B10, respectively) revealed nine distinct genotypes. MLVA types 263 and 89 were most prevalent overall and on individual days, accounting for 49.1 and 37.6% of the total isolates, respectively. These two genotypes were also found at multiple locations within a bin. All nine genotypes belonged to the phylogenetic group A0 of E. coli, suggesting an animal origin. The finding that the trimmings carried very few E. coli indicates an overall effective control over contamination of beef with E. coli at this processing plant. The lack of strain diversity of the E. coli on trimmings suggests that most E. coli isolates may have come from common sources, most likely equipment used in the fabrication process. PMID:27497119

  6. D-meson enhancement in pp collisions at the LHC due to nonlinear gluon evolution

    SciTech Connect

    Dainese, A.; Vogt, R.; Bondila, M.; Eskola, K.J.; Kolhinen, V.J.

    2004-08-22

    When nonlinear effects on the gluon evolution are included with constraints from HERA, the gluon distribution in the free proton is enhanced at low momentum fractions, x {approx}< 0.01, and low scales, Q{sup 2} {approx}< 10 GeV{sup 2}, relative to standard, DGLAP-evolved, gluon distributions. Consequently, such gluon distributions can enhance charm production in pp collisions at center of mass energy 14 TeV by up to a factor of five at midrapidity, y {approx} 0, and transverse momentum p{sub T} {yields} 0 in the most optimistic case. We show that most of this enhancement survives hadronization into D mesons. Assuming the same enhancement at leading and next-to-leading order, we show that the D enhancement may be measured by D{sup 0} reconstruction in the K{sup -}{pi}{sup +} decay channel with the ALICE detector.

  7. The gluon mass generation mechanism: A concise primer

    NASA Astrophysics Data System (ADS)

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.

    2016-04-01

    We present a pedagogical overview of the nonperturbative mechanism that endows gluons with a dynamical mass. This analysis is performed based on pure Yang-Mills theories in the Landau gauge, within the theoretical framework that emerges from the combination of the pinch technique with the background field method. In particular, we concentrate on the Schwinger-Dyson equation satisfied by the gluon propagator and examine the necessary conditions for obtaining finite solutions within the infrared region. The role of seagull diagrams receives particular attention, as do the identities that enforce the cancellation of all potential quadratic divergences.We stress the necessity of introducing nonperturbative massless poles in the fully dressed vertices of the theory in order to trigger the Schwinger mechanism, and explain in detail the instrumental role of these poles in maintaining the Becchi-Rouet-Stora-Tyutin symmetry at every step of the mass-generating procedure. The dynamical equation governing the evolution of the gluon mass is derived, and its solutions are determined numerically following implementation of a set of simplifying assumptions. The obtained mass function is positive definite, and exhibits a power law running that is consistent with general arguments based on the operator product expansion in the ultraviolet region. A possible connection between confinement and the presence of an inflection point in the gluon propagator is briefly discussed.

  8. Gluon Polarization and Jet Production at STAR

    SciTech Connect

    Djawotho, Pibero

    2009-12-17

    I will discuss the most recent measurements of the inclusive jet longitudinal spin asymmetry A{sub LL} in polarized proton-proton collisions. STAR collected its largest data sample thus far, 4.7 pb{sup -1} of integrated luminosity at an average beam polarization of {approx}57%, during the 2006 run at a center-of-mass energy of 200 GeV. I will also present previous STAR inclusive jet A{sub LL} and cross section measurements. The results are compared with theoretical calculations of A{sub LL} based on polarized distribution functions in the nucleon with a range of different contributions from the gluon polarization, {delta}G. The STAR data place significant constraints on {delta}G for 0.02

  9. Jet energy loss in the quark-gluon plasma by stream instabilities

    SciTech Connect

    Mannarelli, Massimo; Manuel, Cristina; Gonzalez-Solis, Sergi; Strickland, Michael

    2010-04-01

    We study the evolution of the plasma instabilities induced by two jets of particles propagating in opposite directions and crossing a thermally equilibrated non-Abelian plasma. In order to simplify the analysis we assume that the two jets of partons can be described with uniform distribution functions in coordinate space and by Gaussian distribution functions in momentum space. We find that while crossing the quark-gluon plasma, the jets of particles excite unstable chromomagnetic and chromoelectric modes. These fields interact with the particles (or hard modes) of the plasma inducing the production of currents; thus, the energy lost by the jets is absorbed by both the gauge fields and the hard modes of the plasma. We compare the outcome of the numerical simulations with the analytical calculation performed assuming that the jets of particles can be described by a tsunamilike distribution function. We find qualitative and semiquantitative agreement between the results obtained with the two methods.

  10. An Algorithm for Obtaining the Distribution of 1-Meter Lightning Channel Segment Altitudes for Application in Lightning NOx Production Estimation

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Koshak, William J.

    2009-01-01

    An algorithm has been developed to estimate the altitude distribution of one-meter lightning channel segments. The algorithm is required as part of a broader objective that involves improving the lightning NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.

  11. Detailed pressure distribution measurements obtained on several configurations of an aspect-ratio-7 variable twist wing

    NASA Technical Reports Server (NTRS)

    Holbrook, G. T.; Dunham, D. M.

    1985-01-01

    Detailed pressure distribution measurements were made for 11 twist configurations of a unique, multisegmented wing model having an aspect ratio of 7 and a taper ratio of 1. These configurations encompassed span loads ranging from that of an untwisted wing to simple flapped wings both with and without upper-surface spoilers attached. For each of the wing twist configurations, electronic scanning pressure transducers were used to obtain 580 surface pressure measurements over the wing in about 0.1 sec. Integrated pressure distribution measurements compared favorably with force-balance measurements of lift on the model when the model centerbody lift was included. Complete plots and tabulations of the pressure distribution data for each wing twist configuration are provided.

  12. Gluon Contribution To The Nucleon Spin

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2011-07-01

    Gluon polarization in Nucleon is evaluated in the valon representation of hadrons. It is shown that although δg/g is small at the currently measured kinematics, it does not imply that the gluon contribution to the nucleon spin is small. In fact the first moment of gluon polarization in the nucleon, Δg(Q2), is sizable. We also notice that the majority of Δg is concentrated at around x = 0.08.

  13. Insights Into the Dynamics of Planetary Interiors Obtained Through the Study of Global Distribution of Volcanoes III: Lessons From Io.

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.; Hamilton, C.; Lopes, R. M. C.

    2015-12-01

    Clues concerning dynamic aspects of planetary interiors can be obtained through the characterization of volcano distribution at a global scale. On past years, results obtained from global distribution of volcanism on Earth and Venus have been presented, and compared with each other. In this work, the global distribution of volcanism on Io (the innermost of Jupiter's Galilean satellites and the most volcanically active body in the Solar System) is explored using the same tools. Volcanic centers on Io can be divided in two groups: The first including positive thermal anomalies, or hotspots, and the second formed by volcano-tectonic depressions called paterae. Approximately 20% of the documented patera coincide with hotspots, but not all of Io's current volcanic activity is directly associated to paterae. It is uncertain whether hotspots located outside paterae represent volcanic systems still lacking a caldera-like structure, or they represent an entirely different type of volcanism. To account for this source of uncertainty, the analysis reported here was completed on different databases (hotspots, paterae, patera floor units and a combination of hotspots and paterae referred to as volcanic systems). In addition, the distribution of Io's mountains also was studied. As a result, we show that the main clusters of volcanism on Io support the existence of mantle convection patterns that include a combined heating between the astenosphere and the deep mantle (with the former source being more important, but not necessarily on a 2:1 proportion), takes place at moderate to high Reynolds numbers, and includes some degree of impermeability between the astenosphere and the mantle. We also show that although the long-wavelength volcano distribution is controlled by the patterns of mantle convection, the astenosphere serves as a buffer zone where magma is distributed laterally giving place to volcanic activity away from the zones of influence of the hot mantle isotherms. The

  14. Quark ACM with topologically generated gluon mass

    NASA Astrophysics Data System (ADS)

    Choudhury, Ishita Dutta; Lahiri, Amitabha

    2016-03-01

    We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( < 10 MeV), we calculate the ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.

  15. Gluon production at high transverse momentum in the McLerran-Venugopalan model of nuclear structure functions

    SciTech Connect

    Kovner, A.; McLerran, L.; Weigert, H.

    1995-10-01

    We consider the production of high transverse momentum gluons in the McLerran-Venugopalan model of nuclear structure functions. We explicitly compute the high momentum component in this model. We compute the nuclear target size {ital A} dependence of the distribution of produced gluons.

  16. Gluon production at high transverse momentum in the McLerran-Venugopalan model of nuclear structure functions

    NASA Astrophysics Data System (ADS)

    Kovner, Alex; McLerran, Larry; Weigert, Heribert

    1995-10-01

    We consider the production of high transverse momentum gluons in the McLerran-Venugopalan model of nuclear structure functions. We explicitly compute the high momentum component in this model. We compute the nuclear target size A dependence of the distribution of produced gluons.

  17. Ordering Multiple Soft Gluon Emissions.

    PubMed

    Ángeles Martínez, René; Forshaw, Jeffrey R; Seymour, Michael H

    2016-05-27

    We present an expression for the QCD amplitude for a general hard scattering process with any number of soft gluon emissions, to one-loop accuracy. The amplitude is written in two different but equivalent ways: as a product of operators ordered in dipole transverse momentum and as a product of loop-expanded currents. We hope that these results will help in the development of an all-orders algorithm for multiple emissions that includes the full color structure and both the real and imaginary contributions to the amplitude. PMID:27284651

  18. Nonperturbative gluon and ghost propagators for d=3 Yang-Mills theory

    SciTech Connect

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.

    2010-06-15

    We study a manifestly gauge-invariant set of Schwinger-Dyson equations to determine the nonperturbative dynamics of the gluon and ghost propagators in d=3 Yang-Mills theory. The use of the well-known Schwinger mechanism, in the Landau gauge leads to the dynamical generation of a mass for the gauge boson (gluon in d=3), which, in turn, gives rise to an infrared finite gluon propagator and ghost dressing function. The propagators obtained from the numerical solution of these nonperturbative equations are in very good agreement with the results of SU(2) lattice simulations.

  19. On the inclusive gluon jet production from the triple pomeron vertex in the perturbative QCD

    NASA Astrophysics Data System (ADS)

    Braun, M. A.

    2006-11-01

    Single and double inclusive cross-sections for gluon jet production from within the triple pomeron vertex are studied in the reggeized gluon technique in the QCD with Nc→∞. It is shown that to satisfy the AGK rules the vertex has to be fully symmetric in all four reggeized gluons which form the two final pomerons. The single inclusive cross-sections are found for different cuttings of the triple pomeron vertex. They sum to the expression obtained by Kovchegov and Tuchin in the color dipole picture. The found double inclusive cross-sections satisfy the AGK rules.

  20. Properties of the prominence magnetic field and plasma distributions as obtained from 3D whole-prominence fine structure modeling

    NASA Astrophysics Data System (ADS)

    Gunár, S.; Mackay, D. H.

    2016-07-01

    Aims: We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma β, and mass) using the 3D whole-prominence fine structure model. Methods: The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results: We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma β are small throughout the majority of the modeled prominences when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma β may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.

  1. Inclusive cross section and double helicity asymmetry for {pi}{sup 0} production in p+p collisions at {radical}(s)=200 GeV: Implications for the polarized gluon distribution in the proton

    SciTech Connect

    Adare, A.; Bickley, A. A.; Ellinghaus, F.; Glenn, A.; Kinney, E.; Nagle, J. L.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Chi, C. Y.; Cole, B. A.; D'Enterria, D.; Jia, J.

    2007-09-01

    The PHENIX experiment presents results from the Relativistic Heavy Ion Collider 2005 run with polarized proton collisions at {radical}(s)=200 GeV, for inclusive {pi}{sup 0} production at midrapidity. Unpolarized cross section results are given for transverse momenta p{sub T}=0.5 to 20 GeV/c, extending the range of published data to both lower and higher p{sub T}. The cross section is described well for p{sub T}<1 GeV/c by an exponential in p{sub T}, and, for p{sub T}>2 GeV/c, by perturbative QCD. Double helicity asymmetries A{sub LL} are presented based on a factor of 5 improvement in uncertainties as compared to previously published results, due to both an improved beam polarization of 50%, and to higher integrated luminosity. These measurements are sensitive to the gluon polarization in the proton. Using one representative model of gluon polarization it is demonstrated that the gluon spin contribution to the proton spin is significantly constrained.

  2. Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines

    SciTech Connect

    Hrayr Matevosyan; Anthony Thomas; Peter Tandy

    2007-06-18

    We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The guark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number.

  3. Obtaining the cumulative k-distribution of a gas mixture from those of its components. [radiative transfer in stratosphere

    NASA Technical Reports Server (NTRS)

    Gerstell, M. F.

    1993-01-01

    A review of the convolution theorem for obtaining the cumulative k-distribution of a gas mixture proven in Goody et al. (1989) and a discussion of its application to natural spectra are presented. Computational optimizations for use in analyzing high-altitude gas mixtures are introduced. Comparisons of the results of the optimizations, and criteria for deciding what altitudes are 'high' in this context are given. A few relevant features of the testing support software are examined. Some spectrally integrated results, and the circumstances the might permit substituting the method of principal absorbers are examined.

  4. Abrikosov Gluon Vortices in Color Superconductors

    NASA Astrophysics Data System (ADS)

    Ferrer, Efrain J.

    2011-09-01

    In this talk I will discuss how the in-medium magnetic field can influence the gluon dynamics in a three-flavor color superconductor. It will be shown how at field strengths comparable to the charged gluon Meissner mass a new phase can be realized, giving rise to Abrikosov's vortices of charged gluons. In that phase, the inhomogeneous gluon condensate anti-screens the magnetic field due to the anomalous magnetic moment of these spin-1 particles. This paramagnetic effect can be of interest for astrophysics, since due to the gluon vortex antiscreening mechanism, compact stars with color superconducting cores could have larger magnetic fields than neutron stars made up entirely of nuclear matter. I will also discuss a second gluon condensation phenomenon connected to the Meissner instability attained at moderate densities by two-flavor color superconductors. In this situation, an inhomogeneous condensate of charged gluons emerges to remove the chromomagnetic instability created by the pairing mismatch, and as a consequence, the charged gluonic currents induce a magnetic field. Finally, I will point out a possible relation between glitches in neutron stars and the existence of the gluon vortices.

  5. Gluon Spin Contribution to The Nucleon Spin

    NASA Astrophysics Data System (ADS)

    Arash, Firooz; Shahveh, Abolfazl; Taghavi-Shahri, Fateme

    2010-10-01

    We have calculated δg/ g in the nucleon at all measured kinematics. The smallness of δg/ g in the measured kinematics should not be interpreted as the the gluon contribution to the nucleon spin is small. In fact the first moment of gluon polarization in the nucleon, Δ g( Q2) can be sizable.

  6. Three-dimensional exospheric hydrogen atom distributions obtained from observations of the geocorona in Lyman-alpha

    NASA Astrophysics Data System (ADS)

    Bailey, Justin J.

    Exospheric atomic hydrogen (H) resonantly scatters solar Lyman-alpha (121.567 nm) radiation, observed as the glow of the geocorona. Measurements of scattered solar photons allow one to probe time-varying three-dimensional distributions of exospheric H atoms. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission images the magnetosphere in energetic neutral atom (ENA) fluxes and additionally carries Lyman-alpha Detectors (LADs) to register line-of-sight intensities of the geocorona. This work details a process for preparing TWINS data such that LAD measurements can be used to obtain global H density distributions with three-dimensional asymmetries above 3 earth radii. Sequences of distributions are presented to investigate the dynamic exosphere, responding to seasonal variations between a summer solstice and autumnal equinox, as well as to solar and geomagnetic variations as described by commonly used indices. The distributions reveal asymmetries from day to night, north to south, and dawn to dusk. A nightside extension persists that is consistent with the location of a geotail. A seasonal north-south asymmetry occurs as solar illumination differs between the summer and winter polar regions. Pole-equator and less pronounced dawn-dusk asymmetries also appear, possibly due to a coupling effect via charge exchange with the polar wind and plasmasphere, respectively. A common phenomenon in geospace occurs as magnetospheric energetic ions collide with neutral background atoms and produce ENAs that, no longer bound by Earth's magnetic field, can travel large distances though space with minimal disturbance ---providing an opportunity for remote detection. Knowledge of the distribution of the primary neutral partner, exospheric H atoms, is therefore essential for the interpretation of ENA fluxes and subsequent retrieval of ion densities. An analysis is summarized that demonstrates the importance of exospheric H density distributions on reconstructing

  7. Quark and gluon decay functions in QCD and recombination model

    SciTech Connect

    Change, V.; Hwa, R.C.

    1980-04-01

    Inclusive longitudinal-momentum distributions of pions in jets initiated by quarks and gluons are determined in perturbative QCD and recombination model. The quark and antiquark joint distributions in jets are first calculated in the leading-order approximation at high Q/sup 2/. Gluons in the jets are completely converted to quark pairs. From the overall distribution q anti q pairs with definite quantum numbers then recombine to form pions. The recombination function for the process is well determined in the valon model. No adjustable parameters are involved in these calculations, and no data at low Q/sup 2/ are used as phenomenological input. The result for the quark decay functions can be compared with data on e/sup +/e/sup -/ annihilation, and the agreement is very good in both shape and normalization. Predictions for the gluon decay functions are presented, but they cannot yet be checked by experiments. The x and Q/sup 2/ dependences of both types of decay functions have been parametrized in simple form suitable for use in theoretical and experimental applications. 17 figures, 1 table.

  8. Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion.

    PubMed

    Cullen, G; van Deurzen, H; Greiner, N; Luisoni, G; Mastrolia, P; Mirabella, E; Ossola, G; Peraro, T; Tramontano, F

    2013-09-27

    We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs boson and the leading jets. The results are obtained with the combined use of GOSAM, SHERPA, and the MADDIPOLE-MADEVENT framework. PMID:24116766

  9. Separation of quark and gluon jets in high-p/sub T/ events

    SciTech Connect

    Sjoestrand, T.

    1984-01-01

    We suggest a procedure, based on the kinematics of qg-scattering in high-p/sub T/ events, whereby it is possible to obtain enriched samples of quark and gluon jets. At SppS energies this could be used to indicate whether quark and gluon jet fragmentation agree or not. At higher energies the application would rather be to study the differences in the parton cascades, i.e. jet substructure.

  10. HUNTING THE QUARK GLUON PLASMA.

    SciTech Connect

    LUDLAM, T.; ARONSON, S.

    2005-04-11

    The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear matter at extremely high

  11. Gluons and the NJL coupling constant

    SciTech Connect

    Braghin, Fábio L.; Barros Jr, Ednaldo; Paulo Jr, Ademar

    2014-11-11

    The QCD origin of the NJL model is re-analysed by considering the gluon condensate of order two . The key point is the treatment of the gluon interactions. To linearize the action the auxiliary variable method is employed to introduce a scalar variable φ(x) that yield such condensate by means of its value in the vacuum, and then another auxiliary variable that corresponds to an antisymmetric gluon configuration φ(x). For that, besides that, two different possible limits of the fourth order non local quark interaction that may contribute to the NJL coupling are compared.

  12. Froissart bound and gluon number fluctuations

    SciTech Connect

    Xiang Wenchang

    2010-05-01

    We study the effect of gluon number fluctuations (Pomeron loops) on the impact parameter behavior of the scattering amplitude in the fixed coupling case. We demonstrate that the dipole-hadron cross section computed from gluon number fluctuations saturates the Froissart bound and the growth of the radius of the black disk with rapidity is enhanced by an additional term as compared to the single event case. We find that the physical amplitude has a Gaussian impact parameter dependence once the gluon number fluctuations are included. This indicates that the fluctuations may be the microscopic origin for the Gaussian impact parameter dependence of the scattering amplitude.

  13. Quark and gluon condensates in isospin matter

    SciTech Connect

    He Lianyi; Jiang Yin; Zhuang Pengfei

    2009-04-15

    By applying the Hellmann-Feynman theorem to a charged pion gas, the quark and gluon condensates at low isospin density are determined by precise pion properties. At intermediate density around f{sub {pi}}{sup 2}m{sub {pi}}, from both the estimation for the dilute pion gas and the calculation with the Nambu-Jona-Lasinio model, the quark condensate is strongly and monotonously suppressed, while the gluon condensate is enhanced and can be larger than its vacuum value. This unusual behavior of the gluon condensate is universal for Bose condensed matter of mesons. Our results can be tested by lattice calculations at finite isospin density.

  14. Comparison of Water-Load Distributions Obtained during Seaplane Landings with Bureau of Aeronautics Specifications. TED No. NACA 2413

    NASA Technical Reports Server (NTRS)

    Smiley, Robert F.; Haines, Gilbert A.

    1949-01-01

    Bureau of Aeronautics Design Specifications SS-IC-2 for water loads in sheltered water are compared with experimental water loads obtained during a full--scale landing investigation. This investigation was conducted with a JRS-1 flying boat which has a 20 degrees dead-rise V-bottom with a partial chine flare. The range of landing conditions included airspeeds between 88 and 126 feet per second, sinking speeds between 1.6 and 9.1 feet per second, flight angles less than 6 degrees, and trims between 2 degrees and 12 degrees. Landings were moderate and were made in calm water. Measurements were obtained of maximum over-all loads, maximum pitching moments, and pressure distributions. Maximum experimental loads include over-all load factors of 2g, moments of 128,000 pound-feet, and maximum local pressures greater than 40 pounds per square inch. Experimental over-all loads are approximately one-half the design values, while local pressures are of the same order as or larger than pressures calculated from specifications for plating, stringer, floor, and frame design. The value of this comparison is limited, to some extent, by the moderate conditions of the test and by the necessary simplifying assumptions used in comparing the specifications with the experimental loads.

  15. The Gluon Contribution to the Sivers Effect COMPASS results

    NASA Astrophysics Data System (ADS)

    Kurek, Krzysztof; Szabelski, Adam

    2016-02-01

    The Sivers effect describes the correlation between the spin of the nucleon and the orbital motion of partons. It can be measured via Semi-Inclusive Deep Inelastic Scattering of lepton on a transversely polarised proton and deuteron targets by determining the azimuthal asymmetry related to the modulation in the Sivers angle ϕSiv. In the paper a method of obtaining the Sivers asymmetry for gluons is presented. It is based on the model of lepton nucleon interactions via three single-photon-exchange processes: photon-gluon fusion (PGF), QCD Compton (QCDC) and leading process (LP). A method of simultaneous extraction of the Sivers asymmetries of the three processes with the use of Monte Carlo (MC) and neural networks (NN) approach is presented. The method has been applied to COMPASS data taken with 160GeV/c muon beam scattered off transversely polarised deuteron and transversely polarised proton target. For each target a data sample of events containing at least two hadrons with large transverse momentum has been selected. Finally the results for gluon Sivers asymmetry were obtained to be: Adg = -0.14 ± 0.15(stat.) ± 0.06(syst.) at = 0.13 and Apg = -0.26 ± 0.09(stat.) ± 0.08(syst.) at = 0.15.

  16. Higgs boson production via gluon fusion: Soft-gluon resummation including mass effects

    NASA Astrophysics Data System (ADS)

    Schmidt, Timo; Spira, Michael

    2016-01-01

    We analyze soft and collinear gluon resummation effects at the N3LL level for Standard Model Higgs boson production via gluon fusion g g →H and the neutral scalar and pseudoscalar Higgs bosons of the minimal supersymmetric extension at the next-to-next-to-next-to-leading-log (N3LL ) and next-to-next-to-leading-log (NNLL) level, respectively. We introduce refinements in the treatment of quark mass effects and subleading collinear gluon effects within the resummation. Soft and collinear gluon resummation effects amount to up to about 5% beyond the fixed-order results for scalar and pseudoscalar Higgs boson production.

  17. Longitudinal and Transverse Parton Momentum Distributions for Hadrons within Relativistic Constituent Quark Models

    SciTech Connect

    Frederico, T.; Pace, E.; Pasquini, B.; Salme, G.

    2010-08-05

    Longitudinal and transverse parton distributions for pion and nucleon are calculated from hadron vertexes obtained by a study of form factors within relativistic quark models. The relevance of the one-gluon-exchange dominance at short range for the behavior of the form factors at large momentum transfer and of the parton distributions at the end points is stressed.

  18. Transport properties of quark and gluon plasmas

    SciTech Connect

    Heiselberg, H.

    1993-12-01

    The kinetic properties of relativistic quark-gluon and electron-photon plasmas are described in the weak coupling limit. The troublesome Rutherford divergence at small scattering angles is screened by Debye screening for the longitudinal or electric part of the interactions. The transverse or magnetic part of the interactions is effectively screened by Landau damping of the virtual photons and gluons transferred in the QED and QCD interactions respectively. Including screening a number of transport coefficients for QCD and QED plasmas can be calculated to leading order in the interaction strength, including rates of momentum and thermal relaxation, electrical conductivity, viscosities, flavor and spin diffusion of both high temperature and degenerate plasmas. Damping of quarks and gluons as well as color diffusion in quark-gluon plasmas is, however, shown not to be sufficiently screened and the rates depends on an infrared cut-off of order the ``magnetic mass,`` m{sub mag} {approximately} g{sup 2}T.

  19. Initial Gluon Multiplicity in Heavy-Ion Collisions

    SciTech Connect

    Krasnitz, Alex; Venugopalan, Raju

    2001-02-26

    The initial gluon multiplicity per unit area per unit rapidity, dN/L{sup 2}/d{eta} , in high energy nuclear collisions, is equal to f{sub N}(g{sup 2}{mu}L) (g{sup 2}{mu}){sup 2}/g{sup 2 } , with {mu}{sup 2} proportional to the gluon density per unit area of the colliding nuclei. For an SU(2) gauge theory, we compute f{sub N}(g{sup 2}{mu}L)=0.14{+-} 0.01 for a wide range in g{sup 2}{mu}L . Extrapolating to SU(3), we predict dN/L{sup 2}/d{eta} for values of g{sup 2}{mu}L relevant to the Relativistic Heavy Ion Collider and the Large Hadron Collider. We compute the initial gluon transverse momentum distribution, dN/L{sup 2}/d{sup 2}k{sub {perpendicular}} , and show it to be well behaved at low k{sub {perpendicular}} .

  20. Bulk Properties and Collective Flow of Quark Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph

    2007-10-01

    Quantum Chromodynamics predicts a transition from a hadronic phase at temperatures less than 150-200 MeV to a quark gluon plasma phase at higher temperatures. Lattice calculations show a big increase in the entropy density in this vicinity. Whether the transition is first or second order or a smooth rapid crossover depends upon the values of the up, down and strange quark masses. The goal of the heavy ion experimental program at RHIC is to observe this transition and to study the nature of the quark gluon plasma quantitatively. Two big surprises arose from these experiments: Substantial collective flow has been observed, as evidenced by single-particle transverse momentum distributions and by azimuthal correlations among the produced particles, and the degree to which high energy jets are attenuated in the produced matter. A variety of theoretical models of these collisions require initial energy densities more than a factor of 10 greater than in neutron star cores and more than a factor of 100 greater than within atomic nuclei. Taken together this body of work implies a strongly interacting phase of quarks and gluons beyond the capabilities of perturbation theory. This has motivated approaches based on gauge theories with gravity duals where physical observables may be calculated in a strong coupling limit. This in turn has stimulated interest from members of the string theory community who are currently bringing their expertise to bear on the problem.

  1. Are the dressed gluon and ghost propagators in the Landau gauge presently determined in the confinement regime of QCD?

    SciTech Connect

    Pennington, M. R.; Wilson, D. J.

    2011-11-01

    The gluon and ghost propagators in Landau gauge QCD are investigated using the Schwinger-Dyson equation approach. Working in Euclidean spacetime, we solve for these propagators using a selection of vertex inputs, initially for the ghost equation alone and then for both propagators simultaneously. The results are shown to be highly sensitive to the choices of vertices. We favor the infrared finite ghost solution from studying the ghost equation alone where we argue for a specific unique solution. In order to solve this simultaneously with the gluon using a dressed-one-loop truncation, we find that a nontrivial full ghost-gluon vertex is required in the vanishing gluon momentum limit. The self-consistent solutions we obtain correspond to having a masslike term in the gluon propagator dressing, in agreement with similar studies supporting the long-held proposal of Cornwall.

  2. Generalized Valon Model for Double Parton Distributions

    NASA Astrophysics Data System (ADS)

    Broniowski, Wojciech; Ruiz Arriola, Enrique; Golec-Biernat, Krzysztof

    2016-03-01

    We show how the double parton distributions may be obtained consistently from the many-body light-cone wave functions. We illustrate the method on the example of the pion with two Fock components. The procedure, by construction, satisfies the Gaunt-Stirling sum rules. The resulting single parton distributions of valence quarks and gluons are consistent with a phenomenological parametrization at a low scale.

  3. Generalized Valon Model for Double Parton Distributions

    NASA Astrophysics Data System (ADS)

    Broniowski, Wojciech; Ruiz Arriola, Enrique; Golec-Biernat, Krzysztof

    2016-06-01

    We show how the double parton distributions may be obtained consistently from the many-body light-cone wave functions. We illustrate the method on the example of the pion with two Fock components. The procedure, by construction, satisfies the Gaunt-Stirling sum rules. The resulting single parton distributions of valence quarks and gluons are consistent with a phenomenological parametrization at a low scale.

  4. The mass distribution of CL0939+4713 obtained from a `weak' lensing analysis of a WFPC2 image.

    NASA Astrophysics Data System (ADS)

    Seitz, C.; Kneib, J.-P.; Schneider, P.; Seitz, S.

    1996-10-01

    The image distortions of high-redshift galaxies caused by gravitational light deflection of foreground clusters of galaxies can be used to reconstruct the two-dimensional surface mass density of these clusters. We apply an unbiased parameter-free reconstruction technique to the cluster CL0939+4713 (Abell 851), observed with the WFPC2 on board of the HST. We demonstrate that a single deep WFPC2 observation can be used for cluster mass reconstruction despite its small field of view and the irregular shape of the data field (especially for distant clusters). For CL0939, we find a strong correlation between the reconstructed mass distribution and the bright cluster galaxies indicating that mass follows light on average. The detected anti-correlation between the faint galaxies and the reconstructed mass is most likely an effect of the magnification (anti) bias, which was detected previously in the cluster A1689. Because of the high redshift of CL0939 (z_d_=0.41), the redshift distribution of the lensed, faint galaxies has to be accounted for in the reconstruction technique. We derive an approximate global transformation for the surface mass density which leaves the mean image ellipticities invariant, resulting in an uncertainty in the normalization of the mass. From the non-negativity of the surface mass density, we derive lower limits on the mass inside the observed field of 0.75(h^-1^_50_Mpc)^2^ ranging from M>3.6x10^14^h^-1^_50_Msun_ to M>6.3x10^14^h^-1^_50_Msun_ for a mean redshift of to of the faint galaxy images with R{in}(23,25.5). However, we can break the invariance transformation for the mass using the magnification effect on the observed number density of the background galaxies. Assuming a mean redshift of and a fraction of x=15% (x=20%) of cluster galaxies in the observed galaxy sample with R{in}(23,25.5) we obtain for the mass inside the field M=~5x10^14^h^-1^_50_Msun_ (M=~7x10^14^h^-1^_50_Msun_) which corresponds to M/L=~100 h_50

  5. Properties of Noise Cross Correlation Functions Obtained from a Distributed Acoustic Sensing (DAS) Array at Garner Valley, California

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Lancelle, C.; Thurber, C. H.; Fratta, D.; Wang, H. F.; Chalari, A.; Clarke, A.

    2015-12-01

    The field test of Distributed Acoustic Sensing (DAS) conducted at Garner Valley, California on September 11-12, 2013 provided a continuous overnight record of ambient noise. The DAS array recorded ground motions every one meter of optical cable that was arranged approximately in the shape of a rectangle with dimensions of 160 m by 80 m. The long dimension of the array was adjacent to a state highway. Three hours of record were used to compute noise cross-correlation functions (NCFs) in one-minute windows. The trace from each sensor channel was pre-processed by downsampling to 200 Hz, followed by normalization in the time-domain and bandpass filtering between 2 and 20 Hz (Bensen et al., 2007). The one-minute NCFs were then stacked using the time-frequency domain phase-weighted stacking method (Schimmel & Gallart, 2007). The NCFs between channels were asymmetrical reflecting the direction of traffic noise. The group velocities were found using the frequency-time analysis method. The energy was concentrated between 5 and 15 Hz, which falls into the typical traffic noise frequency band. The resulting velocities were between 100 and 300 m/s for frequencies between 10 and 20 Hz, which are in the same range as described in the results for surface-wave dispersion obtained using an active source for the same site (Lancelle et al., 2015). The group velocity starts to decrease for frequencies greater than ~10 Hz, which was expected on the basis of a previous shear-wave velocity model (Steidl et al., 1996). Then, the phase velocity was calculated using the multichannel analysis of surface wave technique (MASW - Park et al., 1999) with 114 NCFs spaced one meter apart. The resulting dispersion curve between 5 and 15 Hz gave phase velocities that ranged from approximately 170 m/s at 15 Hz to 250 m/s at 5 Hz. These results are consistent with other results of active-source DAS and seismometer records obtained at the Garner Valley site (e.g., Stokoe et al. 2004). This analysis is

  6. Gluon Productions in classical SU(3) lattice gauge theory in high energy heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Nara, Yasushi; Krasnitz, Alex; Venugopalan, Raju

    2001-10-01

    A classical effective field theory approach was introduced to describe the initial conditions for the produced partons in ultra-relativistic heavy ion collisions. The importance of the productions of small x gluons are emphasized, since, in high energy heavy ion collisions, parton distributions grow rapidly and may saturate. Most of them are freed during the reactions. Krasnitz and Venugopalan performed a non-perturbative numerical computation for a SU(2) gauge theory. We present the initial gluon transverse momentum distribution from SU(3) real time lattice gauge simulation in the high energy heavy ion collisions.

  7. Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia.

    PubMed

    Uribe, D; Martinez, W; Cerón, J

    2003-02-01

    Colombia is a tropical country located at the north of South America. It is considered to be one of the most important countries in terms of its biodiversity worldwide. One hundred and eight soil samples obtained from agricultural crops and wild ecosystems were evaluated in terms of the presence of Bacillus thuringiensis (Bt) native strains. One hundred and eight different Bt strains were isolated and characterized by the presence of crystal proteins by SDS-PAGE and a multiplex PCR with general and specific primers for cry1 and cry3, cry7, and cry8 gene detection. Most of the Bt strains (73%) reacted with the cry1 general primers; 27.8% of the Bt strains reacted with cry3, cry7, and cry8 general primers and 17.8% of strains did not react with any of these two sets of primers. Thirty different PCR profiles were found in the strains with cry1 genes when they were analyzed with specific primers (cry1A to cry1F). A high frequency of joint occurrence was observed for cry1Aa/cry1Ab, cry1Aa/cry1Ac, cry1Ab/cry1Ac, and cry1C/cry1D genes with a Pearson coefficient of 0.88, 0.74, 0.76, and 0.87, respectively. Other distinctive characteristics were found in the Colombian collection as the presence of 22.2% of native strains which presented, at the same time, lepidopteran and coleopteran active genes. Interesting relations were found as well between the cry gene distribution and the geographical areas sampled. Finally, some strains with moderate to high biopesticide activity against Spodoptera frugiperda (Lepidoptera) and Premnotrypes vorax (Coleoptera) insects were identified, this being important to explore future microbial strategies for the control of these crop pests in the region. PMID:12623312

  8. Quark gluon bags as reggeons

    SciTech Connect

    Bugaev, K. A.; Petrov, V. K.; Zinovjev, G. M.

    2009-05-15

    The influence of the medium-dependent finite width of quark gluon plasma (QGP) bags on their equation of state is analyzed within an exactly solvable model. It is argued that the large width of the QGP bags not only explains the observed deficit in the number of hadronic resonances but also clarifies the reason why the heavy QGP bags cannot be directly observed as metastable states in a hadronic phase. The model allows us to estimate the minimal value of the width of QGP bags being heavier than 2 GeV from a variety of the lattice QCD data and get that the minimal resonance width at zero temperature is about 600 MeV, whereas the minimal resonance width at the Hagedorn temperature is about 2000 MeV. As shown, these estimates are almost insensitive to the number of the elementary degrees of freedom. The recent lattice QCD data are analyzed and it is found that in addition to the {sigma}T{sup 4} term the lattice QCD pressure contains T-linear and T{sup 4}lnT terms in the range of temperatures between 240 and 420 MeV. The presence of the last term in the pressure bears almost no effect on the width estimates. Our analysis shows that at high temperatures the average mass and width of the QGP bags behave in accordance with the upper bound of the Regge trajectory asymptotics (the linear asymptotics), whereas at low temperatures they obey the lower bound of the Regge trajectory asymptotics (the square root one). Since the model explicitly contains the Hagedorn mass spectrum, it allows us to remove an existing contradiction between the finite number of hadronic Regge families and the Hagedorn idea of the exponentially growing mass spectrum of hadronic bags.

  9. From a colored glass condensate to the gluon plasma: Equilibration in high energy heavy ion collisions

    SciTech Connect

    Bjoraker, Jefferson; Venugopalan, Raju

    2001-02-01

    The initial distribution of gluons at the very early times after a high-energy heavy ion collision is described by the bulk scale Q{sub s} of gluon saturation in the nuclear wave function. The subsequent evolution of the system towards kinetic equilibrium is described by a nonlinear Landau equation for the single particle distributions [A. H. Mueller, Nucl. Phys. B572, 227 (2000); Phys. Lett. B 475, 220 (2000)]. In this paper, we solve this equation numerically for the idealized initial conditions proposed by Mueller, and study the evolution of the system to equilibrium. We discuss the sensitivity of our results on the dynamical screening of collinear divergences. In a particular model of dynamical screening, the convergence to the hydrodynamic limit is seen to be rapid relative to hydrodynamic time scales. The equilibration time, the initial temperature, and the chemical potential are shown to have a strong functional dependence on the initial gluon saturation scale Q{sub s}.

  10. Dynamical equation of the effective gluon mass

    SciTech Connect

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.

    2011-10-15

    In this article, we derive the integral equation that controls the momentum dependence of the effective gluon mass in the Landau gauge. This is accomplished by means of a well-defined separation of the corresponding ''one-loop dressed'' Schwinger-Dyson equation into two distinct contributions, one associated with the mass and one with the standard kinetic part of the gluon. The entire construction relies on the existence of a longitudinally coupled vertex of nonperturbative origin, which enforces gauge invariance in the presence of a dynamical mass. The specific structure of the resulting mass equation, supplemented by the additional requirement of a positive-definite gluon mass, imposes a rather stringent constraint on the derivative of the gluonic dressing function, which is comfortably satisfied by the large-volume lattice data for the gluon propagator, both for SU(2) and SU(3). The numerical treatment of the mass equation, under some simplifying assumptions, is presented for the aforementioned gauge groups, giving rise to a gluon mass that is a nonmonotonic function of the momentum. Various theoretical improvements and possible future directions are briefly discussed.

  11. A CLOSURE STUDY OF AEROSOL MASS CONCENTRATION MEASUREMENTS: COMPARISON OF VALUES OBTAINED WITH FILTERS AND BY DIRECT MEASUREMENTS OF MASS DISTRIBUTIONS. (R826372)

    EPA Science Inventory

    We compare measurements of aerosol mass concentrations obtained gravimetrically using Teflon coated glass fiber filters and by integrating mass distributions measured with the differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) technique (Aero...

  12. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    PubMed

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. PMID:27554145

  13. Ion-induced quark-gluon implosion.

    PubMed

    Frankfurt, L; Strikman, M

    2003-07-11

    We investigate nuclear fragmentation in the central proton-nucleus and nucleus-nucleus collisions at the energies of CERN LHC. Within the semiclassical approximation we argue that because of the fast increase with energy of the cross sections of soft and hard interactions each nucleon is stripped in the average process off "soft" partons and fragments into a collection of leading quarks and gluons with large p(t). Valence quarks and gluons are streaming in the opposite directions when viewed in the c.m. of the produced system. The resulting pattern of the fragmentation of the colliding nuclei leads to an implosion of the quark and gluon constituents of the nuclei. The nonequilibrium state produced at the initial stage in the nucleus fragmentation region is estimated to have densities >/=50 GeV/fm(3) at the LHC energies and probably >/=10 GeV/fm(3) at BNL RHIC. PMID:12906475

  14. Draft Genome Sequences of Six Mycobacterium immunogenum, Strains Obtained from a Chloraminated Drinking Water Distribution System Simulator

    EPA Science Inventory

    We report the draft genome sequences of six Mycobacterium immunogenum isolated from a chloraminated drinking water distribution system simulator subjected to changes in operational parameters. M. immunogenum, a rapidly growing mycobacteria previously reported as the cause of hyp...

  15. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions

    NASA Technical Reports Server (NTRS)

    Peters, B. C., Jr.; Walker, H. F.

    1975-01-01

    A general iterative procedure is given for determining the consistent maximum likelihood estimates of normal distributions. In addition, a local maximum of the log-likelihood function, Newtons's method, a method of scoring, and modifications of these procedures are discussed.

  16. Quark-gluon plasma in an external magnetic field.

    PubMed

    Levkova, L; DeTar, C

    2014-01-10

    Using numerical simulations of lattice QCD we calculate the effect of an external magnetic field on the equation of state of the quark-gluon plasma. The results are obtained using a Taylor expansion of the pressure with respect to the magnetic field for the first time. The coefficients of the expansion are computed to second order in the magnetic field. Our setup for the external magnetic field avoids complications arising from toroidal boundary conditions, making a Taylor series expansion straightforward. This study is exploratory and is meant to serve as a proof of principle. PMID:24483888

  17. High multiplicity study and gluon dominance model

    NASA Astrophysics Data System (ADS)

    Kokoulina, E. S.

    2016-01-01

    Study of high multiplicity events in proton-proton interactions is carried out at the U-70 accelerator (IHEP, Protvino). These events are extremely rare. Usually, Monte Carlo codes underestimate topological cross sections in this region. The gluon dominance model (GDM) was offered to describe them. It is based on QCD and a phenomenological scheme of a hadronization stage. This model indicates a recombination mechanism of hadronization and a gluon fission. Future program of the SVD Collaboration is aimed at studying a long-standing puzzle of excess soft photon yield and its connection with high multiplicity at the U-70 and Nuclotron facility at JINR, Dubna.

  18. Coronal heating and solar wind acceleration for electrons, protons, and minor ions obtained from kinetic models based on kappa distributions

    NASA Astrophysics Data System (ADS)

    Pierrard, V.; Pieters, M.

    2014-12-01

    Astrophysical and space plasmas are commonly found to be out of thermal equilibrium; i.e., the velocity distribution functions of their particles are not well described by Maxwellian distributions. They generally have more suprathermal particles in the tail of the distribution. The kappa distribution provides a generalization to successfully describe such plasmas with tails decreasing as a power law of the velocity. In the present work, we improve the solar wind model developed on the basis of such kappa distributions by incorporating azimuthally varying 1 AU boundary conditions to produce a spatially structured view of the solar wind expansion. By starting from the top of the chromosphere to the heliosphere and by applying relevant boundary conditions in the ecliptic plane, a global model of the corona and the solar wind is developed for each particle species. The model includes the natural heating of the solar corona automatically appearing when an enhanced population of suprathermal particles is present at low altitude in the solar (or stellar) atmosphere. This applies not only for electrons and protons but also for the minor ions which then have a temperature increase proportional to their mass. Moreover, the presence of suprathermal electrons contributes to the acceleration of the solar wind to high bulk velocities when Coulomb collisions are neglected. The results of the model are illustrated in the solar corona and in solar wind for the different particle species and can now be directly compared in two dimensions with spacecraft observations in the ecliptic plane.

  19. Draft Genome Sequences of Six Mycobacterium immunogenum Strains Obtained from a Chloraminated Drinking Water Distribution System Simulator.

    PubMed

    Gomez-Alvarez, Vicente; Revetta, Randy P

    2016-01-01

    We report here the draft genome sequences of six Mycobacterium immunogenum strains isolated from a chloraminated drinking water distribution system simulator subjected to changes in operational parameters. M. immunogenum, a rapidly growing mycobacterium previously reported to be the cause of hypersensitivity pneumonitis from contaminated metalworking fluid aerosols, is becoming a public health concern. PMID:26744376

  20. Obtaining Cotton Fiber Length Distributions from the Beard Test Method Part 2 – A New Approach through PLS Regression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In fiber length measurement by the rapid method of testing fiber beards instead of testing individual fibers, only the fiber portion projected from the fiber clamp can be measured. The length distribution of the projecting portion is very different from that of the original sample. The Part 1 pape...

  1. Gluon production in the Color Glass Condensate model of collisions of ultrarelativistic finite nuclei

    NASA Astrophysics Data System (ADS)

    Krasnitz, Alex; Nara, Yasushi; Venugopalan, Raju

    2003-04-01

    We extend previous work on high energy nuclear collisions in the Color Glass Condensate model to study collisions of finite ultrarelativistic nuclei. The changes implemented include (a) imposition of color neutrality at the nucleon level and (b) realistic nuclear matter distributions of finite nuclei. The saturation scale characterizing the fields of color charge is explicitly position-dependent, Λs= Λs( xT). We compute gluon distributions both before and after the collisions. The gluon distribution in the nuclear wavefunction before the collision is significantly suppressed below the saturation scale when compared to the simple McLerran-Venugopalan model prediction, while the behavior at large momentum pT≫ Λs remains unchanged. We study the centrality dependence of produced gluons and compare it to the centrality dependence of charged hadrons exhibited by the RHIC data. We demonstrate the geometrical scaling property of the initial gluon transverse momentum distributions for different centralities. Classical Yang-Mills results for pT< Λs are simply matched to perturbative QCD computations for pT> Λs—the resulting energy per particle is significantly lower than the purely classical estimates. Our results for nuclear collisions can be used as initial conditions for quantitative studies of the further evolution and possible equilibration of hot and dense gluonic matter produced in heavy ion collisions. Finally, we study pA collisions within the classical framework. Our results agree well with previously derived analytical results in the appropriate kinematical regions.

  2. Bound-state quark and gluon contributions to structure functions in QCD

    SciTech Connect

    Brodsky, S.J.

    1990-08-01

    One can distinguish two types of contributions to the quark and gluon structure functions of hadrons in quantum chromodynamics: intrinsic'' contributions, which are due to the direct scattering on the bound-state constituents, and extrinsic'' contributions, which are derived from particles created in the collision. In this talk, I discussed several aspects of deep inelastic structure functions in which the bound-state structure of the proton plays a crucial role: the properties of the intrinsic gluon distribution associated with the proton bound-state wavefunction; the separation of the quark structure function of the proton onto intrinsic bound-valence'' and extrinsic non-valence'' components which takes into account the Pauli principle; the properties and identification of intrinsic heavy quark structure functions; and a theory of shadowing and anti-shadowing of nuclear structure functions, directly related to quark-nucleon interactions and the gluon saturation phenomenon. 49 refs., 5 figs.

  3. SU(3) Landau gauge gluon and ghost propagators using the logarithmic lattice gluon field definition

    SciTech Connect

    Ilgenfritz, Ernst-Michael; Menz, Christoph; Mueller-Preussker, Michael; Schiller, Arwed; Sternbeck, Andre

    2011-03-01

    We study the Landau gauge gluon and ghost propagators of SU(3) gauge theory, employing the logarithmic definition for the lattice gluon fields and implementing the corresponding form of the Faddeev-Popov matrix. This is necessary in order to consistently compare lattice data for the bare propagators with that of higher-loop numerical stochastic perturbation theory. In this paper we provide such a comparison, and introduce what is needed for an efficient lattice study. When comparing our data for the logarithmic definition to that of the standard lattice Landau gauge we clearly see the propagators to be multiplicatively related. The data of the associated ghost-gluon coupling matches up almost completely. For the explored lattice spacings and sizes discretization artifacts, finite size, and Gribov-copy effects are small. At weak coupling and large momentum, the bare propagators and the ghost-gluon coupling are seen to be approached by those of higher-order numerical stochastic perturbation theory.

  4. Sambamurti Memorial Lecture: Spotlight on the Gluon

    ScienceCinema

    Michael Begelas

    2010-09-01

    Begel uses results from the Fermilab D0 and E706 experiments to explain how the production rate and energy spectrum of photons produced during proton collisions helped to clarify how the energy inside the proton is shared between quarks and gluons.

  5. Exploring Quarks, Gluons and the Higgs Boson

    ERIC Educational Resources Information Center

    Johansson, K. Erik

    2013-01-01

    With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…

  6. Squeezed colour states in gluon jet

    NASA Technical Reports Server (NTRS)

    Kilin, S. YA.; Kuvshinov, V. I.; Firago, S. A.

    1993-01-01

    The possibility of the formation of squeezed states of gluon fields in quantum chromodynamics due to nonlinear nonperturbative self interaction during jet evolution in the process of e(+)e(-) annihilation into hadrons, which are analogous to the quantum photon squeezed states in quantum electrodynamics, is demonstrated. Additionally, the squeezing parameters are calculated.

  7. Quark-gluon plasma (Selected Topics)

    SciTech Connect

    Zakharov, V. I.

    2012-09-15

    Introductory lectures to the theory of (strongly interacting) quark-gluon plasma given at the Winter School of Physics of ITEP (Moscow, February 2010). We emphasize theoretical issues highlighted by the discovery of the low viscosity of the plasma. The topics include relativistic hydrodynamics, manifestations of chiral anomaly in hydrodynamics, superfluidity, relativistic superfluid hydrodynamics, effective stringy scalars, holographic models of Yang-Mills theories.

  8. Statistical distribution of the optical intensity obtained using a Gaussian Schell model for space-to-ground link laser communications

    NASA Astrophysics Data System (ADS)

    Li, Mengnan; Tan, Liying; Ma, Jing; Yu, Siyuan; Yang, Qingbo; Wu, Jiajie

    2016-05-01

    Based on the characteristics of the laser device and the inevitable error of the processing technique, a laser beam emitted from a communication terminal can be represented by the Gaussian Schell model (GSM). In space-to-ground link laser communications, the optical intensity is affected by the source coherence parameter and the zenith angle. With full consideration of these two parameters, the statistical distribution model of the optical intensity with a GSM laser in both downlink and uplink is derived. The simulation results indicate that increasing the source coherence parameter has an effect on the statistical distribution of the optical intensity; this effect is highly similar to the effect of a larger zenith angle. The optical intensity invariably degrades with increasing source coherence parameter or zenith angle. The results of this work can promote the improvement of the redundancy design of a laser communication receiver system.

  9. Distributed Bragg reflectors obtained by combining Se and Te compounds: Influence on the luminescence from CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Rousset, J.-G.; Kobak, J.; Janik, E.; Parlinska-Wojtan, M.; Slupinski, T.; Golnik, A.; Kossacki, P.; Nawrocki, M.; Pacuski, W.

    2016-05-01

    We report on the optical properties of structures containing self assembled CdTe quantum dots (QDs) combined with Te and Se based distributed Bragg reflectors either in a half cavity geometry with a relatively broad cavity mode or in a full cavity geometry where the cavity mode is much narrower. We show that for both structures the extraction coefficient of the light emitted from the QDs ensemble is enhanced by more than one order of magnitude with respect to the QDs grown on a ZnTe buffer. However, a single QD line broadening is observed and attributed to an unintentional incorporation of Se in the vicinity of the CdTe QDs. We show that postponing the QDs growth for 24 h after the distributed Bragg reflector deposition allows recovering sharp emission lines from individual QDs. This two step growth method is proven to be efficient also for the structures with CdTe QDs containing a single Mn2+ ion.

  10. Reliability of Radial Distribution Functions Obtained from Muticomponent HMSA Integral Equation for CO2 Shock Product Mixture

    NASA Astrophysics Data System (ADS)

    Anikeev, A. A.; Bogdanova, Yu. A.; Gubin, S. A.

    Multicomponent hypernetted-chain/soft core mean spherical approximation (HMSA) was shown to be successfully applied for the problem of ambidextrous attractive/repulsive interaction simulation in dense fluids like shock compression products of CxNyOz liquid systems. This approximation provides high numerical accuracy for thermodynamic quantities due to its self-consistency. In addition, distribution function integral equation theory (DFIET) doesn't require chemical equilibrium for simulated systems. Reproducible shock Hugoniot curves verify the macroscopic properties such as pressure and internal energy. Radial distribution function analysis, proposed in this paper, approves macroscopic and microscopic/structural short-range order properties both by molecular Monte-Carlo (MC) method for multicomponent dissociation products of liquid CO2 up to 160 GPa.

  11. Thermalization of mini-jets in a quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Iancu, Edmond; Wu, Bin

    2015-10-01

    We complete the physical picture for the evolution of a high-energy jet propagating through a weakly-coupled quark-gluon plasma by investigating the thermalization of the soft components of the jet. We argue that the following scenario should hold: the leading particle emits a significant number of mini-jets which promptly evolve via quasi-democratic branchings and thus degrade into a myriad of soft gluons, with energies of the order of the medium temperature T. Via elastic collisions with the medium constituents, these soft gluons relax to local thermal equilibrium with the plasma over a time scale which is considerably shorter than the typical lifetime of the mini-jet. The thermalized gluons form a tail which lags behind the hard components of the jet. We support this scenario, first, via parametric arguments and, next, by studying a simplified kinetic equation, which describes the jet dynamics in longitudinal phase-space. We solve the kinetic equation using both (semi-)analytical and numerical methods. In particular, we obtain the first exact, analytic, solutions to the ultrarelativistic Fokker-Planck equation in one-dimensional phase-space. Our results confirm the physical picture aforementioned and demonstrate the quenching of the jet via multiple branching followed by the thermalization of the soft gluons in the cascades.

  12. Hybrid neutron stars with the Dyson-Schwinger quark model and various quark-gluon vertices

    NASA Astrophysics Data System (ADS)

    Chen, H.; Wei, J.-B.; Baldo, M.; Burgio, G. F.; Schulze, H.-J.

    2015-05-01

    We study cold dense quark matter and hybrid neutron stars with a Dyson-Schwinger quark model and various choices of the quark-gluon vertex. We obtain the equation of state of quark matter in beta equilibrium and investigate the hadron-quark phase transition in combination with a hadronic equation of state derived within the Brueckner-Hartree-Fock many-body theory. Comparing with the results for quark matter within the rainbow approximation, the Ball-Chiu (BC) Ansatz and the 1BC Ansatz for the quark-gluon vertex lead to a reduction of the effective interaction at finite chemical potential, qualitatively similar to the effect of our gluon propagator. We find that the phase transition and the equation of state of the quark or mixed phase and consequently the resulting hybrid star mass and radius depend mainly on a global reduction of the effective interaction due to effects of both the quark-gluon vertex and gluon propagator, but are not sensitive to details of the vertex Ansatz.

  13. Electric conductivity of the quark-gluon plasma investigated using a perturbative QCD based parton cascade

    NASA Astrophysics Data System (ADS)

    Greif, Moritz; Bouras, Ioannis; Greiner, Carsten; Xu, Zhe

    2014-11-01

    Electric conductivity is sensitive to effective cross sections among the particles of the partonic medium. We investigate the electric conductivity of a hot plasma of quarks and gluons, solving the relativistic Boltzmann equation. In order to extract this transport coefficient, we employ the Green-Kubo formalism and, independently, a method motivated by the classical definition of electric conductivity. To this end we evaluate the static electric diffusion current upon the influence of an electric field. Both methods give identical results. For the first time, we obtain numerically the Drude electric conductivity formula for an ultrarelativistic gas of quarks and gluons employing constant isotropic binary cross sections. Furthermore, we extract the electric conductivity for a system of massless quarks and gluons including screened binary and inelastic, radiative 2 ↔3 perturbative QCD scattering. Comparing with recent lattice results, we find an agreement in the temperature dependence of the conductivity.

  14. A T-matrix calculation for in-medium heavy-quark gluon scattering

    NASA Astrophysics Data System (ADS)

    Huggins, K.; Rapp, R.

    2012-12-01

    The interactions of charm and bottom quarks in a quark-gluon plasma (QGP) are evaluated using a thermodynamic 2-body T-matrix. We specifically focus on heavy-quark (HQ) interactions with thermal gluons with an input potential motivated by lattice-QCD computations of the HQ free energy. The latter is implemented into a field-theoretic ansatz for color-Coulomb and (remnants of) confining interactions. This, in particular, enables to discuss corrections to the potential approach, specifically hard-thermal-loop corrections to the vertices, relativistic corrections deduced from pertinent Feynman diagrams, and a suitable projection on transverse thermal gluons. The resulting potentials are applied to compute scattering amplitudes in different color channels and utilized for a calculation of the corresponding HQ drag coefficient in the QGP. A factor of ˜2-3 enhancement over perturbative results is obtained, mainly driven by the resummation in the attractive color-channels.

  15. Analytic Structure of the Landau-Gauge Gluon Propagator

    NASA Astrophysics Data System (ADS)

    Strauss, Stefan; Fischer, Christian S.; Kellermann, Christian

    2012-12-01

    The analytic structure of the nonperturbative gluon propagator contains information on the absence of gluons from the physical spectrum of the theory. We study this structure from numerical solutions in the complex momentum plane of the gluon and ghost Dyson-Schwinger equations in Landau gauge Yang-Mills theory. The resulting ghost and gluon propagators are analytic apart from a distinct cut structure on the real, timelike momentum axis. The propagator violates the Osterwalder-Schrader positivity condition, confirming the absence of gluons from the asymptotic spectrum of the theory.

  16. Analytic structure of the Landau-gauge gluon propagator.

    PubMed

    Strauss, Stefan; Fischer, Christian S; Kellermann, Christian

    2012-12-21

    The analytic structure of the nonperturbative gluon propagator contains information on the absence of gluons from the physical spectrum of the theory. We study this structure from numerical solutions in the complex momentum plane of the gluon and ghost Dyson-Schwinger equations in Landau gauge Yang-Mills theory. The resulting ghost and gluon propagators are analytic apart from a distinct cut structure on the real, timelike momentum axis. The propagator violates the Osterwalder-Schrader positivity condition, confirming the absence of gluons from the asymptotic spectrum of the theory. PMID:23368451

  17. The Riemann problem for the Brio system: a solution containing a Dirac mass obtained via a distributional product

    NASA Astrophysics Data System (ADS)

    Sarrico, C. O. R.

    2015-10-01

    The system of conservation laws {u_t} + {( {{{u^2} + {v^2}}/2} )_x} = 0, v t + ( uv - v)x = 0 with the initial conditions u( x, 0) = l 0 + b 0 H( x), v( x, 0) = k 0 + c 0 H( x), where H is the Heaviside function is studied. This strictly hyperbolic system was introduced by M. Brio in 1988 and provides a simplified model for the magnetohydrodynamics equations. Under certain compatibility conditions for the constants l 0, b 0, k 0, c 0, an explicit solution containing a Dirac mass is given and we prove the uniqueness of this solution within a convenient class of distributions which includes Dirac-delta measures. Our concept of solution is defined within the framework of a distributional product, and it is a consistent extension of the concept of a classical solution. This direct method seems considerably simpler than the weak asymptotic method usually used in the study of delta-shocks emergence in nonlinear conservation laws.

  18. Gluon saturation and Feynman scaling in leading neutron production

    NASA Astrophysics Data System (ADS)

    Carvalho, F.; Gonçalves, V. P.; Spiering, D.; Navarra, F. S.

    2016-01-01

    In this paper we extend the color dipole formalism for the study of leading neutron production in e + p → e + n + X collisions at high energies and estimate the related observables which were measured at HERA and could be analyzed in future electron-proton (ep) colliders. In particular, we calculate the Feynman xF distribution of leading neutrons, which is expressed in terms of the pion flux and the photon-pion total cross section. In the color dipole formalism, the photon-pion cross section is described in terms of the dipole-pion scattering amplitude, which contains information about the QCD dynamics at high energies and gluon saturation effects. We consider different models for the scattering amplitude, which have been used to describe the inclusive and diffractive ep HERA data. Moreover, the model dependence of our predictions with the description of the pion flux is analyzed in detail. We demonstrate the recently released H1 leading neutron spectra can be described using the color dipole formalism and that these spectra could help us to observe more clearly gluon saturation effects in future ep colliders.

  19. The Fluid Nature of Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Zajc, W. A.

    2008-06-01

    Collisions of heavy nuclei at very high energies offer the exciting possibility of experimentally exploring the phase transformation from hadronic to partonic degrees of freedom which is predicted to occur at several times normal nuclear density and/or for temperatures in excess of ˜170MeV. Such a state, often referred to as a quark-gluon plasma, is thought to have been the dominant form of matter in the universe in the first few microseconds after the Big Bang. Data from the first five years of heavy ion collisions of Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) clearly demonstrate that these very high temperatures and densities have been achieved. While there are strong suggestions of the role of quark degrees of freedom in determining the final-state distributions of the produced matter, there is also compelling evidence that the matter does not behave as a quasi-ideal state of free quarks and gluons. Rather, its behavior is that of a dense fluid with very low kinematic viscosity exhibiting strong hydrodynamic flow and nearly complete absorption of high momentum probes. The current status of the RHIC experimental studies is presented, with a special emphasis on the fluid properties of the created matter, which may in fact be the most perfect fluid ever studied in the laboratory.

  20. Mass influx obtained from low-light-level television observations of faint meteors. [for modeling meteoroid mass distribution

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Clifton, K. S.

    1973-01-01

    Low light level television systems offer the ability to observe meteors as faint as 10th magnitude which allows the extension of optical meteor data to masses as small as 0.0001 gram. The results of these observations, using image orthicons and intensified vidicons, are presented along with an interpretation in terms of mass flux. This interpretation includes the development of a relationship between peak luminosity of a meteor and mass, velocity, and zenith angle that was derived from single body meteor theory and compares favorably with results obtained from the artificial meteor program. Also included in the mass flux interpretation is an analysis of the observation response of a LLLTV system to fixed and moving point sources.

  1. Running coupling corrections to inclusive gluon production

    NASA Astrophysics Data System (ADS)

    Horowitz, W. A.; Kovchegov, Y. V.

    2011-12-01

    We calculate running coupling corrections for the lowest-order gluon production cross section in high energy hadronic and nuclear scattering using the BLM scale-setting prescription. At leading order, there are three powers of fixed coupling; in our final answer, these three couplings are replaced by seven factors of running coupling: five in the numerator and two in the denominator, forming a 'septumvirate' of running couplings, analogous to the 'triumvirate' of running couplings found earlier for the small-x BFKL/BK/JIMWLK evolution equations. It is interesting to note that the two running couplings in the denominator of the 'septumvirate' run with complex-valued momentum scales, which are complex conjugates of each other, such that the production cross section is indeed real. We use our lowest-order result to conjecture how running coupling corrections may enter the full fixed-coupling kT-factorization formula for gluon production which includes nonlinear small-x evolution.

  2. Insights into the dynamics of planetary interiors obtained through the study of global distribution of volcanoes II: Tectonic implications from Venus

    NASA Astrophysics Data System (ADS)

    Cañon-Tapia, Edgardo

    2014-06-01

    The distribution of volcanic features is ultimately controlled by processes taking place beneath the surface of a planet. For this reason, characterization of volcano distribution at a global scale can be used to obtain insights concerning dynamic aspects of planetary interiors. Until present, studies of this type commonly have focused on volcanic features of a specific type (e.g., large volcanoes in Venus or hot-spot volcanism on Earth), or have concentrated on relatively small regions (i.e., vent distribution within individual volcanic fields), but no comparison of extensive databases has been made by using the same tools in both planets. In this work, the description of the distribution of volcanic features observed over the entire surface of Venus is made using the same tool used for Earth, and is applied to an extensive database. The analysis is based on density contours obtained with the Fisher kernel. As a result, several groupings of volcanoes are identified refining the already documented concentration of volcanoes on the BAT zone. In particular some doughnut-like patterns are observed that might be related to the action of mantle plumes. The occurrence of such features on Earth, as well as the existence of a uniform distribution of background volcanism on both planets, suggests similarities on their geodynamic behavior that had not been identified previously.

  3. Clinical utility of the neutrophil distribution pattern obtained using the CELL-DYN SAPPHIRE hematology analyzer for the diagnosis of myelodysplastic syndrome.

    PubMed

    Inaba, Tohru; Yuki, Yoichi; Yuasa, Soichi; Fujita, Naohisa; Yoshitomi, Kazue; Kamisako, Toshinori; Torii, Kunio; Okada, Toshiharu; Urasaki, Yoshimasa; Ueda, Takanori; Tohyama, Kaoru

    2011-08-01

    We evaluated the diagnostic utility of peripheral blood neutrophil distribution patterns obtained using the CELL-DYN SAPPHIRE hematology analyzer in patients with myelodysplastic syndrome (MDS). Peripheral blood was obtained from 467 individuals including 32 patients with MDS, and the respective neutrophil distribution patterns were observed using two light scatters [7-degree complexity (7D) and 90-degree lobularity (90D)]. These scattering intensities are shown as median (median neutrophil distribution: MND) and coefficient of variation (neutrophil distribution width: NDW). Generally, MDS patients showed lower 7D MND, higher 7D NDW, lower 90D MND and higher 90D NDW than other comparable groups. Whereas 90D parameters were more diagnostically efficient than 7D ones in patients with MDS. The sensitivity and specificity of 90D MND for MDS patients became 78.1 and 78.9%, respectively (cut-off value = 14,514). 90D NDW was most diagnostically effective with 87.5% sensitivity and 91.0% specificity (cut-off value = 21.2%). Both 90D parameters showed no evident correlation with the degree of either leukocytopenia or peripheral blood dysgranulopoiesis. In conclusion, neutrophil distribution parameters, especially 90D NDW, appear to provide convenient and objective markers for the screening of patients with MDS in routine laboratory hematology. PMID:21732036

  4. Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Dijet Production in Deep Inelastic Scattering.

    PubMed

    Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2016-05-20

    We investigate the close connection between the quantum phase space Wigner distribution of small-x gluons and the color dipole scattering amplitude, and we propose studying it experimentally in the hard diffractive dijet production at the planned electron-ion collider. The angular correlation between the nucleon recoiled momentum and the dijet transverse momentum probes the nontrivial correlation in the phase space Wigner distribution. This experimental study not only provides us with three-dimensional tomographic pictures of gluons inside high energy protons-it gives a unique and interesting signal for the small-x dynamics with QCD evolution effects. PMID:27258865

  5. Gluon spectrum in the glasma from JIMWLK evolution

    NASA Astrophysics Data System (ADS)

    Lappi, T.

    2011-09-01

    The JIMWLK equation with a "daughter dipole" running coupling is solved numerically, starting from an initial condition given by the McLerran-Venugopalan model. The resulting Wilson line configurations are then used to compute the spectrum of gluons comprising the glasma initial state of a high energy heavy ion collision. The development of a geometrical scaling region makes the spectrum of produced gluons harder. Thus the ratio of the mean gluon transverse momentum to the saturation scale grows with energy. Also the total gluon multiplicity increases with energy slightly faster than the saturation scale squared.

  6. Semirelativistic potential model for three-gluon glueballs

    SciTech Connect

    Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard

    2008-05-01

    The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Our results are in good agreement with other approaches and lattice calculation for the odderon trajectory but differ strongly from lattice in the J{sup +-} sector. We propose a possible explanation for this problem.

  7. Probing the gluon density of the proton in the exclusive photoproduction of vector mesons at the LHC: a phenomenological analysis

    NASA Astrophysics Data System (ADS)

    Gonçalves, V. P.; Martins, L. A. S.; Sauter, W. K.

    2016-02-01

    The current uncertainty on the gluon density extracted from the global parton analysis is large in the kinematical range of small values of the Bjorken- x variable and low values of the hard scale Q^2. An alternative to reduces this uncertainty is the analysis of the exclusive vector meson photoproduction in photon-hadron and hadron-hadron collisions. This process offers a unique opportunity to constrain the gluon density of the proton, since its cross section is proportional to the gluon density squared. In this paper we consider current parametrisations for the gluon distribution and estimate the exclusive vector meson photoproduction cross section at HERA and LHC using the leading logarithmic formalism. We perform a fit of the normalisation of the γ h cross section and the value of the hard scale for the process and demonstrate that the current LHCb experimental data are better described by models that assume a slow increasing of the gluon distribution at small x and low Q^2.

  8. Renormalization group analysis of the gluon mass equation

    NASA Astrophysics Data System (ADS)

    Aguilar, A. C.; Binosi, D.; Papavassiliou, J.

    2014-04-01

    We carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass in pure Yang-Mills theory, without quark effects taken into account. A detailed, all-order analysis of the complete kernel appearing in this particular equation, derived in the Landau gauge, reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained solutions, for which the deviations from the correct behavior are best quantified by resorting to appropriately defined renormalization-group invariant quantities. This analysis, in turn, provides a solid guiding principle for improving the form of the kernel, and furnishes a well-defined criterion for discriminating between various possibilities. Certain renormalization-group inspired Ansätze for the kernel are then proposed, and their numerical implications are explored in detail. One of the solutions obtained fulfills the theoretical expectations to a high degree of accuracy, yielding a gluon mass that is positive definite throughout the entire range of physical momenta, and displays in the ultraviolet the so-called "power-law" running, in agreement with standard arguments based on the operator product expansion. Some of the technical difficulties thwarting a more rigorous determination of the kernel are discussed, and possible future directions are briefly mentioned.

  9. Monte Carlo based method for conversion of in-situ gamma ray spectra obtained with a portable Ge detector to an incident photon flux energy distribution.

    PubMed

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M; Silva, J

    1998-02-01

    A Monte Carlo based method for the conversion of an in-situ gamma-ray spectrum obtained with a portable Ge detector to photon flux energy distribution is proposed. The spectrum is first stripped of the partial absorption and cosmic-ray events leaving only the events corresponding to the full absorption of a gamma ray. Applying to the resulting spectrum the full absorption efficiency curve of the detector determined by calibrated point sources and Monte Carlo simulations, the photon flux energy distribution is deduced. The events corresponding to partial absorption in the detector are determined by Monte Carlo simulations for different incident photon energies and angles using the CERN's GEANT library. Using the detector's characteristics given by the manufacturer as input it is impossible to reproduce experimental spectra obtained with point sources. A transition zone of increasing charge collection efficiency has to be introduced in the simulation geometry, after the inactive Ge layer, in order to obtain good agreement between the simulated and experimental spectra. The functional form of the charge collection efficiency is deduced from a diffusion model. PMID:9450590

  10. Leading order determination of the gluon polarisation from DIS events with high-pT hadron pairs

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Alekseev, M. G.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Antonov, A. A.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Burtin, E.; Chaberny, D.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hedicke, S.; Heinsius, F. H.; Herrmann, F.; Heß, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Korzenev, A.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.-M.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, T.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Moinester, M. A.; Morreale, A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J. P.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Nowak, W. D.; Nunes, A. S.; Olshevsky, A. G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Perevalova, E.; Pesaro, G.; Peshekhonov, D. V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pontecorvo, G.; Pretz, J.; Procureur, S. L.; Quaresma, M.; Quintans, C.; Rajotte, J.-F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Rocco, E.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sapozhnikov, M. G.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, K.; Schmitt, L.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sissakian, A. N.; Slunecka, M.; Smirnov, G. I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Tkatchev, L. G.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vlassov, N. V.; Wang, L.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhuravlev, N.; Zvyagin, A.

    2013-01-01

    We present a determination of the gluon polarisation Δg / g in the nucleon, based on the longitudinal double-spin asymmetry of DIS events with Q2 > 1 (GeV / c) 2 including a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam scattering off a polarised 6LiD target. The gluon polarisation is evaluated by a Neural Network approach for three intervals of the gluon momentum fraction xg covering the range 0.04 obtained at leading order in QCD do not show any significant dependence on xg. Their average is Δg / g = 0.125 ± 0.060 (stat.) ± 0.063 (syst.) at average xg = 0.09 and a scale of μ2 = 3 (GeV / c) 2.

  11. An approach to fast fits of the unintegrated gluon density

    SciTech Connect

    Knutsson, Albert; Bacchetta, Alessandro; Kutak, Krzyzstof; Jung, Hannes

    2009-01-01

    An approach to fast fits of the unintegrated gluon density has been developed and used to determine the unintegrated gluon density by fits to deep inelastic scatting di-jet data from HERA. The fitting method is based on the determination of the parameter dependence by help of interpolating between grid points in the parameter-observable space before the actual fit is performed.

  12. Gluon production in the Lipatov effective action formalism

    NASA Astrophysics Data System (ADS)

    Braun, M. A.; Pozdnyakov, S. S.; Salykin, M. Yu.; Vyazovsky, M. I.

    2013-09-01

    Gluon production on two scattering centers is studied in the formalism of reggeized gluons. Different contributions to the inclusive cross section are derived with the help of the Lipatov effective action. The AGK relations between these contributions are established. The inclusive cross section found is compared to the one in the dipole picture and demonstrated to be the same.

  13. Comment on the paper ‘The impact of Langmuir probe geometries on electron current collection and the integral relation for obtaining electron energy distribution functions’

    NASA Astrophysics Data System (ADS)

    Tsankov, Tsanko V.; Czarnetzki, Uwe

    2016-08-01

    A paper by El Saghir and Shannon (2012 Plasma Sources Sci. Technol. 21 025003) raises the question about the validity of the widely-used Druyvesteyn formula for obtaining the electron energy distribution function by cylindrical probes. They conclude that there are deviations between the Druyvesteyn formula for cylindrical and for spherical probes. In this comment this conclusion is questioned and the correct expressions are derived. It is shown that no such difference exists when all three velocity components are correctly accounted for. Furthermore, the disturbance to the plasma introduced by the probe is estimated.

  14. A Dye-Tracer Technique for Experimentally Obtaining Impingement Characteristics of Arbitrary Bodies and a Method for Determining Droplet Size Distribution

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe H.; Gelder, Thomas F.; Smyers, William H., Jr.

    1955-01-01

    A dye-tracer technique has been developed whereby the quantity of dyed water collected on a blotter-wrapped body exposed to an air stream containing a dyed-water spray cloud can be colorimetrically determined in order to obtain local collection efficiencies, total collection efficiency, and rearward extent of impingement on the body. In addition, a method has been developed whereby the impingement characteristics obtained experimentally for a body can be related to theoretical impingement data for the same body in order to determine the droplet size distribution of the impinging cloud. Several cylinders, a ribbon, and an aspirating device to measure cloud liquid-water content were used in the studies presented herein for the purpose of evaluating the dye-tracer technique. Although the experimental techniques used in the dye-tracer technique require careful control, the methods presented herein should be applicable for any wind tunnel provided the humidity of the air stream can be maintained near saturation.

  15. Gluon Polarisation in the Nucleon from High Transverse Momentum Hadron Pairs at COMPASS

    SciTech Connect

    Kurek, Krzysztof

    2009-08-04

    The main goal of the COMPASS spin physics programme is the measurement of the helicity contribution of the gluons, {delta}G/G, to the nucleon spin. It is determined from the longitudinal spin asymmetry in the scattering of 160 GeV polarised muons off a polarised LiD target. The new analysis and new COMPASS {delta}G/G result obtained from high transverse momentum hadron pairs for Q{sup 2}>1(GeV/c){sup 2} is presented. The weighted method based on a Neural Network approach is discussed. The result of {delta}G/G 0.08{+-}0.10(stat){+-}0.05(syst)disfavors a large positive contribution to the nucleon spin for a gluon momentum fraction around 0.08 and agrees with the previously obtained result from the analysis for the small Q{sup 2} kinematical region (Q{sup 2}<1(GeV/c){sup 2})

  16. Probing Quark-Gluon Structure of Matter with e-p and e-A Reactions

    SciTech Connect

    Jian-Ping Chen

    2011-11-01

    Understanding the strong interaction (QCD) in the truly strong ('non-perturbative') region remains a major challenge in modern physics. Nucleon and nuclei provide natural laboratories to study the strong interaction. The quark-gluon structure of the nucleon and nuclei are important by themselves since they are the main (>99%) part of the visible world. With electroweak interaction well-understood, e-p and e-A are clean means to probe the nucleon and nuclear structure and to study the strong interaction (QCD). Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinally-polarized parton (quark and gluon) distributions (PDFs). It has becoming clear that transverse spin and transverse structure (both transverse spatial structure via generalized parton distributions (GPDs) and transverse momentum structure via transverse- momentum-dependent distributions (TMDs)) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction(QCD). The transverse spin, GPDs and TMDs have been the subjects of increasingly intense theoretical and experimental study recently. With 12 GeV energy upgrade, Jefferson Lab (JLab) will provide the most precise multi-dimensional map of the TMDs and GPDs in the valence quark region through Semi-Inclusive DIS (SIDIS) and Deep-Exclusive experiments, providing a 3-d partonic picture of the nucleon in momentum and spatial spaces. The precision information on TMDs and GPDs will provide access to the quark orbital angular momentum and its correlation with the quark and the nucleon spins. The planned future Electron-Ion Collider (EIC) will enable a precision study of the TMDs and GPDs of the sea quarks and gluons, in addition to completing the study in the valence region. The EIC will also open a new window to study the role of gluons in nuclei.

  17. The influence of matrix and laser energy on the molecular mass distribution of synthetic polymers obtained by MALDI-TOF-MS

    NASA Astrophysics Data System (ADS)

    Wetzel, Stephanie J.; Guttman, Charles M.; Girard, James E.

    2004-11-01

    The molecular mass distribution (MMD) obtained in synthetic polymer characterization by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) may be biased by preferential desorption/ionization of low mass polymer molecules, preferential ion attachment to larger polymers, or degradation and fragmentation due to the desorption process. In this study we focus on the effect of matrix and laser energy on the MMD of four synthetic polymers of low polydispersity with varying thermal stabilities. The four polymers considered were polystyrene (PS), poly(ethylene glycol) (PEG), poly(methyl methacrylate) (PMMA) and poly(tetrahydrofuran) (PTHF). The matrix in which the polymer is analyzed may also influence the laser energy effect of MALDI and was also considered in this paper. Three common matrixes were considered, dithranol, all trans-retinoic acid (RA) and 2,5-dihydroxybenzoic acid (DHB). Statistical analyses of the molecular mass distributions, obtained by varying laser energy and matrixes, reveal trends that can be used to describe the influences of matrix and laser energy on MALDI-TOF-MS data measurement of synthetic polymers. The statistical analysis revealed that the matrix has a greater effect on the polymer MMD than was expected. Polymers analyzed in DHB yielded lower mass moments than polymers analyzed in RA and dithranol. The effects of laser power on the MMD of the polymers were found to be matrix dependent.

  18. Interfacing a fluid code (Induct95) with a particle code (PDP1) to obtain ion energy distributions in inductive and capacitive discharges

    SciTech Connect

    Kawamura, E.; Verboncoeur, J.P.; Birdsall, C.K.

    1996-12-31

    The goal is to obtain the ion angular and energy distributions at the wafer of inductive and capacitive discharges. To do this on a standard uniform mesh with particle codes alone would be impractical because of the long time scale nature of the problem (i.e., 10{sup 6} time steps). A solution is to use a fluid code to simulate the bulk source region, while using a particle-in-cell code to simulate the sheath region. Induct95 is a 2d fluid code which can simulate inductive and capacitive discharges. Though it does not resolve the sheath region near the wafer, it provides diagnostics for the collisional bulk plasma (i.e., potentials, temperatures, fluxes, etc.). Also, fluid codes converge to equilibrium much faster than particle codes in collisional regimes PDP1 is a 1d3v particle-in-cell code which can simulate rf discharges. It can resolve the sheath region and obtain the ion angular and energy distributions at the wafer target. The overall running time is expected to be that of the fluid code.

  19. Gluon-initiated production of a Kaluza-Klein gluon in a bulk Randall-Sundrum model

    NASA Astrophysics Data System (ADS)

    Allanach, Benjamin C.; Mahmoudi, Farvah; Skittrall, Jordan P.; Sridhar, K.

    2010-03-01

    In the Bulk Randall-Sundrum model, the Kaluza-Klein excitations of the gauge bosons are the primary signatures. In particular, the search for the Kaluza-Klein (KK) excitation of the gluon at hadron colliders is of great importance in testing this model. At the leading order in QCD, the production of this KK-gluon proceeds only via qbar q -initial states. We study the production of KK-gluons from gluon initial states at next-to-leading order in QCD. We find that, even after including the sub-dominant KK-gluon loops at this order, the next-to-leading order (NLO) cross-section is tiny compared to the leading order cross-section and unlikely to impact the searches for this resonance at hardon colliders.

  20. Gluon Green functions free of quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Athenodorou, A.; Boucaud, Ph.; De Soto, F.; Rodríguez-Quintero, J.; Zafeiropoulos, S.

    2016-09-01

    This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, remove the ΛQCD scale and destroy the transition from the confining non-perturbative to the asymptotically-free perturbative sector. After the Wilson flow, the behavior of the Green functions with momenta can be described in terms of the quasi-classical instanton background. The same behavior also occurs, before the Wilson flow, at low-momenta. This last result permits applications as, for instance, the detection of instanton phenomenological properties or a determination of the lattice spacing only from the gauge sector of the theory.

  1. On The Quark-Gluon Vertex

    SciTech Connect

    Bashir, A.; Gutierrez-Guerrero, L. X.; Tejeda-Yeomans, M. E

    2008-07-02

    There has been growing evidence that the infra-red enhancement of the form factors defining the quark-gluon vertex plays an important role both in dynamical chiral symmetry breaking and confinement, thus providing an intrinsic link between the the two inherently non-perturbative phenomena. Both lattice and Schwinger-Dyson equation studies have begun to calculate these form factors in various kinematical regimes of momenta involved. A natural consistency check for these studies is that they should match onto the perturbative predictions for large momenta where non-perturbative effects mellow down. In this article, we study this matching by carrying out a numerical analysis of the one loop result for the central Ball-Chiu form factor.

  2. Weak quark couplings induced by gluon corrections

    NASA Astrophysics Data System (ADS)

    Gavela, M. B.; Le Yaouanc, A.; Oliver, L.; Pène, O.; Raynal, J. C.

    1980-12-01

    We compute the quark couplings in flavor-changing semileptonic transitions induced by lowest-order gluon corrections. We investigate the consequences of these radiative corrections for the quark axial-vector coupling, the deviations from Cabibbo universality for the axial-vector relative to the vector current, and the induced couplings (first-class pseudoscalar and anomalous magnetic moment, and second-class scalar and pseudotensor). The correction lowers the axial-vector coupling and increases the magnetic moment. We study the dependence of the couplings on the quark mass difference. Some of these results, true to all orders in αs, generalize the theorem of Ademollo and Gatto. The effective current is pure V-A to a very good approximation for transitions of heavy quarks (m>~5 GeV).

  3. Check of the gluon-reggeization condition in the next-to-leading order: Gluon part

    SciTech Connect

    Kozlov, M. G. Reznichenko, A. V. Fadin, V. S.

    2012-04-15

    The last bootstrap condition whose validity has not been verified to date is considered. This condition is an indispensable element in the unitarity-relation-based proof of themulti-Regge form of highenergy gluon-exchange QCD amplitudes in the next-to-leading-logarithm approximation. The approach used here relies on the s-channel unitarity and makes it possible to reproduce successively, in all orders of perturbation theory, themulti-Regge form of the amplitude, provided that specific nonlinear relations, called bootstrap conditions, hold. All of them were derived, and all, with the exception of one, were tested. An explicit verification of fulfillment of the last condition (the bootstrap condition for the inelastic amplitude of the production of one gluon inmulti-Regge kinematics) is performed. In our preceding study, we performed such a verification for purely fermion contributions, while, in the present study, we complete it for one-loop gluon corrections to the components of the condition being considered.

  4. Inclusive b-jet and bb¯-dijet production at the LHC via Reggeized gluons

    NASA Astrophysics Data System (ADS)

    Saleev, V. A.; Shipilova, A. V.

    2012-08-01

    We study inclusive b-jet and bb¯-dijet production at the CERN LHC invoking the hypothesis of gluon Reggeization in t-channel exchanges at high energy. The b-jet cross section includes contributions from open b-quark production and from b-quark production via gluon-to-bottom-pair fragmentation. The transverse-momentum distributions of inclusive b-jet production measured with the ATLAS detector at the CERN LHC in different rapidity ranges are calculated both within multi-Regge kinematics and quasi-multi-Regge kinematics. The bb¯-dijet cross section is calculated within quasi-multi-Regge kinematics as a function of the dijet invariant mass Mjj, the azimuthal angle between the two jets Δϕ, and the angular variable χ. At the numerical calculation, we adopt the Kimber-Martin-Ryskin and Blümlein prescriptions to derive unintegrated gluon distribution function of the proton from its collinear counterpart for which we use the Martin-Roberts-Stirling-Thorne set. We find good agreement with measurements by the ATLAS and CMS Collaborations at the LHC at the hadronic c.m. energy of S=7TeV.

  5. Exclusive J/ψ and ϒ photoproduction and the low x gluon

    NASA Astrophysics Data System (ADS)

    Jones, S. P.; Martin, A. D.; Ryskin, M. G.; Teubner, T.

    2016-04-01

    We study exclusive vector meson photoproduction, γ p\\to V+p with V=J/\\psi or ϒ, at next-to-leading order (NLO) in collinear factorisation, in order to examine what may be learnt about the gluon distribution at very low x. We examine the factorisation scale dependence of the predictions. We argue that, using knowledge of the NLO corrections, terms enhanced by a large {ln}(1/ξ ) can be reabsorbed in the LO part by a choice of the factorisation scale. (In these exclusive processes ξ takes the role of Bjorken-x.) Then, the scale dependence coming from the remaining NLO contributions has no {ln}(1/ξ ) enhancements. As a result, we find that predictions for the amplitude of ϒ production are stable to within about ±15%. This will allow data for the exclusive process {pp}\\to p{{\\Upsilon }}p at the Large Hadron Collider (LHC), particularly from LHCb, to be included in global parton analyses to constrain the gluon parton distribution function (PDF) down to x∼ {10}-5. Moreover, the study of exclusive J/\\psi photoproduction indicates that the gluon density found in the recent global PDF analyses is too small at low x and low scales.

  6. Properties of Non-Conformal Quark Gluon Plasma of Holographic QCD Models from Compactified D4 Branes

    NASA Astrophysics Data System (ADS)

    Naji, J.

    2016-03-01

    In this article, we obtain some thermodynamics quantities of non-conformal gluonic matter. We extract specific heat, enthalpy and equation of state in terms of the temperature. Using transport properties we find important quantities of corresponding quark gluon plasma like drag force and jet-quenching.

  7. Properties of Non-Conformal Quark Gluon Plasma of Holographic QCD Models from Compactified D4 Branes

    NASA Astrophysics Data System (ADS)

    Naji, J.

    2016-08-01

    In this article, we obtain some thermodynamics quantities of non-conformal gluonic matter. We extract specific heat, enthalpy and equation of state in terms of the temperature. Using transport properties we find important quantities of corresponding quark gluon plasma like drag force and jet-quenching.

  8. Pressure distributions obtained on a 0.10-scale model of the space shuttle Orbiter's forebody in the AEDC 16T propulsion wind tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the AEDC 16T Propulsion Wind Tunnel. The 0.10-scale model was tested at angles of attack from -2 deg to 18 deg and angles of side slip from -6 to 6 deg at Mach numbers from 0.25 to 1/5 deg. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Orbiter Columbia (OV-102) during the Orbiter Flight Test program. This DFI simulation has provided a means of comparisons between reentry flight pressure data and wind-tunnel and computational data.

  9. Obtaining magnitude-cumulative frequency curves from rockfall scar size distribution using cosmogenic chlorine-36 in the Montsec area (Eastern Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Domènech, Guillem; Mavrouli, Olga; Corominas, Jordi; Abellán, Antonio; Merchel, Silke; Pavetich, Stefan; Rugel, Georg

    2015-04-01

    Magnitude-cumulative frequency (MCF) relations are commonly used components for assessing the rockfall hazard using databases of recorded events. However, in some cases, data are lacking or incomplete. To overcome this restriction, the volume distribution of the rockfall scars has been used instead. The latter may yield the temporal probability of occurrence if the time span required to generate the scars is known. The Montsec range, located in the Eastern Pyrenees, Spain, was chosen as a pilot study area for investigating MCF distributions. This cliff, which is composed of limestones from Upper Cretaceous age, shows distinct evidences of rockfall activity, including large recent rockfall scars. These areas are identifiable by their orange colour, which contrasts in front of the greyish old stable (reference) surface of the cliff face. We present a procedure to obtain the MCF of the rockfall scars by dating an old reference cliff surface and measuring the total volume released since then. The reference cliff surface was dated using the terrestrial cosmogenic nuclide (TCN) chlorine-36 (Merchel et al., 2013). We used the Rockfall Scar Size Distribution (RSSD) obtained in Domènech et al. (2014) that considers several rockfall pattern scenarios. Scenario 1 allows for, mostly, large rockfall scar volumes, scenario 2 considers smaller occurrences and scenario 3 suggests that rockfall scars can be the result of one or several rockfall events, and thus contemplating a wider range of scar volumes. The main steps of the methodology are: a) Obtaining the RSSD, b) Volume calculation of material lost, c) Calculation of time (T0) elapsed for the cliff to retreat (age of the old reference surface), and d) generation of the MCF curve from the RSSD. A total volume of material lost of 78900 m3 was obtained as well as an elapsed period of time of 15350 years. The MCF curves for different rockfall scenarios are found to be well fitted by a power law with exponents -1.7, -1.1 and -1

  10. Proper definition and evolution of generalized transverse momentum dependent distributions

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Idilbi, Ahmad; Kanazawa, Koichi; Lorcé, Cédric; Metz, Andreas; Pasquini, Barbara; Schlegel, Marc

    2016-08-01

    We consider one of the most fundamental sets of hadronic matrix elements, namely the generalized transverse momentum dependent distributions (GTMDs), and argue that their existing definitions lack proper evolution properties. By exploiting the similarity of GTMDs with the much better understood transverse momentum distributions, we argue that the existing definitions of GTMDs have to include an additional dependence on soft gluon radiation in order to render them properly defined. With this, we manage to obtain the evolution kernel of all (un)polarized quark and gluon GTMDs, which turns out to be spin independent. As a byproduct, all large logarithms can be resummed up to next-to-next-to-leading-logarithmic accuracy with the currently known perturbative ingredients.

  11. Quark-gluon vertex model and lattice-QCD data

    SciTech Connect

    Bhagwat, M.S.; Tandy, P.C.

    2004-11-01

    A model for the dressed-quark-gluon vertex, at zero gluon momentum, is formed from a nonperturbative extension of the two Feynman diagrams that contribute at one loop in perturbation theory. The required input is an existing ladder-rainbow model Bethe-Salpeter kernel from an approach based on the Dyson-Schwinger equations; no new parameters are introduced. The model includes an Ansatz for the triple-gluon vertex. Two of the three vertex amplitudes from the model provide a pointwise description of the recent quenched-lattice-QCD data. An estimate of the effects of quenching is made.

  12. Chromohydrodynamic approach to the unstable quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Manuel, Cristina; Mrówczyński, Stanisław

    2006-11-01

    We derive hydrodynamic-like equations that are applicable to short-time-scale color phenomena in the quark-gluon plasma. The equations are solved in the linear response approximation, and the gluon polarization tensor is derived. As an application, we study the collective modes in a two-stream system and find plasma instabilities when the fluid velocity is larger than the speed of sound in the plasma. The chromohydrodynamic approach, discussed here in detail, should be considered as simpler over other approaches and well-designed for numerical studies of the dynamics of an unstable quark-gluon plasma.

  13. Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: The pseudo 2-D relaxation model

    NASA Astrophysics Data System (ADS)

    Williamson, Nathan H.; Röding, Magnus; Galvosas, Petrik; Miklavcic, Stanley J.; Nydén, Magnus

    2016-08-01

    We present the pseudo 2-D relaxation model (P2DRM), a method to estimate multidimensional probability distributions of material parameters from independent 1-D measurements. We illustrate its use on 1-D T1 and T2 relaxation measurements of saturated rock and evaluate it on both simulated and experimental T1-T2 correlation measurement data sets. Results were in excellent agreement with the actual, known 2-D distribution in the case of the simulated data set. In both the simulated and experimental case, the functional relationships between T1 and T2 were in good agreement with the T1-T2 correlation maps from the 2-D inverse Laplace transform of the full 2-D data sets. When a 1-D CPMG experiment is combined with a rapid T1 measurement, the P2DRM provides a double-shot method for obtaining a T1-T2 relationship, with significantly decreased experimental time in comparison to the full T1-T2 correlation measurement.

  14. Obtaining T1-T2 distribution functions from 1-dimensional T1 and T2 measurements: The pseudo 2-D relaxation model.

    PubMed

    Williamson, Nathan H; Röding, Magnus; Galvosas, Petrik; Miklavcic, Stanley J; Nydén, Magnus

    2016-08-01

    We present the pseudo 2-D relaxation model (P2DRM), a method to estimate multidimensional probability distributions of material parameters from independent 1-D measurements. We illustrate its use on 1-D T1 and T2 relaxation measurements of saturated rock and evaluate it on both simulated and experimental T1-T2 correlation measurement data sets. Results were in excellent agreement with the actual, known 2-D distribution in the case of the simulated data set. In both the simulated and experimental case, the functional relationships between T1 and T2 were in good agreement with the T1-T2 correlation maps from the 2-D inverse Laplace transform of the full 2-D data sets. When a 1-D CPMG experiment is combined with a rapid T1 measurement, the P2DRM provides a double-shot method for obtaining a T1-T2 relationship, with significantly decreased experimental time in comparison to the full T1-T2 correlation measurement. PMID:27344611

  15. Comment on ``Damping of energetic gluons and quarks in high-temperature QCD''

    NASA Astrophysics Data System (ADS)

    Rebhan, Anton

    1992-07-01

    Burgess and Marini have recently pointed out that the leading contribution to the damping rate of energetic gluons and quarks in the QCD plasma, given by γ=cg2ln(1/g)T, can be obtained by simple arguments obviating the need of a fully resummed perturbation theory as developed by Braaten and Pisarski. Their calculation confirmed previous results of Braaten and Pisarski, but contradicted those proposed by Lebedev and Smilga. While agreeing with the general considerations made by Burgess and Marini, I correct their actual calculation of the damping rates, which is based on a wrong expression for the static limit of the resummed gluon propagator. The effect of this, however, turns out to be canceled fortuitously by another mistake, so as to leave all of their conclusions unchanged. I also verify the gauge independence of the results, which in the corrected calculation arises in a less obvious manner.

  16. Comment on Damping of energetic gluons and quarks in high-temperature QCD''

    SciTech Connect

    Rebhan, A. )

    1992-07-01

    Burgess and Marini have recently pointed out that the leading contribution to the damping rate of energetic gluons and quarks in the QCD plasma, given by {gamma}={ital cg}{sup 2}ln(1/{ital g}){ital T}, can be obtained by simple arguments obviating the need of a fully resummed perturbation theory as developed by Braaten and Pisarski. Their calculation confirmed previous results of Braaten and Pisarski, but contradicted those proposed by Lebedev and Smilga. While agreeing with the general considerations made by Burgess and Marini, I correct their actual calculation of the damping rates, which is based on a wrong expression for the static limit of the resummed gluon propagator. The effect of this, however, turns out to be canceled fortuitously by another mistake, so as to leave all of their conclusions unchanged. I also verify the gauge independence of the results, which in the corrected calculation arises in a less obvious manner.

  17. Numerical Study of the Ghost-Ghost-Gluon Vertex on the Lattice

    SciTech Connect

    Mihara, A.; Cucchieri, A.; Mendes, T.

    2004-12-02

    It is well known that, in Landau gauge, the renormalization function of the ghost-ghost-gluon vertex Z-tilde1 (p2) is finite and constant, at least to all orders of perturbation theory. On the other hand, a direct non-perturbative verification of this result using numerical simulations of lattice QCD is still missing. Here we present a preliminary numerical study of the ghost-ghost-gluon vertex and of its corresponding renormalization function using Monte Carlo simulations in SU(2) lattice Landau gauge. Data were obtained in 4 dimensions for lattice couplings {beta} = 2.2, 2.3, 2.4 and lattice sides N = 4, 8, 16.

  18. Chiral vortical wave and induced flavor charge transport in a rotating quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Jiang, Yin; Huang, Xu-Guang; Liao, Jinfeng

    2015-10-01

    We show the existence of a new gapless collective excitation in a rotating fluid system with chiral fermions, named the chiral vortical wave (CVW). The CVW has its microscopic origin at the quantum anomaly and macroscopically arises from interplay between vector and axial charge fluctuations induced by vortical effects. The wave equation is obtained both from hydrodynamic current equations and from chiral kinetic theory, and its solutions show nontrivial CVW-induced charge transport from different initial conditions. Using the rotating quark-gluon plasma in heavy ion collisions as a concrete example, we show the formation of an induced flavor quadrupole in quark-gluon plasma and estimate the elliptic flow splitting effect for Λ baryons that may be experimentally measured.

  19. The Boltzmann equation for gluons at early times after a heavy ion collision

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.

    2000-03-01

    A Boltzmann equation is given for the early stages of evolution of the gluon system produced in a head-on heavy ion collision. The collision term is taken from gluon-gluon scattering in the one-gluon approximation. and are evaluated as a function of time using initial conditions taken from the McLerran-Venugopalan model.

  20. Interpretation of Actinide-Distribution Data Obtained from Non-Destructive and Destructive Post-Test Analyses of an Intact-Core Column of Culebra Dolomite

    SciTech Connect

    LUCERO, DANIEL A; PERKINS, W GEORGE

    1999-08-26

    The US DOE, with technical assistance from Sandia National Laboratories, has successfully received EPA certification and opened the Waste Isolation Pilot Plant (WIPP), a nuclear waste disposal facility located approximately 42 km east of Carlsbad, New Mexico. Performance assessment analyses indicate that human intrusions by inadvertent, intermittent drilling for resources provide the only credible mechanisms for releases of radionuclides from the disposal system. In modeling long-term brine releases, subsequent to a drilling event, potential migration pathways through the permeable layers of rock above the Salado formation were analyzed. Major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer overlying the WIPP site. In order to help quantify parameters for the calculated releases, radionuclide transport experiments have been earned out using intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the WIPP site. This paper deals primarily with results of analyses for {sup 241}Pu and {sup 241}Am distributions developed during transport experiments in one of these cores. Transport experiments were done using a synthetic brine that simulates Culebra brine at the core recovery location (the WIPP air-intake shaft--AIS). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using the conservative tracer {sup 22}Na. Elution experiments carried out over periods of a few days with tracers {sup 232}U and {sup 239}Np indicated that these tracers were weakly retarded as indicated by delayed elution of the species. Elution experiments with tracers {sup 241}Pu and {sup 241}Am were attempted, but no elution of either species has been observed to date, including experiments of many months' duration. In order to quantify retardation of the non-eluted species {sup 241}Pu and {sup 241}Am

  1. Interpretation of actinide-distribution data obtained from non-destructive and destructive post-test analyses of an intact-core column of Culebra dolomite.

    PubMed

    Perkins, W G; Lucero, D A

    2001-02-01

    The US Department of Energy (DOE), with technical assistance from Sandia National Laboratories, has successfully received EPA certification and opened the Waste Isolation Pilot Plant (WIPP), a nuclear waste disposal facility located approximately 42 km east of Carlsbad, NM. Performance assessment (PA) analyses indicate that human intrusions by inadvertent, intermittent drilling for resources provide the only credible mechanisms for significant releases of radionuclides from the disposal system. For long-term brine releases, migration pathways through the permeable layers of rock above the Salado formation are important. Major emphasis is placed on the Culebra Member of the Rustler Formation because this is the most transmissive geologic layer overlying the WIPP site. In order to help quantify parameters for the calculated releases, radionuclide transport experiments have been carried out using intact-core columns obtained from the Culebra dolomite member of the Rustler Formation within the WIPP site. This paper deals primarily with results of analyses for 241Pu and 241Am distributions developed during transport experiments in one of these cores. Transport experiments were done using a synthetic brine that simulates Culebra brine at the core recovery location (the WIPP air-intake shaft (AIS)). Hydraulic characteristics (i.e., apparent porosity and apparent dispersion coefficient) for intact-core columns were obtained via experiments using the conservative tracer 22Na. Elution experiments carried out over periods of a few days with tracers 232U and 239Np indicated that these tracers were weakly retarded as indicated by delayed elution of the species. Elution experiments with tracers 241Pu and 241Am were attempted but no elution of either species has been observed to date, including experiments of many months' duration. In order to quantify retardation of the non-eluted species 241Pu and 241Am after a period of brine flow, non-destructive and destructive analyses of

  2. Conditions to obtain precise and true measurements of the intramolecular 13C distribution in organic molecules by isotopic 13C nuclear magnetic resonance spectrometry.

    PubMed

    Bayle, Kevin; Gilbert, Alexis; Julien, Maxime; Yamada, Keita; Silvestre, Virginie; Robins, Richard J; Akoka, Serge; Yoshida, Naohiro; Remaud, Gérald S

    2014-10-10

    Intramolecular (13)C composition gives access to new information on the (bio) synthetic history of a given molecule. Isotopic (13)C NMR spectrometry provides a general tool for measuring the position-specific (13)C content. As an emerging technique, some aspects of its performance are not yet fully delineated. This paper reports on (i) the conditions required to obtain satisfactory trueness and precision for the determination of the internal (13)C distribution, and (ii) an approach to determining the "absolute" position-specific (13)C content. In relation to (i), a precision of <1% can be obtained whatever the molecule on any spectrometer, once quantitative conditions are met, in particular appropriate proton decoupling efficiency. This performance is a prerequisite to the measurement of isotope fractionation either on the transformed or residual compound when a chemical reaction or process is being studied. The study of the trueness has revealed that the response of the spectrometer depends on the (13)C frequency range of the studied molecule, i.e. the chemical shift range. The "absolute value" and, therefore, the trueness of the (13)C NMR measurements has been assessed on acetic acid and by comparison to the results obtained on the fragments from COOH and CH3 by isotopic mass spectrometry coupled to a pyrolysis device (GC-Py-irm-MS), this technique being the reference method for acetic acid. Of the two NMR spectrometers used in this work, one gave values that corresponded to those obtained by GC-Py-irm-MS (thus, the "true" value) while the other showed a bias, which was dependent to the range covered by the resonance frequencies of the molecule. Therefore, the former can be used directly for studying isotope affiliations, while the latter can only be used directly for comparative data, for example in authenticity studies, but can also be used to obtain the true values by applying appropriate correction factors. The present study assesses several key protocol

  3. Comparison of Drug Distribution Images from Thin Tissue Sections Obtained Using Desorption Electrospray Ionization Tandem Mass Spectrometry and Whole-Body Autoradiography

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J; Vavek, Marissa; Koeplinger, Kenneth A.; Schneider, Bradley B; Covey, Thomas R.

    2008-01-01

    Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2 and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by HPLC with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.

  4. JETS and QCD: a historical review of the discovery of the quark and gluon jets and its impact on QCD

    NASA Astrophysics Data System (ADS)

    Ali, A.; Kramer, G.

    2011-04-01

    The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review, which is primarily a description of the discovery of the quark and gluon jets and the impact of their observation on Quantum Chromodynamics, we elaborate, in particular, the role of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e+e- collisions will be in the foreground of the discussion and we will concentrate on the theory that was contemporary with the relevant experiments at the electron-positron colliders. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/pbar{p} collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± , Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics.

  5. Phenomenological determination of polarized quark distributions in the nucleon

    NASA Astrophysics Data System (ADS)

    Bartelski, Jan; Tatur, Stanisław

    1996-03-01

    We present a fit to spin asymmetries which gives polarized quark distributions. These functions are closely related to the ones given by the Martin, Roberts and Stirling fit for unpolarized structure functions. The integrals of polarized distributions are discussed and compared with the corresponding quantities obtained from neutron and hyperon β-decay data. We use the combination of proton, neutron and deuteron spin asymmetries in order to determine the coefficients of our polarized quark distributions. Our fit shows that phenomenologically there is no need for taking polarized gluons into account.

  6. Veneziano ghost, modified gluon propagator, and gauge copies in QCD

    NASA Astrophysics Data System (ADS)

    Dudal, D.; Guimaraes, M. S.

    2016-04-01

    In this short note, we come back to the recent proposal put forward by Kharzeev and Levin [Phys. Rev. Lett. 114, 242001 (2015)], in which they phenomenologically couple the nonperturbative Veneziano ghost to the perturbative gluon, leading to a modified gluon propagator (the "glost") of the Gribov type, with complex poles. As such, a possible link was made between the QCD topological θ -vacuum (Veneziano ghost) and color confinement (no physically observable gluons). We discuss some subtleties concerning gauge (Becchi-Rouet-Stora-Tuytin) invariance of this proposal, related to the choice of Feynman gauge. We draw particular attention to the incompatibility in the longitudinal sector with available nonperturbative results for the linear covariant gauge. We furthermore provide an example in the Landau gauge of a similar phenomenological vertex that also describes the necessary Veneziano ghost but does not affect the Landau gauge gluon propagator.

  7. Resummation and the gluon damping rate in hot QCD

    SciTech Connect

    Pisarski, R.D.

    1990-08-01

    At high temperature a consistent perturbative expansion requires the resummation of an infinite subset of loop corrections into an effective expansion. This effective exansion is used to compute the gluon damping rate at leading order. 25 refs.

  8. Probing the Gluon Self-Interaction in Light Mesons

    SciTech Connect

    Fischer, Christian S.; Williams, Richard

    2009-09-18

    We investigate masses and decay constants of light mesons from a coupled system of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly take into account dominant non-Abelian contributions to the dressed quark-gluon vertex stemming from the gluon self-interaction. We construct the corresponding Bethe-Salpeter kernel that satisfies the axial-vector Ward-Takahashi identity. Our numerical treatment fully includes all momentum dependencies with all equations solved completely in the complex plane. This approach goes well beyond the rainbow-ladder approximation and permits us to investigate the influence of the gluon self-interaction on the properties of mesons. As a first result we find indications of a nonperturbative cancellation of the gluon self-interaction contributions and pion cloud effects in the mass of the rho meson.

  9. Colored plasmons in a quark-gluon plasma near equilibrium

    NASA Astrophysics Data System (ADS)

    Hein, Ulrich; Siemens, Philip J.

    1985-08-01

    Within a kinetic theory for QCD plasmas we study the color response function near thermodynamic equilibrium. Its poles yield a longitudinal and a transverse collective mode, both starting at the plasma frequency. Due to the gluon contribution there is no Landau damping for these modes, and creation of gluon or q- overlinep pairs is the dominant damping mechanism. In an electron plasma the generally quoted Landau damping near threshold is shown to be an artifact of the non-relativistic approximation.

  10. Physics of the gluon-helicity contribution to proton spin.

    PubMed

    Ji, Xiangdong; Zhang, Jian-Hui; Zhao, Yong

    2013-09-13

    The total gluon helicity in a polarized proton, measurable in high-energy scattering, is shown to be the large momentum limit of a gauge-invariant but nonlocal, frame-dependent gluon spin E × A⊥ in QCD. This opens a door for a nonperturbative calculation of this quantity in lattice QCD and also justifies using free-field expressions in the light-cone gauge as physical observables. PMID:24074075