Sample records for obtaining non-abelian field

  1. Topological invariants measured for Abelian and non-Abelian monopole fields

    NASA Astrophysics Data System (ADS)

    Sugawa, Seiji; Salces Carcoba, Francisco; Perry, Abigail; Yue, Yuchen; Putra, Andika; Spielman, Ian

    2016-05-01

    Understanding the topological nature of physical systems is an important topic in contemporary physics, ranging from condensed matter to high energy. In this talk, I will present experiments measuring the 1st and 2nd Chern number in a four-level quantum system both with degenerate and non-degenerate energies. We engineered the system's Hamiltonian by coupling hyperfine ground states of rubidium-87 Bose-Einstein condensates with rf and microwave fields. We non-adiabatically drove the system and measured the linear response to obtain the local (non-Abelian) Berry curvatures. Then, the Chern numbers were evaluated on (hyper-)spherical manifolds in parameter space. We obtain Chern numbers close to unity for both the 1st and the 2nd Chern numbers. The non-zero Chern number can be interpreted as monopole residing inside the manifold. For our system, the monopoles correspond to a Dirac monopole for non-degenerate spectra and a Yang monopole for our degenerate case. We also show how the dynamical evolution under non-Abelian gauge field emerged in degenerate quantum system is different from non-degenerate case by showing path-dependent acquisition of non-Abelian geometric phase and Wilson loops.

  2. Non-Abelian gauge fields

    NASA Astrophysics Data System (ADS)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    the progress in experimental studies of artificial Abelian and non-Abelian gauge fields in recent years has been simply spectacular. Multiple leading groups are working on this subject and have already obtained a lot of seminal results. The papers in the special issue are ordered according to the date of acceptance. The issue opens with a review article by Zhou et al [1] on unconventional states of bosons with synthetic spin-orbit coupling. Next, the paper by Maldonado-Mundo et al [2] studies ultracold Fermi gases with artificial Rashba spin-orbit coupling in a 2D gas. Anderson and Charles [3], in contrast, discuss a three-dimensional spin-orbit coupling in a trap. Orth et al [4] investigate correlated topological phases and exotic magnetism with ultracold fermions, again in the presence of artificial gauge fields. The paper of Nascimbène [5] does not address the synthetic gauge fields directly, but describes an experimental proposal for realizing one-dimensional topological superfluids with ultracold atomic gases; obviously, this problem is well situated in the general and growing field of topological superfluids, in particular those realized in the presence of non-Abelian gauge fields/spin-orbit coupling. Graß et al [6] consider in their paper fractional quantum Hall states of a Bose gas with spin-orbit coupling induced by a laser. Particular attention is drawn here to the possibility of realizing states with non-Abelian anyonic excitations. Zheng et al [7] study properties of Bose gases with Raman-induced spin-orbit coupling. Kiffner et al [8] in their paper touch on another kind of system, namely ultracold Rydberg atoms. In particular they study the generation of Abelian and non-Abelian gauge fields in dipole-dipole interacting Rydberg atoms. The behaviour of fermions in synthetic non-Abelian gauge potentials is discussed by Shenoy and Vyasanakere [9]. The paper starts with the study of Rashbon condensates (i.e. Bose condensates in the presence of Rashba

  3. Interacting Non-Abelian Anti-Symmetric Tensor Field Theories

    NASA Astrophysics Data System (ADS)

    Ekambaram, K.; Vytheeswaran, A. S.

    2018-04-01

    Non-Abelian Anti-symmetric Tensor fields interacting with vector fields have a complicated constraint structure. We enlarge the gauge invariance in this system. Relevant gauge invariant quantities including the Hamiltonian are obtained. We also make introductory remarks on a different but more complicated gauge theory.

  4. Conserved quantities in non-Abelian monopole fields

    NASA Astrophysics Data System (ADS)

    Horváthy, P. A.; Ngome, J.-P.

    2009-06-01

    Van Holten’s covariant Hamiltonian framework is used to find conserved quantities for an isospin-carrying particle in a non-Abelian monopolelike field. For a Wu-Yang monopole we find the most general scalar potential such that the combined system admits a conserved Runge-Lenz vector. In the effective non-Abelian field for nuclear motion in a diatomic molecule due to Moody, Shapere, and Wilczek, a conserved angular momentum is constructed, despite the nonconservation of the electric charge. No Runge-Lenz vector has been found.

  5. Interaction of non-Abelian tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Savvidy, George

    2018-01-01

    The non-Abelian tensor gauge fields take value in extended Poincaré algebra. In order to define the invariant Lagrangian we introduce a vector variable in two alternative ways: through the transversal representation of the extended Poincaré algebra and through the path integral over the auxiliary vector field with the U(1) Abelian action. We demonstrate that this allows to fix the unitary gauge and derive scattering amplitudes in spinor representation.

  6. Unveiling a spinor field classification with non-Abelian gauge symmetries

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.

  7. Worldlines and worldsheets for non-abelian lattice field theories: Abelian color fluxes and Abelian color cycles

    NASA Astrophysics Data System (ADS)

    Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta

    2018-03-01

    We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes), or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles). Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure) generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2) principal chiral model with chemical potential coupled to two of the Noether charges, SU(2) lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.

  8. Penrose limits of Abelian and non-Abelian T-duals of AdS 5 × S 5 and their field theory duals

    NASA Astrophysics Data System (ADS)

    Itsios, Georgios; Nastase, Horatiu; Núñez, Carlos; Sfetsos, Konstantinos; Zacarías, Salomón

    2018-01-01

    We consider the backgrounds obtained by Abelian and non-Abelian T-duality applied on AdS 5 × S 5. We study geodesics, calculate Penrose limits and find the associated plane-wave geometries. We quantise the weakly coupled type-IIA string theory on these backgrounds. We study the BMN sector, finding operators that wrap the original quiver CFT. For the non-Abelian plane wave, we find a `flow' in the frequencies. We report some progress to understand this, in terms of deconstruction of a higher dimensional field theory. We explore a relation with the plane-wave limit of the Janus solution, which we also provide.

  9. Modified non-Abelian Toda field equations and twisted quasigraded Lie algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrypnyk, T.

    We construct a new family of quasigraded Lie algebras that admit the Kostant-Adler scheme. They coincide with special quasigraded deformations of twisted subalgebras of the loop algebras. Using them we obtain new hierarchies of integrable equations in partial derivatives which we call 'modified' non-Abelian Toda field hierarchies.

  10. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    NASA Astrophysics Data System (ADS)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  11. Conformal field theory construction for non-Abelian hierarchy wave functions

    NASA Astrophysics Data System (ADS)

    Tournois, Yoran; Hermanns, Maria

    2017-12-01

    The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.

  12. Non-Abelian gauge preheating

    NASA Astrophysics Data System (ADS)

    Adshead, Peter; Giblin, John T.; Weiner, Zachary J.

    2017-12-01

    We study preheating in models where a scalar inflaton is directly coupled to a non-Abelian S U (2 ) gauge field. In particular, we examine m2ϕ2 inflation with a conformal, dilatonlike coupling to the non-Abelian sector. We describe a numerical scheme that combines lattice gauge theory with standard finite difference methods applied to the scalar field. We show that a significant tachyonic instability allows for efficient preheating, which is parametrically suppressed by increasing the non-Abelian self-coupling. Additionally, we comment on the technical implementation of the evolution scheme and setting initial conditions.

  13. Experimental realization of non-Abelian non-adiabatic geometric gates.

    PubMed

    Abdumalikov, A A; Fink, J M; Juliusson, K; Pechal, M; Berger, S; Wallraff, A; Filipp, S

    2013-04-25

    The geometric aspects of quantum mechanics are emphasized most prominently by the concept of geometric phases, which are acquired whenever a quantum system evolves along a path in Hilbert space, that is, the space of quantum states of the system. The geometric phase is determined only by the shape of this path and is, in its simplest form, a real number. However, if the system has degenerate energy levels, then matrix-valued geometric state transformations, known as non-Abelian holonomies--the effect of which depends on the order of two consecutive paths--can be obtained. They are important, for example, for the creation of synthetic gauge fields in cold atomic gases or the description of non-Abelian anyon statistics. Moreover, there are proposals to exploit non-Abelian holonomic gates for the purposes of noise-resilient quantum computation. In contrast to Abelian geometric operations, non-Abelian ones have been observed only in nuclear quadrupole resonance experiments with a large number of spins, and without full characterization of the geometric process and its non-commutative nature. Here we realize non-Abelian non-adiabatic holonomic quantum operations on a single, superconducting, artificial three-level atom by applying a well-controlled, two-tone microwave drive. Using quantum process tomography, we determine fidelities of the resulting non-commuting gates that exceed 95 per cent. We show that two different quantum gates, originating from two distinct paths in Hilbert space, yield non-equivalent transformations when applied in different orders. This provides evidence for the non-Abelian character of the implemented holonomic quantum operations. In combination with a non-trivial two-quantum-bit gate, our method suggests a way to universal holonomic quantum computing.

  14. Non-Abelian S =1 chiral spin liquid on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Xin; Tu, Hong-Hao; Wu, Ying-Hai; He, Rong-Qiang; Liu, Xiong-Jun; Zhou, Yi; Ng, Tai-Kai

    2018-05-01

    We study S =1 spin liquid states on the kagome lattice constructed by Gutzwiller-projected px+i py superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the fermionic mean-field state. By calculating the modular matrices S and T , we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the S O (3) 1 (or, equivalently, S U (2) 2 ) field-theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study, we observe a topological phase transition from the NACSL to the Z2 Abelian spin liquid.

  15. Non Abelian T-duality in Gauged Linear Sigma Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM’s as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they dependmore » in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.« less

  16. Non Abelian T-duality in Gauged Linear Sigma Models

    NASA Astrophysics Data System (ADS)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  17. Non Abelian T-duality in Gauged Linear Sigma Models

    DOE PAGES

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; ...

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM’s as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they dependmore » in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.« less

  18. Non-Abelian statistics of vortices with non-Abelian Dirac fermions.

    PubMed

    Yasui, Shigehiro; Hirono, Yuji; Itakura, Kazunori; Nitta, Muneto

    2013-05-01

    We extend our previous analysis on the exchange statistics of vortices having a single Dirac fermion trapped in each core to the case where vortices trap two Dirac fermions with U(2) symmetry. Such a system of vortices with non-Abelian Dirac fermions appears in color superconductors at extremely high densities and in supersymmetric QCD. We show that the exchange of two vortices having doublet Dirac fermions in each core is expressed by non-Abelian representations of a braid group, which is explicitly verified in the matrix representation of the exchange operators when the number of vortices is up to four. We find that the result contains the matrices previously obtained for the vortices with a single Dirac fermion in each core as a special case. The whole braid group does not immediately imply non-Abelian statistics of identical particles because it also contains exchanges between vortices with different numbers of Dirac fermions. However, we find that it does contain, as its subgroup, genuine non-Abelian statistics for the exchange of the identical particles, that is, vortices with the same number of Dirac fermions. This result is surprising compared with conventional understanding because all Dirac fermions are defined locally at each vortex, unlike the case of Majorana fermions for which Dirac fermions are defined nonlocally by Majorana fermions located at two spatially separated vortices.

  19. Electric-magnetic dualities in non-abelian and non-commutative gauge theories

    NASA Astrophysics Data System (ADS)

    Ho, Jun-Kai; Ma, Chen-Te

    2016-08-01

    Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.

  20. Global charges of stationary non-Abelian black holes.

    PubMed

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco

    2003-05-02

    We consider stationary axially symmetric black holes in SU(2) Einstein-Yang-Mills-dilaton theory. We present a mass formula for these stationary non-Abelian black holes, which also holds for Abelian black holes. The presence of the dilaton field allows for rotating black holes, which possess nontrivial electric and magnetic gauge fields, but do not carry a non-Abelian charge. We further present a new uniqueness conjecture.

  1. Fresh look at the Abelian and non-Abelian Landau-Khalatnikov-Fradkin transformations

    NASA Astrophysics Data System (ADS)

    De Meerleer, T.; Dudal, D.; Sorella, S. P.; Dall'Olio, P.; Bashir, A.

    2018-04-01

    The Landau-Khalatnikov-Fradkin transformations (LKFTs) allow one to interpolate n -point functions between different gauges. We first offer an alternative derivation of these LKFTs for the gauge and fermions field in the Abelian (QED) case when working in the class of linear covariant gauges. Our derivation is based on the introduction of a gauge invariant transversal gauge field, which allows a natural generalization to the non-Abelian (QCD) case of the LKFTs. To our knowledge, within this rigorous formalism, this is the first construction of the LKFTs beyond QED. The renormalizability of our setup is guaranteed to all orders. We also offer a direct path integral derivation in the non-Abelian case, finding full consistency.

  2. A non-perturbative argument for the non-abelian Higgs mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Palma, G.; INFN, Sezione di Pisa, Pisa; Strocchi, F., E-mail: franco.strocchi@sns.it

    2013-09-15

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.

  3. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  4. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    PubMed

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  5. Anisotropic Bispectrum of Curvature Perturbations from Primordial Non-Abelian Vector Fields

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Dimastrogiovanni, Emanuela; Matarrese, Sabino; Riotto, Antonio

    2009-10-01

    We consider a primordial SU(2) vector multiplet during inflation in models where quantum fluctuations of vector fields are involved in producing the curvature perturbation. Recently, a lot of attention has been paid to models populated by vector fields, given the interesting possibility of generating some level of statistical anisotropy in the cosmological perturbations. The scenario we propose is strongly motivated by the fact that, for non-Abelian gauge fields, self-interactions are responsible for generating extra terms in the cosmological correlation functions, which are naturally absent in the Abelian case. We compute these extra contributions to the bispectrum of the curvature perturbation, using the δN formula and the Schwinger-Keldysh formalism. The primordial violation of rotational invariance (due to the introduction of the SU(2) gauge multiplet) leaves its imprint on the correlation functions introducing, as expected, some degree of statistical anisotropy in our results. We calculate the non-Gaussianity parameter fNL, proving that the new contributions derived from gauge bosons self-interactions can be important, and in some cases the dominat ones. We study the shape of the bispectrum and we find that it turns out to peak in the local configuration, with an amplitude that is modulated by the preferred directions that break statistical isotropy.

  6. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    PubMed Central

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  7. On non-abelian T-duality and deformations of supercoset string sigma-models

    NASA Astrophysics Data System (ADS)

    Borsato, Riccardo; Wulff, Linus

    2017-10-01

    We elaborate on the class of deformed T-dual (DTD) models obtained by first adding a topological term to the action of a supercoset sigma model and then performing (non-abelian) T-duality on a subalgebra \\tilde{g} of the superisometry algebra. These models inherit the classical integrability of the parent one, and they include as special cases the so-called homogeneous Yang-Baxter sigma models as well as their non-abelian T-duals. Many properties of DTD models have simple algebraic interpretations. For example we show that their (non-abelian) T-duals — including certain deformations — are again in the same class, where \\tilde{g} gets enlarged or shrinks by adding or removing generators corresponding to the dualised isometries. Moreover, we show that Weyl invariance of these models is equivalent to \\tilde{g} being unimodular; when this property is not satisfied one can always remove one generator to obtain a unimodular \\tilde{g} , which is equivalent to (formal) T-duality. We also work out the target space superfields and, as a by-product, we prove the conjectured transformation law for Ramond-Ramond (RR) fields under bosonic non-abelian T-duality of supercosets, generalising it to cases involving also fermionic T-dualities.

  8. Lattice spin models for non-Abelian chiral spin liquids

    DOE PAGES

    Lecheminant, P.; Tsvelik, A. M.

    2017-04-26

    Here, we suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids—spin analogs of fractional non-Abelian quantum Hall states—with gapped bulk and gapless chiral edge excitations described by the SU(2) n Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of generalized spin-n/2 ladders with multi-spin-exchange interactions which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2) n gapless edge excitations.

  9. Anisotopic inflation with a non-abelian gauge field in Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lahiri, Sayantani, E-mail: sayantani.lahiri@gmail.com

    2017-01-01

    In presence of Gauss-Bonnet corrections, we study anisotropic inflation aided by a massless SU(2) gauge field where both the gauge field and the Gauss-Bonnet term are non-minimally coupled to the inflaton. In this scenario, under slow-roll approximations, the anisotropic inflation is realized as an attractor solution with quadratic forms of inflaton potential and Gauss-Bonnet coupling function. We show that the degree of anisotropy is proportional to the additive combination of two slow-roll parameters of the theory. The anisotropy may become either positive or negative similar to the non-Gauss-Bonnet framework, a feature of the model for anisotropic inflation supported by amore » non-abelian gauge field but the effect of Gauss-Bonnet term further enhances or suppresses the generated anisotropy.« less

  10. Confining and repulsive potentials from effective non-Abelian gauge fields in graphene bilayers

    NASA Astrophysics Data System (ADS)

    González, J.

    2016-10-01

    We investigate the effect of shear and strain in graphene bilayers, under conditions where the distortion of the lattice gives rise to a smooth one-dimensional modulation in the stacking sequence of the bilayer. We show that strain and shear produce characteristic Moiré patterns which can have the same visual appearance on a large scale, but representing graphene bilayers with quite different electronic properties. The different features in the low-energy electronic bands can be ascribed to the effect of a fictitious non-Abelian gauge field mimicking the smooth modulation of the stacking order. Strained and sheared bilayers show a complementary behavior, which can be understood from the fact that the non-Abelian gauge field acts as a repulsive interaction in the former, expelling the electron density away from the stacking domain walls, while behaving as a confining interaction leading to localization of the electronic states in the sheared bilayers. In this latter case, the presence of the effective gauge field explains the development of almost flat low-energy bands, resembling the form of the zeroth Landau level characteristic of a Dirac fermion field. The estimate of the gauge field strength in those systems gives a magnitude of the order of several tens of tesla, implying a robust phenomenology that should be susceptible of being observed in suitably distorted bilayer samples.

  11. Non-Abelian Parton Fractional Quantum Hall Effect in Multilayer Graphene.

    PubMed

    Wu, Ying-Hai; Shi, Tao; Jain, Jainendra K

    2017-08-09

    The current proposals for producing non-Abelian anyons and Majorana particles, which are neither fermions nor bosons, are primarily based on the realization of topological superconductivity in two dimensions. We show theoretically that the unique Landau level structure of bilayer graphene provides a new possible avenue for achieving such exotic particles. Specifically, we demonstrate the feasibility of a "parton" fractional quantum Hall (FQH) state, which supports non-Abelian particles without the usual topological superconductivity. Furthermore, we advance this state as the fundamental explanation of the puzzling 1/2 FQH effect observed in bilayer graphene [ Kim et al. Nano Lett. 2015 , 15 , 7445 ] and predict that it will also occur in trilayer graphene. We indicate experimental signatures that differentiate the parton state from other candidate non-Abelian FQH states and predict that a transverse electric field can induce a topological quantum phase transition between two distinct non-Abelian FQH states.

  12. Condition for confinement in non-Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Chaichian, Masud; Frasca, Marco

    2018-06-01

    We show that a criterion for confinement, based on the BRST invariance, holds in four dimensions, by solving a non-Abelian gauge theory with a set of exact solutions. The confinement condition we consider was obtained by Kugo and Ojima some decades ago. The current understanding of gauge theories permits us to apply the techniques straightforwardly for checking the validity of this criterion. In this way, we are able to show that the non-Abelian gauge theory is confining and that confinement is rooted in the BRST invariance and asymptotic freedom.

  13. Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satija, Indubala I.; National Institute of Standards and Technology, Gaithersburg, Maryland 20899; Dakin, Daniel C.

    2006-11-24

    We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. For Abelian gauges, such transitions occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum. Other key characteristics of the non-Abelian case includemore » the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta.« less

  14. Non-Abelian black string solutions of N = (2,0) , d = 6 supergravity

    NASA Astrophysics Data System (ADS)

    Cano, Pablo A.; Ortín, Tomás; Santoli, Camilla

    2016-12-01

    We show that, when compactified on a circle, N = (2, 0), d = 6 supergravity coupled to 1 tensor multiplet and n V vector multiplets is dual to N = (2 , 0) , d = 6 supergravity coupled to just n T = n V + 1 tensor multiplets and no vector multiplets. Both theories reduce to the same models of N = 2 , d = 5 supergravity coupled to n V 5 = n V + 2 vector fields. We derive Buscher rules that relate solutions of these theories (and of the theory that one obtains by dualizing the 3-form field strength) admitting an isometry. Since the relations between the fields of N = 2 , d = 5 supergravity and those of the 6-dimensional theories are the same with or without gaugings, we construct supersymmetric non-Abelian solutions of the 6-dimensional gauged theories by uplifting the recently found 5-dimensional supersymmetric non-Abelian black-hole solutions. The solutions describe the usual superpositions of strings and waves supplemented by a BPST instanton in the transverse directions, similar to the gauge dyonic string of Duff, Lü and Pope. One of the solutions obtained interpolates smoothly between two AdS3× S3 geometries with different radii.

  15. Trivial solutions of generalized supergravity vs non-abelian T-duality anomaly

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2018-06-01

    The equations that follow from kappa symmetry of the type II Green-Schwarz string are a certain deformation, by a Killing vector field K, of the type II supergravity equations. We analyze under what conditions solutions of these 'generalized' supergravity equations are trivial in the sense that they solve also the standard supergravity equations. We argue that for this to happen K must be null and satisfy dK =iK H with H = dB the NSNS three-form field strength. Non-trivial examples are provided by symmetric pp-wave solutions. We then analyze the consequences for non-abelian T-duality and the closely related homogenous Yang-Baxter sigma models. When one performs non-abelian T-duality of a string sigma model on a non-unimodular (sub)algebra one generates a non-vanishing K proportional to the trace of the structure constants. This is expected to lead to an anomaly but we show that when K satisfies the same conditions the anomaly in fact goes away leading to more possibilities for non-anomalous non-abelian T-duality.

  16. Condensation and critical exponents of an ideal non-Abelian gas

    NASA Astrophysics Data System (ADS)

    Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein

    2017-11-01

    We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

  17. Model of chiral spin liquids with Abelian and non-Abelian topological phases

    DOE PAGES

    Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; ...

    2017-12-15

    In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less

  18. Model of chiral spin liquids with Abelian and non-Abelian topological phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio

    In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less

  19. Model of chiral spin liquids with Abelian and non-Abelian topological phases

    NASA Astrophysics Data System (ADS)

    Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; Tsvelik, A. M.

    2017-12-01

    We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.

  20. Flavored gauge mediation with discrete non-Abelian symmetries

    NASA Astrophysics Data System (ADS)

    Everett, Lisa L.; Garon, Todd S.

    2018-05-01

    We explore the model building and phenomenology of flavored gauge-mediation models of supersymmetry breaking in which the electroweak Higgs doublets and the S U (2 ) messenger doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of this scenario suffers from a severe μ /Bμ problem that is well known from ordinary gauge mediation, expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV Higgs boson mass.

  1. Collision dynamics of two-dimensional non-Abelian vortices

    NASA Astrophysics Data System (ADS)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  2. Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2015-05-01

    The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark

  3. New scheme for color confinement and violation of the non-Abelian Bianchi identities

    NASA Astrophysics Data System (ADS)

    Suzuki, Tsuneo; Ishiguro, Katsuya; Bornyakov, Vitaly

    2018-02-01

    A new scheme for color confinement in QCD due to violation of the non-Abelian Bianchi identities is proposed. The violation of the non-Abelian Bianchi identities (VNABI) Jμ is equal to Abelian-like monopole currents kμ defined by the violation of the Abelian-like Bianchi identities. Although VNABI is an adjoint operator satisfying the covariant conservation law DμJμ=0 , it satisfies, at the same time, the Abelian-like conservation law ∂μJμ=0 . The Abelian-like conservation law ∂μJμ=0 is also gauge-covariant. There are N2-1 conserved magnetic charges in the case of color S U (N ). The charge of each component of VNABI is quantized à la Dirac. The color-invariant eigenvalues λμ of VNABI also satisfy the Abelian conservation law ∂μλμ=0 and the magnetic charges of the eigenvalues are also quantized à la Dirac. If the color invariant eigenvalues condense in the QCD vacuum, each color component of the non-Abelian electric field Ea is squeezed by the corresponding color component of the solenoidal current Jμa. Then only the color singlets alone can survive as a physical state and non-Abelian color confinement is realized. This confinement picture is completely new in comparison with the previously studied monopole confinement scenario based on an Abelian projection after some partial gauge-fixing, where Abelian neutral states can survive as physical. To check if the scenario is realized in nature, numerical studies are done in the framework of lattice field theory by adopting pure S U (2 ) gauge theory for simplicity. Considering Jμ(x )=kμ(x ) in the continuum formulation, we adopt an Abelian-like definition of a monopole following DeGrand-Toussaint as a lattice version of VNABI, since the Dirac quantization condition of the magnetic charge is satisfied on lattice partially. To reduce severe lattice artifacts, we introduce various techniques of smoothing the thermalized vacuum. Smooth gauge fixings such as the maximal center gauge (MCG), block

  4. Abelian and non-Abelian states in ν = 2 / 3 bilayer fractional quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Peterson, Michael; Wu, Yang-Le; Cheng, Meng; Barkeshli, Maissam; Wang, Zhenghan

    There are several possible theoretically allowed non-Abelian fractional quantum Hall (FQH) states that could potentially be realized in one- and two-component FQH systems at total filling fraction ν = n + 2 / 3 , for integer n. Some of these states even possess quasiparticles with non-Abelian statistics that are powerful enough for universal topological quantum computation, and are thus of particular interest. Here we initiate a systematic numerical study, using both exact diagonalization and variational Monte Carlo, to investigate the phase diagram of FQH systems at total filling fraction ν = n + 2 / 3 , including in particular the possibility of the non-Abelian Z4 parafermion state. In ν = 2 / 3 bilayers we determine the phase diagram as a function of interlayer tunneling and repulsion, finding only three competing Abelian states, without the Z4 state. On the other hand, in single-component systems at ν = 8 / 3 , we find that the Z4 parafermion state has significantly higher overlap with the exact ground state than the Laughlin state, together with a larger gap, suggesting that the experimentally observed ν = 8 / 3 state may be non-Abelian. Our results from the two complementary numerical techniques agree well with each other qualitatively. We acknowledge the Office of Research and Sponsored Programs at California State University Long Beach and Microsoft Station Q.

  5. Scalar formalism for non-Abelian gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hostler, L.C.

    1986-09-01

    The gauge field theory of an N-italic-dimensional multiplet of spin- 1/2 particles is investigated using the Klein--Gordon-type wave equation )Pi x (1+i-italicsigma) x Pi+m-italic/sup 2/)Phi = 0, Pi/sub ..mu../equivalentpartial/partiali-italicx-italic/sub ..mu../-e-italicA-italic/sub ..mu../, investigated before by a number of authors, to describe the fermions. Here Phi is a 2 x 1 Pauli spinor, and sigma repesents a Lorentz spin tensor whose components sigma/sub ..mu..//sub ..nu../ are ordinary 2 x 2 Pauli spin matrices. Feynman rules for the scalar formalism for non-Abelian gauge theory are derived starting from the conventional field theory of the multiplet and converting it to the new description. Themore » equivalence of the new and the old formalism for arbitrary radiative processes is thereby established. The conversion to the scalar formalism is accomplished in a novel way by working in terms of the path integral representation of the generating functional of the vacuum tau-functions, tau(2,1, xxx 3 xxx)equivalent<0-chemically bondT-italic(Psi/sub in/(2) Psi-bar/sub in/(1) xxx A-italic/sub ..mu../(3)/sub in/ xxx S-italic)chemically bond0->, where Psi/sub in/ is a Heisenberg operator belonging to a 4N-italic x 1 Dirac wave function of the multiplet. The Feynman rules obtained generalize earlier results for the Abelian case of quantum electrodynamics.« less

  6. Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers

    NASA Astrophysics Data System (ADS)

    Yin, Long-Jing; Qiao, Jia-Bin; Zuo, Wei-Jie; Li, Wen-Tian; He, Lin

    2015-08-01

    Non-Abelian gauge potentials are quite relevant in subatomic physics, but they are relatively rare in a condensed matter context. Here we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by scanning tunneling microscopy and spectroscopy. At a magic twisted angle, θ ≈(1.11±0.05 ) ∘ , a pronounced sharp peak, which arises from the nondispersive flat bands at the charge neutrality point, is observed in the tunneling density of states due to the action of the non-Abelian gauge fields. Moreover, we observe confined electronic states in the twisted bilayer, as manifested by regularly spaced tunneling peaks with energy spacing δ E ≈vF/D ≈70 meV (here vF is the Fermi velocity of graphene and D is the period of the moiré patterns). This indicates that the non-Abelian gauge potentials in twisted graphene bilayers confine low-energy electrons into a triangular array of quantum dots following the modulation of the moiré patterns. Our results also directly demonstrate that the Fermi velocity in twisted bilayers can be tuned from about 106m /s to zero by simply reducing the twisted angle of about 2∘.

  7. Non-Abelian states of matter.

    PubMed

    Stern, Ady

    2010-03-11

    Quantum mechanics classifies all elementary particles as either fermions or bosons, and this classification is crucial to the understanding of a variety of physical systems, such as lasers, metals and superconductors. In certain two-dimensional systems, interactions between electrons or atoms lead to the formation of quasiparticles that break the fermion-boson dichotomy. A particularly interesting alternative is offered by 'non-Abelian' states of matter, in which the presence of quasiparticles makes the ground state degenerate, and interchanges of identical quasiparticles shift the system between different ground states. Present experimental studies attempt to identify non-Abelian states in systems that manifest the fractional quantum Hall effect. If such states can be identified, they may become useful for quantum computation.

  8. Abelian non-global logarithms from soft gluon clustering

    NASA Astrophysics Data System (ADS)

    Kelley, Randall; Walsh, Jonathan R.; Zuberi, Saba

    2012-09-01

    Most recombination-style jet algorithms cluster soft gluons in a complex way. This leads to previously identified correlations in the soft gluon phase space and introduces logarithmic corrections to jet cross sections, which are known as clustering logarithms. The leading Abelian clustering logarithms occur at least at next-to leading logarithm (NLL) in the exponent of the distribution. Using the framework of Soft Collinear Effective Theory (SCET), we show that new clustering effects contributing at NLL arise at each order. While numerical resummation of clustering logs is possible, it is unlikely that they can be analytically resummed to NLL. Clustering logarithms make the anti-kT algorithm theoretically preferred, for which they are power suppressed. They can arise in Abelian and non-Abelian terms, and we calculate the Abelian clustering logarithms at O ( {α_s^2} ) for the jet mass distribution using the Cambridge/Aachen and kT algorithms, including jet radius dependence, which extends previous results. We find that clustering logarithms can be naturally thought of as a class of non-global logarithms, which have traditionally been tied to non-Abelian correlations in soft gluon emission.

  9. Abelian Toda field theories on the noncommutative plane

    NASA Astrophysics Data System (ADS)

    Cabrera-Carnero, Iraida

    2005-10-01

    Generalizations of GL(n) abelian Toda and GL with tilde above(n) abelian affine Toda field theories to the noncommutative plane are constructed. Our proposal relies on the noncommutative extension of a zero-curvature condition satisfied by algebra-valued gauge potentials dependent on the fields. This condition can be expressed as noncommutative Leznov-Saveliev equations which make possible to define the noncommutative generalizations as systems of second order differential equations, with an infinite chain of conserved currents. The actions corresponding to these field theories are also provided. The special cases of GL(2) Liouville and GL with tilde above(2) sinh/sine-Gordon are explicitly studied. It is also shown that from the noncommutative (anti-)self-dual Yang-Mills equations in four dimensions it is possible to obtain by dimensional reduction the equations of motion of the two-dimensional models constructed. This fact supports the validity of the noncommutative version of the Ward conjecture. The relation of our proposal to previous versions of some specific Toda field theories reported in the literature is presented as well.

  10. Non-Abelian Gauge Theory in the Lorentz Violating Background

    NASA Astrophysics Data System (ADS)

    Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais

    2018-03-01

    In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.

  11. Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viennot, David

    We show that the holonomy of a connection defined on a principal composite bundle is related by a non-Abelian Stokes theorem to the composition of the holonomies associated with the connections of the component bundles of the composite. We apply this formalism to describe the non-Abelian geometric phase (when the geometric phase generator does not commute with the dynamical phase generator). We find then an assumption to obtain a new kind of separation between the dynamical and the geometric phases. We also apply this formalism to the gauge theory of gravity in the presence of a Dirac spinor field inmore » order to decompose the holonomy of the Lorentz connection into holonomies of the linear connection and of the Cartan connection.« less

  12. Gauge-independent Abelian mechanism of color confinement in gluodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Tsuneo; Ishiguro, Katsuya; Sekido, Toru

    Abelian mechanism of non-Abelian color confinement is observed in a gauge-independent way by high precision lattice Monte Carlo simulations in gluodynamics. An Abelian gauge field is extracted with no gauge fixing. Then we decompose the Abelian field into regular photon and singular monopole parts using the Hodge decomposition. We find that only the monopole part is responsible for the string tension. The investigation of the flux-tube profile then shows that an Abelian electric field defined in an arbitrary color direction is squeezed by the monopole supercurrent with the same color direction, and the quantitative features of flux squeezing are consistentmore » with those observed previously after Abelian projections with gauge fixing. Non-Abelian color confinement is explained in the framework of the gauge-independent Abelian dual Meissner effect.« less

  13. Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential: Gauge Invariance and Experimental Detections

    PubMed Central

    Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming

    2013-01-01

    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153

  14. Rotating black holes with non-Abelian hair

    NASA Astrophysics Data System (ADS)

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lérida, Francisco

    2016-12-01

    We here review asymptotically flat rotating black holes in the presence of non-Abelian gauge fields. Like their static counterparts these black holes are no longer uniquely determined by their global charges. In the case of pure SU(2) Yang-Mills fields, the rotation generically induces an electric charge, while the black holes do not carry a magnetic charge. When a Higgs field is coupled, rotating black holes with monopole hair arise in the case of a Higgs triplet, while in the presence of a complex Higgs doublet the black holes carry sphaleron hair. The inclusion of a dilaton allows for Smarr type mass formulae.

  15. Non-Abelian vortex lattices

    NASA Astrophysics Data System (ADS)

    Tallarita, Gianni; Peterson, Adam

    2018-04-01

    We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.

  16. Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx; Manuel-Cabrera, J., E-mail: jmanuel@ifuap.buap.mx

    2015-10-15

    A detailed Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions is performed. We obtain for the theories under study the constraints, the gauge transformations, the generalized Faddeev–Jackiw brackets and we perform the counting of physical degrees of freedom. In addition, we compare our results with those found in the literature where the canonical analysis is developed, in particular, we show that both the generalized Faddeev–Jackiw brackets and Dirac’s brackets coincide to each other. Finally we discuss some remarks and prospects. - Highlights: • A detailed Faddeev–Jackiw analysis for exotic action of gravity is performed.more » • We show that Dirac’s brackets and Generalized [FJ] brackets are equivalent. • Without fixing the gauge exotic action is a non-commutative theory. • The fundamental gauge transformations of the theory are found. • Dirac and Faddeev–Jackiw approaches are compared.« less

  17. Cosmological bounds on non-Abelian dark forces

    NASA Astrophysics Data System (ADS)

    Forestell, Lindsay; Morrissey, David E.; Sigurdson, Kris

    2018-04-01

    Non-Abelian dark gauge forces that do not couple directly to ordinary matter may be realized in nature. The minimal form of such a dark force is a pure Yang-Mills theory. If the dark sector is reheated in the early Universe, it will be realized as a set of dark gluons at high temperatures and as a collection of dark glueballs at lower temperatures, with a cosmological phase transition from one form to the other. Despite being dark, the gauge fields of the new force can connect indirectly to the standard model through nonrenormalizable operators. These operators will transfer energy between the dark and visible sectors, and they allow some or all of the dark glueballs to decay. In this work we investigate the cosmological evolution and decays of dark glueballs in the presence of connector operators to the standard model. Dark glueball decays can modify cosmological and astrophysical observables, and we use these considerations to put very strong limits on the existence of pure non-Abelian dark forces. On the other hand, if one or more of the dark glueballs are stable, we find that they can potentially make up the dark matter of the Universe.

  18. Non-Abelian fractional topological insulators in three spatial dimensions from coupled wires

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Neupert, Titus; Chamon, Claudio; Mudry, Christopher

    The study of topological order in three spatial dimensions constitutes a major frontier in theoretical condensed matter physics. Recently, substantial progress has been made in constructing (3+1)-dimensional Abelian topological states of matter from arrays of coupled quantum wires. In this talk, I will illustrate how wire constructions based on non-Abelian bosonization can be used to build and characterize non-Abelian symmetry-enriched topological phases in three dimensions. In particular, I will describe a family of states of matter, constructed in this way, that constitute a natural non-Abelian generalization of strongly correlated three dimensional fractional topological insulators. These states of matter support strongly interacting symmetry-protected gapless surface states, and host non-Abelian pointlike and linelike excitations in the bulk.

  19. Non-Abelian Yang-Mills analogue of classical electromagnetic duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Hong-Mo; Faridani, J.; Tsun, T.S.

    The classic question of non-Abelian Yang-Mills analogue to electromagnetic duality is examined here in a minimalist fashion at the strictly four-dimensional, classical field, and point charge level. A generalization of the Abelian Hodge star duality is found which, though not yet known to give dual symmetry, reproduces analogues to many dual properties of the Abelian theory. For example, there is a dual potential, but it is a two-indexed tensor {ital T}{sub {mu}{nu}} of the Freedman-Townsend-type. Though not itself functioning as such, {ital T}{sub {mu}{nu}} gives rise to a dual parallel transport {ital {tilde A}}{sub {mu}} for the phase of themore » wave function of the color magnetic charge, this last being a monopole of the Yang-Mills field but a source of the dual field. The standard color (electric) charge itself is found to be a monpole of {ital {tilde A}}{sub {mu}}. At the same time, the gauge symmetry is found doubled from say SU({ital N}) to SU({ital N}){times}SU({ital N}). A novel feature is that all equations of motion, including the standard Yang-Mills and Wong equations, are here derived from a ``universal`` principle, namely, the Wu-Yang criterion for monpoles, where interactions arise purely as a consequence of the topological definition of the monopole charge. The technique used is the loop space formulation of Polyakov.« less

  20. Condensation of an ideal gas obeying non-Abelian statistics.

    PubMed

    Mirza, Behrouz; Mohammadzadeh, Hosein

    2011-09-01

    We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.

  1. Construction of non-Abelian gauge theories on noncommutative spaces

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Möller, L.; Schraml, S.; Schupp, P.; Wess, J.

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories.

  2. On Non-Abelian Extensions of 3-Lie Algebras

    NASA Astrophysics Data System (ADS)

    Song, Li-Na; Makhlouf, Abdenacer; Tang, Rong

    2018-04-01

    In this paper, we study non-abelian extensions of 3-Lie algebras through Maurer-Cartan elements. We show that there is a one-to-one correspondence between isomorphism classes of non-abelian extensions of 3-Lie algebras and equivalence classes of Maurer-Cartan elements in a DGLA. The structure of the Leibniz algebra on the space of fundamental objects is also analyzed. Supported by National Natural Science Foundation of China under Grant No. 11471139 and National Natural Science Foundation of Jilin Province under Grant No. 20170101050JC

  3. Non-Abelian supertubes

    NASA Astrophysics Data System (ADS)

    Fernández-Melgarejo, José J.; Park, Minkyu; Shigemori, Masaki

    2017-12-01

    A supertube is a supersymmetric configuration in string theory which occurs when a pair of branes spontaneously polarizes and generates a new dipole charge extended along a closed curve. The dipole charge of a codimension-2 supertube is characterized by the U-duality monodromy as one goes around the supertube. For multiple codimension-2 supertubes, their monodromies do not commute in general. In this paper, we construct a supersymmetric solution of five-dimensional supergravity that describes two supertubes with such non-Abelian monodromies, in a certain perturbative expansion. In supergravity, the monodromies are realized as the multi-valuedness of the scalar fields, while in higher dimensions they correspond to non-geometric duality twists of the internal space. The supertubes in our solution carry NS5 and 5 2 2 dipole charges and exhibit the same monodromy structure as the SU(2) Seiberg-Witten geometry. The perturbative solution has AdS2 × S 2 asymptotics and vanishing four-dimensional angular momentum. We argue that this solution represents a microstate of four-dimensional black holes with a finite horizon and that it provides a clue for the gravity realization of a pure-Higgs branch state in the dual quiver quantum mechanics.

  4. Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions.

    PubMed

    Faoro, Lara; Siewert, Jens; Fazio, Rosario

    2003-01-17

    Non-Abelian holonomies can be generated and detected in certain superconducting nanocircuits. Here we consider an example where the non-Abelian operations are related to the adiabatic charge dynamics of the Josephson network. We demonstrate that such a device can be applied both for adiabatic charge pumping and as an implementation of a quantum computer.

  5. Fault-tolerant Greenberger-Horne-Zeilinger paradox based on non-Abelian anyons.

    PubMed

    Deng, Dong-Ling; Wu, Chunfeng; Chen, Jing-Ling; Oh, C H

    2010-08-06

    We propose a scheme to test the Greenberger-Horne-Zeilinger paradox based on braidings of non-Abelian anyons, which are exotic quasiparticle excitations of topological states of matter. Because topological ordered states are robust against local perturbations, this scheme is in some sense "fault-tolerant" and might close the detection inefficiency loophole problem in previous experimental tests of the Greenberger-Horne-Zeilinger paradox. In turn, the construction of the Greenberger-Horne-Zeilinger paradox reveals the nonlocal property of non-Abelian anyons. Our results indicate that the non-Abelian fractional statistics is a pure quantum effect and cannot be described by local realistic theories. Finally, we present a possible experimental implementation of the scheme based on the anyonic interferometry technologies.

  6. Non-Abelian Berry phase, instantons, and N=(0,4) supersymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laia, Joao N.

    2010-12-15

    In supersymmetric quantum mechanics, the non-Abelian Berry phase is known to obey certain differential equations. Here we study N=(0,4) systems and show that the non-Abelian Berry connection over R{sup 4n} satisfies a generalization of the self-dual Yang-Mills equations. Upon dimensional reduction, these become the tt* equations. We further study the Berry connection in N=(4,4) theories and show that the curvature is covariantly constant.

  7. Mapping the Braiding Properties of Non-Abelian FQHE Liquids.

    NASA Astrophysics Data System (ADS)

    Prodan, Emil; Haldane, F. D. M.

    2007-03-01

    Non-Abelian FQHE (NAFQHE) states have elementary excitations that cannot be individually locally-created. When widely separated, they give rise to topological (quasi-)degeneracy of the quantum states; braiding of such non-Abelian quasiparticles (NAQP's) implements unitary transformations among the degenerate states that may be useful for ``topological quantum computing'' (TQC). We have developed a new technique for explicit computation of NAQP braiding in models exhibiting ideal NAFQHE behavior (where the topological degeneracy is exact), in particular the Moore-Read ν = 5/2 state. For systems of small numbers of NAQP's on a sphere, we have computed the non-Abelian Berry curvature and Hilbert space metric, as one NAQP is moved relative to a fixed configuration of the others, showing how the topological properties develop as the system size (NAQP separation) increases. We also studied the effect of perturbations (Coulomb interaction and substrate potentials) that lift the exact degeneracy, and become the dominant corrections when NAQP's are brought together so that quantum measurements can be made; these effects are likely to be crucial in determining whether TQC is viable in NAFQHE systems.

  8. Dirichlet to Neumann operator for Abelian Yang-Mills gauge fields

    NASA Astrophysics Data System (ADS)

    Díaz-Marín, Homero G.

    We consider the Dirichlet to Neumann operator for Abelian Yang-Mills boundary conditions. The aim is constructing a complex structure for the symplectic space of boundary conditions of Euler-Lagrange solutions modulo gauge for space-time manifolds with smooth boundary. Thus we prepare a suitable scenario for geometric quantization within the reduced symplectic space of boundary conditions of Abelian gauge fields.

  9. Improved HDRG decoders for qudit and non-Abelian quantum error correction

    NASA Astrophysics Data System (ADS)

    Hutter, Adrian; Loss, Daniel; Wootton, James R.

    2015-03-01

    Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.

  10. Low-energy effective worldsheet theory of a non-Abelian vortex in high-density QCD revisited: A regular gauge construction

    NASA Astrophysics Data System (ADS)

    Chatterjee, Chandrasekhar; Nitta, Muneto

    2017-04-01

    Color symmetry is spontaneously broken in quark matter at high density as a consequence of di-quark condensations with exhibiting color superconductivity. Non-Abelian vortices or color magnetic flux tubes stably exist in the color-flavor locked phase at asymptotically high density. The effective worldsheet theory of a single non-Abelian vortex was previously calculated in the singular gauge to obtain the C P2 model [1,2]. Here, we reconstruct the effective theory in a regular gauge without taking a singular gauge, confirming the previous results in the singular gauge. As a byproduct of our analysis, we find that non-Abelian vortices in high-density QCD do not suffer from any obstruction for the global definition of a symmetry breaking.

  11. Nilpotent symmetries and Curci-Ferrari-type restrictions in 2D non-Abelian gauge theory: Superfield approach

    NASA Astrophysics Data System (ADS)

    Srinivas, N.; Malik, R. P.

    2017-11-01

    We derive the off-shell nilpotent symmetries of the two (1 + 1)-dimensional (2D) non-Abelian 1-form gauge theory by using the theoretical techniques of the geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. For this purpose, we exploit the augmented version of superfield approach (AVSA) and derive theoretically useful nilpotent (anti-)BRST, (anti-)co-BRST symmetries and Curci-Ferrari (CF)-type restrictions for the self-interacting 2D non-Abelian 1-form gauge theory (where there is no interaction with matter fields). The derivation of the (anti-)co-BRST symmetries and all possible CF-type restrictions are completely novel results within the framework of AVSA to BRST formalism where the ordinary 2D non-Abelian theory is generalized onto an appropriately chosen (2, 2)-dimensional supermanifold. The latter is parametrized by the superspace coordinates ZM = (xμ,𝜃,𝜃¯) where xμ (with μ = 0, 1) are the bosonic coordinates and a pair of Grassmannian variables (𝜃,𝜃¯) obey the relationships: 𝜃2 = 𝜃¯2 = 0, 𝜃𝜃¯ + 𝜃¯𝜃 = 0. The topological nature of our 2D theory allows the existence of a tower of CF-type restrictions.

  12. Topological degeneracy of non-Abelian states for dummies

    NASA Astrophysics Data System (ADS)

    Oshikawa, Masaki; Kim, Yong Baek; Shtengel, Kirill; Nayak, Chetan; Tewari, Sumanta

    2007-06-01

    We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O., T. Senthil, Phys. Rev. Lett. 96 (2006) 060601] which relates fractionalization and topological order. The nontrivial groundstate degeneracy obtained by Read and Green [Phys. Rev. B 61 (2000) 10267] based on differential geometry is reproduced exactly. Some restrictions on the statistics, due to the fractional charge of the quasiparticle are also discussed. Furthermore, the groundstate degeneracy of the p + i p superconductor in two dimensions, which is closely related to the Pfaffian states, is discussed with a similar construction.

  13. Some novel features in 2D non-Abelian theory: BRST approach

    NASA Astrophysics Data System (ADS)

    Srinivas, N.; Kumar, S.; Kureel, B. K.; Malik, R. P.

    2017-08-01

    Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism, we discuss some novel features of a two (1+1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields). Besides the usual off-shell nilpotent and absolutely anticommutating (anti-)BRST symmetry transformations, we discuss the off-shell nilpotent and absolutely anticommutating (anti-)co-BRST symmetry transformations. Particularly, we lay emphasis on the existence of the coupled (but equivalent) Lagrangian densities of the 2D non-Abelian theory in view of the presence of (anti-)co-BRST symmetry transformations where we pin-point some novel features associated with the Curci-Ferrari (CF-)type restrictions. We demonstrate that these CF-type restrictions can be incorporated into the (anti-)co-BRST invariant Lagrangian densities through the fermionic Lagrange multipliers which carry specific ghost numbers. The modified versions of the Lagrangian densities (where we get rid of the new CF-type restrictions) respect some precise symmetries as well as a couple of symmetries with CF-type constraints. These observations are completely novel as far as the BRST formalism, with proper (anti-)co-BRST symmetries, is concerned.

  14. Establishing non-Abelian topological order in Gutzwiller-projected Chern insulators via entanglement entropy and modular S-matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Vishwanath, Ashvin

    2013-04-01

    We use entanglement entropy signatures to establish non-Abelian topological order in projected Chern-insulator wave functions. The simplest instance is obtained by Gutzwiller projecting a filled band with Chern number C=2, whose wave function may also be viewed as the square of the Slater determinant of a band insulator. We demonstrate that this wave function is captured by the SU(2)2 Chern-Simons theory coupled to fermions. This is established most persuasively by calculating the modular S-matrix from the candidate ground-state wave functions, following a recent entanglement-entropy-based approach. This directly demonstrates the peculiar non-Abelian braiding statistics of Majorana fermion quasiparticles in this state. We also provide microscopic evidence for the field theoretic generalization, that the Nth power of a Chern number C Slater determinant realizes the topological order of the SU(N)C Chern-Simons theory coupled to fermions, by studying the SU(2)3 (Read-Rezayi-type state) and the SU(3)2 wave functions. An advantage of our projected Chern-insulator wave functions is the relative ease with which physical properties, such as entanglement entropy and modular S-matrix, can be numerically calculated using Monte Carlo techniques.

  15. Fast non-Abelian geometric gates via transitionless quantum driving.

    PubMed

    Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-12-21

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.

  16. Fast non-Abelian geometric gates via transitionless quantum driving

    PubMed Central

    Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-01-01

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580

  17. Non-Abelian monopole in the parameter space of point-like interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohya, Satoshi, E-mail: ohyasato@fjfi.cvut.cz

    2014-12-15

    We study non-Abelian geometric phase in N=2 supersymmetric quantum mechanics for a free particle on a circle with two point-like interactions at antipodal points. We show that non-Abelian Berry’s connection is that of SU(2) magnetic monopole discovered by Moody, Shapere and Wilczek in the context of adiabatic decoupling limit of diatomic molecule. - Highlights: • Supersymmetric quantum mechanics is an ideal playground for studying geometric phase. • We determine the parameter space of supersymmetric point-like interactions. • Berry’s connection is given by a Wu–Yang-like magnetic monopole in SU(2) Yang–Mills.

  18. Universal attractor in a highly occupied non-Abelian plasma

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Schlichting, S.; Venugopalan, R.

    2014-06-01

    We study the thermalization process in highly occupied non-Abelian plasmas at weak coupling. The nonequilibrium dynamics of such systems is classical in nature and can be simulated with real-time lattice gauge theory techniques. We provide a detailed discussion of this framework and elaborate on the results reported in J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Phys. Rev. D 89, 074011 (2014), 10.1103/PhysRevD.89.074011 along with novel findings. We demonstrate the emergence of universal attractor solutions, which govern the nonequilibrium evolution on large time scales both for nonexpanding and expanding non-Abelian plasmas. The turbulent attractor for a nonexpanding plasma drives the system close to thermal equilibrium on a time scale t ˜Q-1αs-7/4. The attractor solution for an expanding non-Abelian plasma leads to a strongly interacting albeit highly anisotropic system at the transition to the low-occupancy or quantum regime. This evolution in the classical regime is, within the uncertainties of our simulations, consistent with the "bottom up" thermalization scenario [R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys. Lett. B 502, 51 (2001), 10.1016/S0370-2693(01)00191-5]. While the focus of this paper is to understand the nonequilibrium dynamics in weak coupling asymptotics, we also discuss the relevance of our results for larger couplings in the early time dynamics of heavy ion collision experiments.

  19. Non-abelian anyons and topological quantum information processing in 1D wire networks

    NASA Astrophysics Data System (ADS)

    Alicea, Jason

    2012-02-01

    Topological quantum computation provides an elegant solution to decoherence, circumventing this infamous problem at the hardware level. The most basic requirement in this approach is the ability to stabilize and manipulate particles exhibiting non-Abelian exchange statistics -- Majorana fermions being the simplest example. Curiously, Majorana fermions have been predicted to arise both in 2D systems, where non-Abelian statistics is well established, and in 1D, where exchange statistics of any type is ill-defined. An important question then arises: do Majorana fermions in 1D hold the same technological promise as their 2D counterparts? In this talk I will answer this question in the affirmative, describing how one can indeed manipulate and harness the non-Abelian statistics of Majoranas in a remarkably simple fashion using networks formed by quantum wires or topological insulator edges.

  20. Non-Abelian sigma models from Yang-Mills theory compactified on a circle

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2018-06-01

    We consider SU(N) Yang-Mills theory on R 2 , 1 ×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang-Mills action reduces to the action of a sigma model on R 2 , 1 whose target space is a 2 (N - 1)-dimensional torus modulo the Weyl-group action. We argue that there is freedom in the choice of the framing of the gauge bundles, which leads to more general options. In particular, we show that this low-energy limit can give rise to a target space SU (N) ×SU (N) /ZN. The latter is the direct product of SU(N) and its Langlands dual SU (N) /ZN, and it contains the above-mentioned torus as its maximal Abelian subgroup. An analogous result is obtained for any non-Abelian gauge group.

  1. Critical non-Abelian vortex in four dimensions and little string theory

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2017-08-01

    As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.

  2. Solitons, τ-functions and hamiltonian reduction for non-Abelian conformal affine Toda theories

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Miramontes, J. Luis; Guillén, Joaquín Sánchez

    1995-02-01

    We consider the Hamiltonian reduction of the "two-loop" Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra G. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of G, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.

  3. Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension

    NASA Astrophysics Data System (ADS)

    Paredes, Belén

    2012-05-01

    I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.

  4. Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field

    NASA Astrophysics Data System (ADS)

    Figueroa, Daniel G.; Shaposhnikov, Mikhail

    2018-01-01

    Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present an explicit non-compact lattice formulation of the interaction between a shift-symmetric field and some U (1) gauge sector, a (x)FμνF˜μν, reproducing the continuum limit to order O (dxμ2) and obeying the following properties: (i) the system is gauge invariant and (ii) shift symmetry is exact on the lattice. For this end we construct a definition of the topological number density K =FμνF˜μν that admits a lattice total derivative representation K = Δμ+ Kμ, reproducing to order O (dxμ2) the continuum expression K =∂μKμ ∝ E → ṡ B → . If we consider a homogeneous field a (x) = a (t), the system can be mapped into an Abelian gauge theory with Hamiltonian containing a Chern-Simons term for the gauge fields. This allow us to study in an accompanying paper the real time dynamics of fermion number non-conservation (or chirality breaking) in Abelian gauge theories at finite temperature. When a (x) = a (x → , t) is inhomogeneous, the set of lattice equations of motion do not admit however a simple explicit local solution (while preserving an O (dxμ2) accuracy). We discuss an iterative scheme allowing to overcome this difficulty.

  5. Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations

    NASA Astrophysics Data System (ADS)

    Ariznabarreta, Gerardo; García-Ardila, Juan C.; Mañas, Manuel; Marcellán, Francisco

    2018-05-01

    In this paper, Geronimus–Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss–Borel factorization of the Gram matrix. Geronimus–Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus–Uvarov transformations, first for the Baker functions, then secondly for the biorthogonal polynomials and its second kind functions, and finally for the τ-ratio matrix functions, are found.

  6. The static quark potential from the gauge independent Abelian decomposition

    NASA Astrophysics Data System (ADS)

    Cundy, Nigel; Cho, Y. M.; Lee, Weonjong; Leem, Jaehoon

    2015-06-01

    We investigate the relationship between colour confinement and the gauge independent Cho-Duan-Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are responsible for

  7. Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mawson, Thomas; Ruben, Gary; Simula, Tapio

    2015-06-01

    We have studied computationally the collision dynamics of spin-2 Bose-Einstein condensates initially confined in a triple-well trap. Depending on the phase structure of the initial-state spinor wave function, the collision of the three condensate fragments produces one of many possible vortex-antivortex lattices, after which the system transitions to quantum turbulence. We find that the emerging vortex lattice structures can be described in terms of multiwave interference. We show that the three-fragment collisions can be used to systematically produce staggered vortex-antivortex honeycomb lattices of fractional-charge vortices, whose collision dynamics are known to be non-Abelian. Such condensate collider experiments could potentially be used as a controllable pathway to generating non-Abelian superfluid turbulence with networks of vortex rungs.

  8. Non-Abelian Bremsstrahlung and Azimuthal Asymmetries in High Energy p+A Reactions

    DOE PAGES

    Gyulassy, Miklos; Vitev, Ivan Mateev; Levai, Peter; ...

    2014-09-25

    Here we apply the GLV reaction operator solution to the Vitev-Gunion-Bertsch (VGB) boundary conditions to compute the all-order in nuclear opacity non-abelian gluon bremsstrahlung of event- by-event uctuating beam jets in nuclear collisions. We evaluate analytically azimuthal Fourier moments of single gluon, vmore » $$M\\atop{n}$$ {1}, and even number 2ℓ gluon, v$$M\\atop{n}$$ {2ℓ} inclusive distributions in high energy p+A reactions as a function of harmonic $n$, target recoil cluster number, $M$, and gluon number, 2ℓ, at RHIC and LHC. Multiple resolved clusters of recoiling target beam jets together with the projectile beam jet form Color Scintillation Antenna (CSA) arrays that lead to character- istic boost non-invariant trapezoidal rapidity distributions in asymmetric B+A nuclear collisions. The scaling of intrinsically azimuthally anisotropic and long range in η nature of the non-Abelian bremsstrahlung leads to v n moments that are similar to results from hydrodynamic models, but due entirely to non-Abelian wave interference phenomena sourced by the fluctuating CSA. Our analytic non-flow solutions are similar to recent numerical saturation model predictions but differ by predicting a simple power-law hierarchy of both even and odd v n without invoking k T factorization. A test of CSA mechanism is the predicted nearly linear η rapidity dependence of the v n(k Tη). Non- Abelian beam jet bremsstrahlung may thus provide a simple analytic solution to Beam Energy Scan (BES) puzzle of the near $$\\sqrt{s}$$ independence of v n(pT) moments observed down to 10 AGeV where large-x valence quark beam jets dominate inelastic dynamics. Recoil bremsstrahlung from multiple independent CSA clusters could also provide a partial explanation for the unexpected similarity of v n in p(D) + A and non-central A + A at same dN=dη multiplicity as observed at RHIC and LHC.« less

  9. Core structure and dynamics of non-Abelian vortices in a biaxial nematic spinor Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus O.; Ruostekoski, Janne

    2016-05-01

    We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.

  10. Index theorem for non-supersymmetric fermions coupled to a non-Abelian string and electric charge quantization

    NASA Astrophysics Data System (ADS)

    Shifman, M.; Yung, A.

    2018-03-01

    Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U(N). We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial N dependence.

  11. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    DOE PAGES

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; ...

    2018-02-26

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme-tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one andmore » two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro-modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. Lastly, we describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.« less

  12. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme-tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one andmore » two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro-modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. Lastly, we describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.« less

  13. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    NASA Astrophysics Data System (ADS)

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; Robinson, Neil J.; Tsvelik, Alexei M.

    2018-04-01

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb–Liniger model, 1  +  1D quantum chromodynamics, as well as Landau–Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  14. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods.

    PubMed

    James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil J; Tsvelik, Alexei M

    2018-02-26

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1  +  1D quantum chromodynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  15. Localization in abelian Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    McLellan, B. D. K.

    2013-02-01

    Chern-Simons theory on a closed contact three-manifold is studied when the Lie group for gauge transformations is compact, connected, and abelian. The abelian Chern-Simons partition function is derived using the Faddeev-Popov gauge fixing method. The partition function is then formally computed using the technique of non-abelian localization. This study leads to a natural identification of the abelian Reidemeister-Ray-Singer torsion as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections for the class of Sasakian three-manifolds. The torsion part of the abelian Chern-Simons partition function is computed explicitly in terms of Seifert data for a given Sasakian three-manifold.

  16. Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model

    NASA Astrophysics Data System (ADS)

    Borcherding, Daniel; Frahm, Holger

    2018-05-01

    The contribution of anyonic degrees of freedom emerging in the non-Abelian spin sector of a one-dimensional system of interacting fermions carrying both spin and SU(N f ) orbital degrees of freedom to the thermodynamic properties of the latter is studied based on the exact solution of the model. For sufficiently small temperatures and magnetic fields the anyons appear as zero energy modes localized at the massive kink excitations (Tsvelik 2014 Phys. Rev. Lett. 113 066401). From their quantum dimension they are identified as spin- anyons. The density of kinks (and anyons) can be controlled by an external magnetic field leading to the formation of a collective state of these anyons described by a parafermion conformal field theory for large fields. Based on the numerical analysis of the thermodynamic Bethe ansatz equations we propose a phase diagram for the anyonic modes.

  17. S-duality in SU(3) Yang-Mills theory with non-abelian unbroken gauge group

    NASA Astrophysics Data System (ADS)

    Schroers, B. J.; Bais, F. A.

    1998-12-01

    It is observed that the magnetic charges of classical monopole solutions in Yang-Mills-Higgs theory with non-abelian unbroken gauge group H are in one-to-one correspondence with coherent states of a dual or magnetic group H˜. In the spirit of the Goddard-Nuyts-Olive conjecture this observation is interpreted as evidence for a hidden magnetic symmetry of Yang-Mills theory. SU(3) Yang-Mills-Higgs theory with unbroken gauge group U(2) is studied in detail. The action of the magnetic group on semi-classical states is given explicitly. Investigations of dyonic excitations show that electric and magnetic symmetry are never manifest at the same time: Non-abelian magnetic charge obstructs the realisation of electric symmetry and vice-versa. On the basis of this fact the charge sectors in the theory are classified and their fusion rules are discussed. Non-abelian electric-magnetic duality is formulated as a map between charge sectors. Coherent states obey particularly simple fusion rules, and in the set of coherent states S-duality can be formulated as an SL(2, Z) mapping between sectors which leaves the fusion rules invariant.

  18. Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator.

    PubMed

    Li, Keren; Wan, Yidun; Hung, Ling-Yan; Lan, Tian; Long, Guilu; Lu, Dawei; Zeng, Bei; Laflamme, Raymond

    2017-02-24

    Topological orders can be used as media for topological quantum computing-a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular S and T matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the Z_{2} toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately, topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers.

  19. N = (2,0) self-dual non-Abelian tensor multiplet in D = 3 + 3 generates N = (1,1) self-dual systems in D = 2 + 2

    NASA Astrophysics Data System (ADS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2018-03-01

    We formulate an N = (2 , 0) system in D = 3 + 3 dimensions consisting of a Yang-Mills (YM)-multiplet (ˆ μ ˆ IA, λˆI), a self-dual non-Abelian tensor multiplet (ˆ μ ˆ ν ˆ IB, χˆI ,φˆI), and an extra vector multiplet (C ˆ μ ˆ IC, ρˆI). We next perform the dimensional reductions of this system into D = 2 + 2, and obtain N = (1 , 1) systems with a self-dual YM-multiplet (AIμ ,λI), a self-dual tensor multiplet (BIμν , χI , φI), and an extra vector multiplet (CIμ , ρI). In D = 2 + 2, we reach two distinct theories: 'Theory-I' and 'Theory-II'. The former has the self-dual field-strength Hμν(+)I of CIμ already presented in our recent paper, while the latter has anti-self-dual field strength Hμν(-)I. As an application, we show that Theory-II actually generates supersymmetric-KdV equations in D = 1 + 1. Our result leads to a new conclusion that the D = 3 + 3 theory with non-Abelian tensor multiplet can be a 'Grand Master Theory' for self-dual multiplet and self-dual YM-multiplet in D = 2 + 2, that in turn has been conjectured to be the 'Master Theory' for all supersymmetric integrable theories in D ≤ 3.

  20. Introducing Abelian Groups Using Bullseyes and Jenga

    ERIC Educational Resources Information Center

    Smith, Michael D.

    2016-01-01

    The purpose of this article is to share a new approach for introducing students to the definition and standard examples of Abelian groups. The definition of an Abelian group is revised to include six axioms. A bullseye provides a way to visualize elementary examples and non-examples of Abelian groups. An activity based on the game of Jenga is used…

  1. Anomalous Quasiparticle Symmetries and Non-Abelian Defects on Symmetrically Gapped Surfaces of Weak Topological Insulators.

    PubMed

    Mross, David F; Essin, Andrew; Alicea, Jason; Stern, Ady

    2016-01-22

    We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes.

  2. Feynman rules for a whole Abelian model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Soares, W.

    2012-09-24

    Feynman rules for an abelian extension of gauge theories are discussed and explicitly derived. Vertices with three and four abelian gauge bosons are obtained. A discussion on an eventual structure for the photon is presented.

  3. Existence of topological multi-string solutions in Abelian gauge field theories

    NASA Astrophysics Data System (ADS)

    Han, Jongmin; Sohn, Juhee

    2017-11-01

    In this paper, we consider a general form of self-dual equations arising from Abelian gauge field theories coupled with the Einstein equations. By applying the super/subsolution method, we prove that topological multi-string solutions exist for any coupling constant, which improves previously known results. We provide two examples for application: the self-dual Einstein-Maxwell-Higgs model and the gravitational Maxwell gauged O(3) sigma model.

  4. Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries

    DOE PAGES

    Braun, Volker; Cvetič, Mirjam; Donagi, Ron; ...

    2017-07-26

    Here, we provide the first explicit example of Type IIB string theory compactication on a globally defined Calabi-Yau threefold with torsion which results in a fourdimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of Z 2 X Z 2. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of secondmore » cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the four-dimensional theory.« less

  5. Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, Volker; Cvetič, Mirjam; Donagi, Ron

    Here, we provide the first explicit example of Type IIB string theory compactication on a globally defined Calabi-Yau threefold with torsion which results in a fourdimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of Z 2 X Z 2. Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of secondmore » cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the four-dimensional theory.« less

  6. Dark gauge bosons: LHC signatures of non-abelian kinetic mixing

    DOE PAGES

    Argüelles, Carlos A.; He, Xiao-Gang; Ovanesyan, Grigory; ...

    2017-04-20

    We consider non-abelian kinetic mixing between the Standard Model and a dark sector gauge group associated with the presence of a scalar triplet. The magnitude of the resulting dark photon coupling ϵ is determined by the ratio of the triplet vacuum expectation value, constrained to by by electroweak precision tests, to the scale Λ of the effective theory. The corresponding effective operator Wilson coefficient can be while accommodating null results for dark photon searches, allowing for a distinctive LHC dark photon phenomenology. After outlining the possible LHC signatures, we illustrate by recasting current ATLAS dark photon results into the non-abelianmore » mixing context.« less

  7. Quantum corrections to non-Abelian SUSY theories on orbifolds

    NASA Astrophysics Data System (ADS)

    Groot Nibbelink, Stefan; Hillenbach, Mark

    2006-07-01

    We consider supersymmetric non-Abelian gauge theories coupled to hyper multiplets on five and six dimensional orbifolds, S/Z and T/Z, respectively. We compute the bulk and local fixed point renormalizations of the gauge couplings. To this end we extend supergraph techniques to these orbifolds by defining orbifold compatible delta functions. We develop their properties in detail. To cancel the bulk one-loop divergences the bulk gauge kinetic terms and dimension six higher derivative operators are required. The gauge couplings renormalize at the Z fixed points due to vector multiplet self interactions; the hyper multiplet renormalizes only non- Z fixed points. In 6D the Wess-Zumino-Witten term and a higher derivative analogue have to renormalize in the bulk as well to preserve 6D gauge invariance.

  8. Non-Abelian strategies in quantum penny flip game

    NASA Astrophysics Data System (ADS)

    Mishima, Hiroaki

    2018-01-01

    In this paper, we formulate and analyze generalizations of the quantum penny flip game. In the penny flip game, one coin has two states, heads or tails, and two players apply alternating operations on the coin. In the original Meyer game, the first player is allowed to use quantum (i.e., non-commutative) operations, but the second player is still only allowed to use classical (i.e., commutative) operations. In our generalized games, both players are allowed to use non-commutative operations, with the second player being partially restricted in what operators they use. We show that even if the second player is allowed to use "phase-variable" operations, which are non-Abelian in general, the first player still has winning strategies. Furthermore, we show that even when the second player is allowed to choose one from two or more elements of the group U(2), the second player has winning strategies under certain conditions. These results suggest that there is often a method for restoring the quantum state disturbed by another agent.

  9. Non-Abelian cosmic string in the Starobinsky model of gravity

    NASA Astrophysics Data System (ADS)

    Morais Graça, J. P.; de Pádua Santos, A.; Bezerra de Mello, Eugênio R.; Bezerra, V. B.

    In this paper, we analyze numerically the behavior of the solutions corresponding to a non-Abelian cosmic string in the framework of the Starobinsky model, i.e. where f(R) = R + ζR2. We perform the calculations for both an asymptotically flat and asymptotically (anti)-de Sitter spacetimes. We found that the angular deficit generated by the string decreases as the parameter ζ increases, in the case of a null cosmological constant. For a positive cosmological constant, we found that the cosmic horizon is affected in a nontrivial way by the parameter ζ.

  10. Non-Abelian semilocal strings in N=2 supersymmetric QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300

    2006-06-15

    We consider a benchmark bulk theory in four dimensions: N=2 supersymmetric QCD with the gauge group U(N) and N{sub f} flavors of fundamental matter hypermultiplets (quarks). The nature of the Bogomol'nyi-Prasad-Sommerfield (BPS) strings in this benchmark theory crucially depends on N{sub f}. If N{sub f}{>=}N and all quark masses are equal, it supports non-Abelian BPS strings which have internal (orientational) moduli. If N{sub f}>N these strings become semilocal, developing additional moduli {rho} related to (unlimited) variations of their transverse size. Using the U(2) gauge group with N{sub f}=3, 4 as an example, we derive an effective low-energy theory on themore » (two-dimensional) string world sheet. Our derivation is field theoretic, direct and explicit: we first analyze the Bogomol'nyi equations for string-geometry solitons, suggest an ansatz, and solve it at large {rho}. Then we use this solution to obtain the world-sheet theory. In the semiclassical limit our result confirms the Hanany-Tong conjecture, which rests on brane-based arguments, that the world-sheet theory is an N=2 supersymmetric U(1) gauge theory with N positively and N{sub e}=N{sub f}-N negatively charged matter multiplets and the Fayet-Iliopoulos term determined by the four-dimensional coupling constant. We conclude that the Higgs branch of this model is not lifted by quantum effects. As a result, such strings cannot confine. Our analysis of infrared effects, not seen in the Hanany-Tong consideration, shows that, in fact, the derivative expansion can make sense only provided that the theory under consideration is regularized in the infrared, e.g. by the quark mass differences. The world-sheet action discussed in this paper becomes a bona fide low-energy effective action only if {delta}m{sub AB}{ne}0.« less

  11. Studying critical string emerging from non-Abelian vortex in four dimensions

    DOE PAGES

    Koroteev, P.; Shifman, M.; Yung, A.

    2016-05-26

    Recently a special vortex string was found in a class of soliton vortices supported in four-dimensional Yang–Mills theories that under certain conditions can become infinitely thin and can be interpreted as a critical ten-dimensional string. The appropriate bulk Yang–Mills theory has the U(2) gauge group and the Fayet–Iliopoulos term. It supports semilocal non-Abelian vortices with the world-sheet theory for orientational and size moduli described by the weighted CP(2,2) model. Here, the full target space ismore » $$\\mathbb R$$ 4 x Y 6 where is a non-compact Calabi–Yau space.« less

  12. LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models

    NASA Astrophysics Data System (ADS)

    Gueuvoghlanian, E. P.

    2001-08-01

    A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.

  13. Gauge equivalence of two different IAnsaaumlItze Rfor non-Abelian charged vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, S.K.

    1987-05-15

    Recently the existence of non-Abelian charged vortices has been established by taking two different Ansa$uml: tze in SU(2) gauge theories. We point out that these two Ansa$uml: tze are in two topologically equivalent prescriptions. We show that they are gauge equivalent only at infinity. We also show that this gauge equivalence is not possible for Z/sub N/ vortices in SU(N) gauge theories for Ngreater than or equal to3.

  14. Non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation and its implication to quark confinement

    NASA Astrophysics Data System (ADS)

    Matsudo, Ryutaro; Kondo, Kei-Ichi

    2015-12-01

    We give a gauge-independent definition of magnetic monopoles in the S U (N ) Yang-Mills theory through the Wilson loop operator. For this purpose, we give an explicit proof of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of the S U (N ) gauge group to derive a new form for the non-Abelian Stokes theorem. The new form is used to extract the magnetic-monopole contribution to the Wilson loop operator in a gauge-invariant way, which enables us to discuss confinement of quarks in any representation from the viewpoint of the dual superconductor vacuum.

  15. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de; Wahl, Thorsten B.; Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de

    Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of amore » simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.« less

  16. Critical string from non-Abelian vortex in four dimensions

    DOE PAGES

    Shifman, M.; Yung, A.

    2015-09-25

    In a class of non-Abelian solitonic vortex strings supported in certain N = 2 super-Yang–Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski–Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U(2) gauge group, the Fayet–Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size) moduli described by the weighted CP(2,2) model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. Lastly, we show that the world-sheet theory onmore » the vortex supported in this bulk model is the bona fide critical string.« less

  17. Universal Topological Quantum Computation from a Superconductor-Abelian Quantum Hall Heterostructure

    NASA Astrophysics Data System (ADS)

    Mong, Roger S. K.; Clarke, David J.; Alicea, Jason; Lindner, Netanel H.; Fendley, Paul; Nayak, Chetan; Oreg, Yuval; Stern, Ady; Berg, Erez; Shtengel, Kirill; Fisher, Matthew P. A.

    2014-01-01

    Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit of these exotic particles originated from Read and Green's observation that the Moore-Read quantum Hall state and a (relatively simple) two-dimensional p+ip superconductor both support so-called Ising non-Abelian anyons. Here, we establish a similar correspondence between the Z3 Read-Rezayi quantum Hall state and a novel two-dimensional superconductor in which charge-2e Cooper pairs are built from fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that—unlike Ising anyons—allow for universal topological quantum computation solely through braiding. Using a variant of Teo and Kane's construction of non-Abelian phases from weakly coupled chains, we provide a blueprint for such a superconductor using Abelian quantum Hall states interlaced with an array of superconducting islands. Fibonacci anyons appear as neutral deconfined particles that lead to a twofold ground-state degeneracy on a torus. In contrast to a p+ip superconductor, vortices do not yield additional particle types, yet depending on nonuniversal energetics can serve as a trap for Fibonacci anyons. These results imply that one can, in principle, combine well-understood and widely available phases of matter to realize non-Abelian anyons with universal braid statistics. Numerous future directions are discussed, including speculations on alternative realizations with fewer experimental requirements.

  18. Non-Abelian clouds around Reissner-Nordström black holes: The existence line

    NASA Astrophysics Data System (ADS)

    Radu, Eugen; Tchrakian, D. H.; Yang, Yisong

    2016-06-01

    A known feature of electrically charged Reissner-Nordström-anti-de Sitter planar black holes is that they can become unstable when considered as solutions of Einstein-Yang-Mills theory. The mechanism for this is that the linearized Yang-Mills equations in the background of the Reissner-Nordström (RN) black holes possess a normalizable zero mode, resulting in non-Abelian (nA) magnetic clouds near the horizon. In this work we show that the same pattern may occur also for asymptotically flat RN black holes. Different from the anti-de Sitter case, in the Minkowskian background the prerequisites for the existence of the nA clouds are (i) a large enough gauge group, and (ii) the presence of some extra interaction terms in the matter Lagrangian. To illustrate this mechanism we present two specific examples, one in four- and the other in five-dimensional asymptotically flat spacetime. In the first case, we augment the usual S U (3 ) Yang-Mills Lagrangian with a higher-order (quartic) curvature term, while for the second one we add the Chern-Simons density to the S O (6 ) Yang-Mills system. In both cases, an Abelian gauge symmetry is spontaneously broken near a RN black hole horizon with the appearance of a condensate of nA gauge fields. In addition to these two examples, we review the corresponding picture for anti-de Sitter black holes. All these solutions are studied both analytically and numerically, existence proofs being provided for nA clouds in the background of RN black holes. The proofs use shooting techniques which are suggested by and in turn offer insights for our numerical methods. They indicate that, for a black hole of given mass, appropriate electric charge values are required to ensure the existence of solutions interpolating desired boundary behavior at the horizons and spatial infinity.

  19. Non-Abelian fermionization and fractional quantum Hall transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    2018-02-01

    There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponent ν ≈2.3 and that ν is observed to be superuniversal, i.e., the same in the vicinity of distinct critical points [Sondhi et al., Rev. Mod. Phys. 69, 315 (1997), 10.1103/RevModPhys.69.315]. Duality motivates effective descriptions for a fractional quantum Hall plateau transition involving a Chern-Simons field with U (Nc) gauge group coupled to Nf=1 fermion. We study one class of theories in a controlled limit where Nf≫Nc and calculate ν to leading nontrivial order in the absence of disorder. Although these theories do not yield an anomalously large exponent ν within the large Nf≫Nc expansion, they do offer a new parameter space of theories that is apparently different from prior works involving Abelian Chern-Simons gauge fields [Wen and Wu, Phys. Rev. Lett. 70, 1501 (1993), 10.1103/PhysRevLett.70.1501; Chen et al., Phys. Rev. B 48, 13749 (1993), 10.1103/PhysRevB.48.13749].

  20. Hamiltonian Anomalies from Extended Field Theories

    NASA Astrophysics Data System (ADS)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  1. Non-abelian factorisation for next-to-leading-power threshold logarithms

    NASA Astrophysics Data System (ADS)

    Bonocore, D.; Laenen, E.; Magnea, L.; Vernazza, L.; White, C. D.

    2016-12-01

    Soft and collinear radiation is responsible for large corrections to many hadronic cross sections, near thresholds for the production of heavy final states. There is much interest in extending our understanding of this radiation to next-to-leading power (NLP) in the threshold expansion. In this paper, we generalise a previously proposed all-order NLP factorisation formula to include non-abelian corrections. We define a nonabelian radiative jet function, organising collinear enhancements at NLP, and compute it for quark jets at one loop. We discuss in detail the issue of double counting between soft and collinear regions. Finally, we verify our prescription by reproducing all NLP logarithms in Drell-Yan production up to NNLO, including those associated with double real emission. Our results constitute an important step in the development of a fully general resummation formalism for NLP threshold effects.

  2. Abelian gauge symmetries in F-theory and dual theories

    NASA Astrophysics Data System (ADS)

    Song, Peng

    In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by

  3. Tsallis’ quantum q-fields

    NASA Astrophysics Data System (ADS)

    Plastino, A.; Rocca, M. C.

    2018-05-01

    We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields’ logarithms.

  4. Semi-abelian Z-theory: NLSM+ ϕ 3 from the open string

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph M.; Mafra, Carlos R.; Schlotterer, Oliver

    2017-08-01

    We continue our investigation of Z-theory, the second double-copy component of open-string tree-level interactions besides super-Yang-Mills (sYM). We show that the amplitudes of the extended non-linear sigma model (NLSM) recently considered by Cachazo, Cha, and Mizera are reproduced by the leading α '-order of Z-theory amplitudes in the semi-abelian case. The extension refers to a coupling of NLSM pions to bi-adjoint scalars, and the semi-abelian case involves to a partial symmetrization over one of the color orderings that characterize the Z-theory amplitudes. Alternatively, the partial symmetrization corresponds to a mixed interaction among abelian and non-abelian states in the underlying open-superstring amplitude. We simplify these permutation sums via monodromy relations which greatly increase the efficiency in extracting the α '-expansion of these amplitudes. Their α '-corrections encode higher-derivative interactions between NLSM pions and bi-colored scalars all of which obey the duality between color and kinematics. Through double-copy, these results can be used to generate the predictions of supersymmetric Dirac-Born-Infeld-Volkov-Akulov theory coupled with sYM as well as a complete tower of higher-order α '-corrections.

  5. On spectroscopy for a whole Abelian model

    NASA Astrophysics Data System (ADS)

    Chauca, J.; Doria, R.

    2012-10-01

    Postulated on the whole meaning a whole abelian gauge symmetry is being introduced. Various physical areas as complexity, statistical mechanics, quantum mechanics are partially supporting this approach where the whole is at origin. However, the reductionist crisis given by quark confinement definitely sustains this insight. It says that fundamental parts can not be seen isolatedely. Consequently, there is an experimental situation where the parts should be substituted by something more. This makes us to look for writing the wholeness principle under gauge theory. For this, one reinterprets the gauge parameter where instead of compensating fields it is organizing a systemic gauge symmetry. Now, it introduces a fields set {AμI} rotating under a common gauge symmetry. Thus, given a fields collection {AμI} as origin, the effort at this work is to investigate on its spectroscopy. Analyze for the abelian case the correspondent involved quanta. Understand that for a whole model diversity replaces elementarity. Derive the associated quantum numbers as spin, mass, charge, discrete symmetries in terms of such systemic symmetry. Observe how the particles diversity is manifested in terms of wholeness.

  6. A string realisation of Ω-deformed Abelian N =2* theory

    NASA Astrophysics Data System (ADS)

    Angelantonj, Carlo; Antoniadis, Ignatios; Samsonyan, Marine

    2017-10-01

    The N =2* supersymmetric gauge theory is a massive deformation of N = 4, in which the adjoint hypermultiplet gets a mass. We present a D-brane realisation of the (non-)Abelian N =2* theory, and compute suitable topological amplitudes, which are expressed as a double series expansion. The coefficients determine couplings of higher-dimensional operators in the effective supergravity action that involve powers of the anti-self-dual N = 2 chiral Weyl superfield and of self-dual gauge field strengths superpartners of the D5-brane coupling modulus. In the field theory limit, the result reproduces the Nekrasov partition function in the two-parameter Ω-background, in agreement with a recent proposal.

  7. A simple model for the evolution of a non-Abelian cosmic string network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cella, G.; Pieroni, M., E-mail: giancarlo.cella@pi.infn.it, E-mail: mauro.pieroni@apc.univ-paris7.fr

    2016-06-01

    In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argumentmore » to justify the lack of scaling for the residual cases.« less

  8. On spectroscopy for a whole Abelian model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Aprendanet, Petropolis, 25600

    Postulated on the whole meaning a whole abelian gauge symmetry is being introduced. Various physical areas as complexity, statistical mechanics, quantum mechanics are partially supporting this approach where the whole is at origin. However, the reductionist crisis given by quark confinement definitely sustains this insight. It says that fundamental parts can not be seen isolatedely. Consequently, there is an experimental situation where the parts should be substituted by something more. This makes us to look for writing the wholeness principle under gauge theory. For this, one reinterprets the gauge parameter where instead of compensating fields it is organizing a systemicmore » gauge symmetry. Now, it introduces a fields set {l_brace}A{sub {mu}I}{r_brace} rotating under a common gauge symmetry. Thus, given a fields collection {l_brace}A{sub {mu}I}{r_brace} as origin, the effort at this work is to investigate on its spectroscopy. Analyze for the abelian case the correspondent involved quanta. Understand that for a whole model diversity replaces elementarity. Derive the associated quantum numbers as spin, mass, charge, discrete symmetries in terms of such systemic symmetry. Observe how the particles diversity is manifested in terms of wholeness.« less

  9. Scaling analysis of the non-Abelian quasiparticle tunneling in Z}}_k FQH states

    NASA Astrophysics Data System (ADS)

    Li, Qi; Jiang, Na; Wan, Xin; Hu, Zi-Xiang

    2018-06-01

    Quasiparticle tunneling between two counter propagating edges through point contacts could provide information on its statistics. Previous study of the short distance tunneling displays a scaling behavior, especially in the conformal limit with zero tunneling distance. The scaling exponents for the non-Abelian quasiparticle tunneling exhibit some non-trivial behaviors. In this work, we revisit the quasiparticle tunneling amplitudes and their scaling behavior in a full range of the tunneling distance by putting the electrons on the surface of a cylinder. The edge–edge distance can be smoothly tuned by varying the aspect ratio for a finite size cylinder. We analyze the scaling behavior of the quasiparticles for the Read–Rezayi states for and 4 both in the short and long tunneling distance region. The finite size scaling analysis automatically gives us a critical length scale where the anomalous correction appears. We demonstrate this length scale is related to the size of the quasiparticle at which the backscattering between two counter propagating edges starts to be significant.

  10. Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit

    NASA Astrophysics Data System (ADS)

    Danilin, S.; Vepsäläinen, A.; Paraoanu, G. S.

    2018-05-01

    Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the (∣0〉, ∣2〉) subspace of a three-level (qutrit) transmon device fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the (| 0> ,| 2> ) subspace.

  11. Stability of infinite derivative Abelian Higgs models

    NASA Astrophysics Data System (ADS)

    Ghoshal, Anish; Mazumdar, Anupam; Okada, Nobuchika; Villalba, Desmond

    2018-04-01

    Motivated by the stringy effects by modifying the local kinetic term of an Abelian Higgs field by the Gaussian kinetic term, we show that the Higgs field does not possess any instability; the Yukawa coupling between the scalar and the fermion, the gauge coupling, and the self interaction of the Higgs yields exponentially suppressed running at high energies, showing that such class of theory never suffers from vacuum instability. We briefly discuss its implications for the early Universe cosmology.

  12. Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-06-01

    We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model at tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for 3lesssim mQlesssim 4, where mQ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio Bh/P2h, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large mQ regions of the parameter space, whereas the power spectrum constrains small mQ regions.

  13. On discrete symmetries for a whole Abelian model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Aprendanet, Petropolis, 25600

    Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {l_brace}D{sub {mu}},X{sup i}{sub {mu}}{r_brace} and the physical basis {l_brace}G{sub {mu}I}{r_brace}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws drivenmore » for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {l_brace}G{sub {mu}I}{r_brace} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.« less

  14. A Finite Abelian Group of Two-Letter Inversions

    ERIC Educational Resources Information Center

    Balbuena, Sherwin E.

    2015-01-01

    In abstract algebra, the study of concrete groups is fundamentally important to beginners. Most commonly used groups as examples are integer addition modulo n, real number addition and multiplication, permutation groups, and groups of symmetry. The last two examples are finite non-abelian groups and can be investigated with the aid of concrete…

  15. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  16. Consistent compactification of double field theory on non-geometric flux backgrounds

    NASA Astrophysics Data System (ADS)

    Hassler, Falk; Lüst, Dieter

    2014-05-01

    In this paper, we construct non-trivial solutions to the 2 D-dimensional field equations of Double Field Theory (DFT) by using a consistent Scherk-Schwarz ansatz. The ansatz identifies 2( D - d) internal directions with a twist U M N which is directly connected to the covariant fluxes ABC . It exhibits 2( D - d) linear independent generalized Killing vectors K I J and gives rise to a gauged supergravity in d dimensions. We analyze the covariant fluxes and the corresponding gauged supergravity with a Minkowski vacuum. We calculate fluctuations around such vacua and show how they gives rise to massive scalars field and vectors field with a non-abelian gauge algebra. Because DFT is a background independent theory, these fields should directly correspond the string excitations in the corresponding background. For ( D - d) = 3 we perform a complete scan of all allowed covariant fluxes and find two different kinds of backgrounds: the single and the double elliptic case. The later is not T-dual to a geometric background and cannot be transformed to a geometric setting by a field redefinition either. While this background fulfills the strong constraint, it is still consistent with the Killing vectors depending on the coordinates and the winding coordinates, thereby giving a non-geometric patching. This background can therefore not be described in Supergravity or Generalized Geometry.

  17. Scaling analysis of the non-Abelian quasiparticle tunneling in [Formula: see text] FQH states.

    PubMed

    Li, Qi; Jiang, Na; Wan, Xin; Hu, Zi-Xiang

    2018-06-27

    Quasiparticle tunneling between two counter propagating edges through point contacts could provide information on its statistics. Previous study of the short distance tunneling displays a scaling behavior, especially in the conformal limit with zero tunneling distance. The scaling exponents for the non-Abelian quasiparticle tunneling exhibit some non-trivial behaviors. In this work, we revisit the quasiparticle tunneling amplitudes and their scaling behavior in a full range of the tunneling distance by putting the electrons on the surface of a cylinder. The edge-edge distance can be smoothly tuned by varying the aspect ratio for a finite size cylinder. We analyze the scaling behavior of the quasiparticles for the Read-Rezayi [Formula: see text] states for [Formula: see text] and 4 both in the short and long tunneling distance region. The finite size scaling analysis automatically gives us a critical length scale where the anomalous correction appears. We demonstrate this length scale is related to the size of the quasiparticle at which the backscattering between two counter propagating edges starts to be significant.

  18. A general non-Abelian density matrix renormalization group algorithm with application to the C2 dimer.

    PubMed

    Sharma, Sandeep

    2015-01-14

    We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve of the C2 dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 10(12) many-body states. While our calculated energy lies within the 0.3 mEh error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mEh, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (Te) of eight lowest lying excited states: a(3)Πu, b(3)Σg (-), A(1)Πu, c(3)Σu (+), B(1)Δg, B(') (1)Σg (+), d(3)Πg, and C(1)Πg are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations (1)Σg (+), (1)Σu (+), (1)Σg (-), and (1)Σu (-), to an estimated accuracy of 0.1 mEh of the exact result in this basis.

  19. A general non-Abelian density matrix renormalization group algorithm with application to the C2 dimer

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep

    2015-01-01

    We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve of the C2 dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 1012 many-body states. While our calculated energy lies within the 0.3 mEh error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mEh, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (Te) of eight lowest lying excited states: a3Πu, b 3 Σg - , A1Πu, c 3 Σu + , B1Δg, B ' 1 Σg + , d3Πg, and C1Πg are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations 1 Σg + , 1 Σu + , 1 Σg - , and 1 Σu - , to an estimated accuracy of 0.1 mEh of the exact result in this basis.

  20. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    NASA Astrophysics Data System (ADS)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d < ∞) to generate quantum coherence and the geometry of the set Md of maximally abelian subalgebras (of the quantum system full operator algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  1. Quantization of higher abelian gauge theory in generalized differential cohomology

    NASA Astrophysics Data System (ADS)

    Szabo, R.

    We review and elaborate on some aspects of the quantization of certain classes of higher abelian gauge theories using techniques of generalized differential cohomology. Particular emphasis is placed on the examples of generalized Maxwell theory and Cheeger-Simons cohomology, and of Ramond-Ramond fields in Type II superstring theory and differential K-theory.

  2. Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix

    NASA Astrophysics Data System (ADS)

    Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.

  3. Gauge invariance for a whole Abelian model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Soares, W.

    Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is themore » effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.« less

  4. Quantum Engineering of Dynamical Gauge Fields on Optical Lattices

    DTIC Science & Technology

    2016-07-08

    opens the door for exciting new research directions, such as quantum simulation of the Schwinger model and of non-Abelian models. (a) Papers...exact blocking formulas from the TRG formulation of the transfer matrix. The second is a worm algorithm. The particle number distributions obtained...a fact that can be explained by an approximate particle- hole symmetry. We have also developed a computer code suite for simulating the Abelian

  5. Abelian tensor hierarchy in 4D N = 1 conformal supergravity

    NASA Astrophysics Data System (ADS)

    Aoki, Shuntaro; Higaki, Tetsutaro; Yamada, Yusuke; Yokokura, Ryo

    2016-09-01

    We consider Abelian tensor hierarchy in four-dimensional N = 1 supergravity in the conformal superspace formalism, where the so-called covariant approach is used to antisymmetric tensor fields. We introduce p-form gauge superfields as superforms in the conformal superspace. We solve the Bianchi identities under the constraints for the super-forms. As a result, each of form fields is expressed by a single gauge invariant superfield. We also show the relation between the superspace formalism and the superconformal tensor calculus.

  6. Upper bound on the Abelian gauge coupling from asymptotic safety

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Versteegen, Fleur

    2018-01-01

    We explore the impact of asymptotically safe quantum gravity on the Abelian gauge coupling in a model including a charged scalar, confirming indications that asymptotically safe quantum fluctuations of gravity could trigger a power-law running towards a free fixed point for the gauge coupling above the Planck scale. Simultaneously, quantum gravity fluctuations balance against matter fluctuations to generate an interacting fixed point, which acts as a boundary of the basin of attraction of the free fixed point. This enforces an upper bound on the infrared value of the Abelian gauge coupling. In the regime of gravity couplings which in our approximation also allows for a prediction of the top quark and Higgs mass close to the experimental value [1], we obtain an upper bound approximately 35% above the infrared value of the hypercharge coupling in the Standard Model.

  7. Towards a realization of the condensed-matter-gravity correspondence in string theory via consistent Abelian truncation of the Aharony-Bergman-Jafferis-Maldacena model.

    PubMed

    Mohammed, Asadig; Murugan, Jeff; Nastase, Horatiu

    2012-11-02

    We present an embedding of the three-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N = 6, U(N) × U(N) Chern-Simons-matter theory [the Aharony-Bergman-Jafferis-Maldacena model] by consistently truncating the latter to an Abelian effective field theory encoding the collective dynamics of O(N) of the O(N(2)) modes. In fact, depending on the vacuum expectation value on one of the Aharony-Bergman-Jafferis-Maldacena scalars, a mass deformation parameter μ and the Chern-Simons level number k, our Abelianization prescription allows us to interpolate between the Abelian Higgs model with its usual multivortex solutions and a Ø(4) theory. We sketch a simple condensed matter model that reproduces all the salient features of the Abelianization. In this context, the Abelianization can be interpreted as giving a dimensional reduction from four dimensions.

  8. Quantum non-Abelian hydrodynamics: Anyonic or spin-orbital entangled liquids, nonunitarity of scattering matrix and charge fractionalization

    NASA Astrophysics Data System (ADS)

    Pareek, Tribhuvan Prasad

    2015-09-01

    In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a

  9. Non-Abelian dark forces and the relic densities of dark glueballs

    NASA Astrophysics Data System (ADS)

    Forestell, Lindsay; Morrissey, David E.; Sigurdson, Kris

    2017-01-01

    Our understanding of the Universe is known to be incomplete, and new gauge forces beyond those of the Standard Model might be crucial to describing its observed properties. A minimal and well-motivated possibility is a pure Yang-Mills non-Abelian dark gauge force with no direct connection to the Standard Model. We determine here the relic abundances of the glueball bound states that arise in such theories and investigate their cosmological effects. Glueballs are first formed in a confining phase transition, and their relic densities are set by a network of annihilation and transfer reactions. The lightest glueball has no lighter states to annihilate into, and its yield is set mainly by 3 →2 number-changing processes which persistently release energy into the glueball gas during freeze-out. The abundances of the heavier glueballs are dominated by 2 →2 transfer reactions and tend to be much smaller than the lightest state. We also investigate potential connectors between the dark force and the Standard Model that allow some or all of the dark glueballs to decay. If the connection is weak, the lightest glueball can be very long-lived or stable and is a viable dark matter candidate. For stronger connections, the lightest glueball will decay quickly, but other heavier glueball states can remain stable and contribute to the dark matter density.

  10. Haag duality for Kitaev’s quantum double model for abelian groups

    NASA Astrophysics Data System (ADS)

    Fiedler, Leander; Naaijkens, Pieter

    2015-11-01

    We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.

  11. Optical knots and contact geometry II. From Ranada dyons to transverse and cosmetic knots

    NASA Astrophysics Data System (ADS)

    Kholodenko, Arkady L.

    2016-08-01

    Some time ago Ranada (1989) obtained new nontrivial solutions of the Maxwellian gauge fields without sources. These were reinterpreted in Kholodenko (2015) [10] (part I) as particle-like (monopoles, dyons, etc.). They were obtained by the method of Abelian reduction of the non-Abelian Yang-Mills functional. The developed method uses instanton-type calculations normally employed for the non-Abelian gauge fields. By invoking the electric-magnetic duality it then becomes possible to replace all known charges/masses by the particle-like solutions of the source-free Abelian gauge fields. To employ these results in high energy physics, it is essential to extend Ranada's results by carefully analyzing and classifying all dynamically generated knotted/linked structures in gauge fields, including those discovered by Ranada. This task is completed in this work. The study is facilitated by the recent progress made in solving the Moffatt conjecture. Its essence is stated as follows: in steady incompressible Euler-type fluids the streamlines could have knots/links of all types. By employing the correspondence between the ideal hydrodynamics and electrodynamics discussed in part I and by superimposing it with the already mentioned method of Abelian reduction, it is demonstrated that in the absence of boundaries only the iterated torus knots and links could be dynamically generated. Obtained results allow to develop further particle-knot/link correspondence studied in Kholodenko (2015) [13].

  12. Dual representation of lattice QCD with worldlines and worldsheets of Abelian color fluxes

    NASA Astrophysics Data System (ADS)

    Marchis, Carlotta; Gattringer, Christof

    2018-02-01

    We present a new dual representation for lattice QCD in terms of wordlines and worldsheets. The exact reformulation is carried out using the recently developed Abelian color flux method where the action is decomposed into commuting minimal terms that connect different colors on neighboring sites. Expanding the Boltzmann factors for these commuting terms allows one to reorganize the gauge field contributions according to links such that the gauge fields can be integrated out in closed form. The emerging constraints give the dual variables the structure of worldlines for the fermions and worldsheets for the gauge degrees of freedom. The partition sum has the form of a strong coupling expansion, and with the Abelian color flux approach discussed here all coefficients of the expansion are known in closed form. We present the dual form for three cases: pure SU(3) lattice gauge theory, strong coupling QCD and full QCD, and discuss in detail the constraints for the color fluxes and their physical interpretation.

  13. CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model

    NASA Astrophysics Data System (ADS)

    Bevis, Neil; Hindmarsh, Mark; Kunz, Martin; Urrestilla, Jon

    2007-03-01

    We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension μ required to normalize to the WMAP 3-year data at multipole ℓ=10 is Gμ=[2.04±0.06(stat.)±0.12(sys.)]×10-6, where we have quoted statistical and systematic errors separately, and G is Newton’s constant. This is a factor 2 3 higher than values in current circulation.

  14. Symmetric solitonic excitations of the (1 + 1)-dimensional Abelian-Higgs classical vacuum.

    PubMed

    Diakonos, F K; Katsimiga, G C; Maintas, X N; Tsagkarakis, C E

    2015-02-01

    We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism.

  15. Optical knots and contact geometry II. From Ranada dyons to transverse and cosmetic knots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholodenko, Arkady L., E-mail: string@clemson.edu

    2016-08-15

    Some time ago Ranada (1989) obtained new nontrivial solutions of the Maxwellian gauge fields without sources. These were reinterpreted in Kholodenko (2015) [10] (part I) as particle-like (monopoles, dyons, etc.). They were obtained by the method of Abelian reduction of the non-Abelian Yang–Mills functional. The developed method uses instanton-type calculations normally employed for the non-Abelian gauge fields. By invoking the electric–magnetic duality it then becomes possible to replace all known charges/masses by the particle-like solutions of the source-free Abelian gauge fields. To employ these results in high energy physics, it is essential to extend Ranada’s results by carefully analyzing and classifying all dynamicallymore » generated knotted/linked structures in gauge fields, including those discovered by Ranada. This task is completed in this work. The study is facilitated by the recent progress made in solving the Moffatt conjecture. Its essence is stated as follows: in steady incompressible Euler-type fluids the streamlines could have knots/links of all types. By employing the correspondence between the ideal hydrodynamics and electrodynamics discussed in part I and by superimposing it with the already mentioned method of Abelian reduction, it is demonstrated that in the absence of boundaries only the iterated torus knots and links could be dynamically generated. Obtained results allow to develop further particle-knot/link correspondence studied in Kholodenko (2015) [13].« less

  16. Adiabatic regularization for gauge fields and the conformal anomaly

    NASA Astrophysics Data System (ADS)

    Chu, Chong-Sun; Koyama, Yoji

    2017-03-01

    Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.

  17. Blockspin renormalization-group study of color confinement due to violation of the non-Abelian Bianchi identity

    NASA Astrophysics Data System (ADS)

    Suzuki, Tsuneo

    2018-02-01

    Blockspin transformation of topological defects is applied to the violation of the non-Abelian Bianchi identity (VNABI) on lattice defined as Abelian monopoles. To get rid of lattice artifacts, we introduce (1) smooth gauge fixings such as the maximal center gauge (MCG), (2) blockspin transformations and (3) the tadpole-improved gauge action. The effective action can be determined by adopting the inverse Monte Carlo method. The coupling constants F (i ) of the effective action depend on the coupling of the lattice action β and the number of the blocking step n . But it is found that F (i ) satisfies a beautiful scaling; that is, they are a function of the product b =n a (β ) alone for lattice coupling constants 3.0 ≤β ≤3.9 and the steps of blocking 1 ≤n ≤12 . The effective action showing the scaling behavior can be regarded as an almost perfect action corresponding to the continuum limit, since a →0 as n →∞ for fixed b . The infrared effective monopole action keeps the global color invariance when smooth gauges such as MCG keeping the invariance are adopted. The almost perfect action showing the scaling is found to be independent of the smooth gauges adopted here as naturally expected from the gauge invariance of the continuum theory. Then we compare the results with those obtained by the analytic blocking method of topological defects from the continuum, assuming local two-point interactions are dominant as the infrared effective action. The action is formulated in the continuum limit while the couplings of these actions can be derived from simple observables calculated numerically on lattices with a finite lattice spacing. When use is made of Berezinskii-Kosterlitz-Thouless (BKT) transformation, the infrared monopole action can be transformed into that of the string model. Since large b =n a (β ) corresponds to the strong-coupling region in the string model, the physical string tension and the lowest glueball mass can be evaluated analytically

  18. Various Forms of BRST Symmetry in Abelian 2-FORM Gauge Theory

    NASA Astrophysics Data System (ADS)

    Rai, Sumit Kumar; Mandal, Bhabani Prasad

    We derive the various forms of BRST symmetry using Batalin-Fradkin-Vilkovisky approach in the case of Abelian 2-form gauge theory. We show that the so-called dual BRST symmetry is not an independent symmetry but the generalization of BRST symmetry obtained from the canonical transformation in the bosonic and ghost sector. We further obtain the new forms of both BRST and dual-BRST symmetry by making a general transformation in the Lagrange multipliers of the bosonic and ghost sector of the theory.

  19. Non-Abelian fermion parity interferometry of Majorana bound states in a Fermi sea

    NASA Astrophysics Data System (ADS)

    Dahan, Daniel; Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak; Grosfeld, Eytan

    We study the quantum dynamics of Majorana and regular fermion bound states coupled to a one-dimensional lead. The dynamics following the quench in the coupling to the lead exhibits a series of dynamical revivals as the bound state propagates in the lead and reflects from the boundaries. We show that the nature of revivals for a single Majorana bound state depends uniquely on the presence of a resonant level in the lead. When two spatially separated Majorana modes are coupled to the lead, the revivals depend only on the phase difference between their host superconductors. Remarkably, the quench in this case effectively performs a fermion-parity interferometry between Majorana bound states, revealing their unique non-Abelian braiding. Using both analytical and numerical techniques, we find the pattern of fermion parity transfers following the quench, study its evolution in the presence of disorder and interactions, and thus, ascertain the fate of Majorana in a rough Fermi sea. Work supported in part by BSF Grant No. 2014345, ISF Grant Nos. 401/12 and 1626/16, EU Seventh Framework Programme (FP7/2007-2013) Grant No. 303742, NSF CAREER Grant DMR-1350663 and the College of Arts and Sciences at Indiana University.

  20. Moduli space potentials for heterotic non-Abelian flux tubes: Weak deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shifman, M.; Yung, A.; Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300

    2010-09-15

    We consider N=2 supersymmetric QCD with the U(N) gauge group (with no Fayet-Iliopoulos term) and N{sub f} flavors of massive quarks deformed by the mass term {mu} for the adjoint matter, W={mu}A{sup 2}, assuming that N{<=}N{sub f}<2N. This deformation breaks N=2 supersymmetry down to N=1. This theory supports non-Abelian flux tubes (strings) which are stabilized by W. They are referred to as F-term stabilized strings. We focus on the studies of such strings in the vacuum in which N squarks condense, at small {mu}, so that the Z{sub N} strings preserve, in a sense, their Bogomol'nyi-Prasad-Sommerfield nature. The (s)quark massesmore » are assumed to be nondegenerate. We calculate string tensions both in the classical and quantum regimes. Then we translate our results for the tensions in terms of the effective low-energy weighted CP(N{sub f}-1) model on the string world sheet. The bulk {mu} deformation makes this theory N=(0,2) supersymmetric heterotic weighted CP(N{sub f}-1) model in two dimensions. We find the deformation potential on the world sheet. This significantly expands the class of the heterotically deformed CP models emerging on the string world sheet compared to that suggested by Edalati and Tong. Among other things, we show that nonperturbative quantum effects in the bulk theory are exactly reproduced by the quantum effects in the world-sheet theory.« less

  1. A general non-Abelian density matrix renormalization group algorithm with application to the C{sub 2} dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sandeep, E-mail: sanshar@gmail.com

    2015-01-14

    We extend our previous work [S. Sharma and G. K.-L. Chan, J. Chem. Phys. 136, 124121 (2012)], which described a spin-adapted (SU(2) symmetry) density matrix renormalization group algorithm, to additionally utilize general non-Abelian point group symmetries. A key strength of the present formulation is that the requisite tensor operators are not hard-coded for each symmetry group, but are instead generated on the fly using the appropriate Clebsch-Gordan coefficients. This allows our single implementation to easily enable (or disable) any non-Abelian point group symmetry (including SU(2) spin symmetry). We use our implementation to compute the ground state potential energy curve ofmore » the C{sub 2} dimer in the cc-pVQZ basis set (with a frozen-core), corresponding to a Hilbert space dimension of 10{sup 12} many-body states. While our calculated energy lies within the 0.3 mE{sub h} error bound of previous initiator full configuration interaction quantum Monte Carlo and correlation energy extrapolation by intrinsic scaling calculations, our estimated residual error is only 0.01 mE{sub h}, much more accurate than these previous estimates. Due to the additional efficiency afforded by the algorithm, the excitation energies (T{sub e}) of eight lowest lying excited states: a{sup 3}Π{sub u}, b{sup 3}Σ{sub g}{sup −}, A{sup 1}Π{sub u}, c{sup 3}Σ{sub u}{sup +}, B{sup 1}Δ{sub g}, B{sup ′1}Σ{sub g}{sup +}, d{sup 3}Π{sub g}, and C{sup 1}Π{sub g} are calculated, which agree with experimentally derived values to better than 0.06 eV. In addition, we also compute the potential energy curves of twelve states: the three lowest levels for each of the irreducible representations {sup 1}Σ{sub g}{sup +}, {sup 1}Σ{sub u}{sup +}, {sup 1}Σ{sub g}{sup −}, and {sup 1}Σ{sub u}{sup −}, to an estimated accuracy of 0.1 mE{sub h} of the exact result in this basis.« less

  2. Z n clock models and chains of so(n)2 non-Abelian anyons: symmetries, integrable points and low energy properties

    NASA Astrophysics Data System (ADS)

    Finch, Peter E.; Flohr, Michael; Frahm, Holger

    2018-02-01

    We study two families of quantum models which have been used previously to investigate the effect of topological symmetries in one-dimensional correlated matter. Various striking similarities are observed between certain {Z}n quantum clock models, spin chains generalizing the Ising model, and chains of non-Abelian anyons constructed from the so(n)2 fusion category for odd n, both subject to periodic boundary conditions. In spite of the differences between these two types of quantum chains, e.g. their Hilbert spaces being spanned by tensor products of local spin states or fusion paths of anyons, the symmetries of the lattice models are shown to be closely related. Furthermore, under a suitable mapping between the parameters describing the interaction between spins and anyons the respective Hamiltonians share part of their energy spectrum (although their degeneracies may differ). This spin-anyon correspondence can be extended by fine-tuning of the coupling constants leading to exactly solvable models. We show that the algebraic structures underlying the integrability of the clock models and the anyon chain are the same. For n  =  3,5,7 we perform an extensive finite size study—both numerical and based on the exact solution—of these models to map out their ground state phase diagram and to identify the effective field theories describing their low energy behaviour. We observe that the continuum limit at the integrable points can be described by rational conformal field theories with extended symmetry algebras which can be related to the discrete ones of the lattice models.

  3. Non-locality of non-Abelian anyons

    NASA Astrophysics Data System (ADS)

    Brennen, G. K.; Iblisdir, S.; Pachos, J. K.; Slingerland, J. K.

    2009-10-01

    Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.

  4. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    NASA Astrophysics Data System (ADS)

    Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.

  5. Scaled lattice fermion fields, stability bounds, and regularity

    NASA Astrophysics Data System (ADS)

    O'Carroll, Michael; Faria da Veiga, Paulo A.

    2018-02-01

    We consider locally gauge-invariant lattice quantum field theory models with locally scaled Wilson-Fermi fields in d = 1, 2, 3, 4 spacetime dimensions. The use of scaled fermions preserves Osterwalder-Seiler positivity and the spectral content of the models (the decay rates of correlations are unchanged in the infinite lattice). In addition, it also results in less singular, more regular behavior in the continuum limit. Precisely, we treat general fermionic gauge and purely fermionic lattice models in an imaginary-time functional integral formulation. Starting with a hypercubic finite lattice Λ ⊂(aZ ) d, a ∈ (0, 1], and considering the partition function of non-Abelian and Abelian gauge models (the free fermion case is included) neglecting the pure gauge interactions, we obtain stability bounds uniformly in the lattice spacing a ∈ (0, 1]. These bounds imply, at least in the subsequential sense, the existence of the thermodynamic (Λ ↗ (aZ ) d) and the continuum (a ↘ 0) limits. Specializing to the U(1) gauge group, the known non-intersecting loop expansion for the d = 2 partition function is extended to d = 3 and the thermodynamic limit of the free energy is shown to exist with a bound independent of a ∈ (0, 1]. In the case of scaled free Fermi fields (corresponding to a trivial gauge group with only the identity element), spectral representations are obtained for the partition function, free energy, and correlations. The thermodynamic and continuum limits of the free fermion free energy are shown to exist. The thermodynamic limit of n-point correlations also exist with bounds independent of the point locations and a ∈ (0, 1], and with no n! dependence. Also, a time-zero Hilbert-Fock space is constructed, as well as time-zero, spatially pointwise scaled fermion creation operators which are shown to be norm bounded uniformly in a ∈ (0, 1]. The use of our scaled fields since the beginning allows us to extract and isolate the singularities of the free

  6. Quantization of gauge fields, graph polynomials and graph homology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreimer, Dirk, E-mail: kreimer@physik.hu-berlin.de; Sars, Matthias; Suijlekom, Walter D. van

    2013-09-15

    We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands for connected 3-regular graphs, obtained from the two Symanzik polynomials. The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial, the corolla polynomial. This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost sector are incorporated in a double complex furnished by the corolla polynomial–we call it cycle homology–and by graph homology.more » -- Highlights: •We derive gauge theory Feynman from scalar field theory with 3-valent vertices. •We clarify the role of graph homology and cycle homology. •We use parametric renormalization and the new corolla polynomial.« less

  7. Abelian-Higgs phase of SU(2) QCD and glueball energy

    NASA Astrophysics Data System (ADS)

    Jia, Duojie

    2008-07-01

    It is shown that SU(2) QCD admits an dual Abelian-Higgs phase, with a Higgs vacuum of a type-II superconductor. This is done by using a connection decomposition for the gluon field and the random-direction approximation. Using a bag picture with soft wall, we presented a calculational procedure for the glueball energy based on the recent proof for wall-vortices [Nucl. Phys. B 741(2006)1]. Supported by National Natural Science Foundation of China (10547009) and Research Backbone Fostering Program of Knowledge and S&T Innovation Project of NWNU (KJCXGC 03-41)

  8. Path-integral invariants in abelian Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Guadagnini, E.; Thuillier, F.

    2014-05-01

    We consider the U(1) Chern-Simons gauge theory defined in a general closed oriented 3-manifold M; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The non-perturbative path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent U(1) principal bundles over M; the different sectors of configuration space are labelled by the elements of the first homology group of M and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the non-perturbative contributions to the mean values. The functional integration is carried out in any 3-manifold M, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.

  9. On an example of a system of differential equations that are integrated in Abelian functions

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Sevastianov, L. A.

    2017-12-01

    The short review of the theory of Abelian functions and its applications in mechanics and analytical theory of differential equations is given. We think that Abelian functions are the natural generalization of commonly used functions because if the general solution of the 2nd order differential equation depends algebraically on the constants of integration, then integrating this equation does not lead out of the realm of commonly used functions complemented by the Abelian functions (Painlevé theorem). We present a relatively simple example of a dynamical system that is integrated in Abelian integrals by “pairing” two copies of a hyperelliptic curve. Unfortunately, initially simple formulas unfold into very long ones. Apparently the theory of Abelian functions hasn’t been finished in the last century because without computer algebra systems it was impossible to complete the calculations to the end. All calculations presented in our report are performed in Sage.

  10. Formation of helical domain walls in the fractional quantum Hall regime as a step toward realization of high-order non-Abelian excitations

    NASA Astrophysics Data System (ADS)

    Wu, Tailung; Wan, Zhong; Kazakov, Aleksandr; Wang, Ying; Simion, George; Liang, Jingcheng; West, Kenneth W.; Baldwin, Kirk; Pfeiffer, Loren N.; Lyanda-Geller, Yuli; Rokhinson, Leonid P.

    2018-06-01

    We propose an experimentally feasible platform to realize parafermions (high-order non-Abelian excitations) based on spin transitions in the fractional quantum Hall effect regime. As a proof of concept we demonstrate a local control of the spin transition at a filling factor 2/3 and formation of a conducting fractional helical domain wall (fhDW) along a gate boundary. Coupled to an s -wave superconductor these fhDWs are expected to support parafermionic excitations. We present exact diagonalization numerical studies of fhDWs and show that they indeed possess electronic and magnetic structures needed for the formation of parafermions. A reconfigurable network of fhDWs will allow manipulation and braiding of parafermionic excitations in multigate devices.

  11. Zero modes of the non-relativistic self-dual Chern-Simons vortices on the Toda backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yongsung

    The two-dimensional self-dual equations are the governing equations of the static zero-energy vortex solutions for the non-relativistic, non-Abelian Chern-Simons models. The zero modes of the non-relativistic vortices are examined by index calculation for the self-dual equations. The index for the self-dual equations is zero for non-Abelian groups, but a non-zero index is obtained by the Toda Ansatz which reduces the self-dual equations to the Toda equations. The number of zero modes for the non-relativistic Toda vortices is 2 {Sigma}{sub {alpha},{beta}}{sup r}K{sub {alpha}{beta}}Q{sup {beta}} which is twice the total number of isolated zeros of the vortex functions. For the affine Todamore » system, there are additional adjoint zero modes which give a zero index for the SU(N) group.« less

  12. Time evolution of complexity in Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Iizuka, Norihiro; Sugishita, Sotaro

    2017-12-01

    Quantum complexity is conjectured to probe inside of black hole horizons (or wormholes) via gauge gravity correspondence. In order to have a better understanding of this correspondence, we study time evolutions of complexities for Abelian pure gauge theories. For this purpose, we discretize the U (1 ) gauge group as ZN and also the continuum spacetime as lattice spacetime, and this enables us to define a universal gate set for these gauge theories and to evaluate time evolutions of the complexities explicitly. We find that to achieve a large complexity ˜exp (entropy), which is one of the conjectured criteria necessary to have a dual black hole, the Abelian gauge theory needs to be maximally nonlocal.

  13. Approche Kaluza-Klein et Supersymetrie de Jauge

    NASA Astrophysics Data System (ADS)

    Pare, Jean-Pierre

    This thesis presents a non-Abelian gauge-supersymmetric Kaluza-Klein approach for charged spinning particles and strings in a background of gravitational and Yang-Mills fields. In the classical Kaluza-Klein approach, the basic mathematical structure is a principal bundle of which the base manifold is space-time. This principal bundle is endowed with a pseudo-Riemannian metric, invariant under the action of the structural group of the bundle, and a connection. Geodesic equations on the bundle lead to the Maxwell-Lorentz equation for curved space-time and Yang -Mills fields, and to a conservation law of a non-Abelian (bosonic) charge. This conservation law originates from the invariance of the free-particle action on the bundle under the action of the structural group of the bundle (gauge group). Firstly, we generalize this approach for a spinning particle. The spin of the particle is described by Grassmannian variables added to the principal bundle. This supersymmetrization gives rise, in addition to the bosonic non-Abelian charge, a fermionic one. This leads to a search for a supergroup action on the superprincipal bundle which leaves invariant the action of the spinning particle. The invariance of this action would lead to the conservation of a non-Abelian super-charge, generalizing the conservation law obtained for particles without spin. We present Lagrangian and Hamiltonian formulations, both invariant under a super -group action. The equations of motion are derived and discussed. Different terms in these equations are well known in the literature. The invariance of these formulations under a supergroup action leads to a conservation law of a non-Abelian supercharge. The bosonic part of this supercharge corresponds to the non-Abelian (bosonic) charge obtained for a particle without spin. The fermionic part is a non -physical charge. It turns out in the supersymmetric case that this decouples from all other dynamical variables, and hence it does not influence

  14. Mimetic discretization of the Abelian Chern-Simons theory and link invariants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Bartolo, Cayetano; Grau, Javier; Leal, Lorenzo

    A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.

  15. Mimetic discretization of the Abelian Chern-Simons theory and link invariants

    NASA Astrophysics Data System (ADS)

    Di Bartolo, Cayetano; Grau, Javier; Leal, Lorenzo

    2013-12-01

    A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.

  16. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2016-01-01

    We propose the reformulations of the SU (N) Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the SU (N) Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulations can be combined with the SU (N) extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the SU (N) Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group U (N- 1). This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group U(1)N-1, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.

  17. Reformulations of the Yang-Mills theory toward quark confinement and mass gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Kei-Ichi; Shinohara, Toru; Kato, Seikou

    2016-01-22

    We propose the reformulations of the SU (N) Yang-Mills theory toward quark confinement and mass gap. In fact, we have given a new framework for reformulating the SU (N) Yang-Mills theory using new field variables. This includes the preceding works given by Cho, Faddeev and Niemi, as a special case called the maximal option in our reformulations. The advantage of our reformulations is that the original non-Abelian gauge field variables can be changed into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. Our reformulationsmore » can be combined with the SU (N) extension of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator to give a gauge-invariant definition for the magnetic monopole in the SU (N) Yang-Mills theory without the scalar field. In the so-called minimal option, especially, the restricted field is non-Abelian and involves the non-Abelian magnetic monopole with the stability group U (N− 1). This suggests the non-Abelian dual superconductivity picture for quark confinement. This should be compared with the maximal option: the restricted field is Abelian and involves only the Abelian magnetic monopoles with the stability group U(1){sup N−1}, just like the Abelian projection. We give some applications of this reformulation, e.g., the stability for the homogeneous chromomagnetic condensation of the Savvidy type, the large N treatment for deriving the dimensional transmutation and understanding the mass gap, and also the numerical simulations on a lattice which are given by Dr. Shibata in a subsequent talk.« less

  18. Origin of Abelian gauge symmetries in heterotic/F-theory duality

    DOE PAGES

    Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; ...

    2016-04-07

    Here, we study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, and also derive both the Calabi-Yau geometry and the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in theirmore » low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) x Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. And while the number of geometrically massless U(1)'s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)'s is found by taking into account a Stuckelberg mechanism in the lower-dimensional effective theory. Finally, in geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.« less

  19. Brightness temperature - obtaining the physical properties of a non-equipartition plasma

    NASA Astrophysics Data System (ADS)

    Nokhrina, E. E.

    2017-06-01

    The limit on the intrinsic brightness temperature, attributed to `Compton catastrophe', has been established being 1012 K. Somewhat lower limit of the order of 1011.5 K is implied if we assume that the radiating plasma is in equipartition with the magnetic field - the idea that explained why the observed cores of active galactic nuclei (AGNs) sustained the limit lower than the `Compton catastrophe'. Recent observations with unprecedented high resolution by the RadioAstron have revealed systematic exceed in the observed brightness temperature. We propose means of estimating the degree of the non-equipartition regime in AGN cores. Coupled with the core-shift measurements, the method allows us to independently estimate the magnetic field strength and the particle number density at the core. We show that the ratio of magnetic energy to radiating plasma energy is of the order of 10-5, which means the flow in the core is dominated by the particle energy. We show that the magnetic field obtained by the brightness temperature measurements may be underestimated. We propose for the relativistic jets with small viewing angles the non-uniform magnetohydrodynamic model and obtain the expression for the magnetic field amplitude about two orders higher than that for the uniform model. These magnetic field amplitudes are consistent with the limiting magnetic field suggested by the `magnetically arrested disc' model.

  20. Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Wen, Xiao-Gang

    2015-01-01

    String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.

  1. BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields

    NASA Astrophysics Data System (ADS)

    Dai, Jialiang; Fan, Engui

    2018-04-01

    We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.

  2. Extended gauge theory and gauged free differential algebras

    NASA Astrophysics Data System (ADS)

    Salgado, P.; Salgado, S.

    2018-01-01

    Recently, Antoniadis, Konitopoulos and Savvidy introduced, in the context of the so-called extended gauge theory, a procedure to construct background-free gauge invariants, using non-abelian gauge potentials described by higher degree forms. In this article it is shown that the extended invariants found by Antoniadis, Konitopoulos and Savvidy can be constructed from an algebraic structure known as free differential algebra. In other words, we show that the above mentioned non-abelian gauge theory, where the gauge fields are described by p-forms with p ≥ 2, can be obtained by gauging free differential algebras.

  3. Confinement Driven by Scalar Field in 4d Non Abelian Gauge Theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabab, Mohamed

    2007-01-12

    We review some of the most recent work on confinement in 4d gauge theories with a massive scalar field (dilaton). Emphasis is put on the derivation of confining analytical solutions to the Coulomb problem versus dilaton effective couplings to gauge terms. It is shown that these effective theories can be relevant to model quark confinement and may shed some light on confinement mechanism. Moreover, the study of interquark potential, derived from Dick Model, in the heavy meson sector proves that phenomenological investigation of tmechanism is more than justified and deserves more efforts.

  4. Irreversibility and higher-spin conformal field theory

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2000-08-01

    I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.

  5. A convolution model for obtaining the response of an ionization chamber in static non standard fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Castano, D. M.; Gonzalez, L. Brualla; Gago-Arias, M. A.

    2012-01-15

    Purpose: This work contains an alternative methodology for obtaining correction factors for ionization chamber (IC) dosimetry of small fields and composite fields such as IMRT. The method is based on the convolution/superposition (C/S) of an IC response function (RF) with the dose distribution in a certain plane which includes chamber position. This method is an alternative to the full Monte Carlo (MC) approach that has been used previously by many authors for the same objective. Methods: The readout of an IC at a point inside a phantom irradiated by a certain beam can be obtained as the convolution of themore » dose spatial distribution caused by the beam and the IC two-dimensional RF. The proposed methodology has been applied successfully to predict the response of a PTW 30013 IC when measuring different nonreference fields, namely: output factors of 6 MV small fields, beam profiles of cobalt 60 narrow fields and 6 MV radiosurgery segments. The two-dimensional RF of a PTW 30013 IC was obtained by MC simulation of the absorbed dose to cavity air when the IC was scanned by a 0.6 x 0.6 mm{sup 2} cross section parallel pencil beam at low depth in a water phantom. For each of the cases studied, the results of the IC direct measurement were compared with the corresponding obtained by the C/S method. Results: For all of the cases studied, the agreement between the IC direct measurement and the IC calculated response was excellent (better than 1.5%). Conclusions: This method could be implemented in TPS in order to calculate dosimetry correction factors when an experimental IMRT treatment verification with in-phantom ionization chamber is performed. The miss-response of the IC due to the nonreference conditions could be quickly corrected by this method rather than employing MC derived correction factors. This method can be considered as an alternative to the plan-class associated correction factors proposed recently as part of an IAEA work group on nonstandard field

  6. Diffusion of massive particles around an Abelian-Higgs string

    NASA Astrophysics Data System (ADS)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  7. Non-uniform refractive index field measurement based on light field imaging technique

    NASA Astrophysics Data System (ADS)

    Du, Xiaokun; Zhang, Yumin; Zhou, Mengjie; Xu, Dong

    2018-02-01

    In this paper, a method for measuring the non-uniform refractive index field based on the light field imaging technique is proposed. First, the light field camera is used to collect the four-dimensional light field data, and then the light field data is decoded according to the light field imaging principle to obtain image sequences with different acquisition angles of the refractive index field. Subsequently PIV (Particle Image Velocimetry) technique is used to extract ray offset of each image. Finally, the distribution of non-uniform refractive index field can be calculated by inversing the deflection of light rays. Compared with traditional optical methods which require multiple optical detectors from multiple angles to synchronously collect data, the method proposed in this paper only needs a light field camera and shoot once. The effectiveness of the method has been verified by the experiment which quantitatively measures the distribution of the refractive index field above the flame of the alcohol lamp.

  8. Consequences of an Abelian family symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramond, P.

    1996-01-01

    The addition of an Abelian family symmetry to the Minimal Super-symmetric Standard Model reproduces the observed hierarchies of quark and lepton masses and quark mixing angles, only if it is anomalous. Green-Schwarz compensation of its anomalies requires the electroweak mixing angle to be sin{sup 2}{theta}{sub {omega}} = 3/8 at the string scale, without any assumed GUT structure, suggesting a superstring origin for the standard model. The analysis is extended to neutrino masses and the lepton mixing matrix.

  9. Constructive tensorial group field theory II: the {U(1)-T^4_4} model

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent

    2018-05-01

    In this paper, we continue our program of non-pertubative constructions of tensorial group field theories (TGFT). We prove analyticity and Borel summability in a suitable domain of the coupling constant of the simplest super-renormalizable TGFT which contains some ultraviolet divergencies, namely the color-symmetric quartic melonic rank-four model with Abelian gauge invariance, nicknamed . We use a multiscale loop vertex expansion. It is an extension of the loop vertex expansion (the basic constructive technique for non-local theories) which is required for theories that involve non-trivial renormalization.

  10. Higher groupoid bundles, higher spaces, and self-dual tensor field equations

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2016-08-01

    We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of $(\\infty,1)$-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to $L_\\infty$-algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists.

  11. The Initial Flow of Classical Gluon Fields in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Fries, Rainer J.; Chen, Guangyao

    2015-03-01

    Using analytic solutions of the Yang-Mills equations we calculate the initial flow of energy of the classical gluon field created in collisions of large nuclei at high energies. We find radial and elliptic flow which follows gradients in the initial energy density, similar to a simple hydrodynamic behavior. In addition we find a rapidity-odd transverse flow field which implies the presence of angular momentum and should lead to directed flow in final particle spectra. We trace those energy flow terms to transverse fields from the non-abelian generalization of Gauss' Law and Ampere's and Faraday's Laws.

  12. On whole Abelian model dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauca, J.; Doria, R.; Aprendanet, Petropolis, 25600

    2012-09-24

    Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics orientedmore » through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.« less

  13. Wire constructions of Abelian topological phases in three or more dimensions

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Neupert, Titus; Chamon, Claudio; Mudry, Christopher

    2016-05-01

    Coupled-wire constructions have proven to be useful tools to characterize Abelian and non-Abelian topological states of matter in two spatial dimensions. In many cases, their success has been complemented by the vast arsenal of other theoretical tools available to study such systems. In three dimensions, however, much less is known about topological phases. Since the theoretical arsenal in this case is smaller, it stands to reason that wire constructions, which are based on one-dimensional physics, could play a useful role in developing a greater microscopic understanding of three-dimensional topological phases. In this paper, we provide a comprehensive strategy, based on the geometric arrangement of commuting projectors in the toric code, to generate and characterize coupled-wire realizations of strongly interacting three-dimensional topological phases. We show how this method can be used to construct pointlike and linelike excitations, and to determine the topological degeneracy. We also point out how, with minor modifications, the machinery already developed in two dimensions can be naturally applied to study the surface states of these systems, a fact that has implications for the study of surface topological order. Finally, we show that the strategy developed for the construction of three-dimensional topological phases generalizes readily to arbitrary dimensions, vastly expanding the existing landscape of coupled-wire theories. Throughout the paper, we discuss Zm topological order in three and four dimensions as a concrete example of this approach, but the approach itself is not limited to this type of topological order.

  14. Symmetry-broken states in a system of interacting bosons on a two-leg ladder with a uniform Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.

    2016-12-01

    We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.

  15. New type IIB backgrounds and aspects of their field theory duals

    NASA Astrophysics Data System (ADS)

    Caceres, Elena; Macpherson, Niall T.; Núñez, Carlos

    2014-08-01

    In this paper we study aspects of geometries in Type IIA and Type IIB String theory and elaborate on their field theory dual pairs. The backgrounds are associated with reductions to Type IIA of solutions with G 2 holonomy in eleven dimensions. We classify these backgrounds according to their G-structure, perform a non-Abelian T-duality on them and find new Type IIB configurations presenting dynamical SU(2)-structure. We study some aspects of the associated field theories defined by these new backgrounds. Various technical details are clearly spelled out.

  16. The Green-Schwarz mechanism and geometric anomaly relations in 2d (0,2) F-theory vacua

    NASA Astrophysics Data System (ADS)

    Weigand, Timo; Xu, Fengjun

    2018-04-01

    We study the structure of gauge and gravitational anomalies in 2d N = (0 , 2) theories obtained by compactification of F-theory on elliptically fibered Calabi-Yau 5-folds. Abelian gauge anomalies, induced at 1-loop in perturbation theory, are cancelled by a generalized Green-Schwarz mechanism operating at the level of chiral scalar fields in the 2d supergravity theory. We derive closed expressions for the gravitational and the non-abelian and abelian gauge anomalies including the Green-Schwarz counterterms. These expressions involve topological invariants of the underlying elliptic fibration and the gauge background thereon. Cancellation of anomalies in the effective theory predicts intricate topological identities which must hold on every elliptically fibered Calabi-Yau 5-fold. We verify these relations in a non-trivial example, but their proof from a purely mathematical perspective remains as an interesting open problem. Some of the identities we find on elliptic 5-folds are related in an intriguing way to previously studied topological identities governing the structure of anomalies in 6d N = (1 , 0) and 4d N = 1 theories obtained from F-theory.

  17. Non-stationary measurements of Chiral Magnetic Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevchenko, V.I., E-mail: vladimir.i.shevchenko@gmail.com

    2013-12-15

    We discuss the Chiral Magnetic Effect from the quantum theory of measurements point of view for non-stationary measurements. The effect of anisotropy for fluctuations of electric currents in a magnetic field is addressed. It is shown that anisotropy caused by nonzero axial chemical potential is indistinguishable in this framework from anisotropy caused by finite measurement time or finite lifetime of the magnetic field, and in all cases it is related to abelian triangle anomaly. Possible P-odd effects in central heavy-ion collisions (where the Chiral Magnetic Effect is absent) are discussed in this context. This paper is dedicated to the memorymore » of Professor Mikhail Polikarpov (1952–2013). -- Highlights: •Asymmetry in the response function for vector currents of massless fermions in the magnetic field is computed. •Asymmetry caused by axial chemical potential is practically indistinguishable from the one caused by non-stationarity. •The CME current is non-dissipative in the stationary case and dissipative in the non-stationary case. •Importance of studies of P-odd signatures in central collisions is emphasized.« less

  18. Complete Hamiltonian analysis of cosmological perturbations at all orders II: non-canonical scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in

    2016-10-01

    In this work, we present a consistent Hamiltonian analysis of cosmological perturbations for generalized non-canonical scalar fields. In order to do so, we introduce a new phase-space variable that is uniquely defined for different non-canonical scalar fields. We also show that this is the simplest and efficient way of expressing the Hamiltonian. We extend the Hamiltonian approach of [1] to non-canonical scalar field and obtain an unique expression of speed of sound in terms of phase-space variable. In order to invert generalized phase-space Hamilton's equations to Euler-Lagrange equations of motion, we prescribe a general inversion formulae and show that ourmore » approach for non-canonical scalar field is consistent. We also obtain the third and fourth order interaction Hamiltonian for generalized non-canonical scalar fields and briefly discuss the extension of our method to generalized Galilean scalar fields.« less

  19. The interaction of Dirac particles with non-abelian gauge fields and gravity - bound states

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    2000-09-01

    We consider a spherically symmetric, static system of a Dirac particle interacting with classical gravity and an SU(2) Yang-Mills field. The corresponding Einstein-Dirac-Yang-Mills equations are derived. Using numerical methods, we find different types of soliton-like solutions of these equations and discuss their properties. Some of these solutions are stable even for arbitrarily weak gravitational coupling.

  20. Free Quantum Field Theory from Quantum Cellular Automata

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).

  1. AGT relations for abelian quiver gauge theories on ALE spaces

    NASA Astrophysics Data System (ADS)

    Pedrini, Mattia; Sala, Francesco; Szabo, Richard J.

    2016-05-01

    We construct level one dominant representations of the affine Kac-Moody algebra gl̂k on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the orbifold compactification of the minimal resolution Xk of the Ak-1 toric singularity C2 /Zk. We show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector for gl̂k, which proves the AGT correspondence for pure N = 2 U(1) gauge theory on Xk. We consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their Euler classes to define vertex operators. Under the decomposition gl̂k ≃ h ⊕sl̂k, these vertex operators decompose as products of bosonic exponentials associated to the Heisenberg algebra h and primary fields of sl̂k. We use these operators to prove the AGT correspondence for N = 2 superconformal abelian quiver gauge theories on Xk.

  2. Continuous Abelian Sandpile Model in Two Dimensional Lattice

    NASA Astrophysics Data System (ADS)

    Azimi-Tafreshi, N.; Lotfi, E.; Moghimi-Araghi, S.

    We investigate a new version of sandpile model which is very similar to Abelian Sandpile Model (ASM), but the height variables are continuous ones. With the toppling rule we define in our model, we show that the model can be mapped to ASM, so the general properties of the two models are identical. Yet the new model allows us to investigate some problems such as the effect of very small mass on the height probabilities, different boundary conditions, etc.

  3. Aspects Topologiques de la Theorie des Champs et leurs Applications

    NASA Astrophysics Data System (ADS)

    Caenepeel, Didier

    This thesis is dedicated to the study of various topological aspects of field theory, and is divided in three parts. In two space dimensions the possibility of fractional statistics can be implemented by adding an appropriate "fictitious" electric charge and magnetic flux to each particle (after which they are known as anyons). Since the statistical interaction is rather difficult to handle, a mean-field approximation is used in order to describe a gas of anyons. We derive a criterion for the validity of this approximation using the inherent feature of parity violation in the scattering of anyons. We use this new method in various examples of anyons and show both analytically and numerically that the approximation is justified if the statistical interaction is weak, and that it must be more weak for boson-based than for fermion-based anyons. Chern-Simons theories give an elegant implementation of anyonic properties in field theories, which permits the emergence of new mechanisms for anyon superconductivity. Since it is reasonable to think that superconductivity is a low energy phenomenon, we have been interested in non-relativistic C-S systems. We present the scalar field effective potential for non-relativistic matter coupled to both Abelian and non-Abelian C-S gauge fields. We perform the calculations using functional methods in background fields. Finally, we compute the scalar effective potential in various gauges and treat divergences with various regularization schemes. In three space dimensions, a generalization of Chern-Simons theory may be achieved by introducing an antisymmetric tensor gauge field. We use these theories, called B wedge F theories, to present an alternative to the Higgs mechanism to generate masses for non-Abelian gauge fields. The initial Lagrangian is composed of a fermion with current-current and dipole-dipole type self -interactions minimally coupled to non-Abelian gauge fields. The mass generation occurs upon the fermionic functional

  4. Particle production of vector fields: Scale invariance is attractive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, Jacques M.; Dimopoulos, Konstantinos

    2011-01-15

    In a model of an Abelian vector boson with a Maxwell kinetic term and non-negative mass-squared it is demonstrated that, under fairly general conditions during inflation, a scale-invariant spectrum of perturbations for the components of a vector field, massive or not, whose kinetic function (and mass) is modulated by the inflaton field is an attractor solution. If the field is massless, or if it remains light until the end of inflation, this attractor solution also generates anisotropic stress, which can render inflation weakly anisotropic. The above two characteristics of the attractor solution can source (independently or combined together) significant statisticalmore » anisotropy in the curvature perturbation, which may well be observable in the near future.« less

  5. Time-reversal-based SU(2) x Sn scalar invariants as (Lie Algebraic) group measures: a structured overview of generalised democratic-recoupled, uniform non-Abelian [AX]n NMR spin systems, as abstract [Formula: see text] chain networks.

    PubMed

    Temme, F P

    2004-03-01

    The physics of dual group scalar invariants (SIs) as (Lie algebraic) group measures (L-GMs) and its significance to non-Abelian NMR spin systems motivates this overview of uniform general-2n [AX](2n) spin evolution, which represents an extensive addendum to Corio's earlier (essentially restricted) view of Abelian spin system SU(2)-based SI-cardinalities. The [Formula: see text] values in [J. Magn. Reson., 134 (1998) 131] arise from strictly linear recoupled time-reversal invariance (TRI) models. In contrast, here we discuss the physical significance of an alternative polyhedral combinatorics approach to democratic recoupling (DR), a property inherent in both the TRI and statistical sampling. Recognition of spin ensemble SIs as being L-GMs over isomorphic algebras is invaluable in many DR-based NMR problems. Various [AX]n model spin systems, including the [AX]3 bis odd-odd parity spin system, are examined as direct applications of these L-GM- and combinatorial-based SI ideas. Hence in place of /SI/=15 (implied by Corio's [Formula: see text] approach), the bis 3-fold spin system cardinality is seen now as constrained to a single invariant on an isomorphic product algebra under L-GMs, in accord with the subspectral analysis of Jones et al. [Canad. J. Chem., 43 (1965) 683]. The group projective ideas cited here for DR (as cf. to graph theoretic views) apply to highly degenerate non-Abelian problems. Over dual tensorial bases, they define models of spin dynamical evolution whose (SR) quasiparticle superboson carrier (sub)spaces are characterised by SIs acting as explicit auxiliary labels [Physica, A198 (1993) 245; J. Math. Chem., 31 (2002) 281]. A deeper [Formula: see text] network-based view of spin-alone space developed in Balasubramanian's work [J. Chem. Phys., 78 (1983) 6358] is especially important, (e.g.) in the study of spin waves [J. Math. Chem., 31 (2002) 363]. Beyond the specific NMR SIs derived here, there are DR applications where a sporadic, still higher, 2

  6. Plane-parallel waves as duals of the flat background III: T-duality with torsionless B-field

    NASA Astrophysics Data System (ADS)

    Hlavatý, Ladislav; Petr, Ivo; Petrásek, Filip

    2018-04-01

    By addition of non-zero, but torsionless B-field, we expand the classification of (non-)Abelian T-duals of the flat background in four dimensions with respect to 1, 2, 3 and 4D subgroups of the Poincaré group. We discuss the influence of the additional B-field on the process of dualization, and identify essential parts of the torsionless B-field that cannot in general be eliminated by coordinate or gauge transformation of the dual background. These effects are demonstrated using particular examples. Due to their physical importance, we focus on duals whose metrics represent plane-parallel (pp-)waves. Besides the previously found metrics, we find new pp-waves depending on parameters originating from the torsionless B-field. These pp-waves are brought into their standard forms in Brinkmann and Rosen coordinates.

  7. The non-radiating component of the field generated by a finite monochromatic scalar source distribution

    NASA Astrophysics Data System (ADS)

    Hoenders, Bernhard J.; Ferwerda, Hedzer A.

    1998-09-01

    We separate the field generated by a spherically symmetric bounded scalar monochromatic source into a radiative and non-radiative part. The non-radiative part is obtained by projecting the total field on the space spanned by the non-radiating inhomogeneous modes, i.e. the modes which satisfy the inhomogeneous wave equation. Using residue techniques, introduced by Cauchy, we obtain an explicit analytical expression for the non-radiating component. We also identify the part of the source distribution which corresponds to this non-radiating part. The analysis is based on the scalar wave equation.

  8. Quantum spaces, central extensions of Lie groups and related quantum field theories

    NASA Astrophysics Data System (ADS)

    Poulain, Timothé; Wallet, Jean-Christophe

    2018-02-01

    Quantum spaces with su(2) noncommutativity can be modelled by using a family of SO(3)-equivariant differential *-representations. The quantization maps are determined from the combination of the Wigner theorem for SU(2) with the polar decomposition of the quantized plane waves. A tracial star-product, equivalent to the Kontsevich product for the Poisson manifold dual to su(2) is obtained from a subfamily of differential *-representations. Noncommutative (scalar) field theories free from UV/IR mixing and whose commutative limit coincides with the usual ϕ 4 theory on ℛ3 are presented. A generalization of the construction to semi-simple possibly non simply connected Lie groups based on their central extensions by suitable abelian Lie groups is discussed. Based on a talk presented by Poulain T at the XXVth International Conference on Integrable Systems and Quantum symmetries (ISQS-25), Prague, June 6-10 2017.

  9. On spectral synthesis on element-wise compact Abelian groups

    NASA Astrophysics Data System (ADS)

    Platonov, S. S.

    2015-08-01

    Let G be an arbitrary locally compact Abelian group and let C(G) be the space of all continuous complex-valued functions on G. A closed linear subspace \\mathscr H\\subseteq C(G) is referred to as an invariant subspace if it is invariant with respect to the shifts τ_y\\colon f(x)\\mapsto f(xy), y\\in G. By definition, an invariant subspace \\mathscr H\\subseteq C(G) admits strict spectral synthesis if \\mathscr H coincides with the closure in C(G) of the linear span of all characters of G belonging to \\mathscr H. We say that strict spectral synthesis holds in the space C(G) on G if every invariant subspace \\mathscr H\\subseteq C(G) admits strict spectral synthesis. An element x of a topological group G is said to be compact if x is contained in some compact subgroup of G. A group G is said to be element-wise compact if all elements of G are compact. The main result of the paper is the proof of the fact that strict spectral synthesis holds in C(G) for a locally compact Abelian group G if and only if G is element-wise compact. Bibliography: 14 titles.

  10. Directed Abelian algebras and their application to stochastic models.

    PubMed

    Alcaraz, F C; Rittenberg, V

    2008-10-01

    With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .

  11. Analysis of a gauged model with a spin-1/2 field directly coupled to a Rarita-Schwinger spin-3/2 field

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2018-02-01

    We give a detailed analysis of an Abelianized gauge field model in which a Rarita-Schwinger spin-3/2 field is directly coupled to a spin-1/2 field. The model permits a perturbative expansion in powers of the gauge field coupling, and from the Feynman rules for the model we calculate the chiral anomaly.

  12. On the 4D generalized Proca action for an Abelian vector field

    NASA Astrophysics Data System (ADS)

    Allys, Erwan; Beltrán Almeida, Juan P.; Peter, Patrick; Rodríguez, Yeinzon

    2016-09-01

    We summarize previous results on the most general Proca theory in 4 dimensions containing only first-order derivatives in the vector field (second-order at most in the associated Stückelberg scalar) and having only three propagating degrees of freedom with dynamics controlled by second-order equations of motion. Discussing the Hessian condition used in previous works, we conjecture that, as in the scalar galileon case, the most complete action contains only a finite number of terms with second-order derivatives of the Stückelberg field describing the longitudinal mode, which is in agreement with the results of JCAP 05 (2014) 015 and Phys. Lett. B 757 (2016) 405 and complements those of JCAP 02 (2016) 004. We also correct and complete the parity violating sector, obtaining an extra term on top of the arbitrary function of the field Aμ, the Faraday tensor Fμν and its Hodge dual tilde Fμν.

  13. Multipoint correlators in the Abelian sandpile model

    NASA Astrophysics Data System (ADS)

    Poncelet, Adrien; Ruelle, Philippe

    2017-12-01

    We revisit the calculation of height correlations in the two-dimensional Abelian sandpile model by taking advantage of a technique developed recently by Kenyon and Wilson. The formalism requires to equip the usual graph Laplacian, ubiquitous in the context of cycle-rooted spanning forests, with a complex connection. In the case at hand, the connection is constant and localized along a semi-infinite defect line (zipper). In the appropriate limit of a trivial connection, it allows one to count spanning forests whose components contain prescribed sites, which are of direct relevance for height correlations in the sandpile model. Using this technique, we first rederive known 1- and 2-site lattice correlators on the plane and upper half-plane, more efficiently than what has been done so far. We also compute explicitly the (new) next-to-leading order in the distances (r-4 for 1-site on the upper half-plane, r-6 for 2-site on the plane). We extend these results by computing new correlators involving one arbitrary height and a few heights 1 on the plane and upper half-plane, for the open and closed boundary conditions. We examine our lattice results from the conformal point of view, and confirm the full consistency with the specific features currently conjectured to be present in the associated logarithmic conformal field theory.

  14. Classical gluon fields and collective dynamics of color-charge systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronyuk, V.; Goloviznin, V. V.; Zinovjev, G. M.

    2015-03-15

    An investigation of color fields that arise in collisions of relativistic heavy ions reveals that, in the non-Abelian case, a change in the color charge leads to the appearance of an extra term that generates a sizable contribution of color-charge glow in chromoelectric and chromomagnetic fields. The possibility of the appearance of a color echo in the scattering of composite color particles belonging to the dipole type is discussed. Arguments are adduced in support of the statement that such effects are of importance in simulating the first stage of ultrarelativistic heavy-ion collisions,where the initial parton state is determined by amore » high nonequilibrium parton density and by strong local color fluctuations.« less

  15. Solitons and black holes in non-Abelian Einstein-Born-Infeld theory

    NASA Astrophysics Data System (ADS)

    Dyadichev, V. V.; Gal'tsov, D. V.

    2000-08-01

    Recently it was shown that the Born-Infeld modification of the quadratic Yang-Mills action gives rise to classical particle-like solutions in the flat space which have a striking similarity with the Bartnik-McKinnon solutions obtained within the gravity coupled Yang-Mills theory. We show that both families of solutions are continuously related within the framework of the Einstein-Born-Infeld theory via interpolating sequences of parameters. We also investigate an internal structure of the associated black holes and find that the Born-Infeld non-linearity changes drastically the black hole interior typical for the usual quadratic Yang-Mills theory. In the latter case a generic solution exhibits violent metric oscillations near the singularity. In the Born-Infeld case the generic interior solution is smooth, the metric tends to the standard Schwarzschild type singularity, and we did not observe internal horizons. Smoothing of the `violent' EYM singularity may be interpreted as a result of non-gravitational quantum effects.

  16. The Stack of Yang-Mills Fields on Lorentzian Manifolds

    NASA Astrophysics Data System (ADS)

    Benini, Marco; Schenkel, Alexander; Schreiber, Urs

    2018-03-01

    We provide an abstract definition and an explicit construction of the stack of non-Abelian Yang-Mills fields on globally hyperbolic Lorentzian manifolds. We also formulate a stacky version of the Yang-Mills Cauchy problem and show that its well-posedness is equivalent to a whole family of parametrized PDE problems. Our work is based on the homotopy theoretical approach to stacks proposed in Hollander (Isr. J. Math. 163:93-124, 2008), which we shall extend by further constructions that are relevant for our purposes. In particular, we will clarify the concretification of mapping stacks to classifying stacks such as BG con.

  17. Abelian Higgs cosmic strings: Small-scale structure and loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindmarsh, Mark; Stuckey, Stephanie; Bevis, Neil

    2009-06-15

    Classical lattice simulations of the Abelian Higgs model are used to investigate small-scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski and Rocha 29 for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loopmore » distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. 30. Better agreement to our data is found with a model based on loop fragmentation 32, coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy-loss mechanism, which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small-scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution, which reconciles the apparent differences between Nambu-Goto and field theory simulations.« less

  18. Ising versus S U (2) 2 string-net ladder

    NASA Astrophysics Data System (ADS)

    Vidal, Julien

    2018-03-01

    We consider the string-net model obtained from S U (2) 2 fusion rules. These fusion rules are shared by two different sets of anyon theories. In this paper, we study the competition between the two corresponding non-Abelian quantum phases in the ladder geometry. A detailed symmetry analysis shows that the nontrivial low-energy sector corresponds to the transverse-field cluster model that displays a critical point described by the s o (2) 1 conformal field theory. Other sectors are obtained by freezing spins in this model.

  19. Early Time Dynamics of Gluon Fields in High Energy Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph I.; Chen, Guangyao; Fries, Rainer J.; Li, Yang

    2016-12-01

    Nuclei colliding at very high energy create a strong, quasi-classical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromo-electric and chromo-magnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. Our results are generally applicable if τ < 1 /Qs. The transverse energy flow of the gluon field exhibits hydrodynamic-like contributions that follow transverse gradients of the energy density. In addition, a rapidity-odd energy flow also emerges from the non-abelian analog of Gauss' Law and generates non-vanishing angular momentum of the field. We will discuss the space-time picture that emerges from our analysis and its implications for observables in heavy ion collisions.

  20. On the 4D generalized Proca action for an Abelian vector field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allys, Erwan; Almeida, Juan P. Beltrán; Peter, Patrick

    We summarize previous results on the most general Proca theory in 4 dimensions containing only first-order derivatives in the vector field (second-order at most in the associated Stückelberg scalar) and having only three propagating degrees of freedom with dynamics controlled by second-order equations of motion. Discussing the Hessian condition used in previous works, we conjecture that, as in the scalar galileon case, the most complete action contains only a finite number of terms with second-order derivatives of the Stückelberg field describing the longitudinal mode, which is in agreement with the results of http://dx.doi.org/10.1088/1475-7516/2014/05/015 and http://dx.doi.org/10.1016/j.physletb.2016.04.017 and complements those of http://dx.doi.org/10.1088/1475-7516/2016/02/004.more » We also correct and complete the parity violating sector, obtaining an extra term on top of the arbitrary function of the field A{sub μ}, the Faraday tensor F{sub μν} and its Hodge dual F-tilde{sub μν}.« less

  1. Time-reversal-based SU(2)× Sn scalar invariants as (Lie Algebraic) group measures: a structured overview of generalised democratic-recoupled, uniform non-Abelian [ AX] n NMR spin systems, as abstract Sn⊃ Sn-1../U n⊃U n-1.. chain networks

    NASA Astrophysics Data System (ADS)

    Temme, F. P.

    2004-03-01

    The physics of dual group scalar invariants (SIs) as (Lie algebraic) group measures (L-GMs) and its significance to non-Abelian NMR spin systems motivates this overview of uniform general-2 n [ AX] 2 n spin evolution, which represents an extensive addendum to Corio's earlier (essentially restricted) view of Abelian spin system SU(2)-based SI-cardinalities. The |D 0( U)|((⊗SU(2)) (2n))|SI| values in [J. Magn. Reson., 134 (1998) 131] arise from strictly linear recoupled time-reversal invariance (TRI) models. In contrast, here we discuss the physical significance of an alternative polyhedral combinatorics approach to democratic recoupling (DR), a property inherent in both the TRI and statistical sampling. Recognition of spin ensemble SIs as being L-GMs over isomorphic algebras is invaluable in many DR-based NMR problems. Various [ AX] n model spin systems, including the [ AX] 3bis odd-odd parity spin system, are examined as direct applications of these L-GM- and combinatorial-based SI ideas. Hence in place of | SI|=15 (implied by Corio's | D0|((⊗ SU(2)) 2 n) approach), the bis 3-fold spin system cardinality is seen now as constrained to a single invariant on an isomorphic product algebra under L-GMs, in accord with the subspectral analysis of Jones et al. [Canad. J. Chem., 43 (1965) 683]. The group projective ideas cited here for DR (as cf. to graph theoretic views) apply to highly degenerate non-Abelian problems. Over dual tensorial bases, they define models of spin dynamical evolution whose (SR) quasiparticle superboson carrier (sub)spaces are characterised by SIs acting as explicit auxiliary labels [Physica, A198 (1993) 245; J. Math. Chem., 31 (2002) 281]. A deeper S2n network-based view of spin-alone space developed in Balasubramanian's work [J. Chem. Phys., 78 (1983) 6358] is especially important, (e.g.) in the study of spin waves [J. Math. Chem., 31 (2002) 363]. Beyond the specific NMR SIs derived here, there are DR applications where a sporadic, still

  2. Analysis of magnetically immersed electron guns with non-adiabatic fields.

    PubMed

    Pikin, Alexander; Alessi, James G; Beebe, Edward N; Raparia, Deepak; Ritter, John

    2016-11-01

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented.

  3. Holography in Lovelock Chern-Simons AdS gravity

    NASA Astrophysics Data System (ADS)

    Cvetković, Branislav; Miskovic, Olivera; Simić, Dejan

    2017-08-01

    We analyze holographic field theory dual to Lovelock Chern-Simons anti-de Sitter (AdS) gravity in higher dimensions using first order formalism. We first find asymptotic symmetries in the AdS sector showing that they consist of local translations, local Lorentz rotations, dilatations and non-Abelian gauge transformations. Then, we compute 1-point functions of energy-momentum and spin currents in a dual conformal field theory and write Ward identities. We find that the holographic theory possesses Weyl anomaly and also breaks non-Abelian gauge symmetry at the quantum level.

  4. On spectral synthesis on zero-dimensional Abelian groups

    NASA Astrophysics Data System (ADS)

    Platonov, S. S.

    2013-09-01

    Let G be a zero-dimensional locally compact Abelian group all of whose elements are compact, and let C(G) be the space of all complex-valued continuous functions on G. A closed linear subspace \\mathscr H\\subseteq C(G) is said to be an invariant subspace if it is invariant with respect to the translations \\tau_y\\colon f(x)\\mapsto f(x+y), y\\in G. In the paper, it is proved that any invariant subspace \\mathscr H admits spectral synthesis, that is, \\mathscr H coincides with the closed linear span of the characters of G belonging to \\mathscr H. Bibliography: 25 titles.

  5. Symplectic analysis of three-dimensional Abelian topological gravity

    NASA Astrophysics Data System (ADS)

    Cartas-Fuentevilla, R.; Escalante, Alberto; Herrera-Aguilar, Alfredo

    2017-02-01

    A detailed Faddeev-Jackiw quantization of an Abelian topological gravity is performed; we show that this formalism is equivalent and more economical than Dirac's method. In particular, we identify the complete set of constraints of the theory, from which the number of physical degrees of freedom is explicitly computed. We prove that the generalized Faddeev-Jackiw brackets and the Dirac ones coincide with each other. Moreover, we perform the Faddeev-Jackiw analysis of the theory at the chiral point, and the full set of constraints and the generalized Faddeev-Jackiw brackets are constructed. Finally we compare our results with those found in the literature and we discuss some remarks and prospects.

  6. Analysis of magnetically immersed electron guns with non-adiabatic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less

  7. Analysis of magnetically immersed electron guns with non-adiabatic fields

    DOE PAGES

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; ...

    2016-11-08

    Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams withmore » high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. In conclusion, the tests results of non-adiabatic electron gun with modified magnetic field are presented.« less

  8. Theoretical princi les of constructing the equations of motion for a spin color-charged particle in gauge and fermion fields

    NASA Astrophysics Data System (ADS)

    Markov, Yu. A.; Shishmarev, A. A.

    2010-11-01

    Based on the most general principles of materiality, gauge, and re-parameterized invariance, the problem of constructing an action describing the dynamics of a classical color-charged particle moving in external non-Abelian gauge and fermion fields is considered. The case of a linear Lagrangian dependence on the external fermion fields is discussed. Within the framework of the description of the color degree of freedom of the particle with half-integer spin by the Grassmann color charges, a new concept of the Grassmann color source of the particle being a fermion analog of the conventional color current is introduced.

  9. Noncommutative gauge theories and Kontsevich's formality theorem

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schupp, P.; Wess, J.

    2001-09-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a "Mini Seiberg-Witten map" that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor.

  10. Gravitationally induced zero modes of the Faddeev-Popov operator in the Coulomb gauge for Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2010-08-01

    It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three-dimensional anti-de Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.

  11. Quantum Field Theory Approach to Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Marino, Eduardo C.

    2017-09-01

    Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.

  12. Pure gauge spin-orbit couplings

    NASA Astrophysics Data System (ADS)

    Shikakhwa, M. S.

    2017-01-01

    Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.

  13. Dark matter cosmic string in the gravitational field of a black hole

    NASA Astrophysics Data System (ADS)

    Nakonieczny, Łukasz; Nakonieczna, Anna; Rogatko, Marek

    2018-03-01

    We examined analytically and proposed a numerical model of an Abelian Higgs dark matter vortex in the spacetime of a stationary axisymmetric Kerr black hole. In analytical calculations the dark matter sector was modeled by an addition of a U(1)-gauge field coupled to the visible sector. The backreaction analysis revealed that the impact of the dark vortex presence is far more complicated than causing only a deficit angle. The vortex causes an ergosphere shift and the event horizon velocity is also influenced by its presence. These phenomena are more significant than in the case of a visible vortex sector. The area of the event horizon of a black hole is diminished and this decline is larger in comparison to the Kerr black hole with an Abelian Higgs vortex case. After analyzing the gravitational properties for the general setup, we focused on the subset of models that are motivated by particle physics. We retained the Abelian Higgs model as a description of the dark matter sector (this sector contained a heavy dark photon and an additional complex scalar) and added a real scalar representing the real component of the Higgs doublet in the unitary gauge, as well as an additional U(1)-gauge field representing an ordinary electromagnetic field. Moreover, we considered two coupling channels between the visible and dark sectors, which were the kinetic mixing between the gauge fields and a quartic coupling between the scalar fields. After solving the equations of motion for the matter fields numerically we analyzed properties of the cosmic string in the dark matter sector and its influence on the visible sector fields that are directly coupled to it. We found out that the presence of the cosmic string induced spatial variation in the vacuum expectation value of the Higgs field and a nonzero electromagnetic field around the black hole.

  14. Non-causal Propagation for Higher-Order Interactions of Torsion with Spinor Fields

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca

    2018-06-01

    We consider field equations of spinors with torsional interactions having higher-order dimension: by applying the Velo-Zwanziger method, we obtain that it is always possible to find situations where the propagation is affected by non-causal behavior.

  15. Paired quantum Hall states on noncommutative two-tori

    NASA Astrophysics Data System (ADS)

    Marotta, Vincenzo; Naddeo, Adele

    2010-08-01

    By exploiting the notion of Morita equivalence for field theories on noncommutative tori and choosing rational values of the noncommutativity parameter θ (in appropriate units), a one-to-one correspondence between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space can be established. Starting from this general result, we focus on the conformal field theory (CFT) describing a quantum Hall fluid (QHF) at paired states fillings ν=mp/m+2 Cristofano et al. (2000) [1], recently obtained by means of m-reduction procedure, and show that it is the Morita equivalent of a NCFT. In this way we extend the construction proposed in Marotta and Naddeo (2008) [2] for the Jain series ν=>m2p/m+1. The case m=2 is explicitly discussed and the role of noncommutativity in the physics of quantum Hall bilayers is emphasized. Our results represent a step forward the construction of a new effective low energy description of certain condensed matter phenomena and help to clarify the relationship between noncommutativity and quantum Hall fluids.

  16. Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bley, Gonzalo A.; Thomas, Lawrence E.

    2017-01-01

    We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.

  17. Dualities and Topological Field Theories from Twisted Geometries

    NASA Astrophysics Data System (ADS)

    Markov, Ruza

    I will present three studies of string theory on twisted geometries. In the first calculation included in this dissertation we use gauge/gravity duality to study the Coulomb branch of an unusual type of nonlocal field theory, called Puff Field Theory. On the gravity side, this theory is given in terms of D3-branes in type IIB string theory with a geometric twist. While the field theory description, available in the IR limit, is a deformation of Yang-Mills gauge theory by an order seven operator which we here compute. In the rest of this dissertation we explore N = 4 super Yang-Mills (SYM) theory compactied on a circle with S-duality and R-symmetry twists that preserve N = 6 supersymmetry in 2 + 1D. It was shown that abelian theory on a flat manifold gives Chern-Simons theory in the low-energy limit and here we are interested in the non-abelian counterpart. To that end, we introduce external static supersymmetric quark and anti-quark sources into the theory and calculate the Witten Index of the resulting Hilbert space of ground states on a two-torus. Using these results we compute the action of simple Wilson loops on the Hilbert space of ground states without sources. In some cases we find disagreement between our results for the Wilson loop eigenvalues and previous conjectures about a connection with Chern-Simons theory. The last result discussed in this dissertation demonstrates a connection between gravitational Chern-Simons theory and N = 4 four-dimensional SYM theory compactified on a circle twisted by S-duality where the remaining three-manifold is not flat starting with the explicit geometric realization of S-duality in terms of (2, 0) theory.

  18. Competing ν = 5/2 fractional quantum Hall states in confined geometry.

    PubMed

    Fu, Hailong; Wang, Pengjie; Shan, Pujia; Xiong, Lin; Pfeiffer, Loren N; West, Ken; Kastner, Marc A; Lin, Xi

    2016-11-01

    Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Here, we present edge-current-tunneling experiments in geometrically confined quantum point contacts, which indicate that Abelian and non-Abelian states compete at filling factor 5/2. Our results are consistent with a transition from an Abelian state to a non-Abelian state in a single quantum point contact when the confinement is tuned. Our observation suggests that there is an intrinsic non-Abelian 5/2 ground state but that the appropriate confinement is necessary to maintain it. This observation is important not only for understanding the physics of the 5/2 state but also for the design of future topological quantum computation devices.

  19. Andreev bound states in a semiconducting nanowire Josephson junction, Part II: Quantum jumps and Fermion parity switching

    NASA Astrophysics Data System (ADS)

    Hays, M.; de Lange, G.; Serniak, K.; van Woerkom, D. J.; Väyrynen, J. I.; van Heck, B.; Vool, U.; Krogstrup, P.; Nygård, J.; Frunzio, L.; Geresdi, A.; Glazman, L. I.; Devoret, M. H.

    Proximitized semiconducting nanowires subject to magnetic field should display topological superconductivity and support Majorana zero modes which have non-Abelian braiding statistics. The conventional Andreev levels formed in such wires in the absence of field are a precursor to these exotic zero modes. The fermion-parity switching time of Andreev levels sets a lower bound on the bandwidth required for experiments aimed at harnessing non-Abelian braiding statistics. We demonstrate the observation of quantum jumps between even and odd-parity states of an individual Andreev bound state in a non-topological junction, providing a direct measurement of the state populations and the parity lifetime. Work supported by: ARO, ONR, AFOSR, EU Marie Curie and YINQE.

  20. Sensitivity-based virtual fields for the non-linear virtual fields method

    NASA Astrophysics Data System (ADS)

    Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice

    2017-09-01

    The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In this manuscript, a new set of automatically-defined virtual fields for non-linear constitutive models has been proposed. These new sensitivity-based virtual fields reduce the influence of noise on the parameter identification. The sensitivity-based virtual fields were applied to a numerical example involving small strain plasticity; however, the general formulation derived for these virtual fields is applicable to any non-linear constitutive model. To quantify the improvement offered by these new virtual fields, they were compared with stiffness-based and manually defined virtual fields. The proposed sensitivity-based virtual fields were consistently able to identify plastic model parameters and outperform the stiffness-based and manually defined virtual fields when the data was corrupted by noise.

  1. Non-Abelian fermionization and fractional quantum Hall transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall inter-plateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponentmore » $$\

  2. Non-Abelian fermionization and fractional quantum Hall transitions

    DOE PAGES

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    2018-02-08

    There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall interplateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length There has been a recent surge of interest in dualities relating theories of Chern-Simons gauge fields coupled to either bosons or fermions within the condensed matter community, particularly in the context of topological insulators and the half-filled Landau level. Here, we study the application of one such duality to the long-standing problem of quantum Hall inter-plateaux transitions. The key motivating experimental observations are the anomalously large value of the correlation length exponentmore » $$\

  3. Abelianization and sequential confinement in 2 + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Benvenuti, Sergio; Giacomelli, Simone

    2017-10-01

    We consider the lagrangian description of Argyres-Douglas theories of type A 2 N -1, which is a SU( N) gauge theory with an adjoint and one fundamental flavor. An appropriate reformulation allows us to map the moduli space of vacua across the duality, and to dimensionally reduce. Going down to three dimensions, we find that the adjoint SQCD "abelianizes": in the infrared it is equivalent to a N=4 linear quiver theory. Moreover, we study the mirror dual: using a monopole duality to "sequentially confine" quivers tails with balanced nodes, we show that the mirror RG flow lands on N=4 SQED with N flavors. These results make the supersymmetry enhancement explicit and provide a physical derivation of previous proposals for the three dimensional mirror of AD theories.

  4. Shape and fission instabilities of ferrofluids in non-uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Vieu, Thibault; Walter, Clément

    2018-04-01

    We study static distributions of ferrofluid submitted to non-uniform magnetic fields. We show how the normal-field instability is modified in the presence of a weak magnetic field gradient. Then we consider a ferrofluid droplet and show how the gradient affects its shape. A rich phase transitions phenomenology is found. We also investigate the creation of droplets by successive splits when a magnet is vertically approached from below and derive theoretical expressions which are solved numerically to obtain the number of droplets and their aspect ratio as function of the field configuration. A quantitative comparison is performed with previous experimental results, as well as with our own experiments, and yields good agreement with the theoretical modeling.

  5. Distributional and regularized radiation fields of non-uniformly moving straight dislocations, and elastodynamic Tamm problem

    NASA Astrophysics Data System (ADS)

    Lazar, Markus; Pellegrini, Yves-Patrick

    2016-11-01

    This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where fields induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the dynamic build-up and decay of which is illustrated by means of full-field calculations.

  6. Equations Governing the Propagation of Second-Order Correlations in Non-Stationary Electromagnetic Fields

    DTIC Science & Technology

    1961-09-25

    eqlwatwnis vanish and t hese equations are- then gene - rali/Mit ions to a non-statiiona ry free field of eils. (1.3.1 Jl) and (1.3.11b). Thie remiainingi...correlation eqluations may hfe derived from eql. (3.1), which is tlite- snime as for the free field. Or’ 2 obtains :i~:•a •,,;l ,. X .. TI. T,, 2) -_ TI

  7. Topological BF field theory description of topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Gil Young; Moore, Joel E., E-mail: jemoore@berkeley.edu; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    2011-06-15

    Research Highlights: > We show that a BF theory is the effective theory of 2D and 3D topological insulators. > The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. > The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. > Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version ofmore » abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a {pi} flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.« less

  8. Quantum Engineering of Dynamical Gauge Fields on Optical Lattices

    DTIC Science & Technology

    2016-07-08

    exact blocking formulas from the TRG formulation of the transfer matrix. The second is a worm algorithm. The particle number distributions obtained...a fact that can be explained by an approximate particle- hole symmetry. We have also developed a computer code suite for simulating the Abelian

  9. Radially separated classical lumps in non-Abelian gauge models

    NASA Astrophysics Data System (ADS)

    Burzlaff, Jürgen

    1985-04-01

    We search for smooth and time-independent finite-energy solutions to Yang-Mills-Higgs theory with an arbitrary compact gauge group. Excluding the monopole solutions which have been studied before, we concentrate on configurations with no long-range fields, which include the saddle points corresponding to noncontractible (hyper-) loops. It is shown that if the radial dependence of the fields is factorized, only one solution satisfies all these conditions. This solution is the one which has been studied before by Dashen, Hasslacher, and Neveu and by Boguta, and whose existence has recently been proved rigorously. Formulas for the asymptotic behavior of this solution are given.

  10. Non-uniformity calibration for MWIR polarization imagery obtained with integrated microgrid polarimeters

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Zheng; Shi, Ze-Lin; Feng, Bin; Hui, Bin; Zhao, Yao-Hong

    2016-03-01

    Integrating microgrid polarimeters on focal plane array (FPA) of an infrared detector causes non-uniformity of polarization response. In order to reduce the effect of polarization non-uniformity, this paper constructs an experimental setup for capturing raw flat-field images and proposes a procedure for acquiring non-uniform calibration (NUC) matrix and calibrating raw polarization images. The proposed procedure takes the incident radiation as a polarization vector and offers a calibration matrix for each pixel. Both our matrix calibration and two-point calibration are applied to our mid-wavelength infrared (MWIR) polarization imaging system with integrated microgrid polarimeters. Compared with two point calibration, our matrix calibration reduces non-uniformity by 30 40% under condition of flat-field data test with polarization. The ourdoor scene observation experiment indicates that our calibration can effectively reduce polarization non-uniformity and improve the image quality of our MWIR polarization imaging system.

  11. Intermediate inflation from a non-canonical scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezazadeh, K.; Karami, K.; Karimi, P., E-mail: rezazadeh86@gmail.com, E-mail: KKarami@uok.ac.ir, E-mail: parvin.karimi67@yahoo.com

    2015-09-01

    We study the intermediate inflation in a non-canonical scalar field framework with a power-like Lagrangian. We show that in contrast with the standard canonical intermediate inflation, our non-canonical model is compatible with the observational results of Planck 2015. Also, we estimate the equilateral non-Gaussianity parameter which is in well agreement with the prediction of Planck 2015. Then, we obtain an approximation for the energy scale at the initial time of inflation and show that it can be of order of the Planck energy scale, i.e. M{sub P} ∼ 10{sup 18}GeV. We will see that after a short period of time, inflation entersmore » in the slow-roll regime that its energy scale is of order M{sub P}/100 ∼ 10{sup 16}GeV and the horizon exit takes place in this energy scale. We also examine an idea in our non-canonical model to overcome the central drawback of intermediate inflation which is the fact that inflation never ends. We solve this problem without disturbing significantly the nature of the intermediate inflation until the time of horizon exit.« less

  12. Einstein-Yang-Mills-Dirac systems from the discretized Kaluza-Klein theory

    NASA Astrophysics Data System (ADS)

    Wali, Kameshwar; Viet, Nguyen Ali

    2017-01-01

    A unified theory of the non-Abelian gauge interactions with gravity in the framework of a discretized Kaluza-Klein theory is constructed with a modified Dirac operator and wedge product. All the couplings of chiral spinors to the non-Abelian gauge fields emerge naturally as components of the coupling of the chiral spinors in the generalized gravity together with some new interactions. In particular, the currently prevailing gravity-QCD quark and gravity-electroweak-quark and lepton models are shown to follow as special cases of the general framework.

  13. Analysis of quantitative data obtained from toxicity studies showing non-normal distribution.

    PubMed

    Kobayashi, Katsumi

    2005-05-01

    The data obtained from toxicity studies are examined for homogeneity of variance, but, usually, they are not examined for normal distribution. In this study I examined the measured items of a carcinogenicity/chronic toxicity study with rats for both homogeneity of variance and normal distribution. It was observed that a lot of hematology and biochemistry items showed non-normal distribution. For testing normal distribution of the data obtained from toxicity studies, the data of the concurrent control group may be examined, and for the data that show a non-normal distribution, non-parametric tests with robustness may be applied.

  14. The Bargmann-Wigner equations in spherical space

    NASA Astrophysics Data System (ADS)

    McKeon, D. G. C.; Sherry, T. N.

    2006-01-01

    The Bargmann-Wigner formalism is adapted to spherical surfaces embedded in three to eleven dimensions. This is demonstrated to generate wave equations in spherical space for a variety of antisymmetric tensor fields. Some of these equations are gauge invariant for particular values of the parameters characterizing them. For spheres embedded in three, four, and five dimensions, this gauge invariance can be generalized so as to become non-Abelian. This non-Abelian gauge invariance is shown to be a property of second-order models for two index antisymmetric tensor fields in any number of dimensions. The O(3) model is quantized and the two-point function is shown to vanish at the one-loop order.

  15. Quantized Electromagnetic-Field Propagation in General Non-Local and Non-Stationary Dispersive and Absorbing Media

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    Dynamical descriptions for the propagation of quantized electromagnetic fields, in the presence of environmental interactions, are systematically and self-consistently developed in the complimentary Schrödinger and Heisenberg pictures. An open-systems (non-equilibrium) quantum-electrodynamics description is thereby provided for electromagnetic-field propagation in general non-local and non-stationary dispersive and absorbing optical media, including a fundamental microscopic treatment of decoherence and relaxation processes due to environmental collisional and electromagnetic interactions. Particular interest is centered on entangled states and other non-classical states of electromagnetic fields, which may be created by non-linear electromagnetic interactions and detected by the measurement of various electromagnetic-field correlation functions. Accordingly, we present dynamical descriptions based on general forms of electromagnetic-field correlation functions involving both the electric-field and the magnetic-field components of the electromagnetic field, which are treated on an equal footing. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  16. Couplings of gravitational currents with Chern-Simons gravities

    NASA Astrophysics Data System (ADS)

    Ertem, Ümit; Açık, Özgür

    2013-02-01

    The coupling of conserved p-brane currents with non-Abelian gauge theories is done consistently by using Chern-Simons forms. Conserved currents localized on p-branes that have a gravitational origin can be constructed from Killing-Yano forms of the underlying spacetime. We propose a generalization of the coupling procedure with Chern-Simons gravities to the case of gravitational conserved currents. In odd dimensions, the field equations of coupled Chern-Simons gravities that describe the local curvature on p-branes are obtained. In special cases of three and five dimensions, the field equations are investigated in detail.

  17. O(d,d)-duality in string theory

    NASA Astrophysics Data System (ADS)

    Rennecke, Felix

    2014-10-01

    A new method for obtaining dual string theory backgrounds is presented. Preservation of the Hamiltonian density and the energy momentum tensor induced by O( d, d)-transformations leads to a relation between dual sets of coordinate one-forms accompanied by a redefinition of the background fields and a shift of the dilaton. The necessity of isometric directions arises as integrability condition for this map. The isometry algebra is studied in detail using generalised geometry. In particular, non-abelian dualities and β-transformations are contained in this approach. The latter are exemplified by the construction of a new approximate non-geometric background.

  18. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  19. Matter field Kähler metric in heterotic string theory from localisation

    NASA Astrophysics Data System (ADS)

    Blesneag, Ştefan; Buchbinder, Evgeny I.; Constantin, Andrei; Lukas, Andre; Palti, Eran

    2018-04-01

    We propose an analytic method to calculate the matter field Kähler metric in heterotic compactifications on smooth Calabi-Yau three-folds with Abelian internal gauge fields. The matter field Kähler metric determines the normalisations of the N = 1 chiral superfields, which enter the computation of the physical Yukawa couplings. We first derive the general formula for this Kähler metric by a dimensional reduction of the relevant supergravity theory and find that its T-moduli dependence can be determined in general. It turns out that, due to large internal gauge flux, the remaining integrals localise around certain points on the compactification manifold and can, hence, be calculated approximately without precise knowledge of the Ricci-flat Calabi-Yau metric. In a final step, we show how this local result can be expressed in terms of the global moduli of the Calabi-Yau manifold. The method is illustrated for the family of Calabi-Yau hypersurfaces embedded in P^1× P^3 and we obtain an explicit result for the matter field Kähler metric in this case.

  20. Anisotropic inflation with a non-minimally coupled electromagnetic field to gravity

    NASA Astrophysics Data System (ADS)

    Adak, Muzaffer; Akarsu, Özgür; Dereli, Tekin; Sert, Özcan

    2017-11-01

    We consider the non-minimal model of gravity in Y(R) F2-form. We investigate a particular case of the model, for which the higher order derivatives are eliminated but the scalar curvature R is kept to be dynamical via the constraint YRFmnFmn =-2/κ2. The effective fluid obtained can be represented by interacting electromagnetic field and vacuum depending on Y(R), namely, the energy density of the vacuum tracks R while energy density of the conventional electromagnetic field is dynamically scaled with the factor Y(R)/2. We give exact solutions for anisotropic inflation by assuming the volume scale factor of the Universe exhibits a power-law expansion. The directional scale factors do not necessarily exhibit power-law expansion, which would give rise to a constant expansion anisotropy, but expand non-trivially and give rise to a non-monotonically evolving expansion anisotropy that eventually converges to a non-zero constant. Relying on this fact, we discuss the anisotropic e-fold during the inflation by considering observed scale invariance in CMB and demanding the Universe to undergo the same amount of e-folds in all directions. We calculate the residual expansion anisotropy at the end of inflation, though as a result of non-monotonic behaviour of expansion anisotropy all the axes of the Universe undergo the same of amount of e-folds by the end of inflation. We also discuss the generation of the modified electromagnetic field during the first few e-folds of the inflation and its persistence against to the vacuum till end of inflation.

  1. A new construction of rational electromagnetic knots

    NASA Astrophysics Data System (ADS)

    Lechtenfeld, Olaf; Zhilin, Gleb

    2018-06-01

    We set up a correspondence between solutions of the Yang-Mills equations on R ×S3 and in Minkowski spacetime via de Sitter space. Some known Abelian and non-Abelian exact solutions are rederived. For the Maxwell case we present a straightforward algorithm to generate an infinite number of explicit solutions, with fields and potentials in Minkowski coordinates given by rational functions of increasing complexity. We illustrate our method with a nontrivial example.

  2. Stochastic quantization of topological field theory: Generalized Langevin equation with memory kernel

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2006-07-01

    We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient.

  3. Imaging Anyons with Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Papić, Zlatko; Mong, Roger S. K.; Yazdani, Ali; Zaletel, Michael P.

    2018-01-01

    Anyons are exotic quasiparticles with fractional charge that can emerge as fundamental excitations of strongly interacting topological quantum phases of matter. Unlike ordinary fermions and bosons, they may obey non-Abelian statistics—a property that would help realize fault-tolerant quantum computation. Non-Abelian anyons have long been predicted to occur in the fractional quantum Hall (FQH) phases that form in two-dimensional electron gases in the presence of a large magnetic field, such as the ν =5 /2 FQH state. However, direct experimental evidence of anyons and tests that can distinguish between Abelian and non-Abelian quantum ground states with such excitations have remained elusive. Here, we propose a new experimental approach to directly visualize the structure of interacting electronic states of FQH states with the STM. Our theoretical calculations show how spectroscopy mapping with the STM near individual impurity defects can be used to image fractional statistics in FQH states, identifying unique signatures in such measurements that can distinguish different proposed ground states. The presence of locally trapped anyons should leave distinct signatures in STM spectroscopic maps, and enables a new approach to directly detect—and perhaps ultimately manipulate—these exotic quasiparticles.

  4. Experimental Investigation of the Electronic Properties of Twisted Bilayer Graphene by STM and STS

    NASA Astrophysics Data System (ADS)

    Yin, Longjing; Qiao, Jiabin; Wang, Wenxiao; Zuo, Weijie; He, Lin

    The electronic properties of graphene multilayers depend sensitively on their stacking order. A twisted angle is treated as a unique degree of freedom to tune the electronic properties of graphene system. Here we study electronic structures of the twisted bilayers by scanning tunneling microscopy (STM) and spectroscopy (STS). We demonstrate that the interlayer coupling strength affects both the Van Hove singularities and the Fermi velocity of twisted bilayers dramatically. This removes the discrepancy about the Fermi velocity renormalization in the twisted bilayers and provides a consistent interpretation of all current data. Moreover, we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by STM and STS. At a magic twisted angle, about 1.11°, a pronounced sharp peak is observed in the tunnelling spectra due to the action of the non-Abelian gauge fields. Because of the effective non-Abelian gauge fields, the rotation angle could transfer the charge carriers in the twisted bilayers from massless Dirac fermions into well localized electrons, or vice versa, efficiently. This provides a new route to tune the electronic properties of graphene systems, which will be essential in future graphene nanoelectronics.

  5. Non-Abelian Bosonization and Fractional Quantum Hall Transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    A fully satisfying theoretical description for the quantum phase transition between fractional quantum Hall plateaus remains an outstanding problem. Experiments indicate scaling exponents that are not readily obtained in conventional theories. Using insights from duality, we describe a class of quantum critical effective theories that produce qualitatively realistic scaling exponents for the transition. We discuss the implications of our results for the physically-relevant interactions controlling this broad class of quantum critical behavior. Supported by National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650441.

  6. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  7. Non-perturbative background field calculations

    NASA Astrophysics Data System (ADS)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  8. Tackling non-linearities with the effective field theory of dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Frusciante, Noemi; Papadomanolakis, Georgios

    2017-12-01

    We present the extension of the effective field theory framework to the mildly non-linear scales. The effective field theory approach has been successfully applied to the late time cosmic acceleration phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological observables on linear scales. However, mildly non-linear scales need to be consistently considered when testing gravity theories because a large part of the data comes from those scales. Thus, non-linear corrections to predictions on observables coming from the linear analysis can help in discriminating among different gravity theories. We proceed firstly by identifying the necessary operators which need to be included in the effective field theory Lagrangian in order to go beyond the linear order in perturbations and then we construct the corresponding non-linear action. Moreover, we present the complete recipe to map any single field dark energy and modified gravity models into the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear contributions coming from the linear order perturbations which at the next order act like source terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic term and the speed of propagation for scalar mode, are automatically satisfied once the viability of the theory is demanded at linear level. The approach we present here will allow to construct, in a model independent way, all the relevant predictions on observables at mildly non-linear scales.

  9. Automorphisms of Order Structures of Abelian Parts of Operator Algebras and Their Role in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Hamhalter, Jan; Turilova, Ekaterina

    2014-10-01

    It is shown that any order isomorphism between the structures of unital associative JB subalgebras of JB algebras is given naturally by a partially linear Jordan isomorphism. The same holds for nonunital subalgebras and order isomorphisms preserving the unital subalgebra. Finally, we recover usual action of time evolution group on a von Neumann factor from group of automorphisms of the structure of Abelian subalgebras.

  10. Thermodynamic Model Formulations for Inhomogeneous Solids with Application to Non-isothermal Phase Field Modelling

    NASA Astrophysics Data System (ADS)

    Gladkov, Svyatoslav; Kochmann, Julian; Reese, Stefanie; Hütter, Markus; Svendsen, Bob

    2016-04-01

    The purpose of the current work is the comparison of thermodynamic model formulations for chemically and structurally inhomogeneous solids at finite deformation based on "standard" non-equilibrium thermodynamics [SNET: e. g. S. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland, 1962] and the general equation for non-equilibrium reversible-irreversible coupling (GENERIC) [H. C. Öttinger, Beyond Equilibrium Thermodynamics, Wiley Interscience, 2005]. In the process, non-isothermal generalizations of standard isothermal conservative [e. g. J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial energy. J. Chem. Phys. 28 (1958), 258-267] and non-conservative [e. g. S. M. Allen and J. W. Cahn, A macroscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979), 1085-1095; A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York, 1983] diffuse interface or "phase-field" models [e. g. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern Phys. 49 (1977), 435-479; N. Provatas and K. Elder, Phase Field Methods in Material Science and Engineering, Wiley-VCH, 2010.] for solids are obtained. The current treatment is consistent with, and includes, previous works [e. g. O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions, Phys. D 43 (1990), 44-62; O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a "thermodynamically consistent" phase-field model. Phys. D 69 (1993), 107-113] on non-isothermal systems as a special case. In the context of no-flux boundary conditions, the SNET- and GENERIC-based approaches are shown to be completely consistent with each other and result in equivalent temperature evolution relations.

  11. Loop corrections in double field theory: non-trivial dilaton potentials

    NASA Astrophysics Data System (ADS)

    Lv, Songlin; Wu, Houwen; Yang, Haitang

    2014-10-01

    It is believed that the invariance of the generalised diffeomorphisms prevents any non-trivial dilaton potential from double field theory. It is therefore difficult to include loop corrections in the formalism. We show that by redefining a non-local dilaton field, under strong constraint which is necessary to preserve the gauge invariance of double field theory, the theory does permit non-constant dilaton potentials and loop corrections. If the fields have dependence on only one single coordinate, the non-local dilaton is identical to the ordinary one with an additive constant.

  12. Quantum Hall physics: Hierarchies and conformal field theory techniques

    NASA Astrophysics Data System (ADS)

    Hansson, T. H.; Hermanns, M.; Simon, S. H.; Viefers, S. F.

    2017-04-01

    The fractional quantum Hall effect, being one of the most studied phenomena in condensed matter physics during the past 30 years, has generated many ground-breaking new ideas and concepts. Very early on it was realized that the zoo of emerging states of matter would need to be understood in a systematic manner. The first attempts to do this, by Haldane and Halperin, set an agenda for further work which has continued to this day. Since that time the idea of hierarchies of quasiparticles condensing to form new states has been a pillar of our understanding of fractional quantum Hall physics. In the 30 years that have passed since then, a number of new directions of thought have advanced our understanding of fractional quantum Hall states and have extended it in new and unexpected ways. Among these directions is the extensive use of topological quantum field theories and conformal field theories, the application of the ideas of composite bosons and fermions, and the study of non-Abelian quantum Hall liquids. This article aims to present a comprehensive overview of this field, including the most recent developments.

  13. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less

  14. Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawabata, Y.; Shimizu, T.; Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp

    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient freemore » energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.« less

  15. Relativized problems with abelian phase group in topological dynamics.

    PubMed

    McMahon, D

    1976-04-01

    Let (X, T) be the equicontinuous minimal transformation group with X = pi(infinity)Z(2), the Cantor group, and S = [unk](infinity)Z(2) endowed with the discrete topology acting on X by right multiplication. For any countable group T we construct a function F:X x S --> T such that if (Y, T) is a minimal transformation group, then (X x Y, S) is a minimal transformation group with the action defined by (x, y)s = [xs, yF(x, s)]. If (W, T) is a minimal transformation group and varphi:(Y, T) --> (W, T) is a homomorphism, then identity x varphi:(X x Y, S) --> (X x W, S) is a homomorphism and has many of the same properties that varphi has. For this reason, one may assume that the phase group is abelian (or S) without loss of generality for many relativized problems in topological dynamics.

  16. Constraints on Non-Newtonian Gravity From the Experiment on Neutron Quantum States in the Earth's Gravitational Field.

    PubMed

    Nesvizhevsky, V V; Protasov, K V

    2005-01-01

    An upper limit to non-Newtonian attractive forces is obtained from the measurement of quantum states of neutrons in the Earth's gravitational field. This limit improves the existing constraints in the nanometer range.

  17. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    NASA Astrophysics Data System (ADS)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  18. Elastic field of a spherical inclusion with non-uniform eigenfields in second strain gradient elasticity

    NASA Astrophysics Data System (ADS)

    Delfani, M. R.; Latifi Shahandashti, M.

    2017-09-01

    In this paper, within the complete form of Mindlin's second strain gradient theory, the elastic field of an isolated spherical inclusion embedded in an infinitely extended homogeneous isotropic medium due to a non-uniform distribution of eigenfields is determined. These eigenfields, in addition to eigenstrain, comprise eigen double and eigen triple strains. After the derivation of a closed-form expression for Green's function associated with the problem, two different cases of non-uniform distribution of the eigenfields are considered as follows: (i) radial distribution, i.e. the distributions of the eigenfields are functions of only the radial distance of points from the centre of inclusion, and (ii) polynomial distribution, i.e. the distributions of the eigenfields are polynomial functions in the Cartesian coordinates of points. While the obtained solution for the elastic field of the latter case takes the form of an infinite series, the solution to the former case is represented in a closed form. Moreover, Eshelby's tensors associated with the two mentioned cases are obtained.

  19. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-06-11

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  20. Magnetic fields and chiral asymmetry in the early hot universe

    NASA Astrophysics Data System (ADS)

    Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  1. Below-threshold harmonic generation from strong non-uniform fields

    NASA Astrophysics Data System (ADS)

    Yavuz, I.

    2017-10-01

    Strong-field photoemission below the ionization threshold is a rich/complex region where atomic emission and harmonic generation may coexist. We studied the mechanism of below-threshold harmonics (BTH) from spatially non-uniform local fields near the metallic nanostructures. Discrete harmonics are generated due to the broken inversion symmetry, suggesting enriched coherent emission in the vuv frequency range. Through the numerical solution of the time-dependent Schrödinger equation, we investigate wavelength and intensity dependence of BTH. Wavelength dependence identifies counter-regular resonances; individual contributions from the multi-photon emission and channel-closing effects due to quantum path interferences. In order to understand the underlying mechanism of BTH, we devised a generalized semi-classical model, including the influence of Coulomb and non-uniform field interactions. As in uniform fields, Coulomb potential in non-uniform fields is the determinant of BTH; we observed that the generation of BTH are due to returning trajectories with negative energies. Due to large distance effectiveness of the non-uniformity, only long trajectories are noticeably affected.

  2. Axion gauge field inflation and gravitational leptogenesis: A lower bound on B modes from the matter-antimatter asymmetry of the Universe

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Devulder, C.

    2018-01-01

    We present a toy model of an axion gauge field inflation scenario that yields viable density and gravitational wave spectra. The scenario consists of an axionic inflaton in a steep potential that is effectively flattened by a coupling to a collection of non-Abelian gauge fields. The model predicts a blue-tilted gravitational wave spectrum that is dominated by one circular polarization, resulting in unique observational targets for cosmic microwave background and gravitational wave experiments. The handedness of the gravitational wave spectrum is incorporated in a model of leptogenesis through the axial-gravitational anomaly; assuming electroweak sphaeleron processes convert the lepton asymmetry into baryons, we predict an approximate lower bound on the tensor-to-scalar ratio r ˜3 - 4 ×10-2 for models that also explain the matter-antimatter asymmetry of the Universe.

  3. Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Meakin, Paul

    2013-10-01

    An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less

  4. Momentum dependence in pair production by an external field

    NASA Astrophysics Data System (ADS)

    Asakawa, M.

    1992-08-01

    The transverse and the longitudinal momentum dependences of the pair production under an adiabatically exerted uniform abelian external field are calculated with their importance in models for the production of quark-gluon plasma in ultrarelativistic heavy ion collisions in mind. The importance of the initial condition is revealed. We show that superposition of acceleration by the external field and barrier penetration is reflected in the longitudinal momentum dependence. The peculiar nature of the boost invariant system which is expected to be approximately realized in ultrarelativistic nuclear collisions is pointed out.

  5. Non-geometric fluxes, quasi-Hopf twist deformations, and nonassociative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Mylonas, Dionysios; Schupp, Peter; Szabo, Richard J.

    2014-12-01

    We analyse the symmetries underlying nonassociative deformations of geometry in non-geometric R-flux compactifications which arise via T-duality from closed strings with constant geometric fluxes. Starting from the non-abelian Lie algebra of translations and Bopp shifts in phase space, together with a suitable cochain twist, we construct the quasi-Hopf algebra of symmetries that deforms the algebra of functions and the exterior differential calculus in the phase space description of nonassociative R-space. In this setting, nonassociativity is characterised by the associator 3-cocycle which controls non-coassociativity of the quasi-Hopf algebra. We use abelian 2-cocycle twists to construct maps between the dynamical nonassociative star product and a family of associative star products parametrized by constant momentum surfaces in phase space. We define a suitable integration on these nonassociative spaces and find that the usual cyclicity of associative noncommutative deformations is replaced by weaker notions of 2-cyclicity and 3-cyclicity. Using this star product quantization on phase space together with 3-cyclicity, we formulate a consistent version of nonassociative quantum mechanics, in which we calculate the expectation values of area and volume operators, and find coarse-graining of the string background due to the R-flux.

  6. Non-contact transportation using near-field acoustic levitation

    PubMed

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described.

  7. Quantum cellular automata and free quantum field theory

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-02-01

    In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.

  8. Appearance of gauge structure in simple dynamical systems

    NASA Technical Reports Server (NTRS)

    Wilczek, F.; Zee, A.

    1984-01-01

    By generalizing a construction of Berry and Simon, it is shown that non-Abelian gauge fields arise in the adiabatic development of simple quantum mechanical systems. Characteristics of the gauge fields are related to energy splittings, which may be observable in real systems. Similar phenomena are found for suitable classical systems.

  9. Compact stars in the non-minimally coupled electromagnetic fields to gravity

    NASA Astrophysics Data System (ADS)

    Sert, Özcan

    2018-03-01

    We investigate the gravitational models with the non-minimal Y(R)F^2 coupled electromagnetic fields to gravity, in order to describe charged compact stars, where Y( R) denotes a function of the Ricci curvature scalar R and F^2 denotes the Maxwell invariant term. We determine two parameter family of exact spherically symmetric static solutions and the corresponding non-minimal model without assuming any relation between energy density of matter and pressure. We give the mass-radius, electric charge-radius ratios and surface gravitational redshift which are obtained by the boundary conditions. We reach a wide range of possibilities for the parameters k and α in these solutions. Lastly we show that the models can describe the compact stars even in the more simple case α =3.

  10. Rotating hairy black holes.

    PubMed

    Kleihaus, B; Kunz, J

    2001-04-23

    We construct stationary black-hole solutions in SU(2) Einstein-Yang-Mills theory which carry angular momentum and electric charge. Possessing nontrivial non-Abelian magnetic fields outside their regular event horizon, they represent nonperturbative rotating hairy black holes.

  11. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  12. Numerical investigation of the heat transfer of a ferrofluid inside a tube in the presence of a non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Hariri, Saman; Mokhtari, Mojtaba; Gerdroodbary, M. Barzegar; Fallah, Keivan

    2017-02-01

    In this article, a three-dimensional numerical investigation is performed to study the effect of a magnetic field on a ferrofluid inside a tube. This study comprehensively analyzes the influence of a non-uniform magnetic field in the heat transfer of a tube while a ferrofluid (water with 0.86 vol% nanoparticles (Fe3O4) is let flow. The SIMPLEC algorithm is used for obtaining the flow and heat transfer inside the tube. The influence of various parameters, such as concentration of nanoparticles, intensity of the magnetic field, wire distance and Reynolds number, on the heat transfer is investigated. According to the obtained results, the presence of a non-uniform magnetic field significantly increases the Nusselt number (more than 300%) inside the tube. Also, the magnetic field induced by the parallel wire affects the average velocity of the ferrofluid and forms two strong eddies in the tube. Our findings show that the diffusion also raises as the concentration of the nanoparticle is increased.

  13. Berry phase effect on Majorana braiding

    NASA Astrophysics Data System (ADS)

    He, Yingping; Wang, Baozong; Liu, Xiong-Jun

    Majorana zero modes are predicted to exhibit Non-Abelian braiding, which can be applied to fault-tolerant quantum computation. An essential signature of the non-Abelian braiding is that after a full braiding each of the two Majorana modes under braiding gets a minus sign, namely, a π Berry phase. In this work we find a novel effect in Majorana braiding that during the adiabatic transport a Majorana mode may or may not acquire a staggered minus sign under each step that the Majorana is transported, corresponding to two different types of parameter manipulation. This additional minus sign is shown to be a consequence of translational Berry phase effect, which can qualitatively affect the braiding of Majorana modes. Furthermore, we also study the effect of vortices on the Majorana braiding, with the similar additional Berry phase effect being obtained. Our work may provide new understanding of the non-Abelian statistics of Majorana modes and help improve the experiment setup for quantum computation. MOST, NSFC, Thousand-Young-Talent Program of China.

  14. Excitations in the field-induced quantum spin liquid state of α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Lampen-Kelley, Paula; Knolle, Johannes; Balz, Christian; Aczel, Adam Anthony; Winn, Barry; Liu, Yaohua; Pajerowski, Daniel; Yan, Jiaqiang; Bridges, Craig A.; Savici, Andrei T.; Chakoumakos, Bryan C.; Lumsden, Mark D.; Tennant, David Alan; Moessner, Roderich; Mandrus, David G.; Nagler, Stephen E.

    2018-03-01

    The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations. However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.

  15. Excitations in the field-induced quantum spin liquid state of α-RuCl 3

    DOE PAGES

    Banerjee, Arnab; Kelley, Paula J.; Knolle, Johannes; ...

    2018-02-20

    The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl 3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations.more » However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here in this paper, we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.« less

  16. Excitations in the field-induced quantum spin liquid state of α-RuCl 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Arnab; Kelley, Paula J.; Knolle, Johannes

    The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl 3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations.more » However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here in this paper, we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.« less

  17. The chiral magnetic effect and chiral symmetry breaking in SU(3) quenched lattice gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braguta, V. V., E-mail: braguta@mail.ru; Buividovich, P. V., E-mail: buividovich@itep.ru; Kalaydzhyan, T., E-mail: tigran.kalaydzhyan@desy.de

    2012-04-15

    We study some properties of the non-Abelian vacuum induced by strong external magnetic field. We perform calculations in the quenched SU(3) lattice gauge theory with tadpole-improved Luescher-Weisz action and chirally invariant lattice Dirac operator. The following results are obtained: The chiral symmetry breaking is enhanced by the magnetic field. The chiral condensate depends on the strength of the applied field as a power function with exponent {nu} = 1.6 {+-} 0.2. There is a paramagnetic polarization of the vacuum. The corresponding susceptibility and other magnetic properties are calculated and compared with the theoretical estimations. There are nonzero local fluctuations ofmore » the chirality and electromagnetic current, which grow with the magnetic field strength. These fluctuations can be a manifestation of the Chiral Magnetic Effect.« less

  18. On the stability of dyons and dyonic black holes in Einstein-Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Nolan, Brien C.; Winstanley, Elizabeth

    2016-02-01

    We investigate the stability of four-dimensional dyonic soliton and black hole solutions of {su}(2) Einstein-Yang-Mills theory in anti-de Sitter space. We prove that, in a neighbourhood of the embedded trivial (Schwarzschild-)anti-de Sitter solution, there exist non-trivial dyonic soliton and black hole solutions of the field equations which are stable under linear, spherically symmetric, perturbations of the metric and non-Abelian gauge field.

  19. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    DOE PAGES

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-09-30

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U ( N c ) and Abelian U ( 1 ) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on themore » amount of explicit chiral symmetry breaking due to finite quark masses.« less

  20. Non-Abelian S-term dark energy and inflation

    NASA Astrophysics Data System (ADS)

    Rodríguez, Yeinzon; Navarro, Andrés A.

    2018-03-01

    We study the role that a cosmic triad in the generalized SU(2) Proca theory, specifically in one of the pieces of the Lagrangian that involves the symmetric version Sμν of the gauge field strength tensor Fμν, has on dark energy and primordial inflation. Regarding dark energy, the triad behaves asymptotically as a couple of radiation perfect fluids whose energy densities are negative for the S term but positive for the Yang-Mills term. This leads to an interesting dynamical fine-tuning mechanism that gives rise to a combined equation of state parameter ω ≃ - 1 and, therefore, to an eternal period of accelerated isotropic expansion for an ample spectrum of initial conditions. Regarding primordial inflation, one of the critical points of the associated dynamical system can describe a prolonged period of isotropic slow-roll inflation sustained by the S term. This period ends up when the Yang-Mills term dominates the energy density leading to the radiation dominated epoch. Unfortunately, in contrast to the dark energy case, the primordial inflation scenario is strongly sensitive to the coupling constants and initial conditions. The whole model, including the other pieces of the Lagrangian that involve Sμν, might evade the recent strong constraints coming from the gravitational wave signal GW170817 and its electromagnetic counterpart GRB 170817A.

  1. Tumor growth delay by adjuvant alternating electric fields which appears non-thermally mediated.

    PubMed

    Castellví, Quim; Ginestà, Mireia M; Capellà, Gabriel; Ivorra, Antoni

    2015-10-01

    Delivery of the so-called Tumor Treatment Fields (TTFields) has been proposed as a cancer therapy. These are low magnitude alternating electric fields at frequencies from 100 to 300 kHz which are applied continuously in a non-invasive manner. Electric field delivery may produce an increase in temperature which cannot be neglected. We hypothesized that the reported results obtained by applying TTFields in vivo could be due to heat rather than to electrical forces as previously suggested. Here, an in vivo study is presented in which pancreatic tumors subcutaneously implanted in nude mice were treated for a week either with mild hyperthermia (41 °C) or with TTFields (6 V/cm, 150 kHz) and tumor growth was assessed. Although the TTFields applied singly did not produce any significant effect, the combination with chemotherapy did show a delay in tumor growth in comparison to animals treated only with chemotherapy (median relative reduction=47%). We conclude that concomitant chemotherapy and TTFields delivery show a beneficial impact on pancreatic tumor growth. Contrary to our hypothesis, this impact is non-related with the induced temperature increase. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Magnetic fields and chiral asymmetry in the early hot universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field andmore » lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.« less

  3. Spontaneous magnetization and anomalous Hall effect in an emergent Dice lattice

    PubMed Central

    Dutta, Omjyoti; Przysiężna, Anna; Zakrzewski, Jakub

    2015-01-01

    Ultracold atoms in optical lattices serve as a tool to model different physical phenomena appearing originally in condensed matter. To study magnetic phenomena one needs to engineer synthetic fields as atoms are neutral. Appropriately shaped optical potentials force atoms to mimic charged particles moving in a given field. We present the realization of artificial gauge fields for the observation of anomalous Hall effect. Two species of attractively interacting ultracold fermions are considered to be trapped in a shaken two dimensional triangular lattice. A combination of interaction induced tunneling and shaking can result in an emergent Dice lattice. In such a lattice the staggered synthetic magnetic flux appears and it can be controlled with external parameters. The obtained synthetic fields are non-Abelian. Depending on the tuning of the staggered flux we can obtain either anomalous Hall effect or its quantized version. Our results are reminiscent of Anomalous Hall conductivity in spin-orbit coupled ferromagnets. PMID:26057635

  4. A biorthogonal decomposition for the identification and simulation of non-stationary and non-Gaussian random fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zentner, I.; Ferré, G., E-mail: gregoire.ferre@ponts.org; Poirion, F.

    2016-06-01

    In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated bymore » applications to earthquakes (seismic ground motion) and sea states (wave heights).« less

  5. A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data

    NASA Astrophysics Data System (ADS)

    Velasco-Forero, Carlos A.; Sempere-Torres, Daniel; Cassiraga, Eduardo F.; Jaime Gómez-Hernández, J.

    2009-07-01

    Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.

  6. Similarity solutions for unsteady flow behind an exponential shock in a self-gravitating non-ideal gas with azimuthal magnetic field

    NASA Astrophysics Data System (ADS)

    Nath, G.; Pathak, R. P.; Dutta, Mrityunjoy

    2018-01-01

    Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law is obtained. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The effects of variation of ambient magnetic field, non-idealness of the gas, adiabatic exponent and gravitational parameter are worked out in detail. It is shown that the increase in the non-idealness of the gas or the adiabatic exponent of the gas or presence of magnetic field have decaying effect on the shock wave. Consideration of the isothermal flow and the self-gravitational field increase the shock strength. Also, the consideration of isothermal flow or the presence of magnetic field removes the singularity in the density distribution, which arises in the case of adiabatic flow. The result of our study may be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  7. Control of Meridional Flow by a Non-Uniform Rotational Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Ramachandran, Narayanan

    1999-01-01

    The diffusive mass transfer of species during crystal growth in vertical ampoules is significantly affected by fluid flow in the liquid mother phase (melt). For electrically conductive melts, an elegant way of remotely inducing and controlling this flow is by utilizing a uniform rotational magnetic field (RMF) in the transverse direction. It induces an azimuthal flow which tends to homogenize the thermal and solutal fields. The rotating field also reduces the diffusion boundary layer, stabilizes temperature fluctuations, and promotes better overall crystal growth. For moderate strengths of the applied magnetic field (2-20 m Tesla) with frequencies of up to 400 Hz, the induced secondary meridional flow becomes significant. It typically consists of one roll at the bottom of the liquid column and a second roll (vortex) at the top. The flow along the centerline (ampoule axis) is directed from the growing solid (interface) towards the liquid (melt). In case of convex interfaces (e.g. in floating zone crystal growth) such flow behavior is beneficial since it suppresses diffusion at the center. However, for concave interfaces (e.g. vertical Bridgman crystal growth) such a flow tends to exacerbate the situation in making the interface shape more concave. It would be beneficial to have some control of this meridional flow- for example, a single recirculating cell with controllable direction and flow magnitude will make this technique even more attractive for crystal growth. Such flow control is a possibility if a non-uniform PNE field is utilized for this purpose. Although this idea has been proposed earlier, it has not been conclusively demonstrated so far. In this work, we derive the governing equations for the fluid dynamics for such a system and obtain solutions for a few important cases. Results from parallel experimental measurements of fluid flow in a mercury column subjected to non-uniform RMF will also be presented.

  8. Majorana bound states from exceptional points in non-topological superconductors

    PubMed Central

    San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón

    2016-01-01

    Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of ‘exceptional points’ (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity. PMID:26865011

  9. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  10. SU(2) Yang-Mills solitons in R2 gravity

    NASA Astrophysics Data System (ADS)

    Perapechka, I.; Shnir, Ya.

    2018-05-01

    We construct new family of spherically symmetric regular solutions of SU (2) Yang-Mills theory coupled to pure R2 gravity. The particle-like field configurations possess non-integer non-Abelian magnetic charge. A discussion of the main properties of the solutions and their differences from the usual Bartnik-McKinnon solitons in the asymptotically flat case is presented. It is shown that there is continuous family of linearly stable non-trivial solutions in which the gauge field has no nodes.

  11. Magnetic field dependent atomic tunneling in non-magnetic glasses

    NASA Astrophysics Data System (ADS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  12. Non-minimally coupled tachyon field in teleparallel gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fazlpour, Behnaz; Banijamali, Ali, E-mail: b.fazlpour@umz.ac.ir, E-mail: a.banijamali@nit.ac.ir

    2015-04-01

    We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of thismore » point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.« less

  13. Field Aligned Currents Derived from Pressure Profiles Obtained from TWINS ENA Images

    NASA Astrophysics Data System (ADS)

    Wood, K.; Perez, J. D.; McComas, D. J.; Goldstein, J.; Valek, P. W.

    2015-12-01

    Field aligned currents (FACs) that flow from the Earth's magnetosphere into the ionosphere are an important coupling mechanism in the interaction of the solar wind with the Earth's magnetosphere. Assuming pressure balance along with charge conservation yields an expression for the FACs in terms of plasma pressure gradients and pressure anisotropy. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which ion pressure distributions and pressure anisotropies can be obtained. Following the formulations in Heineman [1990] and using results from TWINS observations, we calculate the distribution of field aligned currents for the 17-18 March 2015 geomagnetic storm in which extended ionospheric precipitation was observed. Initial results for the field aligned currents will be generated assuming an isotropic pitch angle distribution. Global maps of field aligned currents during the main and recovery phase of the storm will be presented. Heinemann, H. (1990), Representations of Currents and Magnetic Fields in Anisotropic Magnetohydrostatic Plasma, J. Geophys. Res., 95, 7789.

  14. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  15. 25 CFR 11.1206 - Obtaining a regular (non-emergency) order of protection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Child Protection and Domestic Violence Procedures § 11... custody of any children involved when appropriate and provide for visitation rights, child support, and... 25 Indians 1 2012-04-01 2011-04-01 true Obtaining a regular (non-emergency) order of protection...

  16. 25 CFR 11.1206 - Obtaining a regular (non-emergency) order of protection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Child Protection and Domestic Violence Procedures § 11... custody of any children involved when appropriate and provide for visitation rights, child support, and... 25 Indians 1 2014-04-01 2014-04-01 false Obtaining a regular (non-emergency) order of protection...

  17. 25 CFR 11.1206 - Obtaining a regular (non-emergency) order of protection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Child Protection and Domestic Violence Procedures § 11... custody of any children involved when appropriate and provide for visitation rights, child support, and... 25 Indians 1 2013-04-01 2013-04-01 false Obtaining a regular (non-emergency) order of protection...

  18. Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richert, Ranko

    2016-03-21

    A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effectsmore » are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N{sub corr}, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.« less

  19. Non-Parametric Blur Map Regression for Depth of Field Extension.

    PubMed

    D'Andres, Laurent; Salvador, Jordi; Kochale, Axel; Susstrunk, Sabine

    2016-04-01

    Real camera systems have a limited depth of field (DOF) which may cause an image to be degraded due to visible misfocus or too shallow DOF. In this paper, we present a blind deblurring pipeline able to restore such images by slightly extending their DOF and recovering sharpness in regions slightly out of focus. To address this severely ill-posed problem, our algorithm relies first on the estimation of the spatially varying defocus blur. Drawing on local frequency image features, a machine learning approach based on the recently introduced regression tree fields is used to train a model able to regress a coherent defocus blur map of the image, labeling each pixel by the scale of a defocus point spread function. A non-blind spatially varying deblurring algorithm is then used to properly extend the DOF of the image. The good performance of our algorithm is assessed both quantitatively, using realistic ground truth data obtained with a novel approach based on a plenoptic camera, and qualitatively with real images.

  20. Extrapolating non-target risk of Bt crops from laboratory to field.

    PubMed

    Duan, Jian J; Lundgren, Jonathan G; Naranjo, Steve; Marvier, Michelle

    2010-02-23

    The tiered approach to assessing ecological risk of insect-resistant transgenic crops assumes that lower tier laboratory studies, which expose surrogate non-target organisms to high doses of insecticidal proteins, can detect harmful effects that might be manifested in the field. To test this assumption, we performed meta-analyses comparing results for non-target invertebrates exposed to Bacillus thuringiensis (Bt) Cry proteins in laboratory studies with results derived from independent field studies examining effects on the abundance of non-target invertebrates. For Lepidopteran-active Cry proteins, laboratory studies correctly predicted the reduced field abundance of non-target Lepidoptera. However, laboratory studies incorporating tri-trophic interactions of Bt plants, herbivores and parasitoids were better correlated with the decreased field abundance of parasitoids than were direct-exposure assays. For predators, laboratory tri-trophic studies predicted reduced abundances that were not realized in field studies and thus overestimated ecological risk. Exposure to Coleopteran-active Cry proteins did not significantly reduce the laboratory survival or field abundance of any functional group examined. Our findings support the assumption that laboratory studies of transgenic insecticidal crops show effects that are either consistent with, or more conservative than, those found in field studies, with the important caveat that laboratory studies should explore all ecologically relevant routes of exposure.

  1. Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2016-11-01

    Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  2. Large-scale magnetic fields, non-Gaussianity, and gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu

    2017-12-01

    We explore the generation of large-scale magnetic fields in the so-called moduli inflation. The hypercharge electromagnetic fields couple to not only a scalar field but also a pseudoscalar one, so that the conformal invariance of the hypercharge electromagnetic fields can be broken. We explicitly analyze the strength of the magnetic fields on the Hubble horizon scale at the present time, the local non-Gaussianity of the curvature perturbations originating from the massive gauge fields, and the tensor-to-scalar ratio of the density perturbations. As a consequence, we find that the local non-Gaussianity and the tensor-to-scalar ratio are compatible with the recent Planck results.

  3. Non-Gaussianity from self-ordering scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Figueroa, Daniel G.; Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, 28049 Madrid; Caldwell, Robert R.

    The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and providemore » a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges k{sub 1{approx_equal}}2k{sub 2{approx_equal}}2k{sub 3}) as opposed to the local-model bispectrum, which peaks for squeezed triangles (k{sub 1{approx_equal}}k{sub 2}>>k{sub 3}), and the equilateral bispectrum, which peaks at k{sub 1{approx_equal}}k{sub 2{approx_equal}}k{sub 3}. We estimate that this non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering scalar fields to primordial perturbations is near the current upper limit.« less

  4. Non-perturbative calculation of orbital and spin effects in molecules subject to non-uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Sen, Sangita; Tellgren, Erik I.

    2018-05-01

    External non-uniform magnetic fields acting on molecules induce non-collinear spin densities and spin-symmetry breaking. This necessitates a general two-component Pauli spinor representation. In this paper, we report the implementation of a general Hartree-Fock method, without any spin constraints, for non-perturbative calculations with finite non-uniform fields. London atomic orbitals are used to ensure faster basis convergence as well as invariance under constant gauge shifts of the magnetic vector potential. The implementation has been applied to investigate the joint orbital and spin response to a field gradient—quantified through the anapole moments—of a set of small molecules. The relative contributions of orbital and spin-Zeeman interaction terms have been studied both theoretically and computationally. Spin effects are stronger and show a general paramagnetic behavior for closed shell molecules while orbital effects can have either direction. Basis set convergence and size effects of anapole susceptibility tensors have been reported. The relation of the mixed anapole susceptibility tensor to chirality is also demonstrated.

  5. Characterization of non-conductive materials using field emission scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Gao, Ran; Shang, Huayan; Peng, Tingting

    2016-01-01

    With the development of science and technology, field emission scanning electron microscope (FESEM) plays an important role in nano-material measurements because of its advantages of high magnification, high resolution and easy operation. A high-quality secondary electron image is a significant prerequisite for accurate and precise length measurements. In order to obtain high-quality secondary electron images, the conventional treatment method for non-conductive materials is coating conductive films with gold, carbon or platinum to reduce charging effects, but this method will cover real micro structures of materials, change the sample composition properties and meanwhile introduce a relatively big error to nano-scale microstructure measurements. This paper discusses how to reduce or eliminate the impact of charging effects on image quality to the greatest extent by changing working conditions, such as voltage, stage bias, scanning mode and so on without treatment of coating, to obtain real and high-quality microstructure information of materials.

  6. Lectures on Non-Abelian Bosonization

    NASA Astrophysics Data System (ADS)

    Tsvelik, A. M.

    The following sections are included: * Introduction * Kac-Moody algebra * Conformal embedding. Sugawara Hamiltonian * SU(N)×SU(M) model * From the fermionic to WZNW model * The perturbed SUk(2) WZNW model * Correlation functions and Quasi Long Range order * Generalization from SU(2) to SU(N) * A model with Sp(2N) symmetry * Solution for the special case gcdw = gsc * Attraction in the orbital channel. Competing orders. Emergent integrability. ZN parafermions. * Parafermion zero modes * Conclusions and Acknowledgements * Appendix A. TBA equations for the Sp1(2N) model * Appendix B. Bosonization of of Z4 parafermions * References

  7. Gauge and integrable theories in loop spaces

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Luchini, G.

    2012-05-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  8. Non-minimally coupled scalar field cosmology with torsion

    NASA Astrophysics Data System (ADS)

    Cid, Antonella; Izaurieta, Fernando; Leon, Genly; Medina, Perla; Narbona, Daniela

    2018-04-01

    In this work we present a generalized Brans-Dicke lagrangian including a non-minimally coupled Gauss-Bonnet term without imposing the vanishing torsion condition. In the resulting field equations, the torsion is closely related to the dynamics of the scalar field, i.e., if non-minimally coupled terms are present in the theory, then the torsion must be present. For the studied lagrangian we analyze the cosmological consequences of an effective torsional fluid and we show that this fluid can be responsible for the current acceleration of the universe. Finally, we perform a detailed dynamical system analysis to describe the qualitative features of the model, we find that accelerated stages are a generic feature of this scenario.

  9. Interacting vector fields in relativity without relativity

    NASA Astrophysics Data System (ADS)

    Anderson, Edward; Barbour, Julian

    2002-06-01

    Barbour, Foster and Ó Murchadha have recently developed a new framework, called here the 3-space approach, for the formulation of classical bosonic dynamics. Neither time nor a locally Minkowskian structure of spacetime are presupposed. Both arise as emergent features of the world from geodesic-type dynamics on a space of three-dimensional metric-matter configurations. In fact gravity, the universal light-cone and Abelian gauge theory minimally coupled to gravity all arise naturally through a single common mechanism. It yields relativity - and more - without presupposing relativity. This paper completes the recovery of the presently known bosonic sector within the 3-space approach. We show, for a rather general ansatz, that 3-vector fields can interact among themselves only as Yang-Mills fields minimally coupled to gravity.

  10. Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures

    NASA Astrophysics Data System (ADS)

    Abeling, Nils; Kehrein, Stefan

    The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).

  11. Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Skugoreva, Maria A.

    2016-12-01

    We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaître-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs-like potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.

  12. Non-Fermi-liquid magic angle effects in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Lebed, A. G.

    2016-07-01

    We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .

  13. A note on local BRST cohomology of Yang-Mills type theories with free Abelian factors

    NASA Astrophysics Data System (ADS)

    Barnich, Glenn; Boulanger, Nicolas

    2018-05-01

    We extend previous work on antifield dependent local Becchi-Rouet-Stora-Tyutin (BRST) cohomology for matter coupled gauge theories of Yang-Mills type to the case of gauge groups that involve free Abelian factors. More precisely, we first investigate in a model independent way how the dynamics enters the computation of the cohomology for a general class of Lagrangians in general spacetime dimensions. We then discuss explicit solutions in the case of specific models. Our analysis has implications for the structure of characteristic cohomology and for consistent deformations of the classical models, as well as for divergences/counterterms and for gauge anomalies that may appear during perturbative quantization.

  14. Explicitly-correlated non-born-oppenheimer calculations of the HD molecule in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Adamowicz, Ludwik; Stanke, Monika; Tellgren, Erik; Helgaker, Trygve

    2017-08-01

    Explicitly correlated all-particle Gaussian functions with shifted centers (ECGs) are implemented within the earlier proposed effective variational non-Born-Oppenheimer method for calculating bound states of molecular systems in magnetic field (Adamowicz et al., 2015). The Hamiltonian used in the calculations is obtained by subtracting the operator representing the kinetic energy of the center-of-mass motion from the total laboratory-frame Hamiltonian. Test ECG calculations are performed for the HD molecule.

  15. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field

    NASA Astrophysics Data System (ADS)

    Golovin, Y.; Golovin, D.; Klyachko, N.; Majouga, A.; Kabanov, A.

    2017-02-01

    Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.

  16. The structure of a magnetic-field front propagating non-diffusively in low-resistivity multi-species plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, B.; Doron, R., E-mail: ramy.doron@weizmann.ac.il; Maron, Y.

    2016-04-15

    We report on the first experimental verification of the traveling-wave-like picture of a magnetic-field and an associated electric potential hill propagating non-diffusively in low resistivity plasma. High spatial resolution spectroscopic method, developed here, allowed for obtaining the detailed shape of the propagating magnetic-field front. The measurements demonstrated that the ion separation, previously claimed, results from the reflection of the higher charge-to-mass ratio ions from the propagating potential hill and from climbing the hill by the lower charge-to-mass ratio ions. This ion dynamics is found to be consistent with the observed electron density evolution.

  17. Probing the holographic principle using dynamical gauge effects from open spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    Dynamical gauge fields result from locally defined symmetries and an effective over-labeling of quantum states. Coupling atoms weakly to a reservoir of laser modes can create an effective dynamical gauge field purely due to the disregard of information in the optical states. Here we report measurements revealing effects of open spin-orbit coupling in a system where an effective model can be formed from a non-abelian SU(2) × U(1) field theory following the Yang-Mills construct. Forming a close analogy to dynamical gauge effects in quantum chromodynamics, we extract a measure of atomic motion which reveals the analog of a closing mass gap for the relevant gauge boson, shedding insight on long standing open problems in gauge-fixing scale anomalies. Using arguments following the holographic principle, we measure scaling relations which can be understood by quantifying information present in the local potential. New prospects using these techniques for developing fractionalization of multi-particle and macroscopic systems using dissipative and non-abelian gauge fields will also be discussed. We acknowledge support from NSF Award No. 1068570, and the Charles E. Kaufman Foundation.

  18. Numerical analysis of the effect of non-uniformity of the magnetic field produced by a solenoid on temperature distribution during magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Tang, Yun-dong; Flesch, Rodolfo C. C.; Zhang, Cheng; Jin, Tao

    2018-03-01

    Magnetic hyperthermia ablates malignant cells by the heat produced by power dissipation of magnetic nanoparticles (MNPs) under an alternating magnetic field. Most of the works in literature consider a uniform magnetic field for solving numerical models to estimate the temperature field during a hyperthermia treatment, however this assumption is generally not true in real circumstances. This paper considers the magnetic field produced by a solenoid and analyzes its effects on the treatment temperature. To that end, a set of partial differential equations is numerically solved for a specific tumor model using the finite element method and the obtained results are analyzed to draw general conclusions. The magnetic field inside the solenoid is obtained by using Maxwell's theory, and the treatment temperature of the tumor model is determined by using Rosensweig's theory and Pennes bio-heat transfer equation. Simulation results demonstrate that the temperature field obtained using a solenoid model is similar to that obtained considering a uniform magnetic field if tumor is centered with respect to solenoid and if the physical characteristics of solenoid are properly defined based on tumor volume. As the distance of tumor from the solenoid center is increased, the effects of non-uniformity of magnetic field become more evident and the adoption of the proposed model is necessary to obtain accurate results.

  19. Baryonic Force for Accelerated Cosmic Expansion and Generalized U1b Gauge Symmetry in Particle-Cosmology

    NASA Astrophysics Data System (ADS)

    Khan, Mehbub; Hao, Yun; Hsu, Jong-Ping

    2018-01-01

    Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian) groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.

  20. Fresnel diffractograms from pure-phase wave fields under perfect spatio-temporal coherence: Non-linear/non-local aspects and far-field behavior.

    PubMed

    Trost, F; Hahn, S; Müller, Y; Gasilov, S; Hofmann, R; Baumbach, T

    2017-12-18

    Recently, the diffractogram, that is, the Fourier transform of the intensity contrast induced by Fresnel free-space propagation of a given (exit) wave field, was investigated non-perturbatively in the phase-scaling factor S (controlling the strength of phase variation) for the special case of a Gaussian phase of width [Formula: see text]. Surprisingly, an additional low-frequency zero σ *  = σ * (S, F) >0 emerges critically at small Fresnel number F (σ proportional to square of 2D spatial frequency). Here, we study the S-scaling behavior of the entire diffractogram. We identify a valley of maximum S-scaling linearity in the F - σ plane corresponding to a nearly universal physical frequency ξml = (0:143 ± 0.001)w -1/2 . Large values of F (near field) are shown to imply S-scaling linearity for low σ but nowhere else (overdamped non-oscillatory). In contrast, small F values (far field) entail distinct, sizable s-bands of good S-scaling linearity (damped oscillatory). These bands also occur in simulated diffractograms induced by a complex phase map (Lena). The transition from damped oscillatory to overdamped non-oscillatory diffractograms is shown to be a critical phenomenon for the Gaussian case. We also give evidence for the occurrence of this transition in an X-ray imaging experiment. Finally, we show that the extreme far-field limit generates a σ-universal diffractogram under certain requirements on the phase map: information on phase shape then is solely encoded in S-scaling behavior.

  1. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    DOE PAGES

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; ...

    2014-07-28

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less

  3. Piezoelectric Characteristics of Chiral Polymer Composite Films Obtained under Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Nakiri, Takuo; Okuno, Masaki; Maki, Nobuyuki; Kanasaki, Masayoshi; Morimoto, Yu; Okamoto, Satoshi; Ishizuka, Masayuki; Fukuda, Kazuyuki; Takaki, Toshihiko; Tajitsu, Yoshiro

    2005-09-01

    It is difficult to obtain a drawn chiral polymer/inorganic material composite membrane with shear piezoelectricity by the conventional method because the chiral polymer/inorganic material composite membrane breaks during the drawing process by which shear piezoelectricity is realized. Using a strong magnetic field, we propose to manufacture a drawn composite membrane of poly-l-lactic acid (PLLA), a chiral polymer, and hydroxyapatite (Hap), an inoroganic material (PLLA/Hap composite membrane). The manufacturing method used here is effective for obtaining a drawn PLLA/Hap composite membrane with a large uniform area. Also, the shear piezoelectric constant of the drawn PLLA/Hap composite membrane is about 20 pC/N. This value is large for piezoelectric polymers.

  4. Topological defects in the Georgi-Machacek model

    NASA Astrophysics Data System (ADS)

    Chatterjee, Chandrasekar; Kurachi, Masafumi; Nitta, Muneto

    2018-06-01

    We study topological defects in the Georgi-Machacek model in a hierarchical symmetry breaking in which extra triplets acquire vacuum expectation values before the doublet. We find a possibility of topologically stable non-Abelian domain walls and non-Abelian flux tubes (vortices or cosmic strings) in this model. In the limit of the vanishing U (1 )Y gauge coupling in which the custodial symmetry becomes exact, the presence of a vortex spontaneously breaks the custodial symmetry, giving rise to S2 Nambu-Goldstone (NG) modes localized around the vortex corresponding to non-Abelian fluxes. Vortices are continuously degenerated by these degrees of freedom, thereby called non-Abelian. By taking into account the U (1 )Y gauge coupling, the custodial symmetry is explicitly broken, the NG modes are lifted to become pseudo-NG modes, and all non-Abelian vortices fall into a topologically stable Z string. This is in contrast to the standard model in which Z strings are nontopological and are unstable in the realistic parameter region. Non-Abelian domain walls also break the custodial symmetry and are accompanied by localized S2 NG modes. Finally, we discuss the existence of domain wall solutions bounded by flux tubes, where their S2 NG modes match. The domain walls may quantum mechanically decay by creating a hole bounded by a flux tube loop, and would be cosmologically safe. Gravitational waves produced from unstable domain walls could be detected by future experiments.

  5. EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipin, V. V.; Kosovichev, A. G.

    2015-11-10

    We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution ofmore » the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.« less

  6. PARTIAL ERUPTION OF A FILAMENT WITH TWISTING NON-UNIFORM FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan

    The eruption of a filament in a kinklike fashion is often regarded as a signature of kink instability. However, the kink instability threshold for the filament’s magnetic structure is not widely understood. Using Hα observations from the New Vacuum Solar Telescope, we present a partial eruptive filament. During the eruption, the filament thread appeared to split from its middle and to break out in a kinklike fashion. In this period, the remaining filament material stayed below and erupted without the kinking motion later on. The coronal magnetic field lines associated with the filament are obtained from nonlinear force-free field extrapolationsmore » using the twelve-minute-cadence vector magnetograms of the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory. We studied the extrapolated field lines passing through the magnetic dips which are in good agreement with the observed filament. The field lines are non-uniformly twisted and appear to be composed of two twisted flux ropes winding around each other. One of them has a higher twist than the other, and the flux rope with the higher twist has its dips aligned with the kinking eruptive thread at the beginning of its eruption. Before the eruption, moreover, the flux rope with the higher twist was found to expand with an approximately constant field twist. In addition, the helicity flux maps deduced from the HMI magnetograms show that some helicity is injected into the overlying magnetic arcade, but no significant helicity is injected into the flux ropes. Accordingly, we suggest that the highly twisted flux rope became kink unstable when the instability threshold declined with the expansion of the flux rope.« less

  7. Braiding light quanta

    NASA Astrophysics Data System (ADS)

    Iadecola, Thomas; Schuster, Thomas; Chamon, Claudio

    The possibility that anyons -- quantum particles other than fermions or bosons -- can emerge in condensed matter systems has motivated generations of physicists. In addition to being of fundamental scientific importance, so-called non-Abelian anyons are particularly sought-after for potential applications to quantum computing. However, experimental evidence of anyons in electronic systems remains inconclusive. We propose to demonstrate non-Abelian braiding by injecting coherent states of light into ``topological guided modes'' in specially-fabricated photonic waveguide arrays. These modes are photonic analogues of topological zero modes in electronic systems. Light traveling inside spatially well-separated topological guided modes can be braided, leading to the accumulation of non-Abelian phases. We propose an optical interference experiment to probe this non-Abelian braiding directly. T.I. is supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1247312.

  8. Towards an M5-brane model I: A 6d superconformal field theory

    NASA Astrophysics Data System (ADS)

    Sämann, Christian; Schmidt, Lennart

    2018-04-01

    We present an action for a six-dimensional superconformal field theory containing a non-abelian tensor multiplet. All of the ingredients of this action have been available in the literature. We bring these pieces together by choosing the string Lie 2-algebra as a gauge structure, which we motivated in previous work. The kinematical data contains a connection on a categorified principal bundle, which is the appropriate mathematical description of the parallel transport of self-dual strings. Our action can be written down for each of the simply laced Dynkin diagrams, and each case reduces to a four-dimensional supersymmetric Yang-Mills theory with corresponding gauge Lie algebra. Our action also reduces nicely to an M2-brane model which is a deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) model. While this action is certainly not the desired M5-brane model, we regard it as a key stepping stone towards a potential construction of the (2, 0)-theory.

  9. Majorana-Fermions, Their-Own Antiparticles, Following Non-Abelian Anyon/Semion Quantum-Statistics : Solid-State MEETS Particle Physics Neutrinos: Spin-Orbit-Coupled Superconductors and/or Superfluids to Neutrinos; Insulator-Heisenberg-Antiferromagnet MnF2 Majorana-Siegel-Birgenau-Keimer - Effect

    NASA Astrophysics Data System (ADS)

    Majorana-Fermi-Segre, E.-L.; Antonoff-Overhauser-Salam, Marvin-Albert-Abdus; Siegel, Edward Carl-Ludwig

    2013-03-01

    Majorana-fermions, being their own antiparticles, following non-Abelian anyon/semion quantum-statistics: in Zhang et.al.-...-Detwiler et.al.-...``Worlds-in-Collision'': solid-state/condensed-matter - physics spin-orbit - coupled topological-excitations in superconductors and/or superfluids -to- particle-physics neutrinos: ``When `Worlds' Collide'', analysis via Siegel[Schrodinger Centenary Symp., Imperial College, London (1987); in The Copenhagen-Interpretation Fifty-Years After the Como-Lecture, Symp. Fdns. Mod.-Phys., Joensu(1987); Symp. on Fractals, MRS Fall-Mtg., Boston(1989)-5-papers!!!] ``complex quantum-statistics in fractal-dimensions'', which explains hidden-dark-matter(HDM) IN Siegel ``Sephirot'' scenario for The Creation, uses Takagi[Prog.Theo.Phys. Suppl.88,1(86)]-Ooguri[PR D33,357(85)] - Picard-Lefschetz-Arnol'd-Vassil'ev[``Principia Read After 300 Years'', Not.AMS(1989); quantum-theory caveats comment-letters(1990); Applied Picard-Lefschetz Theory, AMS(2006)] - theorem quantum-statistics, which via Euler- formula becomes which via de Moivre- -formula further becomes which on unit-circle is only real for only, i.e, for, versus complex with imaginary-damping denominator for, i.e, for, such that Fermi-Dirac quantum-statistics for

  10. Martian tidal pressure and wind fields obtained from the Mariner 9 infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Pirraglia, J. A.; Conrath, B. J.

    1973-01-01

    Using temperature fields derived from the Mariner 9 infrared spectroscopy experiment, the Martian atmospheric tidal pressure and wind fields are calculated. Temperature as a function of local time, latitude, and atmospheric pressure level is obtained by secular and longitudinal averaging of the data. The resulting temperature field is approximated by a spherical harmonic expansion, retaining one symmetric and one asymmetric term for wavenumber zero and wavenumber one. Vertical averaging of the linearized momentum and continuity equations results in an inhomogeneous tidal equation for surface pressure fluctuations with the driving function related to the temperature field through the geopotential function and the hydrostatic equation. Solutions of the tidal equation show a diurnal fractional pressure amplitude approximately equal to one half of the vertically averaged diurnal fractional temperature amplitude.

  11. Martian tidal pressure and wind fields obtained from the Mariner 9 infrared spectroscopy experiment

    NASA Technical Reports Server (NTRS)

    Pirraglia, J. A.; Conrath, B. J.

    1974-01-01

    Using temperature fields derived from the Mariner 9 infrared spectroscopy experiment, the Martian atmospheric tidal pressure and wind fields are calculated. Temperature as a function of local time, latitude, and atmospheric pressure level is obtained by secular and longitudinal averaging of the data. The resulting temperature field is approximated by a spherical harmonic expansion, retaining one symmetric and one asymmetric term each for wavenumber zero and wavenumber one. Vertical averaging of the linearized momentum and continuity equations results in an inhomogeneous tidal equation for surface pressure fluctuations with the driving function related to the temperature field through the geopotential function and the hydrostatic equation. Solutions of the tidal equation show a diurnal fractional pressure amplitude approximately equal to one-half the vertically averaged diurnal fractional temperature amplitude.

  12. Electroluminescence from InGaN/GaN multi-quantum-wells nanorods light-emitting diodes positioned by non-uniform electric fields.

    PubMed

    Park, Hyunik; Kim, Byung-Jae; Kim, Jihyun

    2012-11-05

    We report that the nanorod light-emitting diodes (LEDs) with InGaN/GaN multi-quantum-wells (MQWs) emitted bright electroluminescence (EL) after they were positioned and aligned by non-uniform electric fields. Firstly, thin film LED structures with MQWs on sapphire substrate were coated with SiO(2) nanospheres, followed by inductively-coupled plasma etch to create nanorod-shapes with MQWs, which were transferred to the pre-patterned SiO(2)/Si wafer. This method allowed us to obtain nanorod LEDs with uniform length, diameter and qualities. Dielectrophoretic force created by non-uniform electric field was very effective at positioning the processed nanorods on the pre-patterned contacts. After aligned by non-uniform electric field, we observed bright EL from many nanorods, which had both cases (p-GaN/MQWs/n-GaN or n-GaN/MQWs/p-GaN). Therefore, bright ELs at different locations were observed under the various bias conditions.

  13. Perceptual thresholds for non-ideal diffuse field reverberation.

    PubMed

    Romblom, David; Guastavino, Catherine; Depalle, Philippe

    2016-11-01

    The objective of this study is to understand listeners' sensitivity to directional variations in non-ideal diffuse field reverberation. An ABX discrimination test was conducted using a semi-spherical 28-loudspeaker array; perceptual thresholds were estimated by systematically varying the level of a segment of loudspeakers for lateral, height, and frontal conditions. The overall energy was held constant using a gain compensation scheme. When compared to an ideal diffuse field, the perceptual threshold for detection is -2.5 dB for the lateral condition, -6.8 dB for the height condition, and -3.2 dB for the frontal condition. Measurements of the experimental stimuli were analyzed using a Head and Torso Simulator as well as with opposing cardioid microphones aligned on the three Cartesian axes. Additionally, opposing cardioid measurements made in an acoustic space demonstrate that level differences corresponding to the perceptual thresholds can be found in practice. These results suggest that non-ideal diffuse field reverberation may be a previously unrecognized component of spatial impression.

  14. High magnetic field ohmically decoupled non-contact technology

    DOEpatents

    Wilgen, John [Oak Ridge, TN; Kisner, Roger [Knoxville, TN; Ludtka, Gerard [Oak Ridge, TN; Ludtka, Gail [Oak Ridge, TN; Jaramillo, Roger [Knoxville, TN

    2009-05-19

    Methods and apparatus are described for high magnetic field ohmically decoupled non-contact treatment of conductive materials in a high magnetic field. A method includes applying a high magnetic field to at least a portion of a conductive material; and applying an inductive magnetic field to at least a fraction of the conductive material to induce a surface current within the fraction of the conductive material, the surface current generating a substantially bi-directional force that defines a vibration. The high magnetic field and the inductive magnetic field are substantially confocal, the fraction of the conductive material is located within the portion of the conductive material and ohmic heating from the surface current is ohmically decoupled from the vibration. An apparatus includes a high magnetic field coil defining an applied high magnetic field; an inductive magnetic field coil coupled to the high magnetic field coil, the inductive magnetic field coil defining an applied inductive magnetic field; and a processing zone located within both the applied high magnetic field and the applied inductive magnetic field. The high magnetic field and the inductive magnetic field are substantially confocal, and ohmic heating of a conductive material located in the processing zone is ohmically decoupled from a vibration of the conductive material.

  15. Field Trips Put Chemistry in Context for Non-Science Majors

    ERIC Educational Resources Information Center

    Peterman, Keith E.

    2008-01-01

    Field trips can provide excellent real-world learning situations for students in non-science major chemistry courses. The field trips described in this article are accessible, most trips can be completed within a scheduled three-hour laboratory time period, and they can be conducted at minimal cost. These field trips significantly enhanced student…

  16. Simple estimation of induced electric fields in nervous system tissues for human exposure to non-uniform electric fields at power frequency

    NASA Astrophysics Data System (ADS)

    Tarao, Hiroo; Miyamoto, Hironobu; Korpinen, Leena; Hayashi, Noriyuki; Isaka, Katsuo

    2016-06-01

    Most results regarding induced current in the human body related to electric field dosimetry have been calculated under uniform field conditions. We have found in previous work that a contact current is a more suitable way to evaluate induced electric fields, even in the case of exposure to non-uniform fields. If the relationship between induced currents and external non-uniform fields can be understood, induced electric fields in nervous system tissues may be able to be estimated from measurements of ambient non-uniform fields. In the present paper, we numerically calculated the induced electric fields and currents in a human model by considering non-uniform fields based on distortion by a cubic conductor under an unperturbed electric field of 1 kV m-1 at 60 Hz. We investigated the relationship between a non-uniform external electric field with no human present and the induced current through the neck, and the relationship between the current through the neck and the induced electric fields in nervous system tissues such as the brain, heart, and spinal cord. The results showed that the current through the neck can be formulated by means of an external electric field at the central position of the human head, and the distance between the conductor and the human model. As expected, there is a strong correlation between the current through the neck and the induced electric fields in the nervous system tissues. The combination of these relationships indicates that induced electric fields in these tissues can be estimated solely by measurements of the external field at a point and the distance from the conductor.

  17. T -folds from Yang-Baxter deformations

    NASA Astrophysics Data System (ADS)

    Fernández-Melgarejo, José J.; Sakamoto, Jun-ichi; Sakatani, Yuho; Yoshida, Kentaroh

    2017-12-01

    Yang-Baxter (YB) deformations of type IIB string theory have been well studied from the viewpoint of classical integrability. Most of the works, however, are focused upon the local structure of the deformed geometries and the global structure still remains unclear. In this work, we reveal a non-geometric aspect of YB-deformed backgrounds as T -fold by explicitly showing the associated O( D, D; ℤ) T -duality monodromy. In particular, the appearance of an extra vector field in the generalized supergravity equations (GSE) leads to the non-geometric Q-flux. In addition, we study a particular solution of GSE that is obtained by a non-Abelian T-duality but cannot be expressed as a homogeneous YB deformation, and show that it can also be regarded as a T -fold. This result indicates that solutions of GSE should be non-geometric quite in general beyond the YB deformation.

  18. Free-surface flow of liquid oxygen under non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  19. Obtaining short-fiber orientation model parameters using non-lubricated squeeze flow

    NASA Astrophysics Data System (ADS)

    Lambert, Gregory; Wapperom, Peter; Baird, Donald

    2017-12-01

    Accurate models of fiber orientation dynamics during the processing of polymer-fiber composites are needed for the design work behind important automobile parts. All of the existing models utilize empirical parameters, but a standard method for obtaining them independent of processing does not exist. This study considers non-lubricated squeeze flow through a rectangular channel as a solution. A two-dimensional finite element method simulation of the kinematics and fiber orientation evolution along the centerline of a sample is developed as a first step toward a fully three-dimensional simulation. The model is used to fit to orientation data in a short-fiber-reinforced polymer composite after squeezing. Fiber orientation model parameters obtained in this study do not agree well with those obtained for the same material during startup of simple shear. This is attributed to the vastly different rates at which fibers orient during shearing and extensional flows. A stress model is also used to try to fit to experimental closure force data. Although the model can be tuned to the correct magnitude of the closure force, it does not fully recreate the transient behavior, which is attributed to the lack of any consideration for fiber-fiber interactions.

  20. Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field

    NASA Astrophysics Data System (ADS)

    Fan, Chun-Zhen; Zhu, Shuang-Mei; Xin, Hao-Yi

    2017-02-01

    We experimentally fabricate a non-spherical Ag and Co surface-enhanced Raman scattering (SERS) substrate, which not only retains the metallic plasmon resonant effect, but also possesses the magnetic field controllable characteristics. Raman detections are carried out with the test crystal violet (CV) and rhodamine 6G (R6G) molecules with the initiation of different magnitudes of external magnetic field. Experimental results indicate that our prepared substrate shows a higher SERS activity and magnetic controllability, where non-spherical Ag nanoparticles are driven to aggregate effectively by the magnetized Co and plenty of hot-spots are built around the metallic Ag nanoparticles, thereby leading to the enhancement of local electromagnetic field. Moreover, when the external magnetic field is increased, our prepared substrate demonstrates excellent SERS enhancement. With the 2500 Gs and 3500 Gs (1 Gs = 10-4 T) magnetic fields, SERS signal can also be obtained with the detection limit lowering down to 10-9 M. These results indicate that our proposed magnetic field controlled substrate enables us to freely achieve the enhanced and controllable SERS effect, which can be widely used in the optical sensing, single molecule detection and bio-medical applications. Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant No. 162102210164), the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002), the National Natural Science Foundations of China (Grant Nos. 11574276, 11404291, and 11604079), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 17HASTIT0).

  1. Small mammal use of native warm-season and non-native cool-season grass forage fields

    USGS Publications Warehouse

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  2. Instability of surface electron cyclotron TM-modes influenced by non-monochromatic alternating electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girka, I. O., E-mail: igorgirka@karazin.ua; Girka, V. O.; Sydora, R. D.

    2016-06-15

    The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1.more » An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.« less

  3. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycyna, Orest; Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of themore » dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.« less

  4. Models And Experiments Of Laminar Diffusion Flames In Non-Uniform Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Baker, J.; Varagani, R.; Saito, K.

    2003-01-01

    Non-uniform magnetic fields affect laminar diffusion flames as a result of the paramagnetic and diamagnetic properties of the products and reactants. Paramagnetism is the weak attraction to a magnetic field a material exhibits as a result of permanent magnetic dipole moments in the atoms of the material. Diamagnetism is the weak repulsion to a magnetic field exhibited by a material due to the lack of permanent magnetic dipole moments in the atoms of a material. The forces associated with paramagnetic and diamagnetism are several orders of magnitude less than the forces associated with the more familiar ferromagnetism. A typical example of a paramagnetic gas is oxygen while hydrocarbon fuels and products of combustion are almost always diamagnetic. The fact that magnets can affect flame behavior has been recognized for more than one hundred years. Early speculation was that such behavior was due to the magnetic interaction with the ionized gases associated with a flame. Using a scaling analysis, it was later shown that for laminar diffusion flames the magnetic field/ionized gas interaction was insignificant to the paramagnetic and diamagnetic influences. In this effort, the focus has been on examining laminar diffusion slot flames in the presence of non-uniform upward decreasing magnetic fields produced using permanent magnets. The principal reason for choosing slot flames was mathematical models of such flames show an explicit dependence on gravitational body forces, in the buoyancy-controlled regime, and an applied magnetic field would also impose a body force. In addition, the behavior of such flames was more easily visualized while maintaining the symmetry of the two-dimensional problem whereas it would have been impossible to obtain a symmetric magnetic field around a circular flame and still visually record the flame height and shape along the burner axis. The motivation for choosing permanent magnets to produce the magnetic fields was the assumption that

  5. Full-field speckle interferometry for non-contact photoacoustic tomography.

    PubMed

    Horstmann, Jens; Spahr, Hendrik; Buj, Christian; Münter, Michael; Brinkmann, Ralf

    2015-05-21

    A full-field speckle interferometry method for non-contact and prospectively high speed Photoacoustic Tomography is introduced and evaluated as proof of concept. Thermoelastic pressure induced changes of the objects topography are acquired in a repetitive mode without any physical contact to the object. In order to obtain high acquisition speed, the object surface is illuminated by laser pulses and imaged onto a high speed camera chip. In a repetitive triple pulse mode, surface displacements can be acquired with nanometre sensitivity and an adjustable sampling rate of e.g. 20 MHz with a total acquisition time far below one second using kHz repetition rate lasers. Due to recurring interferometric referencing, the method is insensitive to thermal drift of the object due to previous pulses or other motion. The size of the investigated area and the spatial and temporal resolution of the detection are scalable. In this study, the approach is validated by measuring a silicone phantom and a porcine skin phantom with embedded silicone absorbers. The reconstruction of the absorbers is presented in 2D and 3D. The sensitivity of the measurement with respect to the photoacoustic detection is discussed. Potentially, Photoacoustic Imaging can be brought a step closer towards non-anaesthetized in vivo imaging and new medical applications not allowing acoustic contact, such as neurosurgical monitoring or burnt skin investigation.

  6. General U(1)×U(1) F-theory compactifications and beyond: geometry of unHiggsings and novel matter structure

    DOE PAGES

    Cvetic, Mirjam; Klevers, Denis; Piragua, Hernan; ...

    2015-11-30

    We construct the general form of an F-theory compactification with two U(1) factors based on a general elliptically fibered Calabi-Yau manifold with Mordell-Weil group of rank two. This construction produces broad classes of models with diverse matter spectra, including many that are not realized in earlier F-theory constructions with U(1)×U(1) gauge symmetry. Generic U(1)×U(1) models can be related to a Higgsed non-Abelian model with gauge group SU(2)×SU(2)×SU(3), SU(2) 3×SU(3), or a subgroup thereof. The nonlocal horizontal divisors of the Mordell-Weil group are replaced with local vertical divisors associated with the Cartan generators of non-Abelian gauge groups from Kodaira singularities. Wemore » give a global resolution of codimension two singularities of the Abelian model; we identify the full anomaly free matter content, and match it to the unHiggsed non-Abelian model. The non-Abelian Weierstrass model exhibits a new algebraic description of the singularities in the fibration that results in the first explicit construction of matter in the symmetric representation of SU(3). This matter is realized on double point singularities of the discriminant locus. In conclusion, the construction suggests a generalization to U(1) k factors with k > 2, which can be studied by Higgsing theories with larger non-Abelian gauge groups.« less

  7. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao

    2017-06-01

    High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.

  8. Representation of complex probabilities and complex Gibbs sampling

    NASA Astrophysics Data System (ADS)

    Salcedo, Lorenzo Luis

    2018-03-01

    Complex weights appear in Physics which are beyond a straightforward importance sampling treatment, as required in Monte Carlo calculations. This is the wellknown sign problem. The complex Langevin approach amounts to effectively construct a positive distribution on the complexified manifold reproducing the expectation values of the observables through their analytical extension. Here we discuss the direct construction of such positive distributions paying attention to their localization on the complexified manifold. Explicit localized representations are obtained for complex probabilities defined on Abelian and non Abelian groups. The viability and performance of a complex version of the heat bath method, based on such representations, is analyzed.

  9. FAST TRACK COMMUNICATION: \\ {P}\\ {T}-symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras

    NASA Astrophysics Data System (ADS)

    Günther, Uwe; Kuzhel, Sergii

    2010-10-01

    Gauged \\ {P}\\ {T} quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \\ {P}\\ {T}-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related J-self-adjoint extensions for PTQM setups with ultra-localized potentials.

  10. Bosonization of fermions coupled to topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-03-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.

  11. "Non-Contact Ultrasonic Treatment of Metals in a Magnetic Field"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael; Wilgen, John B; Kisner, Roger A

    2007-01-01

    A concept has been originated for non-contact ultrasonic treatment of metals based on the use of an induction coil located in a high-field superconducting magnet. An advantage of using a high magnetic field environment (> 9 T) is that this allows the induced surface current in the sample to be decreased proportionately. As a result, the incidental induction heating associated with the use of the EMAT (Electromagnetic Acoustical Transducer) is greatly reduced, which improves the energy efficiency of the EMAT approach. The method can be coupled with high-field magnetic processing, but can also be used where only ultrasonic treatment ismore » beneficial. In the proof-of-principle experiments, a high-field EMAT was used for non-contact ultrasonic processing of aluminum samples during solidification. The magnetic field for the EMAT was supplied by a high-field (20 Tesla) resistive magnet, and the current was provided by an induction coil. This resulted in a highly efficient EMAT that delivered 0.5 MPa (~5 atmospheres) of acoustic drive to the surface of the sample while coupling less than 100 watts of incidental induction heating. The exceptionally high energy efficiency of the electromagnetic transducer is due to the use of the high magnetic field, which reduces the current needed to achieve the same acoustic pressure. In these initial experiments, aluminum samples of A356 alloy were heated to the liquid state and allowed to solidify at a controlled cooling rate while subjected to the non-contact ultrasonic stimulation (0.5 MPa @ 165 kHz) provided by an induction coil located within the 200 mm (~8-inch) bore of a 20-T Bitter resistive magnet.« less

  12. Tachyon field non-minimally coupled to massive neutrino matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Safia; Myrzakulov, Nurgissa; Myrzakulov, R., E-mail: safia@ctp-jamia.res.in, E-mail: nmyrzakulov@gmail.com, E-mail: rmyrzakulov@gmail.com

    2016-07-01

    In this paper, we consider rolling tachyon, with steep run-away type of potentials non-minimally coupled to massive neutrino matter. The coupling dynamically builds up at late times as neutrino matter turns non-relativistic. In case of scaling and string inspired potentials, we have shown that non-minimal coupling leads to minimum in the field potential. Given a suitable choice of model parameters, it is shown to give rise to late-time acceleration with the desired equation of state.

  13. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights

    PubMed Central

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks. PMID:26973503

  14. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights.

    PubMed

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks.

  15. Master 3d bosonization duality with boundaries

    NASA Astrophysics Data System (ADS)

    Aitken, Kyle; Karch, Andreas; Robinson, Brandon

    2018-05-01

    We establish the action of the three-dimensional non-Abelian bosonization dualities in the presence of a boundary, which supports a non-anomalous two-dimensional theory. In particular, we generalize a prescriptive method for assigning duality consistent boundary conditions used originally for Abelian dualities to dual non-Abelian Chern-Simons-matter theories with SU and U gauge groups and fundamental matter sectors. The cases of single species matter sectors and those with both scalars and fermions in the dual theories are considered. Generalization of our methods to SO and USp Chern-Simons theories is also discussed.

  16. Black holes with su(N) gauge field hair and superconducting horizons

    NASA Astrophysics Data System (ADS)

    Shepherd, Ben L.; Winstanley, Elizabeth

    2017-01-01

    We present new planar dyonic black hole solutions of the su(N) Einstein-Yang-Mills equations in asymptotically anti-de Sitter space-time, focussing on su(2) and su(3) gauge groups. The magnetic part of the gauge field forms a condensate close to the planar event horizon. We compare the free energy of a non-Abelian hairy black hole with that of an embedded Reissner-Nordström-anti-de Sitter (RN-AdS) black hole having the same Hawking temperature and electric charge. We find that the hairy black holes have lower free energy. We present evidence that there is a phase transition at a critical temperature, above which the only solutions are embedded RN-AdS black holes. At the critical temperature, an RN-AdS black hole can decay into a hairy black hole, and it is thermodynamically favourable to do so. Working in the probe limit, we compute the frequency-dependent conductivity, and find that enlarging the gauge group from su(2) to su(3) eliminates a divergence in the conductivity at nonzero frequency.

  17. Non-mydriatic, wide field, fundus video camera

    NASA Astrophysics Data System (ADS)

    Hoeher, Bernhard; Voigtmann, Peter; Michelson, Georg; Schmauss, Bernhard

    2014-02-01

    We describe a method we call "stripe field imaging" that is capable of capturing wide field color fundus videos and images of the human eye at pupil sizes of 2mm. This means that it can be used with a non-dilated pupil even with bright ambient light. We realized a mobile demonstrator to prove the method and we could acquire color fundus videos of subjects successfully. We designed the demonstrator as a low-cost device consisting of mass market components to show that there is no major additional technical outlay to realize the improvements we propose. The technical core idea of our method is breaking the rotational symmetry in the optical design that is given in many conventional fundus cameras. By this measure we could extend the possible field of view (FOV) at a pupil size of 2mm from a circular field with 20° in diameter to a square field with 68° by 18° in size. We acquired a fundus video while the subject was slightly touching and releasing the lid. The resulting video showed changes at vessels in the region of the papilla and a change of the paleness of the papilla.

  18. Entanglement from topology in Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Salton, Grant; Swingle, Brian; Walter, Michael

    2017-05-01

    The way in which geometry encodes entanglement is a topic of much recent interest in quantum many-body physics and the AdS/CFT duality. This relation is particularly pronounced in the case of topological quantum field theories, where topology alone determines the quantum states of the theory. In this work, we study the set of quantum states that can be prepared by the Euclidean path integral in three-dimensional Chern-Simons theory. Specifically, we consider arbitrary three-manifolds with a fixed number of torus boundaries in both Abelian U (1 ) and non-Abelian S O (3 ) Chern-Simons theory. For the Abelian theory, we find that the states that can be prepared coincide precisely with the set of stabilizer states from quantum information theory. This constrains the multipartite entanglement present in this theory, but it also reveals that stabilizer states can be described by topology. In particular, we find an explicit expression for the entanglement entropy of a many-torus subsystem using only a single replica, as well as a concrete formula for the number of GHZ states that can be distilled from a tripartite state prepared through path integration. For the non-Abelian theory, we find a notion of "state universality," namely that any state can be prepared to an arbitrarily good approximation. The manifolds we consider can also be viewed as toy models of multiboundary wormholes in AdS/CFT.

  19. Anyonic braiding in optical lattices

    PubMed Central

    Zhang, Chuanwei; Scarola, V. W.; Tewari, Sumanta; Das Sarma, S.

    2007-01-01

    Topological quantum states of matter, both Abelian and non-Abelian, are characterized by excitations whose wavefunctions undergo nontrivial statistical transformations as one excitation is moved (braided) around another. Topological quantum computation proposes to use the topological protection and the braiding statistics of a non-Abelian topological state to perform quantum computation. The enormous technological prospect of topological quantum computation provides new motivation for experimentally observing a topological state. Here, we explicitly work out a realistic experimental scheme to create and braid the Abelian topological excitations in the Kitaev model built on a tunable robust system, a cold atom optical lattice. We also demonstrate how to detect the key feature of these excitations: their braiding statistics. Observation of this statistics would directly establish the existence of anyons, quantum particles that are neither fermions nor bosons. In addition to establishing topological matter, the experimental scheme we develop here can also be adapted to a non-Abelian topological state, supported by the same Kitaev model but in a different parameter regime, to eventually build topologically protected quantum gates. PMID:18000038

  20. Cartan gravity, matter fields, and the gauge principle

    NASA Astrophysics Data System (ADS)

    Westman, Hans F.; Zlosnik, Tom G.

    2013-07-01

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang-Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a 'contact vector' VA which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being 'rolled' on top of it, and (2) a gauge connection AμAB, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan's geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy-momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy-momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang-Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as open questions.

  1. Early-time dynamics of gluon fields in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Chen, Guangyao; Fries, Rainer J.; Kapusta, Joseph I.; Li, Yang

    2015-12-01

    Nuclei colliding at very high energy create a strong, quasiclassical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromoelectric and chromomagnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. For example, we find that the ratio of longitudinal to transverse pressure very early in the system behaves as pL/pT=-[1 -3/2 a (Qτ ) 2] /[1 -1/a (Qτ ) 2] +O (Qτ ) 4 , where τ is the longitudinal proper time, Q is related to the saturation scales Qs of the two nuclei, and a =ln(Q2/m̂2) with m ̂ a scale to be defined later. Our results are generally applicable if τ ≲1 /Q . As already discussed in a previous paper, the transverse energy flow Si of the gluon field exhibits hydrodynamiclike contributions that follow transverse gradients of the energy density ∇iɛ . In addition, a rapidity-odd energy flow also emerges from the non-Abelian analog of Gauss' law and generates nonvanishing angular momentum of the field. We discuss the space-time picture that emerges from our analysis and its implications for observables in heavy-ion collisions.

  2. Theory of plasma confinement in non-axisymmetric magnetic fields.

    PubMed

    Helander, Per

    2014-08-01

    The theory of plasma confinement by non-axisymmetric magnetic fields is reviewed. Such fields are used to confine fusion plasmas in stellarators, where in contrast to tokamaks and reversed-field pinches the magnetic field generally does not possess any continuous symmetry. The discussion is focussed on magnetohydrodynamic equilibrium conditions, collisionless particle orbits, and the kinetic theory of equilbrium and transport. Each of these topics is fundamentally affected by the absence of symmetry in the magnetic field: the field lines need not trace out nested flux surfaces, the particle orbits may not be confined, and the cross-field transport can be very large. Nevertheless, by tailoring the magnetic field appropriately, well-behaved equilibria with good confinement can be constructed, potentially offering an attractive route to magnetic fusion. In this article, the mathematical apparatus to describe stellarator plasmas is developed from first principles and basic elements underlying confinement optimization are introduced.

  3. Quantum theory of charged isolated horizons

    NASA Astrophysics Data System (ADS)

    Eder, Konstantin; Sahlmann, Hanno

    2018-04-01

    We describe the quantum theory of isolated horizons with electromagnetic or non-Abelian gauge charges in a setting in which both the gauge and gravitational field are quantized. We consider the distorted case, and its spherically symmetric limit. We show that the gravitational horizon d.o.f. give rise to the Bekenstein-Hawking relation, with lower-order terms giving some corrections for small black holes. We also demonstrate that one can include matter d.o.f. in the state counting. We show that one can expect (potentially divergent) contributions proportional to the area, as well as logarithmic corrections proportional to the horizon charge. This is qualitatively similar to results on matter contributions obtained with other methods in the literature.

  4. How Can Non-Verbalized Emotions in the Field Be Addressed in Research?

    ERIC Educational Resources Information Center

    Lanas, Maija

    2011-01-01

    This paper looks at how emotions in the field move from one context to another and between individuals, and how they change forms in an arctic Finnish village school. During the fieldwork, non-verbalized emotions influenced the events in the field and also penetrated the research. The paper asks how these non-verbalized emotions can be addressed…

  5. Extensions of the Einstein-Schrodinger non-symmetric theory of gravity

    NASA Astrophysics Data System (ADS)

    Shifflett, James A.

    type- D like the Reissner-Nordström solution. The Newman-Penrose asymptotically flat [Special characters omitted.] (1/ r 2 ) expansion of the field equations is shown to match Einstein-Maxwell theory. Finally we generalize the theory to non-Abelian fields, and show that a special case of the resulting theory closely approximates Einstein-Weinberg-Salam theory.

  6. Velocity field calculation for non-orthogonal numerical grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G. P.

    2015-03-01

    Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a

  7. The 'sleeping beauty' galaxy NGC 4826: an almost textbook example of the Abelian Higgs vorto-source (-sink)

    NASA Astrophysics Data System (ADS)

    Saniga, Metod

    1995-03-01

    It is demonstrated that the kinematic 'peculiarity' of the early Sab galaxy NGC 4826 can easily be understood in terms of the Abelian Higgs (AH) model of spiral galaxies. A cylindrically symmetric AH vorto-source (-sink) with a disk-to-bulge ratio Omega greater than 1 is discussed and the distributions of the diagonal components of the corresponding stress-energy tensor Tmu,nu are presented. It is argued that the sign-changing component Tphiphi could account for the existence of two counter-rotating gas disks while negative values of Trr imply inward gas motions as observed in the outer and transition regions of the galaxy.

  8. Composite particle theory of three-dimensional gapped fermionic phases: Fractional topological insulators and charge-loop excitation symmetry

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Hughes, Taylor L.; Maciejko, Joseph; Fradkin, Eduardo

    2016-09-01

    Topological phases of matter are usually realized in deconfined phases of gauge theories. In this context, confined phases with strongly fluctuating gauge fields seem to be irrelevant to the physics of topological phases. For example, the low-energy theory of the two-dimensional (2D) toric code model (i.e., the deconfined phase of Z2 gauge theory) is a U(1 )×U(1 ) Chern-Simons theory in which gauge charges (i.e., e and m particles) are deconfined and the gauge fields are gapped, while the confined phase is topologically trivial. In this paper, we point out a route to constructing exotic three-dimensional (3D) gapped fermionic phases in a confining phase of a gauge theory. Starting from a parton construction with strongly fluctuating compact U(1 )×U(1 ) gauge fields, we construct gapped phases of interacting fermions by condensing two linearly independent bosonic composite particles consisting of partons and U(1 )×U(1 ) magnetic monopoles. This can be regarded as a 3D generalization of the 2D Bais-Slingerland condensation mechanism. Charge fractionalization results from a Debye-Hückel-type screening cloud formed by the condensed composite particles. Within our general framework, we explore two aspects of symmetry-enriched 3D Abelian topological phases. First, we construct a new fermionic state of matter with time-reversal symmetry and Θ ≠π , the fractional topological insulator. Second, we generalize the notion of anyonic symmetry of 2D Abelian topological phases to the charge-loop excitation symmetry (Charles ) of 3D Abelian topological phases. We show that line twist defects, which realize Charles transformations, exhibit non-Abelian fusion properties.

  9. Discrimination of non-explosive and explosive samples through nitrocellulose fingerprints obtained by capillary electrophoresis.

    PubMed

    Fernández de la Ossa, Ma Ángeles; Ortega-Ojeda, Fernando; García-Ruiz, Carmen

    2013-08-09

    This work is focused on a novel procedure to discriminate nitrocellulose-based samples with non-explosive and explosive properties. The nitrocellulose study has been scarcely approached in the literature due to its special polymeric properties such as its high molar mass and complex chemical and structural characteristics. These properties require the nitrocellulose analysis to be performed by using a few organic solvents and in consequence, they limit the number of adequate analytical techniques for its study. In terms of identification of pre-blast explosives, mass spectrometry is one of the most preferred technique because it allows to obtain structural information. However, it has never been used to analyze polymeric nitrocellulose. In this study, the differentiation of non-explosive and explosive samples through nitrocellulose fingerprints obtained by capillary electrophoresis was investigated. A batch of 30 different smokeless gunpowders and 23 different everyday products were pulverized, derivatized with a fluorescent agent and analyzed by capillary electrophoresis with laser-induced fluorescence detection. Since this methodology is specific to d-glucopyranose derivatives (cellulosic and related compounds), and paper samples could be easily found in explosion scenes, 11 different paper samples were also included in the study as potential interference samples. In order to discriminate among samples, multivariate analysis (principal component analysis and soft independent modeling of class analogy) was applied to the obtained electrophoretic profiles. To the best of our knowledge, this represents the first study that achieve a successful discrimination between non-explosive and explosive nitrocellulose-based samples, as well as potential cellulose interference samples, and posterior classification of unknown samples into their corresponding groups using CE-LIF and chemometric tools. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  11. Study on elimination of screening-current-induced field in pancake-type non-insulated HTS coil

    NASA Astrophysics Data System (ADS)

    Kim, K. L.; Song, J. B.; Yang, D. G.; Kim, Y. G.; Kim, T. H.; Kim, S. K.; Park, M. W.; Lee, H. G.

    2016-03-01

    This paper presents the details of a recent study on the removal of the screening-current-induced field (SCIF) in a pancake-type non-insulated high-temperature superconductor coil (NI coil). To determine the SCIF in the NI coil, the magnetic flux density (B z ) was calculated using the equivalent circuit model of the coil and compared to the B z obtained empirically. The experimental results indicate that the SCIF elimination in the NI coil was enhanced upon increasing the amplitude and frequency of the AC current being supplied to the background coil. Moreover, the SCIF in the NI coil was successfully removed by applying the appropriate external AC magnetic field intensity. This is because the magnetization direction of the SCIF changed completely from radial to spiral, a phenomenon termed the ‘vortex shaking effect.’ Overall, this study confirmed that the SCIF in a pancake-type NI coil can be effectively removed by exposing the coil to an external AC magnetic field.

  12. Avalanche buildup and propagation effects on photon-timing jitter in Si-SPAD with non-uniform electric field

    NASA Astrophysics Data System (ADS)

    Ingargiola, Antonino; Assanelli, Mattia; Gallivanoni, Andrea; Rech, Ivan; Ghioni, Massimo; Cova, Sergio

    2009-05-01

    Improving SPAD performances, such as dark count rate and quantum efficiency, without degrading the photontiming jitter is a challenging task that requires a clear understanding of the physical mechanisms involved. In this paper we investigate the contribution of the avalanche buildup statistics and the lateral avalanche propagation to the photon-timing jitter in silicon SPAD devices. Recent works on the buildup statistics focused on the uniform electric field case, however these results can not be applied to Si SPAD devices in which field profile is far from constant. We developed a 1-D Monte Carlo (MC) simulator using the real non-uniform field profiles derived from Secondary Ion Mass Spectroscopy (SIMS) measurements. Local and non-local models for impact ionization phenomena were considered. The obtained results, in particular the mean multiplication rate and jitter of the buildup filament, allowed us to simulate the statistical spread of the avalanche current on the device active area. We included space charge effects and a detailed lumped model for the external electronics and parasitics. We found that, in agreement with some experimental evidences, the avalanche buildup contribution to the total timing jitter is non-negligible in our devices. Moreover the lateral propagation gives an additional contribution that can explain the increasing trend of the photon-timing jitter with the comparator threshold.

  13. The Fock-Schwinger gauge in the BFV formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcelos-Neto, J.; Galvao, C.A.P.; Gaete, P.

    1991-06-07

    The authors consider the implementation of a properly modified form of the Fock-Schwinger gauge condition in a general non-Abelian gauge theory in the context of the BFV formalism. In this paper arguments are presented to justify the necessity of modifying the original Fock-Schwinger condition. The free field propagator and the general Ward identity are also calculated.

  14. The energy-momentum tensor(s) in classical gauge theories

    DOE PAGES

    Blaschke, Daniel N.; Gieres, François; Reboud, Méril; ...

    2016-07-12

    We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. In conclusion, the relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.

  15. Gravitational Field as a Pressure Force from Logarithmic Lagrangians and Non-Standard Hamiltonians: The Case of Stellar Halo of Milky Way

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2018-03-01

    Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.

  16. Inertial Mass from Spin Nonlinearity

    NASA Astrophysics Data System (ADS)

    Cohen, Marcus

    The inertial mass of a Fermion shows up as chiral cross-coupling in its Dirac system. No scalar term can invariantly couple left and right chirality fields; the Dirac matrices must be spin tensors of mixed chirality. We show how such tensor couplings could arise from nonlinear mixing of four spinor fields, two representing the local electron fields and two inertial spinor fields sourced in the distant masses. We thus give a model that implements Mach's principle. Following Mendel Sachs,1 we let the inertial spinors factor the moving spacetime tetrads qα(x) and bar {q}α (x) that appear in the Dirac operator. The inertial spinors do more than set the spacetime "stage;" they are players in the chiral dynamics. Specifically, we show how the massive Dirac system arises as the envelope modulation equations coupling left and right chirality electron fields on a Friedmann universe via nonlinear "spin gratings" with the inertial spinor fields. These gratings implement Penrose's "mass-scatterings," which keep the null zig-zags of the bispinor wave function confined to a timelike world tube. Local perturbations to the inertial spinor fields appear in the Dirac system as Abelian and non-Abelian vector potentials.

  17. Field-enhanced electrodes for additive-injection non-thermal plasma (NTP) processor

    DOEpatents

    Rosocha, Louis A [Los Alamos, NM; Ferreri, Vincent [Westminster, CO; Kim, Yongho [Los Alamos, NM

    2009-04-21

    The present invention comprises a field enhanced electrode package for use in a non-thermal plasma processor. The field enhanced electrode package includes a high voltage electrode and a field-enhancing electrode with a dielectric material layer disposed in-between the high voltage electrode and the field-enhancing electrode. The field-enhancing electrode features at least one raised section that includes at least one injection hole that allows plasma discharge streamers to occur primarily within an injected additive gas.

  18. About non standard Lagrangians in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, Dragoljub D.; Milosevic, Milan

    A review of non standard Lagrangians present in modern cosmological models will be considered. Well known example of non standard Lagrangian is Dirac-Born-Infeld (DBI) type Lagrangian for tachyon field. Another type of non standard Lagrangian under consideration contains scalar field which describes open p-adic string tachyon and is called p-adic string theory Lagrangian. We will investigate homogenous cases of both DBI and p-adic fields and obtain Lagrangians of the standard type which have the same equations of motions as aforementioned non standard one.

  19. Note: Device for obtaining volumetric, three-component velocity fields inside cylindrical cavities.

    PubMed

    Ramírez, G; Núñez, J; Hernández, G N; Hernández-Cruz, G; Ramos, E

    2015-11-01

    We describe a device designed and built to obtain the three-component, steady state velocity field in the whole volume occupied by a fluid in motion contained in a cavity with cylindrical walls. The prototype comprises a two-camera stereoscopic particle image velocimetry system mounted on a platform that rotates around the volume under analysis and a slip ring arrangement that transmits data from the rotating sensors to the data storage elements. Sample observations are presented for natural convection in a cylindrical container but other flows can be analyzed.

  20. Gauge-invariant variables and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Agarwal, Abhishek; Karabali, Dimitra; Nair, V. P.

    2017-12-01

    The entanglement entropy (EE) of gauge theories in three spacetime dimensions is analyzed using manifestly gauge-invariant variables defined directly in the continuum. Specifically, we focus on the Maxwell, Maxwell-Chern-Simons (MCS), and non-Abelian Yang-Mills theories. Special attention is paid to the analysis of edge modes and their contribution to EE. The contact term is derived without invoking the replica method and its physical origin is traced to the phase space volume measure for the edge modes. The topological contribution to the EE for the MCS case is calculated. For all the Abelian cases, the EE presented in this paper agrees with known results in the literature. The EE for the non-Abelian theory is computed in a gauge-invariant Gaussian approximation, which incorporates the dynamically generated mass gap. A formulation of the contact term for the non-Abelian case is also presented.

  1. Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field

    NASA Astrophysics Data System (ADS)

    Tang, Xu-Bing; Gao, Fang; Wang, Yao-Xiong; Kuang, Sen; Shuang, Feng

    2015-03-01

    Recent studies show that quantum non-Gaussian states or using non-Gaussian operations can improve entanglement distillation, quantum swapping, teleportation, and cloning. In this work, employing a strategy of non-Gaussian operations (namely subtracting and adding a single photon), we propose a scheme to generate non-Gaussian quantum states named single-photon-added and -subtracted coherent (SPASC) superposition states by implementing Bell measurements, and then investigate the corresponding nonclassical features. By squeezed the input field, we demonstrate that robustness of non-Gaussianity can be improved. Controllable phase space distribution offers the possibility to approximately generate a displaced coherent superposition states (DCSS). The fidelity can reach up to F ≥ 0.98 and F ≥ 0.90 for size of amplitude z = 1.53 and 2.36, respectively. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203061 and 61074052), the Outstanding Young Talent Foundation of Anhui Province, China (Grant No. 2012SQRL040), and the Natural Science Foundation of Anhui Province, China (Grant No. KJ2012Z035).

  2. Study on the near-field non-linearity (SMILE) of high power diode laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyou; Jia, Yangtao; Li, Changxuan; Zah, Chung-en; Liu, Xingsheng

    2018-02-01

    High power laser diodes have been found a wide range of industrial, space, medical applications, characterized by high conversion efficiency, small size, light weight and a long lifetime. However, due to thermal induced stress, each emitter in a semiconductor laser bar or array is displaced along p-n junction, resulting of each emitter is not in a line, called Near-field Non-linearity. Near-field Non-linearity along laser bar (also known as "SMILE") determines the outcome of optical coupling and beam shaping [1]. The SMILE of a laser array is the main obstacle to obtain good optical coupling efficiency and beam shaping from a laser array. Larger SMILE value causes a larger divergence angle and a wider line after collimation and focusing, respectively. In this letter, we simulate two different package structures based on MCC (Micro Channel Cooler) with Indium and AuSn solders, including the distribution of normal stress and the SMILE value. According to the theoretical results, we found the distribution of normal stress on laser bar shows the largest in the middle and drops rapidly near both ends. At last, we did another experiment to prove that the SMILE value of a laser bar was mainly affected by the die bonding process, rather than the operating condition.

  3. The Dynamics of Oblate Drop Between Heterogeneous Plates Under Alternating Electric Field. Non-uniform Field

    NASA Astrophysics Data System (ADS)

    Kashina, M. A.; Alabuzhev, A. A.

    2018-02-01

    The dynamics of the incompressible fluid drop under the non-uniform electric field are considered. The drop is bounded axially by two parallel solid planes and the case of heterogeneous plates is investigated. The external electric field acts as an external force that causes motion of the contact line. We assume that the electric current is alternative current and the AC filed amplitude is a spatially non-uniform function. In equilibrium, the drop has the form of a circular cylinder. The equilibrium contact angle is 0.5 π. In order to describe this contact line motion the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, which frequency is proportional to twice the frequency of the electric field. The Hocking parameter depends on the polar angle, i.e. the coefficient of the interaction between the plate and the fluid (the contact line) is a function of the plane coordinates. This function is expanded in a series of the Laplace operator eigenfunctions.

  4. Polyhydroxyester films obtained by non-catalyzed melt-polycondensation of natural occurring fatty polyhydroxyacids.

    NASA Astrophysics Data System (ADS)

    Benitez, Jose; Heredia-Guerrero, José; Guzman-Puyol, Susana; Barthel, Markus; Dominguez, Eva; Heredia, Antonio

    2015-08-01

    Free-standing polyesters films from mono and polyhydroxylated fatty acids (C16 and C18) have been obtained by non-catalyzed melt-condensation polymerization in air at 150°C. Chemical characterization by Fourier Transform Infrared Spectroscopy (FTIR) and 13C Magic Angle Spinning Nuclear Magnetic Resonance (13C MAS-NMR) has confirmed the formation of the corresponding esters and the occurrence of hydroxyl partial oxidation which extent depends on the type of hydroxylation of the monomer (primary or secondary). Generally, polyester films obtained are hydrophobic, insoluble in common solvents, amorphous and infusible as revealed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). In ?-polyhydroxy acids, esterification reaction with primary hydroxyls is preferential and, therefore, the structure can be defined as linear with variable branching depending on the amount of esterified secondary hydroxyls. The occurrence side oxidative reactions like the diol cleavage are responsible for chain cross-linking. Films are thermally stable up to 200-250°C though this limit can be extended up to 300°C in the absence of ester bonds involving secondary hydroxyls. By analogy with natural occurring fatty polyesters (i.e. cutin in higher plants) these polymers are proposed as biodegradable and non-toxic barrier films or coatings to be used, for instance, in food packing

  5. Linear and Non-linear Information Flows In Rainfall Field

    NASA Astrophysics Data System (ADS)

    Molini, A.; La Barbera, P.; Lanza, L. G.

    The rainfall process is the result of a complex framework of non-linear dynamical in- teractions between the different components of the atmosphere. It preserves the com- plexity and the intermittent features of the generating system in space and time as well as the strong dependence of these properties on the scale of observations. The understanding and quantification of how the non-linearity of the generating process comes to influence the single rain events constitute relevant research issues in the field of hydro-meteorology, especially in those applications where a timely and effective forecasting of heavy rain events is able to reduce the risk of failure. This work focuses on the characterization of the non-linear properties of the observed rain process and on the influence of these features on hydrological models. Among the goals of such a survey is the research of regular structures of the rainfall phenomenon and the study of the information flows within the rain field. The research focuses on three basic evo- lution directions for the system: in time, in space and between the different scales. In fact, the information flows that force the system to evolve represent in general a connection between the different locations in space, the different instants in time and, unless assuming the hypothesis of scale invariance is verified "a priori", the different characteristic scales. A first phase of the analysis is carried out by means of classic statistical methods, then a survey of the information flows within the field is devel- oped by means of techniques borrowed from the Information Theory, and finally an analysis of the rain signal in the time and frequency domains is performed, with par- ticular reference to its intermittent structure. The methods adopted in this last part of the work are both the classic techniques of statistical inference and a few procedures for the detection of non-linear and non-stationary features within the process starting from

  6. Motion of small bodies in classical field theory

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.

    2010-04-01

    I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body’s composition (and, e.g., black holes are allowed). The worldline “left behind” by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the “Bianchi identity” for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the “monopoles” of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of “chameleon” bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.

  7. INSTABILITY OF NON-UNIFORM TOROIDAL MAGNETIC FIELDS IN ACCRETION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp

    We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of thismore » growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.« less

  8. Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Kota; Hoshino, Masahiro

    2016-05-01

    We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.

  9. Minimal non-abelian supersymmetric Twin Higgs

    DOE PAGES

    Badziak, Marcin; Harigaya, Keisuke

    2017-10-17

    We propose a minimal supersymmetric Twin Higgs model that can accommodate tuning of the electroweak scale for heavy stops better than 10% with high mediation scales of supersymmetry breaking. A crucial ingredient of this model is a new SU(2) X gauge symmetry which provides a D-term potential that generates a large SU(4) invariant coupling for the Higgs sector and only small set of particles charged under SU(2) X , which allows the model to be perturbative around the Planck scale. The new gauge interaction drives the top yukawa coupling small at higher energy scales, which also reduces the tuning.

  10. Non-contact full-field optical coherence tomography: a novel tool for in vivo imaging of the human cornea (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mazlin, Viacheslav; Dalimier, Eugénie; Grieve, Katharine F.; Irsch, Kristina; Sahel, José-Alain; Fink, Mathias; Boccara, A. Claude

    2017-02-01

    According to the World Health Organization (WHO), corneal diseases alongside with cataract and retinal diseases are major causes of blindness worldwide. For the 95.5% of corneal blindness cases, prevention or rehabilitation could have been possible without negative consequences for vision, provided that disease is diagnosed early. However, diagnostics at the early stage requires cellular-level resolution, which is not achieved with routinely used Slit-lamp and OCT instruments. Confocal microscopy allows examination of the cornea at a resolution approaching histological detail, however requires contact with a patient's eye. The recently developed full-field OCT technique, in which 2D en face tangential optical slices are directly recorded on a camera, was successfully applied for ex vivo eye imaging. However, in vivo human eye imaging has not been demonstrated yet. Here we present a novel non-contact full-field OCT system, which is capable of imaging in air and, therefore, shows potential for in vivo cornea imaging in patients. The first cellular-level resolution ex vivo images of cornea, obtained in a completely non-contact way, were demonstrated. We were able to scan through the entire cornea (400 µm) and resolve epithelium, Bowman's layer, stroma and endothelium. FFOCT images of the human cornea in vivo were obtained for the first time. The epithelium structures and stromal keratocyte cells were distinguishable. Both ex vivo and in vivo images were acquired with a large (1.26 mm x 1.26 mm) field of view. Cellular details in obtained images make this device a promising candidate for realization of high-resolution in vivo cornea imaging.

  11. Non-Maxwellian and magnetic field effects in complex plasma wakes★

    NASA Astrophysics Data System (ADS)

    Ludwig, Patrick; Jung, Hendrik; Kählert, Hanno; Joost, Jan-Philip; Greiner, Franko; Moldabekov, Zhandos; Carstensen, Jan; Sundar, Sita; Bonitz, Michael; Piel, Alexander

    2018-05-01

    In a streaming plasma, negatively charged dust particles create complex charge distributions on the downstream side of the particle, which are responsible for attractive forces between the like-charged particles. This wake phenomenon is studied by means of refined linear response theory and molecular dynamics simulations as well as in experiments. Particular attention is paid to non-Maxwellian velocity distributions that are found in the plasma sheath and to situations with strong magnetic fields, which are becoming increasingly important. Non-Maxwellian distributions and strong magnetic fields result in a substantial damping of the oscillatory wake potential. The interaction force in particle pairs is explored with the phase-resolved resonance method, which demonstrates the non-reciprocity of the interparticle forces in unmagnetized and magnetized systems.

  12. Protocol to obtain targeted transcript sequence data from snake venom samples collected in the Colombian field.

    PubMed

    Fonseca, Alejandra; Renjifo-Ibáñez, Camila; Renjifo, Juan Manuel; Cabrera, Rodrigo

    2018-03-21

    Snake venoms are a mixture of different molecules that can be used in the design of drugs for various diseases. The study of these venoms has relied on strategies that use complete venom extracted from animals in captivity or from venom glands that require the sacrifice of the animals. Colombia, a country with political and geographical conflicts has difficult access to certain regions. A strategy that can prevent the sacrifice of animals and could allow the study of samples collected in the field is necessary. We report the use of lyophilized venom from Crotalus durissus cumanensis as a model to test, for the first time, a protocol for the amplification of complete toxins from Colombian venom samples collected in the field. In this protocol, primers were designed from conserved region from Crotalus sp. mRNA and EST regions to maximize the likelihood of coding sequence amplification. We obtained the sequences of Metalloproteinases II, Disintegrins, Disintegrin-Like, Phospholipases A 2, C-type Lectins and Serine proteinases from Crotalus durissus cumanensis and compared them to different Crotalus sp sequences available on databases obtaining concordance between the toxins amplified and those reported. Our strategy allows the use of lyophilized venom to obtain complete toxin sequences from samples collected in the field and the study of poorly characterized venoms in challenging environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Differential Galois theory and non-integrability of planar polynomial vector fields

    NASA Astrophysics Data System (ADS)

    Acosta-Humánez, Primitivo B.; Lázaro, J. Tomás; Morales-Ruiz, Juan J.; Pantazi, Chara

    2018-06-01

    We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the "Risch algorithm". In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function.

  14. One thousand and one bubbles

    NASA Astrophysics Data System (ADS)

    Ávila, Jesús; Ramírez, Pedro F.; Ruipérez, Alejandro

    2018-01-01

    We propose a novel strategy that permits the construction of completely general five-dimensional microstate geometries on a Gibbons-Hawking space. Our scheme is based on two steps. First, we rewrite the bubble equations as a system of linear equations that can be easily solved. Second, we conjecture that the presence or absence of closed timelike curves in the solution can be detected through the evaluation of an algebraic relation. The construction we propose is systematic and covers the whole space of parameters, so it can be applied to find all five-dimensional BPS microstate geometries on a Gibbons-Hawking base. As a first result of this approach, we find that the spectrum of scaling solutions becomes much larger when non-Abelian fields are present. We use our method to describe several smooth horizonless multicenter solutions with the asymptotic charges of three-charge (Abelian and non-Abelian) black holes. In particular, we describe solutions with the centers lying on lines and circles that can be specified with exact precision. We show the power of our method by explicitly constructing a 50-center solution. Moreover, we use it to find the first smooth five-dimensional microstate geometries with arbitrarily small angular momentum.

  15. Strategy to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis.

    PubMed

    Vázquez-Martínez, Guadalupe; Rodriguez, Mario H; Hernández-Hernández, Fidel; Ibarra, Jorge E

    2004-04-01

    An efficient strategy, based on a combination of procedures, was developed to obtain axenic cultures from field-collected samples of the cyanobacterium Phormidium animalis. Samples were initially cultured in solid ASN-10 medium, and a crude separation of major contaminants from P. animalis filaments was achieved by washing in a series of centrifugations and resuspensions in liquid medium. Then, manageable filament fragments were obtained by probe sonication. Fragmentation was followed by forceful washing, using vacuum-driven filtration through an 8-microm pore size membrane and an excess of water. Washed fragments were cultured and treated with a sequential exposure to four different antibiotics. Finally, axenic cultures were obtained from serial dilutions of treated fragments. Monitoring under microscope examination and by inoculation in Luria-Bertani (LB) agar plates indicated either axenicity or the degree of contamination throughout the strategy.

  16. Gauge Fields in Homogeneous and Inhomogeneous Cosmologies

    NASA Astrophysics Data System (ADS)

    Darian, Bahman K.

    Despite its formidable appearance, the study of classical Yang-Mills (YM) fields on homogeneous cosmologies is amenable to a formal treatment. This dissertation is a report on a systematic approach to the general construction of invariant YM fields on homogeneous cosmologies undertaken for the first time in this context. This construction is subsequently followed by the investigation of the behavior of YM field variables for the most simple of self-gravitating YM fields. Particularly interesting was a dynamical system analysis and the discovery of chaotic signature in the axially symmetric Bianchi I-YM cosmology. Homogeneous YM fields are well studied and are known to have chaotic properties. The chaotic behavior of YM field variables in homogeneous cosmologies might eventually lead to an invariant definition of chaos in (general) relativistic cosmological models. By choosing the gauge fields to be Abelian, the construction and the field equations presented so far reduce to that of electromagnetic field in homogeneous cosmologies. A perturbative analysis of gravitationally interacting electromagnetic and scalar fields in inhomogeneous cosmologies is performed via the Hamilton-Jacobi formulation of general relativity. An essential feature of this analysis is the spatial gradient expansion of the generating functional (Hamilton principal function) to solve the Hamiltonian constraint. Perturbations of a spatially flat Friedman-Robertson-Walker cosmology with an exponential potential for the scalar field are presented.

  17. Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state

    NASA Astrophysics Data System (ADS)

    Datta, M. K.; Pabi, S. K.; Murty, B. S.

    2000-06-01

    Solid state reactions induced by mechanical alloying (MA) of elemental blends of Ni and Si have been studied over the entire composition range of the Ni-Si system. A monotonous increase of the lattice parameter of the Ni rich solid solution, Ni(Si), is observed with refinement of crystallite size. Nanocrystalline phase/phase mixtures of Ni(Si), Ni(Si)+Ni31Si12, Ni31Si12+Ni2Si, Ni2Si+NiSi and NiSi+Si, have been obtained during MA, over the composition ranges of 0-10, 10-28, 28-33, 33-50, and >50 at. % Si, respectively. The results clearly suggest that only congruent melting phases, Ni31Si12, Ni2Si, and NiSi form, while the formation of noncongruent melting phases, Ni3Si, Ni3Si2, and NiSi2, is bypassed in the nanocrystalline state. The phase formation during MA has been discussed based on thermodynamic arguments. The predicted phase fields obtained from effective free energy calculations are quite consistent with those obtained during MA.

  18. Chern-Simons theory on a hypersphere

    NASA Astrophysics Data System (ADS)

    McKeon, D. G. C.

    1990-08-01

    We demonstrate that a non-Abelian Chern-Simons field theory can be mapped from three-dimensional Euclidean space onto the surface of a sphere in four dimensions using a stereographic projection. The theory is manifestly invariant under a rotation on the four-dimensional hypersphere. An explicit one-loop calculation shows that the curvature of the hypersphere induces a conformal anomaly.

  19. Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions

    DOE PAGES

    Schlichting, S.; Venugopalan, R.; Berges, J.; ...

    2015-02-10

    Isolated quantum systems in extreme conditions can exhibit unusually large occupancies per mode. In addition, this over-population gives rise to new universality classes of many-body systems far from equilibrium. We present theoretical evidence that important aspects of non-Abelian plasmas in the ultra-relativistic limit admit a dual description in terms of a Bose condensed scalar field theory.

  20. Interplay between the Dzyaloshinskii-Moriya term and external fields on spin transport in the spin-1/2 one-dimensional antiferromagnet

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2018-05-01

    We study the effect of the uniform Dzyaloshinskii-Moriya interaction (symmetric exchange anisotropy) and arbitrary oriented external magnetic fields on spin conductivity in the spin-1/2 one-dimensional Heisenberg antiferromagnet. The spin conductivity is calculated employing abelian bosonization and the Kubo formalism of transport. We investigate the influence of three competing phases at zero-temperature, (Néel phase, dimerized phase and gapless Luttinger liquid phase) on the AC spin conductivity.

  1. T-duality, non-geometry and Lie algebroids in heterotic double field theory

    NASA Astrophysics Data System (ADS)

    Blumenhagen, Ralph; Sun, Rui

    2015-02-01

    A number of issues in heterotic double field theory are studied. This includes the analysis of the T-dual configurations of a flat constant gauge flux background, which turn out to be non-geometric. Performing a field redefinition to a non-geometric frame, these T-duals take a very simple form reminiscent of the constant Q- and R-flux backgrounds. In addition, it is shown how the analysis of arXiv:1304.2784 generalizes to heterotic generalized geometry. For every field redefinition specified by an O( D, D + n) transformation, the structure of the resulting supergravity action is governed by the differential geometry of a corresponding Lie algebroid.

  2. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  3. A Magnetohydrodynamic Simulation of Magnetic Null-point Reconnections in NOAA AR 12192, Initiated with an Extrapolated Non-force-free Field

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Bhattacharyya, R.; Hu, Qiang; Kumar, Sanjay; Nayak, Sushree S.

    2018-06-01

    The magnetohydrodynamics of the solar corona is simulated numerically. The simulation is initialized with an extrapolated non-force-free magnetic field using the vector magnetogram of the active region NOAA 12192, which was obtained from the solar photosphere. Particularly, we focus on the magnetic reconnections (MRs) occurring close to a magnetic null point that resulted in the appearance of circular chromospheric flare ribbons on 2014 October 24 around 21:21 UT, after the peak of an X3.1 flare. The extrapolated field lines show the presence of the three-dimensional (3D) null near one of the polarity-inversion lines—where the flare was observed. In the subsequent numerical simulation, we find MRs occurring near the null point, where the magnetic field lines from the fan plane of the 3D null form a X-type configuration with underlying arcade field lines. The footpoints of the dome-shaped field lines, inherent to the 3D null, show high gradients of the squashing factor. We find slipping reconnections at these quasi-separatrix layers, which are co-located with the post-flare circular brightening observed at chromospheric heights. This demonstrates the viability of the initial non-force-free field, along with the dynamics it initiates. Moreover, the initial field and its simulated evolution are found to be devoid of any flux rope, which is congruent with the confined nature of the flare.

  4. Quantum mechanical expansion of variance of a particle in a weakly non-uniform electric and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Poh Kam; Kosaka, Wataru; Oikawa, Shun-ichi

    We have solved the Heisenberg equation of motion for the time evolution of the position and momentum operators for a non-relativistic spinless charged particle in the presence of a weakly non-uniform electric and magnetic field. It is shown that the drift velocity operator obtained in this study agrees with the classical counterpart, and that, using the time dependent operators, the variances in position and momentum grow with time. The expansion rate of variance in position and momentum are dependent on the magnetic gradient scale length, however, independent of the electric gradient scale length. In the presence of a weakly non-uniformmore » electric and magnetic field, the theoretical expansion rates of variance expansion are in good agreement with the numerical analysis. It is analytically shown that the variance in position reaches the square of the interparticle separation, which is the characteristic time much shorter than the proton collision time of plasma fusion. After this time, the wavefunctions of the neighboring particles would overlap, as a result, the conventional classical analysis may lose its validity. The broad distribution of individual particle in space means that their Coulomb interactions with other particles become weaker than that expected in classical mechanics.« less

  5. Vanishing of local non-Gaussianity in canonical single field inflation

    NASA Astrophysics Data System (ADS)

    Bravo, Rafael; Mooij, Sander; Palma, Gonzalo A.; Pradenas, Bastián

    2018-05-01

    We study the production of observable primordial local non-Gaussianity in two opposite regimes of canonical single field inflation: attractor (standard single field slow-roll inflation) and non attractor (ultra slow-roll inflation). In the attractor regime, the standard derivation of the bispectrum's squeezed limit using co-moving coordinates gives the well known Maldacena's consistency relation fNL = 5 (1‑ns) / 12. On the other hand, in the non-attractor regime, the squeezed limit offers a substantial violation of this relation given by fNL = 5/2. In this work we argue that, independently of whether inflation is attractor or non-attractor, the size of the observable primordial local non-Gaussianity is predicted to be fNLobs = 0 (a result that was already understood to hold in the case of attractor models). To show this, we follow the use of the so-called Conformal Fermi Coordinates (CFC), recently introduced in the literature. These coordinates parametrize the local environment of inertial observers in a perturbed FRW spacetime, allowing one to identify and compute gauge invariant quantities, such as n-point correlation functions. Concretely, we find that during inflation, after all the modes have exited the horizon, the squeezed limit of the 3-point correlation function of curvature perturbations vanishes in the CFC frame, regardless of the inflationary regime. We argue that such a cancellation should persist after inflation ends.

  6. The edge of supersymmetry: Stability walls in heterotic theory

    DOE PAGES

    Anderson, Lara B.; Gray, James; Lukas, Andre; ...

    2009-05-15

    We explicitly describe, in the language of four-dimensional N = 1 supersymmetric field theory, what happens when the moduli of a heterotic Calabi-Yau compactification change so as to make the internal non-Abelian gauge fields non-supersymmetric. At the edge of the region in Kähler moduli space where supersymmetry can be preserved, an additional anomalous U(1) gauge symmetry appears in the four-dimensional theory. The D-term contribution to the scalar potential associated to this U(1) attempts to force the system back into a supersymmetric configuration and provides a consistent low-energy description of gauge bundle stability.

  7. Non-degeneracy, Mean Field Equations and the Onsager Theory of 2D Turbulence

    NASA Astrophysics Data System (ADS)

    Bartolucci, Daniele; Jevnikar, Aleks; Lee, Youngae; Yang, Wen

    2018-04-01

    The understanding of some large energy, negative specific heat states in the Onsager description of 2D turbulence seem to require the analysis of a subtle open problem about bubbling solutions of the mean field equation. Motivated by this application we prove that, under suitable non-degeneracy assumptions on the associated m-vortex Hamiltonian, the m-point bubbling solutions of the mean field equation are non-degenerate as well. Then we deduce that the Onsager mean field equilibrium entropy is smooth and strictly convex in the high energy regime on domains of second kind.

  8. Non-Markovian quantum Brownian motion in one dimension in electric fields

    NASA Astrophysics Data System (ADS)

    Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.

    2018-04-01

    Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.

  9. Gauge-flation confronted with Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, Ryo; Dimastrogiovanni, Emanuela; Peloso, Marco, E-mail: namba@physics.umn.edu, E-mail: ema@physics.umn.edu, E-mail: peloso@physics.umn.edu

    2013-11-01

    Gauge-flation is a recently proposed model in which inflation is driven solely by a non-Abelian gauge field thanks to a specific higher order derivative operator. The nature of the operator is such that it does not introduce ghosts. We compute the cosmological scalar and tensor perturbations for this model, improving over an existing computation. We then confront these results with the Planck data. The model is characterized by the quantity γ ≡ g{sup 2}Q{sup 2}/H{sup 2} (where g is the gauge coupling constant, Q the vector vev, and H the Hubble rate). For γ < 2, the scalar perturbations show a strongmore » tachyonic instability. In the stable region, the scalar power spectrum n{sub s} is too low at small γ, while the tensor-to-scalar ratio r is too high at large γ. No value of γ leads to acceptable values for n{sub s} and r, and so the model is ruled out by the CMB data. The same behavior with γ was obtained in Chromo-natural inflation, a model in which inflation is driven by a pseudo-scalar coupled to a non-Abelian gauge field. When the pseudo-scalar can be integrated out, one recovers the model of Gauge-flation plus corrections. It was shown that this identification is very accurate at the background level, but differences emerged in the literature concerning the perturbations of the two models. On the contrary, our results show that the analogy between the two models continues to be accurate also at the perturbative level.« less

  10. Energy flow in non-equilibrium conformal field theory

    NASA Astrophysics Data System (ADS)

    Bernard, Denis; Doyon, Benjamin

    2012-09-01

    We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.

  11. Non-Noetherian symmetries for oscillators in classical mechanics and in field theory

    NASA Technical Reports Server (NTRS)

    Hojman, Sergio A.; Delajara, Jamie; Pena, Leda

    1995-01-01

    Infinitely many new conservation laws both for free fields as well as for test fields evolving on a given gravitational background are presented. The conserved currents are constructed using the field theoretical counterpart of a recently discovered non-Noetherian symmetry which gives rise to a new way of solving the classical small oscillations problem. Several examples are discussed.

  12. Edge states at phase boundaries and their stability

    NASA Astrophysics Data System (ADS)

    Asorey, M.; Balachandran, A. P.; Pérez-Pardo, J. M.

    2016-10-01

    We analyze the effects of Robin-like boundary conditions on different quantum field theories of spin 0, 1/2 and 1 on manifolds with boundaries. In particular, we show that these conditions often lead to the appearance of edge states. These states play a significant role in physical phenomena like quantum Hall effect and topological insulators. We prove in a rigorous way the existence of spectral lower bounds on the kinetic term of different Hamiltonians, even in the case of Abelian gauge fields where it is a non-elliptic differential operator. This guarantees the stability and consistency of massive field theories with masses larger than the lower bound of the kinetic term. Moreover, we find an upper bound for the deepest edge state. In the case of Abelian gauge theories, we analyze a generalization of Robin boundary conditions. For Dirac fermions, we analyze the cases of Atiyah-Patodi-Singer and chiral bag boundary conditions. The explicit dependence of the bounds on the boundary conditions and the size of the system is derived under general assumptions.

  13. Versatile generation of optical vector fields and vector beams using a non-interferometric approach.

    PubMed

    Tripathi, Santosh; Toussaint, Kimani C

    2012-05-07

    We present a versatile, non-interferometric method for generating vector fields and vector beams which can produce all the states of polarization represented on a higher-order Poincaré sphere. The versatility and non-interferometric nature of this method is expected to enable exploration of various exotic properties of vector fields and vector beams. To illustrate this, we study the propagation properties of some vector fields and find that, in general, propagation alters both their intensity and polarization distribution, and more interestingly, converts some vector fields into vector beams. In the article, we also suggest a modified Jones vector formalism to represent vector fields and vector beams.

  14. Topics in string theory

    NASA Astrophysics Data System (ADS)

    Jejjala, Vishnumohan

    2002-01-01

    This Thesis explores aspects of superstring theory on orbifold spaces and applies some of the intuition gleaned from the study of the non-commutative geometry of space-time to understanding the fractional quantum Hall effect. The moduli space of vacua of marginal and relevant deformations of N = 4 super-Yang-Mills gauge theory in four dimensions is interpreted in terms of non-commutative geometry. A formalism for thinking about the algebraic geometry of the moduli space is developed. Within this framework, the representation theory of the algebras studied provides a natural exposition of D-brane fractionation. The non-commutative moduli space of deformations preserving N = 1 supersymmetry is examined in detail through various examples. In string theory, by the AdS/CFT correspondence, deformations of the N = 4 field theory are dual to the near-horizon geometries of D-branes on orbifolds of AdS5 x S 5. The physics of D-branes on the dual AdS backgrounds is explored. Quivers encapsulate the matter content of supersymmetric field theories on the worldvolumes of D-branes at orbifold singularities. New techniques for constructing quivers are presented here. When N is a normal subgroup of a finite group G, the quiver corresponding to fixed points of the orbifold M/G is computed from a G/N action on the quiver corresponding to M/G . These techniques prove useful for constructing non-Abelian quivers and for examining discrete torsion orbifolds. Quivers obtained through our constructions contain interesting low-energy phenomenology. The matter content on a brane at an isolated singularity of the Delta27 orbifold embeds the Standard Model. The symmetries of the quiver require exactly three generations of fields in the particle spectrum. Lepton masses are suppressed relative to quark masses because lepton Yukawa couplings do not appear in the superpotential. Lepton masses are generated through the Kahler potential and are related to the supersymmetry breaking scale. The model

  15. Strings, boundary fermions and coincident D-branes

    NASA Astrophysics Data System (ADS)

    Wulff, Linus

    2007-01-01

    This thesis describes an attempt to write down covariant actions for coincident D-branes using so-called boundary fermions instead of matrices to describe the non-abelian fields. These fermions can be thought of as Chan-Paton degrees of freedom for the open string. It is shown that by gauge-fixing and by suitably quantizing these boundary fermions the non-abelian action that is known, the Myers action, can be reproduced. Furthermore it is shown that under natural assumptions, unlike the Myers action, the action formulated using boundary fermions also posseses kappa-symmetry when formulated on superspace. Another aspect of string theory discussed in this thesis is that of tensionless strings. These are of great interest for example because of their possible relation to higher spin gauge theories via the AdS/CFT-correspondence. The tensionless superstring in a plane wave background, a Penrose limit of the near-horizon geometry of a stack of D3-branes, is considered and compared to the tensile case.

  16. Thermodynamic properties of Fermi gases in states with defined many-body spins

    NASA Astrophysics Data System (ADS)

    Yurovsky, Vladimir

    2016-05-01

    Zero-range interactions in cold spin- 1 / 2 Fermi gases can be described by single interaction strength, since collisions of atoms in the same spin state are forbidden by the Pauli principle. In a spin-independent trap potential (even in the presence of a homogeneous spin-dependent external field), the gas can persist in a state with the given many-body spin, since the spin operator commutes with the Hamiltonian. Spin and spatial degrees of freedom in such systems are separated, and the spin and spatial wavefunctions form non-Abelian irreducible representations of the symmetric group, unless the total spin is S = N / 2 for N atoms (see). Although the total wavefunction, being a linear combination of products of the spin and spatial functions, is permutation-antisymmetric, the non-Abelian permutation symmetry is disclosed in the matrix elements and, as demonstrated here, in thermodynamic properties. The effects include modification of the specific heat and compressibility of the gas.

  17. Evaluation of proteases and protease inhibitors in Heterodera glycines cysts obtained from laboratory and field populations

    USDA-ARS?s Scientific Manuscript database

    Proteases and proteases inhibitors were evaluated in a number of preparations of Heterodera glycines cysts obtained from glasshouse cultures (GH) and field (LR) populations. Using a FRET-peptide library comprising 512 peptide substrate pools that detect 4 endoprotease types (aspartic, cysteine, meta...

  18. Asymptotically flat, stable black hole solutions in Einstein-Yang-Mills-Chern-Simons theory.

    PubMed

    Brihaye, Yves; Radu, Eugen; Tchrakian, D H

    2011-02-18

    We construct finite mass, asymptotically flat black hole solutions in d=5 Einstein-Yang-Mills-Chern-Simons theory. Our results indicate the existence of a second order phase transition between Reissner-Nordström solutions and the non-Abelian black holes which generically are thermodynamically preferred. Some of the non-Abelian configurations are also stable under linear, spherically symmetric perturbations.

  19. Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopin, I.; Nagorny, I., E-mail: lopin78@mail.ru

    We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω {sub c}. The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative belowmore » the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B{sub e} / B{sub i}  ≈ 0–0.8, the cutoff lies in the range ω{sub c}  ≈ 0.003–0.010 s{sup −1} (periods 600 < P{sub c} < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β  = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω{sub 2}/ ω{sub 1} < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.« less

  20. Entanglement entropy and entanglement spectrum of the Kitaev model.

    PubMed

    Yao, Hong; Qi, Xiao-Liang

    2010-08-20

    In this letter, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S = SG+SF, with SF the entanglement entropy of a free Majorana fermion system and SG that of a Z2 gauge field. The Z2 gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the nonlocal entanglement carried by the Z2 vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states--the capacity of entanglement, which can distinguish the st ates with and without topologically protected gapless entanglement spectrum.

  1. A NEW TECHNIQUE FOR THE PHOTOSPHERIC DRIVING OF NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.

    2016-05-20

    In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surfacemore » flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.« less

  2. A Dream of Yukawa — Non-Local Fields out of Non-Commutative Spacetime —

    NASA Astrophysics Data System (ADS)

    Naka, Shigefumi; Toyoda, Haruki; Takanashi, Takahiro; Umezawa, Eizo

    The coordinates of κ-Minkowski spacetime form Lie algebraic elements, in which time and space coordinates do not commute in spite of that space coordinates commute each other. The non-commutativity is realized by a Planck-length-scale constant κ - 1( ne 0), which is a universal constant other than the light velocity under the κ-Poincare transformation. Such a non-commutative structure can be realized by SO(1,4) generators in dS4 spacetime. In this work, we try to construct a κ-Minkowski like spacetime with commutative 4-dimensional spacetime based on Adsn+1 spacetime. Another aim of this work is to study invariant wave equations in this spacetime from the viewpoint of non-local field theory by H. Yukawa, who expected to realize elementary particle theories without divergence according to this viewpoint.

  3. Equivariance, BRST symmetry, and superspace

    NASA Astrophysics Data System (ADS)

    Niemi, Antti J.; Tirkkonen, Olav

    1994-12-01

    The structure of equivariant cohomology in non-Abelian localization formulas and topological field theories is discussed. Equivariance is formulated in terms of a nilpotent Becchi-Rouet-Stora-Tyutin (BRST) symmetry, and another nilpotent operator which restricts the BRST cohomology onto the equivariant, or basic sector. A superfield formulation is presented and connections to reducible [Batalin-Fradkin-Vilkovisky (BFV)] quantization of topological Yang-Mills theory are discussed.

  4. Damage assessment using advanced non-intrusive inspection methods: integration of space, UAV, GPR, and field spectroscopy

    NASA Astrophysics Data System (ADS)

    Themistocleous, Kyriacos; Neocleous, Kyriacos; Pilakoutas, Kypros; Hadjimitsis, Diofantos G.

    2014-08-01

    The predominant approach for conducting road condition surveys and analyses is still largely based on extensive field observations. However, visual assessment alone cannot identify the actual extent and severity of damage. New non-invasive and cost-effective non-destructive (NDT) remote sensing technologies can be used to monitor road pavements across their life cycle, including remotely sensed aerial and satellite visual and thermal image (AI) data, Unmanned Aerial Vehicles (UAVs), Spectroscopy and Ground Penetrating Radar (GRP). These non-contact techniques can be used to obtain surface and sub-surface information about damage in road pavements, including the crack depth, and in-depth structural failure. Thus, a smart and cost-effective methodology is required that integrates several of these non-destructive/ no-contact techniques for the damage assessment and monitoring at different levels. This paper presents an overview of how an integration of the above technologies can be used to conduct detailed road condition surveys. The proposed approach can also be used to predict the future needs for road maintenance; this information is proven to be valuable to a strategic decision making tools that optimizes maintenance based on resources and environmental issues.

  5. Transcranial Magnetic Stimulation: An Automated Procedure to Obtain Coil-specific Models for Field Calculations.

    PubMed

    Madsen, Kristoffer H; Ewald, Lars; Siebner, Hartwig R; Thielscher, Axel

    2015-01-01

    Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector potential of the TMS coils. To develop an approach to reconstruct the magnetic vector potential based on automated measurements. We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel approach to determine the magnetic vector potential via volume integration of the measured field. The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well with that calculated using a model reconstructed from x-ray images. The setup can supply validated models for existing and newly appearing TMS coils. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Non-ideal energy conversion during asymmetric magnetic reconnection with a moderate guide field

    NASA Astrophysics Data System (ADS)

    Genestreti, K. J.; Varsani, A.; Hesse, M.; Torbert, R. B.; Burch, J.; Cassak, P.; Ergun, R.; Phan, T.; Nakamura, R.; Giles, B. L.; Schwartz, S. J.; Wang, S.; Toledo Redondo, S.; Hwang, K. J.; Laignel, B.; Escoubet, C. P.; Fear, R. C.; Khotyaintsev, Y. V.

    2017-12-01

    Using data from NASA's Magnetospheric Multiscale (MMS) mission, we investigate the local (in time and space) rate of work done by the non-ideal electric field on the plasma during a crossing through the magnetopause reconnection region. The four MMS spacecraft were in a tight tetrahedral formation ( 7 km separation) and observed several ion and electron-scale signatures of asymmetric reconnection, one of which was J.E' (=J.(E+vexB))>0. The data indicate that the magnetic field was expending energy both (1) near the magnetosphere-side separator, where the current was carried by counter-streaming electrons with crescent-shaped velocity distribution functions, and (2) near the magnetic X-point, where the current was carried by accelerated inflowing magnetosheath electrons moving against the guide field. Near the X-point, the current-aligned portion of the non-ideal electric field is largely a result of electron pressure divergence. We further investigate the pressure tensor divergence, separating the components from in and out-of-the-plane gradients as well as gyrotropic and non-gyrotropic pressures.

  7. Dephasing in a 5/2 quantum Hall Mach-Zehnder interferometer due to the presence of neutral edge modes

    NASA Astrophysics Data System (ADS)

    Dinaii, Yehuda; Goldstein, Moshe; Gefen, Yuval

    Non-Abelian statistics is an intriguing feature predicted to characterize quasiparticles in certain topological phases of matter. This property is both fascinating on the theoretical side and the key ingredient for the implementation of future topological quantum computers. A smoking gun manifestation of non-Abelian statistics consists of demonstrating that braiding of quasiparticles leads to transitions among different states in the relevant degenerate Hilbert manifold. This can be achieved utilizing a Mach-Zehnder interferometer, where Coulomb effects can be neglected, and the electric current is expected to carry clear signatures of non-Abelianity. Here we argue that attempts to measure non-Abelian statistics in the prominent quantum Hall fraction of 5/2 may fail; this can be understood by studying the corresponding edge theory at finite temperatures and bias. We find that the presence of neutral modes imposes stronger limitations on the experimental conditions as compared to quantum Hall states that do not support neutral edge modes. We discuss how to overcome this hindrance. Interestingly, neutral-mode-induced dephasing can be quite different in the Pfaffian state as compared to the anti-Pfaffian state, if the neutral and charge velocities are comparable.

  8. Holographic non-Fermi liquid in a background magnetic field

    NASA Astrophysics Data System (ADS)

    Basu, Pallab; He, Jianyang; Mukherjee, Anindya; Shieh, Hsien-Hang

    2010-08-01

    We study the effects of a nonzero magnetic field on a class of 2+1 dimensional non-Fermi liquids, recently found in [Hong Liu, John McGreevy, and David Vegh, arXiv:0903.2477.] by considering properties of a Fermionic probe in an extremal AdS4 black hole background. Introducing a similar fermionic probe in a dyonic AdS4 black hole geometry, we find that the effect of a magnetic field could be incorporated in a rescaling of the probe fermion’s charge. From this simple fact, we observe interesting effects like gradual disappearance of the Fermi surface and quasiparticle peaks at large magnetic fields and changes in other properties of the system. We also find Landau level like structures and oscillatory phenomena similar to the de-Haas-van Alphen effect.

  9. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE PAGES

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; ...

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  10. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  11. Radiation drag in the field of a non-spherical source

    NASA Astrophysics Data System (ADS)

    Bini, D.; Geralico, A.; Passamonti, A.

    2015-01-01

    The motion of a test particle in the gravitational field of a non-spherical source endowed with both mass and mass quadrupole moment is investigated when a test radiation field is also present. The background is described by the Erez-Rosen solution, which is a static space-time belonging to the Weyl class of solutions to the vacuum Einstein's field equations, and reduces to the familiar Schwarzschild solution when the quadrupole parameter vanishes. The radiation flux has a fixed but arbitrary (non-zero) angular momentum. The interaction with the radiation field is assumed to be Thomson-like, i.e. the particles absorb and re-emit radiation, thus suffering for a friction-like drag force. Such an additional force is responsible for the Poynting-Robertson effect, which is well established in the framework of Newtonian gravity and has been recently extended to the general theory of relativity. The balance between gravitational attraction, centrifugal force and radiation drag leads to the occurrence of equilibrium circular orbits which are attractors for the surrounding matter for every fixed value of the interaction strength. The presence of the quadrupolar structure of the source introduces a further degree of freedom: there exists a whole family of equilibrium orbits parametrized by the quadrupole parameter, generalizing previous works. This scenario is expected to play a role in the context of accretion matter around compact objects.

  12. New Metrics from a Fractional Gravitational Field

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2017-09-01

    Agop et al. proved in Commun. Theor. Phys. (2008) that, a Reissner-Nordstrom type metric is obtained, if gauge gravitational field in a fractal spacetime is constructed by means of concepts of scale relativity. We prove in this short communication that similar result is obtained if gravity in D-spacetime dimensions is fractionalized by means of the Glaeske-Kilbas-Saigo fractional. Besides, non-singular gravitational fields are obtained without using extra-dimensions. We present few examples to show that these gravitational fields hold a number of motivating features in spacetime physics.

  13. NON-POTENTIAL FIELDS IN THE QUIET SUN NETWORK: EXTREME-ULTRAVIOLET AND MAGNETIC FOOTPOINT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.

    The quiet Sun (QS) magnetic network is known to contain dynamics which are indicative of non-potential fields. Non-potential magnetic fields forming ''S-shaped'' loop arcades can lead to the breakdown of static activity and have only been observed in high temperature X-ray coronal structures—some of which show eruptive behavior. Thus, analysis of this type of atmospheric structuring has been restricted to large-scale coronal fields. Here we provide the first identification of non-potential loop arcades exclusive to the QS supergranulation network. High-resolution Atmospheric Imaging Assembly data from the Solar Dynamics Observatory have allowed for the first observations of fine-scale ''S-shaped'' loop arcadesmore » spanning the network. We have investigated the magnetic footpoint flux evolution of these arcades from Heliospheric and Magnetic Imager data and find evidence of evolving footpoint flux imbalances accompanying the formation of these non-potential fields. The existence of such non-potentiality confirms that magnetic field dynamics leading to the build up of helicity exist at small scales. QS non-potentiality also suggests a self-similar formation process between the QS network and high temperature corona and the existence of self-organized criticality (SOC) in the form of loop-pair reconnection and helicity dissipation. We argue that this type of behavior could lead to eruptive forms of SOC as seen in active region (AR) and X-ray sigmoids if sufficient free magnetic energy is available. QS magnetic network dynamics may be considered as a coronal proxy at supergranular scales, and events confined to the network can even mimic those in coronal ARs.« less

  14. Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field

    NASA Technical Reports Server (NTRS)

    Chang, Shinan; Herman, Cila; Iacona, Estelle

    2002-01-01

    The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.

  15. Ultra-high-field magnetic resonance spectroscopy in non-alcoholic fatty liver disease: Novel mechanistic and diagnostic insights of energy metabolism in non-alcoholic steatohepatitis and advanced fibrosis.

    PubMed

    Traussnigg, Stefan; Kienbacher, Christian; Gajdošík, Martin; Valkovič, Ladislav; Halilbasic, Emina; Stift, Judith; Rechling, Christian; Hofer, Harald; Steindl-Munda, Petra; Ferenci, Peter; Wrba, Fritz; Trattnig, Siegfried; Krššák, Martin; Trauner, Michael

    2017-10-01

    With the rising prevalence of non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) non-invasive tools obtaining pathomechanistic insights to improve risk stratification are urgently needed. We therefore explored high- and ultra-high-field magnetic resonance spectroscopy (MRS) to obtain novel mechanistic and diagnostic insights into alterations of hepatic lipid, cell membrane and energy metabolism across the spectrum of NAFLD. MRS and liver biopsy were performed in 30 NAFLD patients with NAFL (n=8) or NASH (n=22). Hepatic lipid content and composition were measured using 3-Tesla proton ( 1 H)-MRS. 7-Tesla phosphorus ( 31 P)-MRS was applied to determine phosphomonoester (PME) including phosphoethanolamine (PE), phosphodiester (PDE) including glycerophosphocholine (GPC), phosphocreatine (PCr), nicotinamide adenine dinucleotide phosphate (NADPH), inorganic phosphate (Pi), γ-ATP and total phosphorus (TP). Saturation transfer technique was used to quantify hepatic ATP flux. Hepatic steatosis in 1 H-MRS highly correlated with histology (P<.001) showing higher values in NASH than NAFL (P<.001) without differences in saturated or unsaturated fatty acid indices. PE/TP ratio increased with advanced fibrosis (F3/4) (P=.002) whereas GPC/PME+PDE decreased (P=.05) compared to no/mild fibrosis (F0-2). γ-ATP/TP was lower in advanced fibrosis (P=.049), while PCr/TP increased (P=.01). NADPH/TP increased with higher grades of ballooning (P=.02). Pi-to-ATP exchange rate constant (P=.003) and ATP flux (P=.001) were lower in NASH than NAFL. Ultra-high-field MRS, especially saturation transfer technique uncovers changes in energy metabolism including dynamic ATP flux in inflammation and fibrosis in NASH. Non-invasive profiling by MRS appears feasible and may assist further mechanistic and therapeutic studies in NAFLD/NASH. © 2017 The Authors Liver International Published by John Wiley & Sons Ltd.

  16. Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds

    NASA Astrophysics Data System (ADS)

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-06-01

    We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space-time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are "twisted" by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical "locally-geometric" U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are "locally non-geometric".

  17. Cartan gravity, matter fields, and the gauge principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westman, Hans F., E-mail: hwestman74@gmail.com; Zlosnik, Tom G., E-mail: t.zlosnik@imperial.ac.uk

    Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top ofmore » it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are

  18. Digital lattice gauge theories

    NASA Astrophysics Data System (ADS)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.

  19. Multi-point observations of large-amplitude electric fields during substorms obtained by THEMIS

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Kasaba, Y.; Nishimura, Y.; Hori, T.; Takada, T.; Miyashita, Y.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.

    2009-12-01

    Large-amplitude electric fields over 100 mV/m have been observed around the equatorial magnetosphere. These electric fields may contribute to energy transport and particle acceleration in the magnetosphere [e.g., Wygant et al., 2000, 2002], and seem to be related to fast plasma flows with a size of a few Re [Nakamura et al., 2001]. In order to understand their macroscopic characteristics and the effects to magnetic activities, it is important to observe both fields and particles simultaneously at multiple locations within several Re. Five THEMIS probes can frequently provide such chances. In this paper, we show the several events with large-amplitude electric fields during substorms obtained by THEMIS. One of the events is found in 05:50-06:00 UT on 11 March 2008, when TH-D (Xsm=-10.7 Re, Ysm=4.8 Re) and TH-E (Xsm=-10.3 Re, Ysm=5.6 Re) observed intense electric fields. At 05:54 UT, THEMIS GBO-s clearly showed the auroral onset signature. The great intensification was near the SNKQ station, and this structure moved westward with the speed of ~6 km/s. It corresponds to ~200 km/s, as mapped to the TH-D/E location. The footprints of TH-A (Xsm=-6.8 Re, Ysm=-0.4 Re), D, and E were close to the site of the aurora. The location of TH-D was beside that of TH-E, and TH-A was located earthward and eastward from the former two. The enhanced electric fields observed by TH-D and E were associated with magnetic dipolarization and earthward high-speed plasma flow. They were also associated with the depletion of electron density estimated by the spacecraft potential. These features are consistent with the model of plasma bubbles [e.g., Pontius and Wolf, 1990]. The Y components of plasma flows were 200-300 km/s, roughly consistent with the westward auroral motion as mapped to the equatorial magnetosphere. Also, we found that Poynting flux of low frequency was efficient to illuminate the auroral emissions. This fact suggests that electromagnetic energy is transported to the

  20. Pioneer Design of Non-contact Synchronized Measurement Devices Using Electric and Magnetic Field Sensors

    DOE PAGES

    Yao, Wenxuan; Zhang, Yingchen; Liu, Yong; ...

    2017-04-10

    Traditional synchrophasors rely on CTs and PTs physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMD), including an electric field sensor based non-contact SMD (E-NCSMD) and a magnetic field sensor based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployedmore » and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD.« less

  1. Pioneer Design of Non-contact Synchronized Measurement Devices Using Electric and Magnetic Field Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Wenxuan; Zhang, Yingchen; Liu, Yong

    Traditional synchrophasors rely on CTs and PTs physically connected to transmission lines or buses to acquire input signals for phasor measurement. However, it is challenging to install and maintain traditional phasor measurement units in some remote areas due to lack of facilities. Since transmission lines naturally generate alternating electrical and magnetic fields in the surrounding atmosphere, this paper presents two innovative designs for non-contact synchronized measurement devices (NCSMD), including an electric field sensor based non-contact SMD (E-NCSMD) and a magnetic field sensor based non-contact SMD (M-NCSMD). Compared with conventional synchrophasors, E-NCSMD and M-NCSMD are much more flexible to be deployedmore » and have much lower costs, making E-NCSMDs and M-NCSMD highly accessible and useful for a wide array of phasor measurement applications. Laboratory and field experiment results verified the effectiveness of the designs of both E-NCSMD and M-NCSMD.« less

  2. THE MAGNETIC FIELD OF L1544. I. NEAR-INFRARED POLARIMETRY AND THE NON-UNIFORM ENVELOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, Dan P.; Tassis, K.; Goldsmith, Paul F., E-mail: clemens@bu.edu, E-mail: tassis@physics.uoc.gr, E-mail: paul.f.goldsmith@jpl.nasa.gov

    2016-12-20

    The magnetic field ( B -field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B -field. NIR linear polarization measurements of over 1700 stars were obtained in the H band and 201 of these were also measured in the K band. The NIR BSP properties are correlated with reddening, as traced using the Rayleigh–Jeans color excess ( H – M ) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarizationmore » position angles change at the location of the cloud and exhibit their lowest dispersion there, offering strong evidence that NIR polarization traces the plane-of-sky B -field of L1544. In this paper, the uniformity of the plane-of-sky B -field in the envelope region of L1544 is quantitatively assessed. This allows evaluation of the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the radio Zeeman observations in the envelope, as done by Crutcher et al. In L1544, the NIR BSP shows the envelope B -field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B -field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.« less

  3. Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasilov, Sergei V.; Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov; Kernbichler, Winfried

    2014-09-15

    The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such thatmore » the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.« less

  4. New method for solving inductive electric fields in the non-uniformly conducting ionosphere

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.; Amm, O.; Viljanen, A.

    2006-10-01

    We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.

  5. Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states.

    PubMed

    Li, Hui; Haldane, F D M

    2008-07-04

    We study the "entanglement spectrum" (a presentation of the Schmidt decomposition analogous to a set of "energy levels") of a many-body state, and compare the Moore-Read model wave function for the nu=5/2 fractional quantum Hall state with a generic 5/2 state obtained by finite-size diagonalization of the second-Landau-level-projected Coulomb interactions. Their spectra share a common "gapless" structure, related to conformal field theory. In the model state, these are the only levels, while in the "generic" case, they are separated from the rest of the spectrum by a clear "entanglement gap", which appears to remain finite in the thermodynamic limit. We propose that the low-lying entanglement spectrum can be used as a "fingerprint" to identify topological order.

  6. Numerical Calculation of Non-uniform Magnetization Using Experimental Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Jhun, Bukyoung; Jhun, Youngseok; Kim, Seung-wook; Han, JungHyun

    2018-05-01

    A relation between the distance from the surface of a magnet and the number of cells required for a numerical calculation in order to secure the error below a certain threshold is derived. We also developed a method to obtain the magnetization at each part of the magnet from the experimentally measured magnetic field. This method is applied to three magnets with distinct patterns on magnetic-field-viewing film. Each magnet showed a unique pattern of magnetization. We found that the magnet that shows symmetric magnetization on the magnetic-field-viewing film is not uniformly magnetized. This method can be useful comparing the magnetization between magnets that yield typical magnetic field and those that yield atypical magnetic field.

  7. A method for real time detecting of non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Marusenkov, Andriy

    2015-04-01

    The principle of measuring magnetic signatures for observing diverse objects is widely used in Near Surface work (unexploded ordnance (UXO); engineering & environmental; archaeology) and security and vehicle detection systems as well. As a rule, the magnitude of the signals to be measured is much lower than that of the quasi-uniform Earth magnetic field. Usually magnetometers for these purposes contain two or more spatially separated sensors to estimate the full tensor gradient of the magnetic field or, more frequently, only partial gradient components. The both types (scalar and vector) of magnetic sensors could be used. The identity of the scale factors and proper alignment of the sensitivity axes of the vector sensors are very important for deep suppression of the ambient field and detection of weak target signals. As a rule, the periodical calibration procedure is used to keep matching sensors' parameters as close as possible. In the present report we propose the technique for detection magnetic anomalies, which is almost insensitive to imperfect matching of the sensors. This method based on the idea that the difference signals between two sensors are considerably different when the instrument is rotated or moved in uniform and non-uniform fields. Due to the misfit of calibration parameters the difference signal observed at the rotation in the uniform field is similar to the total signal - the sum of the signals of both sensors. Zero change of the difference and total signals is expected, if the instrument moves in the uniform field along a straight line. In contrast, the same move in the non-uniform field produces some response of each of the sensors. In case one measures dB/dx and moves along x direction, the sensors signals is shifted in time with the lag proportional to the distance between sensors and the speed of move. It means that the difference signal looks like derivative of the total signal at move in the non-uniform field. So, using quite simple

  8. Intersecting solitons, amoeba, and tropical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimori, Toshiaki; Nitta, Muneto; Ohta, Kazutoshi

    2008-11-15

    We study the generic intersection (or web) of vortices with instantons inside, which is a 1/4 Bogomol'nyi-Prasad-Sommerfield state in the Higgs phase of five-dimensional N=1 supersymmetric U(N{sub C}) gauge theory on R{sub t}x(C*){sup 2}{approx_equal}R{sup 2,1}xT{sup 2} with N{sub F}=N{sub C} Higgs scalars in the fundamental representation. In the case of the Abelian-Higgs model (N{sub F}=N{sub C}=1), the intersecting vortex sheets can be beautifully understood in a mathematical framework of amoeba and tropical geometry, and we propose a dictionary relating solitons and gauge theory to amoeba and tropical geometry. A projective shape of vortex sheets is described by the amoeba. Vortexmore » charge density is uniformly distributed among vortex sheets, and negative contribution to instanton charge density is understood as the complex Monge-Ampere measure with respect to a plurisubharmonic function on (C*){sup 2}. The Wilson loops in T{sup 2} are related with derivatives of the Ronkin function. The general form of the Kaehler potential and the asymptotic metric of the moduli space of a vortex loop are obtained as a by-product. Our discussion works generally in non-Abelian gauge theories, which suggests a non-Abelian generalization of the amoeba and tropical geometry.« less

  9. The non-Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field. [in ocean surface

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.

    1984-01-01

    On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.

  10. A comparison of spider communities in Bt and non-Bt rice fields.

    PubMed

    Lee, Sue Yeon; Kim, Seung Tae; Jung, Jong Kook; Lee, Joon-Ho

    2014-06-01

    To assess the potential adverse effects of a Bt rice line (Japonica rice cultivar, Nakdong) expressing a synthetic cry1Ac1 gene, C7-1-9-1-B, which was highly active against all larval stages of Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae), we investigated the community structure of spiders in Bt and non-Bt rice fields during the rice-growing season in 2007 and 2008 in Chungcheongnam-do, Korea. Spiders were surveyed with a sweep net and suction device. Suction sampling captured more spiders, measured in terms of species level and abundance, than sweeping. Araneidae and Thomisidae were captured more by sweeping, and certain species were captured only by sweeping. These findings show that both suction and sweep sampling methods should be used because these methods are most likely complementary. In total, 29 species in 23 genera and nine families were identified from the 4,937 spiders collected, and both Bt and non-Bt rice fields showed a typical Korean spider assemblage. The temporal patterns of spider species richness and spider abundance were very similar between Bt and non-Bt rice, although significant differences in species richness were observed on a few occasions. Overall, spider community structure, including diversity, the dominant species, and abundance did not differ between Bt and non-Bt rice. The results of the study indicated that the transgenic Cry1Ac rice lines tested in this study had no adverse effects on the spider community structure of the rice fields.

  11. Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles

    PubMed Central

    Meyer, Arne F.; Diepenbrock, Jan-Philipp; Happel, Max F. K.; Ohl, Frank W.; Anemüller, Jörn

    2014-01-01

    Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and

  12. Discriminative learning of receptive fields from responses to non-Gaussian stimulus ensembles.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Happel, Max F K; Ohl, Frank W; Anemüller, Jörn

    2014-01-01

    Analysis of sensory neurons' processing characteristics requires simultaneous measurement of presented stimuli and concurrent spike responses. The functional transformation from high-dimensional stimulus space to the binary space of spike and non-spike responses is commonly described with linear-nonlinear models, whose linear filter component describes the neuron's receptive field. From a machine learning perspective, this corresponds to the binary classification problem of discriminating spike-eliciting from non-spike-eliciting stimulus examples. The classification-based receptive field (CbRF) estimation method proposed here adapts a linear large-margin classifier to optimally predict experimental stimulus-response data and subsequently interprets learned classifier weights as the neuron's receptive field filter. Computational learning theory provides a theoretical framework for learning from data and guarantees optimality in the sense that the risk of erroneously assigning a spike-eliciting stimulus example to the non-spike class (and vice versa) is minimized. Efficacy of the CbRF method is validated with simulations and for auditory spectro-temporal receptive field (STRF) estimation from experimental recordings in the auditory midbrain of Mongolian gerbils. Acoustic stimulation is performed with frequency-modulated tone complexes that mimic properties of natural stimuli, specifically non-Gaussian amplitude distribution and higher-order correlations. Results demonstrate that the proposed approach successfully identifies correct underlying STRFs, even in cases where second-order methods based on the spike-triggered average (STA) do not. Applied to small data samples, the method is shown to converge on smaller amounts of experimental recordings and with lower estimation variance than the generalized linear model and recent information theoretic methods. Thus, CbRF estimation may prove useful for investigation of neuronal processes in response to natural stimuli and

  13. Magnetic monopole versus vortex as gauge-invariant topological objects for quark confinement

    NASA Astrophysics Data System (ADS)

    Kondo, Kei-Ichi; Sasago, Takaaki; Shinohara, Toru; Shibata, Akihiro; Kato, Seikou

    2017-12-01

    First, we give a gauge-independent definition of chromomagnetic monopoles in SU(N) Yang-Mills theory which is derived through a non-Abelian Stokes theorem for the Wilson loop operator. Then we discuss how such magnetic monopoles can give a nontrivial contribution to the Wilson loop operator for understanding the area law of the Wilson loop average. Next, we discuss how the magnetic monopole condensation picture are compatible with the vortex condensation picture as another promising scenario for quark confinement. We analyze the profile function of the magnetic flux tube as the non-Abelian vortex solution of U(N) gauge-Higgs model, which is to be compared with numerical simulations of the SU(N) Yang-Mills theory on a lattice. This analysis gives an estimate of the string tension based on the vortex condensation picture, and possible interactions between two non-Abelian vortices.

  14. Bayesian approach to non-Gaussian field statistics for diffusive broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2005-11-01

    We develop a closed-form expression for the probability distribution function for the field components of a diffusive broadband wave propagating through a random medium. We consider each spectral component to provide an individual observation of a random variable, the configurationally averaged spectral intensity. Since the intensity determines the variance of the field distribution at each frequency, this random variable serves as the Bayesian prior that determines the form of the non-Gaussian field statistics. This model agrees well with experimental results.

  15. Infrared problem in non-Abelian gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Y.

    1976-03-22

    I extend the Bloch--Nordsieck idea to show that in the lowest nontrivial order of radiative correction the fermion--fermion and gauge-meson--fermion scattering rates are finite, provided that they are averaged over the initial and summed over the final internal spin states. Questions of the physical gauge coupling and infrared slavery are discussed. (AIP)

  16. Non-Abelian vortices of higher winding numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Minoru; Konishi, Kenichi; Vinci, Walter

    2006-09-15

    We make a detailed study of the moduli space of winding number two (k=2) axially symmetric vortices (or equivalently, of coaxial composite of two fundamental vortices), occurring in U(2) gauge theory with two flavors in the Higgs phase, recently discussed by Hashimoto and Tong and by Auzzi, Shifman, and Yung. We find that it is a weighted projective space WCP{sub (2,1,1)}{sup 2}{approx_equal}CP{sup 2}/Z{sub 2}. This manifold contains an A{sub 1}-type (Z{sub 2}) orbifold singularity even though the full moduli space including the relative position moduli is smooth. The SU(2) transformation properties of such vortices are studied. Our results are thenmore » generalized to U(N) gauge theory with N flavors, where the internal moduli space of k=2 axially symmetric vortices is found to be a weighted Grassmannian manifold. It contains singularities along a submanifold.« less

  17. Effect of Fluid Bypassing on the Experimentally Obtained Darcy and Non-Darcy Permeability Parameters of Ceramic Foam Filters

    NASA Astrophysics Data System (ADS)

    Akbarnejad, Shahin; Saffari Pour, Mohsen; Jonsson, Lage Tord Ingemar; Jönsson, Pӓr Göran

    2017-02-01

    Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.

  18. Algebraic integrability: a survey.

    PubMed

    Vanhaecke, Pol

    2008-03-28

    We give a concise introduction to the notion of algebraic integrability. Our exposition is based on examples and phenomena, rather than on detailed proofs of abstract theorems. We mainly focus on algebraic integrability in the sense of Adler-van Moerbeke, where the fibres of the momentum map are affine parts of Abelian varieties; as it turns out, most examples from classical mechanics are of this form. Two criteria are given for such systems (Kowalevski-Painlevé and Lyapunov) and each is illustrated in one example. We show in the case of a relatively simple example how one proves algebraic integrability, starting from the differential equations for the integrable vector field. For Hamiltonian systems that are algebraically integrable in the generalized sense, two examples are given, which illustrate the non-compact analogues of Abelian varieties which typically appear in such systems.

  19. A computational study of the effects of DC electric fields on non-premixed counterflow methane-air flames

    NASA Astrophysics Data System (ADS)

    Belhi, Memdouh; Lee, Bok Jik; Bisetti, Fabrizio; Im, Hong G.

    2017-12-01

    Two-dimensional axisymmetric simulations for counterflow non-premixed methane-air flames were undertaken as an attempt to reproduce the experimentally observed electro-hydrodynamic effect, also known as the ionic wind effect, on flames. Incompressible fluid dynamic solver was implemented with a skeletal chemical kinetic mechanism and transport property evaluations. The simulation successfully reproduced the key characteristics of the flames subjected to DC bias voltages at different intensity and polarity. Most notably, the simulation predicted the flame positions and showed good qualitative agreement with experimental data for the current-voltage curve. The flame response to the electric field with positive and negative polarity exhibited qualitatively different characteristics. In the negative polarity of the configuration considered, a non-monotonic variation of the current with the voltage was observed, along with the existence of an unstable regime at an intermediate voltage level. With positive polarity, a typical monotonic current-voltage curve was obtained. This behavior was attributed to the asymmetry in the distribution of the positive and negative ions resulting from ionization processes. The present study demonstrated that the mathematical and computational models for the ion chemistry, transport, and fluid dynamics were able to describe the key processes responsible for the flame-electric field interaction.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faizal, Mir, E-mail: f2mir@uwaterloo.ca; Majumder, Barun, E-mail: barunbasanta@iitgn.ac.in

    In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.

  1. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.

    PubMed

    Buican, Matthew; Laczko, Zoltan

    2018-02-23

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  2. Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories

    NASA Astrophysics Data System (ADS)

    Buican, Matthew; Laczko, Zoltan

    2018-02-01

    In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.

  3. Comparison of NDVI fields obtained from different remote sensors

    NASA Astrophysics Data System (ADS)

    Escribano Rodriguez, Juan; Alonso, Carmelo; Tarquis, Ana Maria; Benito, Rosa Maria; Hernandez Díaz-Ambrona, Carlos

    2013-04-01

    Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a

  4. Generation of large-scale magnetic fields, non-Gaussianity, and primordial gravitational waves in inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu

    2015-02-01

    The generation of large-scale magnetic fields in inflationary cosmology is explored, in particular, in a kind of moduli inflation motivated by racetrack inflation in the context of the type IIB string theory. In this model, the conformal invariance of the hypercharge electromagnetic fields is broken thanks to the coupling of both the scalar and pseudoscalar fields to the hypercharge electromagnetic fields. The following three cosmological observable quantities are first evaluated: the current magnetic field strength on the Hubble horizon scale, which is much smaller than the upper limit from the backreaction problem, local non-Gaussianity of the curvature perturbations due to the existence of the massive gauge fields, and the tensor-to-scalar ratio. It is explicitly demonstrated that the resultant values of local non-Gaussianity and the tensor-to-scalar ratio are consistent with the Planck data.

  5. On synthetic gravitational waves from multi-field inflation

    NASA Astrophysics Data System (ADS)

    Ozsoy, Ogan

    2018-04-01

    We revisit the possibility of producing observable tensor modes through a continuous particle production process during inflation. Particularly, we focus on the multi-field realization of inflation where a spectator pseudoscalar σ induces a significant amplification of the U(1) gauge fields through the coupling propto σFμνtilde Fμν. In this model, both the scalar σ and the Abelian gauge fields are gravitationally coupled to the inflaton sector, therefore they can only affect the primordial scalar and tensor fluctuations through their mixing with gravitational fluctuations. Recent studies on this scenario show that the sourced contributions to the scalar correlators can be dangerously large to invalidate a large tensor power spectrum through the particle production mechanism. In this paper, we re-examine these recent claims by explicitly calculating the dominant contribution to the scalar power and bispectrum. Particularly, we show that once the current limits from CMB data are taken into account, it is still possible to generate a signal as large as r ≈ 10‑3 and the limitations on the model building are more relaxed than what was considered before.

  6. Relationships between soil parameters and vegetation in abandoned terrace fields vs. non-terraced fields in arid lands (Lanzarote, Spain): An opportunity for restoration

    NASA Astrophysics Data System (ADS)

    Arévalo, José Ramón; Fernández-Lugo, Silvia; Reyes-Betancort, J. Alfredo; Tejedor, Marisa; Jiménez, Concepción; Díaz, Francisco J.

    2017-11-01

    Over 90% of terraced fields have been abandoned on the island of Lanzarote in the last 40 years. The present work analyses the effects of abandonment on the soil and vegetation recovery of terraced field agroecosystems by comparing them with adjacent non-terraced fields in Lanzarote, Canary Islands (Spain). This information is necessary to take the appropriate management actions to achieve goals such as soil protection and biodiversity conservation. Results indicate that terraced fields display better soil quality than non-terraced ones, as shown by the significant differences found in parameters such as SAR, exchangeable Na, CaCO3, B content, moisture content or soil depth. Moreover, the terraced fields' plant community has more species similarities with the native plant community when compared with non-terraced areas. Owing to characteristics such as deeper soils, more water capacity, lower salinity and less sodic soils, terraced soils provide better conditions for passive restoration of both soil and vegetation. Therefore, the recovery and maintenance of wall structures and revegetation with native/endemic species are proposed to promote the restoration of native systems and preserve a landscape with cultural and aesthetic value.

  7. Non-modal theory of the kinetic ion temperature gradient driven instability of plasma shear flows across the magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Lee, Hae June, E-mail: haejune@pusan.ac.kr

    2016-06-15

    The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. Themore » solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.« less

  8. A method for the estimate of the wall diffusion for non-axisymmetric fields using rotating external fields

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Olofsson, K. E. J.; Fridström, R.; Setiadi, A. C.; Brunsell, P. R.; Volpe, F. A.; Drake, J.

    2013-08-01

    A new method for the estimate of the wall diffusion time of non-axisymmetric fields is developed. The method based on rotating external fields and on the measurement of the wall frequency response is developed and tested in EXTRAP T2R. The method allows the experimental estimate of the wall diffusion time for each Fourier harmonic and the estimate of the wall diffusion toroidal asymmetries. The method intrinsically considers the effects of three-dimensional structures and of the shell gaps. Far from the gaps, experimental results are in good agreement with the diffusion time estimated with a simple cylindrical model that assumes a homogeneous wall. The method is also applied with non-standard configurations of the coil array, in order to mimic tokamak-relevant settings with a partial wall coverage and active coils of large toroidal extent. The comparison with the full coverage results shows good agreement if the effects of the relevant sidebands are considered.

  9. Extrapolating non-target risk of Bt crops from laboratory to field

    USDA-ARS?s Scientific Manuscript database

    The tiered approach to assessing the ecological risk of insect-resistant transgenic crops rests on the assumption that lower-tier laboratory studies, which expose surrogate non-target organisms to insecticidal proteins, accurately predict the ecological effects of these crops under field conditions....

  10. Formulation of strongly non-local, non-isothermal dynamics for heterogeneous solids based on the GENERIC with application to phase-field modeling

    NASA Astrophysics Data System (ADS)

    Hütter, Markus; Svendsen, Bob

    2017-12-01

    The purpose of the current work is the formulation of models for conservative and non-conservative dynamics in solid systems with the help of the General Equation for the Non-Equilibrium Reversible-Irreversible Coupling (GENERIC: e.g., Grmela and Öttinger, Phys. Rev. E 56(6), 6620 (1997); Öttinger and Grmela, Phys. Rev. E 56(6), 6633 (1997)). In this context, the resulting models are inherently spatially strongly non-local (i.e., functional) and non-isothermal in character. They are applicable in particular to the modeling of phase transitions as well as mass and heat transport in multiphase, multicomponent solids. In the last part of the work, the strongly non-local model formulation is reduced to weakly non-local form with the help of generalized gradient approximation of the energy and entropy functionals. On this basis, the current model formulation is shown to be consistent with and reduce to a recent non-isothermal generalization (Gladkov et al., J. Non-Equilib. Thermodyn. 41(2), 131 (2016)) of the well-known phase-field models of Cahn and Hilliard (J. Chem. Phys. 28(2), 258 (1958)) for conservative dynamics and of Allen and Cahn (Acta Metall. 27(6), 1085 (1979)) for non-conservative dynamics. Finally, the current approach is applied to derive a non-isothermal generalization of a phase-field crystal model for binary alloys (see, e.g., Elder et al., Phys. Rev. B 75(6), 064107 (2007)).

  11. Inhomogeneous Einstein-Rosen string cosmology

    NASA Astrophysics Data System (ADS)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-08-01

    Families of anisotropic and inhomogeneous string cosmologies containing non-trivial dilaton and axion fields are derived by applying the global symmetries of the string effective action to a generalized Einstein-Rosen metric. The models exhibit a two-dimensional group of Abelian isometries. In particular, two classes of exact solutions are found that represent inhomogeneous generalizations of the Bianchi type VIh cosmology. The asymptotic behavior of the solutions is investigated and further applications are briefly discussed.

  12. Gauge-flation and cosmic no-hair conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maleknejad, A.; Sheikh-Jabbari, M.M.; Soda, Jiro, E-mail: azade@ipm.ir, E-mail: jabbari@theory.ipm.ac.ir, E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2012-01-01

    Gauge-flation, inflation from non-Abelian gauge fields, was introduced in [1, 2]. In this work, we study the cosmic no-hair conjecture in gauge-flation. Starting from Bianchi-type I cosmology and through analytic and numeric studies we demonstrate that the isotropic FLRW inflation is an attractor of the dynamics of the theory and that the anisotropies are damped within a few e-folds, in accord with the cosmic no-hair conjecture.

  13. Non-Gaussianities in a two-field generalization of natural inflation

    NASA Astrophysics Data System (ADS)

    Riquelme M., Simon

    2018-04-01

    We describe a two-field model that generalizes natural inflation, in which the inflaton is the pseudo-Goldstone boson of an approximate symmetry that is spontaneously broken, and the radial mode is dynamical. We analyze how the dynamics fundamentally depends on the mass of the radial mode and calculate/estimate the non-Gaussianities arising from such a scenario.

  14. Far-Field High-Energy Diffraction Microscopy: A Non-Destructive Tool for Characterizing the Microstructure and Micromechanical State of Polycrystalline Materials

    DOE PAGES

    Park, Jun-Sang; Zhang, Xuan; Kenesei, Peter; ...

    2017-08-31

    A suite of non-destructive, three-dimensional X-ray microscopy techniques have recently been developed and used to characterize the microstructures of polycrystalline materials. These techniques utilize high-energy synchrotron radiation and include near-field and far-field diffraction microscopy (NF- and FF-HEDM, respectively) and absorption tomography. Several compatible sample environments have also been developed, enabling a wide range of 3D studies of material evolution. In this article, the FF-HEDM technique is described in detail, including its implementation at the 1-ID beamline of the Advanced Photon Source. Examples of how the information obtained from FF-HEDM can be used to deepen our understanding of structure-property-processing relationships inmore » selected materials are presented.« less

  15. Exact results for the star lattice chiral spin liquid

    NASA Astrophysics Data System (ADS)

    Kells, G.; Mehta, D.; Slingerland, J. K.; Vala, J.

    2010-03-01

    We examine the star lattice Kitaev model whose ground state is a chiral spin liquid. We fermionize the model such that the fermionic vacua are toric-code states on an effective Kagome lattice. This implies that the Abelian phase of the system is inherited from the fermionic vacua and that time-reversal symmetry is spontaneously broken at the level of the vacuum. In terms of these fermions we derive the Bloch-matrix Hamiltonians for the vortex-free sector and its time-reversed counterpart and illuminate the relationships between the sectors. The phase diagram for the model is shown to be a sphere in the space of coupling parameters around the triangles of the lattices. The Abelian phase lies inside the sphere and the critical boundary between topologically distinct Abelian and non-Abelian phases lies on the surface. Outside the sphere the system is generically gapped except in the planes where the coupling parameters between the vertices on triangles are zero. These cases correspond to bipartite lattice structures and the dispersion relations are similar to that of the original Kitaev honeycomb model. In a further analysis we demonstrate the threefold non-Abelian ground-state degeneracy on a torus by explicit calculation.

  16. A remote and non-contact method for obtaining the blood-pulse waveform with a laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Desjardins, Candida L.; Antonelli, Lynn T.; Soares, Edward

    2007-02-01

    The use of lasers to remotely and non-invasively detect the blood pressure waveform of humans and animals would provide a powerful diagnostic tool. Current blood pressure measurement tools, such as a cuff, are not useful for burn and trauma victims, and animals require catheterization to acquire accurate blood pressure information. The purpose of our sensor method and apparatus invention is to remotely and non-invasively detect the blood pulse waveform of both animals and humans. This device is used to monitor an animal or human's skin in proximity to an artery using radiation from a laser Doppler vibrometer (LDV). This system measures the velocity (or displacement) of the pulsatile motion of the skin, indicative of physiological parameters of the arterial motion in relation to the cardiac cycle. Tests have been conducted that measures surface velocity with an LDV and a signal-processing unit, with enhanced detection obtained with optional hardware including a retro-reflector dot. The blood pulse waveform is obtained by integrating the velocity signal to get surface displacement using standard signal processing techniques. Continuous recording of the blood pulse waveform yields data containing information on cardiac health and can be analyzed to identify important events in the cardiac cycle, such as heart rate, the timing of peak systole, left ventricular ejection time and aortic valve closure. Experimental results are provided that demonstrates the current capabilities of the optical, non-contact sensor for the continuous, non-contact recording of the blood pulse waveform without causing patient distress.

  17. Enhanced understanding of non-axisymmetric intrinsic and controlled field impacts in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    In, Y.; Park, J. -K.; Jeon, Y. M.

    Here, an extensive study of intrinsic and controlled non-axisymmetric field (δB) impacts in KSTAR has enhanced the understanding about non-axisymmetric field physics and its implications, in particular, on resonant magnetic perturbation (RMP) physics and power threshold (P th) for L–H transition. The n=1 intrinsic non-axisymmetric field in KSTAR was measured to remain as low as δB/B 0 ~ 4×10 –5 even at high-beta plasmas (β N ~ 2), which corresponds to approximately 20% below the targeted ITER tolerance level. As for the RMP edge-localized-modes (ELM) control, robust n=1 RMP ELM-crash-suppression has been not only sustained for more than ~90 τ E, but also confirmed to be compatible with rotating RMP. An optimal window of radial position of lower X-point (i.e. R x =more » $$1.44\\pm 0.02\\,$$ m) proved to be quite critical to reach full n=1 RMP-driven ELM-crash-suppression, while a constraint of the safety factor could be relaxed (q 95 = 5 $$\\pm $$ 0.25). A more encouraging finding was that even when R x cannot be positioned in the optimal window, another systematic scan in the vicinity of the previously optimal R x allows for a new optimal window with relatively small variations of plasma parameters. Also, we have addressed the importance of optimal phasing (i.e. toroidal phase difference between adjacent rows) for n=1 RMP-driven ELM control, consistent with an ideal plasma response modeling which could predict phasing-dependent ELM suppression windows. In support of ITER RMP study, intentionally misaligned RMPs have been found to be quite effective during ELM-mitigation stage in lowering the peaks of divertor heat flux, as well as in broadening the 'wet' areas. Besides, a systematic survey of P th dependence on non-axisymmetric field has revealed the potential limit of the merit of low intrinsic non-axisymmetry. Considering that the ITER RMP coils are composed of 3-rows, just like in KSTAR, further 3D physics study in KSTAR is expected to help us

  18. Enhanced understanding of non-axisymmetric intrinsic and controlled field impacts in tokamaks

    DOE PAGES

    In, Y.; Park, J. -K.; Jeon, Y. M.; ...

    2017-08-24

    Here, an extensive study of intrinsic and controlled non-axisymmetric field (δB) impacts in KSTAR has enhanced the understanding about non-axisymmetric field physics and its implications, in particular, on resonant magnetic perturbation (RMP) physics and power threshold (P th) for L–H transition. The n=1 intrinsic non-axisymmetric field in KSTAR was measured to remain as low as δB/B 0 ~ 4×10 –5 even at high-beta plasmas (β N ~ 2), which corresponds to approximately 20% below the targeted ITER tolerance level. As for the RMP edge-localized-modes (ELM) control, robust n=1 RMP ELM-crash-suppression has been not only sustained for more than ~90 τ E, but also confirmed to be compatible with rotating RMP. An optimal window of radial position of lower X-point (i.e. R x =more » $$1.44\\pm 0.02\\,$$ m) proved to be quite critical to reach full n=1 RMP-driven ELM-crash-suppression, while a constraint of the safety factor could be relaxed (q 95 = 5 $$\\pm $$ 0.25). A more encouraging finding was that even when R x cannot be positioned in the optimal window, another systematic scan in the vicinity of the previously optimal R x allows for a new optimal window with relatively small variations of plasma parameters. Also, we have addressed the importance of optimal phasing (i.e. toroidal phase difference between adjacent rows) for n=1 RMP-driven ELM control, consistent with an ideal plasma response modeling which could predict phasing-dependent ELM suppression windows. In support of ITER RMP study, intentionally misaligned RMPs have been found to be quite effective during ELM-mitigation stage in lowering the peaks of divertor heat flux, as well as in broadening the 'wet' areas. Besides, a systematic survey of P th dependence on non-axisymmetric field has revealed the potential limit of the merit of low intrinsic non-axisymmetry. Considering that the ITER RMP coils are composed of 3-rows, just like in KSTAR, further 3D physics study in KSTAR is expected to help us

  19. Disassembling the clockwork mechanism

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Garcia Garcia, Isabel; Sutherland, Dave

    2017-10-01

    The clockwork mechanism is a means of naturally generating exponential hierarchies in theories without significant hierarchies among fundamental parameters. We emphasize the role of interactions in the clockwork mechanism, demonstrating that clockwork is an intrinsically abelian phenomenon precluded in non-abelian theories such as Yang-Mills, non-linear sigma models, and gravity. We also show that clockwork is not realized in extra-dimensional theories through purely geometric effects, but may be generated by appropriate localization of zero modes.

  20. The trivial role of torsion in projective invariant theories of gravity with non-minimally coupled matter fields

    NASA Astrophysics Data System (ADS)

    Alfonso, Victor I.; Bejarano, Cecilia; Beltrán Jiménez, Jose; Olmo, Gonzalo J.; Orazi, Emanuele

    2017-12-01

    We study a large family of metric-affine theories with a projective symmetry, including non-minimally coupled matter fields which respect this invariance. The symmetry is straightforwardly realised by imposing that the connection only enters through the symmetric part of the Ricci tensor, even in the matter sector. We leave the connection completely free (including torsion), and obtain its general solution as the Levi-Civita connection of an auxiliary metric, showing that the torsion only appears as a projective mode. This result justifies the widely used condition of setting vanishing torsion in these theories as a simple gauge choice. We apply our results to some particular cases considered in the literature, including the so-called Eddington-inspired-Born-Infeld theories among others. We finally discuss the possibility of imposing a gauge fixing where the connection is metric compatible, and comment on the genuine character of the non-metricity in theories where the two metrics are not conformally related.