Science.gov

Sample records for ocean model simulation

  1. The Impact of Ocean Tides on a Climate Model Simulation.

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Haak, H.; Jungclaus, J.; Thomas, M.

    2008-12-01

    We explicitly include the forcing of ocean tides in a global ocean general circulation model (OGCM). The tidal forcing is deduced from lunisolar ephemerides according to the instantaneous positions of moon and sun. In this real-time approach we consider the complete lunisolar tides of second degree. The OGCM is part of a state-of-the-art climate model which was used for the fourth assessment report simulations of the Intergovernmental Panel on Climate Change (IPCC). An ensemble of five IPCC A1B climate scenarios covering the period 1860 to 2059 has been computed. The induced tidal currents affect the ocean circulation by nonlinear interaction and through vertical mixing. The latter is described in the model by a Richardson number dependent mixing term. Thus, mixing depends on the density stratification and the vertical velocity shear. In regions of high tidal velocities the vertical velocity shear is enhanced in the deepest layers induced by bottom friction. Our study focuses on the North Atlantic region, where the highest tidal velocities occur. There, the representation of the present state of the ocean is improved significantly. The tides adjust the pathway of the North Atlantic Current, which leads to improved sea surface temperatures of up to 3 degree in the North Atlantic. Further, the simulation of the deep convection in the Labrador Sea, one of the driving mechanisms of the meridional overturning circulation, becomes more realistic when forcing ocean tides. The modified oceanic dynamics in the North Atlantic have implications for the simulation of the European climate and for the future projection of the sea surface temperature of the North Atlantic. This study reveals that ocean tides are an important component in the simulation of ocean dynamics and are essential for an appropriate simulation of a changing ocean under climate warming conditions.

  2. Simulating aggregate dynamics in ocean biogeochemical models

    NASA Astrophysics Data System (ADS)

    Jackson, George A.; Burd, Adrian B.

    2015-04-01

    The dynamics of elements in the water column is complex, depending on multiple biological and physical processes operating at very different physical scales. Coagulation of particulate material is important for transforming particles and moving them in the water column. Mechanistic models of coagulation processes provide a means to predict these processes, help interpret observations, and provide insight into the processes occurring. However, most model applications have focused on describing simple marine systems and mechanisms. We argue that further model development, in close collaboration with field and experimental scientists, is required in order to extend the models to describe the large-scale elemental distributions and interactions being studied as part of GEOTRACES. Models that provide a fundamental description of trace element-particle interactions are required as are experimental tests of the mechanisms involved and the predictions arising from models. However, a comparison between simple and complicated models of aggregation and trace metal provides a means for understanding the implications of simplifying assumptions and providing guidance as to which simplifications are needed.

  3. Arctic Ocean freshwater: How robust are model simulations?

    NASA Astrophysics Data System (ADS)

    Jahn, A.; Aksenov, Y.; de Cuevas, B. A.; de Steur, L.; Häkkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  4. Arctic Ocean Freshwater: How Robust are Model Simulations

    NASA Technical Reports Server (NTRS)

    Jahn, A.; Aksenov, Y.; deCuevas, B. A.; deSteur, L.; Haekkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  5. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations

    NASA Astrophysics Data System (ADS)

    Patara, Lavinia; Böning, Claus W.; Biastoch, Arne

    2016-05-01

    The response of eddy kinetic energy (EKE) to the strengthening of Southern Hemisphere winds occurring since the 1950s is investigated with a global ocean model having a resolution of 1/12° in the Antarctic Circumpolar Current domain. The simulations expose regional differences in the relative importance of stochastic and wind-related contributions to interannual EKE changes. In the Pacific and Indian sectors the model captures the EKE variability observed since 1993 and confirms previous hypotheses of a lagged response to regional wind stress anomalies. Here the multidecadal trend in wind stress is reflected in an increase in EKE typically exceeding 5 cm2 s-2 decade-1. In the western Atlantic, EKE variability is mostly stochastic, is weakly correlated with wind fluctuations, and its multidecadal trends are close to zero. The nonuniform distribution of wind-related changes in the eddy activity could affect the regional patterns of ocean circulation and biogeochemical responses to future climate change.

  6. Sensitivity of ocean model simulation in the coastal ocean to the resolution of the meteorological forcing

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Shapiro, Georgy; Thain, Richard

    2013-04-01

    The quality of ocean simulations depends on a number of factors such as approximations in governing equations, errors introduced by the numerical scheme, uncertainties in input parameters, and atmospheric forcing. The identification of relations between the uncertainties in input and output data is still a challenge for the development of numerical models. The impacts of ocean variables on ocean models are still not well known (e.g., Kara et al., 2009). Given the considerable importance of the atmospheric forcing to the air-sea interaction, it is essential that researchers in ocean modelling work need a good understanding about how sensitive the atmospheric forcing is to variations of model results, which is beneficial to the development of ocean models. Also, it provides a proper way to choose the atmospheric forcing in ocean modelling applications. Our previous study (Shapiro et al, 2011) has shown that the basin-wide circulation pattern and the temperature structure in the Black Sea produced by the same model is significantly dependent on the source of the meteorological input, giving remarkably different responses. For the purpose of this study we have chosen the Celtic Sea where high resolution meteo data are available from the UK Met office since 2006. The Celtic Sea is tidally dominated water basin, with the tidal stream amplitude varying from 0.25m/s in the southwest to 2 m/s in the Bristol Channel. It is also filled with mesoscale eddies which contribute to the formation of the residual (tidally averaged) circulation pattern (Young et al, 2003). The sea is strongly stratified from April to November, which adds to the formation of density driven currents. In this paper we analyse how sensitive the model output is to variations in the spatial resolution of meteorological using low (1.6°) and high (0.11°) resolution meteo forcing, giving the quantitative relation between variations of met forcing and the resulted differences of model results, as well as

  7. Simulations of ice shelves in the Parallel Ocean Program (POP), the ocean model of the Community Earth System Model (CESM)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar

    2013-04-01

    We present a series of simulations using POP2X, a modified version of the LANL Parallel Ocean Program version 2 (POP2) that includes circulations in ice-shelf cavities. The geometry of the ice-shelf/ocean interface is represented using the partial-top cells, following the approach developed by Losch (2008) for the Massachusetts Institute of Technology General Circulation Model (MITgcm). The model domain is an idealized domain reminiscent of the Ronne-Filchner Ice Shelf cavity. Our simulations show relatively warm circumpolar deep water (CDW) flowing into the Filchner trough, causing a large increase in melting under the ice shelf. Using more realistic geometry and climate forcing, Helmer et al. (2012) saw a drastic increase in melting in the late twenty-first century as a result of similar processes. We show that vertical model resolution can have a strong impact on the melt rate and circulation in the vicinity of the ice shelf. The results suggest that a resolution-conscious parameterization of the buoyancy-driven plume under ice shelves is needed. This work is an early step toward coupling POP2X to the Community Ice Sheet Model (CISM) in order to perform more advanced modeling of ice-sheet/ocean interactions. Remarkable advances in ice-sheet model physics and numerical methods in recent years mean that a number of these models (e.g. the CISM; the Ice Sheet System Model; the Elmer Ice Sheet Model) have both sufficient physical accuracy and numerical scalability to be ready for inclusion in Earth System Models (ESMs). A significant stumbling block preventing full ice-sheet/ocean coupling is the inability of ocean models to handle ice-shelf cavity geometries that change in time. This is a major focus of our ongoing research.

  8. Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models

    SciTech Connect

    Gleckler, P.J.; Randall, D.A.; Boer, G.

    1994-03-01

    This paper reports on energy fluxes across the surface of the ocean as simulated by fifteen atmospheric general circulation models in which ocean surface temperatures and sea-ice boundaries are prescribed. The oceanic meridional energy transport that would be required to balance these surface fluxes is computed, and is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean energy transport can be affected by the errors in simulated cloud-radiation interactions.

  9. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  10. Onset time and strength of oceanic deep convection diagnosed from an ocean large-eddy simulation model

    SciTech Connect

    Denbo, D.W.

    1995-01-01

    Deep convection has an important role in the large-scale thermohaline circulation, which in turn plays a central part in determining global climate. Manabe and Stouffer`s climate simulations have shown that the thermal and dynamic structure of the oceans have pronounced changes in model climates with increased CO{sub 2}. In their simulations, the addition of low-salinity surface water at high latitudes prevents the ventilation of the deep ocean, thus reducing or in some cases nearly extinguishing the thermohaline circulation. Siegenthaler and Sarmiento remarked that whereas the ocean is the largest of the rapidly exchanging global carbon reservoirs and a major sink for anthropogenic carbon, this uptake capacity become available only when the whole ocean is chemically equilibrated with the new atmospheric CO{sub 2} concentration. The dynamics of the oceanic uptake of CO{sub 2} is therefore strongly determined by the rate of downward transport of CO{sub 2}-laden water from surface to depth. The importance of deep convection in moderating the uptake of CO{sub 2} by the ocean and its role in the meridional circulation, which affects climate by transporting heat from the tropics to the polar regions, motivates this research. The experiments described here were designed to study the sensitivity of the onset time and strength of deep convection to changes in the heat flux, latent heat flux, and perturbations of the surface mixed-layer temperature and salinity.

  11. Evaluation of Arctic Sea Ice Thickness Simulated by Arctic Ocean Model Intercomparison Project Models

    NASA Technical Reports Server (NTRS)

    Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; De Cuevas, Beverly

    2012-01-01

    Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.

  12. Ocean-Atmosphere Coupled Model Simulations of Precipitation in the Central Andes

    NASA Technical Reports Server (NTRS)

    Nicholls, Stephen D.; Mohr, Karen I.

    2015-01-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. In addition, South American meteorology and climate are also made further complicated by ENSO, a powerful coupled ocean-atmosphere phenomenon. Modelling studies in this region have typically resorted to either atmospheric mesoscale or atmosphere-ocean coupled global climate models. The latter offers full physics and high spatial resolution, but it is computationally inefficient typically lack an interactive ocean, whereas the former offers high computational efficiency and ocean-atmosphere coupling, but it lacks adequate spatial and temporal resolution to adequate resolve the complex orography and explicitly simulate precipitation. Explicit simulation of precipitation is vital in the Central Andes where rainfall rates are light (0.5-5 mm hr-1), there is strong seasonality, and most precipitation is associated with weak mesoscale-organized convection. Recent increases in both computational power and model development have led to the advent of coupled ocean-atmosphere mesoscale models for both weather and climate study applications. These modelling systems, while computationally expensive, include two-way ocean-atmosphere coupling, high resolution, and explicit simulation of precipitation. In this study, we use the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST), a fully-coupled mesoscale atmosphere-ocean modeling system. Previous work has shown COAWST to reasonably simulate the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data when ECMWF interim analysis data were used for boundary conditions on a 27-9-km grid configuration (Outer grid extent: 60.4S to 17.7N and 118.6W to 17.4W).

  13. Preliminary ice shelf-ocean simulation results from idealized standalone-ocean and coupled model intercomparison projects (MIPs)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel

    2016-04-01

    The second Ice Shelf-Ocean MIP (ISOMIP+) and the first Marine Ice Sheet-Ocean MIP (MISOMIP1) prescribe a set of idealized experiments for ocean models with ice-shelf cavities and coupled ice sheet-ocean models, respectively. ISOMIP+ and MISOMIP1 were designed together with the third Marine Ice Sheet MIP (MISMIP+) with three main goals, namely that the MIPs should provide: a controlled forum for researchers to compare their model results with those from other models during model development. a path for testing components in the process of developing coupled ice sheet-ocean models. a basic setup from which a large variety of parameter and process studies can usefully be performed. The experimental design for the three MIPs is currently under review in Geoscientific Model Development (Asay-Davis et al. 2015, doi:10.5194/gmdd-8-9859-2015). We present preliminary results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (e.g. boundary-layer transfer coefficients, drag coefficients, vertical mixing parameterizations) for each models. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to how models would be tuned based on observations for non-idealized simulations. We also present a number of parameter studies based the MIP experiments. Again, using several models, we show that melt rates respond sub-linearly to both changes in the square root of the drag coefficient and the heat-transfer coefficient, and that melting is relatively insensitive to horizontal-mixing coefficients (perhaps because the resolution is sufficient to permit eddies) but more sensitive to vertical-mixing coefficients. We show that the choice of the equation of state (linear or nonlinear) does not have a significant impact as long as

  14. Simulating Late Ordovician deep ocean O2 with an earth system climate model. Preliminary results.

    NASA Astrophysics Data System (ADS)

    D'Amico, Daniel F.; Montenegro, Alvaro

    2016-04-01

    The geological record provides several lines of evidence that point to the occurrence of widespread and long lasting deep ocean anoxia during the Late Ordovician, between about 460-440 million years ago (ma). While a series of potential causes have been proposed, there is still large uncertainty regarding how the low oxygen levels came about. Here we use the University of Victoria Earth System Climate Model (UVic ESCM) with Late Ordovician paleogeography to verify the impacts of paleogeography, bottom topography, nutrient loading and cycling and atmospheric concentrations of O2 and CO2 on deep ocean oxygen concentration during the period of interest. Preliminary results so far are based on 10 simulations (some still ongoing) covering the following parameter space: CO2 concentrations of 2240 to 3780 ppmv (~8x to 13x pre-industrial), atmospheric O2 ranging from 8% to 12% per volume, oceanic PO4 and NO3 loading from present day to double present day, reductions in wind speed of 50% and 30% (winds are provided as a boundary condition in the UVic ESCM). For most simulations the deep ocean remains well ventilated. While simulations with higher CO2, lower atmospheric O2 and greater nutrient loading generate lower oxygen concentration in the deep ocean, bottom anoxia - here defined as concentrations <10 μmol L-1 - in these cases is restricted to the high-latitue northern hemisphere. Further simulations will address the impact of greater nutrient loads and bottom topography on deep ocean oxygen concentrations.

  15. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    NASA Astrophysics Data System (ADS)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  16. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  17. Modeling the Pacific Ocean

    SciTech Connect

    Johnson, M.A.; O'Brien, J.J. )

    1990-01-01

    Two numerical models utilizing primitive equations (two momentum equations and a mass continuity equation) simulate the oceanography of the Pacific Ocean from 20{degrees}S to 50{degrees}N. The authors examine the abundant model data through visualization , by animating the appropriate model fields and viewing the time history of each model simulation as a color movie. The animations are used to aid understanding of ocean circulation.

  18. ENSO Simulation in Coupled Ocean-Atmosphere Models: Are the Current Models Better?

    SciTech Connect

    AchutaRao, K; Sperber, K R

    2005-04-29

    Maintaining a multi-model database over a generation or more of model development provides an important framework for assessing model improvement. Using control integrations, we compare the simulation of the El Nino/Southern Oscillation (ENSO), and its extratropical impact, in models developed for the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report with models developed in the late 1990's (the so-called Coupled Model Intercomparison Project-2 [CMIP2] models). The IPCC models tend to be more realistic in representing the frequency with which ENSO occurs, and they are better at locating enhanced temperature variability over the eastern Pacific Ocean. When compared with reanalyses, the IPCC models have larger pattern correlations of tropical surface air temperature than do the CMIP2 models during the boreal winter peak phase of El Nino. However, for sea-level pressure and precipitation rate anomalies, a clear separation in performance between the two vintages of models is not as apparent. The strongest improvement occurs for the modeling groups whose CMIP2 model tended to have the lowest pattern correlations with observations. This has been checked by subsampling the multi-century IPCC simulations in a manner to be consistent with the single 80-year time segment available from CMIP2. Our results suggest that multi-century integrations may be required to statistically assess model improvement of ENSO. The quality of the El Nino precipitation composite is directly related to the fidelity of the boreal winter precipitation climatology, highlighting the importance of reducing systematic model error. Over North America distinct improvement of El Nino forced boreal winter surface air temperature, sea-level pressure, and precipitation rate anomalies in the IPCC models occurs. This improvement, is directly proportional to the skill of the tropical El Nino forced precipitation anomalies.

  19. Numerical simulation of Typhoon Muifa (2011) using a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system

    NASA Astrophysics Data System (ADS)

    Liu, Na; Ling, Tiejun; Wang, Hui; Zhang, Yunfei; Gao, Zhiyi; Wang, Yi

    2015-04-01

    The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa (2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.

  20. Simulations of Antarctic ice shelves and the Southern Ocean in the POP2x ocean model coupled with the BISICLES ice-sheet model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel; Price, Stephen; Maltrud, Mathew

    2014-05-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and ice-sheet evolution models. This presentation focuses on the ocean model, POP2x, which is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). A companion presentation, 'Fully resolved whole-continent Antarctica simulations using the BISICLES AMR ice sheet model coupled with the POP2x Ocean Model', concentrates more on the ice-sheet model, BISICLES (Cornford et al., 2012), which includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (Southern Ocean) simulations using POP2x at 0.1 degree resolution with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to

  1. The Southwest Indian Ocean thermocline dome in CMIP5 models: Historical simulation and future projection

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Tong; Gao, Lihui; Li, Gen; Du, Yan

    2016-04-01

    Using 20 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5), the simulation of the Southwest Indian Ocean (SWIO) thermocline dome is evaluated and its role in shaping the Indian Ocean Basin (IOB) mode following El Ni˜no investigated. In most of the CMIP5 models, due to an easterly wind bias along the equator, the simulated SWIO thermocline is too deep, which could further influence the amplitude of the interannual IOB mode. A model with a shallow (deep) thermocline dome tends to simulate a strong (weak) IOB mode, including key attributes such as the SWIO SST warming, antisymmetric pattern during boreal spring, and second North Indian Ocean warming during boreal summer. Under global warming, the thermocline dome deepens with the easterly wind trend along the equator in most of the models. However, the IOB amplitude does not follow such a change of the SWIO thermocline among the models; rather, it follows future changes in both ENSO forcing and local convection feedback, suggesting a decreasing effect of the deepening SWIO thermocline dome on the change in the IOB mode in the future.

  2. Simulating the last glacial-interglacial transition with a coupled atmosphere-ocean-ice sheet model

    NASA Astrophysics Data System (ADS)

    Mikolajewicz, Uwe; Ziemen, Florian

    2015-04-01

    One of the major challenges in climate modeling is the simulation of glacial-interglacial transitions. A few models of intermediate complexity have been successful in simulating the last termination. Complex atmosphere-ocean general circulation models have been shown to be able to yield realistic climate changes with prescribed ice sheets. Here we presents results from a first attempt to simulate a substantial part of the last glacial cycle with an AOGCM coupled interactively with a state-of-the-art ice sheet model. The ECHAM5/MPIOM AOGCM has been interactively coupled to the dynamical ice sheet model PISM. The latter is run for most of the northern hemisphere with a horizontal resolution of 20 km. An earlier version of this model ( Ziemen et al. 2014) has been applied to a steady state simulation of the last glacial maximum (LGM). The model was integrated from the late Glacial into the Holocene using insolation and greenhouse gas concentrations as transient forcing. Land sea mask and ocean topography are fixed at LGM conditions, river routing and surface elevation for the atmospheric model component are calculated interactively depending on the simulated ice sheets. To make these long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other model components using a periodically-synchronous coupling technique. A mini-ensemble with different initial conditions has been run. In all simulation the northern hemispheric deglaciation starts between 18 and 17 kyr BP, consistent with the onset of global warming. The model produces Heinrich event like variability as part of its internal variability. These rapid ice discharge events have a strong impact on the North Atlantic meridional overturning circulation (NAMOC). During the peak deglaciation the NAMOC is collapsed (with a few short interruptions) for several thousand years, which is longer than the estimates from reconstructions. This seems to be an artifact due to keeping ocean

  3. Modeling ocean circulation

    SciTech Connect

    Semtner, A.J.

    1995-09-08

    Ocean numerical models have become quite realistic over the past several years as a result of improved methods, faster computers, and global data sets. Models now treat basin-scale to global domains while retaining the fine spatial scales that are important for modeling the transport of heat, salt, and other properties over vast distances. Simulations are reproducing observed satellite results on the energetics of strong currents and are properly showing diverse aspects of thermodynamic and dynamic ocean responses ranging from deep-water production of El Nino. Now models can represent not only currents but also the consequences for climate, biology, and geo-chemistry over time spans for months to decades. However, much remains to be understood from models about ocean circulation on longer time scales, including the evolution of the dominant water masses, the predictability of climate, and the ocean`s influence on global change. 34 refs., 6 figs.

  4. Ensemble climate simulations using a fully coupled ocean-troposphere-stratosphere general circulation model.

    PubMed

    Huebener, H; Cubasch, U; Langematz, U; Spangehl, T; Niehörster, F; Fast, I; Kunze, M

    2007-08-15

    Long-term transient simulations are carried out in an initial condition ensemble mode using a global coupled climate model which includes comprehensive ocean and stratosphere components. This model, which is run for the years 1860-2100, allows the investigation of the troposphere-stratosphere interactions and the importance of representing the middle atmosphere in climate-change simulations. The model simulates the present-day climate (1961-2000) realistically in the troposphere, stratosphere and ocean. The enhanced stratospheric resolution leads to the simulation of sudden stratospheric warmings; however, their frequency is underestimated by a factor of 2 with respect to observations.In projections of the future climate using the Intergovernmental Panel on Climate Change special report on emissions scenarios A2, an increased tropospheric wave forcing counteracts the radiative cooling in the middle atmosphere caused by the enhanced greenhouse gas concentration. This leads to a more dynamically active, warmer stratosphere compared with present-day simulations, and to the doubling of the number of stratospheric warmings. The associated changes in the mean zonal wind patterns lead to a southward displacement of the Northern Hemisphere storm track in the climate-change signal. PMID:17569652

  5. Evaluation of Global Ocean Data Assimilation Experiment products on South Florida nested simulations with the Hybrid Coordinate Ocean Model

    NASA Astrophysics Data System (ADS)

    Kourafalou, Vassiliki H.; Peng, Ge; Kang, Heesook; Hogan, Patrick J.; Smedstad, Ole-Martin; Weisberg, Robert H.

    2009-02-01

    The South Florida Hybrid Coordinate Ocean Model (SoFLA-HYCOM) encompasses a variety of coastal regions (the broad Southwest Florida shelf, the narrow Atlantic Keys shelf, the shallow Florida Bay, and Biscayne Bay) and deep regions (the Straits of Florida), including Marine Protected Areas (the Florida Keys Marine Sanctuary and the Dry Tortugas Ecological Reserve). The presence of the strong Loop Current/Florida Current system and associated eddies connects the local and basin-wide dynamics. A multi-nested approach has been developed to ensure resolution of coastal-scale processes and proper interaction with the large scale flows. The simulations are free running and effects of data assimilation are introduced through boundary conditions derived from Global Ocean Data Assimilation Experiment products. The study evaluates the effects of boundary conditions on the successful hindcasting of circulation patterns by a nested model, applied on a dynamically and topographically complex shelf area. Independent (not assimilated) observations are employed for a quantitative validation of the numerical results. The discussion of the prevailing dynamics that are revealed in both modeled and observed patterns suggests the importance of topography resolution and local forcing on the inner shelf to middle shelf areas, while large scale processes are found to dominate the outer shelf flows. The results indicate that the successful hindcasting of circulation patterns in a coastal area that is characterized by complex topography and proximity to a large scale current system requires a dynamical downscaling approach, with simulations that are nested in a hierarchy of data assimilative outer models.

  6. Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.

    2014-03-01

    A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.

  7. Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Chieh; Tu, Wei-Tsung; Pun, Iam-Fei; Lin, I.-I.; Peng, Melinda S.

    2016-01-01

    A mesoscale model coupling the Weather Research and Forecasting model and the three-dimensional Price-Weller-Pinkel ocean model is used to investigate the dynamical ocean response to Megi (2010). It is found that Megi induces sea surface temperature (SST) cooling very differently in the Philippine Sea (PS) and the South China Sea (SCS). The results are compared to the in situ measurements from the Impact of Typhoons on the Ocean in the Pacific (ITOP) 2010 field experiment, satellite observations, and ocean analysis field from Eastern Asian Seas Ocean Nowcast/Forecast System of the U.S. Naval Research Laboratory. The uncoupled and coupled experiments simulate relatively accurately the track and intensity of Megi over PS; however, the simulated intensity of Megi over SCS varies significantly among the experiments. Only the experiment coupled with three-dimensional ocean processes, which generates rational SST cooling, reasonably simulates the storm intensity in SCS. Our results suggest that storm translation speed and upper ocean thermal structure are two main factors responsible for Megi's distinct different impact over PS and over SCS. In addition, it is shown that coupling with one-dimensional ocean process (i.e., only vertical mixing process) is not enough to provide sufficient ocean response, especially under slow translation speed (~2-3 m s-1), during which vertical advection (or upwelling) is significant. Therefore, coupling with three-dimensional ocean processes is necessary and crucial for tropical cyclone forecasting. Finally, the simulation results show that the stable boundary layer forms on top of the Megi-induced cold SST area and increases the inflow angle of the surface wind.

  8. Coupled atmosphere-ocean model simulations of El Nino/Southern Oscillation with and without an active Indian Ocean

    SciTech Connect

    Nagai, T.; Kitamura, Y.; Endoh, M.; Tokioka, T.

    1995-01-01

    An atmospheric general circulation model (GCM) was coupled with an ocean GCM covering the Pacific. This coupled model (PAC) was integrated over a 30-year period. The PAC model stimulates well the mean seasonally varying atmospheric and ocean fields and reproduces interannual variations corresponding to ENSO (El Nino/Southern Oscillation). The same atmospheric GCM was coupled with an ocean GCM covering the Indian Ocean and the tropical Pacific. This coupled model (IPC) was integrated over a 35-year period. The model climate in IPC is fairly reasonable, and its Pacific part is very similar to the Pacific climate of the PAC model. ENSO is the major interannual variability in the IPC model. The dynamics of ENSO in IPC are essentially the same as that in PAC. In the Pacific, the subsurface ocean heat content anomalies are formed by wind anomalies and show westward propagation centered off the equator. After they reach the western Pacific, they show eastward propagation along the equator. They produce changes in the thermocline structure in the eastern equatorial Pacific resulting in anomalies in SSTs. The SST anomalies provide wind anomalies, the sign of which is opposite to that of the wind anomalies in the first stage, so that this chain will continue. ENSO in the PAC and IPC models can be regarded as the {open_quotes}delayed oscillator{close_quotes} operating in the Pacific. Although the major interannual variability in the Indian Ocean is linked to ENSO in the Pacific, the Indian Ocean does not play any active role in the ENSO cycle in the IPC model. Interannual variability of monsoon activity in the IPC model is more reasonable than that in the PAC model. However, any definite mechanism for the relationship between monsoon activity and ENSO does not emerge in the present study. 31 refs., 14 figs.

  9. An ocean-atmosphere climate simulation with an embedded cloud resolving model

    NASA Astrophysics Data System (ADS)

    Stan, Cristiana; Khairoutdinov, Marat; DeMott, Charlotte A.; Krishnamurthy, V.; Straus, David M.; Randall, David A.; Kinter, James L.; Shukla, J.

    2010-01-01

    Mean climate and intraseasonal to interannual variability of two versions of the Community Climate System Model (CCSM) coupled atmosphere-ocean general circulation model (CGCM) are analyzed. The first version is the standard CCSM, in which cloud effects on the large-scale circulation are represented via parameterizations. The second version includes “super-parameterization” (SP) of convective processes by replacing parameterized cloud processes with a two-dimensional (2D) cloud-process resolving model (CRM) at each CGCM grid column. The SP-CCSM improves several shortcomings of the CCSM simulation, including mean precipitation patterns, equatorial SST cold tongue structure and associated double intertropical convergence zone (ITCZ), the Asian monsoon, periodicity of the El Niño-Southern Oscillation, and the intraseasonal Madden-Julian Oscillation. These improvements were obtained without the retuning of the coupled model, which is surprising in view of previous experience with other coupled models.

  10. Development of a Coupled Ocean-Hydrologic Model to Simulate Pollutant Transport in Singapore Coastal Waters

    NASA Astrophysics Data System (ADS)

    Chua, V. P.

    2015-12-01

    Intensive agricultural, economic and industrial activities in Singapore and Malaysia have made our coastal areas under high risk of water pollution. A coupled ocean-hydrologic model is employed to perform three-dimensional simulations of flow and pollutant transport in Singapore coastal waters. The hydrologic SWAT model is coupled with the coastal ocean SUNTANS model by outputting streamflow and pollutant concentrations from the SWAT model and using them as inputs for the SUNTANS model at common boundary points. The coupled model is calibrated with observed sea surface elevations and velocities, and high correlation coefficients that exceed 0.97 and 0.91 are found for sea surface elevations and velocities, respectively. The pollutants are modeled as Gaussian passive tracers, and are released at five upstream locations in Singapore coastal waters. During the Northeast monsoon, pollutants released in Source 1 (Johor River), Source 2 (Tiram River), Source 3 (Layang River) and Source 4 (Layau River) enter the Singapore Strait after 4 days of release and reach Sentosa Island within 9 days. Meanwhile, pollutants released in Source 5 (Kallang River) reach Sentosa Island after 4 days. During the Southwest monsoon, the dispersion time is roughly doubled, with pollutants from Sources 1 - 4 entering the Singapore Strait only after 12 days of release due to weak currents.

  11. Impacts of atmospheric and oceanic resolution on the tropical Pacific climatology simulated by GFDL's new climate models

    NASA Astrophysics Data System (ADS)

    Wittenberg, A. T.; Vecchi, G. A.; Delworth, T. L.; Rosati, A.; Anderson, W.; Zeng, F. J.

    2014-12-01

    We examine impacts of atmospheric and oceanic grid refinement on simulations of the tropical Pacific climatology, using a series of high-resolution global coupled GCMs recently developed at GFDL. Starting from the CM2.1 model developed for CMIP3, the new models progressively refine the horizontal grid spacing in the atmosphere by a factor of five (CM2.5-FLOR), and additionally in the ocean by factors of four (CM2.5) and ten (CM2.6). The atmospheric refinement is found to substantially improve the coupled simulation's tropical Pacific climatology of SST, rainfall, surface pressure, winds, coastal upwelling, and upper-ocean temperature and salinity -- and also reduces the net air-sea heat flux into the ocean near the equator, indicating reduced ocean-dynamical cooling due to weaker trade winds. Oceanic refinement, in contrast, results in much less improvement to the simulated surface climatology -- and in some respects actually degrades the simulation, for example by over-intensifying the thermal stratification of the equatorial upper ocean. This suggests that in the more strongly-eddying regimes permitted by higher resolution, some of the ocean component's physical parameterizations may need retuning or reformulation. The causes of these various sensitivities are discussed, along with avenues toward future improvements.

  12. A mass-conserving advection scheme for offline simulation of scalar transport in coastal ocean models

    NASA Astrophysics Data System (ADS)

    Gillibrand, P. A.; Herzfeld, M.

    2016-05-01

    We present a flux-form semi-Lagrangian (FFSL) advection scheme designed for offline scalar transport simulation with coastal ocean models using curvilinear horizontal coordinates. The scheme conserves mass, overcoming problems of mass conservation typically experienced with offline transport models, and permits long time steps (relative to the Courant number) to be used by the offline model. These attributes make the method attractive for offline simulation of tracers in biogeochemical or sediment transport models using archived flow fields from hydrodynamic models. We describe the FFSL scheme, and test it on two idealised domains and one real domain, the Great Barrier Reef in Australia. For comparison, we also include simulations using a traditional semi-Lagrangian advection scheme for the offline simulations. We compare tracer distributions predicted by the offline FFSL transport scheme with those predicted by the original hydrodynamic model, assess the conservation of mass in all cases and contrast the computational efficiency of the schemes. We find that the FFSL scheme produced very good agreement with the distributions of tracer predicted by the hydrodynamic model, and conserved mass with an error of a fraction of one percent. In terms of computational speed, the FFSL scheme was comparable with the semi-Lagrangian method and an order of magnitude faster than the full hydrodynamic model, even when the latter ran in parallel on multiple cores. The FFSL scheme presented here therefore offers a viable mass-conserving and computationally-efficient alternative to traditional semi-Lagrangian schemes for offline scalar transport simulation in coastal models.

  13. Simulating the Response to Astronomical Forcing with a Coupled Atmosphere-Ocean Model

    NASA Astrophysics Data System (ADS)

    Erb, M. P.; Broccoli, A. J.; Raney, B.

    2015-12-01

    Substantial variations in climate during the Quaternary Period have been reconstructed from a wide array of paleoclimate proxies, with much of the variance occurring on the same time scales as astronomical forcing. To understand the mechanisms that may be responsible for these variations, we employ a set of single-forcing simulations with a coupled atmosphere-ocean general circulation model and systematically examine the climatic responses to changes in Earth's orbital parameters (i.e., perihelion date and axial tilt). We survey some of the highlights from our analysis of these simulations, including the response of tropical circulation to astronomical forcing and contributions of radiative feedbacks to the global and regional thermodynamic response.

  14. Simulating Heinrich events in a coupled atmosphere-ocean-ice sheet model

    NASA Astrophysics Data System (ADS)

    Mikolajewicz, Uwe; Ziemen, Florian

    2016-04-01

    Heinrich events are among the most prominent events of long-term climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet - climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under discussion, and their climatic consequences are far from being fully understood. We contribute to answering the open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability without the need to prescribe external perturbations, as was the standard approach in almost all model studies so far. The setup consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global coarse resolution AOVGCM ECHAM5/MPIOM/LPJ. The simulations used for this analysis were an ensemble covering substantial parts of the late Glacial forced with transient insolation and prescribed atmospheric greenhouse gas concentrations. The modeled Heinrich events show a marked influence of the ice discharge on the Atlantic circulation and heat transport, but none of the Heinrich events during the Glacial did show a complete collapse of the North Atlantic meridional overturning circulation. The simulated main consequences of the Heinrich events are a freshening and cooling over the North Atlantic and a drying over northern Europe.

  15. North Atlantic and Arctic Ocean Climate Change in Pliocene Simulations Using the GISS ModelE2-R GCM

    NASA Astrophysics Data System (ADS)

    Chandler, M. A.; Sohl, L. E.; Jonas, J.; Kelley, M.; Rind, D.

    2013-12-01

    As part of the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2, twelve research groups simulated the middle Pliocene climate using fully coupled versions of their ocean-atmosphere GCMs. Under the conditions prescribed by PlioMIP Experiment 2 (especially 25 meters of sea level rise, 405 ppm CO2, and reduced ice sheets) most coupled GCMs still underestimate ocean temperatures in the North Atlantic and Arctic Ocean regions. The GISS ModelE (AR5-version) originally produced the coolest results in these regions out of all the Pliocene simulations, with a greatly decreased AMOC and colder temperatures than modern in a large portion of the North Atlantic. However, improvements in the formulation of mesoscale mixing in the GISS ModelE, which have been incorporated in a more recent model update, led to significant changes in the simulation of the Pliocene (Chandler et al., 2013), including a warmer North Atlantic ocean, decreased Arctic sea ice, increased Atlantic meridional overturning circulation (AMOC) relative to the control run, and generally a more favorable comparison to proxy data. Despite these results, the relative role of the various forcings and the numerous boundary condition changes was not analyzed. Zhang et al. (2013) did show that the increase in ocean heat transport is small compared to the change in the AMOC and was not likely to be the direct cause of the North Atlantic warming. Furthermore, using a subset of the PlioMIP models they showed that the role of ocean heat flux in the models, in general, is not strongly correlated to either the strengthening of the Pliocene AMOC or the warming of the North Atlantic. We have now run a series of sensitivity tests with the newer version of the GISS model and will discuss the relative effects of Pliocene CO2, ice sheets (Greenland and Antarctica separately), orbit, vegetation and the change in the mesoscale mixing parameterization as a means of better understanding the role of various factors that

  16. How well do global ocean biogeochemistry models simulate dissolved iron distributions?

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Aumont, Olivier; DeAth, Ros; Dunne, John P.; Dutkiewicz, Stephanie; Galbraith, Eric; Misumi, Kazuhiro; Moore, J. Keith; Ridgwell, Andy; Sherman, Elliot; Stock, Charles; Vichi, Marcello; Völker, Christoph; Yool, Andrew

    2016-02-01

    Numerical models of ocean biogeochemistry are relied upon to make projections about the impact of climate change on marine resources and test hypotheses regarding the drivers of past changes in climate and ecosystems. In large areas of the ocean, iron availability regulates the functioning of marine ecosystems and hence the ocean carbon cycle. Accordingly, our ability to quantify the drivers and impacts of fluctuations in ocean ecosystems and carbon cycling in space and time relies on first achieving an appropriate representation of the modern marine iron cycle in models. When the iron distributions from 13 global ocean biogeochemistry models are compared against the latest oceanic sections from the GEOTRACES program, we find that all models struggle to reproduce many aspects of the observed spatial patterns. Models that reflect the emerging evidence for multiple iron sources or subtleties of its internal cycling perform much better in capturing observed features than their simpler contemporaries, particularly in the ocean interior. We show that the substantial uncertainty in the input fluxes of iron results in a very wide range of residence times across models, which has implications for the response of ecosystems and global carbon cycling to perturbations. Given this large uncertainty, iron fertilization experiments based on any single current generation model should be interpreted with caution. Improvements to how such models represent iron scavenging and also biological cycling are needed to raise confidence in their projections of global biogeochemical change in the ocean.

  17. Forcing of global ocean models using an atmospheric boundary layer model: assessing consequences for the simulation of the AMOC

    NASA Astrophysics Data System (ADS)

    Abel, Rafael; Boening, Claus

    2015-04-01

    Current practice in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in conjunction with a prescribed, and unresponsive, atmospheric state as given, e.g., by reanalysis products. This forcing formulation corresponds to assuming an atmosphere with infinite heat capacity, and effectively damps SST anomalies even on basin scales. It thus curtails an important negative feedback between meridional ocean heat transport and SST in the North Atlantic, rendering simulations of the AMOC in such models excessively sensitive to details in the freshwater fluxes. As a consequence, such simulations are known for spurious drift behaviors which can only partially controlled by introducing some (and sometimes strong) unphysical restoring of sea surface salinity. There have been several suggestions during the last 20 years for at least partially alleviating the problem by including some simplified model of the atmospheric boundary layer (AML) which allows a feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the surface fluxes. We here present simulations with a simple, only thermally active AML formulation (based on the 'CheapAML' proposed by Deremble et al., 2013) implemented in a global model configuration based on NEMO (ORCA05). In a suite of experiments building on the CORE-bulk forcing methodology, we examine some general features of the AML-solutions (in which only the winds are prescribed) in comparison to solutions with a prescribed atmosperic state. The focus is on the North Atlantic, where we find that the adaptation of the atmospheric temperature the simulated ocean state can lead to strong local modifications in the surface heat fluxes in frontal regions (e.g., the 'Northwest Corner'). We particularly assess the potential of the AML-forcing concept for obtaining AMOC-simulations with reduced spurious drift, without

  18. A Realistically Perturbed Atmosphere and Ocean De-Aliasing Model for Future Gravity Mission Simulation Studies

    NASA Astrophysics Data System (ADS)

    Dobslaw, Henryk; Forootan, Ehsan; Bergmann-Wolf, Inga; Neumayer, Karl-Hans; Mayer-Gürr, Torsten; Kusche, Jürgen; Flechtner, Frank

    2015-04-01

    Recently completed performance studies of future gravity mission concepts arrived at sometimes contradicting conclusions about the importance of non-tidal aliasing errors that remain in the finally retrieved gravity field time-series. In those studies, typically a fraction of the differences between two different models of atmosphere and ocean mass variability determined the magnitude of the aliasing errors. Since differences among arbitrary pairs of the numerical models available might lead to widely different aliasing errors and thus conclusions regarding limiting error contributors of a candidate mission, we present here for the first time a version of a realistically perturbed de-aliasing model that is consistent with the updated ESA Earth System Model for gravity mission simulation studies (Dobslaw et al., 2015). The error model is available over the whole 12-year period of the ESA ESM and consists of two parts: (i) a component containing signals from physical processes that are intentionally omitted from de-aliasing models, as for a example, variations in global eustatic sea-level; and (ii) a series of true errors that consist of in total five different components with realistically re-scaled variability at both small and large spatial scales for different frequency bands ranging from sub-daily to sub-monthly periods. Based on a multi-model ensemble of atmosphere and ocean mass variability available to us for the year 2006, we will demonstrate that our re-scaled true errors have plausible magnitudes and correlation characteristics in all frequency bands considered. The realism of the selected scaling coefficients for periods between 1 and 30 days is tested further by means of a variance component estimation based on the constrained daily GRACE solution series ITSG-GRACE2014. Initial full-scale simulation experiments are used to re-assess the relative importance of non-tidal de-aliasing errors for the GRACE-FO mission, which might be subsequently expanded to

  19. Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Irrgang, C.; Saynisch, J.; Thomas, M.

    2016-01-01

    Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal global ocean currents, an electromagnetic induction model is implemented into the Ocean Model for Circulation and Tides (OMCT). This provides the opportunity to not only model ocean-induced magnetic signals but also to assess the impact of oceanographic phenomena on the induction process. In this paper, the sensitivity of the induction process due to spatial and temporal variations in seawater conductivity is investigated. It is shown that assuming an ocean-wide uniform conductivity is insufficient to accurately capture the temporal variability of the magnetic signal. Using instead a realistic global seawater conductivity distribution increases the temporal variability of the magnetic field up to 45 %. Especially vertical gradients in seawater conductivity prove to be a key factor for the variability of the ocean-induced magnetic field. However, temporal variations of seawater conductivity only marginally affect the magnetic signal.

  20. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  1. Ocean Drilling Simulation Activity.

    ERIC Educational Resources Information Center

    Telese, James A.; Jordan, Kathy

    The Ocean Drilling Project brings together scientists and governments from 20 countries to explore the earth's structure and history as it is revealed beneath the oceans' basins. Scientific expeditions examine rock and sediment cores obtained from the ocean floor to learn about the earth's basic processes. The series of activities in this…

  2. Efficient Flowline Simulations of Ice Shelf-Ocean Interactions: Sensitivity Studies with a Fully Coupled Model

    NASA Technical Reports Server (NTRS)

    Walker, Ryan Thomas; Holland, David; Parizek, Byron R.; Alley, Richard B.; Nowicki, Sophie M. J.; Jenkins, Adrian

    2013-01-01

    Thermodynamic flowline and plume models for the ice shelf-ocean system simplify the ice and ocean dynamics sufficiently to allow extensive exploration of parameters affecting ice-sheet stability while including key physical processes. Comparison between geophysically and laboratory-based treatments of ice-ocean interface thermodynamics shows reasonable agreement between calculated melt rates, except where steep basal slopes and relatively high ocean temperatures are present. Results are especially sensitive to the poorly known drag coefficient, highlighting the need for additional field experiments to constrain its value. These experiments also suggest that if the ice-ocean interface near the grounding line is steeper than some threshold, further steepening of the slope may drive higher entrainment that limits buoyancy, slowing the plume and reducing melting; if confirmed, this will provide a stabilizing feedback on ice sheets under some circumstances.

  3. Distribution of oceanic 137Cs from the Fukushima Dai-ichi Nuclear Power Plant simulated numerically by a regional ocean model.

    PubMed

    Tsumune, Daisuke; Tsubono, Takaki; Aoyama, Michio; Hirose, Katsumi

    2012-09-01

    Radioactive materials were released to the environment from the Fukushima Dai-ichi Nuclear Power Plant as a result of the reactor accident after the Tohoku earthquake and tsunami of 11 March 2011. The measured (137)Cs concentration in a seawater sample near the Fukushima Dai-ichi Nuclear Power Plant site reached 68 kBq L(-1) (6.8 × 10(4)Bq L(-1)) on 6 April. The two major likely pathways from the accident site to the ocean existed: direct release of high radioactive liquid wastes to the ocean and the deposition of airborne radioactivity to the ocean surface. By analysis of the (131)I/(137)Cs activity ratio, we determined that direct release from the site contributed more to the measured (137)Cs concentration than atmospheric deposition did. We then used a regional ocean model to simulate the (137)Cs concentrations resulting from the direct release to the ocean off Fukushima and found that from March 26 to the end of May the total amount of (137)Cs directly released was 3.5 ± 0.7 PBq ((3.5 ± 0.7) × 10(15)Bq). The simulated temporal change in (137)Cs concentrations near the Fukushima Daini Nuclear Power Plant site agreed well with observations. Our simulation results showed that (1) the released (137)Cs advected southward along the coast during the simulation period; (2) the eastward-flowing Kuroshio and its extension transported (137)C during May 2011; and (3) (137)Cs concentrations decreased to less than 10 BqL(-1) by the end of May 2011 in the whole simulation domain as a result of oceanic advection and diffusion. We compared the total amount and concentration of (137)Cs released from the Fukushima Dai-ichi reactors to the ocean with the (137)Cs released to the ocean by global fallout. Even though the measured (137)Cs concentration from the Fukushima accident was the highest recorded, the total released amount of (137)Cs was not very large. Therefore, the effect of (137)Cs released from the Fukushima Dai-ichi reactors on concentration in the whole North

  4. Behaviour of oceanic 137Cs following the Fukushima Daiichi Nuclear Power Plant accident for four years simulated numerically by a regional ocean model

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Koven, C. D.; Riley, W. J.; Zhu, B.; Hicks Pries, C.; Phillips, C. L.

    2014-12-01

    A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition.We reconstructed spatiotemporal variability of 137Cs activity in the regional ocean for four years by numerical model, such as a regional scale and the North Pacific scale oceanic dispersion models, an atmospheric transport model, a sediment transport model, a dynamic biological compartment model for marine biota and river runoff model. Direct release rate of 137Cs were estimated for four years after the accident by comparing simulated results and observed activities very close to the site. The estimated total amounts of directly release was 3.6±0.7 PBq. Directly release rate of 137Cs decreased exponentially with time by the end of December 2012 and then, was almost constant. Decrease rate were quite small after 2013. The daily release rate of 137Cs was estimated to be the order of magnitude of 1010 Bq/day by the end of March 2015. The activity of directly released 137Cs was detectable only in the coastal zone after December 2012. Simulated 137Cs activities attributable to direct release were in good agreement with observed activities, a result that implies the estimated direct release rate was reasonable. There is no observed data of 137Cs activity in the ocean from 11 to 21 March 2011. Observed data of marine biota should reflect the history of 137Cs activity in this early period. We reconstructed the history of 137Cs activity in this early period by considering atmospheric deposition, river input, rain water runoff from the 1F NPP site. The comparisons between simulated 137Cs activity of marine biota by a dynamic biological compartment and observed data also suggest that simulated 137Cs activity attributable to atmospheric deposition was underestimated in this early period. The

  5. Behaviour of oceanic 137Cs following the Fukushima Daiichi Nuclear Power Plant accident for four years simulated numerically by a regional ocean model

    NASA Astrophysics Data System (ADS)

    Tsumune, D.; Tsubono, T.; Aoyama, M.; Misumi, K.; Tateda, Y.

    2015-12-01

    A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition.We reconstructed spatiotemporal variability of 137Cs activity in the regional ocean for four years by numerical model, such as a regional scale and the North Pacific scale oceanic dispersion models, an atmospheric transport model, a sediment transport model, a dynamic biological compartment model for marine biota and river runoff model. Direct release rate of 137Cs were estimated for four years after the accident by comparing simulated results and observed activities very close to the site. The estimated total amounts of directly release was 3.6±0.7 PBq. Directly release rate of 137Cs decreased exponentially with time by the end of December 2012 and then, was almost constant. Decrease rate were quite small after 2013. The daily release rate of 137Cs was estimated to be the order of magnitude of 1010 Bq/day by the end of March 2015. The activity of directly released 137Cs was detectable only in the coastal zone after December 2012. Simulated 137Cs activities attributable to direct release were in good agreement with observed activities, a result that implies the estimated direct release rate was reasonable. There is no observed data of 137Cs activity in the ocean from 11 to 21 March 2011. Observed data of marine biota should reflect the history of 137Cs activity in this early period. We reconstructed the history of 137Cs activity in this early period by considering atmospheric deposition, river input, rain water runoff from the 1F NPP site. The comparisons between simulated 137Cs activity of marine biota by a dynamic biological compartment and observed data also suggest that simulated 137Cs activity attributable to atmospheric deposition was underestimated in this early period. The

  6. One-Dimensional Coupled Ecosystem-Carbon Flux Model for the Simulation of Biogeochemical Parameters at Ocean Weather Station P

    NASA Technical Reports Server (NTRS)

    Signorini, S.; McClain, C.; Christian, J.; Wong, C. S.

    2000-01-01

    In this Technical Publication, we describe the model functionality and analyze its application to the seasonal and interannual variations of phytoplankton, nutrients, pCO2 and CO2 concentrations in the eastern subarctic Pacific at Ocean Weather Station P (OWSP, 50 deg. N 145 deg. W). We use a verified one-dimensional ecosystem model, coupled with newly incorporated carbon flux and carbon chemistry components, to simulate 22 years (1958-1980) of pCO2 and CO2 variability at Ocean Weather Station P (OWS P). This relatively long period of simulation verifies and extends the findings of previous studies using an explicit approach for the biological component and realistic coupling with the carbon flux dynamics. The slow currents and the horizontally homogeneous ocean in the subarctic Pacific make OWS P one of the best available candidates for modeling the chemistry of the upper ocean in one dimension. The chlorophyll and ocean currents composite for 1998 illustrates this premise. The chlorophyll concentration map was derived from SeaWiFS data and the currents are from an OGCM simulation (from R. Murtugudde).

  7. Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling and Fe limitation in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Mongin, Mathieu; Nelson, David M.; Pondaven, Philippe; Tréguer, Paul

    2006-03-01

    We previously reported the application of an upper-ocean biogeochemical model in which the elemental composition of the phytoplankton is flexible and responds to changes in light and nutrient availability [Mongin, M., Nelson, D., Pondaven, P., Brzezinski, M., Tréguer, P., 2003. Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling in the western Sargasso Sea. Deep-Sea Research I 50, 1445-1480]. That model, applied in the western Sargasso Sea, considered the cycles of C, N and Si in the upper 400 m and limitation of phytoplankton growth by N, Si and light. We now report a new version of this model that includes Fe cycling and Fe limitation and its application in the Southern Ocean. The model includes two phytoplankton groups, diatoms and non-siliceous forms. Uptake of NO 3- by phytoplankton is light dependent, but NH 4+, Si(OH) 4 and Fe uptake are not and can therefore continue through the night. The model tracks the resulting C/N and Fe/C ratios of both groups and Si/N ratio of diatoms, and permits uptake of C, N, Fe and Si to proceed independently when those ratios are close to those of nutrient-replete phytoplankton. When they indicate a deficiency cellular C, N, Fe or Si, uptake of the non-limiting elements is controlled by the content of the limiting element in accordance with the cell-quota formulation of [Droop, M., 1974. The nutrient status of algal cell in continuous culture. Journal of the Marine Biological Association of the United Kingdom 54, 825-855]. The model thus identifies the growth-limiting element and quantifies the degree of limitation from the elemental composition of the phytoplankton. We applied this model at the French KERFIX site in the Indian Ocean sector of the Southern Ocean, using meteorological forcing for that site from 1991 to 1995. As in the Sargasso Sea application, the flexible-composition structure provides simulations that are consistent with field data with only minimal

  8. Mesoscale Ocean Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Pearson, Brodie; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank

    2015-11-01

    The highest resolution global climate models (GCMs) can now resolve the largest scales of mesoscale dynamics in the ocean. This has the potential to increase the fidelity of GCMs. However, the effects of the smallest, unresolved, scales of mesoscale dynamics must still be parametrized. One such family of parametrizations are mesoscale ocean large eddy simulations (MOLES), but the effects of including MOLES in a GCM are not well understood. In this presentation, several MOLES schemes are implemented in a mesoscale-resolving GCM (CESM), and the resulting flow is compared with that produced by more traditional sub-grid parametrizations. Large eddy simulation (LES) is used to simulate flows where the largest scales of turbulent motion are resolved, but the smallest scales are not resolved. LES has traditionally been used to study 3D turbulence, but recently it has also been applied to idealized 2D and quasi-geostrophic (QG) turbulence. The MOLES presented here are based on 2D and QG LES schemes.

  9. Numerical Simulation of Storm surges/Wave using KMA Operational Ocean Model

    NASA Astrophysics Data System (ADS)

    You, S.; Park, S.; Seo, J.; Cho, J.

    2007-05-01

    The Korea Meteorological Administration (KMA) has operated numerical ocean wave prediction system since 1992. Prior June 1999, the 1st generation wave model (DSA-5) was operated twice in daily over the Northeast Asia region. With introduction of NEC SX5 supercomputer in 1999, the 3rd generation wave model (WAM) was implemented with two wave prediction systems ?V the ReWAM (Regional WAve Model) and the GoWAM (Global WAve Model). At present, KMA (Korea Meteorological Administration) has operated the wave model and storm surge model based on CRAY X1E system. The study shows development and verification of operational ocean model and future plan of KMA. The operational storm surge model (STOM : Storm surge/Tide Operational Model) area covers 115°-150°E, 20°-52°N based on POM (Princeton Ocean Model) (Blumberg and Mellor, 1987) with 1/12° horizontal resolutions including the Yellow Sea, East China Sea and the East Sea, marginal seas around Korea. From July, 2006 the STOM have been applied to formal forecasting model in KMA. Sea surface wind and pressure from the Regional Data Assimilation and Prediction System (RDAPS) is used for forcing input of storm surge model. In this model, the level of storm surge calculated by the difference between tide level and sea level change caused by meteorological effects. The newly developed operational wave model is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The Regional WAVEWATCH III (RWW3) covers the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 50°N similar to STOM. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. The RWW3 is integrated from a state of rest and forced by the RDAPS wind stress produced by KMA. From 2007, the RWW3 will be applied to formal forecasting model in KMA. The Coastal WAVEWATCH III (CWW3) covers 6 coastal areas around Korea peninsular. The horizontal grid intervals are 1/120° for each area. Under the

  10. Atmospheric winter conditions 2007/08 over the Arctic Ocean based on NP-35 data and regional model simulations

    NASA Astrophysics Data System (ADS)

    Mielke, M.; Zinoviev, N. S.; Dethloff, K.; Rinke, A.; Kustov, V. J.; Makshtas, A. P.; Sokolov, V. T.; Neuber, R.; Maturilli, M.; Klaus, D.; Handorf, D.; Graeser, J.

    2014-05-01

    Atmospheric measurements on the drifting Arctic sea ice station "North Pole-35" crossing the Eastern part of the Arctic Ocean during winter 2007/2008 have been compared with regional atmospheric HIRHAM model simulations. The observed near-surface temperature, mean sea level pressure and the vertical temperature, wind and humidity profiles are satisfactorily reproduced by the model. The strongest temperature differences between observations and the simulations occur near the surface due to an overestimated vertical mixing of heat in the stable Arctic boundary layer (ABL). The observations show very strong temperature inversions near the surface, whereas the simulated inversions occur frequently between the surface and 415 m at too high levels. The simulations are not able to reproduce the observed inversion strength. The regional model underestimates the wind speeds and the sharp vertical wind gradients. The strength of internal atmospheric dynamics on the temporal development of atmospheric surface variables and vertical profiles of temperature, wind and relative humidity has been examined. Although the HIRHAM model systematically overestimates relative humidity and produces too high long-wave downward radiation during winter, two different atmospheric circulation states, which are connected to higher or lower pressure systems over the Eastern part of the Arctic Ocean, are simulated in agreement with the NP-35 observations. Sensitivity studies with reduced vertical mixing of heat in the stable ABL have been carried out. A slower increase in the stability functions with decreasing Richardson number under stable stratification has an impact on the horizontal and vertical atmospheric structure. Changes in synoptical cyclones on time scales from 1-3 days over the North Atlantic cyclone path are generated, which influences the atmospheric baroclinic and planetary waves on time scales up to 20 days over the Arctic Ocean basin. The use of increased vertical stability in

  11. El Nino-southern oscillation simulated in an MRI atmosphere-ocean coupled general circulation model

    SciTech Connect

    Nagai, T.; Tokioka, T.; Endoh, M.; Kitamura, Y. )

    1992-11-01

    A coupled atmosphere-ocean general circulation model (GCM) was time integrated for 30 years to study interannual variability in the tropics. The atmospheric component is a global GCM with 5 levels in the vertical and 4[degrees]latitude X 5[degrees] longitude grids in the horizontal including standard physical processes (e.g., interactive clouds). The oceanic component is a GCM for the Pacific with 19 levels in the vertical and 1[degrees]x 2.5[degrees] grids in the horizontal including seasonal varying solar radiation as forcing. The model succeeded in reproducing interannual variations that resemble the El Nino-Southern Oscillation (ENSO) with realistic seasonal variations in the atmospheric and oceanic fields. The model ENSO cycle has a time scale of approximately 5 years and the model El Nino (warm) events are locked roughly in phase to the seasonal cycle. The cold events, however, are less evident in comparison with the El Nino events. The time scale of the model ENSO cycle is determined by propagation time of signals from the central-eastern Pacific to the western Pacific and back to the eastern Pacific. Seasonal timing is also important in the ENSO time scale: wind anomalies in the central-eastern Pacific occur in summer and the atmosphere ocean coupling in the western Pacific operates efficiently in the first half of the year.

  12. Regional model simulation of summer rainfall over the Philippines: Effect of choice of driving fields and ocean flux schemes

    NASA Astrophysics Data System (ADS)

    Francisco, R. V.; Argete, J.; Giorgi, F.; Pal, J.; Bi, X.; Gutowski, W. J.

    2006-09-01

    The latest version of the Abdus Salam International Centre for Theoretical Physics (ICTP) regional model RegCM is used to investigate summer monsoon precipitation over the Philippine archipelago and surrounding ocean waters, a region where regional climate models have not been applied before. The sensitivity of simulated precipitation to driving lateral boundary conditions (NCEP and ERA40 reanalyses) and ocean surface flux scheme (BATS and Zeng) is assessed for 5 monsoon seasons. The ability of the RegCM to simulate the spatial patterns and magnitude of monsoon precipitation is demonstrated, both in response to the prominent large scale circulations over the region and to the local forcing by the physiographical features of the Philippine islands. This provides encouraging indications concerning the development of a regional climate modeling system for the Philippine region. On the other hand, the model shows a substantial sensitivity to the analysis fields used for lateral boundary conditions as well as the ocean surface flux schemes. The use of ERA40 lateral boundary fields consistently yields greater precipitation amounts compared to the use of NCEP fields. Similarly, the BATS scheme consistently produces more precipitation compared to the Zeng scheme. As a result, different combinations of lateral boundary fields and surface ocean flux schemes provide a good simulation of precipitation amounts and spatial structure over the region. The response of simulated precipitation to using different forcing analysis fields is of the same order of magnitude as the response to using different surface flux parameterizations in the model. As a result it is difficult to unambiguously establish which of the model configurations is best performing.

  13. How should runoff around Antarctica be simulated in an ocean model

    NASA Astrophysics Data System (ADS)

    Mathiot, Pierre; Jenkins, Adrian; Harris, Chris

    2014-05-01

    Ice shelves melting and icebergs calving are the main components of the fresh water runoff around Antarctica. This fresh water source is spread between the surface and about 1000m depth and can also be colder than the winter surface water due to the pressure effect on the freezing point temperature (from -1.8° C in surface up to -2.5° C in depth). In many ocean and climate models, the fresh water flux due to ice shelf and iceberg melting is represented as a surface fresh water source. However, the surface runoff, derived from ice sheet surface melting is negligible in Antarctica. To model the ice shelf and iceberg melting by surface instead of deep runoff could lead to large errors in sea ice and ocean properties on the continental shelf around Antarctica. In order to evaluate the impact of this fresh water flux misrepresentation, three ways to model the runoff (surface runoff, deep runoff and a full ice shelf cavity model) are implemented and compared in a regional model of Pine Island Bay. The sensitivity of the ocean circulation, water masses and sea ice to the runoff parametrisation will be discussed.

  14. Simulation of glacial ocean biogeochemical tracer and isotope distributions based on the PMIP3 suite of climate models

    NASA Astrophysics Data System (ADS)

    Khatiwala, Samar; Muglia, Juan; Kvale, Karin; Schmittner, Andreas

    2016-04-01

    In the present climate system, buoyancy forced convection at high-latitudes together with internal mixing results in a vigorous overturning circulation whose major component is North Atlantic Deep Water. One of the key questions of climate science is whether this "mode" of circulation persisted during glacial periods, and in particular at the Last Glacial Maximum (LGM; 21000 years before present). Resolving this question is both important for advancing our understanding of the climate system, as well as a critical test of numerical models' ability to reliably simulate different climates. The observational evidence, based on interpreting geochemical tracers archived in sediments, is conflicting, as are simulations carried out with state-of-the-art climate models (e.g., as part of the PMIP3 suite), which, due to the computational cost involved, do not by and large include biogeochemical and isotope tracers that can be directly compared with proxy data. Here, we apply geochemical observations to evaluate the ability of several realisations of an ocean model driven by atmospheric forcing from the PMIP3 suite of climate models to simulate global ocean circulation during the LGM. This results in a wide range of circulation states that are then used to simulate biogeochemical tracer and isotope (13C, 14C and Pa/Th) distributions using an efficient, "offline" computational scheme known as the transport matrix method (TMM). One of the key advantages of this approach is the use of a uniform set of biogeochemical and isotope parameterizations across all the different circulations based on the PMIP3 models. We compare these simulated distributions to both modern observations and data from LGM ocean sediments to identify similarities and discrepancies between model and data. We find, for example, that when the ocean model is forced with wind stress from the PMIP3 models the radiocarbon age of the deep ocean is systematically younger compared with reconstructions. Changes in

  15. Eddy permitting simulation of the global ocean model COCO4.3 driven by the CORE inter- annual forcing

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Hasumi, H.; Komuro, Y.; Sakamoto, T. T.

    2008-12-01

    We are developing ocean component of the CCSR/NIES/FRCGC climate model to conduct high-resolution global warming simulations under IPCC scenarios. This presentation focuses on the performance and the behavior and role of eddies in the global ocean. The Ocean model is CCSR Ocean Component Model (COCO) version 4.3, which is a z-coordinate, free-surface primitive equation ocean model with multi-category sea ice model. The geographical North Pole is moved to 40W, 77N on Greenland and the geographical South Pole is moved to 40E, 77S. The computational domain covers global ocean, with zonal grid spacing of 0.28125 degree and meridional grid spacing of 0.1875 degree. There are 50 vertical levels excluding the bottom boundary layer, and 7 of which are within the sigma-coordinate (~42m). The model employs the momentum advection algorithm of Ishizaki and Motoi (1991), which is a pseudo-enstrophy preserving scheme with a consideration for up-/down-sloping advection. The model's tracer advection is based on the second-order moment (SOM) advection scheme of Prather, M. J. (1986). The vertical mixing of momentum and tracers is represented by a harmonic form. The coefficients are calculated by the parameterization of Noh and Kim (1999), but the formulation is slightly modified (see K1-developers, 2004). As background diffusivity, a minimum value is set for each level, suggested by Tsujino et al. (2000). The Smagorinsky's (1963) biharmonic viscosity is applied for the lateral momentum mixing, and its coefficient is dependent on the grid width and the strain rate, and its controlled by a single non- dimensional parameter whose values is taken to be 2.5. The constant coefficient biharmonic diffusion is applied with the coefficient value of 1.0E9 m4/s. The model is driven by the inter-annual forcing data set adopted by common ocean-ice reference experiments (CORE). The results are reported by focusing on heat transport in strong eddy activity regions, such as the Kuroshio

  16. Influence of Physics Parameterizations and Ocean Coupling on Simulations of Tropical Cyclones using a Regional Climate Model (WRF) and a Coupled Modeling System (COAWST)

    NASA Astrophysics Data System (ADS)

    Mooney, P.; Mulligan, F. J.; Bruyere, C. L.; Bonnlander, B.

    2014-12-01

    We examine the influence of physics parameterizations and ocean coupling on the ability of the Weather Research and Forecasting (WRF) model to simulate the storm track and intensity of 2011 storms Irene and Ophelia. Of the physics parameterizations investigated - cumulus parameterizations, planetary boundary layer, microphysics, radiation, and land surface models - cumulus parameterizations have the greatest impact on WRF's ability to reproduce the two storms, particularly storm intensity. We also investigated the influence of coupling the Regional Ocean Modelling System (ROMS) to the WRF model. This was achieved using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system which couples ROMS to WRF using the Model Coupling Toolkit (MCT). Simulated storm intensity and track are modified as a result of coupling ROMS to WRF, but coupling will not compensate for a poor initial parameterization selection.

  17. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; Tausnev, N.

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  18. Numerical simulation of the world ocean circulation

    NASA Technical Reports Server (NTRS)

    Takano, K.; Mintz, Y.; Han, Y. J.

    1973-01-01

    A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.

  19. Numerical simulation of 137Cs and (239,240)Pu concentrations by an ocean general circulation model.

    PubMed

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi

    2003-01-01

    We simulated the spatial distributions and the temporal variations of 137Cs and (239,240)Pu concentrations in the ocean by using the ocean general circulation model which was developed by National Center of Atmospheric Research. These nuclides are introduced into seawaters from global fallout due to atmospheric nuclear weapons tests. The distribution of radioactive deposition on the world ocean is estimated from global precipitation data and observed values of annual deposition of radionuclides at the Meteorological Research Institute in Japan and several observed points in New Zealand. Radionuclides from global fallout have been transported by advection, diffusion and scavenging, and this concentration reduces by radioactive decay in the ocean. We verified the results of the model calculations by comparing simulated values of 137Cs and (239,240)Pu in seawater with the observed values included in the Historical Artificial Radionuclides in the HAM database, which has been constructed by the Meteorological Research Institute. The vertical distributions of the calculated 137Cs concentrations were in good agreement and are in good agreement with the observed profiles in the 1960s up to 250 m, in the 1970s up to 500 m, in the 1980s up to 750 m and in the 1990s up to 750 m. However, the calculated 137Cs concentrations were underestimated compared with the observed 137Cs at the deeper layer. This may suggest other transport processes of 137Cs to deep waters. The horizontal distributions of 137Cs concentrations in surface water could be simulated. A numerical tracer release experiment was performed to explain the horizontal distribution pattern. A maximum (239,240)Pu concentration layer occurs at an intermediate depth for both observed and calculated values, which is formed by particle scavenging. The horizontal distributions of the calculated (239,240)Pu concentrations in surface water could be simulated by considering the scavenging effect. PMID:12860090

  20. Simulation of global warming with a simple coupled ocean-atmosphere model

    SciTech Connect

    Jin Xiangze; Zhang Xuehong

    1994-12-31

    A highly simplified ocean-atmosphere coupling system is established based on a two-dimensional oceanic thermohaline circulation model and an energy balance atmospheric model. Transient responses of the coupled system to a radiation forcing corresponding to the doubling of the atmospheric CO{sub 2} concentration have been investigated with an emphasis on the role of the model`s thermohaline circulation in the warming processes of the system. The results show that there are some significant differences between the Pacific and the Atlantic in their transient responses. On the whole, the warming in the Atlantic is slower in the surface and faster in the deep layers than those in the Pacific due to the process of the deep water formation in the northern North Atlantic, where the active convection and the downward vertical advection transport the surface thermal anomalies into the lower layers efficiently. On a hundred-year time scale, the thermohaline circulation in the North Atlantic is weakened. As a result, the warming in the upper layer of the northern North Atlantic will be further delayed because of the reduction of the northward heat transport.

  1. Do Coupled Climate Models Correctly SImulate the Upward Branch of the Deept Ocean Global Conveyor?

    SciTech Connect

    Sarmiento, Jorge L; Downes, Stephanie; Bianchi, Daniele

    2013-01-17

    The large-scale meridional overturning circulation (MOC) connects the deep ocean, a major reservoir of carbon, to the other components of the climate system and must therefore be accurately represented in Earth System Models. Our project aims to address the specific question of the pathways and mechanisms controlling the upwelling branch of the MOC, a subject of significant disagreement between models and observational syntheses, and among general circulation models. Observations of these pathways are limited, particularly in regions of complex hydrography such as the Southern Ocean. As such, we rely on models to examine theories of the overturning circulation, both physically and biogeochemically. This grant focused on a particular aspect of the meridional overturning circulation (MOC) where there is currently significant disagreement between models and observationally based analyses of the MOC, and amongst general circulation models. In particular, the research focused on addressing the following questions: 1. Where does the deep water that sinks in the polar regions rise to the surface? 2. What processes are responsible for this rise? 3. Do state-of-the-art coupled GCMs capture these processes? Our research had three key components: observational synthesis, model development and model analysis. In this final report we outline the key results from these areas of research for the 2007 to 2012 grant period. The research described here was carried out primarily by graduate student, Daniele Bianchi (now a Postdoc at McGill University, Canada), and Postdoc Stephanie Downes (now a Research Fellow at The Australian national University, Australia). Additional support was provided for programmers Jennifer Simeon as well as Rick Slater.

  2. Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism

    NASA Astrophysics Data System (ADS)

    Dong, Lu; Zhou, Tianjun; Wu, Bo

    2014-01-01

    The mechanism responsible for Indian Ocean Sea surface temperature (SST) basin-wide warming trend during 1958-2004 is studied based on both observational data analysis and numerical experiments with a climate system model FGOALS-gl. To quantitatively estimate the relative contributions of external forcing (anthropogenic and natural forcing) and internal variability, three sets of numerical experiments are conducted, viz. an all forcing run forced by both anthropogenic forcing (greenhouse gases and sulfate aerosols) and natural forcing (solar constant and volcanic aerosols), a natural forcing run driven by only natural forcing, and a pre-industrial control run. The model results are compared to the observations. The results show that the observed warming trend during 1958-2004 (0.5 K (47-year)-1) is largely attributed to the external forcing (more than 90 % of the total trend), while the residual is attributed to the internal variability. Model results indicate that the anthropogenic forcing accounts for approximately 98.8 % contribution of the external forcing trend. Heat budget analysis shows that the surface latent heat flux due to atmosphere and surface longwave radiation, which are mainly associated with anthropogenic forcing, are in favor of the basin-wide warming trend. The basin-wide warming is not spatially uniform, but with an equatorial IOD-like pattern in climate model. The atmospheric processes, oceanic processes and climatological latent heat flux together form an equatorial IOD-like warming pattern, and the oceanic process is the most important in forming the zonal dipole pattern. Both the anthropogenic forcing and natural forcing result in easterly wind anomalies over the equator, which reduce the wind speed, thereby lead to less evaporation and warmer SST in the equatorial western basin. Based on Bjerknes feedback, the easterly wind anomalies uplift the thermocline, which is unfavorable to SST warming in the eastern basin, and contribute to SST

  3. Climate warming due to increasing atmospheric CO2: Simulations With a multilayer coupled atmosphere-ocean seasonal energy balance model

    NASA Astrophysics Data System (ADS)

    Peng, Li; Chou, Ming-Dah; Arking, Albert

    1987-05-01

    The multilayer energy balance model of Peng et al. (1982) has been further developed to include a simple two-dimensional advective-diffusive deep ocean and to allow seasonal variation in order to study long-term transient climate response to a CO2 increase as well as its seasonal pattern. Comparisons between the model-simulated present climate and conventional and satellite data show that the model can simulate well the annual cycle of the surface temperature and the radiation budget of the atmosphere. In response to a hypothetical step function doubling of atmospheric CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature (2.6°C) in 9-35 years for the probable range of vertical heat diffusivity in the ocean. This large range of response time underlies the importance of properly using the heat diffusion coefficient in ocean models. In response to a projected CO2 trend based on estimates by the Carbon Dioxide Assessment Committee (National Research Council 1983), the model's transient response in annually and globally averaged surface temperature is 60-75% of the corresponding equilibrium response. The disequilibrium increases with increasing oceanic heat diffusivity. When the atmospheric CO2 level reaches twice the current level, in about a century, the global mean surface temperature increases by 1.5°-2.0°C, depending on the heat diffusivity of the ocean. Local warming at certain times of the year, however, may be 2-3 times greater than the annual and global average. In the northern high latitudes the response undergoes significant seasonal and latitudinal variations. A maximum occurs in the early winter, and a secondary maximum occurs in the spring. In the southern hemisphere, large responses are confined to a narrow latitude zone bordering Antarctica and occur only in the cold months. The pattern of the seasonal and latitudinal distribution of the transient response remarkably resembles that of the equilibrium

  4. Coupling of regional atmospheric-ocean models for climate applications in the Mediterranean basin by using CORDEX-compliant simulations

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Montávez, Juan P.; Lorente-Plazas, Raquel

    2013-04-01

    Nowadays, most regional climate models (RCMs) are essentially composed of an atmospheric component coupled to a land surface scheme and driven over ocean areas by prescribed sea surface temperature (SST). Although such a RCM can be sufficient for many applications, there are cases (like in the Mediterranean basin) in which fine scale feedbacks associated with air-sea interactions can substantially influence the spatial and temporal structure of regional climates. Therefore, in this work we present the first testing phase of the application of a coupled atmospheric-ocean regional climate model (AORCM) for the Mediterranean basin under the framework of the CORWES project. CORWES is a Spanish consortium of research groups using the Weather Research and Forecasting (WRF) model to contribute to the Coordinated Regional Climate Downscaling Experiment (CORDEX). We use WRF and ROMS models as the atmospheric and oceanic component, respectively. Coupling between WRF and ROMS is achieved in the following way: on a prescribed interval of 2 h, WRF sends wind stress, surface heat and water fluxes to ROMS time-averaged over the previous two hours. One hour later, and also with a prescribed interval of 2 h, ROMS sends time-averaged SST to WRF. Here, we mainly focus on the performance of the coupled system in reproducing the ocean surface temperatures. To separate effects of the coupling on SST, additional uncoupled atmospheric simulations are also done in parallel. The case study covers the years 2001-2005 and is described below. The resolution of the domain used is 12 km. The number of vertical levels is 30 for WRF. The ROMS domain, with 32 vertical levels, is slightly smaller than WRF innermost nest and has a higher resolution of 4 km. The lateral atmospheric boundary conditions for WRF are taken from ERA-Interim reanalysis. The lateral oceanic boundary conditions for ROMS come from the downscaling of the Simple Ocean Data Assimilation analysis (SODA) by an uncoupled nested ROMS

  5. Ocean General Circulation Models

    SciTech Connect

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  6. A two-dimensional ocean model for long-term climatic simulations: Stability and coupling to atmospheric and sea ice models

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny

    1992-06-01

    A two-dimensional (latitude-depth) deep ocean model is presented which is coupled to a sea ice model and an Energy Balance Climate Model (EBCM), the latter having land-sea and surface-air resolution. The processes which occur in the ocean model are thermohaline overturning driven by the horizontal density gradient, shallow wind-driven overturning cells, convective overturning, and vertical and horizontal diffusion of heat and salt. The density field is determined from the temperature and salinity fields using a nonlinear equation of state. Mixed layer salinity is affected by evaporation, precipitation, runoff from continents, and sea ice freezing and melting, as well as by advective, convective, and diffusive exchanges with the deep ocean. The ocean model is first tested in an uncoupled mode, in which hemispherically symmetric mixed layer temperature and salinity, or salinity flux, are specified as upper boundary conditions. An experiment performed with previous models is repeated in which a mixed layer salinity perturbation is introduced in the polar half of one hemisphere after switching from a fixed salinity to a fixed salinity flux boundary condition. For small values of the vertical diffusion coefficient KV, the model undergoes self-sustained oscillations with a period of about 1500 years. With larger values of KV, the model locks into either an asymmetric mode with a single overturning cell spanning both hemispheres, or a symmetric quiescent state with downwelling near the equator, upwelling at high latitudes, and a warm deep ocean (depending on the value of KV). When the ocean model is forced with observed mixed layer temperature and salinity, no oscillations occur. The model successfully simulates the very weak meridional overturning and strong Antarctic Circumpolar Current at the latitudes of the Drake Passage. The coupled EBCM-deep ocean model displays internal oscillations with a period of 3000 years if the ocean fraction is uniform with latitude and KV

  7. Assimilation of simulated satellite altimetric data and ARGO temperature data into a double-gyre NEMO ocean model

    NASA Astrophysics Data System (ADS)

    Yan, Yajing; Barth, Alexander; Laenen, François; Beckers, Jean-Marie

    2013-04-01

    In recent years, data assimilation, adressing the problem of producing useful analyses and forecasts given imperfect dynamical models and observations, has shown increasing interest in the atmosphere and ocean science community. The efficiency of data assimilation in improving the model prediction has been proven by numerous work. However, it is still a challenge to design operational data assimilation schemes which can be operated with realistic ocean models, with reasonable quality and at acceptable cost. In this work, several experiments, assimilating the simulated altimetry and temperature observations into a double-gyre NEMO ocean model, are performed with objective to investigate the impact of different assimilation setups, including changing the observation distribution, the ensemble size and the localisation scale, on the quality of the analysis. The double-gyre NEMO ocean model corresponds to an idealized configuration of the NEMO model: a square and 5000-meter deep flat bottom ocean at mid latitudes (the so called square-box or SQB configuration). The main physical parameters governing the dominant characteristics of the flow are the initial stratification, the wind stress, the bottom friction and the lateral mixing parameterization. The domain extends from 24N to 44N, over 30° in longitude (60W - 30W) with 11 vertical levels between 152 m and 4613 m in depth. The minimum horizontal resolution of the model is 1/4°. The observations are generated from the model simulations (the truth) by adding spatially uncorrelated gaussian noise with given standard deviation. Two types of observation are considered : sea surface height (SSH) and temperature. The observation grid of the SSH is simulated from the ENVISAT and Jason-1 satellite tracks, and that of the temperature is generated in order to mimic the ARGO float profile. The observation localisation is performed in order to avoid spurious correlation at large distance. For this, the observations are weighted

  8. Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving model simulation

    NASA Astrophysics Data System (ADS)

    Gao, Shouting; Li, Xiaofan; Tao, Wei-Kuo; Shie, Chung-Lin; Lang, Steve

    2007-01-01

    The relationships between cloud hydrometeors and convective/moist vorticity vectors are investigated using hourly data from a three-dimensional, 5-day cloud-resolving model (CRM) simulation during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX). Vertical components of convective and moist vorticity vectors are highly correlated with cloud hydrometeors. The vertical components represent the interaction between horizontal vorticity and horizontal moist potential temperature/specific humidity gradient. The vertical components of convective and moist vorticity vectors can be used to study tropical oceanic convection in both two-dimensional and three-dimensional frameworks.

  9. Modeling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission simulations

    NASA Astrophysics Data System (ADS)

    Dobslaw, Henryk; Bergmann-Wolf, Inga; Forootan, Ehsan; Dahle, Christoph; Mayer-Gürr, Torsten; Kusche, Jürgen; Flechtner, Frank

    2016-05-01

    A realistically perturbed synthetic de-aliasing model consistent with the updated Earth System Model of the European Space Agency is now available over the period 1995-2006. The dataset contains realizations of (1) errors at large spatial scales assessed individually for periods 10-30, 3-10, and 1-3 days, the S1 atmospheric tide, and sub-diurnal periods; (2) errors at small spatial scales typically not covered by global models of atmosphere and ocean variability; and (3) errors due to physical processes not represented in currently available de-aliasing products. The model is provided in two separate sets of Stokes coefficients to allow for a flexible re-scaling of the overall error level to account for potential future improvements in atmosphere and ocean mass variability models. Error magnitudes for the different frequency bands are derived from a small ensemble of four atmospheric and oceanic models. For the largest spatial scales up to d/o = 40 and periods longer than 24 h, those error estimates are approximately confirmed from a variance component estimation based on GRACE daily normal equations. Future mission performance simulations based on the updated Earth System Model and the realistically perturbed de-aliasing model indicate that for GRACE-type missions only moderate reductions of de-aliasing errors can be expected from a second satellite pair in a shifted polar orbit. Substantially more accurate global gravity fields are obtained when a second pair of satellites in an moderately inclined orbit is added, which largely stabilizes the global gravity field solutions due to its rotated sampling sensitivity.

  10. Mesoscale ocean dynamics modeling

    SciTech Connect

    mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P.; Levermore, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.

  11. Inhomogeneous warming of the Tropical Indian Ocean in the CMIP5 model simulations during 1900-2005 and associated mechanisms

    NASA Astrophysics Data System (ADS)

    Yao, Shuai-Lei; Huang, Gang; Wu, Ren-Guang; Qu, Xia; Chen, Dong

    2016-01-01

    The characteristics and causes of inhomogeneous warming of the Tropical Indian Ocean (TIO) sea surface temperature during 1900-2005 are investigated based on observations and 16 Coupled Model Intercomparison Project phase 5 (CMIP5) models. Over the TIO, the observed warming trend has more than doubled since 1965, which is well simulated by the CMIP5 historical runs. However, as to spatial warming pattern, observations manifest a double-peak pattern during 1900-1940 and a non-uniform Indian Ocean Mode (IOBM)-like pattern during 1965-2005, which is not captured by the CMIP5 historical runs. Herein, an optimal detection analysis is employed, which indicates that the double-peak warming pattern can be explained well by a combination of Greenhouse Gas (GHG) and natural forcing, and the non-uniform IOBM-like pattern is mostly attributable to anthropogenic forcing. Further, a mixed-layer heat budget analysis shows that atmospheric and oceanic processes, especially latent heat flux from atmospheric forcing part associated with GHG forcing, are beneficial for the warming patterns formation. Our study supports the claim that intrinsic ocean-atmosphere interaction within the TIO is the key mechanism for maintaining the TIO warming. From the model perspective, during 1900-1940, the weak anti-symmetric atmospheric circulation with easterly (northwesterly) anomalies north (south) of the equator helps to sustain the double-peak warming pattern. During 1965-2005, the intensified anti-symmetric wind pattern is in favor of the non-uniform IOBM-like warming pattern.

  12. Embedding a one-column ocean model in CAM5 for improving low-resolution MJO simulations

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Yao; Tseng, Wan-Ling; Tsuang, Ben-Jei; Hsu, Huang-Hsiung; Shiu, Chein-Jung; Tu, Chia-Ying

    2015-04-01

    The impact of air-sea interaction on Madden-Julian oscillation (MJO) was investigated with the Community Atmosphere Model (CAM5) coupled to a one-column SIT (Snow/Ice/Thermocline) ocean model. The SIT embedding in CAM5 (CAM5-SIT) is developed to simulate high-resolution vertical mixing u-current, v-current, water temperature and salinity within 10-m depth and mid-resolution from 10-m depth down to the abyss. A more elaborate parameterization of vertical-mixing processes by the turbulent kinetic energy (TKE) equation provides realistic simulations of the turbulent mixing with a reasonable computational efficiency. Weak winds and large insolation resulted in SCAM a shallow mixed layer and large SST diurnal cycles at TOGA COARE during the IOP periods. By contrast, the strong wind (> 10 m/s) erroneously enhances mixed layer deepening and surface temperature cooling. Diurnal SST variation will strengthen the diurnal moistening in atmosphere and both are potential sources of MJO predictability. Time-evolving SST with a diurnal cycle strongly influences the onset and intensity of MJO convection. CAM5-SIT with half-hour coupling frequency significantly improves the MJO simulation over CAM5 with prescribed SST, fully coupled with Slab Ocean Model and with pop2 in wavenumber-frequency spectra of equatorial 850 hPa zonal wind (U850). The mean state SST and eastward propagating U850 and precipitation of CAM5-SIT results are similar to the observations. Using CAM5-SIT, the Rossby number of outgoing longwave radiation in wavenumber-frequency cross-spectra is weaker than observation, which is due to large-scale perturbation. The model distribution at high frequency and small-scale perturbation scheme in Kelvin wave are wider than observation. The coupled model experiments clearly demonstrate the importance of the diurnal SST in MJO eastward propagation. Keywords: Madden-Julian oscillation; CAM5-SIT; turbulent kinetic energy; SST; TOGA COARE

  13. Modeling of Present-Day Atmosphere and Ocean Non-Tidal De-Aliasing Errors for Future Gravity Mission Simulations

    NASA Astrophysics Data System (ADS)

    Bergmann-Wolf, I.; Dobslaw, H.; Mayer-Gürr, T.

    2015-12-01

    A realistically perturbed synthetic de-aliasing model consistent with the updated Earth System Model of the European Space Agency (Dobslaw et al., 2015) is now available for the years 1995 -- 2006. The data-set contains realizations of (i) errors at large spatial scales assessed individually for periods between 10 -- 30, 3 -- 10, and 1 -- 3 days, the S1 atmospheric tide, and sub-diurnal periods; (ii) errors at small spatial scales typically not covered by global models of atmosphere and ocean variability; and (iii) errors due to physical processes not represented in currently available de-aliasing products. The error magnitudes for each of the different frequency bands are derived from a small ensemble of four atmospheric and oceanic models. In order to demonstrate the plausibility of the error magnitudes chosen, we perform a variance component estimation based on daily GRACE normal equations from the ITSG-Grace2014 global gravity field series recently published by the University of Graz. All 12 years of the error model are used to calculate empirical error variance-covariance matrices describing the systematic dependencies of the errors both in time and in space individually for five continental and four oceanic regions, and daily GRACE normal equations are subsequently employed to obtain pre-factors for each of those matrices. For the largest spatial scales up to d/o = 40 and periods longer than 24 h, errors prepared for the updated ESM are found to be largely consistent with noise of a similar stochastic character contained in present-day GRACE solutions. Differences and similarities identified for all of the nine regions considered will be discussed in detail during the presentation.Dobslaw, H., I. Bergmann-Wolf, R. Dill, E. Forootan, V. Klemann, J. Kusche, and I. Sasgen (2015), The updated ESA Earth System Model for future gravity mission simulation studies, J. Geod., doi:10.1007/s00190-014-0787-8.

  14. A regional ocean-atmosphere coupled model developed for CORDEX East Asia: assessment of Asian summer monsoon simulation

    NASA Astrophysics Data System (ADS)

    Zou, Liwei; Zhou, Tianjun

    2016-02-01

    In this study, a developed regional ocean-atmosphere coupled model FROALS was applied to the CORDEX East Asia domain. The performance of FROALS in the simulation of Asian summer monsoon during 1989-2010 was assessed using the metrics developed by the CLIVAR Asian-Australian Monsoon Panel Diagnostics Task Team. The results indicated that FROALS exhibited good performance in simulating Asian summer monsoon climatology. The simulated JJA mean SST biases were weaker than those of the CMIP5 multi-model ensemble mean (MMEM). The skill of FROALS approached that of CMIP5 MMEM in terms of the annual cycle of Asian summer monsoon. The simulated monsoon duration matched the observed counterpart well (with a spatial pattern correlation coefficient of 0.59). Some biases of CMIP5 MMEM were also found in FROALS, highlighting the importance of local forcing and model physics within the Asian monsoon domain. Corresponding to a strong East Asian summer monsoon, an anomalous anticyclone was found over western North Pacific in both observation and simulation. However, the simulated strength was weaker than the observed due to the responses to incorrect sea surface anomalies over the key regions. The model also accurately captured the spatial pattern of the intraseasonal variability variance and the extreme climate indices of Asian summer monsoons, although with larger amplitude. The results suggest that FROALS could be used as a dynamical downscaling tool nested within the global climate model with coarse resolution to develop high-resolution regional climate change projections over the CORDEX East Asia domain.

  15. Atmospheric Weather Noise Characteristics in 20th Century Coupled Atmosphere-Ocean Model Simulations

    NASA Astrophysics Data System (ADS)

    Colfescu, Ioana; Schneider, Edwin

    2016-04-01

    The statistical characteristics of the atmospheric internal variability (hereafter weather noise) for surface pressure (PS) in 20th century simulations of a coupled general circulation model are documented. The weather noise is determined from post-industrial (1871-1998) Community Climate System Model 3 simulations by removing the SST and externally forced responses from the total fields.The forced responses are found from atmosphere-only simulations forced by the SST and external forcing of the coupled runs. The spatial patterns of the main modes of weather noise variability of the noise are found for boreal winter and summer from empirical orthogonal function (EOF) analyses performed globally, and for various regions, including the North Atlantic, the North Pacific, and the equatorial Pacific. The temporal characteristics of the modes are illustrated by power spectra and probability density functions (PDF) of the principal components (PC). Our findings show that, for two different realizations of weather noise, the variability is dominated by large scale spatial structures of the weather noise that resemble observed patterns, and that their relative amplitudes in the CGCM and AGCM simulations are very similar. The regional expression of the seasonally dependent AO-like or AAO-like dominant global pattern is also found in the regional analyses, giving similar PCs. The PCs in the CGCM and the corresponding SST forced AGCM simulations are uncorrelated, but the spectra and PDFs of the CGCM and AGCM PCs are similar. The temporal structures of the PCs are white at timescales larger than few months, so that these modes can be thought of as stochastic forcings (in time) for the climate system. The PDFs of the weather noise PCs are not statistically distinguishable from Gaussian distributions with the same standard deviation. The PDFs do not change substantially between the first and second half of the 20th century.

  16. [Simulation of polarization SAR imaging of ocean surface].

    PubMed

    Guo, Ding; Gu, Xing-Fa; Yu, Tao; Fernado, N; Li, Juan; Chen, Xing-Feng

    2011-10-01

    The polarization synthetic aperture radar (SAR) imaging simulation is of great significance to ocean surface scattering. According to the theory of wind-wave spectrum, rough ocean surface was modeled in the present paper using the two-scale-model. This treatment takes both the large scale and small scale surface into account. By using the velocity bunching (VB) theory, Bragg scattering model and the small perturbation model (SPM), the polarization SAR system can simulate the ocean surface with various parameters and ocean states. The effects of the parameters of ocean waves and the parameters of SAR system were analyzed. Finally, some useful conclusions were drawn, which are helpful for extracting the information of ocean surface. The method is an effective way in the ocean SAR design and the ocean surface research. PMID:22250525

  17. Evaluation of precipitation over an oceanic region of Japan in convection-permitting regional climate model simulations

    NASA Astrophysics Data System (ADS)

    Murata, Akihiko; Sasaki, Hidetaka; Kawase, Hiroaki; Nosaka, Masaya

    2016-05-01

    We investigated the performance of a convection-permitting regional climate model with respect to precipitation in the present climate around the southwestern oceanic region of Japan. The effects of explicit representation of convective processes without cumulus parameterization can be properly estimated by using a model domain without complex topography or convoluted coastlines. The amounts of annual and monthly precipitation and the frequencies of daily and hourly precipitation were well reproduced by the convection-permitting model with a 2-km grid spacing, and its performance was better than that of a model with a coarser mesh. In particular, the frequencies of hourly precipitation in the convection-permitting simulation matched the observed frequencies for precipitation intensities below 20 mm h-1. Above intensities of 20 mm h-1, however, the convection-permitting model tended to overestimate the frequency of hourly precipitation. To explore the mechanism of this overestimation of heavy hourly precipitation, the sensitivity of the frequency distribution of precipitation to the horizontal resolution was tested by changing the horizontal grid spacing of the model from 2 to 4 km and then 1.5 km. The results showed that the overestimation was increased when the horizontal resolution was coarser, owing to spurious grid-scale precipitation, which causes heavy precipitation to be highly concentrated in a single grid. This spurious grid-scale precipitation may be caused by insufficient representation of convective downdrafts in convection-permitting simulations by models with coarser resolutions.

  18. Large eddy simulation in the ocean

    NASA Astrophysics Data System (ADS)

    Scotti, Alberto

    2010-12-01

    Large eddy simulation (LES) is a relative newcomer to oceanography. In this review, both applications of traditional LES to oceanic flows and new oceanic LES still in an early stage of development are discussed. The survey covers LES applied to boundary layer flows, traditionally an area where LES has provided considerable insight into the physics of the flow, as well as more innovative applications, where new SGS closure schemes need to be developed. The merging of LES with large-scale models is also briefly reviewed.

  19. Simulation of ocean variability in the last 40 years with a high-resolution Mediterranean basin model

    NASA Astrophysics Data System (ADS)

    An, B. W.; Vichi, M.; Oddo, P.; Mattia, G.; Zavatarelli, M.

    2009-04-01

    The Mediterranean Sea high-resolution model developed at INGV was run for the period 1958 - 2001 forced by the ECMWF ERA40 atmospheric forcing functions. The model is the NEMO primitive equation model with the Mediterranean Forecasting System (MFS) grid at 1/16 degree horizontal resolution and 72 vertical levels, optimized for long-term simulations in the framework of the EU FP6 project SESAME. The open boundary data in the Atlantic box are derived from global ocean analyses produced in the framework of the EU FP5 ENACT project and forced with the same ERA40 atmospheric data. The presentation focuses on the analysis of the simulated ocean variability in the last 40 years with emphasis on the reproduction of climatological features and biases with respect to the observations. In this work, we focused on dense water formation processes in the Eastern Mediterranean Sea in related to the larger scale climatic conditions. Eastern Mediterranean Transient (hereafter EMT) was captured and evaluated by the deep and intermediate water mass pathway and the amount of their formation rate. Analysis of the main driving mechanism of this EMT was also studied. During the pre-EMT period, about 0.2 Sv of intermediate water formed in the Levantine basin at depth around 300 m and about 0.1 Sv of the deep water formed in the Ionian basin. However, during EMT, the intermediate water and the deep water paths were modified in the Eastern Mediterranean Sea because of the deep water and the intermediate water formed only in the Aegean Sea. From our results, we conclude that the general driving mechanism of EMT is mainly affected by the atmospheric forcing and the locations of dense water formation are affected by the freshwater budget. Our results demonstrate the model skills in capturing the major climatic state and variability in the basin, which will allow us to use this model for studying the impacts on marine biogeochemistry as planned in the SESAME project.

  20. Simple ocean carbon cycle models

    SciTech Connect

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  1. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  2. An Ecosystem Model for the Simulation of Physical and Biological Oceanic Processes-IDAPAK User's Guide and Applications

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Arrigo, Kevin; Murtugudde, Ragu; Signorini, Sergio R.; Tai, King-Sheng

    1998-01-01

    This TM describes the development, testing, and application of a 4-component (phytoplankton, zooplankton, nitrate, and ammonium) ecosystem model capable of simulating oceanic biological processes. It also reports and documents an in-house software package (Interactive Data Analysis Package - IDAPAK) for interactive data analysis of geophysical fields, including those related to the forcing, verification, and analysis of the ecosystem model. Two regions were studied in the Pacific: the Warm Pool (WP) in the Equatorial Pacific (165 deg. E at the equator) and at Ocean Weather Station P (OWS P) in the Northeast Pacific (50 deg. N, 145 deg. W). The WP results clearly indicate that the upwelling at 100 meters correlates well with surface blooms. The upwelling events in late 1987 and 1990 produced dramatic increases in the surface layer values of all 4 ecosystem components, whereas the spring-summer deep mixing events, do not seem to incur a significant response in any of the ecosystem quantities. The OWS P results show that the monthly profiles of temperature, the annual cycles of solar irradiance, and 0- to 50-m integrated nitrate accurately reproduce observed values. Annual primary production is 190 gC/m(exp 2)/yr, which is consistent with recent observations but is much greater than earlier estimates.

  3. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    PubMed

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  4. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS)

    PubMed Central

    Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September–May) and mixing (June–August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore—offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  5. Ocean acoustic field simulations for monitoring large-scale ocean structures

    NASA Astrophysics Data System (ADS)

    Shang, E. C.; Wang, Y. Y.

    1991-04-01

    Substantial numerical simulations of low-frequency acoustic field under different ocean models have been carried out on the CYBER-205 at WPL/NOAA. The purpose of these numerical simulations is to investigate our potential ability to monitor large-scale ocean structures by using modal ocean acoustic tomography (MOAT). For example, the possibility of monitoring El Niño by using MOAT has been illustrated.

  6. Responses of the Tropical Pacific to Wind Forcing as Observed by Spaceborne Sensors and Simulated by an Ocean General Circulation Model

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Tang, Qenqing; Atlas, Robert

    1996-01-01

    In this study, satellite observations, in situ measurements, and model simulations are combined to assess the oceanic response to surface wind forcing in the equatorial Pacific. The surface wind fields derived from observations by the spaceborne special sensor microwave imager (SSM/I) and from the operational products of the European Centre for Medium-Range Weather Forecasts (ECMWF) are compared. When SSM/I winds are used to force a primitive-equation ocean general circulation model (OGCM), they produce 3 C more surface cooling than ECMWF winds for the eastern equatorial Pacific during the cool phase of an El Nino-Southern Oscillation event. The stronger cooling by SSM/I winds is in good agreement with measurements at the moored buoys and observations by the advanced very high resolution radiometer, indicating that SSM/I winds are superior to ECMWF winds in forcing the tropical ocean. In comparison with measurements from buoys, tide gauges, and the Geosat altimeter, the OGCM simulates the temporal variations of temperature, steric, and sea level changes with reasonable realism when forced with the satellite winds. There are discrepancies between model simulations and observations that are common to both wind forcing fields, one of which is the simulation of zonal currents; they could be attributed to model deficiencies. By examining model simulations under two winds, vertical heat advection and uplifting of the thermocline are found to be the dominant factors in the anomalous cooling of the ocean mixed layer.

  7. A study of biases in simulation of the Indian Ocean basin mode and its capacitor effect in CMIP3/CMIP5 models

    NASA Astrophysics Data System (ADS)

    Tao, Weichen; Huang, Gang; Hu, Kaiming; Gong, Hainan; Wen, Guanhuan; Liu, Lin

    2016-01-01

    Based on 15 Coupled Model Intercomparison Project (CMIP) phase 3 (CMIP3) and 32 CMIP phase 5 (CMIP5) models, a detailed diagnosis was carried out to understand what compose the biases in simulation of the Indian Ocean basin mode (IOBM) and its capacitor effect. Cloud-radiation-SST (CRS) feedback and wind-evaporation-SST (WES) feedback are the two major atmospheric processes for SST changes. Most CMIP models simulate a stronger CRS feedback and a weaker WES feedback. During boreal fall of the El Niño/Southern Oscillation developing year and the following spring, there are weak biases of suppressed rainfall anomalies over the Maritime Continent and anomalous anticyclone over South Indian Ocean. Most CMIP models simulate reasonable short wave radiation (SWR) and weaker latent heat flux (LHF) anomalies. This leads to a weak bias of atmospheric processes. During winter, however, the rainfall anomalies are stronger due to west bias, and the anomalous anticyclone is comparable to observations. As such, most models simulate stronger SWR and reasonable LHF anomalies, leading to a strong bias of atmospheric processes. The thermocline feedback is stronger in most models. Though there is a deep bias of climatology thermocline, most models capture reasonable sea surface height-induced SST anomalies. Therefore, the effect of oceanic processes offset the weak bias of atmospheric processes in spring, and the tropical Indian Ocean warming persists into summer. However, anomalous northwest Pacific (NWP) anticyclone is weaker due to weak and west bias of the capacitor effect. The unrealistic western Pacific SST anomalies in models favor the westward extension of Rossby wave from the Pacific, weakening the effect of Kelvin wave from the Indian Ocean. Moreover, the western Pacific warming forces the NWP anticyclone move farther north than observations, suggesting a major forcing from the Pacific. Compared to CMIP3, CMIP5 models simulate the feedbacks more realistically and display

  8. Invigorating ocean boundary current systems around Australia during 1979-2014: As simulated in a near-global eddy-resolving ocean model

    NASA Astrophysics Data System (ADS)

    Feng, Ming; Zhang, Xuebin; Oke, Peter; Monselesan, Didier; Chamberlain, Matthew; Matear, Richard; Schiller, Andreas

    2016-05-01

    Ocean boundary currents, transporting water masses and marine biota along the coastlines, are important for regional climate and marine ecosystem functions. In this study, we review the dominant multi-decadal trends of ocean boundary currents around Australia. Using an eddy-resolving global ocean circulation model, this study has revealed that the major ocean boundary current systems around Australia, the East Australian Current (EAC), the Indonesian Throughflow (ITF), the Leeuwin Current, the South Australian Current and the Flinders Current, have strengthened during 1979-2014, consistent with existing observations. Eddy energetics in the EAC, the ITF/South Equatorial Current in the southeast Indian Ocean, and the Leeuwin Current have also enhanced during the same period. The multi-decadal strengthening of the ocean boundary current systems are primarily driven by large scale wind patterns associated with the dominant modes of climate variability and change - the phase shift of the Inter-decadal Pacific Oscillation/Pacific Decadal Oscillation strengthens the ITF and the Leeuwin Current/South Australian Current; and the poleward shift and strengthening of surface winds in the subtropical gyres reinforce the EAC and the Flinders Current. The invigorating ocean boundary current systems have induced extreme oceanographic conditions along the Australian coastlines in recent years, including the poleward shift of marine ecosystems off the east coast of Australia and the consecutive Ningaloo Niño - marine heatwave events off the west coast during 2011-2013. Understanding long-term trends and decadal variations of the ocean boundary currents is crucial to project future changes of the coastal marine systems under the influence of human-induced greenhouse gas forcing.

  9. Spontaneous abrupt climate change due to an atmospheric blocking-sea-ice-ocean feedback in an unforced climate model simulation.

    PubMed

    Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A; Livina, Valerie

    2013-12-01

    Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70 °N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change. PMID:24248352

  10. Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation

    PubMed Central

    Drijfhout, Sybren; Gleeson, Emily; Dijkstra, Henk A.; Livina, Valerie

    2013-01-01

    Abrupt climate change is abundant in geological records, but climate models rarely have been able to simulate such events in response to realistic forcing. Here we report on a spontaneous abrupt cooling event, lasting for more than a century, with a temperature anomaly similar to that of the Little Ice Age. The event was simulated in the preindustrial control run of a high-resolution climate model, without imposing external perturbations. Initial cooling started with a period of enhanced atmospheric blocking over the eastern subpolar gyre. In response, a southward progression of the sea-ice margin occurred, and the sea-level pressure anomaly was locked to the sea-ice margin through thermal forcing. The cold-core high steered more cold air to the area, reinforcing the sea-ice concentration anomaly east of Greenland. The sea-ice surplus was carried southward by ocean currents around the tip of Greenland. South of 70°N, sea ice already started melting and the associated freshwater anomaly was carried to the Labrador Sea, shutting off deep convection. There, surface waters were exposed longer to atmospheric cooling and sea surface temperature dropped, causing an even larger thermally forced high above the Labrador Sea. In consequence, east of Greenland, anomalous winds changed from north to south, terminating the event with similar abruptness to its onset. Our results imply that only climate models that possess sufficient resolution to correctly represent atmospheric blocking, in combination with a sensitive sea-ice model, are able to simulate this kind of abrupt climate change. PMID:24248352

  11. Inter-comparison of the mean circulation in the Coral and Solomon Sea simulated by high resolution ocean models

    NASA Astrophysics Data System (ADS)

    Maes, C.; Durand, F.; Gasparin, F.; Melet, A.; Ganachaud, A.

    2010-12-01

    Of primary importance to the properties of water masses transported by the northern limb of the South Pacific subtropical gyre toward the equatorial band, the transfer within the Coral and, ultimately, the Solomon Sea is perturbed by the labyrinthine topography of the region. It results in highly energetic currents and complex pathways through the Vanuatu Archipelago and New Caledonia, at the entrance of the Coral Sea, and through the Solomon Sea once the flow has bifurcated northward along the coasts of Australia and of the Louisiade Archipelago of Papua New Guinea. In the Coral Sea, the existence of the North Vanuatu Jet and North Caledonian Jet is now well established but their variations as well as their detailed characteristics, including for instance their vertical extension, remain largely unknown. In this study, recourse to ocean simulations is made in order to highlight the representation of such complex circulation of the south western Pacific Ocean and to analyze the long term variability and physical mechanism implied in the jet dynamics. A brief overview of recent observations collected through the comprehensive observational SPICE program (CLIVAR/WCRP) will first be presented in order to set the context. Then, 6 different state-of-the-art numerical experiments with high horizontal resolution, ranging from 1/10 to 1/12 degree, and realistic topography regionally focused on the Coral and Solomon Sea or extracted from global experiments, are analyzed. Here, we will consider OGCMs forced by realistic and observed atmospheric fields but each model has its own strategy in terms of diffusion, topography representation and boundaries condition when appropriate. The focus is set primarily on the annual mean circulation of the upper ocean layers (above the 1000-m depth) and on the water mass transports simulated in the vicinity of the various topographic obstacles. The results will underline that most of high resolution numerical models have reached a high

  12. Simulations of the carbon cycle in the oceans

    SciTech Connect

    Not Available

    1992-07-01

    This study includes models of oceanic CO{sub 2} uptake. This perturbation simulation of carbon dioxide uptake gives strong support to estimates of oceanic uptake of fossil CO{sub 2} of order 2 GtC/yr. over the last decade. Carbon and carbon-nitrogen models are considered.

  13. Simulations of the carbon cycle in the oceans

    SciTech Connect

    Not Available

    1992-01-01

    This study includes models of oceanic CO{sub 2} uptake. This perturbation simulation of carbon dioxide uptake gives strong support to estimates of oceanic uptake of fossil CO{sub 2} of order 2 GtC/yr. over the last decade. Carbon and carbon-nitrogen models are considered.

  14. Simulation of anthropogenic CO2 uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates

    NASA Astrophysics Data System (ADS)

    Wang, S.; Moore, J. K.; Primeau, F. W.; Khatiwala, S.

    2011-11-01

    The global ocean has taken up a large fraction of the CO2 released by human activities since the industrial revolution. Quantifying the oceanic anthropogenic carbon (Cant) inventory and its variability is important for predicting the future global carbon cycle. The detailed comparison of data-based and model-based estimates is essential for the validation and continued improvement of our prediction capabilities. So far, three global estimates of oceanic Cant inventory that are "data-based" and independent of global ocean circulation models have been produced: one based on the ΔC* method, and two are based on reconstructions of the Green function for the surface-to-interior transport, the TTD method and the maximum entropy inversion method (KPH). The KPH method, in particular, is capable of reconstructing the history of Cant inventory through the industrial era. In the present study we use forward model simulations of the Community Climate System Model (CCSM3.1) to estimate the Cant inventory and compare the results with the data-based estimates. We also use the simulations to test several assumptions of the KPH method, including the assumption of constant climate and circulation, which is common to all the data-based estimates. Though the integrated estimates of global Cant inventories are consistent with each other, the regional estimates show discrepancies up to 50 %. The CCSM3 model underestimates the total Cant inventory, in part due to weak mixing and ventilation in the North Atlantic and Southern Ocean. Analyses of different simulation results suggest that key assumptions about ocean circulation and air-sea disequilibrium in the KPH method are generally valid on the global scale, but may introduce significant errors in Cant estimates on regional scales. The KPH method should also be used with caution when predicting future oceanic anthropogenic carbon uptake.

  15. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives

    NASA Astrophysics Data System (ADS)

    Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M. O.; Sühring, M.; Raasch, S.

    2015-02-01

    In this paper we present the current version of the Parallelized Large-Eddy Simulation Model (PALM) whose core has been developed at the Institute of Meteorology and Climatology at Leibniz Universität Hannover (Germany). PALM is a Fortran 95-based code with some Fortran 2003 extensions and has been applied for the simulation of a variety of atmospheric and oceanic boundary layers for more than 15 years. PALM is optimized for use on massively parallel computer architectures and was recently ported to general-purpose graphics processing units. In the present paper we give a detailed description of the current version of the model and its features, such as an embedded Lagrangian cloud model and the possibility to use Cartesian topography. Moreover, we discuss recent model developments and future perspectives for LES applications.

  16. The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for atmospheric and oceanic flows: model formulation, recent developments, and future perspectives

    NASA Astrophysics Data System (ADS)

    Maronga, B.; Gryschka, M.; Heinze, R.; Hoffmann, F.; Kanani-Sühring, F.; Keck, M.; Ketelsen, K.; Letzel, M. O.; Sühring, M.; Raasch, S.

    2015-08-01

    In this paper we present the current version of the Parallelized Large-Eddy Simulation Model (PALM) whose core has been developed at the Institute of Meteorology and Climatology at Leibniz Universität Hannover (Germany). PALM is a Fortran 95-based code with some Fortran 2003 extensions and has been applied for the simulation of a variety of atmospheric and oceanic boundary layers for more than 15 years. PALM is optimized for use on massively parallel computer architectures and was recently ported to general-purpose graphics processing units. In the present paper we give a detailed description of the current version of the model and its features, such as an embedded Lagrangian cloud model and the possibility to use Cartesian topography. Moreover, we discuss recent model developments and future perspectives for LES applications.

  17. Simulating transoceanic migrations of young loggerhead sea turtles: merging magnetic navigation behavior with an ocean circulation model.

    PubMed

    Putman, Nathan F; Verley, Philippe; Shay, Thomas J; Lohmann, Kenneth J

    2012-06-01

    Young loggerhead sea turtles (Caretta caretta) from eastern Florida, USA, undertake a transoceanic migration in which they gradually circle the Sargasso Sea before returning to the North American coast. Loggerheads possess a 'magnetic map' in which regional magnetic fields elicit changes in swimming direction along the migratory pathway. In some geographic areas, however, ocean currents move more rapidly than young turtles can swim. Thus, the degree to which turtles can control their migratory movements has remained unclear. In this study, the movements of young turtles were simulated within a high-resolution ocean circulation model using several different behavioral scenarios, including one in which turtles drifted passively and others in which turtles swam briefly in accordance with experimentally derived data on magnetic navigation. Results revealed that small amounts of oriented swimming in response to regional magnetic fields profoundly affected migratory routes and endpoints. Turtles that engaged in directed swimming for as little as 1-3 h per day were 43-187% more likely than passive drifters to reach the Azores, a productive foraging area frequented by Florida loggerheads. They were also more likely to remain within warm-water currents favorable for growth and survival, avoid areas on the perimeter of the migratory route where predation risk and thermal conditions pose threats, and successfully return to the open-sea migratory route if carried into coastal areas. These findings imply that even weakly swimming marine animals may be able to exert strong effects on their migratory trajectories and open-sea distributions through simple navigation responses and minimal swimming. PMID:22573765

  18. Modelling the global coastal ocean.

    PubMed

    Holt, Jason; Harle, James; Proctor, Roger; Michel, Sylvain; Ashworth, Mike; Batstone, Crispian; Allen, Icarus; Holmes, Robert; Smyth, Tim; Haines, Keith; Bretherton, Dan; Smith, Gregory

    2009-03-13

    Shelf and coastal seas are regions of exceptionally high biological productivity, high rates of biogeochemical cycling and immense socio-economic importance. They are, however, poorly represented by the present generation of Earth system models, both in terms of resolution and process representation. Hence, these models cannot be used to elucidate the role of the coastal ocean in global biogeochemical cycles and the effects global change (both direct anthropogenic and climatic) are having on them. Here, we present a system for simulating all the coastal regions around the world (the Global Coastal Ocean Modelling System) in a systematic and practical fashion. It is based on automatically generating multiple nested model domains, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled to the European Regional Seas Ecosystem Model. Preliminary results from the system are presented. These demonstrate the viability of the concept, and we discuss the prospects for using the system to explore key areas of global change in shelf seas, such as their role in the carbon cycle and climate change effects on fisheries. PMID:19087928

  19. Simulated Atlantic Meridional Overturning Circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets

    NASA Astrophysics Data System (ADS)

    He, Yan-Chun; Drange, Helge; Gao, Yongqi; Bentsen, Mats

    2016-04-01

    Global ocean hindcast simulations for the period 1871-2009 have been run with the ocean-sea ice component of the Norwegian Earth System Model (NorESM-O), forced by an adjusted version of the Twentieth Century Reanalysis version 2 data set (20CRv2 data set), as well as by the commonly used second version of atmospheric forcing data set for the Coordinated Ocean-ice Reference Experiments phase-II (CORE-II) for the period 1948-2007 (hereafter CORE.v2 data set). The simulated Atlantic Meridional Overturning Circulation (AMOC) in the 20CR and the CORE simulations have comparable variability as well as mean strength during the last three decades of the integration. The simulated AMOC undergoes, however, distinctly different evolutions during the period 1948-1970, with a sharply declining strength in CORE but a gradual increase in 20CR. Sensitivity experiments suggest that differences in the wind forcing between CORE and 20CR have major impact on the simulated AMOCs during this period. It is furthermore found that differences in the air temperature between the two data sets do contribute to the differences in AMOC, but to a much lesser degree than the wind. An additional factor for the diverging AMOC in the two decades following 1948 is the inevitable switching of atmospheric forcing fields in 1948 in the CORE.v2-based runs due to the cyclic spin-up procedure of the ocean model. The latter is a fundamental issue for any ocean hindcast simulation. The ocean initial state mainly influence the actual value but to a lesser degree also the temporal evolution (variability) of AMOC. It may take about two decades for the AMOC to adjust to a new atmospheric state during the spin-up, although a dynamically balanced ocean initial state tends to reduce the adjustment time and the magnitude of the deviation, implying that an ocean model run with atmospheric forcing fields extending back in time, like 20CRv2, can be used to extend the reliable duration of CORE-type of simulations.

  20. Simulated Atlantic Meridional Overturning Circulation in the 20th century with an ocean model forced by reanalysis-based atmospheric data sets

    NASA Astrophysics Data System (ADS)

    He, Yan-Chun; Drange, Helge; Gao, Yongqi; Bentsen, Mats

    2016-04-01

    Global ocean hindcast simulations for the period 1871--2009 have been run with the ocean-sea ice component of the Norwegian Earth System Model (NorESM-O), forced by an adjusted version of the Twentieth Century Reanalysis version 2 data set (20CRv2 data set), as well as by the commonly used second version of atmospheric forcing data set for the Coordinated Ocean-ice Reference Experiments phase-II (CORE-II) for the period 1948--2007 (hereafter CORE.v2 data set). The simulated Atlantic Meridional Overturning Circulation (AMOC) in the 20CR and the CORE simulations have comparable variability as well as mean strength during the last three decades of the integration. The simulated AMOC undergoes, however, distinctly different evolutions during the period 1948--1970, with a sharply declining strength in CORE but a gradual increase in 20CR. Sensitivity experiments suggest that differences in the wind forcing between CORE and 20CR have major impact on the simulated AMOCs during this period. It is furthermore found that differences in the air temperature between the two data sets do contribute to the differences in AMOC, but to a much lesser degree than the wind. An additional factor for the diverging AMOC in the two decades following 1948 is the inevitable switching of atmospheric forcing fields in 1948 in the CORE.v2-based runs due to the cyclic spin-up procedure of the ocean model. The latter is a fundamental issue for any ocean hindcast simulation. The ocean initial state mainly influence the actual value but to a lesser degree also the temporal evolution (variability) of AMOC. It may take about two decades for the AMOC to adjust to a new atmospheric state during the spin-up, although a dynamically balanced ocean initial state tends to reduce the adjustment time and the magnitude of the deviation, implying that an ocean model run with atmospheric forcing fields extending back in time, like 20CRv2, can be used to extend the reliable duration of CORE-type of simulations.

  1. Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Williams, Paul; Howe, Nicola; Gregory, Jonathan; Smith, Robin; Joshi, Manoj

    2016-04-01

    In climate simulations, the impacts of the sub-grid scales on the resolved scales are conventionally represented using deterministic closure schemes, which assume that the impacts are uniquely determined by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the sub-grid variability in a computationally inexpensive manner. This presentation shows that the simulated climatological state of the ocean is improved in many respects by implementing a simple stochastic parameterization of ocean eddies into a coupled atmosphere-ocean general circulation model. Simulations from a high-resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition, by varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean noise to the ocean temperature tendency is found to have a non-zero effect on the mean climate. Specifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-resolution model. The variability of the strength of the global ocean thermohaline circulation is also improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error that are comparable to those obtained by refining the resolution, but without the increased computational cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve climate simulations. Reference PD Williams, NJ Howe, JM Gregory, RS Smith, and MM Joshi (2016) Improved Climate Simulations through a Stochastic Parameterization of Ocean Eddies. Journal of Climate, under revision.

  2. Ocean Wave Simulation Based on Wind Field.

    PubMed

    Li, Zhongyi; Wang, Hao

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718

  3. Ocean Wave Simulation Based on Wind Field

    PubMed Central

    2016-01-01

    Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718

  4. Simulating the three-dimensional circulation and hydrography of Halifax Harbour using a multi-nested coastal ocean circulation model

    NASA Astrophysics Data System (ADS)

    Shan, Shiliang; Sheng, Jinyu; Thompson, Keith Richard; Greenberg, David Alexander

    2011-07-01

    Halifax Harbour is located on the Atlantic coast of Nova Scotia, Canada. It is one of the world's largest, ice-free natural harbours and of great economic importance to the region. A good understanding of the physical processes controlling tides, flooding, transport and dispersion, and hydrographic variability is required for pollution control and sustainable development of the Harbour. For the first time, a multi-nested, finite difference coastal ocean circulation model is used to reconstruct the three-dimensional circulation and hydrography of the Harbour and its variability on timescales of hours to months for 2006. The model is driven by tides, wind and sea level pressure, air-sea fluxes of heat, and terrestrial buoyancy fluxes associated with river and sewage discharge. The predictive skill of the model is assessed by comparing the model simulations with independent observations of sea level from coastal tide gauges and currents from moored instruments. The simulated hydrography is also compared against a new monthly climatology created from all available temperature and salinity observations made in the Harbour over the last century. It is shown that the model can reproduce accurately the main features of the observed tides and storm surge, seasonal mean circulation and hydrography, and wind driven variations. The model is next used to examine the main physical processes controlling the circulation and hydrography of the Harbour. It is shown that non-linear interaction between tidal currents and complex topography occurs over the Narrows. The overall circulation can be characterized as a two-layer estuarine circulation with seaward flow in the thin upper layer and landward flow in the broad lower layer. An important component of this estuarine circulation is a relatively strong, vertically sheared jet situated over a narrow sill connecting the inner Harbour to the deep and relatively quiescent Bedford Basin. Local wind driven variability is strongest in

  5. LLNL Ocean General Circulation Model

    Energy Science and Technology Software Center (ESTSC)

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.

  6. Simulating Ocean Fertilization: Effectiveness and Unintended Consequences

    SciTech Connect

    Caldeira, K

    2002-11-03

    The primary objectives of this project are to assess, and improve our understanding of: (1) The effectiveness of various proposals to intentionally store carbon in the ocean through fertilization of the surface ocean with iron and/or macronutrients; and (2) Biologically relevant consequences of long-term and extensive ocean fertilization. The PISCES ocean biogeochemistry model, developed at the MPI in Hamburg, Germany, and IPSL in Saclay, France will be used in this study. This model considers Fe, N, P, O{sub 2}, Si, alkalinity, and carbon, in organic and inorganic, dissolved and particulate forms. The model represents diatoms, coccolithophorids, nitrogen fixers, and two classes of zooplankton. This model will be incorporated into the LLNL ocean GCM, which is already being applied to other problems in ocean carbon sequestration. After coupling the ocean biogeochemistry and circulation models, the reliability of this model will be evaluated by comparison to observations. These include observations of natural ecological and biogeochemical variation and observations of small-scale iron fertilization experiments (e.g. SOFeX, IRONEx). This strategy will produce a tested model with predictive capability that we will use to address the following important questions: What is the long-term effectiveness of ocean carbon sequestration via different ocean fertilization strategies? What are the long-term environmental consequences of prolonged or widespread ocean fertilization? What processes need to be included in the models, to better reproduce effects observed in iron fertilization experiments? What should the next experiment measure to better aid the models?

  7. The Effect of Regional Climate Model Domain Choice on the Simulation of Tropical Cyclone-Like Vortices in the Southwestern Indian Ocean.

    NASA Astrophysics Data System (ADS)

    Landman, Willem A.; Seth, Anji; Camargo, Suzana J.

    2005-04-01

    A regional climate model is tested for several domain configurations over the southwestern Indian Ocean to examine the ability of the model to reproduce observed cyclones and their landfalling tracks. The interaction between large-scale and local terrain forcing of tropical storms approaching and transiting the island landmass of Madagascar makes the southwestern Indian Ocean a unique and interesting study area. In addition, tropical cyclones across the southern Indian Ocean are likely to be significantly affected by the large-scale zonal flow. Therefore, the effects of model domain size and the positioning of its lateral boundaries on the simulation of tropical cyclone-like vortices and their tracks on a seasonal time scale are investigated. Four tropical cyclones, which occurred over the southwestern Indian Ocean in January of the years 1995-97, are studied, and four domains are tested. The regional climate model is driven by atmospheric lateral boundary conditions that are derived from large-scale meteorological analyses. The use of analyzed boundary forcing enables comparison with observed cyclones in these tests. Simulations are performed using a 60-km horizontal resolution and for an extended time integration of about 6 weeks. Results show that the positioning of the eastern boundary of the regional model domain is of major importance in the life cycle of simulated tropical cyclone-like vortices: a vortex entering through the eastern boundary of the regional model is generally well simulated. The size of the domain also has a bearing on the ability of the regional model to simulate vortices in the Mozambique Channel, and the island landmass of Madagascar additionally influences storm tracks. These results show that the regional model can produce cyclonelike vortices and their tracks (with some deficiencies) given analyzed lateral boundary forcing. Statistical analyses of GCM-driven nested model ensemble integrations are now required to further address

  8. Climate warming due to increasing atmospheric CO2 - Simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model

    NASA Technical Reports Server (NTRS)

    Li, Peng; Chou, Ming-Dah; Arking, Albert

    1987-01-01

    The transient response of the climate to increasing CO2 is studied using a modified version of the multilayer energy balance model of Peng et al. (1982). The main characteristics of the model are described. Latitudinal and seasonal distributions of planetary albedo, latitude-time distributions of zonal mean temperatures, and latitudinal distributions of evaporation, water vapor transport, and snow cover generated from the model and derived from actual observations are analyzed and compared. It is observed that in response to an atmospheric doubling of CO2, the model reaches within 1/e of the equilibrium response of global mean surface temperature in 9-35 years for the probable range of vertical heat diffusivity in the ocean. For CO2 increases projected by the National Research Council (1983), the model's transient response in annually and globally averaged surface temperatures is 60-75 percent of the corresponding equilibrium response, and the disequilibrium increases with increasing heat diffusivity of the ocean.

  9. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget

    NASA Astrophysics Data System (ADS)

    Lauer, A.; Eyring, V.; Hendricks, J.; Jöckel, P.; Lohmann, U.

    2007-07-01

    International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO2) per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth's radiation budget directly by scattering and absorbing incoming solar radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics, to show that emissions from ships significantly increase the cloud droplet number concentration of low maritime water clouds. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase up to 5-10%. The sensitivity of the results is estimated by using three different emission inventories for present day conditions. The sensitivity analysis reveals that shipping contributes with 2.3% to 3.6% to the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically >0.1 μm) over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases up to 8-10% depending on the emission inventory. Changes in aerosol optical thickness caused by the shipping induced modification of aerosol particle number concentration and chemical composition lead to a change of the net top of the atmosphere (ToA) clear sky radiation of about -0.013 W/m2 to -0.036 W/m2 on global annual average. The estimated all-sky direct aerosol effect calculated from these changes ranges between -0.009 W/m2 and -0.014 W/m2. The indirect aerosol effect of ships

  10. An overset grid method for integration of fully 3D fluid dynamics and geophysics fluid dynamics models to simulate multiphysics coastal ocean flows

    NASA Astrophysics Data System (ADS)

    Tang, H. S.; Qu, K.; Wu, X. G.

    2014-09-01

    It is now becoming important to develop our capabilities to simulate coastal ocean flows involved with distinct physical phenomena occurring at a vast range of spatial and temporal scales. This paper presents a hybrid modeling system for such simulation. The system consists of a fully three dimensional (3D) fluid dynamics model and a geophysical fluid dynamics model, which couple with each other in two-way and march in time simultaneously. Particularly, in the hybrid system, the solver for incompressible flow on overset meshes (SIFOM) resolves fully 3D small-scale local flow phenomena, while the unstructured grid finite volume coastal ocean model (FVCOM) captures large-scale background flows. The integration of the two models are realized via domain decomposition implemented with an overset grid method. Numerical experiments on performance of the system in resolving flow patterns and solution convergence rate show that the SIFOM-FVCOM system works as intended, and its solutions compare reasonably with data obtained with measurements and other computational approaches. Its unparalleled capabilities to predict multiphysics and multiscale phenomena with high-fidelity are demonstrated by three typical applications that are beyond the reach of other currently existing models. It is anticipated that the SIFOM-FVCOM system will serve as a new platform to study many emerging coastal ocean problems.

  11. Toward Submesocale Ocean Modelling and Observations for Global Ocean Forecast.

    NASA Astrophysics Data System (ADS)

    Drillet, Y.

    2014-12-01

    Mercator Ocean is the French oceanographic operational center involved in the development an operation of global high resolution ocean forecasting systems; it is part of the European Copernicus Marine service initiated during MyOcean project. Mercator Ocean currently delivers daily 1/12° global ocean forecast based on the NEMO model which allows for a good representation of mesoscale structures in main areas of the global ocean. Data assimilation of altimetry provides a precise initialization of the mesoscale structures while in situ observations, mainly based on the ARGO network, and satellite Sea Surface Temperature constrain water mass properties from the surface to intermediate depths. One of the main improvements scheduled in the coming years is the transitioning towards submesoscale permitting horizontal resolution (1/36°). On the basis of numerical simulations in selected areas and standard diagnostics developed to validate operational systems, we will discuss : i) The impact of the resolution increase at the basin scale. ii) Adequacy of numerical schemes, vertical resolution and physical parameterization. iii) Adequacy of currently implemented data assimilation procedures in particular with respect to new high resolution data set such as SWOT.

  12. Structure and effect of ocean biology-induced heating (OBH) in the tropical Pacific, diagnosed from a hybrid coupled model simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-Hua

    2015-02-01

    Recent modeling studies have demonstrated that ocean biology plays a significant role in modulating the climate over the tropical Pacific through its effect on the vertical distribution of sunlight in the upper ocean, which can be simply represented by penetration depth (Hp). Previously, remotely sensed ocean color data have been used to derive an empirical model to depict interannual Hp variability (H'p) in the region. The derived H'p model is then incorporated into a hybrid coupled model (HCM) of the tropical Pacific to parameterize ocean biology-induced heating (OBH) effects. In this paper, outputs from the HCM simulations are diagnosed to reveal the structure and variability of OBH terms that are directly influenced by Hp and the depth (Hm) of the mixed layer (ML), including the penetrative solar radiation flux out of the ML (Qpen), the fraction absorbed within the ML (Qabs), and the related time rate of change of the ML temperature (Rsr). Coherent relationships are found among interannual variations in Hp, Hm, Qpen, Qabs and Rsr, with geographical dependence. It is found that Hp tends to have largest interannual variations over the western-central equatorial Pacific where its effects on Qpen are out of phase with those of Hm during ENSO cycles. It is further demonstrated that Qpen is a field whose interannual variability is significantly enhanced by H'p in the western-central equatorial region; the resultant differential heating in the vertical between the ML and subsurface layers acts to modulate the thermal stratification, the stability, vertical mixing and entrainment in the upper ocean. These induced ocean processes further affect sea surface temperatures in the equatorial Pacific.

  13. Ocean Clutter Modeling for Ship Detection

    NASA Astrophysics Data System (ADS)

    Tao, Ding; Anfinsen, Stian Normann; Brekke, Camilla

    2013-03-01

    This work addresses the problem of covariance matrix estimation for ocean clutter modeling. For ship detection based on polarimetric synthetic aperture radar (Pol-SAR) imagery and constant false alarm rate (CFAR) detectors, accurate ocean clutter modeling is essential. The covariance matrix provides all the polarimetric information of the ocean clutter and its estimate is always involved in PolSAR detection [1]. The aim of this work is to investigate and compare the behavior of different covariance matrix estimators, i.e., the sample mean, fixedpoint, and maximum likelihood estimators. An approximate maximum likelihood covariance matrix estimator is also proposed and discussed for better computational efficiency. Their performances are evaluated in terms of the Kullback-Leibler (KL) matrix distance, and computational efficiency. Various textured ocean clutter conditions are considered, ranging from high texture to the non-textured case with Gaussian clutter. Experiments are performed on simulated ocean clutter data.

  14. Mixing parameterizations in ocean climate modeling

    NASA Astrophysics Data System (ADS)

    Moshonkin, S. N.; Gusev, A. V.; Zalesny, V. B.; Byshev, V. I.

    2016-03-01

    Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model is found to be sensitive to a mixing parametrization. The computation of viscosity and diffusivity coefficients by an original splitting algorithm of the evolution equations for turbulence characteristics is found to be as efficient as traditional Monin-Obukhov parameterizations. At the same time, however, the variability of ocean climate characteristics is simulated more adequately. The simulation of salinity fields in the entire study region improves most significantly. Turbulent processes have a large effect on the circulation in the long-term through changes in the density fields. The velocity fields in the Gulf Stream and in the entire North Atlantic Subpolar Cyclonic Gyre are reproduced more realistically. The surface level height in the Arctic Basin is simulated more faithfully, marking the Beaufort Gyre better. The use of the Prandtl number as a function of the Richardson number improves the quality of ocean modeling.

  15. Eddy Permitting Simulations of Biogeochemical Cycles in the Global Ocean

    NASA Astrophysics Data System (ADS)

    Sumata, H.; Hashioka, T.; Suzuki, T.; Yamanaka, Y.

    2008-12-01

    A 3D ecosystem-biogeochemical model simulation for the global domain is performed in order to investigate variability of oceanic ecosystem on time scales of years to decades. The model has a horizontal resolution of 1/4 times 1/6 degrees and 51 vertical levels, covering the entire domain of the world ocean. The ecosystem- biogeochemical part of the model is based on NEMURO (North Pacific Ecosystem Model Used for Regional Oceanography), and is coupled with CCSR Ocean Component Model (COCO) version 4.3 by an offline technique. The physical part of the model is driven by the inter-annual forcing by common ocean-ice reference experiments (CORE) data from 1958 to 2004, and reasonably simulates inter-annual to decadal variabilities of ocean conditions related to biogeochemical cycles. These properties of the physical model with its eddying filed enable us to reproduce the realistic distributions of nutrients and plankton productions. Comparisons with historical station data show that the model also reasonably simulates the observed variabilities of ecosystem on time scales of years to decades. In particular, the model captures the transitions of biogeochemical cycles associated with regime shifts.

  16. Restoration of cloud contaminated ocean color images using numerical simulation

    NASA Astrophysics Data System (ADS)

    Yang, Xuefei; Mao, Zhihua; Chen, Jianyu; Huang, Haiqing

    2015-10-01

    It is very hard to access cloud-free remote sensing data, especially for the ocean color images. A cloud removal approach from ocean color satellite images based on numerical modeling is introduced. The approach removes cloud-contaminated portions and then reconstructs the missing data utilizing model simulated values. The basic idea is to create the relationship between cloud-free patches and cloud-contaminated patches under the assumption that both of them are influenced by the same marine hydrodynamic conditions. Firstly, we find cloud-free GOCI (the Geostationary Ocean Color Imager) retrieved suspended sediment concentrations (SSC) in the East China Sea before and after the time of cloudy images, which are set as initial field and validation data for numerical model, respectively. Secondly, a sediment transport model based on COHERENS, a coupled hydrodynamic-ecological ocean model for regional and shelf seas, is configured. The comparison between simulated results and validation images show that the sediment transport model can be used to simulate actual sediment distribution and transport in the East China Sea. Then, the simulated SSCs corresponding to the cloudy portions are used to remove the cloud and replace the missing values. Finally, the accuracy assessments of the results are carried out by visual and statistical analysis. The experimental results demonstrate that the proposed method can effectively remove cloud from GOCI images and reconstruct the missing data, which is a new way to enhance the effectiveness and availability of ocean color data, and is of great practical significance.

  17. A novel isotopic fractionation during dissolved oxygen consumption in mesopelagic waters inferred from observation and model simulation of dissolved oxygen δ18O in open oceanic regions

    NASA Astrophysics Data System (ADS)

    Nakayama, N.; Oka, A.; Gamo, T.

    2012-12-01

    Oxygen isotopic ratio (δ18O) of dissolved oxygen is a useful for bioactive tracer of the subsurface aphotic (mesopelagic) ocean since it varies nonlinearly related to oxygen consumption via stoichiometry of organic matter decomposition. Therefore, along with global circulation model (GCM), observed δ18O and their vertical/geographical distribution can be effectively used to quantitatively determine how marine biological and ocean physical processes contribute to varying dissolved oxygen (DO) concentration in the ocean, in particular mesopelagic zone where pronounced biological activity alters DO concentration significantly. In the central north Pacific Ocean and Indian Ocean, including Arabian Sea, one of the few regions in the open ocean which has oxygen minimum zone (OMZ, a layer with severely depleted DO), vertical profiles of DO and δ18O were observed. These observed data are compared with a GCM simulation in which a constant isotopic fractionation factor of DO by marine biological respiration and a fixed Redfield molar ratio between P and O are assumed. Even in the Arabian Sea OMZ, relationship between DO and δ18O was found to be similar to those observed in other open oceans, indicating that no specific oxygen consumption process occurred in the OMZ. Using the GCM model, we attempted to reproduce the observed overall relationship between DO and δ18O, but it failed when we adopted the previously reported isotopic fractionation factor: Discrepancy became larger when oxygen saturation level decreased, in particular in thermocline water (at 20% oxygen saturation level, modeled δ18O was heavier than observed values by +7‰). Sensitivity simulations with the GCM model revealed that (1) simply changing the intensity of oxygen consumption by respiration/organic matter decomposition nor physical processes (diffusion and/or advection) could explain the observed relationship between DO and δ18O, (2) applying a smaller isotopic fractionation for deep waters

  18. Assimilating QuikSCAT Ocean Surface Winds with the Weather Research and Forecasting Model for Surface Wind-Field Simulation over the Chukchi/Beaufort Seas

    NASA Astrophysics Data System (ADS)

    Fan, Xingang; Krieger, Jeremy R.; Zhang, Jing; Zhang, Xiangdong

    2013-07-01

    To achieve a high-quality simulation of the surface wind field in the Chukchi/Beaufort Sea region, quick scatterometer (QuikSCAT) ocean surface winds were assimilated into the mesoscale Weather Research and Forecasting model by using its three-dimensional variational data assimilation system. The SeaWinds instrument on board the polar-orbiting QuikSCAT satellite is a specialized radar that measures ice-free ocean surface wind speed and direction at a horizontal resolution of 12.5 km. A total of eight assimilation case studies over two five-day periods, 1-5 October 2002 and 20-24 September 2004, were performed. The simulation results with and without the assimilation of QuikSCAT winds were then compared with QuikSCAT data available during the subsequent free-forecast period, coastal station observations, and North American Regional Reanalysis data. It was found that QuikSCAT winds are a potentially valuable resource for improving the simulation of ocean near-surface winds in the Chukchi/Beaufort Seas region. Specifically, the assimilation of QuikSCAT winds improved, (1) offshore surface winds as compared to unassimilated QuikSCAT winds, (2) sea-level pressure, planetary boundary-layer height, as well as surface heat fluxes, and (3) low-level wind fields and geopotential height. Verification against QuikSCAT data also demonstrated the temporal consistency and good quality of QuikSCAT observations.

  19. Simulation of optimal arctic routes using a numerical sea ice model based on an ice-coupled ocean circulation method

    NASA Astrophysics Data System (ADS)

    Nam, Jong-Ho; Park, Inha; Lee, Ho Jin; Kwon, Mi Ok; Choi, Kyungsik; Seo, Young-Kyo

    2013-06-01

    Ever since the Arctic region has opened its mysterious passage to mankind, continuous attempts to take advantage of its fastest route across the region has been made. The Arctic region is still covered by thick ice and thus finding a feasible navigating route is essential for an economical voyage. To find the optimal route, it is necessary to establish an efficient transit model that enables us to simulate every possible route in advance. In this work, an enhanced algorithm to determine the optimal route in the Arctic region is introduced. A transit model based on the simulated sea ice and environmental data numerically modeled in the Arctic is developed. By integrating the simulated data into a transit model, further applications such as route simulation, cost estimation or hindcast can be easily performed. An interactive simulation system that determines the optimal Arctic route using the transit model is developed. The simulation of optimal routes is carried out and the validity of the results is discussed.

  20. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations

    NASA Astrophysics Data System (ADS)

    Zou, Liwei; Zhou, Tianjun; Peng, Dongdong

    2016-02-01

    The FROALS (flexible regional ocean-atmosphere-land system) model, a regional ocean-atmosphere coupled model, has been applied to the Coordinated Regional Downscaling Experiment (CORDEX) East Asia domain. Driven by historical simulations from a global climate system model, dynamical downscaling for the period from 1980 to 2005 has been conducted at a uniform horizontal resolution of 50 km. The impacts of regional air-sea couplings on the simulations of East Asian summer monsoon rainfall have been investigated, and comparisons have been made to corresponding simulations performed using a stand-alone regional climate model (RCM). The added value of the FROALS model with respect to the driving global climate model was evident in terms of both climatology and the interannual variability of summer rainfall over East China by the contributions of both the high horizontal resolution and the reasonably simulated convergence of the moisture fluxes. Compared with the stand-alone RCM simulations, the spatial pattern of the simulated low-level monsoon flow over East Asia and the western North Pacific was improved in the FROALS model due to its inclusion of regional air-sea coupling. The results indicated that the simulated sea surface temperature (SSTs) resulting from the regional air-sea coupling were lower than those derived directly from the driving global model over the western North Pacific north of 15°N. These colder SSTs had both positive and negative effects. On the one hand, they strengthened the western Pacific subtropical high, which improved the simulation of the summer monsoon circulation over East Asia. On the other hand, the colder SSTs suppressed surface evaporation and favored weaker local interannual variability in the SST, which led to less summer rainfall and weaker interannual rainfall variability over the Korean Peninsula and Japan. Overall, the reference simulation performed using the FROALS model is reasonable in terms of rainfall over the land area of

  1. Modeling ocean deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.

    The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they

  2. Modeling ocean deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.

    The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they

  3. Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Alder, J. R.; Hostetler, S. W.

    2015-03-01

    We apply GENMOM, a coupled atmosphere-ocean climate model, to simulate eight equilibrium time slices at 3000-year intervals for the past 21 000 years forced by changes in Earth-Sun geometry, atmospheric greenhouse gases (GHGs), continental ice sheets, and sea level. Simulated global cooling during the Last Glacial Maximum (LGM) is 3.8 °C and the rate of post-glacial warming is in overall agreement with recently published temperature reconstructions. The greatest rate of warming occurs between 15 and 12 ka (2.4 °C over land, 0.7 °C over oceans, and 1.4 °C globally) in response to changes in radiative forcing from the diminished extent of the Northern Hemisphere (NH) ice sheets and increases in GHGs and NH summer insolation. The modeled LGM and 6 ka temperature and precipitation climatologies are generally consistent with proxy reconstructions, the PMIP2 and PMIP3 simulations, and other paleoclimate data-model analyses. The model does not capture the mid-Holocene "thermal maximum" and gradual cooling to preindustrial (PI) global temperature found in the data. Simulated monsoonal precipitation in North Africa peaks between 12 and 9 ka at values ~ 50% greater than those of the PI, and Indian monsoonal precipitation peaks at 12 and 9 ka at values ~ 45% greater than the PI. GENMOM captures the reconstructed LGM extent of NH and Southern Hemisphere (SH) sea ice. The simulated present-day Antarctica Circumpolar Current (ACC) is ~ 48% weaker than the observed (62 versus 119 Sv). The simulated present-day Atlantic Meridional Overturning Circulation (AMOC) of 19.3 ± 1.4 Sv on the Bermuda Rise (33° N) is comparable with observed value of 18.7 ± 4.8 Sv. AMOC at 33° N is reduced by ~ 15% during the LGM, and the largest post-glacial increase (~ 11%) occurs during the 15 ka time slice.

  4. View-Dependent Tessellation and Simulation of Ocean Surfaces

    PubMed Central

    Puig-Centelles, Anna; Ramos, Francisco; Chover, Miguel; Sbert, Mateu

    2014-01-01

    Modeling and rendering realistic ocean scenes have been thoroughly investigated for many years. Its appearance has been studied and it is possible to find very detailed simulations where a high degree of realism is achieved. Nevertheless, among the solutions to ocean rendering, real-time management of the huge heightmaps that are necessary for rendering an ocean scene is still not solved. We propose a new technique for simulating the ocean surface on GPU. This technique is capable of offering view-dependent approximations of the mesh while maintaining coherence among the extracted approximations. This feature is very important as most solutions previously presented must retessellate from the initial mesh. Our solution is able to use the latest extracted approximation when refining or coarsening the mesh. PMID:24672405

  5. The VIIRS ocean data simulator enhancements and results

    NASA Astrophysics Data System (ADS)

    Robinson, Wayne D.; Patt, Frederick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-10-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  6. The VIIRS Ocean Data Simulator Enhancements and Results

    NASA Technical Reports Server (NTRS)

    Robinson, Wayne D.; Patt, Fredrick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.

    2011-01-01

    The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.

  7. Precipitation extremes over Amazonia - atmospheric and oceanic associated features observed and simulated by HADGEM2-ES, CPTEC/INPE AGCM and Eta/CPTEC regional model

    NASA Astrophysics Data System (ADS)

    Cavalcanti, I. F.

    2013-05-01

    Extreme monthly cases of precipitation (positive and negative anomalies) over Amazonia are analyzed to show the atmospheric and oceanic related features and the ability of CPTEC AGCM and HADGEM2-ES in simulating them. Humidity flux variability over the Tropical Atlantic region is analyzed related to the precipitation variability over Amazonia. Besides the Pacific Ocean influence, the Amazonia precipitation is affected by the Tropical Atlantic Ocean, both by the SST and atmospheric flux humidity. Correlations between Atlantic SST and Amazonia precipitation show that there are specific months and areas that are affected by SST anomalies. The extreme cases are obtained from the Standardized Precipitation Index (SPI) applied to monthly data in four areas of Amazonia: northwest, northeast, west and east areas. The period of analysis is 1981 to 2010 to GPCP observed precipitation and CPTEC/INPE AGCM. As this AGCM is the base of the Brazilian Model of Earth System, its behavior on the mechanisms leading to extremes over Amazonia, compared to observations is discussed. Projections of extremes over the region are analyzed with results from CMIP5 HADGEM2-ES during 2073-2099 compared to 1979-2005. The regional Eta CPTEC model is also analyzed in two periods: 1960 to 1990 and 2040 to 2070, with boundary conditions of CMIP3 HADCM3 A1B scenario. The relevance of this analysis is to identify changes in frequency and intensity of extremes in the Amazon region in a higher resolution than the global models.

  8. NEMO Oceanic Model Optimization

    NASA Astrophysics Data System (ADS)

    Epicoco, I.; Mocavero, S.; Murli, A.; Aloisio, G.

    2012-04-01

    NEMO is an oceanic model used by the climate community for stand-alone or coupled experiments. Its parallel implementation, based on MPI, limits the exploitation of the emerging computational infrastructures at peta and exascale, due to the weight of communications. As case study we considered the MFS configuration developed at INGV with a resolution of 1/16° tailored on the Mediterranenan Basin. The work is focused on the analysis of the code on the MareNostrum cluster and on the optimization of critical routines. The first performance analysis of the model aimed at establishing how much the computational performance are influenced by the GPFS file system or the local disks and wich is the best domain decomposition. The results highlight that the exploitation of local disks can reduce the wall clock time up to 40% and that the best performance is achieved with a 2D decomposition when the local domain has a square shape. A deeper performance analysis highlights the obc_rad, dyn_spg and tra_adv routines are the most time consuming routines. The obc_rad implements the evaluation of the open boundaries and it has been the first routine to be optimized. The communication pattern implemented in obc_rad routine has been redesigned. Before the introduction of the optimizations all processes were involved in the communication, but only the processes on the boundaries have the actual data to be exchanged and only the data on the boundaries must be exchanged. Moreover the data along the vertical levels are "packed" and sent with only one MPI_send invocation. The overall efficiency increases compared with the original version, as well as the parallel speed-up. The execution time was reduced of about 33.81%. The second phase of optimization involved the SOR solver routine, implementing the Red-Black Successive-Over-Relaxation method. The high frequency of exchanging data among processes represent the most part of the overall communication time. The number of communication is

  9. An overlooked problem in model simulations of the thermohaline circulation and heat transport in the Atlantic Ocean

    SciTech Connect

    Boening, C.W.; Holland, W.R.; Bryan, F.O.; Danabasoglu, G.; Mcwilliams, J.C. |

    1995-03-01

    Many models of the large-scale thermohaline circulation in the ocean exhibit strong zonally integrated upwelling in the midlatitude North Atlantic that significantly decreases the amount of deep water that is carried from the formation regions in the subpolar North Atlantic toward low latitudes and across the equator. In an analysis of results from the Community Modeling Effort using a suite of models with different horizontal resolution, wind and thermohaline forcing, and mixing parameters, it is shown that the upwelling is always concentrated in the western boundary layer between roughly 30 deg and 40 deg N. The vertical transport across 1000 m appears to be controlled by local dynamics and strongly depends on the horizontal resolution and mixing parameters of the model. It is suggested that in models with a realistic deep-water formation rate in the subpolar North Atlantic, the excessive upwelling can be considered as the prime reason for the typically too low meridional overturning rates and northward heat transports in the subtropical North Atlantic. A new isopycnal advection and mixing parameterization of tracer transports by mesoscale eddies yield substantial improvements in these integral measures of the circulation.

  10. Numerical Modeling of Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  11. Numerical simulations of oceanic oxygen cycling in the FAMOUS Earth-System model: FAMOUS-ES, version 1.0

    NASA Astrophysics Data System (ADS)

    Williams, J. H. T.; Totterdell, I. J.; Halloran, P. R.; Valdes, P. J.

    2014-02-01

    Addition and validation of an oxygen cycle to the ocean component of the FAMOUS climate model are described. Surface validation is carried out with respect to HadGEM2-ES where good agreement is found and where discrepancies are mainly attributed to disagreement in surface temperature structure between the models. The agreement between the models at depth (where observations are also used in the comparison) in the Southern Hemisphere is less encouraging than in the Northern Hemisphere. This is attributed to a combination of excessive surface productivity in FAMOUS' equatorial waters (and its concomitant effect on remineralisation at depth) and its reduced overturning circulation compared to HadGEM2-ES. For the entire Atlantic basin FAMOUS has a circulation strength of 12.7 ± 0.4 Sv compared to 15.0 ± 0.9 for HadGEM2-ES. The HadGEM2-ES data used in this paper were obtained from the online database of the fifth Coupled Model Intercomparison Project, CMIP5 (Taylor et al., 2012).

  12. An observing system simulation for Southern Ocean carbon dioxide uptake.

    PubMed

    Majkut, Joseph D; Carter, Brendan R; Frölicher, Thomas L; Dufour, Carolina O; Rodgers, Keith B; Sarmiento, Jorge L

    2014-07-13

    The Southern Ocean is critically important to the oceanic uptake of anthropogenic CO2. Up to half of the excess CO2 currently in the ocean entered through the Southern Ocean. That uptake helps to maintain the global carbon balance and buffers transient climate change from fossil fuel emissions. However, the future evolution of the uptake is uncertain, because our understanding of the dynamics that govern the Southern Ocean CO2 uptake is incomplete. Sparse observations and incomplete model formulations limit our ability to constrain the monthly and annual uptake, interannual variability and long-term trends. Float-based sampling of ocean biogeochemistry provides an opportunity for transforming our understanding of the Southern Ocean CO2 flux. In this work, we review current estimates of the CO2 uptake in the Southern Ocean and projections of its response to climate change. We then show, via an observational system simulation experiment, that float-based sampling provides a significant opportunity for measuring the mean fluxes and monitoring the mean uptake over decadal scales. PMID:24891388

  13. Ocean Modeling of the North Atlantic

    NASA Technical Reports Server (NTRS)

    Seminar, A. J.

    1984-01-01

    Present modeling of the North Atlantic is inadequate and can be improved in a number of ways. A number of important physical processes are listed in five categories from the viewpoints of how they are treated in isolation, how they are usually represented in present ocean basin models, and how they may be better represented in future models. In the first two categories of vertical boundary processes and internal vertical mixing, parameterizations exist which can easily be incorporated into models and which will have important effects on the simulated structure of the North Atlantic. For the third catagory (mesoscale eddy effects), adequate parameterizations do not exist; but the order of magnitude of the effects is known from observational and process-model studies. A horizontal grid spacing of 100 km or less in required to allow parameterizations with this order of magnitude, as well as to resolve the time-averaged ocean fields. In the fourth category of large scale transports improvements are suggested by way of increased vertical resolution and by the requirement that lateral mixing due to eddies takes place on isopycnal surfaces. Model incorporation of the latter phenomenta is underway. In the fifth category of miscellaneous high-latitude processes, formulations for the treatment of sea ice are available for use. However, the treatment of gravitational instability, which is crucial to deepwater formation in the Atlantic Ocean, will require additional refinements to account for the unresolved physics of chimney formations in the open ocean and buoyant plumes near ocean boundaries.

  14. Application of Unstructured Grid Finite Volume Coastal Ocean Model to Louisiana Coast: Simulation of River Water Plumes into the Hypoxia Region

    NASA Astrophysics Data System (ADS)

    Li, C.; Rabalais, N. N.; Chen, C.; Twilley, R. R.; Lin, H.; Turner, E. R.

    2008-12-01

    We have applied the unstructured grid finite volume coastal ocean model (FVCOM), developed at the University of Massachusetts, to the entire Gulf of Mexico, with a particular focus on the northern Gulf of Mexico including the Regions of Freshwater Influence. This area covers one of the largest hypoxia zones in coastal oceans where freshwater and nutrient inputs are significant from land drainage. Among the rivers included in the model are the Mississippi River and the Atchafalaya River that run into the continental shelf along the Louisiana coast. The complexity of the LA coastline and bays, low-lying marsh areas are among the challenges for an accurate simulation of transport of water and associated dynamics. The FVCOM is selected to address this complexity. The model is implemented by using irregular triangles with the smallest ones having scales of ~50 m. This allows accurate representation of fluxes through the multiple inlets connecting the shelf and a series of semi-enclosed bays. A total of more than 263,000 triangles are used to cover the domain, with more than 90% concentrated over the Louisiana shelf and coast areas. The astronomical tides, river discharges, and wind are provided as the forcing for the model. The preliminary simulations yielded detailed flow structure including the river plumes that mimics the high resolution images observed from satellites. These plumes respond to wind forcing and river discharges as well as the numerical model parameters related to turbulence and bottom friction. The accuracy of coastlines and bathymetry also has influence to the results. The model results show multiple eddies in the bays, at the inlets, near the river mouth and deltas, and on the shelf. This preliminary study provides a new tool to study the dynamics of hypoxia in the northern Gulf of Mexico.

  15. Estimation of Fresh Water and Salt Transports in the Northern Indian Ocean Using Aquarius and Model Simulations

    NASA Astrophysics Data System (ADS)

    D'Addezio, J. M.; Bulusu, S.; Murty, V. S. N.; Nyadjro, E. S.

    2014-12-01

    The Northern Indian Ocean presents a unique dipolar Sea Surface Salinity (SSS) structure with the salty Arabian Sea (AS) on the west and the fresher Bay of Bengal (BoB) on the east. By using a combination of observational data, reanalyses, and model studies, the salinity structure of this dichotomous yet interconnected region is quantified. At the surface, the largest driver of salinity interseasonal variability is caused by the monsoonal winds and their ability to transport volume between the two water masses. Time-depth profiles reveal a rich vertical salinity profile. The AS presents with a mild salinity inversion, with salty waters above fresher ones for the majority of each annual cycle. This vertical gradient is approximately 1 psu between the surface and 200m depth. In the BoB the opposite occurs, where larger volumes of precipitation and river runoff create a lens of freshwater from the surface to approximately 50m depth year around. Salt and freshwater fluxes at the surface show a strong zonal component between the two basins along Sri Lanka twice a year. Within the basins, meridional fluxes dominate especially along the coastal regions where the EICC and WICC flow. Meridional depth-integrated salt, freshwater, and volume transports along a slice of each basin at 6°N reveal the approximate time its takes for each basin to return to equilibrium after strong transports during each monsoonal seasons advect salt and/or freshwater into or out of each respective region.

  16. Four simple ocean carbon models

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III

    1992-01-01

    This paper briefly reviews the key processes that determine oceanic CO2 uptake and sets this description within the context of four simple ocean carbon models. These models capture, in varying degrees, these key processes and establish a clear foundation for more realistic models that incorporate more directly the underlying physics and biology of the ocean rather than relying on simple parametric schemes. The purpose of this paper is more pedagogical than purely scientific. The problems encountered by current attempts to understand the global carbon cycle not only require our efforts but set a demand for a new generation of scientist, and it is hoped that this paper and the text in which it appears will help in this development.

  17. An Earth system model of intermediate complexity: Simulation of the role of ocean mixing parameterizations and climate change in estimated uptake for natural and bomb radiocarbon and anthropogenic CO2

    NASA Astrophysics Data System (ADS)

    Cao, Long; Jain, Atul

    2005-09-01

    We examine the sensitivity of simultaneous simulation of climate, natural 14C, bomb 14C, and anthropogenic CO2 uptake to the choice of three different ocean mixing schemes: horizontal/vertical mixing (HV), isopycnal mixing (ISO), and Gent-McWilliams mixing (GM) using an Earth system model of intermediate complexity, Integrated Science Assessment Model-2.5D (ISAM-2.5D). Our modeling results suggest that the HV scheme greatly underestimates the observed values of natural 14C in the deep ocean, while the ISO and GM schemes yield more realistic results by simulating increased amounts of natural 14C values through enhanced vertical diffusion and deep water formation. The GM scheme further improves the ISO-based natural 14C distribution in the Southern Ocean and the deep Pacific and Indian oceans through a more realistic simulation of the Southern Ocean circulation. The model simulated global uptake of anthropogenic CO2 for the 1980s ranges between 1.8 and 2.3 PgC/yr, largely consistent with data-based estimates and OGCM results. The ISAM-2.5D simulated oceanic uptake of 14C and CO2 is highest for the ISO scheme and lowest for the HV scheme, with the largest discrepancies occurring among different mixing schemes found in the Southern Ocean. However, no single mixing scheme is more successful than the others in simulating GEOSECS-measured uptake of bomb 14C and anthropogenic CO2 for various ocean basins. Climate change is found to reduce CO2 uptake by 7-9% and 6-8% for the 1980s and over the period 1765-1990, mainly as a result of decreased CO2 solubility associated with increased sea surface temperatures. However, the effect of climate change on bomb 14C uptake is negligible.

  18. Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model

    USGS Publications Warehouse

    Alder, Jay R.; Hostetler, Steven W.

    2015-01-01

    We apply GENMOM, a coupled atmosphere–ocean climate model, to simulate eight equilibrium time slices at 3000-year intervals for the past 21 000 years forced by changes in Earth–Sun geometry, atmospheric greenhouse gases (GHGs), continental ice sheets, and sea level. Simulated global cooling during the Last Glacial Maximum (LGM) is 3.8 ◦C and the rate of post-glacial warming is in overall agreement with recently published temperature reconstructions. The greatest rate of warming occurs between 15 and 12 ka (2.4 ◦C over land, 0.7 ◦C over oceans, and 1.4 ◦C globally) in response to changes in radiative forcing from the diminished extent of the Northern Hemisphere (NH) ice sheets and increases in GHGs and NH summer insolation. The modeled LGM and 6 ka temperature and precipitation climatologies are generally consistent with proxy reconstructions, the PMIP2 and PMIP3 simulations, and other paleoclimate data–model analyses. The model does not capture the mid-Holocene “thermal maximum” and gradual cooling to preindustrial (PI) global temperature found in the data. Simulated monsoonal precipitation in North Africa peaks between 12 and 9 ka at values ∼ 50 % greater than those of the PI, and Indian monsoonal precipitation peaks at 12 and 9 ka at values ∼ 45 % greater than the PI. GENMOM captures the reconstructed LGM extent of NH and Southern Hemisphere (SH) sea ice. The simulated present-day Antarctica Circumpolar Current (ACC) is ∼ 48 % weaker than the observed (62 versus 119 Sv). The simulated present-day Atlantic Meridional Overturning Circulation (AMOC) of 19.3 ± 1.4 Sv on the Bermuda Rise (33◦ N) is comparable with observed value of 18.7 ± 4.8 Sv. AMOC at 33◦ N is reduced by ∼ 15 % during the LGM, and the largest post-glacial increase (∼ 11 %) occurs during the 15 ka time slice.

  19. Evaluating the deep-ocean circulation of a global ocean model using carbon isotopic ratios

    NASA Astrophysics Data System (ADS)

    Paul, André; Dutkiewicz, Stephanie; Gebbie, Jake; Losch, Martin; Marchal, Olivier

    2016-04-01

    We study the sensitivity of a global three-dimensional biotic ocean carbon-cycle model to the parameterizations of gas exchange and biological productivity as well as to deep-ocean circulation strength, and we employ the carbon isotopic ratios δ13C and Δ14C of dissolved inorganic carbon for a systematic evaluation against observations. Radiocarbon (Δ14C) in particular offers the means to assess the model skill on a time scale of 100 to 1000 years relevant to the deep-ocean circulation. The carbon isotope ratios are included as tracers in the MIT general circulation model (MITgcm). The implementation involves the fractionation processes during photosynthesis and air-sea gas exchange. We present the results of sixteen simulations combining two different parameterizations of the piston velocity, two different parameterizations of biological productivity (including the effect of iron fertilization) and four different overturning rates. These simulations were first spun up to equilibrium (more than 10,000 years of model simulation) and then continued from AD 1765 to AD 2002. For the model evaluation, we followed the OCMIP-2 (Ocean Carbon-Cycle Model Intercomparision Project phase two) protocol, comparing the results to GEOSECS (Geochemical Ocean Sections Survey) and WOCE (World Ocean Circulation Experiment) δ13C and natural Δ14C data in the world ocean. The range of deep natural Δ14C (below 1000 m) for our single model (MITgcm) was smaller than for the group of different OCMIP-2 models. Furthermore, differences between different model parameterizations were smaller than for different overturning rates. We conclude that carbon isotope ratios are a useful tool to evaluate the deep-ocean circulation. Since they are also available from deep-sea sediment records, we postulate that the simulation of carbon isotope ratios in a global ocean model will aid in estimating the deep-ocean circulation and climate during present and past.

  20. Simulation of Ocean-Generated Microseismic Noise Propagation in the North-East Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ying, Y.; Bean, C. J.; Lokmer, I.; Faure, T.

    2013-12-01

    Ocean-generated microseisms are small ground oscillations associated with the occurrence of the interactions between the solid Earth and ocean water waves. Microseismic noise field is mostly composed of surface waves, where the wave energy propagate along the ocean floor predominantly in the form of Rayleigh waves, but some Love waves are also present. Microseisms will pick up some information about the medium on the propagation paths due to the interaction between the seismic waves and the structure. Recently, seismologists become more and more interested in using cross-correlations of continuously recorded microseismic noise to retrieve information about the Earth's structure. In order to use this information well, it's important to identify the rich noise source domain in the ocean and quantify the propagation process of microseism from the origins to the land-based seismic stations. In this work, we try to characterize how a microseism propagates along a fluid-solid interface through numerical simulations, in which a North-East Atlantic Ocean model is adopted and a microseism is generated on the bottom of deep ocean with the expected source mechanism. The spectral element method is used to simulate coupled acoustic/elastic wave propagation in an unstructured mesh, and the coupling between fluid and solid regions is accommodated by using a domain decomposition method. The effects of crustal structure, sediment layer, bathymetry and ocean load on the microseismic wave propagation will be examined, and a special attention will be paid to the fluid-solid coupling. We find that microseismic wave will be highly dispersive propagating in the ocean environment.

  1. Pathways of Atlantic Waters into the Arctic Ocean: Eddy-permitting ocean and sea ice simulations

    NASA Astrophysics Data System (ADS)

    Wekerle, Claudia; von Appen, Wilken-Jon; Danilov, Sergey; Jung, Thomas; Kanzow, Torsten; Schauer, Ursula; Timmermann, Ralph; Wang, Qiang

    2015-04-01

    Fram Strait is the only deep gateway connecting the central Arctic with the North Atlantic. Boundary currents on each side are responsible for the exchange of water masses between the Arctic and North Atlantic. The East Greenland Current (EGC) carries fresh and cold Arctic waters and sea ice southward, whereas the West Spitsbergen Current (WSC) carries warm Atlantic Waters (AW) into the Arctic Ocean. The complex topography in Fram Strait leads to a branching of the northward flowing WSC, with one branch recirculating between 78°N and 81°N which then joins the EGC. To date, the dynamics as well as the precise location of this recirculation are unclear. The goal of this research project is to quantify the amount and variability of AW which recirculates immediately in Fram Strait, and to investigate the role of atmospheric forcing and oceanic meso-scale eddies for the recirculation. We use simulations carried out with a global configuration of the Finite Element Sea ice-Ocean Model (FESOM) at eddy-permitting scales. The advantage of this model is the finite element discretization of the governing equations, which allows us to locally refine the mesh in areas of interest and keep it coarse in other parts of the global oceans without the need for traditional nesting. Here we will show the first results of the model validation. The model has ~9 km resolution in the Nordic Seas and Fram Strait and 1 deg south of 50°N. We assess the model capabilities in simulating the ocean circulation in the Nordic Seas and Fram Strait by comparing with the available observational data, e.g. with data from the Fram Strait oceanographic mooring array. The ocean volume and heat transport from the Atlantic Ocean into the Nordic Seas and at the Fram Strait are analyzed. Our results show that the model can capture some of the observed key ocean properties in our region of interest, while some tuning is required to further improve the model. In the next phase of this project we will focus

  2. Ensemble simulations of the ocean induced magnetic field

    NASA Astrophysics Data System (ADS)

    Irrgang, Christopher; Saynisch, Jan; Hagedoorn, Jan M.; Thomas, Maik

    2016-04-01

    The recent advent of new high-resolution datasets of electromagnetic induction allows novel combinations of observations and models. The ocean induced magnetic field provides the potential to indirectly observe the ocean general circulation and may be utilized by data assimilation techniques. The modelling of the ocean induced magnetic field is affected by various uncertainties that originate from errors in the input data and from the applied model itself. The amount of aggregated uncertainties and their effect on the modelling of electromagnetic induction in the ocean is unknown. However, the knowledge of model uncertainties is essential for many research questions. To investigate the uncertainty in the modelling of motional induction, ensemble simulations with an ocean general circulation model and an electromagnetic induction model are performed on the basis of different error scenarios. This approach allows to estimate both the spatial distribution and temporal variation of the uncertainty. The largest uncertainty in the motionally induced magnetic field occurs in the area of the Antarctic Circumpolar Current. Local maxima reach values of up to 0.7 nano Tesla (nT). The estimated global annual mean uncertainty in the motionally induced magnetic field ranges from 0.1 to 0.4 nT. The relative amount of uncertainty reaches up to 30 % of the induced magnetic signal strength with largest values in regions in the northern hemisphere. The major source of uncertainty is found to be introduced by the wind stress from the atmospheric forcing of the ocean model. In addition, the temporal evolution of the uncertainty in the motionally induced magnetic field shows distinct seasonal variations. Specific regions are identified which are robust with respect to the introduced uncertainties.

  3. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is ³delayed² and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  4. Evolution of density compensated fronts in simulated ocean mixed layers

    NASA Astrophysics Data System (ADS)

    Helber, R. W.; Hebert, D. A.; Koch, A.

    2015-12-01

    Observations within the ocean surface mixed layer indicate a tendency for temperature gradients to form that are compensated for their effect on density by salinity gradients. These density compensated fronts tend to occur in the absence of strong surface forcing and thus weak vertical mixing. Observations show that density compensated fronts are quickly erased by surface cooling events. The presence of density compensated gradients in the surface mixed layer, however, are not well represented in regional and global ocean circulation model predictions. In these models, subgrid-scale processes are parameterized with minimal ability to represent double diffusion. Recent advances in parameterizations have been developed to model the re-stratification of the mixed layer by sub-mesoscale eddies. These ageostrophic dynamics can lead to long filaments that are governed by process on length scales from 100 m to 10 km and time scales near a day. The impact of these processes in model physics on density compensated fronts is unclear. To improve our understanding of compensated front evolution in the ocean, three different mixing schemes are tested to evaluate the creation of horizontally density compensated gradients in model simulations. One scheme extracts potential energy of ocean fronts for mixing dependent on horizontal and vertical buoyancy gradients, mixed layer depth, and inertial period. The other two schemes mix temperature and salinity horizontally dependent on the buoyancy gradient. All schemes provide a three dimensional approach to mixing that differentiates the horizontal eddy diffusion of temperature and salinity.

  5. Climate science: Unexpected fix for ocean models

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Thompson, Luanne

    2016-07-01

    Computational models persistently underestimate strong currents that redistribute ocean heat. This problem is solved in models in which ocean eddies are damped by coupling of the atmosphere with the sea. See Letter p.533

  6. An integrated modeling study of ocean circulation, the ocean carbon cycle, marine ecosystems, and climate change

    NASA Astrophysics Data System (ADS)

    Cao, Long

    The unifying theme of this study is to conduct an extensive exploration of various interactions between ocean circulation, the carbon cycle, marine ecosystems, and climate change using an earth system model of intermediate complexity, ISAM-2.5D (Integrated Science Assessment Model). First, through the simulation of radiocarbon (in terms of Delta14C) it is demonstrated that the inclusion of isopycnal diffusion and a parameterization of eddy-induced circulation in the ISAM-2.5D model yields the most realistic representation of ocean mixing and circulation. Secondly, I demonstrate the value of the simulation of multiple tracers, combined with a variety of observational data, in constraining the ISAM-2.5D model that has been constrained by the simulation of Delta14C. Through the simulation of ocean biogeochemical cycles and CFC-11 and the use of the updated observational data of bomb radiocarbon, I improve the Delta14C-constrained ISAM-2.5D model's performance in simulating ocean circulation and air-sea gas exchange, as well as its credibility in predicting oceanic carbon uptake. Third, I use the ISAM-2.5D model to assess the efficiency of direct carbon injection into the deep ocean with the influence of climate change. It is shown that the consideration of climate change enhances the retention time of injected carbon into the Atlantic Ocean as a result of weakened North Atlantic overturning circulation in a warming climate. However, the climatic effect is insignificant on the efficiency of carbon injection into the Pacific and Indian Oceans. Finally, I quantify that increased atmospheric CO2 concentrations would be mainly responsible for future ocean acidification, including lowering in ocean pH and sea water saturation state with respect to carbonate minerals. The consideration of climate change produces a second-order modification to projected ocean acidification. Therefore, in addition to its radiative effects on climate change, increased atmospheric CO2

  7. Ocean modelling on the CYBER 205 at GFDL

    NASA Technical Reports Server (NTRS)

    Cox, M.

    1984-01-01

    At the Geophysical Fluid Dynamics Laboratory, research is carried out for the purpose of understanding various aspects of climate, such as its variability, predictability, stability and sensitivity. The atmosphere and oceans are modelled mathematically and their phenomenology studied by computer simulation methods. The present state-of-the-art in the computer simulation of large scale oceans on the CYBER 205 is discussed. While atmospheric modelling differs in some aspects, the basic approach used is similar. The equations of the ocean model are presented along with a short description of the numerical techniques used to find their solution. Computational considerations and a typical solution are presented in section 4.

  8. A modeling study of shelf circulation off northern California in the region of the Coastal Ocean Dynamics Experiment 2. Simulations and comparisons with observations

    NASA Astrophysics Data System (ADS)

    Gan, Jianping; Allen, J. S.

    2002-11-01

    This is the second part of a modeling study of wind-forced flow on the continental shelf off northern California in the region (37°-40°N) of the Coastal Ocean Dynamics Experiment (CODE). [2002] analyzed the shelf flow response to idealized wind stress forcing in a process-oriented study. The study here applies forcing from observed winds and heat flux for April-May 1982 and compares the model results with moored current and temperature measurements. The Princeton Ocean Model (POM) is used in a three-dimensional limited area domain with a high-resolution curvilinear grid (approximately 1 km horizontal spacing, 60 vertical levels) and realistic coastline and bottom topography. The objectives of the study are to simulate the response of the shelf circulation field to time-varying observed wind stress and heat flux, to compare model results with oceanographic observations to establish confidence in the model, and to subsequently analyze the model fields and the model dynamical balances to help understand the behavior of the observed flow. The model variables show overall good agreement with corresponding observations. Similar to the conclusions by [2002], it is found that the alongshore variability of upwelling is mainly controlled by the interaction of the wind-forced shelf flow with the coastline and bottom topography. Different dynamical regimes in the regions north and south of the coastal capes formed by Pt. Reyes and Pt. Arena and in the more uniform region between these capes are identified and investigated. The results demonstrate that the coastal capes play a dominant role in causing alongshore variability of the upwelling flow, including the setup of an alongshore pressure gradient that forces northward currents during relaxation of southward upwelling favorable winds. An analysis of the balance of terms in the equation for potential temperature indicates that across-shore temperature advection is the major contributor to the cooling of coastal water during

  9. Numerical simulation and prediction of coastal ocean circulation

    SciTech Connect

    Chen, P.

    1992-01-01

    Numerical simulation and prediction of coastal ocean circulation have been conducted in three cases. 1. A process-oriented modeling study is conducted to study the interaction of a western boundary current (WBC) with coastal water, and its responses to upstream topographic irregularities. It is hypothesized that the interaction of propagating WBC frontal waves and topographic Rossby waves are responsible for upstream variability. 2. A simulation of meanders and eddies in the Norwegian Coastal Current (NCC) for February and March of 1988 is conducted with a newly developed nested dynamic interactive model. The model employs a coarse-grid, large domain to account for non-local forcing and a fine-grid nested domain to resolve meanders and eddies. The model is forced by wind stresses, heat fluxes and atmospheric pressure corresponding Feb/March of 1988, and accounts for river/fjord discharges, open ocean inflow and outflow, and M[sub 2] tides. The simulation reproduced fairly well the observed circulation, tides, and salinity features in the North Sea, Norwegian Trench and NCC region in the large domain and fairly realistic meanders and eddies in the NCC in the nested region. 3. A methodology for practical coastal ocean hindcast/forecast is developed, taking advantage of the disparate time scales of various forcing and considering wind to be the dominant factor in affecting density fluctuation in the time scale of 1 to 10 days. The density field obtained from a prognostic simulation is analyzed by the empirical orthogonal function method (EOF), and correlated with the wind; these information are then used to drive a circulation model which excludes the density calculation. The method is applied to hindcast the circulation in the New York Bight for spring and summer season of 1988. The hindcast fields compare favorably with the results obtained from the prognostic circulation model.

  10. Quantifying the role of climate variability on extreme total water level impacts: An application of a full simulation model to Ocean Beach, California

    NASA Astrophysics Data System (ADS)

    Serafin, K.; Ruggiero, P.; Stockdon, H. F.; Barnard, P.; Long, J.

    2014-12-01

    Many coastal communities worldwide are vulnerable to flooding and erosion driven by extreme total water levels (TWL), potentially dangerous events produced by the combination of large waves, high tides, and high non-tidal residuals. The West coast of the United States provides an especially challenging environment to model these processes due to its complex geological setting combined with uncertain forecasts for sea level rise (SLR), changes in storminess, and possible changes in the frequency of major El Niños. Our research therefore aims to develop an appropriate methodology to assess present-day and future storm-induced coastal hazards along the entire U.S. West coast, filling this information gap. We present the application of this framework in a pilot study at Ocean Beach, California, a National Park site within the Golden Gate National Recreation Area where existing event-scale coastal change data can be used for model calibration and verification. We use a probabilistic, full simulation TWL model (TWL-FSM; Serafin and Ruggiero, in press) that captures the seasonal and interannual climatic variability in extremes using functions of regional climate indices, such as the Multivariate ENSO index (MEI), to represent atmospheric patterns related to the El Niño-Southern Oscillation (ENSO). In order to characterize the effect of climate variability on TWL components, we refine the TWL-FSM by splitting non-tidal residuals into low (monthly mean sea level anomalies) and high frequency (storm surge) components. We also develop synthetic climate indices using Markov sequences to reproduce the autocorrelated nature of ENSO behavior. With the refined TWL-FSM, we simulate each TWL component, resulting in synthetic TWL records providing robust estimates of extreme return level events (e.g., the 100-yr event) and the ability to examine the relative contribution of each TWL component to these extreme events. Extreme return levels are then used to drive storm impact models

  11. Adaptation of a general circulation model to ocean dynamics

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  12. A Parallel Ocean Model With Adaptive Mesh Refinement Capability For Global Ocean Prediction

    SciTech Connect

    Herrnstein, A

    2005-09-08

    An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration, and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO{sub 2} concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No

  13. North Atlantic Finite Element Ocean Modeling

    NASA Astrophysics Data System (ADS)

    Veluthedathekuzhiyil, Praveen

    This thesis presents a modified version of the Finite Element Ocean Model (FEOM) developed at Alfred Wegener Institute for Polar and Marine Research (AWI) for the North Atlantic Ocean. A reasonable North Atlantic Ocean simulation is obtained against the observational data sets in a Control simulation (CS) where the surface boundary conditions are relaxed to a climatology. The vertical mixing in the model was tuned to represent convection in the model, also the horizontal mixing and diffusion coefficients to represent the changes in the resolution of the model’s unstructured grid. In addition, the open boundaries in the model are treated with a sponge layer where tracers are relaxed to climatology. The model is then further modified to accept the atmospheric flux forcing at the surface boundary with an added net heat flux correction and freshwater forcing from major rivers that are flowing into the North Atlantic Ocean. The impact of this boundary condition on the simulation results is then analyzed and shows many improvements albeit the drift in tracer properties around the Gulf Stream region remains as that of the CS case. However a comparison of the vertical sections at Cape Desolation and Cape Farewell with the available observational data sets shows many improvements in this simulation compared to that of the CS case. But the freshwater content in the Labrador Sea interior shows a continued drift as that of the CS case with an improvement towards the 10th model year. A detailed analysis of the boundary currents around the Labrador Sea shows the weak offshore transport of freshwater from the West Greenland Current (WGC) as one of the causes. To further improve the model and reasonably represent the boundary currents and associated sub-grid scale eddies in the model, a modified sub-grid scale parameterization based on Gent and McWilliams, (1990) is adopted. The sensitivity of using various approaches in the thickness diffusion parameter ( Kgm) for this

  14. Impact of mesoscale ocean currents on sea ice in high-resolution Arctic ice and ocean simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxia; Maslowski, Wieslaw; Semtner, Albert J.

    1999-08-01

    A high-resolution sea ice model is designed for simulating the Arctic. The grid resolution is ˜18 km, and the domain contains the main Arctic Ocean, Nordic Seas, Canadian Archipelago, and the subpolar North Atlantic. The model is based on a widely used dynamic and thermodynamic model with more efficient numerics. The oceanic forcing is from an Arctic Ocean model with the same horizontal resolution as the ice model and 30 levels. The atmospheric forcing is from 3-day average 1990-1994 European Centre for Medium-Range Weather Forecasts operational data. Results from the ice model are compared against satellite passive-microwave observations and drifting buoys. The model realistically simulates ice tongues and eddies in the Greenland Sea. The mesoscale ocean eddies along the East Greenland Current (EGC) are demonstrated to be responsible for the presence of ice eddies and tongues out of the Greenland Sea ice edge. Large shear and divergence associated with the mesoscale ice eddies and strong ice drift, such as the one above the EGC, result in thinner and less compact ice. The mesoscale ocean eddies along the Alaskan Chukchi shelf break, the Northwind Ridge, and the Alpha-Mendeleyev Ridge are major contributors to mesoscale reduction of ice concentration, in addition to atmospheric storms which usually lead to a broad-scale reduction of ice concentration. The existence of mesoscale ocean eddies greatly increases nonuniformity of ice motion, which means stronger ice deformation and more open water. An eddy-resolving coupled ice-ocean model is highly recommended to adequately simulate the small but important percentage of open water in the Arctic pack ice, which can significantly change the heat fluxes from ocean to atmosphere and affect the global climate.

  15. Development of ocean model LSOMG

    NASA Astrophysics Data System (ADS)

    Sachl, Libor; Martinec, Zdenek

    2015-04-01

    The purpose of this contribution is to present the ocean general circulation model LSOMG. It originates from the LSG (Maier-Reimer and Mikolajewicz, 1992) ocean model, however, significant number of changes has been made. LSOMG is a z-coordinate baroclinic ocean model which solves the primitive equations under the Boussinesq approximation. We intend to use the model for a various geophysical applications with the focus on paleoclimate studies. Hence, the model is not as complex as the current state-of-art climate models, such as the Modular Ocean Model or NEMO models. On the other hand, it is less computationally demanding. The changes and improvements in the code will be reported. One of the obvious changes is that the governing equations are no more discretized on the Arakawa E grid. The whole model has been rewritten on the Arakawa C grid. The main motivation is to avoid a coexistence of two solutions on the grid that evolve independently of each other. A more natural treatment of boundary conditions and simpler structure of the grid are additional advantages. Another significant change is the treatment of time tendencies. The system of equations is split to barotropic and baroclinic subsystems. Both subsystems may either be discretized at the same time points (as in the original LSG model), or their discretizations may be staggered in time as described in Griffies (2004). The original fully implicit barotropic time stepping scheme was found to significantly dissipate energy. Three different time stepping schemes are available instead. Namely, the predictor-corrector scheme of Griffies (2004), the generalized forward-backward scheme of Shchepetkin and McWilliams (2008) and the implicit free surface scheme of Campin et al. (2004). The first two schemes are intended to be used with the split-explicit model configuration for short-term studies whereas the third scheme is suitable for long-term studies, e.g. paleoclimate studies. The short-term studies may also

  16. Coupled atmosphere ocean climate model simulations in the Mediterranean region: effect of a high-resolution marine model on cyclones and precipitation

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Lionello, P.; Gualdi, S.

    2013-06-01

    In this study we investigate the importance of an eddy-permitting Mediterranean Sea circulation model on the simulation of atmospheric cyclones and precipitation in a climate model. This is done by analyzing results of two fully coupled GCM (general circulation models) simulations, differing only for the presence/absence of an interactive marine module, at very high-resolution (~ 1/16°), for the simulation of the 3-D circulation of the Mediterranean Sea. Cyclones are tracked by applying an objective Lagrangian algorithm to the MSLP (mean sea level pressure) field. On annual basis, we find a statistically significant difference in vast cyclogenesis regions (northern Adriatic, Sirte Gulf, Aegean Sea and southern Turkey) and in lifetime, giving evidence of the effect of both land-sea contrast and surface heat flux intensity and spatial distribution on cyclone characteristics. Moreover, annual mean convective precipitation changes significantly in the two model climatologies as a consequence of differences in both air-sea interaction strength and frequency of cyclogenesis in the two analyzed simulations.

  17. Simulating the global distribution of nitrogen isotopes in the ocean

    NASA Astrophysics Data System (ADS)

    Somes, Christopher J.; Schmittner, Andreas; Galbraith, Eric D.; Lehmann, Moritz F.; Altabet, Mark A.; Montoya, Joseph P.; Letelier, Ricardo M.; Mix, Alan C.; Bourbonnais, Annie; Eby, Michael

    2010-12-01

    We present a new nitrogen isotope model incorporated into the three-dimensional ocean component of a global Earth system climate model designed for millennial timescale simulations. The model includes prognostic tracers for the two stable nitrogen isotopes, 14N and 15N, in the nitrate (NO3-), phytoplankton, zooplankton, and detritus variables of the marine ecosystem model. The isotope effects of algal NO3- uptake, nitrogen fixation, water column denitrification, and zooplankton excretion are considered as well as the removal of NO3- by sedimentary denitrification. A global database of δ15NO3- observations is compiled from previous studies and compared to the model results on a regional basis where sufficient observations exist. The model is able to qualitatively and quantitatively reproduce many of the observed patterns such as high subsurface values in water column denitrification zones and the meridional and vertical gradients in the Southern Ocean. The observed pronounced subsurface minimum in the Atlantic is underestimated by the model presumably owing to too little simulated nitrogen fixation there. Sensitivity experiments reveal that algal NO3- uptake, nitrogen fixation, and water column denitrification have the strongest effects on the simulated distribution of nitrogen isotopes, whereas the effect from zooplankton excretion is weaker. Both water column and sedimentary denitrification also have important indirect effects on the nitrogen isotope distribution by reducing the fixed nitrogen inventory, which creates an ecological niche for nitrogen fixers and, thus, stimulates additional N2 fixation in the model. Important model deficiencies are identified, and strategies for future improvement and possibilities for model application are outlined.

  18. Mixing parametrizations for ocean climate modelling

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir

    2016-04-01

    The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model

  19. Numerical Simulation of Salinity and Dissolved Oxygen at Perdido Bay and Adjacent Coastal Ocean

    EPA Science Inventory

    Environmental Fluid Dynamic Code (EFDC), a numerical estuarine and coastal ocean circulation hydrodynamic model, was used to simulate the distribution of the salinity, temperature, nutrients and dissolved oxygen (DO) in Perdido Bay and adjacent Gulf of Mexico. External forcing fa...

  20. Impact of ocean-atmosphere coupling and high resolution on the simulation of medicanes over the Mediterranean Sea: multi-model analysis with Med-CORDEX and EURO-CORDEX runs

    NASA Astrophysics Data System (ADS)

    Gaertner, Miguel Angel; Jesús González-Alemán, Juan; Romera, Raquel; Domínguez, Marta; Gil, Victoria; Sánchez, Enrique; Gallardo, Clemente; Miglietta, Mario Marcelo; Walsh, Kevin; Sein, Dmitri; Somot, Samuel; dell'Aquila, Alessandro; Ahrens, Bodo; Colette, Augustin; Bastin, Sophie; Van Meijgaard, Erik; Nikulin, Grigory

    2016-04-01

    Medicanes are cyclones over the Mediterranean Sea having a tropical structure and a rather small size, for which the sea-atmosphere interaction plays a fundamental role. High resolution and ocean-atmosphere coupled RCM simulations performed in MedCORDEX and EURO-CORDEX projects are used to analyze the ability of RCMs to represent the observed characteristics of medicanes, and the impact of increasing resolution and using air-sea coupling on its simulation. An observational database based on satellite images combined with very high resolution simulations (Miglietta et al. 2013) is used as the reference for evaluating the simulations. The simulated medicanes do not coincide in general with the observed cases, so that the evaluation should be done in a statistical sense. The spatial distribution of medicanes is generally well simulated, while the monthly distribution reveals the difficulty of simulating the first medicanes appearing in September after the summer minimum. Large differences are found among models, supporting the use of multi-model ensembles. Interesting trade-offs are found for some models, as better values for intensity are associated to worse frequency values in one model, or relatively good values of frequency and intensity are obtained at the expense of a damped air-sea interaction in a model with spectral nudging. High resolution has a strong and positive impact on the frequency of simulated medicanes, while the effect on its intensity is less clear. Air-sea coupling reduces the medicane frequency, as could be expected due to a negative intensity feedback that is known for tropical cyclones. A preliminary analysis indicates that this feedback could depend on the oceanic mixed layer depth, increasing the interest of applying ocean-atmosphere coupled RCMs

  1. Microscopic, Macroscopic, and Megascopic Melts: a simple model to synthesize simulation, spectroscopy, shock, and sink/float constraints on silicate melts and magma oceans

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Thomas, C.; Wolf, A. S.

    2012-12-01

    Silicate melts are the essential agents of planetary differentiation and evolution. Their phase relations, element partitioning preferences, density, and transport properties determine the fates of heat and mass flow in the high-temperature interior of active planets. In the early Earth and in extrasolar super-Earth-mass terrestrial planets it is these properties at very high pressure (> 100 GPa) that control the evolution from possible magma oceans to solid-state convecting mantles. Yet these melts are complex, dynamic materials that present many challenges to experimental, theoretical, and computational understanding or prediction of their properties. There has been encouraging convergence among various approaches to understanding the structure and dynamics of silicate melts at multiple scales: nearest- and next-nearest neighbor structural information is derived from spectroscopic techniques such as high-resolution multinuclear NMR; first-principles molecular dynamics probe structure and dynamics at scales up to hundreds of atoms; Archimedean, ultrasonic, sink/float, and shock wave methods probe macroscopic properties (and occasionally dynamics); and deformation and diffusion experiments probe dynamics at macroscopic scale and various time scales. One challenge that remains to integrating all this information is a predictive model of silicate liquid structure that agrees with experiments and simulation both at microscopic and macroscopic scale. In addition to our efforts to collect macroscopic equation of state data using shock wave methods across ever-wider ranges of temperature, pressure, and composition space, we have introduced a simple model of coordination statistics around cations that can form the basis of a conceptual and predictive link across scales and methods. This idea is explored in this presentation specifically with regard to the temperature dependence of sound speed in ultramafic liquids. This is a highly uncertain quantity and yet it is key, in

  2. Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries

    NASA Astrophysics Data System (ADS)

    Brodeau, Laurent; Koenigk, Torben

    2016-05-01

    We study the variability and the evolution of oceanic deep convection in the northern North Atlantic and the Nordic Seas from 1850 to 2100 using an ensemble of 12 climate model simulations with EC-Earth. During the historical period, the model shows a realistic localization of the main sites of deep convection, with the Labrador Sea accounting for most of the deep convective mixing in the northern hemisphere. Labrador convection is partly driven by the NAO (correlation of 0.6) and controls part of the variability of the AMOC at the decadal time scale (correlation of 0.6 when convection leads by 3-4 years). Deep convective activity in the Labrador Sea starts to decline and to become shallower in the beginning of the twentieth century. The decline is primarily caused by a decrease of the sensible heat loss to the atmosphere in winter resulting from increasingly warm atmospheric conditions. It occurs stepwise and is mainly the consequence of two severe drops in deep convective activity during the 1920s and the 1990s. These two events can both be linked to the low-frequency variability of the NAO. A warming of the sub-surface, resulting from reduced convective mixing, combines with an increasing influx of freshwater from the Nordic Seas to rapidly strengthen the surface stratification and prevent any possible resurgence of deep convection in the Labrador Sea after the 2020s. Deep convection in the Greenland Sea starts to decline in the 2020s, until complete extinction in 2100. As a response to the extinction of deep convection in the Labrador and Greenland Seas, the AMOC undergoes a linear decline at a rate of about -0.3 Sv per decade during the twenty-first century.

  3. Interactive Visual Analysis within Dynamic Ocean Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  4. Computational ocean acoustics: Advances in 3D ocean acoustic modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Henrik; Jensen, Finn B.

    2012-11-01

    The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].

  5. Global ocean modeling on the Connection Machine

    SciTech Connect

    Smith, R.D.; Dukowicz, J.K.; Malone, R.C.

    1993-10-01

    The authors have developed a version of the Bryan-Cox-Semtner ocean model (Bryan, 1969; Semtner, 1976; Cox, 1984) for massively parallel computers. Such models are three-dimensional, Eulerian models that use latitude and longitude as the horizontal spherical coordinates and fixed depth levels as the vertical coordinate. The incompressible Navier-Stokes equations, with a turbulent eddy viscosity, and mass continuity equation are solved, subject to the hydrostatic and Boussinesq approximations. The traditional model formulation uses a rigid-lid approximation (vertical velocity = 0 at the ocean surface) to eliminate fast surface waves. These waves would otherwise require that a very short time step be used in numerical simulations, which would greatly increase the computational cost. To solve the equations with the rigid-lid assumption, the equations of motion are split into two parts: a set of twodimensional ``barotropic`` equations describing the vertically-averaged flow, and a set of three-dimensional ``baroclinic`` equations describing temperature, salinity and deviations of the horizontal velocities from the vertically-averaged flow.

  6. Modeling and Assimilating Ocean Color Radiances

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Radiances are the source of information from ocean color sensors to produce estimates of biological and geochemical constituents. They potentially provide information on various other aspects of global biological and chemical systems, and there is considerable work involved in deriving new information from these signals. Each derived product, however, contains errors that are derived from the application of the radiances, above and beyond the radiance errors. A global biogeochemical model with an explicit spectral radiative transfer model is used to investigate the potential of assimilating radiances. The results indicate gaps in our understanding of radiative processes in the oceans and their relationships with biogeochemical variables. Most important, detritus optical properties are not well characterized and produce important effects of the simulated radiances. Specifically, there does not appear to be a relationship between detrital biomass and its optical properties, as there is for chlorophyll. Approximations are necessary to get beyond this problem. In this reprt we will discuss the challenges in modeling and assimilation water-leaving radiances and the prospects for improving our understanding of biogeochemical process by utilizing these signals.

  7. Observationally-Based Data/Model Metrics from the Southern Ocean Climate Model Atlas

    NASA Astrophysics Data System (ADS)

    Abell, J.; Russell, J. L.; Goodman, P. J.

    2015-12-01

    The Southern Ocean Climate Model Atlas makes available observationally-based standardized data/model metrics of the latest simulations of climate and projections of climate change from available climate models. Global climate model simulations differ greatly in the Southern Ocean, so the development of consistent, observationally-based metrics, by which to assess the fidelity of model simulations is essential. We will present metrics showing and quantifying the results of the modern day climate simulations over the Southern Ocean from models submitted as part of the CMIP5/IPCC-AR5 process. Our analysis will focus on the simulations of the temperature, salinity and carbon at various depths and along significant hydrographic sections. The models exhibit different skill levels with various metrics between models and also within individual models.

  8. Evidence of systematic biases in ocean surface heat fluxes simulated by AGCMs

    SciTech Connect

    Gleckler, P.J.; Randall, D.A.

    1995-01-01

    The Atmospheric Model Intercomparison Project has provided a unique opportunity to evaluate atmospheric general circulation model (AGCM) simulations made with realistic boundary forcing. Here we report on some results from AMIP Subproject No. 5, making use of a suite of observationally-based estimates of ocean surface heat fluxes to evaluate the seasonal cycle of surface heating as simulated by AGCMs.

  9. Warm World Ocean Thermohaline Circulation Model

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2014-12-01

    Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic, filling the ocean interior with cold and heavy water. However, ocean circulation diminished during the last glaciation and consequently the downwelling of the cold. Therefore interior ocean water temperatures must have been affected by other mechanisms which are negligible in the current state. We propose that the submergence of highly saline water from warm seas with high rates of evaporation (like the Red or Mediterranean Sea) was a major factor controlling ocean circulation during the last glaciation. Even today, waters in these poorly connected seas are the heaviest waters in the World ocean (1.029 g/cm3). The second mechanism affecting ocean temperature is the geothermal heat flux. With no heat exchange between the atmosphere and the ocean, geothermal heat flux through the ocean floor is capable of increasing ocean temperature by tens of degrees C over a 100 thousand year glacial cycle. To support these hypotheses we present an ocean box model that describes thermohaline circulation in the World Ocean. According to the model parameters, all water circulation is driven by the water density gradient. Boxes include high-latitude seas, high salinity seas, surface ocean, glaciers, and rift and lateral zones of the ocean interior. External heat sources are radiative forcing, affected by Milankovich cycles, and geothermal heat flux. Additionally this model accounts for the heat produced by organic rain decay. Taking all input parameters close to currently observed values, the model manages to recreate the glacial-interglacial cycles. During the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior ocean accumulates heat while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal

  10. A Coupled Ocean General Circulation, Biogeochemical, and Radiative Model of the Global Oceans: Seasonal Distributions of Ocean Chlorophyll and Nutrients

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.

  11. Testing Components of New Community Isopycnal Ocean Circulation Model

    SciTech Connect

    Bryan, Kirk

    2008-05-09

    The ocean and atmosphere are both governed by the same physical laws and models of the two media have many similarities. However, there are critical differences that call for special methods to provide the best simulation. One of the most important difference is that the ocean is nearly opaque to radiation in the visible and infra-red part of the spectrum. For this reason water mass properties in the ocean are conserved along trajectories for long distances and for long periods of time. For this reason isopycnal coordinate models would seem to have a distinct advantage in simulating ocean circulation. In such a model the coordinate surfaces are aligned with the natural paths of near adiabatic, density conserving flow in the main thermocline. The difficulty with this approach is at the upper and lower boundaries of the ocean, which in general do not coincide with density surfaces. For this reason hybrid coordinate models were proposed by Bleck and Boudra (1981) in which Cartesian coordinates were used near the ocean surface and isopycnal coordinates were used in the main thermocline. This feature is now part of the HICOM model (Bleck, 2002).

  12. A predictive ocean oil spill model

    SciTech Connect

    Sanderson, J.; Barnette, D.; Papodopoulos, P.; Schaudt, K.; Szabo, D.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Initially, the project focused on creating an ocean oil spill model and working with the major oil companies to compare their data with the Los Alamos global ocean model. As a result of this initial effort, Los Alamos worked closely with the Eddy Joint Industry Project (EJIP), a consortium oil and gas producing companies in the US. The central theme of the project was to use output produced from LANL`s global ocean model to look in detail at ocean currents in selected geographic areas of the world of interest to consortium members. Once ocean currents are well understood this information could be used to create oil spill models, improve offshore exploration and drilling equipment, and aid in the design of semi-permanent offshore production platforms.

  13. On effective resolution in ocean models

    NASA Astrophysics Data System (ADS)

    Soufflet, Yves; Marchesiello, Patrick; Lemarié, Florian; Jouanno, Julien; Capet, Xavier; Debreu, Laurent; Benshila, Rachid

    2016-02-01

    The increase of model resolution naturally leads to the representation of a wider energy spectrum. As a result, in recent years, the understanding of oceanic submesoscale dynamics has significantly improved. However, dissipation in submesoscale models remains dominated by numerical constraints rather than physical ones. Effective resolution is limited by the numerical dissipation range, which is a function of the model numerical filters (assuming that dispersive numerical modes are efficiently removed). We present a Baroclinic jet test case set in a zonally reentrant channel that provides a controllable test of a model capacity at resolving submesoscale dynamics. We compare simulations from two models, ROMS and NEMO, at different mesh sizes (from 20 to 2 km). Through a spectral decomposition of kinetic energy and its budget terms, we identify the characteristics of numerical dissipation and effective resolution. It shows that numerical dissipation appears in different parts of a model, especially in spatial advection-diffusion schemes for momentum equations (KE dissipation) and tracer equations (APE dissipation) and in the time stepping algorithms. Effective resolution, defined by scale-selective dissipation, is inadequate to qualify traditional ocean models with low-order spatial and temporal filters, even at high grid resolution. High-order methods are better suited to the concept and probably unavoidable. Fourth-order filters are suited only for grid resolutions less than a few kilometers and momentum advection schemes of even higher-order may be justified. The upgrade of time stepping algorithms (from filtered Leapfrog), a cumbersome task in a model, appears critical from our results, not just as a matter of model solution quality but also of computational efficiency (extended stability range of predictor-corrector schemes). Effective resolution is also shaken by the need for non scale-selective barotropic mode filters and requires carefully addressing the

  14. Ocean foam generation and modeling

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A laboratory investigation was conducted to determine the physical and microwave properties of ocean foam. Special foam generators were designed and fabricated, using porous glass sheets, known as glass frits, as the principal element. The glass frit was sealed into a water-tight vertical box, a few centimeters from the bottom. Compressed air, applied to the lower chamber, created ocean foam from sea water lying on the frit. Foam heights of 30 cm were readily achieved, with relatively low air pressures. Special photographic techniques and analytical procedures were employed to determine foam bubble size distributions. In addition, the percentage water content of ocean foam was determined with the aid of a particulate sampling procedure. A glass frit foam generator, with pore diameters in the range 70 - 100 micrometers, produced foam with bubble distributions very similar to those found on the surface of natural ocean foam patches.

  15. Variability of Ocean Heat Uptake: Reconciling Observations and Models

    SciTech Connect

    AchutaRao, K M; Santer, B D; Gleckler, P J; Taylor, K; Pierce, D; Barnett, T; Wigley, T L

    2005-05-05

    This study examines the temporal variability of ocean heat uptake in observations and in climate models. Previous work suggests that coupled Atmosphere-Ocean General Circulation Models (A-OGCMs) may have underestimated the observed natural variability of ocean heat content, particularly on decadal and longer timescales. To address this issue, we rely on observed estimates of heat content from the 2004 World Ocean Atlas (WOA-2004) compiled by Levitus et al. (2005). Given information about the distribution of observations in WOA-2004, we evaluate the effects of sparse observational coverage and the infilling that Levitus et al. use to produce the spatially-complete temperature fields required to compute heat content variations. We first show that in ocean basins with limited observational coverage, there are important differences between ocean temperature variability estimated from observed and infilled portions of the basin. We then employ data from control simulations performed with eight different A-OGCMs as a test-bed for studying the effects of sparse, space- and time-varying observational coverage. Subsampling model data with actual observational coverage has a large impact on the inferred temperature variability in the top 300 and 3000 meters of the ocean. This arises from changes in both sampling depth and in the geographical areas sampled. Our results illustrate that subsampling model data at the locations of available observations increases the variability, reducing the discrepancy between models and observations.

  16. Simulation of ocean SAR images via phase history generation

    NASA Technical Reports Server (NTRS)

    Bennett, John R.; Clinthorne, James T.; Scheffler, Albert O.; Lyden, James D.

    1988-01-01

    A method for simulating an ocean synthetic-aperture radar (SAR) image is illustrated for a simple internal wave current pattern. The method calculates both the amplitude image and the radar signal history. The simulation model used consists of six stages. In the first stage, the full wave spectrum in two spatial coordinates is calculated from the wind speed and direction using the action spectral density equation. In the second stage, the pixel size is selected and used as the basis for dividing the spectrum into large and small scale motions. Realizations for the large-scale ocean surface height and velocity are then calculated. In the third stage, the sensor wavelength and geometry are used to calculate the small scale statistics (radar cross section, coherence time, root-mean square (RMS), radial velocity and RMS slope). In the fourth stage, an autoregressive method is used to generate a realization of the surface reflectivity history that is consistent with the radial velocity and the radial velocity variance. In the fifth stage, the signal history is generated by summing the reflectivities at the proper times with the appropriate antenna weighting function for the SAR. As a consequence of this process, speckle is automatically included in the signal. In the final stage, the SAR image can be created by using any of the traditional ways to process the signal history, including variable focusing and multilook processing.

  17. Nested ocean models: Work in progress

    NASA Technical Reports Server (NTRS)

    Perkins, A. Louise

    1991-01-01

    The ongoing work of combining three existing software programs into a nested grid oceanography model is detailed. The HYPER domain decomposition program, the SPEM ocean modeling program, and a quasi-geostrophic model written in England are being combined into a general ocean modeling facility. This facility will be used to test the viability and the capability of two-way nested grids in the North Atlantic.

  18. Lagrangian predictability characteristics of an Ocean Model

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia

    2014-11-01

    The Mediterranean Forecasting System (MFS) Ocean Model, provided by INGV, has been chosen as case study to analyze Lagrangian trajectory predictability by means of a dynamical systems approach. To this regard, numerical trajectories are tested against a large amount of Mediterranean drifter data, used as sample of the actual tracer dynamics across the sea. The separation rate of a trajectory pair is measured by computing the Finite-Scale Lyapunov Exponent (FSLE) of first and second kind. An additional kinematic Lagrangian model (KLM), suitably treated to avoid "sweeping"-related problems, has been nested into the MFS in order to recover, in a statistical sense, the velocity field contributions to pair particle dispersion, at mesoscale level, smoothed out by finite resolution effects. Some of the results emerging from this work are: (a) drifter pair dispersion displays Richardson's turbulent diffusion inside the [10-100] km range, while numerical simulations of MFS alone (i.e., without subgrid model) indicate exponential separation; (b) adding the subgrid model, model pair dispersion gets very close to observed data, indicating that KLM is effective in filling the energy "mesoscale gap" present in MFS velocity fields; (c) there exists a threshold size beyond which pair dispersion becomes weakly sensitive to the difference between model and "real" dynamics; (d) the whole methodology here presented can be used to quantify model errors and validate numerical current fields, as far as forecasts of Lagrangian dispersion are concerned.

  19. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    NASA Astrophysics Data System (ADS)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2015-01-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of cumulative

  20. Feature-oriented regional modeling of oceanic fronts

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.

    2002-11-01

    This paper outlines some important aspects of modeling oceanic fronts in the context of feature-oriented regional modeling for the deep sea and the Global Coastal Ocean. Previously developed forms of feature models for different types of fronts are presented in a generalized approach. The large-scale meandering frontal systems such as the Gulf Stream, Kuroshio and Brazil current can be represented by velocity-based feature models. Buoyancy forced coastal water mass fronts, such as the coastal currents, the tidal fronts, plume fronts, dense water fronts and inflow/outflow fronts can be represented by a generalized parameterized water mass feature model. The interface region of the deep ocean and the coastal region can be modeled by a melding of two water masses along and across a prescribed isobath in the form of a shelf-break front. Initialization and/or updating fields for a regional dynamical model can then be established in association with other available synoptic data sets via a feature-oriented strategic sampling approach for forecasting and dynamical balances. Example simulations from the western north Atlantic (WNA) and the strait of Sicily region are presented in support of the applicability of this approach for the Global Coastal Ocean. Simulations in the strait of Sicily region with fronts, eddies and background climatology help provide a perspective on dynamical processes in this region. Application of this methodology for rapid assessment of any regional ocean, based on limited data and resources is now possible.

  1. Multiresolution in CROCO (Coastal and Regional Ocean Community model)

    NASA Astrophysics Data System (ADS)

    Debreu, Laurent; Auclair, Francis; Benshila, Rachid; Capet, Xavier; Dumas, Franck; Julien, Swen; Marchesiello, Patrick

    2016-04-01

    CROCO (Coastal and Regional Ocean Community model [1]) is a new oceanic modeling system built upon ROMS_AGRIF and the non-hydrostatic kernel of SNH, gradually including algorithms from MARS3D (sediments)and HYCOM (vertical coordinates). An important objective of CROCO is to provide the possibility of running truly multiresolution simulations. Our previous work on structured mesh refinement [2] allowed us to run two-way nesting with the following major features: conservation, spatial and temporal refinement, coupling at the barotropic level. In this presentation, we will expose the current developments in CROCO towards multiresolution simulations: connection between neighboring grids at the same level of resolution and load balancing on parallel computers. Results of preliminary experiments will be given both on an idealized test case and on a realistic simulation of the Bay of Biscay with high resolution along the coast. References: [1] : CROCO : http://www.croco-ocean.org [2] : Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Modelling, 49-50, 1-21.

  2. Modeling Mesoscale Eddies in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Chao, Yi

    1999-01-01

    Ocean modeling plays an important role in understanding the current climatic conditions and predicting the future climate change. Modeling the ocean at eddy-permitting and/or eddy resolving resolutions (1/3 degree or higher) has a two-fold objective. One part is to represent the ocean as realistically as possible, because mesoscale eddies have an impact on the large-scale circulation. The second objective is to learn how to represent effects of mesoscale eddies without explicitly resolving them. This is particularly important for climate models which cannot be run at eddy-resolving resolutions because of the computational constraints. At JPL, a 1/6 degree latitude by 1/6 degree longitude with 37 vertical levels Atlantic Ocean model has been developed. The model is based on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory (LANL). Using the 256-processor Cray T3D, we have conducted a 40-year integration of this Atlantic eddy-resolving ocean model. A regional analysis demonstrate that many observed features associated with the Caribbean Sea eddies can be realistically simulated by this model. Analysis of this Atlantic eddy-resolving ocean model further suggests that these Caribbean Sea eddies are connected with eddies formed outside the Caribbean Sea at the confluence of the North Brazil Current (NBC) and the North Equatorial Countercurrent. The diagram of the model simulated surface current shows that the Caribbean eddies ultimately originate in the NBC retroflection region, traveling more than a year from the North Brazil coast through the Lesser Antilles into the Caribbean Sea and eventually into the Gulf of Mexico. Additional information is contained in the original.

  3. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  4. Simulations of coupled, Antarctic ice-ocean evolution using POP2x and BISICLES (Invited)

    NASA Astrophysics Data System (ADS)

    Price, S. F.; Asay-Davis, X.; Martin, D. F.; Maltrud, M. E.; Hoffman, M. J.

    2013-12-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and land ice evolution models. The ocean model, POP2x is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (1999), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008; Kimura et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). The land ice model, BISICLES (Cornford et al., 2012), includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (southern ocean) simulations using POP2x with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.

  5. Towards petascaling of the NEMO ocean model

    NASA Astrophysics Data System (ADS)

    Donners, J.; Audiffren, N.; Molines, J.-M.

    2012-04-01

    PRACE, the Partnership for Advanced Computing in Europe, offers acces to the largest high-performance computing systems in Europe. These systems follow the trend of increasing numbers of nodes, each with an increasing number of cores. To utilize these computing systems, it is necessary to use a model that is parallellized and has a good scalability. This poster describes different efforts to improve the scalability of the NEMO ocean model. Most importantly, the problem size needs to be chosen adequately: it should contain enough computations to keep thousands of cores busy, but foremostly it has to be scientifically relevant. The global, 1/12degree, NEMO ocean model configuration, developed by the Mercator team, is used for operational ocean forecasting. Therefore, PRACE selected this model for the PRACE Benchmarking suite. However, an increased problem size alone was not enough to efficiently use these petascale systems. Different optimizations were required to reach the necessary performance. Scientifically, the model should simulate one year within a wallclock day. Technically, the application needs to scale up to a minimum number of cores. For example, to utilize the fastest system in Europe, the new Curie system in France, the lower limit is 2048 cores. Scalability can be increased by minimizing the time needed for communication between cores. This has been done in two ways. Firstly, advanced parameters of the MPI-communication library were optimized. The improvement consists in: 1. using RDMA for eager messages (NEMO messages size are below the eager size limit) conjugated with adequate openib flags. 2. tuning for openMPI for collective communication through the btl_coll_tuned_dynamic_rules flag. Overall, the improvement is 33%. Secondly, NEMO uses a tri-polar and staggered grid, which involves a complicated fold across the northpole. Communication along this fold involves collective gather and scatter operations which create a bottleneck at a single core, so

  6. Modeling the west Florida coastal ocean by downscaling from the deep ocean, across the continental shelf and into the estuaries

    NASA Astrophysics Data System (ADS)

    Zheng, Lianyuan; Weisberg, Robert H.

    2012-05-01

    We arrive at a coastal ocean circulation model, suitable for downscaling from the deep ocean, across the continental shelf and into the estuaries, by nesting the unstructured grid, Finite Volume Coastal Ocean Model (FVCOM, inner model) into the structured grid, Global Hybrid Coordinate Model (HYCOM, outer model). The coastal ocean circulation model is three-dimensional, density dependent and inclusive of tides (eight constituents). A calendar year 2007 simulation for the west Florida continental shelf is quantitatively tested against in situ observations of sea level from coastal tide gauges and water column currents and temperature from moored acoustic Doppler current profilers. Agreements between model simulations and observations for both tides and low frequency variability over the calendar year demonstrate the usefulness of our approach. Model horizontal resolution varies from around 12 km at the open boundary to 150 m in the estuaries. Sensitivity experiments for vertical resolution led to the adoption of 21 σ-layers. Several model limitations are discussed, including seasonal steric effects and deep ocean (outer) model errors that may propagate through the inner model. With adequate observations spanning the inner model domain, we may determine when the outer model is in error at the nesting zone. This finding further highlights the need for coordinating coastal ocean observing and modeling programs. The nesting of unstructured and structured grid models is a new approach to coastal ocean circulation modeling. It provides a means for circulation hindcasts and nowcasts/forecasts, and, after combining with biological process models, may provide a framework for multi-disciplinary modeling of coastal ocean ecology from the deep ocean to the head of tides.

  7. Visualization and analysis of eddies in a global ocean simulation

    SciTech Connect

    Williams, Sean J; Hecht, Matthew W; Petersen, Mark; Strelitz, Richard; Maltrud, Mathew E; Ahrens, James P; Hlawitschka, Mario; Hamann, Bernd

    2010-10-15

    Eddies at a scale of approximately one hundred kilometers have been shown to be surprisingly important to understanding large-scale transport of heat and nutrients in the ocean. Due to difficulties in observing the ocean directly, the behavior of eddies below the surface is not very well understood. To fill this gap, we employ a high-resolution simulation of the ocean developed at Los Alamos National Laboratory. Using large-scale parallel visualization and analysis tools, we produce three-dimensional images of ocean eddies, and also generate a census of eddy distribution and shape averaged over multiple simulation time steps, resulting in a world map of eddy characteristics. As expected from observational studies, our census reveals a higher concentration of eddies at the mid-latitudes than the equator. Our analysis further shows that mid-latitude eddies are thicker, within a range of 1000-2000m, while equatorial eddies are less than 100m thick.

  8. High-resolution coupled ice sheet-ocean modeling using the POPSICLES model

    NASA Astrophysics Data System (ADS)

    Ng, E. G.; Martin, D. F.; Asay-Davis, X.; Price, S. F.; Collins, W.

    2014-12-01

    It is expected that a primary driver of future change of the Antarctic ice sheet will be changes in submarine melting driven by incursions of warm ocean water into sub-ice shelf cavities. Correctly modeling this response on a continental scale will require high-resolution modeling of the coupled ice-ocean system. We describe the computational and modeling challenges in our simulations of the full Southern Ocean coupled to a continental-scale Antarctic ice sheet model at unprecedented spatial resolutions (0.1 degree for the ocean model and adaptive mesh refinement down to 500m in the ice sheet model). The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), with the BISICLES ice-sheet model (Cornford et al., 2012) using a synchronous offline-coupling scheme. Part of the PISCEES SciDAC project and built on the Chombo framework, BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). For the POPSICLES Antarctic-Southern Ocean simulations, ice sheet and ocean models communicate at one-month coupling intervals.

  9. Simulated effect of deep-sea sedimentation and terrestrial weathering on projections of ocean acidification

    NASA Astrophysics Data System (ADS)

    Cao, Long; Zheng, Meidi; Caldeira, Ken

    2016-04-01

    Projections of ocean acidification have often been based on ocean carbon cycle models that do not represent deep-sea sedimentation and terrestrial weathering. Here we use an Earth system model of intermediate complexity to quantify the effect of sedimentation and weathering on projections of ocean acidification under an intensive CO2 emission scenario that releases 5000 Pg C after year 2000. In our simulations, atmospheric CO2 reaches a peak concentration of 2123 ppm near year 2300 with a maximum reduction in surface pH of 0.8. Consideration of deep-sea sedimentation and terrestrial weathering has negligible effect on these peak changes. Only after several millenniums, sedimentation and weathering feedbacks substantially affect projected ocean acidification. Ten thousand years from today, in the constant-alkalinity simulation, surface pH is reduced by ˜0.7 with 95% of the polar oceans undersaturated with respect to calcite, and no ocean has a calcite saturation horizon (CSH) that is deeper than 1000 m. With the consideration of sediment feedback alone, surface pH is reduced by ˜0.5 with 35% of the polar oceans experiencing calcite undersaturation, and 8% global ocean has a CSH deeper than 1000 m. With the addition of weathering feedback, depending on the weathering parameterizations, surface pH is reduced by 0.2-0.4 with no polar oceans experiencing calcite undersaturation, and 30-80% ocean has a CSH that is deeper than 1000 m. Our results indicate that deep-sea sedimentation and terrestrial weathering play an important role in long-term ocean acidification, but have little effect on mitigating ocean acidification in the coming centuries.

  10. Performance of a Southern Ocean sea ice forecast model

    NASA Astrophysics Data System (ADS)

    Heil, P.; Roberts, A.; Budd, W.

    2003-12-01

    The presentation examines the forecast peformance of an oriented fracture sea ice model applied to the Southern Ocean to predict sea ice state up to five days in advance. The model includes a modified Coulombic elastic-viscous-plastic rheology, enthalpy conserving thermodynamics and a new method of parameterising thickness distribution mechanics. 15 ice thickness classes are employed within each grid cell with a horizontal resolution of 50km. The model provides considerable insight into the thickness evolution and climatology of Antarctic sea ice. To date, thickness evolution of the Southern Ocean sea ice zone has mostly been assessed using course two-category models in climate simulations and results presented in this talk provide much greater detail over some existing model output. Simulations are presented from the model driven with NCEP-2 atmospheric analyses, NOAA sea surface temperatures, and mean climatogological currents generated using an eddy resolving ocean model. Analyses are generated by nudging ice concentrations with daily satellite derived open water fractions, and simulations using this method are compared to those without. There are important considerations in assimilating passive microwave ice concentration data into thickness distribution models, and particular attention is given to the treatment of lead ice and the impact this has on estimated total Southern Ocean sea ice volume. It is shown that nudging the model with satellite derived concentrations has an impact on ice mechanics as judged from simulated buoy tracks. A comparison with sonar soundings of sea ice draft is also favourable but shows variation with location. Whilst 5 day forecasts are reasonably skilled, predictive performance changes with season. Application of this research to operational ocean data assimilation systems is discussed in the final stages of the talk.

  11. Modelling Ocean Surface Waves in Polar Regions

    NASA Astrophysics Data System (ADS)

    Hosekova, Lucia; Aksenov, Yevgeny; Coward, Andrew; Bertino, Laurent; Williams, Timothy; Nurser, George A. J.

    2015-04-01

    In the Polar Oceans, the surface ocean waves break up sea ice cover and create the Marginal Ice Zone (MIZ), an area between the sea-ice free ocean and pack ice characterized by highly fragmented ice. This band of sea ice cover is undergoing dramatic changes due to sea ice retreat, with up to a 39% widening in the Arctic Ocean reported over the last three decades and projections predicting a continuing increase. The surface waves, sea ice and ocean interact in the MIZ through multiple complex feedbacks and processes which are not accounted for in any of the present-day climate models. To address this issue, we present a model development which implements surface ocean wave effects in the global Ocean General Circulation Model NEMO, coupled to the CICE sea ice model. Our implementation takes into account a number of physical processes specific to the MIZ dynamics. Incoming surface waves are attenuated due to reflection and energy dissipation induced by the presence of ice cover, which is in turn fragmented in response to external stresses. This process generates a distribution of floe sizes and impacts the dynamics of sea ice by the means of combined rheology that takes into account floe collisions and allows for a more realistic representation of the MIZ. We present results from the NEMO OGCM at 1 degree resolution with a wave-ice interaction module described above. The module introduces two new diagnostics previously unavailable in GCM's: surface wave spectra in sea ice covered areas, and floe size distribution due to wave-induced fragmentation. We discuss the impact of these processes on the ocean and sea ice state, including ocean circulation, mixing, stratification and the role of the MIZ in the ocean variability. The model predictions for the floe sizes in the summer Arctic Ocean range from 60 m in the inner MIZ to a few tens of meters near the open ocean, which agrees with estimates from the satellites. The extent of the MIZ throughout the year is also in

  12. A regional ocean model for the Southwest Pacific Ocean region to assess the risk of storms

    NASA Astrophysics Data System (ADS)

    Natoo, N.; Paul, A.; Hadfield, M.; Jendersie, S.; Bornman, J.; de Lange, W.; Ye, W.; Schulz, M.

    2012-04-01

    New Zealand's coasts are not only affected by mid-latitude storms, but infrequently also by storms that originate from the tropics. Projections for the southern hemisphere's southwest Pacific island countries for the 21st century show a poleward shift of the mid-latitude storm tracks, which consequently might result in changes in wind, precipitation and temperature patterns. Furthermore, an increase in frequency of intense storms is expected for the New Zealand region, which will very likely increase the risk of storm surges and flooding of coastal and low-lying regions. We employ the Regional Ocean Modeling System (ROMS) to assess the changes in the storm climate of the New Zealand region. The model set-up uses a resolution of ~50 km for the Southwest Pacific Ocean "parent domain" and ~10 km for the New Zealand "child domain", to well represent the major eddies that influence the climate of North Island. With the aim to later utilize this nested ocean model set-up as part of a coupled ocean-atmosphere modelling system for the Southwest Pacific Ocean region, results for the 20th century will be presented. The simulated circulation is shown to be largely consistent with the observed regional oceanography.

  13. Extensive analysis of potentialities and limitations of a maximum cross-correlation technique for surface circulation by using realistic ocean model simulations

    NASA Astrophysics Data System (ADS)

    Doronzo, Bartolomeo; Taddei, Stefano; Brandini, Carlo; Fattorini, Maria

    2015-08-01

    As shown in the literature, ocean surface circulation can be estimated from sequential satellite imagery by using the maximum cross-correlation (MCC) technique. This approach is very promising since it offers the potential to acquire synoptic-scale coverage of the surface currents on a quasi-continuous temporal basis. However, MCC has also many limits due, for example, to cloud cover or the assumption that Sea Surface Temperature (SST) or other surface parameters from satellite imagery are considered as conservative passive tracers. Also, since MCC can detect only advective flows, it might not work properly in shallow water, where local heating and cooling, upwelling and other small-scale processes have a strong influence. Another limitation of the MCC technique is the impossibility of detecting currents moving along surface temperature fronts. The accuracy and reliability of MCC can be analysed by comparing the estimated velocities with those measured by in situ instrumentation, but the low number of experimental measurements does not allow a systematic statistical study of the potentials and limitations of the method. Instead, an extensive analysis of these features can be done by applying the MCC to synthetic imagery obtained from a realistic numerical ocean model that takes into account most physical phenomena. In this paper a multi-window (MW-) MCC technique is proposed, and its application to synthetic imagery obtained by a regional high-resolution implementation of the Regional Ocean Modeling System (ROMS) is discussed. An application of the MW-MCC algorithm to a real case and a comparison with experimental measurements are then shown.

  14. Iron Resources and Oceanic Nutrients: Advancement of Global Environment Simulations

    NASA Astrophysics Data System (ADS)

    Debaar, H. J.

    2002-12-01

    simulated. An existing plankton ecosystem model already well predicts limitation by four nutrients (N, P, Si, Fe) of two algal groups (diatoms and nanoplankton) including export and CO2 air/sea exchange. This is being expanded with 3 other groups of algae and DMS(P)pathways. Next this extended ecosystem model is being simplified while maintaining reliable output for export and CO2/DMS gas exchange. This unit will then be put into two existing OBCM's. Inputs of Fe from above and below into the oceans have been modeled. Moreover a simple global Fe cycling model has been verified versus field data and insights. Two different OBCM's with same upper ocean ecosystem/DMS unit and Fe cycling will be verified versus pre-industrial and present conditions. Next climate change scenario's, notably changes in Fe inputs, will be run, with special attention to climatic feedbacks (warming) on the oceanic cycles and fluxes.

  15. Simulating Fertilization of the Ocean as a Carbon Sequestration Strategy: Effectiveness and Unintended Consequences

    SciTech Connect

    Caldeira, K

    2002-03-20

    The primary objectives of this project are to assess, and improve our understanding of: (1) The effectiveness of various strategies to intentionally store carbon in the ocean through fertilization of the surface ocean with iron and/or macronutrients; and (2) Unanticipated environmental consequences of these ocean fertilization strategies. We propose to use what may be the best global ocean biogeochemical model in the world (PISCES) and apply it to perform the most realistic global-scale simulations of various iron fertilization scenarios. Versions of PISCES are currently used by MPI in Germany and IPSL in France. The model represents diatoms, coccolithophorids, and two classes of zooplankton. This model considers Fey N, P, O{sub 2}, Si, alkalinity, and carbon; for some of these it considers dissolved inorganic and organic, as well as particulate, forms. We would install the PISCES model with a minimum of modification into the LLNL ocean model, and perform an initial suite of simulations of both iron fertilization experiments (e.g., SOFeX) and proposed iron fertilization strategies. Based on the simulated experiments, we will analyze model deficiencies with respect to the observations and use this analysis to improve future versions of the model. The source code for and results from this set of models will be freely distributed, and thus should help groups performing related work elsewhere. This project the most-realistic ocean fertilization simulations yet performed in a global model, with an assessment of and improvement in the reliability of those predictions using results from iron fertilization experiments such as SOFeX. These results will help provide context and guidance for biological observations within the ocean carbon sequestration research program.

  16. Scientific development of a massively parallel ocean climate model. Final report

    SciTech Connect

    Semtner, A.J.; Chervin, R.M.

    1996-09-01

    Over the last three years, very significant advances have been made in refining the grid resolution of ocean models and in improving the physical and numerical treatments of ocean hydrodynamics. Some of these advances have occurred as a result of the successful transition of ocean models onto massively parallel computers, which has been led by Los Alamos investigators. Major progress has been made in simulating global ocean circulation and in understanding various ocean climatic aspects such as the effect of wind driving on heat and freshwater transports. These steps have demonstrated the capability to conduct realistic decadal to century ocean integrations at high resolution on massively parallel computers.

  17. A one ocean model of biodiversity

    NASA Astrophysics Data System (ADS)

    O'Dor, Ronald K.; Fennel, Katja; Berghe, Edward Vanden

    2009-09-01

    The history of life is written in the ocean, and the history of the ocean is written in DNA. Geologists have shown us that hundreds of millions of years of ocean history can be revealed from records of a single phylum in cores of mud from abyssal plains. We are now accumulating genetic tools to unravel the relationships of hundreds of phyla to track this history back billions of years. The technologies demonstrated by the Census of Marine Life (CoML) mean that the ocean is no longer opaque or unknowable. The secrets of the largest component of the biosphere are knowable. The cost of understanding the history of ocean life is not cheap, but it is also not prohibitive. A transparent, open ocean is available for us to use to understand ourselves. This article develops a model of biodiversity equilibration in a single, physically static ocean as a step towards biodiversity in physically complex real oceans. It attempts to be quantitative and to simultaneously account for biodiversity patterns from bacteria to whales focusing on emergent properties rather than details. Biodiversity reflects long-term survival of DNA sequences, stabilizing "ecosystem services" despite environmental change. In the ocean, mechanisms for ensuring survival range from prokaryotes maintaining low concentrations of replicable DNA throughout the ocean volume, anticipating local change, to animals whose mobility increases with mass to avoid local change through movement. Whales can reach any point in the ocean in weeks, but prokaryotes can only diffuse. The high metabolic costs of mobility are offset by the dramatically lower number of DNA replicates required to ensure survival. Reproduction rates probably scale more or less inversely with body mass. Bacteria respond in a week, plankton in a year, whales in a century. We generally lack coherent theories to explain the origins of animals (metazoans) and the contributions of biodiversity to ecosystems. The One Ocean Model suggests that mobile

  18. Monte Carlo code for high spatial resolution ocean color simulations.

    PubMed

    D'Alimonte, Davide; Zibordi, Giuseppe; Kajiyama, Tamito; Cunha, José C

    2010-09-10

    A Monte Carlo code for ocean color simulations has been developed to model in-water radiometric fields of downward and upward irradiance (E(d) and E(u)), and upwelling radiance (L(u)) in a two-dimensional domain with a high spatial resolution. The efficiency of the code has been optimized by applying state-of-the-art computing solutions, while the accuracy of simulation results has been quantified through benchmark with the widely used Hydrolight code for various values of seawater inherent optical properties and different illumination conditions. Considering a seawater single scattering albedo of 0.9, as well as surface waves of 5 m width and 0.5 m height, the study has shown that the number of photons required to quantify uncertainties induced by wave focusing effects on E(d), E(u), and L(u) data products is of the order of 10(6), 10(9), and 10(10), respectively. On this basis, the effects of sea-surface geometries on radiometric quantities have been investigated for different surface gravity waves. Data products from simulated radiometric profiles have finally been analyzed as a function of the deployment speed and sampling frequency of current free-fall systems in view of providing recommendations to improve measurement protocols. PMID:20830183

  19. Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model

    NASA Astrophysics Data System (ADS)

    Saynisch, J.; Bergmann-Wolf, I.; Thomas, M.

    2015-02-01

    To study the sub-seasonal distribution and generation of ocean mass anomalies, Gravity Recovery and Climate Experiment (GRACE) observations of daily and monthly resolution are assimilated into a global ocean circulation model with an ensemble-based Kalman-Filter technique. The satellite gravimetry observations are processed to become time-variable fields of ocean mass distribution. Error budgets for the observations and the ocean model's initial state are estimated which contain the full covariance information. The consistency of the presented approach is demonstrated by increased agreement between GRACE observations and the ocean model. Furthermore, the simulations are compared with independent observations from 54 bottom pressure recorders. The assimilation improves the agreement to high-latitude recorders by up to 2 hPa. The improvements are caused by assimilation-induced changes in the atmospheric wind forcing, i.e., quantities not directly observed by GRACE. Finally, the use of the developed Kalman-Filter approach as a destriping filter to remove artificial noise contaminating the GRACE observations is presented.

  20. (CO sub 2 uptake in an Ocean Circulation Model)

    SciTech Connect

    Siegenthaler, U.C.

    1990-11-06

    The traveler collaborated with Drs. J. L. Sarmiento and J. C. Orr of the Program in Atmospheric Sciences at Princeton University to finish the article A Perturbation Simulation of CO{sub 2} Uptake in an Ocean Circulation Model,'' which has been submitted to the Journal of Geophysical Research for publication. With F. Joos, a graduate student from the University of Bern, the traveler started writing a journal article describing a box model of the global carbon cycle that is an extension of the one-dimensional box-diffusion model. The traveler further collaborated with F. Joos and Dr. J. L. Sarmiento on modeling the potential enhancement of oceanic CO{sub 2} uptake by fertilizing the southern ocean with iron. A letter describing the results is currently being written for the journal Nature.

  1. A review of ocean chlorophyll algorithms and primary production models

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  2. An eddy-resolving model of the Global Ocean

    NASA Astrophysics Data System (ADS)

    Ibrayev, Rashit; Khabeev, Renat; Kalmykov, Vladimir; Ushakov, Konstantin

    2013-04-01

    We present results of eddy-resolving simulation of the global ocean with INM-IO general circulation model. The global grid employs tripole layout, has 0.1-degree horizontal resolution, and uses 49 vertical levels. The ocean model coupled with sea ice and atmospheric boundary layer sub-models. We address to the problem of effective implementation of the numerical code on parallel computers. The model was developed in the Institute of Numerical Mathematics (INM) and P.P.Shirshov Institute of Oceanology (IO). The global simulations were performed with atmospheric conditions based on repeat annual cycle of the normal year - CORE dataset. We present an overview from 75-year spinup. The model results are quite good when compared to observations. We discuss the results of sensitivity of AMOC to the fresh water input due to Greenland ice sheet melting.

  3. A 1/16° eddying simulation of the global NEMO sea-ice-ocean system

    NASA Astrophysics Data System (ADS)

    Iovino, Doroteaciro; Masina, Simona; Storto, Andrea; Cipollone, Andrea; Stepanov, Vladimir N.

    2016-08-01

    Analysis of a global eddy-resolving simulation using the NEMO general circulation model is presented. The model has 1/16° horizontal spacing at the Equator, employs two displaced poles in the Northern Hemisphere, and uses 98 vertical levels. The simulation was spun up from rest and integrated for 11 model years, using ERA-Interim reanalysis as surface forcing. Primary intent of this hindcast is to test how the model represents upper ocean characteristics and sea ice properties. Analysis of the zonal averaged temperature and salinity, and the mixed layer depth indicate that the model average state is in good agreement with observed fields and that the model successfully represents the variability in the upper ocean and at intermediate depths. Comparisons against observational estimates of mass transports through key straits indicate that most aspects of the model circulation are realistic. As expected, the simulation exhibits turbulent behaviour and the spatial distribution of the sea surface height (SSH) variability from the model is close to the observed pattern. The distribution and volume of the sea ice are, to a large extent, comparable to observed values. Compared with a corresponding eddy-permitting configuration, the performance of the model is significantly improved: reduced temperature and salinity biases, in particular at intermediate depths, improved mass and heat transports, better representation of fluxes through narrow and shallow straits, and increased global-mean eddy kinetic energy (by ˜ 40 %). However, relatively minor weaknesses still exist such as a lower than observed magnitude of the SSH variability. We conclude that the model output is suitable for broader analysis to better understand upper ocean dynamics and ocean variability at global scales. This simulation represents a major step forward in the global ocean modelling at the Euro-Mediterranean Centre on Climate Change and constitutes the groundwork for future applications to short

  4. Oxygen gradients across the Pacific Ocean: Resolving an apparent discrepancy between atmospheric and ocean observations and models

    NASA Astrophysics Data System (ADS)

    Mikaloff Fletcher, S. E.; Steinkamp, K.; Stephens, B. B.; Tohjima, Y.; Gruber, N.

    2015-12-01

    We use oceanic and atmospheric model simulations to investigate and resolve a disagreement between observations of atmospheric O2/N2 and CO2 data and air-sea fluxes estimated from an ocean inversion. Atmospheric observations of O2/N2 and CO2 can be combined to calculate atmospheric potential oxygen (APO=O2/N2+1.1CO2), a powerful atmospheric tracer for ocean biogeochemical processes that is not influenced by terrestrial photosynthesis or respiration. A recent study identified a deep APO minimum in the Northwest Pacific from measurements collected on a repeat transect between New Zealand and Japan. This minimum could not be reproduced in atmospheric model simulations forced with air-sea fluxes estimated from ocean data, suggesting that oxygen uptake in the Northwest Pacific must be under-estimated by a factor of two. We use an updated ocean inverse method to estimate new air-sea fluxes from the ocean interior measurements at a higher spatial resolution than previous work using a suite of ten ocean general circulation models (OGCMs). These new air-sea flux estimates are able to match the atmospheric APO data when used as boundary conditions for an atmospheric transport model. The relative roles of thermal and biological processses in contributing to oxygen absorption by the North Pacific and other ocean regions is investigated.

  5. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    SciTech Connect

    Wang, P; Song, Y T; Chao, Y; Zhang, H

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds of processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.

  6. A 1/16° eddying simulation of the global ocean/sea ice system

    NASA Astrophysics Data System (ADS)

    Iovino, Dorotea; Masina, Simona; Storto, Andrea; Cipollone, Andrea; Stepanov, Vladimir N.

    2016-04-01

    Analysis of a global eddy-resolving simulation using the NEMO general circulation model is presented. The model has 1/16° horizontal spacing at the equator, employs two displaced poles in the Northern Hemisphere, and uses 98 vertical levels. The simulation was spun up from rest and integrated for 11 model years, using ERA-Interim reanalysis as surface forcing. Primary intent of this hindcast is to test how the model represents upper ocean characteristics and sea ice properties. Numerical results show that, overall, the general circulation is well reproduced, with realistic values for overturning mass and heat transports. Analysis of the zonal averaged temperature and salinity, and the mixed layer depth indicate that the model average state is in good agreement with observed fields. Comparisons against observational estimates of mass transports through key straits indicate that most aspects of the model circulation are realistic. As expected, the simulation exhibits turbulent behaviour. The spatial distribution of the sea surface height variability from the model is close to the observed pattern. Despite the increase in resolution, the variability amplitude is still weak, in particular in the Southern Ocean. The distribution and volume of the sea ice are, to a large extent, comparable to observed values. Compared with a corresponding coarse-resolution configuration, the performance of the model is significantly improved, although relatively minor weaknesses still exist. We conclude that the model output is suitable for broader analysis to better understand upper ocean dynamics and ocean variability at global scales. This simulation represents a major step forward in the CMCC global ocean modelling, and constitutes the groundwork for future applications to short-range ocean forecasting.

  7. Incorporating Density Properties of MgSO4 Brines Into Icy World Ocean Simulations

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Vance, S.

    2011-12-01

    The structure and flow of the subsurface oceans in icy worlds depends on the sources of buoyancy within these oceans. Buoyancy is determined by the equation of state, in which density is a nonlinear function of temperature, salinity, and pressure. Equations of state for terrestrial seawater (with Na and Cl as the principal dissolved species) are well-developed, but icy world oceans may contain a different balance of species, including Na, Mg, SO4, and NH4 (Kargel et al, 2000). Recent work by Vance and Brown (2011, pers. comm.) has mapped out the density and thermodynamic properties of MgSO4 brines under icy world conditions. We have developed code to incorporate this equation of state data for MgSO4 brines into two different ocean simulation models. First, we investigate a single-column convection model, which is able to find the equilibrium structure and heat transport of an icy world ocean. We explore the heat transport through the ocean subject to a variety of assumptions about ocean salinity and seafloor heat and salt flux. We resolve the paradox posed by Vance and Brown (2004): warm salty MgSO4 brine emitted by a seafloor hydrothermal system may be positively buoyant at the seafloor, but become negatively buoyant (sinking) at lower pressure. How does heat escape the ocean, if it cannot be transported by convection? Second, we add MgSO4 dynamics to a full 3-D time-dependent general circulation model (the MIT GCM), which is able to simulate both the global-scale circulation of the world's ocean and investigate the highly turbulent dynamics of buoyant hydrothermal systems. We ask, "Are buoyancy-driven flows in a MgSO4 brine ocean significantly different than similarly-driven flows in terrestrial seawater?"

  8. Characterizing Ocean Turbulence from Argo, Acoustic Doppler, and Simulation Data

    NASA Astrophysics Data System (ADS)

    McCaffrey, Katherine

    Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy tasks. The ocean's sheer size makes it even more difficult to observe, and its unpredictable and ever-changing forcings introduce additional complexities. Turbulence in the oceans ranges from basin scale to the scale of the molecular viscosity. The method of energy transfer between scales is, however, an area of active research, so observations of the ocean at all scales are crucial to understanding the basic dynamics of its motions. In this collection of work, I use a variety of datasets to characterize a wide range of scales of turbulence, including observations from multiple instruments and from models with different governing equations. I analyzed the largest scales of the turbulent range using the global salinity data of the Argo profiling float network. Taking advantage of the scattered and discontinuous nature of this dataset, the second-order structure function was calculated down to 2000m depth, and shown to be useful for predicting spectral slopes. Results showed structure function slopes of 2/3 at small scales, and 0 at large scales, which corresponds with spectral slopes of -5/3 at small scales, and -1 at large scales. Using acoustic Doppler velocity measurements, I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) observations provided the data for an analysis that includes coherence, anisotropy, and intermittency. In order to more simply describe these features, a parameterization was done with four turbulence metrics, and the anisotropy magnitude, introduced here, was shown to most closely capture the coherent events. Then, using both the NREL TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model, I calculated turbulence statistics to validate the accuracy of these methods in reproducing

  9. A perfectly matched layer for fluid-solid problems: Application to ocean-acoustics simulations with solid ocean bottoms.

    PubMed

    Xie, Zhinan; Matzen, René; Cristini, Paul; Komatitsch, Dimitri; Martin, Roland

    2016-07-01

    A time-domain Legendre spectral-element method is described for full-wave simulation of ocean acoustics models, i.e., coupled fluid-solid problems in unbounded or semi-infinite domains, taking into account shear wave propagation in the ocean bottom. The technique can accommodate range-dependent and depth-dependent wave speed and density, as well as steep ocean floor topography. For truncation of the infinite domain, to efficiently absorb outgoing waves, a fluid-solid complex-frequency-shifted unsplit perfectly matched layer is introduced based on the complex coordinate stretching technique. The complex stretching is rigorously taken into account in the derivation of the fluid-solid matching condition inside the absorbing layer, which has never been done before in the time domain. Two implementations are designed: a convolutional formulation and an auxiliary differential equation formulation because the latter allows for implementation of high-order time schemes, leading to reduced numerical dispersion and dissipation, a topic of importance, in particular, in long-range ocean acoustics simulations. The method is validated for a two dimensional fluid-solid Pekeris waveguide and for a three dimensional seamount model, which shows that the technique is accurate and numerically long-time stable. Compared with widely used paraxial absorbing boundary conditions, the perfectly matched layer is significantly more efficient at absorbing both body waves and interface waves. PMID:27475142

  10. Errors in the Simulated Heat Budget of CGCMs in the Eastern Part of the Tropical Oceans

    NASA Astrophysics Data System (ADS)

    Hazel, J.; Masarik, M. T.; Mechoso, C. R.; Small, R. J.; Curchitser, E. N.

    2014-12-01

    The simulation of the tropical climate by coupled atmosphere-ocean general circulation models (CGCMs) shows severe warm biases in the sea-surface temperature (SST) field of the southeastern part of the Pacific and the Atlantic (SEP and SEA, respectively). The errors are strongest near the land mass with a broad plume extending west, Also, the equatorial cold tongue is too strong and extends too far to the west. The simulated precipitation field generally shows a persistent double Inter-tropical Convergence Zone (ITCZ). Tremendous effort has been made to improve CGCM performance in general and to address these tropical errors in particular. The present paper start by comparing Taylor diagrams of the SST errors in the SEP and SEA by CGCMs participating in the Coupled Model Intercomparison Project phases 3 and 5 (CMIP3 and CMIP5, respectively). Some improvement is noted in models that perform poorly in CMIP3, but the overall performance is broadly similar in the two intercomparison projects. We explore the hypothesis that an improved representation of atmosphere-ocean interaction involving stratocumulus cloud decks and oceanic upwelling is essential to reduce errors in the SEP and SEA. To estimate the error contribution by clouds and upwelling, we examine the upper ocean surface heat flux budget. The resolution of the oceanic component of the CGCMs in both CMIP3 and CMIP5 is too coarse for a realistic representation of upwelling. Therefore, we also examine simulations by the Nested Regional Climate Model (nRCM) system, which is a CGCM with a very high-resolution regional model embedded in coastal regions. The nRCM consists of the Community Atmosphere Model (CAM, run at 1°) coupled to the global Parallel Ocean Program Model (POP, run at 1°) to which the Regional Ocean Modeling System (ROMS6, run at 5-10 km) is nested in selected coastal regions.

  11. A Coupled Atmosphere-Ocean-Wave Modeling System

    NASA Astrophysics Data System (ADS)

    Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.

    2012-12-01

    A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.

  12. Modeling Europa's Ice-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  13. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    NASA Astrophysics Data System (ADS)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2014-06-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information), and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN) activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve) at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of

  14. Shipborne LF-VLF oceanic lightning observations and modeling

    NASA Astrophysics Data System (ADS)

    Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Lehtinen, N. G.; Inan, U. S.

    2015-10-01

    Approximately 90% of natural lightning occurs over land, but recent observations, using Global Lightning Detection (GLD360) geolocation peak current estimates and satellite optical data, suggested that cloud-to-ground flashes are on average stronger over the ocean. We present initial statistics from a novel experiment using a Low Frequency (LF) magnetic field receiver system installed aboard the National Oceanic Atmospheric Agency (NOAA) Ronald W. Brown research vessel that allowed the detection of impulsive radio emissions from deep-oceanic discharges at short distances. Thousands of LF waveforms were recorded, facilitating the comparison of oceanic waveforms to their land counterparts. A computationally efficient electromagnetic radiation model that accounts for propagation over lossy and curved ground is constructed and compared with previously published models. We include the effects of Earth curvature on LF ground wave propagation and quantify the effects of channel-base current risetime, channel-base current falltime, and return stroke speed on the radiated LF waveforms observed at a given distance. We compare simulation results to data and conclude that previously reported larger GLD360 peak current estimates over the ocean are unlikely to fully result from differences in channel-base current risetime, falltime, or return stroke speed between ocean and land flashes.

  15. Ocean Response to Possible Southern Meltwater Pulses During Eocene-Oligocene Cooling Climate Trend: A Sensitivity Ocean Modeling Study

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2003-12-01

    Understanding ocean circulation and sea level change in the past (and foreseeable future) is one of the focal points of paleoceanography. Sea level may change due to several primary causes, including the meltdown of the major ice sheets, sea ice melting, and changes in the thermohaline structure of the oceans. The sensitivity of the past ocean circulation to meltwater impacts may have been different from the present-day. We still have only a vague understanding of how ocean basin geography may influence the freshwater impacts in different oceans; the role of geography is important for reconstructing variability of past climates with substantially different land-sea distributions. As freshwater impacts in past geologic eras having different basins configurations may have been different from the present-day pattern, the sensitivity of the ocean circulation to sea surface density impacts and climate change could have been different as well. We use the Eocene-Oligocene geometry and climate to address the past ocean and sea level long-term internal variability because this time slice provides a substantially different geometry and for a strong sea ice impact that can be seen in the geologic record. The Eocene epoch is crucial as a transition from the warm Cretaceous ocean to cooler oceans that may have been subject to bi-polar millennial-scale oscillations of the deep ocean circulation caused by freshwater pulses of the developing southern cryosphere. In a series of numerical experiments, sea ice melting and sea water freezing around Antarctica were simulated by superimposing freshwater layers over zonally-averaged sea surface salinity. Eocene sea surface temperature and sea surface salinity are specified based on the paleoclimatic record and modeling. In our simulations, the Eocene ocean circulation is indeed sensitive to freshwater impacts in the Southern Hemisphere. There are noticeable sea level changes caused by the restructuring of the deep ocean thermal and

  16. Modelling the turbulence of a freezing Martian ocean

    NASA Astrophysics Data System (ADS)

    Kiss, Gabor; Leitner, Johannes; Firneis, Maria

    2015-04-01

    We modified the General Ocean Turbulence Model (GOTM) to fit simulations investigating the hypotheses of early oceans or seas on planet Mars. Observed morphologies like paleoshorelines (Parker et al. 1987, Carr et al. 2003) and buried craters (Boyce et al. 2005, Head et al. 2002) indicate possible processes which could have been caused by large standing open bodies of water in the northern hemisphere of Mars. These structures, as well as altitude measurements of delta networks (diAchille et al. 2010) proclaim various sizes of oceans and or seas. Evidence for their existence whether one or more at different times in the early history of the planet, or the evolution and fate of an ocean are still elusive. The smoothness of the northern plains is debated, to be the result of volcanic effluents followed by the deposition of the sedimental load called the Vastias Borealis Formation (VBF). Detailed observations of crater depths (d/D ratios) in the northern hemisphere have shown further arguments for a northern ocean. The prevailing opinion is a short life of a liquid ocean, and a rather fast freezing period leading to sublimation under a thin atmosphere. McKay et al. (1990) have shown that liquid habitats could be maintained under an ice sheet for up to several hundred million years, if melt/freshwater and or volcanic activity was supported. Using the atmospheric data of the GCM (Forget et al. 1999) as input parameters for temperature and wind velocities, we simulate an ocean exposed from mild to freezing temperatures of water at different atmospheric pressures. We are investigating the detailed effects of turbulence on the ocean or sea floors, as well as the effects of salinity and freshwater inflow on the Martian soil. Apart from the driving forces like fed of outflow channels and or rivers and wind, the duration of liquid water is a key question on the redistribution of sediments and the formation of coastal structures.

  17. Strong coupling among Antarctic ice shelves, ocean circulation and sea ice in a global sea-ice - ocean circulation model

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2016-04-01

    The thermodynamic effects of Antarctic ice shelf interaction with ocean circulation are investigated using a global, high-resolution, isopycnal ocean-circulation model coupled to a sea-ice model. The model uses NASA MERRA Reanalysis from 1992 to 2011 as atmospheric forcing. The simulated long-period variability of ice-shelf melting/freezing rates differ across geographic locations. The ice shelves in Antarctic Peninsula, Amundsen and Bellingshausen sea embayments and the Amery Ice Shelf experience an increase in melting starting from 2005. This increase in melting is due to an increase in the subsurface (100-500 m) ocean heat content in the embayments of these ice shelves, which is caused by an increase in sea-ice concentration after 2005, and consequent reduction of the heat loss to the atmosphere. Our simulations provide a strong evidence for a coupling between ocean circulation, sea ice and ice shelves.

  18. The role of local atmospheric forcing on the modulation of the ocean mixed layer depth in reanalyses and a coupled single column ocean model

    NASA Astrophysics Data System (ADS)

    Pookkandy, Byju; Dommenget, Dietmar; Klingaman, Nicholas; Wales, Scott; Chung, Christine; Frauen, Claudia; Wolff, Holger

    2016-02-01

    The role of local atmospheric forcing on the ocean mixed layer depth (MLD) over the global oceans is studied using ocean reanalysis data products and a single-column ocean model coupled to an atmospheric general circulation model. The focus of this study is on how the annual mean and the seasonal cycle of the MLD relate to various forcing characteristics in different parts of the world's oceans, and how anomalous variations in the monthly mean MLD relate to anomalous atmospheric forcings. By analysing both ocean reanalysis data and the single-column ocean model, regions with different dominant forcings and different mean and variability characteristics of the MLD can be identified. Many of the global oceans' MLD characteristics appear to be directly linked to the different atmospheric forcing characteristics at different locations. Here, heating and wind-stress are identified as the main drivers; in some, mostly coastal, regions the atmospheric salinity forcing also contributes. The annual mean MLD is more closely related to the annual mean wind-stress and the MLD seasonality is more closely related to the seasonality in heating. The single-column ocean model, however, also points out that the MLD characteristics over most global ocean regions, and in particular in the tropics and subtropics, cannot be maintained by local atmospheric forcings only, but are also a result of ocean dynamics that are not simulated in a single-column ocean model. Thus, lateral ocean dynamics are essential in correctly simulating observed MLD.

  19. High-Order/Low-Order methods for ocean modeling

    SciTech Connect

    Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; Knoll, Dana A.

    2015-06-01

    We examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We demonstrate how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.

  20. SENSITIVITY OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MULTILAYER MODEL TO INSTRUMENT ERROR AND PARAMETERIZATION UNCERTAINTY

    EPA Science Inventory

    The response of the National Oceanic and Atmospheric Administration multilayer inferential dry deposition velocity model (NOAA-MLM) to error in meteorological inputs and model parameterization is reported. Monte Carlo simulations were performed to assess the uncertainty in NOA...

  1. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    SciTech Connect

    Koracin, Darko; Cerovecki, Ivana; Vellore, Ramesh; Mejia, John; Hatchett, Benjamin; McCord, Travis; McLean, Julie; Dorman, Clive

    2013-04-11

    Executive summary The main objective of the study was to investigate atmospheric and ocean interaction processes in the western Pacific and, in particular, effects of significant ocean heat loss in the Kuroshio and Kuroshio Extension regions on the lower and upper atmosphere. It is yet to be determined how significant are these processes are on climate scales. The understanding of these processes led us also to development of the methodology of coupling the Weather and Research Forecasting model with the Parallel Ocean Program model for western Pacific regional weather and climate simulations. We tested NCAR-developed research software Coupler 7 for coupling of the WRF and POP models and assessed its usability for regional-scale applications. We completed test simulations using the Coupler 7 framework, but implemented a standard WRF model code with options for both one- and two-way mode coupling. This type of coupling will allow us to seamlessly incorporate new WRF updates and versions in the future. We also performed a long-term WRF simulation (15 years) covering the entire North Pacific as well as high-resolution simulations of a case study which included extreme ocean heat losses in the Kuroshio and Kuroshio Extension regions. Since the extreme ocean heat loss occurs during winter cold air outbreaks (CAO), we simulated and analyzed a case study of a severe CAO event in January 2000 in detail. We found that the ocean heat loss induced by CAOs is amplified by additional advection from mesocyclones forming on the southern part of the Japan Sea. Large scale synoptic patterns with anomalously strong anticyclone over Siberia and Mongolia, deep Aleutian Low, and the Pacific subtropical ridge are a crucial setup for the CAO. It was found that the onset of the CAO is related to the breaking of atmospheric Rossby waves and vertical transport of vorticity that facilitates meridional advection. The study also indicates that intrinsic parameterization of the surface fluxes

  2. Evaluation of a global internal-tide resolving and submesoscale admitting ocean simulation

    NASA Astrophysics Data System (ADS)

    Ubelmann, C.; Menemenlis, D.; Fu, L. L.; Zhao, Z.

    2014-12-01

    We will present ongoing evaluation of a global ocean and sea ice configuration of the Massachusetts Institute of Technology general circulation model (MITgcm) that has 0.75 to 2.2 km horizontal grid spacing and 1-m thick vertical levels near the surface. Surface boundary conditions are from the 0.14-degree European Center for Medium-Range Weather Forecasts (ECMWF) atmospheric operational model analysis, starting in 2011, including atmospheric pressure forcing. The simulation also includes tidal forcing. A unique feature of this simulation is that we save hourly output of full 3-dimensional model prognostic variables, making it a remarkable tool for the study of ocean processes and for the simulation of satellite observations. Although this initial simulation was run without ocean data constraints, it already presents very interesting features and interactions between an exceptionally wide range of scales. The simulation resolves geostrophic eddies and internal tides and admits submesoscale variability and unbalanced dynamics such as internal waves at non-tidal frequencies.We will present some evaluation of these different components based on altimetry observations and moorings. As a first result, the internal tides for the major tidal components have overall realistic amplitudes and spatial patterns compared to independent analyses from altimetry, although some discrepancies arise in equatorial regions. Despite discrepancies with observations, this simulation already constitutes an extremely useful tool for ocean process studies and for satellite observation system experiments, for example, in preparation for the Surface Water and Ocean Topography (SWOT) mission. As a preliminary exercise, the simulation has been tested in the SWOT simulator developed at the Jet Propulsion Laboratory (Fu et al., in this session). Some illustrations of the challenges will be presented.

  3. Origin and models of oceanic transform faults

    NASA Astrophysics Data System (ADS)

    Gerya, Taras

    2012-02-01

    Mid-ocean ridges sectioned by transform faults represent prominent surface expressions of plate tectonics. A fundamental problem of plate tectonics is how this pattern has formed and why it is maintained. Gross-scale geometry of mid-ocean ridges is often inherited from respective rifted margins. Indeed, transform faults seem to nucleate after the beginning of the oceanic spreading and can spontaneously form at a single straight ridge. Both analog and numerical models of transform faults were investigated since the 1970s. Two main groups of analog models were developed: thermomechanical (freezing wax) models with accreting and cooling plates and mechanical models with non-accreting lithosphere. Freezing wax models reproduced ridge-ridge transform faults, inactive fracture zones, rotating microplates, overlapping spreading centers and other features of oceanic ridges. However, these models often produced open spreading centers that are dissimilar to nature. Mechanical models, on the other hand, do not accrete the lithosphere and their results are thus only applicable for relatively small amount of spreading. Three main types of numerical models were investigated: models of stress and displacement distribution around transforms, models of their thermal structure and crustal growth, and models of nucleation and evolution of ridge-transform fault patterns. It was shown that a limited number of spreading modes can form: transform faults, microplates, overlapping spreading centers, zigzag ridges and oblique connecting spreading centers. However, the controversy exists whether these patterns always result from pre-existing ridge offsets or can also form spontaneously at a single straight ridge during millions of year of accretion. Therefore, two types of transform fault interpretation exist: plate fragmentation structures vs. plate accretion structures. Models of transform faults are yet relatively scarce and partly controversial. Consequently, a number of first order

  4. Controlling high-latitude Southern Ocean convection in climate models

    NASA Astrophysics Data System (ADS)

    Stössel, Achim; Notz, Dirk; Haumann, F. Alexander; Haak, Helmuth; Jungclaus, Johann; Mikolajewicz, Uwe

    2015-02-01

    Earth System Models (ESMs) generally suffer from a poor simulation of the High-Latitude Southern Ocean (HLSO). Here we aim at a better understanding of the shortcomings by investigating the sensitivity of the HLSO to the external freshwater flux and the horizontal resolution in forced and coupled simulations with the Max-Planck-Institute Ocean Model (MPIOM). Forced experiments reveal an immediate reduction of open-ocean convection with additional freshwater input. The latter leads to a remarkably realistic simulation of the distinct water-mass structure in the central Weddell Sea featuring a temperature maximum of +0.5 °C at 250 m depth. Similar, but more modest improvements occur over a time span of 40 years after switching from a forced to a coupled simulation with an eddy-resolving version of MPIOM. The switch is accompanied with pronounced changes of the external freshwater flux and the wind field, as well as a more realistic heat flux due to coupling. Similar to the forced freshwater-flux experiments, a heat reservoir develops at depth, which in turn decreases the vertically integrated density of the HLSO and reduces the Antarctic Circumpolar Current to rather realistic values. Coupling with a higher resolution version of the atmosphere model (ECHAM6) yields distinct improvements of the HLSO water-mass structure and sea-ice cover. While the coupled simulations reveal a realistic amount of Antarctic runoff, its distribution appears too concentrated along the coast. Spreading the runoff over a wider region, as suggested in earlier studies to mimic the effect of freshwater transport through icebergs, also leads to noticeable improvements of the HLSO water-mass properties, predominantly along the coast. This suggests that the spread of the runoff improves the representation of Antarctic Bottom Water formation through enhanced near-boundary convection rather than weakened open-ocean convection.

  5. The Fidelity of Ocean Models With Explicit Eddies (Chapter 17)

    SciTech Connect

    McClean, J; Jayne, S; Maltrud, M; Ivanova, D

    2007-08-01

    Current practices within the oceanographic community have been reviewed with regard to the use of metrics to assess the realism of the upper-ocean circulation, ventilation processes diagnosed by time-evolving mixed layer depth and mode water formation, and eddy heat fluxes in large-scale fine resolution ocean model simulations. We have striven to understand the fidelity of these simulations in the context of their potential use in future fine-resolution coupled climate system studies. A variety of methodologies are used to assess the veracity of the numerical simulations. Sea surface height variability and the location of western boundary current paths from altimetry have been used routinely as basic indicators of fine-resolution model performance. Drifters and floats have also been used to provide pseudo-Eulerian measures of the mean and variability of surface and sub-surface flows, while statistical comparisons of observed and simulated means have been carried out using James tests. Probability density functions have been used to assess the Gaussian nature of the observed and simulated flows. Length and time scales have been calculated in both Eulerian and Lagrangian frameworks from altimetry and drifters, respectively. Concise measures of multiple model performance have been obtained from Taylor diagrams. The time-evolution of the mixed layer depth at monitoring stations has been compared with simulated time series. Finally, eddy heat fluxes are compared to climatological inferences.

  6. Final Report. Coupled simulations of Antarctic Ice-sheet/ocean interactions using POP and CISM

    SciTech Connect

    Asay-Davis, Xylar Storm

    2015-12-30

    The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently being incorporated into two manuscripts in preparation.

  7. Numerical Modeling of Ocean Acoustic Wavefields

    NASA Astrophysics Data System (ADS)

    Tappert, Frederick

    1997-08-01

    The U.S. Navy requires real-time ``acoustic performance prediction'' models in order to optimize sonar tactics in naval combat situations. The need for numerical models that solve the acoustic wave equation in realistic ocean environments is being met by a collaborative effort between university researchers, industrial contractors, and navy laboratory workers. This paper discusses one particularly successful numerical model, called the PE/SSF model, that was originally developed by the author. Here PE stands for Parabolic Equation, a good approximation to the elliptic Helmholtz equation; and SSF stands for the Split-Step Fourier algorithm, a highly efficient marching algorithm for solving parabolic type equations. These techniques are analyzed, and examples are displayed of ocean acoustic wavefields generated by the PE/SSF model.

  8. Serving ocean model data on the cloud

    USGS Publications Warehouse

    Meisinger, M.; Farcas, C.; Farcas, E.; Alexander, Corrine; Arrott, M.; de La Beaujardière, J.; Hubbard, P.; Mendelssohn, R.; Signell, R.

    2009-01-01

    The NOAA-led Integrated Ocean Observing System (IOOS) and the NSF-funded Ocean Observatories Initiative Cyberinfrastructure Project (OOI-CI) are collaborating on a prototype data delivery system for numerical model output and other gridded data using cloud computing. The strategy is to take an existing distributed system for delivering gridded data and redeploy on the cloud, making modifications to the system that allow it to harness the scalability of the cloud as well as adding functionality that the scalability affords. ??2009 MTS.

  9. An abrupt climate event in a coupled ocean-atmosphere simulation without external forcing.

    PubMed

    Hall, A; Stouffer, R J

    2001-01-11

    Temperature reconstructions from the North Atlantic region indicate frequent abrupt and severe climate fluctuations during the last glacial and Holocene periods. The driving forces for these events are unclear and coupled atmosphere-ocean models of global circulation have only simulated such events by inserting large amounts of fresh water into the northern North Atlantic Ocean. Here we report a drastic cooling event in a 15,000-yr simulation of global circulation with present-day climate conditions without the use of such external forcing. In our simulation, the annual average surface temperature near southern Greenland spontaneously fell 6-10 standard deviations below its mean value for a period of 30-40 yr. The event was triggered by a persistent northwesterly wind that transported large amounts of buoyant cold and fresh water into the northern North Atlantic Ocean. Oceanic convection shut down in response to this flow, concentrating the entire cooling of the northern North Atlantic by the colder atmosphere in the uppermost ocean layer. Given the similarity between our simulation and observed records of rapid cooling events, our results indicate that internal atmospheric variability alone could have generated the extreme climate disruptions in this region. PMID:11196636

  10. Radiative transfer modeling in the coupled atmosphere- ocean system and its application to the remote sensing of ocean color imagery

    NASA Astrophysics Data System (ADS)

    Yan, Banghua

    2001-12-01

    Ocean color is the radiance emanating from the ocean due to scattering by chlorophyll pigments and particles of organic and inorganic origin. Thus, it contains information about chlorophyll concentrations which can be used to estimate primary productivity. Observations of ocean color from space can be used to monitor the variability in marine primary productivity, thereby permitting a quantum leap in our understanding of oceanographic processes from regional to global scales. Satellite remote sensing of ocean color requires accurate removal of the contribution by atmospheric molecules and aerosols to the radiance measured at the top of the atmosphere (TOA). This removal process is called ``atmospheric correction''. Since about 90% of the radiance received by the satellite sensor comes from the atmosphere, accurate removal of this portion is very important. A prerequisite for accurate atmospheric correction is accurate and reliable simulation of the transport of radiation in the atmosphere-ocean system. This thesis focuses on this radiative transfer process, and investigates the impact of particles in the atmosphere (aerosols) and ocean (oceanic chlorophylls and air bubbles) on our ability to remove the atmospheric contribution from the received signal. To explore these issues, a comprehensive radiative transfer model for the coupled atmosphere-ocean system is used to simulate the radiative transfer process and provide a physically sound link between surface-based measurements of oceanic and atmospheric parameters and radiances observed by satellite-deployed ocean color sensors. This model has been upgraded to provide accurate radiances in arbitrary directions as required to analyze satellite data. The model is then applied to quantify the uncertainties associated with several commonly made assumptions invoked in atmospheric correction algorithms. Since atmospheric aerosols consist of a mixture of absorbing and non- absorbing components that may or may not be

  11. Passive localization in ocean acoustics: A model-based approach

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1995-09-01

    A model-based approach is developed to solve the passive localization problem in ocean acoustics using the state-space formulation for the first time. It is shown that the inherent structure of the resulting processor consists of a parameter estimator coupled to a nonlinear optimization scheme. The parameter estimator is designed using the model-based approach in which an ocean acoustic propagation model is used in developing the model-based processor required for localization. Recall that model-based signal processing is a well-defined methodology enabling the inclusion of environmental (propagation) models, measurement (sensor arrays) models, and noise (shipping, measurement) models into a sophisticated processing algorithm. Here the parameter estimator is designed, or more appropriately the model-based identifier (MBID) for a propagation model developed from a shallow water ocean experiment. After simulation, it is then applied to a set of experimental data demonstrating the applicability of this approach. {copyright} {ital 1995} {ital Acoustical} {ital Society} {ital of} {ital America}.

  12. Low-frequency variability in a climate model with a mixed-layer ocean

    SciTech Connect

    Gould-Stewart, S.

    1984-11-01

    A mixed-layer ocean model coupled to a global spectral atmospheric circulation model produces a warming in the model equatorial Pacific Ocean similar to the El Nino or Southern Oscillation (SO) response. The mechanism for producing the SO-like response in an ocean with heat storage and without ocean dynamics is investigated. The model is capable of simulating SO-like time scales, but the details of the structure of the warming differ significantly from the observed El Nino/Southern Oscillation (ENSO) response. 22 refs.

  13. Model-based ocean acoustic passive localization

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1994-01-24

    The detection, localization and classification of acoustic sources (targets) in a hostile ocean environment is a difficult problem -- especially in light of the improved design of modern submarines and the continual improvement in quieting technology. Further the advent of more and more diesel-powered vessels makes the detection problem even more formidable than ever before. It has recently been recognized that the incorporation of a mathematical model that accurately represents the phenomenology under investigation can vastly improve the performance of any processor, assuming, of course, that the model is accurate. Therefore, it is necessary to incorporate more knowledge about the ocean environment into detection and localization algorithms in order to enhance the overall signal-to-noise ratios and improve performance. An alternative methodology to matched-field/matched-mode processing is the so-called model-based processor which is based on a state-space representation of the normal-mode propagation model. If state-space solutions can be accomplished, then many of the current ocean acoustic processing problems can be analyzed and solved using this framework to analyze performance results based on firm statistical and system theoretic grounds. The model-based approach, is (simply) ``incorporating mathematical models of both physical phenomenology and the measurement processes including noise into the processor to extract the desired information.`` In this application, we seek techniques to incorporate the: (1) ocean acoustic propagation model; (2) sensor array measurement model; and (3) noise models (ambient, shipping, surface and measurement) into a processor to solve the associated localization/detection problems.

  14. Improving the EOTDA ocean background model

    NASA Astrophysics Data System (ADS)

    McGrath, Charles P.; Badzik, Gregory D.

    1997-09-01

    The Electro-Optical Tactical Decision Aid (EOTDA) is a strike warfare mission planning tool originally developed by the US Air Force. The US Navy has added navy sensors and targets to the EOTDA and installed it into current fleet mission planning and support systems. Fleet experience with the EOTDA and previous studies have noted the need for improvement, especially for scenarios involving ocean backgrounds. In order to test and improve the water background model in the EOTDA, a modified version has been created that replaces the existing semi-empirical model with the SeaRad model that was developed by Naval Command, Control and Ocean Surveillance Systems (NRaD). The SeaRad model is a more rigorous solution based on the Cox-Munk wave-slope probabilities. During the April 1996 Electrooptical Propagation Assessment in Coastal Environments (EOPACE) trials, data was collected to evaluate the effects of the SeaRad version of the EOTDA. Data was collected using a calibrated airborne infrared imaging system and operational FUR systems against ship targets. A modified version of MODTRAN also containing the SeaRad model is used to correct the data for the influences of the atmosphere. This report uses these data along with the modified EOTDA to evaluate the effects of the SeaRad model on ocean background predictions under clear and clouded skies. Upon using the more accurate water reflection model, the significance of the sky and cloud radiance contributions become more apparent leading to recommendations for further improvements.

  15. Assimilation of altimeter topography into oceanic models

    NASA Technical Reports Server (NTRS)

    Demey, Pierre; Menard, Yves; Pinardi, Nadia; Schroeter, J.; Verron, J.

    1991-01-01

    The primary goals of the authors are to build an intuition for assimilation techniques and to investigate the impact of variable altimeter topography on simple or complex oceanic models. In particular, applying various techniques and sensitivity studies to model and data constraints plays a key role. We are starting to use quasi-geostrophic, semigeostrophic, and primitive-equation (PE) models and to test the schemes in regions of interest to the World Ocean Circulation Experiment (WOCE), as well as in the northeast Atlantic and the Mediterranean. The impact of scatterometer wind forcing on the results is also investigated. The use of Geosat, European Remote Sensing satellite (ERS-1), and TOPEX/POSEIDON altimetry data is crucial in fine tuning the models and schemes to the selected areas of interest.

  16. Effect of mineral dust on ocean color retrievals from space: A radiative transfer simulation study

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Franz, B. A.

    2014-12-01

    Mineral aerosols (dust) are one of the major components of all aerosols found in the Earth's atmosphere. They are mainly soil particles that originate from arid and semiarid regions of the world that can be carried by winds for thousands of kilometers. They are a major impediment in the remote sensing of the ocean color (spectral water-leaving reflectance), because they absorb solar radiation in the UV and visible part of the spectrum and their micro-physical and optical properties are highly variable. Further, there are no reliable working algorithms to detect their presence from spaceborne ocean color observations alone, when they are present in small amount (optical thickness < 0.2). In this paper we examine effect of mineral dust on ocean color retrieval from space. We use Ahmad-Fraser's vector radiative transfer (RT) code (v3.0) for ocean-atmosphere system to simulate the pseudo observations (top of atmosphere radiance) for models containing different types of aerosols (absorbing and non-absorbing) in the atmosphere. We consider the mineral aerosols as consisting of an external mixture of illite, kaolinite, montmorillonite, quartz, and calcite with a small amount of hematite (as an internal mixture), which provide the spectral dependence of single scattering albedo consistent with the values reported in the literature. We also vary the aerosol layer height in the atmosphere and amount of chlorophyll in the ocean. The simulated pseudo observations were processed through standard NASA algorithms to determine the ocean color (spectral water-leaving reflectance) and derived chlorophyll in the ocean. Results of the RT simulation study for different Sun-satellite viewing geometry, aerosol layer height and chlorophyll amount in the ocean is presented.

  17. Partially molten magma ocean model

    SciTech Connect

    Shirley, D.N.

    1983-02-15

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model.

  18. Modelling the Oceanic Nd Isotopic Composition With a North Atlantic Eddy Permitting Model

    NASA Astrophysics Data System (ADS)

    Peronne, S.; Treguier, A.; Arsouze, T.; Dutay, J.; Lacan, F.; Jeandel, C.

    2006-12-01

    The oceanic water masses differ by their temperatures, salinity, but also a number of geochemical tracers characterized by their weak concentrations and their ability to quantify oceanic processes (mixing, scavenging rates etc). Among these tracers, the Nd isotopic composition (hereafter epsilon-Nd) is a (quasi) conservative tracer of water mass mixing in the ocean interior, far from any lithogenic inputs. It has been recently established that exchange of Nd at the oceanic margins could be the dominant process controlling both its concentration and isotopic composition distribution in the ocean. This was demonstrated using in situ measurements and budget calculations and has recently been confirmed by a low resolution (2°) modeling approach (Arsouze et al., 2006). However, the currents flowing on the ocean margins are not correctly represented in coarse ocean models. It is the case in the North Atlantic ocean, which is of particular interest since i) it is the area of deep water formation and ii) these deep waters are characterized by the most negative epsilon-Nd values of the world ocean, which are used as "imprint" of the present and past thermohaline circulation. It is therefore essential to understand how these water masses acquire their epsilon-Nd signature. We propose here the first results of the modeling of oceanic Nd isotopic composition at eddy-permitting resolution, with the North Atlantic 0.25° version of the NEMO model used for the DRAKKAR European project. A 150 years off-line experiment and a shorter on-line experiment are performed. Simulated Nd distributions are compared to the present-day data base, vertical profiles, and the results of the low resolution model (in the North Atlantic). The eddy permitting model generally provides improved results, provided a high enough exchange rate is imposed in the deep ocean. Deficiencies of the simulated distribution in the Nordic Seas and the subpolar gyre are explained by errors in the input function on

  19. Ensemble simulations of the magnetic field induced by global ocean circulation: Estimating the uncertainty

    NASA Astrophysics Data System (ADS)

    Irrgang, Christopher; Saynisch, Jan; Thomas, Maik

    2016-03-01

    The modeling of the ocean global circulation induced magnetic field is affected by various uncertainties that originate from errors in the input data and from the model itself. The amount of aggregated uncertainties and their effect on the modeling of electromagnetic induction in the ocean is unknown. For many applications, however, the knowledge of uncertainties in the modeling is essential. To investigate the uncertainty in the modeling of motional induction at the sea surface, simulation experiments are performed on the basis of different error scenarios and error covariance matrices. For these error scenarios, ensembles of an ocean general circulation model and an electromagnetic induction model are generated. This ensemble-based approach allows to estimate both the spatial distribution and temporal variation of the uncertainty in the ocean-induced magnetic field. The largest uncertainty in the ocean-induced magnetic field occurs in the area of the Antarctic Circumpolar Current. Local maxima reach values of up to 0.7 nT. The estimated global annual mean uncertainty in the ocean-induced magnetic field ranges from 0.1 to 0.4 nT. The relative amount of uncertainty reaches up to 30% of the signal strength with largest values in regions in the northern hemisphere. The major source of uncertainty is found to be introduced by wind stress from the atmospheric forcing of the ocean model. In addition, the temporal evolution of the uncertainty in the induced magnetic field shows distinct seasonal variations. Specific regions are identified which are robust with respect to the introduced uncertainties.

  20. Ocean general circulation models for parallel architectures

    SciTech Connect

    Smith, R.D.

    1993-05-01

    The authors report continuing work in developing ocean general circulation models for parallel architectures. In earlier work, they began with the widely-used Bryan-Cox ocean model, but reformulated the barotropic equations (which describe the vertically integrated flow) to solve for the surface-pressure field rather than the volume-transport streamfunction as in the original model. This had the advantage of being more easily parallelized and allowed for a more realistic representation of coastal and bottom topography. Both streamfunction and surface-pressure formulations use a rigid-lid approximation to eliminate fast surface waves. They have now replaced the rigid-lid with a free surface, and solve the barotropic equations implicitly to overcome the timestep restriction associated with the fast waves. This method has several advantages, including: (1) a better physical representation of the barotropic mode, and (2) a better-conditioned operator matrix, which leads to much faster convergence in the conjugate-gradient solver. They have also extended the model to allow use of arbitrary orthogonal curvilinear coordinates for the horizontal grid. The original model uses a standard polar grid that has a singularity at each pole, making it difficult to include the Arctic basin, which plays an important role in global ocean circulation. They can now include the Arctic (while still using an explicit time-integration scheme without high-latitude filtering) by using a distorted grid with a displaced pole for the North Atlantic - Arctic region of the ocean. The computer code, written in Fortran 90 and developed on the Connection Machine, has been substantially restructured so that all communication occurs in low-level stencil routines. The idea is that the stencil routines may be rewritten to optimize communication costs on a particular architecture, while the remainder of the code is for the most part machine-independent, involving only the simplest Fortran 90 constructs.

  1. The forecasting Ocean assimilation model (FOAM) system

    NASA Astrophysics Data System (ADS)

    Bell, M. J.; Acreman, D.; Barciela, R.; Hines, A.; Martin, M. J.; Sellar, A.; Stark, J.; Storkey, D.

    The FOAM system is built around the ocean and sea-ice components of the Met Office's Unified Model (UM), developed by the Hadley Centre for coupled ocean-ice-atmosphere climate prediction. It is forced by 6-hourly surface fluxes from the Met Office's Numerical Weather Prediction (NWP) system, and assimilates temperature and salinity profiles from in situ instruments, surface temperature, sea-ice concentration and sea surface height data. A coarse resolution global configuration of FOAM on a 1 ° latitude-longitude grid with 20 vertical levels was implemented in the Met Office's operational suite in 1997. Nested models with grid spacings ranging from 30 km to 6 km are used to provide detailed forecasts for selected regions. The models are run each morning and typically produce 5-day forecasts. Real-time daily and archived analyses for the North Atlantic are freely available at http://nerc-essc.reading.ac.uk/las for research and developmentpurposes. We will present results from studies of the accuracy of the forecasts and how it depends on the data types assimilated and the assimilation scheme used. We will also briefly describe the developments being made to assimilate sea-ice concentration and velocity data and incorporate the HadOCC NPZD (nutrient-phytoplankton-zooplankton-detritus) model and assimilation of ocean colour data.

  2. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification.

    PubMed

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  3. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    PubMed Central

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  4. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Cao, Long

    2016-02-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations.

  5. Horizontal density compensation in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Koch, Andrey O.; Helber, Robert W.; Richman, James G.; Barron, Charlie N.

    2013-04-01

    Density compensation is the condition where temperature (T) and salinity (S) gradients counteract in their effect on density. Open ocean observations with SeaSoar tows and recent glider observations in the Gulf of Mexico reported in the scientific literature suggest that horizontal gradients in the surface mixed layer tend to be strongly density compensated over a range of spatial scales while in seasonal thermocline and deeper layers T,S-fronts are only partially compensated or uncompensated. We assess the capability of ocean general circulation models (OGCM) to develop horizontal density compensation as observed in the upper ocean. The physics required to evolve the initial density compensated mixed layer toward the partially compensated conditions of the thermocline is tested. Idealistic scenarios with horizontal, partially compensated density fronts in the mixed layer are examined in submesoscale-resolved run-down simulations on Hybrid Coordinate Ocean Model (HYCOM). Simulations with no atmospheric forcing show that initial Density compensation does not change substantially experiencing only minor decrease with time simultaneously with the restratification of the mixed layer by submesoscale eddies. Submesoscale fronts tend to be more compensated than mesoscale fronts. A sensitivity analysis shows that the density compensation of submesoscale fronts is particularly sensitive to the horizontal diffusion rate. Simulations with wind forcing exhibit destruction of initial density compensation due to ageostrophic frontogenesis which is confirmed by recent glider observations in the Gulf of Mexico. The lack of the model skill to develop and maintain compensated thermohaline variability is attributed to the T, S horizontal diffusion parameterization used in HYCOM and generally in modern OGCMs: it is decoupled from vertical diffusion and T and S diffusion is horizontally identical. Our findings suggest that OGCM's skill to develop compensated thermohaline variability

  6. A Pacific Ocean general circulation model for satellite data assimilation

    NASA Technical Reports Server (NTRS)

    Chao, Y.; Halpern, D.; Mechoso, C. R.

    1991-01-01

    A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.

  7. Experimental design for three interrelated Marine Ice-Sheet and Ocean Model Intercomparison Projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X. S.; Cornford, S. L.; Durand, G.; Galton-Fenzi, B. K.; Gladstone, R. M.; Gudmundsson, G. H.; Hattermann, T.; Holland, D. M.; Holland, D.; Holland, P. R.; Martin, D. F.; Mathiot, P.; Pattyn, F.; Seroussi, H.

    2015-11-01

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions in the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the ice shelf-ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for evaluation of the participating models.

  8. Simulating the Oceanic Migration of Silver Japanese Eels.

    PubMed

    Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie

    2016-01-01

    The oceanic migration of silver Japanese eels starts from their continental growth habitats in East Asia and ends at the spawning area near the West Mariana Ridge seamount chain. However, the actual migration routes remain unknown. In this study, we examined the possible oceanic migration routes and strategies of silver Japanese eels using a particle tracking method in which virtual eels (v-eels) were programmed to move vertically and horizontally in an ocean circulation model (Japan Coastal Ocean Predictability Experiment 2, JCOPE2). Four horizontal swimming strategies were tested: random heading, true navigation (readjusted heading), orientation toward the spawning area (fixed heading), and swimming against the Kuroshio. We found that all strategies, except random swimming, allowed v-eels swimming at 0.65 m s-1 to reach the spawning area within eight months after their departure from the south coast of Japan (end of the spawning season). The estimated minimum swimming speed required to reach the area spawning within eight months was 0.1 m s-1 for true navigation, 0.12 m s-1 for constant compass heading, and 0.35 m s-1 for swimming against the Kuroshio. The lowest swimming speed estimated from tracked Japanese eels at sea was 0.03 m.s-1, which would not allow them to reach the spawning area within eight months, through any of the tested orientation strategies. Our numerical experiments also showed that ocean circulation significantly affected the migration of Japanese v-eels. A strong Kuroshio could advect v-eels further eastward. In addition, western Pacific ocean currents accelerated the migration of navigating v-eels. The migration duration was shortened in years with a stronger southward flow, contributed by a stronger recirculation south of Japan, an enhanced subtropical gyre, or a higher southward Kuroshio velocity. PMID:26982484

  9. Effect of Aerosol and Ocean Representation on Simulated Climate Responses

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2016-04-01

    It is still debated to what extent anthropogenic aerosols shaped 20th century surface temperatures, especially sea surface temperatures (SSTs), through alteration of surface solar radiation (SSR). SSTs, in turn, are crucial in the context of atmospheric circulation and ocean heat uptake. Uncertainty considering anthropogenic aerosol forcing thus translates into uncertainty regarding ocean heat uptake and, ultimately, climate responses towards anthropogenic influences. We use the global climate model ECHAM to analyse the 20th century climate response towards either anthropogenic aerosols or well-mixed greenhouse gases or both with different representations of ocean and aerosols: atmosphere-only with prescribed SSTs and interactive aerosols; mixed-layer ocean and interactive or prescribed aerosols; fully coupled with prescribed aerosols. For interactive aerosols we use the Hamburg Aerosol Module (HAM). Our results suggest that up to 15% of global ocean surfaces undergo an SSR reduction of at least -4W/m² in the year 2000, due to anthropogenic aerosols. The area affected depends on how aerosols are represented and whether clear sky or all sky SSR is considered. In MLO equilibria with interactive aerosols, anthropogenic aerosols clearly shape surface temperature response patterns. This is to a lesser degree the case for the transient fully coupled case. Additivity of global mean temperature responses towards single forcings - an assumption often made in the literature - is not fulfilled for the MLO experiments, but for the fully coupled experiments. While some of these differences can be attributed to the differing ocean representation, it is implied that differing aerosol representation may play an even more relevant role. Thus, our results corroborate not only the relevance of anthropogenic aerosols for surface temperature responses, but also highlight the relevance of choice of aerosol representation.

  10. Simulating the Oceanic Migration of Silver Japanese Eels

    PubMed Central

    Chang, Yu-Lin; Miyazawa, Yasumasa; Béguer-Pon, Mélanie

    2016-01-01

    The oceanic migration of silver Japanese eels starts from their continental growth habitats in East Asia and ends at the spawning area near the West Mariana Ridge seamount chain. However, the actual migration routes remain unknown. In this study, we examined the possible oceanic migration routes and strategies of silver Japanese eels using a particle tracking method in which virtual eels (v-eels) were programmed to move vertically and horizontally in an ocean circulation model (Japan Coastal Ocean Predictability Experiment 2, JCOPE2). Four horizontal swimming strategies were tested: random heading, true navigation (readjusted heading), orientation toward the spawning area (fixed heading), and swimming against the Kuroshio. We found that all strategies, except random swimming, allowed v-eels swimming at 0.65 m s−1 to reach the spawning area within eight months after their departure from the south coast of Japan (end of the spawning season). The estimated minimum swimming speed required to reach the area spawning within eight months was 0.1 m s−1 for true navigation, 0.12 m s−1 for constant compass heading, and 0.35 m s−1 for swimming against the Kuroshio. The lowest swimming speed estimated from tracked Japanese eels at sea was 0.03 m.s−1, which would not allow them to reach the spawning area within eight months, through any of the tested orientation strategies. Our numerical experiments also showed that ocean circulation significantly affected the migration of Japanese v-eels. A strong Kuroshio could advect v-eels further eastward. In addition, western Pacific ocean currents accelerated the migration of navigating v-eels. The migration duration was shortened in years with a stronger southward flow, contributed by a stronger recirculation south of Japan, an enhanced subtropical gyre, or a higher southward Kuroshio velocity. PMID:26982484