These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Planet Ocean  

NSDL National Science Digital Library

From DiscoverySchool.com, Planet Ocean is a Web site developed for students in grade 5-8 to learn about the abundant life found in the world's vast marine environments. Students are introduced to oceanography, marine biology, food chains, and ecosystems. Teachers will appreciate the tips for using this site in the classroom and related resources, and almost anyone will appreciate the Amazing Facts found under each topic.

2002-01-01

2

Planet Ocean  

NASA Astrophysics Data System (ADS)

A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will be taken into consideration, for instance, the value of the pH, using universal indicator paper, color, through visual evaluation and the temperature with the help of a thermometer. There will be also registered some existent chemical parameters as chloride, alkalinity, total hardness (Ca2+ and Mg2+), nitrate, nitrite, ammonia and phosphate. Two methods will be used for analysis, the titration and the kit of semi-quantitative chemical analyses. This kit is composed by biocompatible substances, which means they are not harmful for the environment and can be disposed of by domestic sewage systems. The results will be subsequently analyzed bearing in mind the maximum and recommended standards values for each one of the parameters. After this, the results achieved will be discussed. I believe this project contains characteristics that will be of interest to our students, thus enabling them to participate actively and effectively develop their knowledge and enhance their scientific curiosity.

Afonso, Isabel

2014-05-01

3

Ocean Planet: Sea Secrets  

NSDL National Science Digital Library

Unit from Smithsonian multidisciplinary ocean curriculum. Lesson plan focuses on ocean bottom features including continental shelf, deep ocean plain, and mid-ocean ridges. Students study the discovery and mapping of seafloor features, learn to read seafloor maps, then create a map of Atlantic seafloor features. Unit includes: background essay; teacher instructions; maps and forms for student activity; discussion questions; all online in PDF format. Resources include online version of Smithsonian Ocean Planet exhibition.

4

Ocean Planet: Pollution Solution  

NSDL National Science Digital Library

Unit from Smithsonian multidisciplinary ocean curriculum. Focuses on sources of oil pollution and effects on ocean, marine life and humans. Students predict impacts of an oil spill and plan actions needed to protect and restore habitat and wildlife. Lab activities demonstrate properties of oil. Unit includes: background, instructions for the teacher, forms for student activities, discussion questions; all available online in PDF format. Resources include online version of the Ocean Planet exhibition.

5

Planetans—oceanic planets  

NASA Astrophysics Data System (ADS)

The development of principles, systems, and instruments enable the detection of exoplanets with 6-8 Earth masses or less. The launches of specialized satellites, such as CoRoT (2006) and Kepler (2009), into orbits around the Earth have enabled the discovery of new exoplanetary systems. These missions are searching for relatively low-mass planets by observing their transits over the disks of their parent stars. At the same time, supporting studies of exoplanets using ground-based facilities (that measure Keplerian components of radial velocities) are in progress. The properties of at least two objects discovered by different methods, Kepler-22 and GJ 1214b, suggested that there was another class of celestial bodies among the known types of extrasolar planets: planetans, or oceanic planets. The structure of Kepler-22 and GJ 1214b suggest that they can be these oceanic planets. In this paper, we consider to what extent this statement is valid. The consideration of exoplanet Gl 581g as an oceanic planet is more feasible. Some specific features of the physical nature of these unusual planets are presented.

Ksanfomality, L. V.

2014-01-01

6

Ocean Planet Exhibition  

NSDL National Science Digital Library

This virtual tour of the Smithsonian Institution's Ocean Planet exhibit can be navigated by clicking on the floor plan which is pictured, or it can be searched by image, subject, or topic outline. Links to educational materials and to a special curator's tour are also included.

7

Planetans - oceanic planets  

NASA Astrophysics Data System (ADS)

The analysis of experimental data obtained in studies of extrasolar low-mass planets indicates that there is one more class of celestial bodies—planetans—oceanic planets with global water oceans that have high, but subcritical, temperatures. A convenient method of analysis is using of entropy-entalphy diagram. The atmospheres of planetans should be composed mainly of water vapor under high pressure. The number of detected planetans will grow as new exoplanets with masses of 1-5 Earth masses are discovered. The properties of some low-mass objects that were determined using different methods, including Kepler-11, Kepler-22, GJ 1214b, and Gl 581g, differ appreciably. The exoplanet GJ 1214b cannot be a planetan. On the contrary, properties of a planetan may have the exoplanet GL 581g, if it spherical albedo reaches a value of 0.86 (like of some of Jupiter and Saturn satellites). The radiation of the star Gl 581 itself is mainly concentrated in the IR range, making the photolysis of water vapor in the upper atmospheric layers of Gl 581g inefficient. For this reason, the exoplanet Gl 581g does not loss appreciable water on a cosmogonic timescale. On the contrary, it is shown that the identification of GJ 1214b with the model of a planetans (as an object with low mean density) seems to be erroneous. An alternative model of the structure of GJ 1214b suggests the existence of a silicate-metal core with a density of 13 g/cm3 and a radius of 5000 km and a middle layer with a density of 9 g/cm3 and a radius of 10000 km. The middle layer includes a mixture of volatile substances, mostly water, with traces of methane and ammonia. Its dense atmosphere corresponds to the observed diameter of the exoplanet, extending to 7500 km. A possible habitability of planetans is considered. References: Ksanfomality L.V. 2014 Solar System Research, 48 (1), 79

Ksanfomality, Leonid

8

Changing Planet: Ocean Acidification  

NSDL National Science Digital Library

This video addresses acidification of the ocean and the ecological and economic implications of the resulting pH change on marine life. It includes information about how ocean acidification resulting from increased absorption of CO2 from the atmosphere is affecting ocean species such as sea urchins and oysters. Scientists from the University of California at Santa Barbara discuss their experiments with sea creatures in acidic sea water. There is an associated lesson plan and classroom activity that has students test the effects of CO2 on water pH.

News, Nbc; Universe, Windows T.

9

Visit to an Ocean Planet  

NASA Technical Reports Server (NTRS)

"Visit to an Ocean Planet" is an interactive, educational CD-ROM that reveals the importance of our oceans to global climate and life. It is designed to complement middle and high school science curricula, as well as to be enjoyed by the general public. The CD-ROM allows users to explore the Gulf of Mexico with satellite data, investigate the 1997-1998 El Nino, discover "what's up" with Earth-orbiting satellites, and learn about the real life oceanographers. The curriculum background material are arranged in the context of widely accepted teaching themes. The CD-ROM also highlights results from the TOPEX/Poseidon satellite launched by NASA and the Centre National Etudes Spatiales (CNES). It has been measuring our oceans since 1992. This product is a result of NASA's commitment to involve the educational community in endeavors to inspire America's students, create learning opportunities, and enlighten inquisitive minds.

1998-01-01

10

Visit to An Ocean Planet: Salinity and Deep Ocean Currents  

NSDL National Science Digital Library

This resource uses text, images, maps and a laboratory exercise to explain how differences in the temperature and salinity of ocean water cause the formation of deep-ocean currents. It is part of the Jet Propulsion Laboratory's "Ocean Surface Topography from Space" website. This material is also available on the "Visit to An Ocean Planet" CD-ROM.

11

Ocean Planet: Interdisciplinary Marine Science Activities  

NSDL National Science Digital Library

Ocean Planet's six lesson plans are adapted from several themes in the Smithsonian Institution exhibition created to share with the public what recent research has revealed about the oceans and to encourage ocean conservation. "Sea Secrets" explores ocean geography; "Sea Connections" looks at the plants and animals that live in different marine ecosystems. "Ocean Market" identifies and values many products of the seas. "Pollution Solution" examines the effects of an environmental crisis. "Stranded Along the Coast" explores both natural and human causes of animal strandings. Finally, "Reflections on the Sea" explores the influence of oceans on language and literature. Each of the six lesson plans has the same elements: background information; statement of learning objectives; list of required materials; step-by-step procedures; student handouts; and a list of additional resources, including connections to the online version of the Ocean Planet exhibition. The instructional approach in Ocean Planet is interdisciplinary. Lesson plans will work in different classes, from biology and mathematics to geography and social studies. Many activities employ students' writing skills.

Branca, Babara

1997-06-20

12

Visions of our Planet's Atmosphere, Land & Oceans  

NASA Technical Reports Server (NTRS)

The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to South Africa, Cape Town and Johannesburg using NASA Terra MODIS data, Landsat data and 1m IKONOS "Spy Satellite" data. Zoom in to any place South Africa using Earth Viewer 3D from Keyhole Inc. and Landsat data at 30 m resolution. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we present science to the public. See dust storms and flooding in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the north and south polar ice packs and with icebergs on the coasts of Greenland and off the coast of Antarctica. Spectacular new visualizations of the global land, atmosphere & oceans are shown. Listen to the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite. The presentation will be made using the latest HDTV and video projection technology that is now done from a laptop computer through an entirely digital path.

Hasler, Arthur F.

2002-01-01

13

Ocean Planet: Stranded Along the Coast  

NSDL National Science Digital Library

Unit from Smithsonian multidisciplinary ocean curriculum. Lesson plan focuses on how dynamic coastlines, oceanographic conditions and human activities affect marine animals such as cetaceans, pinnipeds and sea turtles. Students study sea turtle migrations, use math skills to plot sea turtle strandings on the Atlantic Coast. Unit includes: background essay; teacher instructions; maps for student activity; discussion questions; all online in PDF format. Resources include online version of Smithsonian Ocean Planet exhibition.

14

Ocean Planet - Staying on Top  

NSDL National Science Digital Library

The map and narrative presented here explain how "low-tech" methods of scientific observation can be used to discern ocean current patterns. 60,000 Nike shoes lost overboard from a storm-tossed cargo ship in the northeastern Pacific in May 1990 began to wash ashore at times and places that coincided with the known surface current in the North Pacific Ocean, which moves in a large slow circle called a gyre.

15

Formation of early water oceans on rocky planets  

Microsoft Academic Search

Terrestrial planets, with silicate mantles and metallic cores, are likely to obtain water and carbon compounds during accretion.\\u000a Here I examine the conditions that allow early formation of a surface water ocean (simultaneous with cooling to clement surface\\u000a conditions), and the timeline of degassing the planetary interior into the atmosphere. The greatest fraction of a planet’s\\u000a initial volatile budget is

Linda T. Elkins-Tanton

2011-01-01

16

Formation of early water oceans on rocky planets  

NASA Astrophysics Data System (ADS)

Terrestrial planets, with silicate mantles and metallic cores, are likely to obtain water and carbon compounds during accretion. Here I examine the conditions that allow early formation of a surface water ocean (simultaneous with cooling to clement surface conditions), and the timeline of degassing the planetary interior into the atmosphere. The greatest fraction of a planet's initial volatile budget is degassed into the atmosphere during the end of magma ocean solidification, leaving only a small fraction of the original volatiles to be released into the atmosphere through later volcanism. Rocky planets that accrete with water in their bulk mantle have two mechanisms for producing an early water ocean: First, if they accrete with at least 1 to 3 mass% of water in their bulk composition, liquid water may be extruded onto the planetary surface at the end of magma ocean solidification. Second, at initial water contents as low as 0.01 mass% or lower, during solidification a massive supercritical fluid and steam atmosphere is produced that collapses into a water ocean upon cooling. The low water contents required for this process indicate that rocky super-Earth exoplanets may be expected to commonly produce water oceans within tens to hundreds of millions of years of their last major accretionary impact, through collapse of their atmosphere.

Elkins-Tanton, Linda T.

2011-04-01

17

Popularity  

Microsoft Academic Search

What makes you popular among your high-school peers? And what are the labor market returns to popularity? We investigate these questions using an objective measure of popularity derived from sociometric theory: the number of friendship nom- inations received from schoolmates. We provide novel evidence that early family en- vironment, school composition and school size play a signicant role in determining

Gabriella Conti; Andrea Galeotti; Gerrit Mueller; Stephen Pudney

2009-01-01

18

Mission to Planet Earth. The living ocean: Observing ocean color from space  

NASA Technical Reports Server (NTRS)

Measurements of ocean color are part of NASA's Mission to Planet Earth, which will assess how the global environment is changing. Using the unique perspective available from space, NASA will observe, monitor, and study large-scale environmental processes, focusing on quantifying climate change. NASA will distribute the results of these studies to researchers worldwide to furnish a basis for informed decisions on environmental protection and economic policy. This information packet includes discussion on the reasons for measuring ocean color, the carbon cycle and ocean color, priorities for global climate research, and SeWiFS (sea-viewing wide field-of-view sensor) global ocean color measurements.

1994-01-01

19

Could we identify hot Ocean-Planets with CoRoT, Kepler and Doppler velocimetry?  

E-print Network

Planets less massive than about 10 MEarth are expected to have no massive H-He atmosphere and a cometary composition (50% rocks, 50% water, by mass) provided they formed beyond the snowline of protoplanetary disks. Due to inward migration, such planets could be found at any distance between their formation site and the star. If migration stops within the habitable zone, this will produce a new kind of planets, called Ocean-Planets. Ocean-planets typically consist in a silicate core, surrounded by a thick ice mantle, itself covered by a 100 km deep ocean. The existence of ocean-planets raises important astrobiological questions: Can life originate on such body, in the absence of continent and ocean-silicate interfaces? What would be the nature of the atmosphere and the geochemical cycles ? In this work, we address the fate of Hot Ocean-Planets produced when migration ends at a closer distance. In this case the liquid/gas interface can disappear, and the hot H2O envelope is made of a supercritical fluid. Although we do not expect these bodies to harbor life, their detection and identification as water-rich planets would give us insight as to the abundance of hot and, by extrapolation, cool Ocean-Planets.

F. Selsis; B. Chazelas; P. Borde; M. Ollivier; F. Brachet; M. Decaudin; F. Bouchy; D. Ehrenreich; J. -M. Griessmeier; H. Lammer; C. Sotin; O. Grasset; C. Moutou; P. Barge; M. Deleuil; D. Mawet; D. Despois; J. F. Kasting; A. Leger

2007-01-22

20

The ubiquitous zonal jets in the atmospheres of giant planets and Earth's oceans  

Microsoft Academic Search

Recent eddy-permitting simulations of the North Pacific Ocean have revealed robust patterns of multiple zonal jets that visually resemble the zonal jets on giant planets. We argue that this resemblance is more than just visual because the energy spectrum of the oceanic jets obeys a power law that fits spectra of zonal flows on the outer planets. Remarkably, even the

Boris Galperin; Hideyuki Nakano; Huei-Ping Huang; Semion Sukoriansky

2004-01-01

21

Models of Polarized Light from Oceans and Atmospheres of Earth-like Extrasolar Planets  

E-print Network

Specularly reflected light, or glint, from an ocean surface may provide a useful observational tool for studying extrasolar terrestrial planets. Detection of sea-surface glints would differentiate ocean-bearing terrestrial planets, i.e. those similar to Earth, from other terrestrial extrasolar planets. The brightness and degree of polarization of both sea-surface glints and atmospheric Rayleigh scattering are strong functions of the phase angle of the extrasolar planet. We modify analytic expressions for the bi-directional reflectances previously validated by satellite imagery of the Earth to account for the fractional linear polarization of sea-surface reflections and of Rayleigh scattering in the atmosphere. We compare our models with Earth's total visual light and degree of linear polarization as observed in the ashen light of the Moon, or Earthshine. We predict the spatially-integrated reflected light and its degree of polarization as functions of the diurnal cycle and orbital phase of Earth and Earth-like planets of various imagined types. The difference in polarized reflectances of Earth-like planets may increase greatly the detectability of such planets in the glare of their host star. Finally, sea-surface glints potentially may provide a practical means to map the boundaries between oceans and continents on extrasolar planets.

P. R. McCullough

2006-10-17

22

Emergence of two types of terrestrial planet on solidification of magma ocean.  

PubMed

Understanding the origins of the diversity in terrestrial planets is a fundamental goal in Earth and planetary sciences. In the Solar System, Venus has a similar size and bulk composition to those of Earth, but it lacks water. Because a richer variety of exoplanets is expected to be discovered, prediction of their atmospheres and surface environments requires a general framework for planetary evolution. Here we show that terrestrial planets can be divided into two distinct types on the basis of their evolutionary history during solidification from the initially hot molten state expected from the standard formation model. Even if, apart from their orbits, they were identical just after formation, the solidified planets can have different characteristics. A type?I planet, which is formed beyond a certain critical distance from the host star, solidifies within several million years. If the planet acquires water during formation, most of this water is retained and forms the earliest oceans. In contrast, on a type?II planet, which is formed inside the critical distance, a magma ocean can be sustained for longer, even with a larger initial amount of water. Its duration could be as long as 100 million years if the planet is formed together with a mass of water comparable to the total inventory of the modern Earth. Hydrodynamic escape desiccates type?II planets during the slow solidification process. Although Earth is categorized as type?I, it is not clear which type Venus is because its orbital distance is close to the critical distance. However, because the dryness of the surface and mantle predicted for type?II planets is consistent with the characteristics of Venus, it may be representative of type?II planets. Also, future observations may have a chance to detect not only terrestrial exoplanets covered with water ocean but also those covered with magma ocean around a young star. PMID:23719462

Hamano, Keiko; Abe, Yutaka; Genda, Hidenori

2013-05-30

23

Emergence of two types of terrestrial planet on solidification of magma ocean (Invited)  

NASA Astrophysics Data System (ADS)

Understanding the origins of the diversity in terrestrial planets is a fundamental goal in Earth and planetary sciences. In the Solar System, Venus has a similar size and bulk composition to those of Earth, but it lacks water. Because a richer variety of exoplanets is expected to be discovered, prediction of their atmospheres and surface environments requires a general framework for planetary evolution. Here we show that terrestrial planets can be divided into two distinct types on the basis of their evolutionary history during solidification from the initially hot molten state expected from the standard formation model. Even if, apart from their orbits, they were identical just after formation, the solidified planets can have different characteristics. A type I planet, which is formed beyond a certain critical distance from the host star, solidifies within several million years. If the planet acquires water during formation, most of this water is retained and forms the earliest oceans. In contrast, on a type II planet, which is formed inside the critical distance, a magma ocean can be sustained for longer, even with a larger initial amount of water. Its duration could be as long as 100 million years if the planet is formed together with a mass of water comparable to the total inventory of the modern Earth. Hydrodynamic escape desiccates type II planets during the slow solidification process. Although Earth is categorized as type I, it is not clear which type Venus is because its orbital distance is close to the critical distance. However, because the dryness of the surface and mantle predicted for type II planets is consistent with the characteristics of Venus, it may be representative of type II planets. The short timescale for planetary solidification on type-I planets suggests that exoplanet observations would have a chance to detect ocean covered planets even in young systems where planet formation is ongoing. Also, the presence of a long-lived magma ocean on type-II planets is encouraging for future detection of molten terrestrial planets.

Hamano, K.; Abe, Y.; Genda, H.

2013-12-01

24

Detecting the Glint of Starlight on the Oceans of Distant Planets  

E-print Network

We propose that astronomers will be eventually be able to discriminate between extrasolar Earth-like planets with surface oceans and those without using the shape of phase light curves in the visible and near-IR spectrum. We model the visible light curves of planets having Earth-like surfaces, seasons, and optically-thin atmospheres with idealized diffuse-scattering clouds. We show that planets partially covered by water will appear measurably brighter near crescent phase (relative to Lambertian planets) because of the efficient specular reflection (i.e., glint) of starlight incident on their surfaces at a highly oblique angle. Planets on orbits within 30 degrees of edge-on orientation (half of all planets) will show pronounced glint over a sizeable range of orbital longitudes, from quadrature to crescent, all outside the glare of their parent stars. Also, water-covered planets will appear darker than a Lambertian disk near full illumination. Finally, we show that planets with a mixed land/water surface will polarize the reflected signal by as much as 30-70 percent. These results suggest several new ways of directly identifying water on distant planets.

D. M. Williams; E. Gaidos

2008-01-11

25

Planets  

NSDL National Science Digital Library

Pick a planet and tell me 6 different facts you learned about that planet. First to help you remember your planets and which order they go in watch this video Afer the video you may take a few minutes and choose which game to play. Now go through these pictures and see how neat the planets look from space. Now click hereand here and research which planet you would ...

2012-04-11

26

Visit to an Ocean Planet - Fathometer in a Box  

NSDL National Science Digital Library

This classroom activity gives students an introduction to depth sounding and mapping ocean topography. The materials include an overview, concepts, a materials list, and instructions. Terms are linked to a glossary and a list of related sites is included.

27

Planets  

NSDL National Science Digital Library

What planets are in our solar system? Today, we are going to learn about the eight planets in our solar system. While learning, we're going to try to answer the question: What planets are in our solar system? Use this Planet Organizer to fill in information about the solar system that you learn on your journey! First, we're going to find ...

Anderson, Ms.

2011-04-07

28

Planets  

NSDL National Science Digital Library

This radio broadcast discusses developments in the search for extraterrestrial planets. Topics include what causes a planet to form, and how they are detected. There is also speculation on the liklihood of an Earth-like planet being found and the basic requirements for extraterrestrial life. The broadcast is 42 minutes in length.

29

A vision for the ocean planet in 2020  

Microsoft Academic Search

In 1989, the underwater visionary Henry Stommel dared to dream of a future world with unprecedented research technology and oceanographic capabilities. In Stommel's version of the 21st century, a large fleet of small, cheap robots glide over the ocean floor. Stommel believed the right kind of technology would set oceanographers free to explore, discover, and even unlock the secrets of

R. Spinrad

2004-01-01

30

It's Only a Little Planet: A Primer for Ocean Studies.  

ERIC Educational Resources Information Center

Developed as part of the Day on the Bay Cruise Program, funded by the National Sea Grant Program, this learner's manual outlines ocean studies conducted on a seven-hour cruise of the Galveston Bay area. A description of the geology and human use of Galveston Bay follows a general introduction to coastal and estuarine ecology. Line drawings…

Meyland, Sarah J.

31

Planets  

NSDL National Science Digital Library

The purpose of this project is to gather information and learn interesting facts about the planets in our solar sytem to complete a research project for Mrs. Hutchinson\\'s class. Begin by taking a quiz to measure your knowledge. Click this link for information and quiz. Quiz Next, you will choose two of the following sites and search for information on the planets in our solar system. Fill in the questions on your work sheet as you go to each site. Factmonster Planets Kids Astronomy 9 planets for kids Windows to the Universe Just for ...

Bhanks

2006-11-02

32

Strong ocean tidal flow and heating on moons of the outer planets.  

PubMed

Data from recent space missions have added strong support for the idea that there are liquid oceans on several moons of the outer planets, with Jupiter's moon Europa having received the most attention. But given the extremely cold surface temperatures and meagre radiogenic heat sources of these moons, it is still unclear how these oceans remain liquid. The prevailing conjecture is that these oceans are heated by tidal forces that flex the solid moon (rock plus ice) during its eccentric orbit, and that this heat entering the ocean does not rapidly escape because of the insulating layer of ice over the ocean surface. Here, however, I describe strong tidal dissipation (and heating) in the liquid oceans; I show that a subdominant and previously unconsidered tidal force due to obliquity (axial tilt of the moon with respect to its orbital plane) has the right form and frequency to resonantly excite large-amplitude Rossby waves in these oceans. In the specific case of Europa, the minimum kinetic energy of the flow associated with this resonance (7.3 x 10(18) J) is two thousand times larger than that of the flow excited by the dominant tidal forces, and dissipation of this energy seems large enough to be a primary ocean heat source. PMID:19079055

Tyler, Robert H

2008-12-11

33

The ocean covers 71 percent of the Earth's surface and contains 97 percent of the planet's water. It  

E-print Network

A MODERN CHALLENGER MISSION #12;The ocean covers 71 percent of the Earth's surface and contains 97 to continue seeking new understanding about this complex challenge ­ understanding the ocean's critical role percent of the planet's water. It produces half of the oxygen we breathe, and controls the Earth's water

Goodman, Robert M.

34

Oceanic Communities in a Changing Planet - The Tara Oceans Project (GSC8 Meeting)  

ScienceCinema

The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Jeroen Raes of the University of Brussels discusses the Tara-Oceans expedition at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 9, 2009

Raes, Jeroen [University of Brussels

2011-04-28

35

Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003  

NASA Technical Reports Server (NTRS)

The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

Hasler, Fritz

2003-01-01

36

Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003  

NASA Technical Reports Server (NTRS)

The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS 'Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of OUT planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center.

Hasler, Fritz

2003-01-01

37

Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003  

NASA Technical Reports Server (NTRS)

The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS , SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

Hasler, Fritz

2003-01-01

38

Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002  

NASA Technical Reports Server (NTRS)

The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

Haser, Fritz; Starr, David (Technical Monitor)

2002-01-01

39

Visions of Our Planet's Atmosphere, Land and Oceans Electronic-Theater 2001  

NASA Technical Reports Server (NTRS)

The NASA/NOAA/AMS Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Fredericton New Brunswick. Drop in on the Kennedy Space Center and Park City Utah, site of the 2002 Olympics using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and International global satellite weather movies including hurricanes & tornadoes. See the latest spectacular images from NASA/NOAA and Canadian remote sensing missions like Terra GOES, TRMM, SeaWiFS, Landsat 7, and Radarsat that are visualized & explained. See how High Definition Television (HDTV) is revolutionizing the way we communicate science in cooperation with the American Museum of Natural History in NYC. See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. New visualization tools allow us to roam & zoom through massive global images eg Landsat tours of the US, Africa, & New Zealand showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Onyx II Graphics Supercomputer with four CPUs, 8 Gigabytes of RAM and Terabyte of disk. With multiple projectors on a giant screen. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

Hasler, A. F.; Einaudi, Franco (Technical Monitor)

2001-01-01

40

JOURNAL OF GEOPHYSICAL RESEARCH: PLANETS, VOL. 118, 11551176, doi:10.1002/jgre.20068, 2013 Thermal evolution of an early magma ocean in interaction with  

E-print Network

-convective model of the atmosphere. We conducted a parametric study and described the influences of the initial volatile inventories, the initial depth of the magma ocean, and the Sun-planet distance. Our results and for the planet habitability at early ages. The presence and nature of an atmosphere will greatly influence

Brandeis, Geneviève

41

Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres  

E-print Network

The bulk composition of an exoplanet is commonly inferred from its average density. For small planets, however, the average density is not unique within the range of compositions. Variations of a number of important planetary parameters--which are difficult or impossible to constrain from measurements alone--produce planets with the same average densities but widely varying bulk compositions. We find that adding a gas envelope equivalent to 0.1%-10% of the mass of a solid planet causes the radius to increase 5-60% above its gas-free value. A planet with a given mass and radius might have substantial water ice content (a so-called ocean planet) or alternatively a large rocky-iron core and some H and/or He. For example, a wide variety of compositions can explain the observed radius of GJ 436b, although all models require some H/He. We conclude that the identification of water worlds based on the mass-radius relationship alone is impossible unless a significant gas layer can be ruled out by other means.

E. R. Adams; S. Seager; L. Elkins-Tanton

2007-10-25

42

Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002  

NASA Technical Reports Server (NTRS)

The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies Including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers Of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software. tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tin) algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with two CPUs, 4 Gigabytes of RAM and 0.5 Terabyte of disk using two projectors across a super sized panoramic 48 foot screen. In addition new HDTV technology will be demonstrated from a portable computer server.

Hasler, A. F.; Starr, David (Technical Monitor)

2002-01-01

43

Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002  

NASA Technical Reports Server (NTRS)

The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with two CPUs, 4 Gigabytes of RAM and 0.5 Terabyte of disk using two projectors across a super sized panoramic 48 foot screen. In addition new HDTV technology will be demonstrated from a portable computer server.

Hasler, A. F.; Starr, David (Technical Monitor)

2001-01-01

44

Electronic-Theater 2001: Visions of Our Planet's Atmosphere, Land and Oceans  

NASA Technical Reports Server (NTRS)

The NASA/NOAA/AMS Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Wisconsin, Madison and the Monona Terrace Center. Drop in on the Kennedy Space Center and Park City Utah, site of the 2002 Olympics using I m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s pioneered by UW. Scientists and see them contrasted with the latest US and International global satellite weather movies including hurricanes & tornadoes. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra GOES, TRMM, SeaWiFS, Landsat 7 that are visualized & explained. See how High Definition Television (HDTV) is revolutionizing the way we communicate science in cooperation with the American Museum of Natural History in NYC. See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. New visualization tools allow us to roam & zoom through massive global images eg Landsat tours of the US, Africa, & New Zealand showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See vortices and currents in the global oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nina/La Nina climate changes. The demonstration is interactively driven by a SGI Onyx 11 Graphics Supercomputer with four CPUs, 8 Gigabytes of RAM and Terabyte of disk. With five projectors on a giant IMAX sized 18 x 72 ft screen. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "nightvision" DMSP military satellite.

Hasler, Authur; Starr, David OC. (Technical Monitor)

2001-01-01

45

NDSEG Essay 1 (transit)/ Ryan Yamada / Advisor: James P. Lloyd The search for extrasolar planets has been popular, prolific, and a driver of  

E-print Network

and transit near-infrared searches to discover and characterize planets around low-mass dwarf starsNDSEG Essay 1 (transit)/ Ryan Yamada / Advisor: James P. Lloyd The search for extrasolar planets extrasolar planets were found with optical radial velocity (RV) surveys; however, these surveys select

Richardson Jr., James E.

46

The Torque of the Planet: NASA Researcher Uses NCCS Computers to Probe Atmosphere-Land-Ocean Coupling  

NASA Technical Reports Server (NTRS)

The study of Earth science is like a giant puzzle, says Braulio Sanchez. "The more you know about the individual pieces, the easier it is to fit them together." A researcher with Goddard's Space Geodesy Branch, Sanchez has been using NCCS supercomputer and mass storage resources to show how the angular momenta of the atmosphere, the oceans, and the solid Earth are dynamically coupled. Sanchez has calculated the magnitude of atmospheric torque on the planet and has determined some of the possible effects that torque has on Earth's rotation.

2002-01-01

47

Ocean-bearing planets near the ice line: How far does the water's edge go?  

Microsoft Academic Search

A leading theory for giant planet formation involves the accretion of a solid core, probably ice-rich, that in turn accretes a massive mantle of hydrogen-helium gas from a primordial disk. The relative timing of core formation and disappearance of nebular gas in a few millions of years is critical; the correlation between heavy element abundance in stellar photospheres and their

E. Gaidos; S. Seager; S. Gaudi

2008-01-01

48

THE ORBITAL PHASES AND SECONDARY TRANSITS OF KEPLER-10b. A PHYSICAL INTERPRETATION BASED ON THE LAVA-OCEAN PLANET MODEL  

SciTech Connect

The Kepler mission has made an important observation: the first detection of photons from a terrestrial planet by observing its phase curve (Kepler-10b). This opens a new field in exoplanet science: the possibility of obtaining information about the atmosphere and surface of rocky planets, objects of prime interest. In this Letter, we apply the Lava-ocean model to interpret the observed phase curve. The model, a planet without atmosphere and a surface partially made of molten rocks, has been proposed for planets of the class of CoRoT-7b, i.e., rocky planets very close to their star (at a few stellar radii). Kepler-10b is a typical member of this family. It predicts that the light from the planet has an important emission component in addition to the reflected one, even in the Kepler spectral band. Assuming an isotropical reflection of light by the planetary surface (Lambertian-like approximation), we find that a Bond albedo of {approx}50% can account for the observed amplitude of the phase curve, as opposed to a first attempt where an unusually high value was found. We propose a physical process to explain this still large value of the albedo. The overall interpretation can be tested in the future with instruments such as the James Webb Space Telescope or the Exoplanet Characterization Observatory. Our model predicts a spectral dependence that is clearly distinguishable from that of purely reflected light and from that of a planet at a uniform temperature.

Rouan, D. [LESIA, UMR 8109 CNRS, Observatoire de Paris, UVSQ, Universite Paris-Diderot, 5 pl. J. Janssen, 92195 Meudon (France); Deeg, H. J. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Demangeon, O.; Samuel, B.; Cavarroc, C.; Leger, A. [Institut d'Astrophysique Spatiale, Universite Paris-Sud, bat 121, F-91405 Orsay (France); Fegley, B., E-mail: daniel.rouan@obspm.fr [Planetary Chemistry Laboratory, McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University, St. Louis, MO (United States)

2011-11-10

49

A Perspective of Our Planet's Atmosphere, Land, and Oceans: A View from Space  

NASA Technical Reports Server (NTRS)

A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to South America with its Andes Mountains and the glaciers of Patagonia, ending up close and personal in Buenos Aires. See the latest spectacular images from NASA & NOAA remote sensing missions like GOES, TRMM, Landsat 7, QuikScat, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in South America and Africa, and global cloud properties. See the dynamics of vegetation growth and decay over South America over 17 years, and its contrast to the North American and Africa continents. New visualization tools allow us to roam & zoom through massive global mosaic images from the Himalayas to the dynamics of the Pacific Ocean that affect the climate of South and North America. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of South America and Africa showing land use and land cover change from Patagonia to the Amazon Basin, including the Andes Mountains, the Pantanal, and the Bolivian highlands. Landsat flyins to Rio Di Janeiro and Buenos Aires will be shows to emphasize the capabilities of new satellite technology to visualize our natural environment. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, giant whales and fisherman. See how the ocean blooms in response to these currents and El Nino/La Nina climate changes. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

King, Michael D.; Tucker, Compton

2002-01-01

50

Oceans Alive  

NSDL National Science Digital Library

Oceans Alive covers basic information about Earth's oceans, including sections such as: The Water Planet, Oceans in Motion, Life in the Sea, Scientists at Sea and Resources. Topics include physical features of oceans, how the oceans formed, the water cycle, currents and waves, ebbs and tides, ocean plants and animals, and ocean research. The resources section contains links for more information about oceans, as well as class activities to accompany the material on the site.

Rosentrater, Lynn

51

Serpentinization-driven Hydrothermal Systems on Ocean Planets and Icy Moons  

NASA Astrophysics Data System (ADS)

The ferromagnesian silicate minerals olivine and clinopyroxene are dominant in planetary mantles, and similar assemblages likely also typify the subsurface lithologies of icy moons endowed with rocky interiors, such as Jupiter's Europa. Water is also common in the Solar System. Liquid water may persist to the present day on Mars, Europa, Callisto, Enceladus and Titan. Within the P-T window applicable to ocean/seafloor interaction (10-200 MPa, 273-700 K), the presence of water causes olivine and clinopyroxene to be unstable with respect to the serpentine minerals (antigorite, lizardite and chrysotile). The ensuing hydration reaction, termed 'serpentinization', essentially acts to re-equilibrate the nascent water-deficient high-temperature state that attended planetary formation to the water-saturated low- temperature state that characterizes the planetary seafloor environment. Importantly, thermodynamic considerations require that this process is accompanied by the release of both (i) heat energy resulting from the exothermic nature of the reaction; and (ii) H2 gas resulting from unlike FeMg-1 partitioning in the reactants and products of the reaction. Because of their potential to provide heat energy, nutrients and electron- donors for extraterrestrial metabolism in the absense of sunlight, and act as crucibles for Fischer-Tropsch-type (FTT-) synthesis of hydrocarbons, serpentinization-driven hydrothermal systems are of considerable interest to astrobiology. By assuming a bulk peridotitic composition and applying new insights on cracking depth, we constrain the potential heat- and H2 flux of extraterrestrial serpentinization over time. We further examine how different kinetic considerations affect the longevity of such systems. In the absence of crustal rejuvenation and under our assumed ideal conditions, serpentinization through progressive cracking persists on planetary timescales and generates heat on a globally averaged basis at a fraction of a percent of present-day terrestrial radiogenic heating, whilst producing hydrogen at rates of 109-1010 molecules cm-2s-1. These values lie at the limiting extreme capable of sustaining life on Earth. We argue that the absence of macronutrient delivery, specifically phosphorus and electron acceptors (CO2, NO3-, etc.), may further be inhibitive of biology under these conditions. Serpentinization accompanying the initial onset of ocean/seafloor interaction, on the other hand, enjoys much shorter lifetimes on the order of 106 - 108 years, depending mostly on temperature and fluid accessibility. Although concomitant heat and hydrogen production is on the order of that encountered in hydrothermal systems on Earth today, such systems may be prohibitively short-lived to evolve and sustain biology.

Harnmeijer, J.; Vance, S.

2007-05-01

52

Ocean Planet or Thick Atmosphere: On the Mass-Radius Relationship for Solid Exoplanets with Massive Atmospheres  

Microsoft Academic Search

The bulk composition of an exoplanet is commonly inferred from its average density. For small planets, however, the average density is not unique within the range of compositions. Variations of a number of important planetary parameters-which are difficult or impossible to constrain from measurements alone-produce planets with the same average densities but widely varying bulk compositions. We find that adding

E. R. Adams; S. Seager; L. Elkins-Tanton

2008-01-01

53

Ocean Planet: Sea Connections  

NSDL National Science Digital Library

This website is part of a set of multidisciplinary lesson plans from the Smithsonian. This lesson plan examines the marine environment and how human activities can upset the delicate balance. Includes downloadable student activities and tips on engaging students. Background material and most of the materials are provided. The "Resources" link provides an abundance of additional information, in the form of links and books, for each lesson.

2012-07-18

54

Solubility, Partitioning, and Speciation of Carbon in Shallow Magma Oceans of Terrestrial Planets Constrained by High P-T Experiments  

NASA Astrophysics Data System (ADS)

Deep planetary volatile cycles have a critical influence on planetary geodynamics, atmospheres, climate, and habitability. However, the initial conditions that prevailed in the early, largely molten Earth and other terrestrial planets, in terms of distribution of volatiles between various reservoirs - metals, silicates, and atmosphere - remains poorly constrained. Here we investigate the solubility, partitioning, and speciation of carbon-rich volatile species in a shallow magma ocean environment, i.e., in equilibrium with metallic and silicate melts. A series of high pressure-temperature experiments using a piston cylinder apparatus were performed at 1-3 GPa, 1500-1800 °C on synthetic basaltic mixtures + Fe-Ni metal powders contained in graphite capsules. All the experiments produced glassy silicate melt pool in equilibrium with quenched metal melt composed of dendrites of cohenite and kamacite. Major element compositions of the resulting phases and the carbon content of metallic melts were analyzed by EPMA at NASA-JSC. Carbon and hydrogen concentrations of basaltic glasses were determined using Cameca IMS 1280 SIMS at WHOI and speciation of dissolved volatiles was constrained using FTIR and Raman spectroscopy at Rice University. Based on the equilibria - FeO (silicate melt) = Fe (metal alloy melt) + 1/2O2, we estimate the oxygen fugacity of our experiments in the range of ?IW of -1 to -2. FTIR analysis on doubly polished basaltic glass chips suggests that the concentrations of dissolved CO32- or molecular CO2 are negligible in graphite and metal saturated reduced conditions, whereas the presence of dissolved OH- is evident from the asymmetric peak at 3500 cm-1. Collected Raman spectra of basaltic glasses in the frequency range of 200-4200 cm-1 suggest that hydrogen is present both as dissolved OH- species (band at 3600 cm-1) and as molecular H2 (band near 4150 cm-1) for all of our experiments. Faint peaks near 2915 cm-1 and consistent peaks near 740 cm-1 suggest that possible carbon species in our reduced glasses are likely minor CH4 and Si-C, respectively and are consistent with the recent solubility studies at reduced conditions [1,2]. Carbon solubility (calibrated using 12C/30Si) at graphite saturation in our reduced basaltic glasses is only in the range 20-100 ppm C, with H2O contents in the range of 0.2-0.7 wt.%. In contrast to the low dissolved carbon concentration in the basaltic silicate melts, carbon solubility in quenched metallic melts vary in the range of 5-7 wt.%. Our preliminary work indicates that the solubility of carbon in reduced basaltic melts relevant for early magma conditions may be several orders of magnitude lower compared to the solubility of carbon in modern terrestrial basalts. This coupled with significant solubility of carbon in Fe-Ni metallic melt suggests that most of magma ocean carbon was likely partitioned into deep metallic melts. Further metal-silicate experiments with more depolymerized basaltic melts of variable compositions are underway and will be presented. [1] Kadik et al. JPetrol 45, 1297-1310, 2004; [2] Kadik et al. Geochem Int 44, 33-47, 2006.

Chi, H.; Dasgupta, R.; Shimizu, N.

2011-12-01

55

The Planets  

NSDL National Science Digital Library

The students will learn about the planets and about their attributes. What do they need to support human life? What are the names of the planets in the solar system? The Nine Planets What are the physical properties of each planet? The Solar System - Pictures of the planets Now you can make your own planet! Make Your Own Planet ...

Rindlisbacher, Ms.

2006-10-04

56

Planet Earth  

NSDL National Science Digital Library

How does the Earth work? What is its relationship to the other planets? These are but a few important questions answered by this creative instructional series created by WQED in Pittsburgh, in association with the National Academy of Sciences. The series was designed to present information about "our solar system and Earth's oceans, climate, and mineral and energy sources." The Annenberg Media group has placed this entire series online, and visitors can view all seven installments here. The programs include "The Climate Puzzle", "Gifts from the Earth", and "The Solar Sea". Teachers will note that the site also contains links to other educational resources, reviews, and related resources from the Annenberg Media organization.

1986-01-01

57

Oceans  

NSDL National Science Digital Library

Bridge: Ocean Sciences Education Teacher Resource Center. Bridge, the Ocean Sciences Education Teacher Resource Center, is a growing collection of on-line marine education resources. It provides educators with ...

58

Popular Science  

Microsoft Academic Search

I SHOULD like to be allowed to underline a few remarks that occur in a review entitled ``Scientific Biography'' in NATURE for January 29. The writer urges that science has neglected the populace and offered its wares for popular edification in a highly unedifying way. I believe this is very true. I am old enough to remember different times, and

Victorian

1920-01-01

59

More than two-thirds of the Earth's surface is covered with water, so it is not surprising that the planet's oceans, lakes, rivers, streams and wetlands are considered valuable natural  

E-print Network

that the planet's oceans, lakes, rivers, streams and wetlands are considered valuable natural resources and, increasingly, focal points for concerns about usage, pollution and depletion. Humans' ever-growing encroachment to federal and state laboratories. Agencies like the Great Lakes Environmental Research Lab (NOAA), the Great

Edwards, Paul N.

60

ARTICLE IN PRESS YICAR:8261 Please cite this article in press as: F. Selsis et al., Could we identify hot ocean-planets with CoRoT, Kepler and Doppler velocimetry?, Icarus (2007),  

E-print Network

identify hot ocean-planets with CoRoT, Kepler and Doppler velocimetry?, Icarus (2007), doi:10.1016/j velocimetry? F. Selsis a , B. Chazelas b , P. Bordé c , M. Ollivier b , F. Brachet b , M. Decaudin b , F transit missions in space--CoRoT (CNES) and Kepler (NASA)--in combination with Doppler velocimetry from

Bordé, Pascal J.

61

Take a Planet Walk  

ERIC Educational Resources Information Center

Physical models in the classroom "cannot be expected to represent the full-scale phenomenon with complete accuracy, not even in the limited set of characteristics being studied" (AAAS 1990). Therefore, by modifying a popular classroom activity called a "planet walk," teachers can explore upper elementary students' current understandings; create an…

Schuster, Dwight

2008-01-01

62

Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic-Theater 2002. Spectacular Visualizations of our Blue Marble  

NASA Technical Reports Server (NTRS)

Spectacular Visualizations of our Blue Marble The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC). See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nicola Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

Hasler, A. F.; Starr, David (Technical Monitor)

2002-01-01

63

Ocean Temperatures  

NSDL National Science Digital Library

Bermuda may be known as a luxurious vacation destination, but it also houses one of the world's leading institutes for ocean studies, called BIOS. Dr. Tony Knap explains how climate change is causing ocean temperatures to rise, and what impacts it may bring around the world. "Changing Planet" is produced in partnership with the National Science Foundation.

Learn, Nbc

2010-10-07

64

Oceans - Overview  

NSDL National Science Digital Library

This National Geographic video explains how the ocean produces 70 percent of the Earth's oxygen and drives our weather and the chemistry of the planet. Most of the creatures on Earth live in the sea, but our knowledge of the ocean is far outstripped by our impact on it. The video includes an introduction to the interaction of humans in the biosphere with the hydrosphere and the ocean's pollution problem.

Geographic, Ocean L.

2011-09-01

65

Take a Planet Walk  

NSDL National Science Digital Library

Physical models in the classroom "cannot be expected to represent the full-scale phenomenon with complete accuracy, not even in the limited set of characteristics being studied" (AAAS 1990). Therefore, by modifying a popular classroom activity called a "planet walk," teachers can explore upper elementary students' current understandings; create an environment where students generate questions based on their prior knowledge; and challenge students to think critically about the accuracy and limitations of a scale model of our solar system.

Schuster, Dwight

2008-09-01

66

From planetesimals to planets: volatile molecules  

NASA Astrophysics Data System (ADS)

Context. Solar and extrasolar planets are the subject of numerous studies aiming to determine their chemical composition and internal structure. In the case of extrasolar planets, the composition is important as it partly governs their potential habitability. Moreover, observational determination of chemical composition of planetary atmospheres are becoming available, especially for transiting planets. Aims: The present works aims at determining the chemical composition of planets formed in stellar systems of solar chemical composition. The main objective of this work is to provide valuable theoretical data for models of planet formation and evolution, and future interpretation of chemical composition of solar and extrasolar planets. Methods: We have developed a model that computes the composition of ices in planets in different stellar systems with the use of models of ice and planetary formation. Results: We provide the chemical composition, ice/rock mass ratio and C:O molar ratio for planets in stellar systems of solar chemical composition. From an initial homogeneous composition of the nebula, we produce a wide variety of planetary chemical compositions as a function of the mass of the disk and distance to the star. The volatile species incorporated in planets are mainly composed of H2O, CO, CO2, CH3OH, and NH3. Icy or ocean planets have systematically higher values of molecular abundances compared to giant and rocky planets. Gas giant planets are depleted in highly volatile molecules such as CH4, CO, and N2 compared to icy or ocean planets. The ice/rock mass ratio in icy or ocean and gas giant planets is, respectively, equal at maximum to 1.01 ± 0.33 and 0.8 ± 0.5, and is different from the usual assumptions made in planet formation models, which suggested this ratio to be 2-3. The C:O molar ratio in the atmosphere of gas giant planets is depleted by at least 30% compared to solar value.

Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Cabral, Nahuel; Benz, Willy

2014-10-01

67

Popular Culture and Curricula.  

ERIC Educational Resources Information Center

The seven essays in this publication, including four read at the fall 1969 American Studies Association meeting, attempt to present both the nature of popular culture study and a guide for teachers of popular culture courses. Papers are (1) "Popular Culture: Notes toward a Definition" by Ray B. Browne; (2) "Can Popular Culture Save American…

Browne, Ray B., Ed.; Ambrosetti, Ronald J., Ed.

68

The Planets  

NSDL National Science Digital Library

This tool allows users to find when planets are visible in a given year. The years covered by this site are 1900 to 2100. The positions given are for the 1st of the month, at 9 pm, and generally hold true for the entire month. Positions are noted by which constellation the planet is located in. The planets given are Venus, Mars, Jupiter, Saturn, Neptune, Uranus, and Pluto. Additional comments for Venus and Mars note their location and viewing times.

69

Planet Search  

NSDL National Science Digital Library

This is an activity about the orbits of the planets in our Solar System. Learners will utilize the Sky Tonight online program to track the movement and visibility of the planets in our night sky. They will then attempt to locate these planets outside on a clear night. This activity requires the use of a computer with Internet access and access to the clear night sky. This activity is Sky Tonight Activity 3 in a larger resource, Space Update.

70

Mystery Planet  

NSDL National Science Digital Library

This activity is about the study of planetary samples. Learners will use samples of crustal material to sort, classify, and make observations about an unknown planet. From their observations, students will interpret the geologic history of their mystery planet and make inferences about past life or the potential for life on the "Mystery" planet. The lesson models scientific inquiry using the 5E instructional model and includes teacher notes and vocabulary.

71

Ocean ecology: Life in an oceanic extreme  

NASA Astrophysics Data System (ADS)

Scarce food supplies could hinder biological activity in the ocean's depths. However, measurements at Mariana Trench point to an unexpectedly active microbial community in the deepest seafloor setting on the planet.

Epping, Eric

2013-04-01

72

CompletePlanet  

NSDL National Science Digital Library

CompletePlanet concerns itself with the "deep" Web, "content that resides in searchable databases, the results from which can only be discovered by a direct query," and thus cannot be indexed or queried by traditional search engines. The site offers a number of resources related to the "deep" Web, including a listing of approximately 13,000 "deep" Websites (out of an estimated 100,000 total) organized in 20 subject categories. Each category breaks down into numerous topical headings, and listings for the individual sites include a description and rankings for relevance, popularity, and links. CompletePlanet's database is also keyword searchable. The site notes both new additions and the most popular sites and offers a detailed search tutorial. Users who would like to learn more about the "deep" Web are invited to read CompletePlanet's 41-page white paper, "The Deep Web: Surfacing Hidden Value," offered in HTML, .pdf, and .zip formats. Users can also download a free 30-day trial version of a new utility (Lexibot) that can search the "deep" Web. The registered version costs $89.95.

73

Extreme Planets  

NASA Technical Reports Server (NTRS)

This artist's concept depicts the pulsar planet system discovered by Aleksander Wolszczan in 1992. Wolszczan used the Arecibo radio telescope in Puerto Rico to find three planets - the first of any kind ever found outside our solar system - circling a pulsar called PSR B1257+12. Pulsars are rapidly rotating neutron stars, which are the collapsed cores of exploded massive stars. They spin and pulse with radiation, much like a lighthouse beacon. Here, the pulsar's twisted magnetic fields are highlighted by the blue glow.

All three pulsar planets are shown in this picture; the farthest two from the pulsar (closest in this view) are about the size of Earth. Radiation from charged pulsar particles would probably rain down on the planets, causing their night skies to light up with auroras similar to our Northern Lights. One such aurora is illustrated on the planet at the bottom of the picture.

Since this landmark discovery, more than 160 extrasolar planets have been observed around stars that are burning nuclear fuel. The planets spotted by Wolszczan are still the only ones around a dead star. They also might be part of a second generation of planets, the first having been destroyed when their star blew up. The Spitzer Space Telescope's discovery of a dusty disk around a pulsar might represent the beginnings of a similarly 'reborn' planetary system.

2006-01-01

74

Planet formation  

Microsoft Academic Search

Models of planetary formation are developed using the present single example of a planetary system, supplemented by limited astrophysical observations of star-forming regions and circumstellar disks. The solar nebula theory and the planetesimal hypothesis are discussed. The latter is found to provide a viable theory of the growth of the terrestrial planets, the cores of the giant planets, and the

Jack J. Lissauer

1993-01-01

75

Planet Business  

NSDL National Science Digital Library

The directory Planet Business aims to provide a "great gateway between Africa, America, Asia, Europe and Oceania." Business metasites from around the world are listed in an A-Z index and by region, and the new Marketplace of Planet Business connects potential business partners among importers, exporters, traders, and distributors.

1996-01-01

76

Planet Earth  

NSDL National Science Digital Library

For those interested in a global view of the weather, Planet Earth is a "real-time 3-D model of the Earth with continuously updating night shadows and clouds." Cloud images are provided by the University of Wisconsin-Madison Space Science and Engineering Center. Planet Earth is shareware with a fee of $29.95.

77

[Extrasolar terrestrial planets and possibility of extraterrestrial life].  

PubMed

Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well. PMID:15136756

Ida, Shigeru

2003-12-01

78

Ocean Acidification  

NASA Astrophysics Data System (ADS)

The oceans play a central role in the maintenance of life on Earth. Oceans provide extensive ecosystems for marine animals and plants covering two-thirds of the Earth's surface, are essential sources of food, economic activity, and biodiversity, and are central to the global biogeochemical cycles. The oceans are the largest reservoir of carbon in the Planet, and absorb approximately one-third of the carbon emissions that are released to the Earth's atmosphere as a result of human activities. Since the beginning of industrialization, humans have been responsible for the increase in one greenhouse gas, carbon dioxide (CO2), from approximately 280 parts per million (ppm) at the end of the nineteenth century to the current levels of 390ppm. As well as affecting the surface ocean pH, and the organisms living at the ocean surface, these increases in CO2 are causing global mean surface temperatures to rise.

Iglesias-Rodriguez, Maria Debora

79

Planet Pals  

NSDL National Science Digital Library

Created by designer, illustrator, and educator Judith Ann Gorgone, the Planet Pals Web site provides good material for young kids related to the health of the planet. The colorful pages contain basic information about the earth, energy, recycling, water conservation, pollution, and more. The fun and interactive Meet the Planet Pals area is especially interesting, where kids can listen to animated cartoons talk about various aspects of conservation. Even though the site is geared towards young children, they may have difficulty finding the educational specific pages by themselves; so, a parent's or teacher's assistance would most likely be helpful.

Gorgone, Judith.

1991-01-01

80

Planet Slayer  

NSDL National Science Digital Library

The Australian Broadcasting Company offers a fun, interactive way to learn about environmentally responsible consumption. Visitors are invited to follow Greena, eco-chic Warrior Princess, as she navigates the world of green living. The Web site contains loads of engaging animated features, such as the Adventures of Greena, a cartoon in which Greena battles some environmental ill in each chapter. In the Planet Slayer Game, players choose to play earnestly as Greena and save the planet or ironically as a pink-swathed Barbie-like character to slay the planet. With the Greenhouse Calculator, users can figure out their toll on the planet in terms of carbon dioxide emissions -- a service you could find easily enough on the Web, but this one features exploding pigs. Lots of other great features are available, as is a set of well-selected links for more information on ethical investing, Kyoto Protocol, the 2002 Johannesburg World Summit on Sustainable Development, and more.

81

Planet Party  

NSDL National Science Digital Library

Learners and their families are encouraged to go outside on a clear evening and view the sky to see the planets for themselves. Using sky charts and other resources, and possibly in partnership with a local astronomical society, children navigate the night sky and view planets with the naked eye and binoculars or telescopes. This activity is part of Explore! Jupiter's Family Secrets, a series designed to engage children in space and planetary science in libraries and informal learning environments.

82

Hot Planet - Cold Comfort  

NSDL National Science Digital Library

This page features videos from the "Hot Planet- Cold Comfort" television episode, related website articles and a student activity. The videos explore how the Gulf Stream conveyor belt may shut down; how Arctic river runoff and Alaskan glacial melt are freshening the oceans; and how ocean sediments and ice cores are being studied to understand the Little Ice Age. The videos total approximately one hour in length. The website articles explore the Little Ice Age; how the Arctic functions as a global thermostat, affecting global weather patterns; and great moments in climate change. The student activity is about light absorbtion. The site also contains a challenge activity to find details in a painting that depict Little Ice Age living conditions.

83

Popular Communication After Globalization  

Microsoft Academic Search

The study of popular communication is carried out in many disciplines and many sites. It is often haunted by anxieties over high culture versus low culture and authenticity versus commercialization. Rejecting those binaries in favor of the domi- nance of the latter term in each, this article initially defines popular communica- tion as objects widely circulated by mass media, texts

Joshua Gunn; Barry Brummett

2004-01-01

84

The Popular Culture Explosion.  

ERIC Educational Resources Information Center

Popular culture is defined here as anything produced by and/or dissembled by the mass media or mass production or transportation, either directly or indirectly, and that reaches the majority of the people. This sampler from mass magazines, intended for use in the study of popular culture, includes fiction from "Playboy"; articles on cars, Johnny…

Browne, Ray B.; Madden, David

85

Earth is a dynamic, living oasis in the desolation of space. The land, oceans, and air interact in complex ways to give our planet a unique set  

E-print Network

Earth is a dynamic, living oasis in the desolation of space. The land, oceans, and air interact measurements. The shuttle's low-light-level payload bay video imaging led to the discovery of upper Major Scientific Discoveries Atmospheric Observations and Earth Imaging Introduction Jack Kaye Kamlesh

86

A Planet Detection Tutorial and Simulator  

NASA Technical Reports Server (NTRS)

Detection of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections (currently at about 50) has only heightened the interest in the topic. School children are particularly interested in learning about recent astronomical discoveries. Scientists have the knowledge and responsibility to present this information in both an understandable and interesting format. Most classrooms and homes are now connected to the internet, which can be utilized to provide more than a traditional 'flat' presentation. An interactive software package on planet detection has been developed. The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Terrestrial Planets"; and "A Planet Detection Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program. One can determine the orbit and planet size, the planet's temperature and surface gravity, and finally determine if the planet is habitable. Originally developed for the Macintosh, a web based browser version is being developed.

Knoch, David; DeVincenzi, Donald (Technical Monitor)

2001-01-01

87

A Planet Detection Tutorial and Simulator  

NASA Astrophysics Data System (ADS)

Detection of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections (currently at about 50) has only heightened the interest in the topic. School children are particularly interested in learning about recent astronomical discoveries. Scientists have the knowledge and responsibility to present this information in both an understandable and interesting format. Most classrooms and homes are now connected to the internet, which can be utilized to provide more than a traditional "flat" presentation. An interactive software package on planet detection has been developed. The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Terrestrial Planets"; and "A Planet Detection Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program. One can determine the orbit and planet size, the planet's temperature and surface gravity, and finally determine if the planet is habitable. Originally developed for the Macintosh, a web based browser version is being developed.

Koch, D.

2000-12-01

88

Binary Planets  

NASA Astrophysics Data System (ADS)

Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

2014-11-01

89

Lonely Planet  

NSDL National Science Digital Library

"Don't worry about whether your trip will work out. Just go!" This is the travel philosophy of Lonely Planet, one of the most respected publishers of off-the-beaten-path travel guidebooks worldwide. Whether you already know where you're going, or are looking for suggestions for your next trip, Lonely Planet's site is packed with information that you can actually use to plan your trip. Search or browse the section "DestiNATIONS" to find maps, facts and figures, and information on local history, culture, and transportation for 8 world regions, over 80 countries, and 20 different cities. Much of the health information found in LP's print guides is also now available here. In addition, there are links to destination-related newsgroups, tips on travel photography, and "Postcards," a forum in which travelers share experiences and give advice.

1997-01-01

90

Planet Oobleck  

NSDL National Science Digital Library

Learners imagine a world covered in a mysterious substance called Oobleck. Learners make this substance and investigate its properties. Using an online program, they then design a spacecraft that can land on the planet, collect a sample, and return to Earth. A chart shows how their design compares to others' designs. Additionally, learners can build their spacecraft and test it. This activity presents a great engineering extension to other Oobleck-related activities posted elsewhere.

Science, Lawrence H.

2011-01-01

91

Planet Math  

NSDL National Science Digital Library

This is an activity about the different characteristics of the planets in our Solar System. Learners will use the Solar System Update program to complete a worksheet. The worksheet asks learners to identify multiple characteristics for each planetary body, and consider the relationships between certain characteristics. Required materials include the Solar System Update software and a computer with Internet access. This activity is Solar System Activity 3 in a larger resource, Space Update.

92

Changing Planet  

NSDL National Science Digital Library

NBC Learn, in partnership with the National Science Foundation, explores the impact of climate change on Earth. Each video uses interviews, maps, simulations and real-world film footage to illustrate how climate change influences the environments around us from lakes, oceans, glaciers to permafrost, ice and crops. Each video has a free, related lesson plan from the National Earth Science Teachers Association.

2011-03-29

93

Popular science publishing  

Microsoft Academic Search

The article gives an overview of the extent of popular science publishing and contributions to public debate, as compared to scientific publishing among faculty members at Norwegian universities. Faculty publish far fewer articles for the lay public than publications for their specialist colleagues. There are, however, clear field differences in this respect. The most productive researchers in terms of scientific

S. Kyvik

1994-01-01

94

Random popular matchings  

Microsoft Academic Search

We consider matching markets where a centralized authority must find a matching between the agents on one side of the market, and the items on the other side. Such settings occur, for example, in mail-based DVD rental services such as NetFlix or in some job markets. The objective is to find a popular matching, or a matching that is preferred

Mohammad Mahdian

2006-01-01

95

Popular Science: Technology  

NSDL National Science Digital Library

The Popular Science website, posts a range of articles on Science, Technology, History, Philosophy, Arts, and News & Ideas. Links to related books available through Amazon.com are provided at the end of each of the (fairly short) articles. The website also includes information on the Nobel Prize, including a list of all the Nobel Prize winners through 2001.

96

ccsd-00084950,version1-11Jul2006 On the Possible Properties of Small and Cold Extrasolar Planets  

E-print Network

-poor and water-rich planets. We find that no oceans can be present in any cases at 9­10 Gyr, a typical age. INTRODUCTION Some 190 extrasolar planets have been detected since 1992.1 Most of these discoveries have been, or alternatively be similar to a frozen ocean-planet having

Paris-Sud XI, Université de

97

The Extrasolar Planets Encyclopaedia  

NSDL National Science Digital Library

A full list of currently known Extrasolar Planets with frequently updated information on detection methods, current searches, and the Extrasolar Planets themselves. The site also includes information on reports and meetings concerning Extrasolar Planets.

Schneider, Jean

2005-06-07

98

Exploring Planet Sizes  

NASA Video Gallery

This lesson combines a series of activities to compare models of the size of Earth to other planets and the distances to other planets. Activities highlight space missions to other planets in our s...

99

The Nine Planets: Mars  

NSDL National Science Digital Library

This Nine Planets page contains details about the planet Mars. Information includes planet diameter, mass, distance from the Sun, orbit, and mythology. Also covered are planet composition, surface features, atmosphere and magnetic field data, temperature on the planet, and results from exploration spacecraft. Phobos and Deimos (Mars satellites) are also covered in depth. The site provides links to more images, movies, and facts about Mars and its moons, and discusses unanswered questions about the planet.

Arnett, Bill

100

Popularity structure in friendship networks  

Microsoft Academic Search

A model of popularity structure in social networks is introduced where popularity is viewed as a latent attribute of the individuals in the network. The group of individuals is assumed to have a latent popularity structure, composed of individuals from different popularity groups. An individual is assumed to choose other individuals within its own group or within groups of more

Ingegerd Jansson

2000-01-01

101

Disposable Planet  

NSDL National Science Digital Library

BBC Online presents this six-part special on sustainable development. Created in anticipation of the now concluded Johannesburg Summit, this Web site provides a valuable resource for viewers wishing to learn more about sustainable development and related issues. The Web site consists of an overview and six sections: Population, Food, Cities, Waste, Tourism, and Energy. The sections offer an in-depth look at each topic and include audio clips of related interviews and news stories. The discussion forums are now closed, but visitors may read the occasionally insightful and often times heated comments that have already been posted. View the slide show to get a quick, visceral sense of human impact on the planet -- past, present, and future. Visitors may also take a quiz to calculate their ecological footprint, or how much of the earth's resources they individually consume each year.

2002-01-01

102

PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS  

SciTech Connect

We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M {sub tot} {approx}> 1 M{sub J} the final eccentricity distribution remains broad, whereas for M {sub tot} {approx}< 1 M{sub J} a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a {approx_equal} 5-10 AU.

Raymond, Sean N. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Armitage, Philip J. [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States); Gorelick, Noel [Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 (United States)], E-mail: sean.raymond@colorado.edu

2009-07-10

103

Changing Planet: Fresh Water in the Arctic  

NSDL National Science Digital Library

This Changing Planet video documents scientists' concerns regarding how melting Arctic sea ice will increase the amount of fresh water in the Beaufort Gyre, which could spill out into the Atlantic and cause major climate shifts in North America and Western Europe. The video includes interviews with scientists and a look at the basics of how scientists measure salinity in the ocean and how ocean circulation works in the Arctic.

Learn, Nbc; Universe, Nesta -.

104

Venus observed as an extrasolar planet  

NASA Astrophysics Data System (ADS)

In a relatively near future, numerous transiting extrasolar planets will be discovered {gaseous giant planets, Earth-size planets and temperate Uranus in the form of "Ocean-planets"}. Space telescopes operating in the UV-optical-IR will allow the study of their atmospheres. We have to show if and how these observations will give access to the detection of atmospheric species, particularly when telluric planets will be observed, to demonstrate that life may be possible on one of them. For that purpose, we propose to use the unique event of the century, the Venus transit in 2012 {next Venus transits are in 2117 and 2125!}, to demonstrate the feasibility of these observations and show precisely what a Venus-like planet will look-like. To observe the Venus transit with similar conditions as extrasolar planets {no spatial resolution}, we propose to observe the solar light reflected on the Moon during the Venus transit on June 5-6 2012, lasting about 7h 40mn, i.e. about 4 HST orbits. A total of 5 HST orbits will allow us to obtain high S/N transit spectra and reference spectra to reveal the detectable atmospheric species with current space instrumentations. Similarly, in a companion proposal, we propose to observe the Earth transit on the Moon through the reflected light during a total Moon eclipse to directly compare the observed atmospheric signatures of Earth-like and Venus-like extrasolar planets.

Ehrenreich, David

2011-10-01

105

The Nine Planets: Pluto  

NSDL National Science Digital Library

This page of Nine Planets contains details about the planet Pluto. Information includes planet diameter, mass, distance from the Sun, orbit, and mythology. Also covered are planet composition, surface features, atmosphere and magnetic field data, surface temperature, and information about Pluto's moon, Charon. Unanswered questions are discussed, and links to more images, movies, and facts are provided.

Arnett, Bill

106

The Trojan minor planets  

Microsoft Academic Search

There are (March, 1988) 3774 minor planets which have received a permanent number. Of these, there are some whose mean distance to the sun is very nearly equal to that of Jupiter, and whose heliocentric longitudes from that planet are about 60°, so that the three bodies concerned (sun, Jupiter, minor planet) make an approximate equilateral triangle. These minor planets,

Christopher E. Spratt

1988-01-01

107

The Nine Planets: Mercury  

NSDL National Science Digital Library

This page of Nine Planets highlights details about the planet Mercury. Information includes planet diameter, mass, distance from the Sun, orbit, and mythology. Also covered are composition, surface features, atmosphere and magnetic field data, and the results of exploration spacecraft. The site provides links to images, movies, and more Mercury facts. Unanswered questions about the planet are also discussed.

Arnett, Bill

108

Dance of the Planets  

ERIC Educational Resources Information Center

As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…

Riddle, Bob

2005-01-01

109

Ocean Basin Geometry and the Salinification of the Atlantic Ocean  

E-print Network

A coupled atmosphere–sea ice–ocean model is used in an aqua-planet setting to examine the role of the basin geometry for the climate and ocean circulation. The basin geometry has a present-day-like topology with two idealized ...

Nilsson, Johan

110

The Ocean Conservancy  

NSDL National Science Digital Library

Learn about the Ocean Conservancy's conservation projects, the latest news in marine conservation, how to get involved, and more. Read over the current issues the Ocean Conservancy is working on, such as by catch, invasive species, and overfishing. Explore the "Fish and Wildlife" link for pictures and information on threatened and endangered animals; and read past and current issues of Blue Planet Magazine, OC's quarterly publication.

2012-05-03

111

The Nine Planets: Jupiter  

NSDL National Science Digital Library

This page of Nine Planets contains details about the gas giant planet Jupiter. Information includes planet diameter, mass, distance from the Sun, orbit, and mythology. Also covered are planet composition, surface features, atmosphere and magnetic field data, results from exploration spacecraft, and temperature on the planet. Jupiters' moons are also covered in detail, including Io, Europa, Ganymede, Callisto, and others. The site provides links to more images and facts, and discusses unanswered questions about Jupiter and its moons.

Arnett, Bill

112

The Nine Planets: Neptune  

NSDL National Science Digital Library

This Nine Planets page contains details about the gas giant planet Neptune and its moons. Information includes planet diameter, mass, distance from the Sun, orbit, and mythology. Also covered are planet composition, surface features, atmosphere and magnetic field data, surface temperature, and results of spacecraft exploration. Neptune's moons and rings are also detailed, including Nereid, Triton, Proteus, and many others. Unanswered questions about the planet and its moons are covered, and links to more images, movies, and facts are given.

Arnett, Bill

113

Observations of Extrasolar Planets Enabled by a Return to the Moon  

E-print Network

Ambitious studies of Earth-like extrasolar planets are outlined in the context of an exploration initiative for a return to the Earth's Moon. Two mechanism for linearly polarizing light reflected from Earth-like planets are discussed: 1) Rayleigh-scattering from a planet's clear atmosphere, and 2) specular reflection from a planet's ocean. Both have physically simple and predictable polarized phase functions. The exoplanetary diurnal variation of the polarized light reflected from a ocean but not from a land surface has the potential to enable reconstruction of the continental boundaries on an Earth-like extrasolar planet. Digressions on the lunar exploration initiative also are presented.

P. R. McCullough

2007-03-13

114

Cultural democratisation and popular music  

Microsoft Academic Search

The article examines ways in which the long-standing ambition to democratise culture in France can be applied to popular music, and to French pop particularly. Theoretically, pop should not need to be democratised at all since it is 'popular' by definition. But the rhetoric of 'popular culture' in France has traditionally been more to do with aspiration than reality. The

David Looseley

2003-01-01

115

Extrasolar Carbon Planets  

E-print Network

We suggest that some extrasolar planets silicon carbide and other carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk's C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune-mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures.

Kuchner, M J; Kuchner, Marc J.

2005-01-01

116

Extrasolar Carbon Planets  

E-print Network

We suggest that some extrasolar planets silicon carbide and other carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk's C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune-mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures.

Marc J. Kuchner; S. Seager

2005-04-08

117

Exploring the Planets: Comparing the Planets  

NSDL National Science Digital Library

Comparative planetology is a scientific discipline in which researchers seek to understand the planets by comparing their similarities and examining their differences. Some planets have similarities because the materials of which they are made and the processes that have shaped them are similar. However, each planet has a unique character, due to the intensity and length of time the processes have operated. At this site, selected planets are compared on the basis of their atmospheres, volcanoes, impact craters, wind, water and ice. In each instance, photographs are displayed side by side for direct comparison.

118

Course Syllabus: W12 The Planets Course Information  

E-print Network

the reasons for phases of the moon, solar and lunar eclipses, and the origin of the motion of the sun, moon the way they do? How do planets form, and what are they made of? Why do some bizarre moons have oceans, moons, rings, comets, asteroids, atmospheres, and oceans. Understanding other worlds will help us save

Jacobs, Lucia

119

Milstein Hall of Ocean Life  

NSDL National Science Digital Library

This Web site, created to complement the Hall of Ocean Life, looks at the cradle of life for our planet, along with its key to our future. It includes an in-depth look at the Hall of Ocean Life's dioramas, an exploration of the ocean's diverse communities and examines some of the ways in which life in water is different from life on land.

120

One World Ocean  

NSDL National Science Digital Library

In this activity, students learn about ocean currents and the difference between salt and fresh water. They use colored ice cubes to see how cold and warm water mix and how this mixing causes currents. Also, students learn how surface currents occur due to wind streams. Lastly, they learn how fresh water floats on top of salt water, the difference between water in the ocean and fresh water throughout the planet, and how engineers are involved in the design of ocean water systems for human use.

Integrated Teaching And Learning Program

121

Popular weight reduction diets.  

PubMed

The percentage of people who are overweight and obese has increased tremendously over the last 30 years. It has become a worldwide epidemic. This is evident by the number of children are being diagnosed with a body mass index >85th percentile, and the number of children begin diagnosed with type 2 diabetes mellitus, a disease previously reserved for adults. The weight loss industry has also gained from this epidemic; it is a billion dollar industry. People pay large sums of money on diet pills, remedies, and books, with the hope of losing weight permanently. Despite these efforts, the number of individuals who are overweight or obese continues to increase. Obesity is a complex, multifactorial disorder. It would be impossible to address all aspects of diet, exercise, and weight loss in this review. Therefore, this article will review popular weight loss diets, with particular attention given to comparing low fat diets with low carbohydrate diets. In addition, the role that the environment plays on both diet and exercise and how they impact obesity will be addressed. Finally, the National Weight Control Registry will be discussed. PMID:16407735

Volpe, Stella Lucia

2006-01-01

122

Planet Forming Protostellar Disks  

NASA Technical Reports Server (NTRS)

The proposal achieved many of its objectives. The main area of investigation was the interaction of young planets with surrounding protostellar disks. The topics of interest include: 1) Simulations of Planet-Disk Interactions; 2) Secular Interactions Between Inclined Planets and a Gaseous Disk; 3) On the Tilting of Protostellar Disks by Resonant Tidal Effects; 4) Three-Dimensional Waves in Thermally Stratified Disks; and 5) Predictions of the Distribution of Planets. A list of publications resulting from this grant is also presented.

Lubow, Stephen

2002-01-01

123

Planet Designer: Kelvin Climb  

NSDL National Science Digital Library

This is an activity about the way distance, albedo, and atmosphere affect the temperature of a planet. Learners will create a planet using a computer game and change features of the planet to increase or decrease the planet's temperature. They will then discuss their results in terms of greenhouse strength and the presence of liquid water. This lesson is part of Project Spectra, a science and engineering education program focusing on how light is used to explore the Solar System.

124

All Planet Sizes  

NSDL National Science Digital Library

This image, from the Lunar and Planetary Laboratory, illustrates the approximate relative sizes of the Sun and planets and their relative locations. Although distance is not to scale, viewers can see that the small rocky planets are located close to the Sun and large gaseous planets are further away.

125

Peeking at the Planets.  

ERIC Educational Resources Information Center

Provides information about each of the planets in our solar system. Focuses on information related to the space missions that have visited or flown near each planet, and includes a summary of what is known about some of the features of each planet. (DDR)

Riddle, Bob

2002-01-01

126

Theory of Giant Planets  

Microsoft Academic Search

Giant planet research has moved from the study of a handful of solar system objects to that of a class of bodies with dozens of known members. Since the original 1995 discovery of the first extrasolar giant planets (EGPs), the total number of known examples has increased to ~80 (circa November 2001). Current theoretical studies of giant planets emphasize predicted

W. B. Hubbard; A. Burrows; J. I. Lunine

2002-01-01

127

Evaporation of extrasolar planets  

E-print Network

Atomic hydrogen escaping from the extrasolar giant planet HD209458b provides the largest observational signature ever detected for an extrasolar planet atmosphere. In fact, the upper atmosphere of this planet is evaporating. Observational evidences and interpretations coming from various models are reviewed. Implications for exoplanetology are discussed.

David Ehrenreich

2008-07-11

128

The Dwarf Planets  

NSDL National Science Digital Library

This website, by California Institute of Technology astronomer Mike Brown, describes dwarf planets and the issues in their classification. A diagram show the "new" solar system, including the approximately 50 dwarf planets in the Kuiper Belt. A table shows the size and distance of each dwarf planet.

Brown, Mike

2009-12-10

129

Terrestrials Dwarf Planets  

E-print Network

Terrestrials Gas Giants Ice Giants Dwarf Planets The Solar System #12;Neptune Uranus Saturn Jupiter & Helium atmospheres. #12;The Dwarf Planets are a new class of Solar System objects defined by the IAU Dwarf planets can have eccentric and highly inclined orbits. #12;The Solar System has 7 Giant Moons

Gaudi, B. Scott

130

DETECTING VOLCANISM ON EXTRASOLAR PLANETS  

SciTech Connect

The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here, we investigate whether we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present-day Earth and derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloud cover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth-sized to super-Earth-sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars and ground-based telescopes, and report the frequency and magnitude of the expected signatures. The transit probability of a planet in the habitable zone decreases with distance from the host star, making small, nearby host stars the best targets.

Kaltenegger, L.; Sasselov, D. D. [Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Henning, W. G., E-mail: lkaltene@cfa.harvard.ed [Harvard University, EPS, 20 Oxford Street, Cambridge, MA 02138 (United States)

2010-11-15

131

Is Commercial Culture Popular Culture?: A Question for Popular  

E-print Network

increasingly intrudes on other forms of culture. The essay ar- gues that popular communication scholars culture--be a topic of future exploration in the journal Popular Com- munication? The commercial form not necessarily involve as a central tenet the integration of advertising forms with entertainment. This version

Maranas, Costas

132

The Trojan minor planets  

NASA Astrophysics Data System (ADS)

There are (March, 1988) 3774 minor planets which have received a permanent number. Of these, there are some whose mean distance to the sun is very nearly equal to that of Jupiter, and whose heliocentric longitudes from that planet are about 60°, so that the three bodies concerned (sun, Jupiter, minor planet) make an approximate equilateral triangle. These minor planets, which occur in two distinct groups, one preceding Jupiter and one following, have received the names of the heroes of the Trojan war. This paper concerns the 49 numbered minor planets of this group.

Spratt, Christopher E.

1988-08-01

133

Dunking the Planets  

NSDL National Science Digital Library

This is a demonstration about the density of the planets. Learners will compare the relative sizes and masses of scale models of the planets as represented by fruits and other foods. They will then dunk the "planets" in water to highlight the fact that even a large, massive planet - such as Saturn - can have low density. They discuss how a planet's density is related to whether it is mainly made up of rock or gas. This activity is part of Explore! Jupiter's Family Secrets, a series designed to engage children in space and planetary science in libraries and informal learning environments.

134

Planets Around Evolved Stars  

NASA Astrophysics Data System (ADS)

With searches of planets around evolved pulsating B sub-dwarfs, red giant stars, and white dwarfs underway, it is paramount to advance theoretical research in how stellar evolution affects the architecture of planetary systems. This will not only maximize the discovery potential of said searches, but also aid in the interpretation and understanding of planet formation in a broader context. To acquire a full picture of the planet´s survival process we compute the evolution of the planet´s orbit coupled with the evolution of the star from the main sequence all the way to the white dwarf domain. We explore the range of planetary masses that might survive a common envelope stage during the giant phases of the star and, finally, we investigate how the presence of a planet might influence the evolution of the star itself.

Villaver, Eva; Livio, M.

2011-09-01

135

New Dimensions in Popular Culture.  

ERIC Educational Resources Information Center

This document contains fifteen essays which study some of the didactic, moralistic literature which was popular in nineteenth century America, and speculate about the culture from which the literature evolved. The essays include "Millions of Moral Little Books: Sunday School Books in Their Popular Context"; "Nineteenth Century Gift Books: A…

Nye, Russel B., Ed.

136

Adolescent Sexual Behavior and Popularity.  

ERIC Educational Resources Information Center

Examined the relationship between popularity and sexual behavior in 1,405 junior high school students. Results showed White males and females with more female friends are more likely to be sexually experienced. There was little relationship between popularity and sexuality in Black adolescents. (JAC)

Newcomer, Susan F.; And Others

1983-01-01

137

Predicting popular messages in Twitter  

Microsoft Academic Search

Social network services have become a viable source of information for users. In Twitter, information deemed important by the community propagates through retweets. Studying the characteristics of such popular messages is important for a number of tasks, such as breaking news detection, personalized message recommendation, viral marketing and others. This paper investigates the problem of predicting the popularity of messages

Liangjie Hong; Ovidiu Dan; Brian D. Davison

2011-01-01

138

Rethinking Popular Culture and Media  

ERIC Educational Resources Information Center

"Rethinking Popular Culture and Media" is a provocative collection of articles that begins with the idea that the "popular" in classrooms and in the everyday lives of teachers and students is fundamentally political. This anthology includes outstanding articles by elementary and secondary public school teachers, scholars, and activists who…

Marshall, Elizabeth, Ed.; Sensoy, Ozlem, Ed.

2011-01-01

139

In search of planet Vulcan. The ghost in Newton's clockwork universe.  

NASA Astrophysics Data System (ADS)

Presented for the first time in popular form is the story of the search for the phantom planet Vulcan. It is rich in the eccentricities of human character, of astronomers far from the popular ideal. There is the autocratic Urbain J. J. Le Verrier, the mathematician who essentially created Vulcan, and James Craig Watson, who made the most credible (but disputed) observations of the planet at the July 1878 eclipse.

Baum, R.; Sheehan, W.

140

FLIPPER: Validation for Remote Ocean Imaging.  

National Technical Information Service (NTIS)

one of the determining factors in the planet s ability to support life is the same factor that makes the Blue Planet blue: water. Therefore, NASA researchers have a focused interest in understanding Earth s oceans and their ability to continue sustaining ...

2006-01-01

141

Ocean Warning: Avoid Drowning Mark Heinrich  

E-print Network

Ocean Warning: Avoid Drowning Mark Heinrich School of EECS University of Central Florida Orlando Ithaca, NY 14853 Email: mainak@csl.cornell.edu Abstract-- Ocean is a popular program from the SPLASH-2 parallel benchmark suite. A complete application, as opposed to a computational kernel, Ocean is often used

Heinrich, Mark

142

Wave of a Planet  

NASA Technical Reports Server (NTRS)

This plot tells astronomers that a fifth planet is in orbit around the star 55 Cancri, making the star the record-holder for hosting the most known exoplanets.

As planets circle around their stars, they cause the stars to wobble back and forth in a regular pattern. By looking for this motion in a star, scientists can find planets that can't be seen with telescopes.

The wobble caused by the fifth planet discovered around 55 Cancri is represented here by the sinuous line in blue. The actual data points are yellow and error bars are the lines above and below the yellow dots. The cycle of the wobble indicates that the planet circles around its star about every 260 days. The amplitude of the wobble indicates that the planet is a giant at least 45 times the mass of Earth.

The wobbles caused by the other four planets has been removed from this plot, to reveal that caused by the fifth. The departure from a perfect sine wave suggests the planet's orbit is not perfectly circular.

Because 55 Cancri has multiple planets, the star had to be observed for a long time before astronomers could find and confirm its fifth planet. These data were collected over a period of 18 years using both the Lick Observatory near San Jose, Calif., and the W.M. Keck Observatory in Hawaii.

2007-01-01

143

ConcepTest: Relative Planet Ages  

NSDL National Science Digital Library

How old are other planets in the Universe in comparison to the planets in our Solar System? a. Other planets are older than the planets in our Solar System. b. Other planets are younger than the planets in our ...

144

ExtraSolar Planets Finding Extrasolar Planets. I  

E-print Network

close to the star. #12;Orbits Planets do not orbit the Sun - they both orbit the center of mass Planets. III Transits Six planets have been found by transits. This requires an edge-on orbit. JupiterExtraSolar Planets #12;Finding Extrasolar Planets. I Direct Searches Direct searches are difficult

Walter, Frederick M.

145

The Sun, eight planets and three dwarf planets  

E-print Network

The Sun, eight planets and three dwarf planets are the largest bodies in our solar system. By 2006, 166 moons had been discovered orbiting the planets and dwarf planets. There are also thousands and collapse to become a white dwarf star the size of Earth. MERCURY Mercury is the closest planet to the Sun

Jarrett, Thomas H.

146

New Planets / SETI  

NSDL National Science Digital Library

New Planets / SETI (Search for Extra-Terrestrial Intelligence) is a 48 minute radio broadcast that discusses three new planets discovered orbiting distant stars; how best to communicate with ET intelligence; and the progress of the radio-based search for ET intelligence. The new planet finds are smaller than previous extrasolar planet discoveries, on par with the planet Neptune in our solar system. There is discussion of the odds of finding life elsewhere in the universe, and if it is possible to find Earth-like planets in distant solar systems. The show also discusses: a paper published in the journal, Nature, that argues that for sending lots of data over long distances, it is hard to beat sending a physical artifact engraved with data; ways to communicate lots of information over long distances; and what SETI is listening for, and what they have heard.

147

Seismology of Giant Planets  

E-print Network

Seismology applied to giant planets could drastically change our understanding of their deep interiors, as it has happened with the Earth, the Sun, and many main-sequence and evolved stars. The study of giant planets' composition is important for understanding both the mechanisms enabling their formation and the origins of planetary systems, in particular our own. Unfortunately, its determination is complicated by the fact that their interior is thought not to be homogeneous, so that spectroscopic determinations of atmospheric abundances are probably not representative of the planet as a whole. Instead, the determination of their composition and structure must rely on indirect measurements and interior models. Giant planets are mostly fluid and convective, which makes their seismology much closer to that of solar-like stars than that of terrestrial planets. Hence, helioseismology techniques naturally transfer to giant planets. In addition, two alternative methods can be used: photometry of the solar light ref...

Gaulme, Patrick; Schmider, Francois-Xavier; Guillot, Tristan

2014-01-01

148

Planet Formation - Overview  

NASA Technical Reports Server (NTRS)

Modern theories of star and planet formation are based upon observations of planets and smaller bodies within our own Solar System, exoplanets &round normal stars and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path.

Lissauer, Jack J.

2005-01-01

149

Planet - Disk Symbiosis  

E-print Network

Planets form in disks around young stars. Interactions with these disks cause them to migrate and thus affect their final orbital periods. We suggest that the connection between planets and disks may be deeper and involve a symbiotic evolution. By contributing to the outward transport of angular momentum, planets promote disk accretion. Here we demonstrate that planets sufficiently massive to open gaps could be the primary agents driving disk accretion. Those having masses below the gap opening threshold drift inward more rapidly than the disk material and can only play a minor role in its accretion. Eccentricity growth during gap formation may involve an even more intimate symbiosis. Given a small initial eccentricity, just a fraction of a percent, the orbital eccentricity of a massive planet may grow rapidly once a mass in excess of the planet's mass has been repelled to form a gap around the planet's orbit. Then, as the planet's radial excursions approach the gap's width, subsequent eccentricity growth slows so that the planet's orbit continues to be confined within the gap.

Re'em Sari; Peter Goldreich

2003-07-05

150

Racist Ideology and Popular Fiction  

ERIC Educational Resources Information Center

Three popular modern British novelists are compared in terms of their treatment of the ideology of racism. Racism in fiction is seen not only to reflect current social forces, but also to have influence upon society. (Author/GC)

Marshment, Margaret

1978-01-01

151

Characterization of extrasolar terrestrial planets from diurnal photometric variability  

NASA Astrophysics Data System (ADS)

The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.

Ford, E. B.; Seager, S.; Turner, E. L.

2001-08-01

152

Ordinal position and peer popularity  

Microsoft Academic Search

The interaction of siblings within the home may require later-born children--those with less power than their older siblings--to develop more effective interpersonal skills. If so, their popularity should be appreciably affected; they should be better liked. To test this line of reasoning, the relationship between ordinal position of a child and his or her popularity among peers was examined by

Norman Miller; Geoffrey Maruyama

1976-01-01

153

The Eight Planets  

NSDL National Science Digital Library

This website, by Caltech astronomer Mike Brown, is an article that recounts the reclassification of Pluto as a dwarf planet. The article explains the issues, tells how they were resolved, and answers related questions. At the bottom of the page is a link to a similar website about the dwarf planet Xena.

2007-07-03

154

Name That Planet!  

ERIC Educational Resources Information Center

Presents an activity in which students in groups explore one planet in the solar system and present their findings to the whole class. Focuses on the planet's location in the solar system, geological features, rate of revolutions, and calendar year. (YDS)

Beck, Judy; Rust, Cindy

2002-01-01

155

PLANet: An Active Internetwork  

Microsoft Academic Search

We present PLANet: an active network architecture and im- plementation. In addition to a standard suite of Internet-like services, PLANet has two key programmability features: 1. all packets contain programs 2. router functionality may be extended dynamically Packet programs are written in our special purpose programming language PLAN, the Packet Language for Active Networks, while dynamic router extensions are written

Michael W. Hicks; Jonathan T. Moore; D. Scott Alexander; Carl A. Gunter; Scott M. Nettles

1999-01-01

156

Are Exoplanets Really Planets?  

NSDL National Science Digital Library

This newsbrief, from Science magazine's electronic news source, Science now, airs the skepticism of three astronomers, who state that most of the 50 recently discovered "planets" orbiting stars other than our sun may not really be planets, but rather brown dwarfs. So, what are they? Read up, and form your own opinion.

2000-01-01

157

March of the Planets  

ERIC Educational Resources Information Center

The motion of the planets in their orbits can be demonstrated to students by using planetarium software programs. These allow time to be sped up so that the relative motions are readily observed. However, it is also valuable to have the students understand the real speed of the planets in their orbits. This paper describes an exercise that gives…

Thompson, Bruce

2007-01-01

158

Theory of Giant Planets  

NASA Astrophysics Data System (ADS)

Giant planet research has moved from the study of a handful of solar system objects to that of a class of bodies with dozens of known members. Since the original 1995 discovery of the first extrasolar giant planets (EGPs), the total number of known examples has increased to ~80 (circa November 2001). Current theoretical studies of giant planets emphasize predicted observable properties, such as luminosity, effective temperature, radius, external gravity field, atmospheric composition, and emergent spectra as a function of mass and age. This review focuses on the general theory of hydrogen-rich giant planets; smaller giant planets with the mass and composition of Uranus and Neptune are not covered. We discuss the status of the theory of the nonideal thermodynamics of hydrogen and hydrogen-helium mixtures under the conditions found in giant-planet interiors, and the experimental constraints on it. We provide an overview of observations of extrasolar giant planets and our own giant planets by which the theory can be validated.

Hubbard, W. B.; Burrows, A.; Lunine, J. I.

159

What is a Planet?  

NSDL National Science Digital Library

This is a lesson about the characteristics of planets, comets, asteroids, and trans-Neptunian objects. Learners will classify objects and then apply what they have learned by participating in a formal debate about a solar system object discovered by the New Horizons spacecraft and by defining the term planet.

160

Planets in Motion  

ERIC Educational Resources Information Center

All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

Riddle, Bob

2005-01-01

161

Planet formation in Binaries  

E-print Network

Spurred by the discovery of numerous exoplanets in multiple systems, binaries have become in recent years one of the main topics in planet formation research. Numerous studies have investigated to what extent the presence of a stellar companion can affect the planet formation process. Such studies have implications that can reach beyond the sole context of binaries, as they allow to test certain aspects of the planet formation scenario by submitting them to extreme environments. We review here the current understanding on this complex problem. We show in particular how each of the different stages of the planet-formation process is affected differently by binary perturbations. We focus especially on the intermediate stage of kilometre-sized planetesimal accretion, which has proven to be the most sensitive to binarity and for which the presence of some exoplanets observed in tight binaries is difficult to explain by in-situ formation following the "standard" planet-formation scenario. Some tentative solutions ...

Thebault, Ph

2014-01-01

162

Extreme Planet Makeover  

NSDL National Science Digital Library

You may have heard of elaborate makeover television shows where some individual wishes to have various body enhancements performed or a new house is built in seven days. This fascinating extreme makeover website, from NASA and the Jet Propulsion Laboratory at the California Institute of Technology, is much more edifying. Here, visitors will have the opportunity to make their own planet via a series of customizable bells and whistles. Visitors can use the controls on the site to adjust key planetary attributes such as distance from a star, planet size, and planet age. After making these adjustments, visitors can learn about the planet they have created, and also compare it with other existing planets and outer-space bodies.

2011-04-03

163

Ocean Optics Environmental Optics, Nanoscience Division  

E-print Network

than just water. Other constituents include; · Phytoplankton ­plant like organisms · Coloured Dissolved) are properties that are only related to the water and its constituents and is not affected by the lighting such as ocean pollution, currents and warming, and to see how the oceans are affecting the health of our planet

Strathclyde, University of

164

Magma Oceans on Exoplanets and Early Earth  

Microsoft Academic Search

Late, giant accretionary impacts likely form multiple magma oceans of some depth in young rocky planets. Models of magma ocean solidification that incorporate water, carbon, and other incompatible volatile elements in small amounts predict a range of first-order outcomes important to planetary evolution. First, initial planetary bulk composition and size determine the composition of the earliest degassed atmosphere. This early

Linda Elkins-Tanton

2009-01-01

165

Astrobiological and Geological Implications of Convective Transport in Icy Outer Planet Satellites  

NASA Technical Reports Server (NTRS)

The oceans of large icy outer planet satellites are prime targets in the search for extraterrestrial life in our solar system. The goal of our project has been to develop models of ice convection in order to understand convection as an astrobiologically relevant transport mechanism within icy satellites, especially Europa. These models provide valuable constraints on modes of surface deformation and thus the implications of satellite surface geology for astrobiology, and for planetary protection. Over the term of this project, significant progress has been made in three areas: (1) the initiation of convection in large icy satellites, which we find probably requires tidal heating; (2) the relationship of surface features on Europa to internal ice convection, including the likely role of low-melting-temperature impurities; and (3) the effectiveness of convection as an agent of icy satellite surface-ocean material exchange, which seems most plausible if tidal heating, compositional buoyancy, and solid-state convection work in combination. Descriptions of associated publications include: 3 published papers (including contributions to 1 review chapter), 1 manuscript in revision, 1 manuscript in preparation (currently being completed under separate funding), and 1 published popular article. A myriad of conference abstracts have also been published, and only those from the past year are listed.

Pappalardo, Robert T.; Zhong, Shi-Jie; Barr, Amy

2005-01-01

166

Appearance of high-pressure H2O ice on ice-covered terrestrial planets  

NASA Astrophysics Data System (ADS)

A lot of terrestrial exoplanets and free-floating planets have been discovered. Whether terrestrial planets with liquid water exist is an important question to consider, especially in terms of their habitability. Even in a globally ice-covered state, liquid water could exist beneath the surface ice shell because sufficient geothermal heat flow from the planetary interior is likely to melt the interior ice, so that an internal ocean under the surface ice shell could appear (e.g., Hoffman & Schrag 2002). In this study, we argue the conditions that must be satisfied for ice-covered terrestrial planets to have an internal ocean on the timescale of planetary evolution (Ueta & Sasaki 2013). Geothermal heat flow calculated by a parameterized convection model (e.g., McGovern & Schubert 1989) is considered as the heat source at the origin of the internal ocean. By applying and improving the model of Tajika (2008), we also examine how the amount of radiogenic heat and H2O mass affect these conditions. Moreover, we investigate the structures of surface H2O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). At 1 AU from the central star, as shown in Fig. 1, a 1M.+ planet with 0.6-25 times H2O mass of the Earth could have an internal ocean. When the planet has an H2O mass over 25 times that of the Earth, high-pressure ice layers may appear between the internal ocean and the rock-part of the planet. The results indicate that planetary size and surface H2O mass strongly ristrict the conditions under which an extrasolar terrestrial planet could have an internal ocean without high-pressure ice existing under the internal ocean. The habitability of a planet might be influenced by the existence of such high-pressure ice layers.

Ueta, S.; Sasaki, T.

2014-03-01

167

Optimal Planet Properties For Plate Tectonics Through Time And Space  

NASA Astrophysics Data System (ADS)

Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up and regulation of gases relevant for life. This allows for the first time to discuss the tectonic mode of a rocky planet from a practical astrophysical perspective.

Stamenkovic, Vlada; Seager, Sara

2014-11-01

168

Checking Stability Of Planet Orbits In Multiple-planet Systems  

Microsoft Academic Search

The SIM Lite team plans to undertake several planet surveys. One of them, the Deep Planet Survey, is designed to detect Earth-mass exoplanets in the habitable zones of nearby main sequence stars. A double blind study has been conducted to assess the capability of SIM to detect such small planets in a multiplanet system where several giant planets might be

Fabien Malbet; J. Catanrazite; M. Shao; C. Zhai

2009-01-01

169

The planets and life.  

NASA Technical Reports Server (NTRS)

It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.

Young, R. S.

1971-01-01

170

Exploring the Planets: Mercury  

NSDL National Science Digital Library

This site contains most of the up-to-date information known about the planet Mercury. Facts about the planet include: mean distance from Sun, length of year, rotation period, mean orbital velocity, inclination of axis, average temperature (day and night), and diameter. The site explains why earth-based views of Mercury are so poor and describes the surface of the planet on the basis of probe photographs. The photographs do not prove whether the material on the surface is impact ejecta or volcanic. However, a colored digital mosaic of Mercury taken by Mariner 10 suggests that at least some of the mercurian smooth plains are the products of volcanism.

171

Minor Planet Center  

NASA Technical Reports Server (NTRS)

This paper reports on the activities of the Minor Planet Center for the year of 1998. The main product of this center is the Minor Planet Circulars, augmented by the Minor Planet Circulars Supplement which is a new series introduced in 1997 to include the actual observations, which are now only summarized MPC. The introduction of the Daily Orbit Update (DOU) lists all the orbits computed and identification found since the previous issue. There has been a fivefold increase in the reported Near Earth Objects, which includes the addition of 55 potentially hazardous asteroids.

Marsden, Brian G.

1999-01-01

172

Popular Music in Early Adolescence.  

ERIC Educational Resources Information Center

This paper examines young adolescents' involvement with popular music and the health implications of that involvement. Initial discussion explores three central concepts: music media, adolescence, and mass media effects. A summary of research on music media in adolescence is offereed in two sections discussing exposure to, and gratifications and…

Christenson, Peter G.; Roberts, Donald F.

173

In Defense of Popular Music.  

ERIC Educational Resources Information Center

In his book "The Closing of the American Mind," Allan Bloom criticizes popular music for the "emptiness of its values." It has only one appeal, says Bloom, "a barbaric appeal, to sexual desire--not love, not eros, but sexual desire, undeveloped and untutored." However, to say "rock music is this or that" is a proposition that quickly crumbles…

Luebke, Steven R.

174

Popular Music In American Studies  

ERIC Educational Resources Information Center

American popular music -- ballads, folksongs, and mass media songs -- can be used in an American studies class to trace social history. This takes advantage of young people's loyalty to music and enlists their aural sensitivities in learning about the United States. (JH)

Rodnitzky, Jerome L.

1974-01-01

175

Popular Media and Social Change  

Microsoft Academic Search

A few months ago, at an international communication conference in Nairobi, Kenya, a delegate asked me about the purpose of my studies in popular entertainment media. She was of the opinion that mindless and escapist media programming was, as she put it, \\

Arvind Singhal

2007-01-01

176

Body Modification and Popular Culture  

Microsoft Academic Search

It is safe to say that contemporary North America is obsessed with the body. Popular culture abounds with references to the body: from products for the body (hair care, skin care, teeth whitening products, fashion, etc.) to representations of the body (the white body, the gay body, the beautiful body, etc.). All of these references create a discourse around the

Tarah Hogue

177

Readers' Knowledge of Popular Genre  

ERIC Educational Resources Information Center

This research examined readers' knowledge of popular genres. Participants wrote short essays on fantasy, science fiction, or romance. The similarities among the essays were measured using latent semantic analysis (LSA) and were then analyzed using multidimensional scaling and cluster analysis. The clusters and scales were interpreted by searching…

Dixon, Peter; Bortolussi, Marisa

2009-01-01

178

Arab Stereotypes in Popular Fiction.  

ERIC Educational Resources Information Center

Most popular fictional plots involving the Middle East--adventure stories, espionage, and themes of Western dependency on Arab oil--portray the Israelies as the good guys and the Arabs as the villians. People must be made aware that fictional literature is prejudiced and racially biased against Arabs. (RM)

Terry, Janice J.

1983-01-01

179

Ocean-sized threats  

NASA Astrophysics Data System (ADS)

Jane Lubchenco, professor of marine biology and zoology at Oregon State University, and president-elect of the International Council for Science, said that scientists can do more than they currently are doing to clearly communicate to the public and to policy-makers those issues associated with the many ecological threats faced by the world's oceans. In doing so, scientists can overcome popularly-held misperceptions about the health of the world's oceans and thus, help protect the seas.“Science,” Lubchenco said, “has a huge role to play in informing [the public] what is happening and to guide the choice of solutions.

Showstack, Randy

180

Ocean-sized threats  

NASA Astrophysics Data System (ADS)

Jane Lubchenco, professor of marine biology and zoology at Oregon State University, and president-elect of the International Council for Science, said that scientists can do more than they currently are doing to clearly communicate to the public and to policy-makers those issues associated with the many ecological threats faced by the world's oceans. In doing so, scientists can overcome popularly-held misperceptions about the health of the world's oceans and thus, help protect the seas."Science," Lubchenco said, "has a huge role to play in informing [the public] what is happening and to guide the choice of solutions.

Showstack, Randy

181

Is Pluto a Planet? And what is a planet, anyways?  

E-print Network

Is Pluto a Planet? And what is a planet, anyways? N = N* fs fGHZ fp nH #12;What is a star? A star The real issue is that we need to know precisely what we mean when we use the word planet. Is Pluto a Planet? #12;Is Pluto a Planet? A body that: ·Orbits a star ·Is large enough for its gravity to make

Walter, Frederick M.

182

Is Pluto a Planet? And what is a planet, anyways?  

E-print Network

Is Pluto a Planet? And what is a planet, anyways? N = N* fs fp AST 248 #12;What is a star? A star The real issue is that we need to know precisely what we mean when we use the word planet. Is Pluto a Planet? #12;Is Pluto a Planet? A body that: ·Orbits a star ·Is large enough for its gravity to make

Walter, Frederick M.

183

Students Discover Unique Planet  

NASA Astrophysics Data System (ADS)

Three undergraduate students, from Leiden University in the Netherlands, have discovered an extrasolar planet. The extraordinary find, which turned up during their research project, is about five times as massive as Jupiter. This is also the first planet discovered orbiting a fast-rotating hot star. Omega Centauri ESO PR Photo 45a/08 A planet around a hot star The students were testing a method of investigating the light fluctuations of thousands of stars in the OGLE database in an automated way. The brightness of one of the stars was found to decrease for two hours every 2.5 days by about one percent. Follow-up observations, taken with ESO's Very Large Telescope in Chile, confirmed that this phenomenon is caused by a planet passing in front of the star, blocking part of the starlight at regular intervals. According to Ignas Snellen, supervisor of the research project, the discovery was a complete surprise. "The project was actually meant to teach the students how to develop search algorithms. But they did so well that there was time to test their algorithm on a so far unexplored database. At some point they came into my office and showed me this light curve. I was completely taken aback!" The students, Meta de Hoon, Remco van der Burg, and Francis Vuijsje, are very enthusiastic. "It is exciting not just to find a planet, but to find one as unusual as this one; it turns out to be the first planet discovered around a fast rotating star, and it's also the hottest star found with a planet," says Meta. "The computer needed more than a thousand hours to do all the calculations," continues Remco. The planet is given the prosaic name OGLE2-TR-L9b. "But amongst ourselves we call it ReMeFra-1, after Remco, Meta, and myself," says Francis. The planet was discovered by looking at the brightness variations of about 15 700 stars, which had been observed by the OGLE survey once or twice per night for about four years between 1997 and 2000. Because the data had been made public, they were a good test case for the students' algorithm, who showed that for one of stars observed, OGLE-TR-L9, the variations could be due to a transit -- the passage of a planet in front of its star. The team then used the GROND instrument on the 2.2 m telescope at ESO's La Silla Observatory to follow up the observations and find out more about the star and the planet. "But to make sure it was a planet and not a brown dwarf or a small star that was causing the brightness variations, we needed to resort to spectroscopy, and for this, we were glad we could use ESO's Very Large Telescope," says Snellen. The planet, which is about five times as massive as Jupiter, circles its host star in about 2.5 days. It lies at only three percent of the Earth-Sun distance from its star, making it very hot and much larger than normal planets. The spectroscopy also showed that the star is pretty hot -- almost 7000 degrees, or 1200 degrees hotter than the Sun. It is the hottest star with a planet ever discovered, and it is rotating very fast. The radial velocity method -- that was used to discover most extrasolar planets known -- is less efficient on stars with these characteristics. "This makes this discovery even more interesting," concludes Snellen.

2008-12-01

184

Kepler's Multiple Planet Systems  

NASA Technical Reports Server (NTRS)

Among the 1800 Kepler targets that have candidate planets, 20% have two or more candidate planets. While most of these objects have not yet been confirmed as true planets, several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Virtually all candidate systems are stable, as tested by numerical integrations (assuming a nominal mass-radius relationship). Statistical studies performed on these candidates reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness of planetary systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. The characteristics of the confirmed Kepler multi-planet systems will also be discussed.

Lissauer, Jack J.

2012-01-01

185

The Extrasolar Planets Encyclopaedia  

NSDL National Science Digital Library

Jean Schneider, of the Observatoire de Paris, put together this no-nonsense site featuring current information on the "detection and study of extrasolar planets, including exobiology." Schneider's commitment to the subject is clear with the inclusion of detailed scientific and technical articles, a tutorial (by Arizona State University) on the detection of extrasolar planets, and a hyperlinked bibliography of some 200 scientific journal articles, books, and reports. A catalog of extrasolar planets (with links to the scientific articles describing them) features dozens of confirmed planets (or brown dwarfs) around main sequence stars or pulsars, in addition to disks and unconfirmed objects. Whether you are a dedicated amateur or pro (and read English or French), these pages are clearly designed and well worth the orbit.

186

Welcome to the Planets  

NSDL National Science Digital Library

This is a collection of over 200 of the best images from NASA's planetary exploration program. There are captioned images from the major planets, small bodies, and the space craft used for the images.

1995-01-01

187

Magnetic Mystery Planets  

NASA Astrophysics Data System (ADS)

The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and they can even give us clues to the atmospheric history of these planets. This paper highlights a classroom presentation and accompanying activity that focuses on the differences between the magnetic fields of Venus, Earth, and Mars, what these differences mean, and how we measure these differences. During the activity, students make magnetic field measurements and draw magnetic field lines of “mystery planets” using orbiting “spacecraft” (small compasses). Based on their observations, the students then determine whether they are orbiting Venus-like, Earth-like, or Mars-like planets. This activity is targeted to middle and high school audiences. However, we have also used a scaled-down version with elementary school audiences.

Fillingim, M.; Brain, D.; Peticolas, L.; Yan, D.; Fricke, K.; Thrall, L.

2014-07-01

188

Evolution of a Habitable Planet  

Microsoft Academic Search

Giant planets have now been discovered around other stars, and it is only a matter of time until Earth-sized planets are detected. Whether any of these planets are suitable for life depends on their volatile abundances, especially water, and on their climates. Only planets within the liquid-water habitable zone (HZ) can support life on their surfaces and, thus, can be

James F. Kasting; David Catling

2003-01-01

189

Planet Designer: What's Trending Hot?  

NSDL National Science Digital Library

This is an activity about the way distance, reflectivity, and atmosphere affect the temperature of a planet. Learners will create a planet using a computer game and change features of the planet to increase or decrease the planet's temperature. This lesson is part of Project Spectra, a science and engineering education program focusing on how light is used to explore the Solar System.

190

Climate model studies of synchronously rotating planets.  

PubMed

M stars constitute 75% of main sequence stars though, until recently, their star systems have not been considered suitable places for habitable planets to exist. In this study the climate of a synchronously rotating planet around an M dwarf star is evaluated using a three-dimensional global atmospheric circulation model. The presence of clouds and evaporative cooling at the surface of the planet result in a cooler surface temperature at the subsolar point. Water ice forms at the polar regions and on the dark side, where the minimum temperature lies between -30 degrees C and 0 degrees C. As expected, rainfall is extremely high on the starlit side and extremely low on the dark side. The presence of a dry continent causes higher temperatures on the dayside, and allows accumulation of snow on the nightside. The absence of any oceans leads to higher day-night temperature differences, consistent with previous work. The present study reinforces recent conclusions that synchronously rotating planets within the circumstellar habitable zones of M dwarf stars should be habitable, and therefore M dwarf systems should not be excluded in future searches for exoplanets. PMID:14577888

Joshi, Manoj

2003-01-01

191

THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE  

SciTech Connect

Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ?} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

Ueta, S.; Sasaki, T., E-mail: ueta@geo.titech.ac.jp, E-mail: takanori@geo.titech.ac.jp [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

2013-10-01

192

Transit of Extrasolar Planets  

NASA Technical Reports Server (NTRS)

During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.

Doyle, Laurance R.

1998-01-01

193

The Planet Pluto  

NSDL National Science Digital Library

This series of webpages is part of a course called Astronomy 161: The Solar System, offered by the Department of Physics and Astronomy at the University of Tennessee. This section covers the general features of Pluto, including information on whether it is the eighth or ninth planet from the Sun, and whether there are additional planets beyond Pluto. There are also subsections on the surface of Pluto and its moon, Charon, including Hubble Space Telescope images.

2007-04-14

194

Planet/Moon Trivia  

NSDL National Science Digital Library

This is an activity about defining characteristics or features of the planets and their moons. Learners will use the Solar System Update software to complete a worksheet asking them to find the planet and/or moon that matches each listed description. This activity requires the use of a computer with Internet access, and is Solar System Activity 1 in a larger resource, Space Update.

195

The planet Mercury (1971)  

NASA Technical Reports Server (NTRS)

The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

1972-01-01

196

The Atmospheres of Extrasolar Planets  

NASA Technical Reports Server (NTRS)

In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

Richardson, L. J.; Seager, S.

2007-01-01

197

Popular Music: A Creative Teaching Resource.  

ERIC Educational Resources Information Center

Discusses (1) what is popular music, (2) reasons for using popular music in social studies classes, (3) where resources on teaching popular music can be obtained, and (4) how a social studies teacher can introduce popular music resources in instruction. (CMV)

Cooper, B. Lee

1979-01-01

198

Building a virtual planet  

NASA Technical Reports Server (NTRS)

The virtual Planetary Laboratory (VPL) is a recently funded 5-yr project, which seeks toimprove our understanding of the range of plausible environments and the likely signatures for life on extrasolar terrestrial planets. To achieve these goals we are developing a suite of innovative modeling tools to simulate the environments and spectra of extrasolar planets. The core of the VPL IS a coupled radiative transfer/climate/chemistry model, which is augmented by interchangeable modules which characterize geological, exogenic, atmospheric escape, and life processes. The VPL is validated using data derived from terrestrial planets within our own solar system. The VPL will be used to explore the plausible range of atmospheric composittions and globally averaged spectra for extrasolar planets and for early Earth, and will improve our understanding of the effect of life on a planet's atmospheric spectrum and composition. The models will also be used to create a comprehensive spectral catalog to provide recommendations on the optimum wavelength range, spectral resolution, and instrument sensitivity required to characterize extrasolar terrestrial planets. Although developed by our team, the VPL is envisioned to be a comprehensive and flexible tool, which can be collaboratively used by the broader planetary science and astrobiology communities. This presentation will describe the project concept, the tasks involved, and will outline current progress to date. This work is funded by the NASA Astrobiology Institute.

Meadows, V. S.

2002-01-01

199

The role of popularity goal in early adolescents' behaviors and popularity status.  

PubMed

The effect of popularity goal on the use of 3 popularity-related behaviors and later popularity status was examined in a diverse sample of 314 6th-grade students (176 girls and 138 boys) in both fall (Time 1) and spring (Time 2) semesters. Popularity goal and the use of popularity-driven behaviors (e.g., "I change the way I dress in order to be more popular") were assessed by self-report survey items (Time 1). Physical aggression, social aggression (Time 1), and perceived popularity (Times 1 and 2) were assessed by peer nominations. Popularity goal was positively associated with popularity-driven behaviors, social aggression, and physical aggression. There was a significant interaction effect between popularity goal and popularity status on the use of concurrent social aggression at Time 1; a higher popularity goal was associated with greater usage of social aggression for high-popular adolescents. Popularity goal alone did not predict popularity status change at Time 2; rather, greater use of social aggression at Time 1 was associated with higher Time 2 popularity status for initially high-popular adolescents who had a high-popularity goal and for initially low-popular adolescents who had a low-popularity goal. A similar 3-way interaction effect was found for physical aggression. Results suggest that the adolescents' goal for popularity may help us better understand the functions of aggressive and popularity-driven behaviors in peer social networks. PMID:23688171

Dawes, Molly; Xie, Hongling

2014-02-01

200

Classifying Planets: Nature vs. Nurture  

NASA Astrophysics Data System (ADS)

The idea of a planet was so simple when we learned about the solar system in elementary school. Now students and professional s alike are faced with confusing array of definitions --- from "Brown Dwarfs” to "Super Jupiters", from "Super Earths” to "Terrestrial Planets", and from "Planets” to "Small, Sort-of Round Things That Aren't Really Planets". I will discuss how planets might be defined by how they formed, where they are found, or by the life they might support.

Beichman, Charles A.

2009-05-01

201

Extrasolar Binary Planets. I. Formation by Tidal Capture during Planet-Planet Scattering  

NASA Astrophysics Data System (ADS)

We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call "binary planets") from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (~10 Gyr), if the binary planets are beyond ~0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at >~ 0.3 AU.

Ochiai, H.; Nagasawa, M.; Ida, S.

2014-08-01

202

Orbital Evolution and Migration of Giant Planets: Modeling Extrasolar Planets  

E-print Network

Giant planets in circumstellar disks can migrate inward from their initial (formation) positions. Radial migration is caused by inward torques between the planet and the disk; by outward torques between the planet and the spinning star; and by outward torques due to Roche lobe overflow and consequent mass loss from the planet. We present self-consistent numerical considerations of the problem of migrating giant planets. Summing torques on planets for various physical parameters, we find that Jupiter-mass planets can stably arrive and survive at small heliocentric distances, thus reproducing observed properties of some of the recently discovered extra-solar planets. Inward migration timescales can be approximately equal to or less than disk lifetimes and star spindown timescales. Therefore, the range of fates of massive planets is broad, and generally comprises three classes: (I) planets which migrate inward too rapidly and lose all their mass; (II) planets which migrate inward, lose some but not all of their mass, and survive in very small orbits; and (III) planets which do not lose any mass. Some planets in Class III do not migrate very far from their formation locations. Our results show that there is a wide range of possible fates for Jupiter-mass planets for both final heliocentric distance and final mass.

D. E. Trilling; W. Benz; T. Guillot; J. I. Lunine; W. B. Hubbard; A. Burrows

1998-01-28

203

Polarimetry of gas planets  

NASA Astrophysics Data System (ADS)

The quest for new worlds was not only an adventure at the times of Columbus. Also nowadays mankind searches for new, undiscovered territories. But today they lie no longer only on our Earth, but also well outside the solar system. There, new planets are sought and found. One of the challenges of modern astrophysics is the direct detection of extra- solar planets. To reach this goal, the largest available telescopes and most sophisticated detection techniques are required. A promising method to "see" and analyse extra-solar planets is based on the fact, that light reflected by a planet can be polarised. For its detection, accurate polarisation measurements are needed. This is one of the methods ESO intends to make use of to find new planets outside the solar system. The Institute of Astronomy of ETH Zürich contributes ZIMPOL to this planet-finder project. ZIMPOL is a very sensitive imaging polarimeter. This thesis is situated within the ESO-planet-finder project. It deals with two problems that are crucial for a successful mission: (1) Instrumental polarisation can seriously hamper the performance of the instrument. It is therefore essential, to keep instrumental polarisation very low. (2) A knowledge of the polarisation properties of our targets would be very helpful. For this reason the polarisation properties of our solar system planets are investigated. Promising candidates for a detection with ZIMPOL are large planets with atmospheres similar to those of our giant gas planets Jupiter, Saturn, Uranus and Neptune. In the first part of the thesis the planet-finder project is presented and the role of ZIMPOL is explained. To obtain the instrumental polarisation, the polarimetric properties of mirrors and other optical components of our planet- finder instrument are analysed. The instrumental polarisation for the wavelength range of 600 to 1000 nm and for all zenith distances is calculated with Mueller matrices. Methods for reducing the instrumental polarisation are proposed and checked by the renewed application of the Mueller calculus. The correction of the instrumental polarisation is divided into two parts. First, a combination of a rotating half-wave plate and a plane mirror compensate the polarisation introduced by the Nasmyth mirror. Secondly, a rotatable and tiltable glass plate compensates the residual polarisation introduced by oblique reflections on mirrors after the Nasmyth mirror. Further, possible aging effects of the mirrors are considered and consequences for the polarisation are highlighted. An error budget for non perfect retardation of the half-wave plate is also regarded, and the effects for the polarisation are calculated. In the second part spectropolarimetric measurements of the four gas planets Jupiter, Saturn, Uranus and Neptune for the wavelength range from 530 to 930 nm are presented. Our measurements of Uranus and Neptune are the first of their kind. For Uranus and Neptune a second-order scattering effect, leading to limb polarisation, has been measured. This effect is expected in atmospheres of Rayleigh scattering type and allows conclusions on the properties of the scatterers and the stratification inside the atmosphere. The limb polarisation reaches a maximum of more than 3% on Uranus. Spectropolarimetric plots for selected regions on Uranus and polarimetric profiles parallel to the spectrographic slits are presented. An enhanced polarisation in the methane absorption bands is detected. For both planets the limb polarisation decreases with wavelength. For Jupiter and Saturn profiles parallel to the slits and polarimetric spectra for some selected regions such as the poles of Jupiter or the ring system of Saturn are presented. The poles of Jupiter exhibit a large polarisation (up to 10%) perpendicular to the limb. In the methane absorption bands at the Jovian poles the polarisation is enhanced compared to the adjacent higher albedo regions. The polarisation decreases from short wavelengths towards longer wavelengths. Disc resolved spectropolarimetry of Saturn has not yet been publi

Joos, Franco

204

Popular democracy and waste management  

SciTech Connect

The US has moved from representative democracy to popular democracy and public scrutiny is unrelenting. Any hope of success on their part in resolving the nuclear waste question hinges on their ability to condition themselves to operate in a popular democracy environment. Those opposed to the siting of high- and low-level waste repositories have already developed a set of recurring themes: (1) the siting criteria are fatally flawed; (2) the criteria are not adequate; (3) the process is driven by politics not science; (4) unrealistic deadlines lead to dangerous shortcuts; (5) transportation experience is lacking; (6) the scientific community does not really know how to dispose of the wastes. They must continue to tell the public that if science has brought us problems, then the answer can be only more knowledge - not less. Failure by their profession to recognize that popular democracy is a fact and that nuclear issues need to be addressed in humanistic terms raises the question of whether America is philosophically suited for the expanded use of nuclear power in the future - or for that matter for leadership in the world of tomorrow.

Wallis, L.R.

1986-01-01

205

Submersible pumps are gaining popularity  

Microsoft Academic Search

One problem offshore drilling platforms would not seem to face is a shortage of water for such essential needs as a fire protection, service water, cooling, and washdown and transfer services. Actually, the problem of pumping the water from the ocean to the drilling deck is one that has been giving platform designers and operators cause for concern - and

Mollne

1981-01-01

206

From Spaceship Earth to Google Ocean: Planetary Icons, Indexes, and Infrastructures  

E-print Network

What sort of image does the planet Earth possess at the opening of the 21st century? If in the 1960s, the Whole Earth, the planet as seen from space, became a cold war, proto-environmentalist icon for a fragile ocean planet, ...

Helmreich, Stefan

207

Radar Imaging of Ocean Surface Patterns  

Microsoft Academic Search

Radar imagery of ocean surface patterns is presented and discussed. The imaging radar detects changes in ocean surface backscatter and yields imagery of deepwater gravity waves, oil slicks, island shadows, internal waves, coastal waves, and other features. The results of several observations suggest that the surface irregularities behave as iostropic scatterers for a radar wavelength of 25 cm. The popular

W. E. Brown; C. Elachi; T. W. Thompson

1976-01-01

208

Bringing Ocean Science News To the Classroom  

NSDL National Science Digital Library

One of the goals of COSEE-Ocean Systems and its partners is to work toward bridging the gap between "school science" and "scientist science," in the context of using ocean examples to guide science inquiry. This article addresses popular media as a valuable source of science information, keeping current science research (or "scientist science"), and its outcomes and implications in front of students.

209

Noble gases in meteorites and terrestrial planets  

NASA Technical Reports Server (NTRS)

Terrestrial planets and chondrites have noble gas platforms that are sufficiently alike, especially Ne/Ar, that they may have acquired their noble gases by similar processes. Meteorites presumably obtained their noble gases during formation in the solar nebula. Adsorption onto C - the major gas carrier in chondrites - is the likely mechanism for trapping noble gases; recent laboratory simulations support this hypothesis. The story is more complex for planets. An attractive possibility is that the planets acquired their noble gases in a late accreting veneer of chondritic material. In chondrites, noble gases correlate with C, N, H, and volatile metals; by Occam's Razor, we would expect a similar coupling in planets. Indeed, the Earth's crust and mantle contain chondritic like trace volatiles and PL group metals, respectively and the Earth's oceans resemble C chondrites in their enrichment of D (8X vs 8-10X of the galactic D/H ratio). Models have been proposed to explain some of the specific noble gas patterns in planets. These include: (1) noble gases may have been directly trapped by preplanetary material instead of arriving in a veneer; (2) for Venus, irradiation of preplanetary material, followed by diffusive loss of Ne, could explain the high concentration of AR-36; (3) the Earth and Venus may have initially had similar abundances of noble gases, but the Earth lost its share during the Moon forming event; (4) noble gases could have been captured by planetestimals, possibly leading to gravitational fractionation, particularly of Xe isotopes and (5) noble gases may have been dissolved in the hot outer portion of the Earth during contact with a primordial atmosphere.

Wacker, J. F.

1985-01-01

210

Earth Planets Space, 53, 861871, 2001 Dehydration of serpentinized slab mantle: Seismic evidence from southwest Japan  

E-print Network

Earth Planets Space, 53, 861­871, 2001 Dehydration of serpentinized slab mantle: Seismic evidence this variety on the basis of dehydration embrittlement in the subducting oceanic crust and/or mantle. The PHS may reflect dehydration embrittlement in the hydrated subducting oceanic crust only, implying the lack

Seno, Tetsuzo

211

Transient Universe: Popular, Not so Popular & Knowable Unknowns  

NASA Astrophysics Data System (ADS)

MOTIVATION & PURPOSE: This informal two day workshop is intended to bring together astronomers who monitor the sky for transient phenomena - a field which is poised to take off in the optical band, thanks to the exponential growth in the availability of giga pixel detectors, rapid computing and communication. For somewhat similar technological reasons, decimeter and decameter radio astronomy is also poised to grow in this area. The workshop will focus on astronomical opportunities with ongoing searches and discuss the possibilities with planned facilities in the near term. We hope to rapidly review the status of 'popular' sources (e.g. GRB afterglows, Supernovae, Machos), less popular events (e.g. Novae, geysers and gushers) and then move onto 'odd' but not hopelessly rare events. The spirit is to anticipate some of the discoveries by extending the astrophysical parameter space of known (or knowable) classes of transients. This workshop is part of the ongoing KITP Program "The Supernova Gamma Ray Burst Connection" and has received funding Los Alamos National Laboratory. We will follow the well honed KITP tradition of having fewer talks at the expense of long discussions. All talks will be recorded (per KITP tradition) and made available on the web for enjoyment, education and posterity. In lieu of a traditional poster sessions with old-fashioned easels we offer the Virtual Presence (organized by J. Bloom).

Bildsten, L.; Fryer, C.; Kulkarni, S.

2006-03-01

212

Ocean Mammals  

NSDL National Science Digital Library

What are the different types of mammals that live in the ocean? First, you will need to use the Ocean Mammals Table 1. This website is here for you to learn about ocean mammals. Mammals 2. This website will help you learn about the different mammals that live in the ocean. Ocean Mammals 3. Here is some information about how oil spills effect animal skin in the ocean. Oil Spills 4. This link ...

Teschner, Miss

2011-04-06

213

Planet formation; orbital evolution and planet-star tidal interaction  

Microsoft Academic Search

We consider several processes operating during the late stages of planet formation that can affect observed orbital elements. Disk-planet interactions, tidal interactions with the central star, long term orbital instability and the Kozai mechanism are discussed.

G. Bryden; J. C. B. Papaloizou; C. Terquem; S. Ida

1998-01-01

214

Planet formation, orbital evolution and planet-star tidal interaction  

E-print Network

We consider several processes operating during the late stages of planet formation that can affect observed orbital elements. Disk-planet interactions, tidal interactions with the central star, long term orbital instability and the Kozai mechanism are discussed.

D. N. C. Lin; J. C. B. Papaloizou; G. Bryden; S. Ida; C. Terquem

1998-09-15

215

Strange Planets Planetarium Program  

NSDL National Science Digital Library

This planetarium show is designed to engage visitors directly in activities and demonstrations, and is optimized for group sizes of 25 to 70 people. Show content includes general planet-finding techniques (Doppler, astrometric, etc.), an audience activity about the transit method of extrasolar planet discovery, NASA Kepler mission, and Johannes Kepler's work. It is 50-minutes long, but modular, so that it can be adjusted for shorter lengths (suggestions for 30-minute and 40-minute versions are provided in the script). The script, images, movies and music are available for free download at the website provided.

216

Bing & Bong's Tiny Planet  

NSDL National Science Digital Library

The Bing & Bong's Tiny Planet website, a supplement to the educational television series, offers excellent science activities, games, and online books for small children. Users can sail around the planet to learn about wind, read an online story to discover space, take an adventure through the water cycle, and much more. Visitors can also learn the essentials of colors, shapes, and light through short videos and interactive modules. The colorful website offers a great way for children to begin learning about the fascinating world.

217

Play Dough Planets  

NSDL National Science Digital Library

This is a lesson about planet sizes. Learners will demonstrate the size (volume) differences between Earth, Earthâs Moon, and Mars. An extension to estimate the distance between the Earth and the Moon, and the Earth and Mars, using the scale of the play dough planets' sizes is provided. Advance preparation of the play dough (recipie provided) is required. This is lesson 3 of 16 in the MarsBots learning module. It was adapted from 3-D Model of the Earth and Moon, an activity in The Universe at Your Fingertips.

218

Changing Planet: Fading Corals  

NSDL National Science Digital Library

This video provides a comprehensive introduction to the role of coral reefs, the physiology of corals, and the impacts of both ocean warming and acidification on coral survival. It highlights experts from the Bermuda Institute of Ocean Sciences and the University of Miami.

Universe, Nbc L.

219

Conversations for a smarter planet: A planet of smarter cities.  

E-print Network

economic and societal progress and a huge strain on the planet's infrastructure. In Australian cities a real impact today. But they are just the first step toward a true smart city. For a glimpse of whatConversations for a smarter planet: A planet of smarter cities. © Copyright IBM Australia Limited

220

Was There Really a Popular Science "Boom"?  

ERIC Educational Resources Information Center

Traces the major developments and trends in contemporary popular science. Identifies magazines, television shows, and newspaper sections devoted to popular science and discusses their status and impact. Comments on the rise, fall, and future of the "science boom." (ML)

Lewenstein, Bruce V.

1987-01-01

221

NASA Reveals Most Unusual Planet  

NASA Video Gallery

In exploring the universe, NASA has uncovered one planet more unusual than all others. This 30 second video shows you which planet that is, and explains that NASA science helps us better understand...

222

Which Planet Shall We Visit?  

NSDL National Science Digital Library

Learners will compare images of planets and select one planet to visit and tell the tale of their visit through a comic strip. This is activity 9 of 9 in Mars and Earth: Science Learning Activities for After School.

223

Finding Planets around other stars  

NASA Video Gallery

Just as the Earth revolves around the sun, our closest star, other planets might orbit the stars you see in the night sky. Think of all the planets in the universe that may be just the right distan...

224

GEOLogic: Terrestrial and Jovian Planets  

NSDL National Science Digital Library

In this two-part example, students are given clues about properties about the terrestrial and Jovian planets respectively and asked to match up the planet with the correct equatorial radius, mean orbital velocity, and period of rotation.

Guertin, Laura

225

Planet Eart Interactive  

E-print Network

Deadliest Catch Dirty Jobs Future Weapons Human Body Man Vs. Wild MythBuste Raw Planet Eart Shark-shaped-camera.html #12;Eye Glass Get LASIK. Sat. Surgeries - Be Back At Work By Mon. Free Consultation! www curved for capturing images, but up to now artificial vision systems have been limited to flat image

Rogers, John A.

226

Accumulation of the Planets  

NASA Technical Reports Server (NTRS)

The purpose of this project is to increase understanding of planet forming processes that are likely to have occurred in the Solar System during its early evolution. This was accomplished by development of computer models that are compatible with the present state of the Solar System as well as with observational and theoretical data attained from astrophysical observations and theory.

Wetherill, George W.

2002-01-01

227

Giant Planets Tristan Guillot  

E-print Network

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Energy balance and atmospheric temperature profiles . . . . . . . . . . . . . . . . 10 2.6 Atmospheric dynamics: winds and weather . . . . . . . . . . . . . . . . . . . . . . 11 2.7 Moons and rings for planetary formation models 34 6 Future prospects 35 2 hal-00439598,version1-8Dec2009 #12;The Giant Planets

Paris-Sud XI, Université de

228

The Outer Planets  

NSDL National Science Digital Library

Students explore the outermost planets of our solar system: Saturn, Uranus and Neptune. They also learn about characteristics of Pluto and its interactions with Neptune. Students learn a little about the history of space travel as well as the different technologies that engineers develop to make space travel and scientific discovery possible.

Integrated Teaching And Learning Program

229

Dwarf Planet Pluto  

NSDL National Science Digital Library

This page from Views of the Solar System provides access to images and animations of the binary dwarf planet composed of Pluto and Charon. Did you know that the Hubble Space Telescope discovered two additional moons in the Pluto-Charon system?

Hamilton, Calvin J.; Self-Published

230

Planets and Pucks.  

ERIC Educational Resources Information Center

Presents a simple activity designed to allow students to experimentally verify Kepler's second law, sometimes called the law of equal areas. It states that areas swept out by a planet as it orbits the Sun are equal for equal time intervals. (PR)

Brueningsen, Christopher; Krawiec, Wesley

1993-01-01

231

Planets and Life  

Microsoft Academic Search

Astrobiology involves the study of the origin and history of life on Earth, planets and moons where life may have arisen, and the search for extraterrestrial life. It combines the sciences of biology, chemistry, palaeontology, geology, planetary physics and astronomy. This textbook brings together world experts in each of these disciplines to provide the most comprehensive coverage of the field

Woodruff T. Sullivan III; John Baross

2001-01-01

232

The Artificial Planet  

NASA Astrophysics Data System (ADS)

An interim milestone for interstellar space travel is proposed: the artificial planet. Interstellar travel will require breakthroughs in the areas of propulsion systems, energy systems, construction of large space structures, protection from space & radiation effects, space agriculture, closed environmental & life support systems, and many other areas. Many difficult problems can be attacked independently of the propulsion and energy challenges through a project to establish an artificial planet in our solar system. Goals of the project would include construction of a large space structure, development of space agriculture, demonstration of closed environmental & life support systems over long time periods, selection of gravity level for long-term spacecraft, demonstration of a self-sufficient colony, and optimization of space colony habitat. The artificial planet would use solar energy as a power source. The orbital location will be selected to minimize effects of the Earth, yet be close enough for construction, supply, and rescue operations. The artificial planet would start out as a construction station and evolve over time to address progressive goals culminating in a self-sufficient space colony.

Glover, D. R.

233

The Nine Planets: Appendices  

NSDL National Science Digital Library

This Nine Planets page offers additional information not included in any other pages of the site. It includes tables of solar system data, discovery chronology, a brief look at the origin of the solar system, planetary linguistics, explanations of astronomical names, a master picture list, and links for more information.

Arnett, Bill

234

Single planet, divided world  

Microsoft Academic Search

Unlike other forms of life on planet earth, humans have contrived to flourish—or at least multiply—by splitting themselves horizontally into incommensurable units and vertically into a species above, or privileged within, the realm of nature. The human proclivity for division, exclusion, and alienation is not absolute; it is endlessly challenged and often diluted by integrating tendencies. Historically, phenomena such as

Richard Matthew

1994-01-01

235

EXTRASOLAR PLANETS Awhiffofmethane  

E-print Network

- pheres in our Solar System: those of Earth, Mars, Titan and the gas giants, Jupiter, Saturn, Uranus planetary formation, evolution, weather, photochemistry and -- in the case of Earth -- life. We have amorerobust estimateof itsabun- dance. The planet is a `hot Jupiter' that orbits only 0.03 Earth­Sun distances

236

Planets and Dark Energy  

E-print Network

Self gravitational fluid mechanical methods termed hydro-gravitational-dynamics (HGD) predict plasma fragmentation 0.03 Myr after the turbulent big bang to form protosuperclustervoids, turbulent protosuperclusters, and protogalaxies at the 0.3 Myr transition from plasma to gas. Linear protogalaxyclusters fragment at 0.003 Mpc viscous-inertial scales along turbulent vortex lines or in spirals, as observed. The plasma protogalaxies fragment on transition into white-hot planet-mass gas clouds (PFPs) in million-solar-mass clumps (PGCs) that become globular-star-clusters (GCs) from tidal forces or dark matter (PGCs) by freezing and diffusion into 0.3 Mpc halos with 97% of the galaxy mass. The weakly collisional non-baryonic dark matter diffuses to > Mpc scales and fragments to form galaxy cluster halos. Stars and larger planets form by binary mergers of the trillion PFPs per PGC, mostly on 0.03 Mpc galaxy accretion disks. Stars deaths depend on rates of planet accretion and internal star mixing. Moderate accretion rates produce white dwarfs that evaporate surrounding gas planets by spin-radiation to form planetary nebulae before Supernova Ia events, dimming some events to give systematic distance errors, the dark energy hypothesis, and the Sandage 2006 overestimates of the universe age.

Carl H. Gibson; Rudolph E. Schild

2008-03-30

237

Our Growing Planet  

NSDL National Science Digital Library

Children are naturally curious and passionate about taking care of the world around them. To capitalize on these interests, the unit described in this article was the result of a schoolwide theme entitled People and the Planet (Wasserman 1996). The unit h

Lener, Elizabeth

2001-05-01

238

External Resource: Clay Planets  

NSDL National Science Digital Library

In this activity, learners/students use given amounts of clay to create models of the solar system. Learners/students use clay to represent different planets and other objects in the solar system (asteroids, moons, etc.). The learners/students can use as

1900-01-01

239

The Popularity of Middle School Bullies  

ERIC Educational Resources Information Center

This study investigated the peer popularity of middle school students involved in bullying. Bullying was assessed by peer report using the School Climate Bullying Survey (SCBS) and popularity was assessed through peer nominations from a student roster. In a sample of 379 middle school students, bullies were among the most popular students in the…

Thunfors, Peter; Cornell, Dewey

2008-01-01

240

Popular Culture and the New Journalism.  

ERIC Educational Resources Information Center

This paper discusses the concept of popular culture, relating it to new journalism as a phenomenon which reflects the popular images of society. Style is the essential element of popular culture so that the kind of writing presently known as new journalism is the ultimate example of the philosophy that style is supreme. But the style of the best…

Fishwick, Marshall W.

241

Extrasolar Planets in the Classroom  

ERIC Educational Resources Information Center

The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

George, Samuel J.

2011-01-01

242

What is a Planet? Video  

NSDL National Science Digital Library

This is a video about the IAU definition of a planet. Learners will watch 3D animation designed to illustrate the history behind the discussion defining the question, what is a planet?, and to outline some of the traits that may be associated with the definition of a planet.

243

Ocean Talk  

NSDL National Science Digital Library

Ocean Talk provides a glimpse of oceanography and an awareness of the importance of the sea to our environment and our own well-being. There are scientific explanations of ocean bottom features, the properties of seawater, underwater sound, sea ice, ocean currents, tides, waves, and tsunamis. A history of marine exploration and descriptions of the Earth's oceans are also provided.

244

ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS  

SciTech Connect

We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Marcy, Geoffrey W. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Buchhave, Lars A. [Niels Bohr Institute, University of Copenhagen, DK-2100, Copenhagen (Denmark); Ciardi, David R. [Exoplanet Science Institute/Caltech, Pasadena, CA 91125 (United States); Cochran, William D. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Fabrycky, Daniel C. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Ford, Eric B.; Morehead, Robert C. [University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Gilliland, Ronald L., E-mail: Jack.Lissauer@nasa.gov [Space Telescope Science Institute, Baltimore, MD 21218 (United States); and others

2012-05-10

245

Origin of the atmosphere and hydrosphere of the terrestrial planets  

NASA Technical Reports Server (NTRS)

An early thermal evolution of a planet growing by planetesimal impacts was studied. An evolution of an impact induced atmosphere was considered. It is known that the surface of a growing planet is heated due to the blanketing effect of the atmosphere and exceeds the melting temperature, which means that the surface of a growing planet was entirely covered by a magma ocean. The amount of water in a proto-atmosphere is influenced by the formation of a magma ocean. It is suggested the solubility of water in silicate melt controls the water content in a proto-atmsphere. It is noted that irrespective of difference in initial water content of planetesimals the final water content in the atmosphere becomes almost constant and is about 10 to the 21st power kg which is almost identical with the present amount of the ocean. It is also shown that the water in a proto-atmosphere can be liquid for the Earth and becomes to be an ocean but this does not happen on Venus.

Matsui, T.; Abe, Y.

1985-01-01

246

THE INTERIOR DYNAMICS OF WATER PLANETS  

SciTech Connect

The ever-expanding catalog of detected super-Earths calls for theoretical studies of their properties in the case of a substantial water layer. This work considers such water planets with a range of masses and water mass fractions (2-5 M{sub Earth}, 0.02%-50% H{sub 2}O). First, we model the thermal and dynamical structure of the near-surface for icy and oceanic surfaces, finding separate regimes where the planet is expected to maintain a subsurface liquid ocean and where it is expected to exhibit ice tectonics. Newly discovered exoplanets may be placed into one of these regimes given estimates of surface temperature, heat flux, and gravity. Second, we construct a parameterized convection model for the underlying ice mantle of higher ice phases, finding that materials released from the silicate-iron core should traverse the ice mantle on the timescale of 0.1 to 100 megayears. We present the dependence of the overturn times of the ice mantle and the planetary radius on total mass and water mass fraction. Finally, we discuss the implications of these internal processes on atmospheric observables.

Fu, Roger; O'Connell, Richard J. [Earth and Planetary Sciences Department, Harvard University, 20 Oxford Street, Cambridge, MA 02138 (United States); Sasselov, Dimitar D., E-mail: rogerfu12@gmail.co, E-mail: richard_oconnell@harvard.ed, E-mail: sasselov@cfa.harvard.ed [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2010-01-10

247

Possible Habitability of Ocean Worlds  

NASA Astrophysics Data System (ADS)

In the last decade, the number of detected exoplanets has increased to over thousand confirmed planets and more as yet unconfirmed planet candidates. The scientific community mainly concentrates on terrestrial planets (up to 10 Earth masses) in the habitable zone, which describes the distance from the host star where liquid water can exist at the surface (Kasting et al., 1993). Another target group of interest are ocean worlds, where a terrestrial-like body (i.e. with an iron core and a silicate mantle) is covered by a thick water-ice layer - similar to the icy moons of our solar system but with several Earth masses (e.g. Grasset et al., 2009). When an exoplanet is detected and confirmed as a planet, typically the radius and the mass of it are known, leading to the mean density of the planet that gives hints to possible interior structures. A planet with a large relative iron core and a thick ocean on top of the silicate mantle for example would have the same average planet density as a planet with a more Earth-like appearance (where the main contributor to the mass is the silicate mantle). In this study we investigate how the radius and mass of a planet depend on the amount of water, silicates and iron present (after Wagner et al., 2011) the occurence of high-pressure-ice in the water-ice layer (note: we only consider surface temperatures at which liquid water exists at the surface) if the ocean layer influences the initiation of plate tectonics We assume that ocean worlds with a liquid ocean layer (and without the occurence of high-pressure ice anywhere in the water layer) and plate tectonics (especially the occurence of subduction zones, hydrothermal vents and continental formation) may be called habitable (Class III/IV habitats after Lammer et al., 2009). References: Kasting, J.F., Whitmire, D.P., and Reynolds, R.T. (1993). Habitable Zones around Main Sequence Stars. Icarus 101, 108-128. Grasset, O., Schneider, J., and Sotin, C. (2009). A study of the accuracy of mass-radius relationships for silicate-rich and ice-rich planets up to 100 Earth masses. The Astrophysical Journal 693, 722-733. Wagner, F.W., Sohl, F., Hussmann, H., Grott, M., and Rauer, H. (2011). Interior structure models of solid exoplanets using material laws in the infinite pressure limit. Icarus 214, 366-376. Lammer, H., Bredehöft, J.H., Coustenis, A., Khodachenko, M.L., Kaltenegger, L., Grasset, O., Prieur, D., Raulin, F., Ehrenfreund, P., Yamauchi, M., Wahlund, J.-E., Grießmeier, J.-M., Stangl, G., Cockell, C.S., Kulikov, Yu.N., Grenfell, J.L., and Rauer, H. (2009). What makes a planet habitable? Astron Astrophys Rev 17, 181-249.

Noack, Lena; Höning, Dennis; Bredehöft, Jan H.; Lammer, Helmut

2014-05-01

248

The transmission spectrum of Earth-size transiting planets  

E-print Network

A variety of terrestrial planets with different physical parameters and exotic atmospheres might plausibly exist outside our Solar System, waiting to be detected by the next generation of space-exploration missions. Some of these planets might transit their parent star. We present here the first study of atmospheric signatures of transiting Earth-size exoplanets. We focus on a limited number of significant examples, for which we discuss the detectability of some of the possible molecules present in their atmospheres, such as water, carbon dioxide, ozone or molecular oxygen. To this purpose, we developed a model to simulate transmission spectra of Earth-size exoplanets from the ultraviolet to the near infrared. According to our calculations, the signatures of planetary atmospheres represent an absorption of a few parts-per-million (ppm) in the stellar flux. The atmospheres of a few Earth-like planets can be detected with a 30-40m telescope. The detection of the extensive atmospheres of tens of small satellites of giant exoplanets and hundreds of hypothetical ocean-planets can be achieved with 20-30m and 10-20m instruments, respectively, provided all these planets are frequent and they are efficiently surveyed. We also found that planets around K stars are favored, mainly because these stars are more numerous and they are smaller compared to G or F stars. While not addressed in this study, limitations might come from the stellar photometric micro-variability.

David Ehrenreich; Giovanna Tinetti; Alain Lecavelier Des Etangs; Alfred Vidal-Madjar; Franck Selsis

2005-10-07

249

MAY 2013 POPULAR SCIENCE 5150 POPULAR SCIENCE MAY 2013 DATA DRIVEN Dr. Neil  

E-print Network

MAY 2013 POPULAR SCIENCE 5150 POPULAR SCIENCE MAY 2013 DATA DRIVEN Dr. Neil Hammerschlag (wearing SCIENCE 5352 POPULAR SCIENCE MAY 2013 APEX PREDATOR We are in the Bahamas, in a marine preserve, fishing AND VOLUNTEERS ARMED WITH HOMEMADE TRACKERS SAVE SHARKS FROM EXTINCTION? BY BRIAN LAM #12;MAY 2013 POPULAR

Miami, University of

250

POPULARIZATION OF SCIENCE IN THE USSR POPULARIZATION OF SCIENCE IN THE USSR  

E-print Network

POPULARIZATION OF SCIENCE IN THE USSR POPULARIZATION OF SCIENCE IN THE USSR A. BALDIN Joint not at all a specialist in popularizing science and second, I have not prepared anything a s has my bright are the following : 1)Is there public interest in high energy physics ? 2) What forms of popularization of science

Paris-Sud XI, Université de

251

Theories of Giant Planet Formation  

NASA Technical Reports Server (NTRS)

An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

1998-01-01

252

PREDICTING PLANETS IN KEPLER MULTI-PLANET SYSTEMS  

SciTech Connect

We investigate whether any multi-planet systems among Kepler candidates (2011 February release) can harbor additional terrestrial-mass planets or smaller bodies. We apply the packed planetary systems hypothesis that suggests all planetary systems are filled to capacity, and use a Hill stability criterion to identify eight two-planet systems with significant gaps between the innermost and outermost planets. For each of these systems, we perform long-term numerical integrations of 10{sup 7} years to investigate the stability of 4000-8000 test particles injected into the gaps. We map out stability regions in orbital parameter space, and therefore quantify the ranges of semimajor axes and eccentricities of stable particles. Strong mean-motion resonances can add additional regions of stability in otherwise unstable parameter space. We derive simple expressions for the extent of the stability regions, which is related to quantities such as the dynamical spacing {Delta}, the separation between two planets in units of their mutual Hill radii. Our results suggest that planets with separation {Delta} < 10 are unlikely to host extensive stability regions, and that about 95 out of a total of 115 two-planet systems in the Kepler sample may have sizeable stability regions. We predict that Kepler candidate systems including KOI 433, KOI 72/Kepler-10, KOI 555, KOI 1596, KOI 904, KOI 223, KOI 1590, and KOI 139 can harbor additional planets or low-mass bodies between the inner and outer detected planets. These predicted planets may be detected by future observations.

Fang, Julia; Margot, Jean-Luc [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

2012-05-20

253

Mission to Planet Earth  

NASA Technical Reports Server (NTRS)

The Mission to Planet Earth is a research program designed to obtain information on the earth and the global changes taking place in the environment, including the 'natural'changes due to internal processes within the earth environment, the effects of energy and particles arriving from the outer space, and the effects of man and other living organisms inhabiting the earth. This paper emphasizes the need for multinational commitment to the collection of data on various global phenomena and for the 'end-to-end' management of the data handling process, which must combine data from many sources and do it properly to reveal useful information. The role of NASA and other space agencies in organizing these efforts is discussed. Special attention is given to the role of SAFISY (the Space Agency Forum for the International Space Year) formed with participation of 24 nations to coordinate the activities of various space agencies on the Mission to Planet Earth project.

Mclucas, John L.

1989-01-01

254

From Pebbles to Planets  

NASA Astrophysics Data System (ADS)

Planets form in protoplanetary discs around young stars as dust and ice particles collide to form ever larger bodies. Particle concentration in the turbulent gas flow may be necessary to form the planetesimals which are the building blocks of both the terrestrial planets and the cores of the gas giants and the ice giants. The streaming instability, which feeds off the relative motion of gas and particles, is a powerful mechanism to create overdense particle filaments. These filaments contract under their own gravity to form planetesimals with a wide range of sizes. I will also discuss how the pebbles left over from the planetesimal formation stage can lead to rapid formation of the cores of gas giants, well within the protoplanetary disc life-time, even in wide orbits.

Johansen, Anders

2013-10-01

255

The Gemini Planet Imager  

NASA Astrophysics Data System (ADS)

The Gemini Planet Imager (GPI) is a next-generation adaptive optics coronagraph designed for direct imaging and spectroscopy of warm self-luminous extrasolar planets and polarimetry of circumstellar disks. It is the first such facility-class instrument deployed on a 8-m telescope, designed to be an order of magnitude more sensitive than existing high-contrast imaging capabilities. GPI has completed laboratory integration and testing, shipped to Gemini South, and is scheduled for first light in November 2013. I will present an overview of the GPI design and measured performance, and any first light results, including a public release of fully reduced data for selected targets. in 2014, GPI will be available for science validation, and in the second half of 2014, a large-scale exoplanet survey campaign will begin.

Macintosh, Bruce; Gemini Planet Imager instrument Team; Planet Imager Exoplanet Survey, Gemini; Observatory, Gemini

2014-01-01

256

Exploring the Planets: Discovery  

NSDL National Science Digital Library

This site describes what early civilizations knew about our solar system and how astronomy developed over the centuries. The early theories describing the movements of the planets, development of the first telescopes, and discoveries of the planets Uranus, Neptune and Pluto are some of the topics addressed in Discovery. Here you will find the Pluto discovery plate, the photographic plate taken the day Pluto's position was discovered by Clyde Tombaugh. Other topics covered at this site include: the Renaissance with the ideas of Copernicus and Kepler; the age of the telescope, which traces its development; Galileo, who is credited with discovering the moons of Jupiter, phases of Venus, and the craters on the Moon; and planetary satellites.

257

Exploring the Planets: Venus  

NSDL National Science Digital Library

This site contains most of the up-to-date information known about the planet Venus, including mean distance from Sun, length of year, rotation period, mean orbital velocity, inclination of axis, average temperature (day and night), and diameter. Many discoveries about Venus have been made using Earth-based radio telescopes, however the images of Venus in this exhibit were collected by the Magellan spacecraft. Magellan used radar to produce the first high-resolution global map of Venus. Since Venus has no water erosion and little wind, volcanic eruptions are a major force reshaping the landscape. Geologic forces at work beneath the crust create mountains, rifts, and patterns of fractures, while the sluggish winds sculpt the surface in subtler ways but many mysteries remain. This site includes numerous images of the planet.

258

Mission to Planet Earth  

NASA Technical Reports Server (NTRS)

Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. An overview of the MTPE, flight programs, data and information systems, interdisciplinary research efforts, and international coordination, is presented.

Wilson, Gregory S.; Backlund, Peter W.

1992-01-01

259

Exploring the Planets: Jupiter  

NSDL National Science Digital Library

This site contains most of the up-to-date information known about the planet Jupiter, including mean distance from the Sun, length of year, rotation period, mean orbital velocity, inclination of axis, spacecraft encounters, diameter, and number of observed satellites. The Galilean satellites Callisto, Ganymede, Europa, and Io are shown here in their correct positions relative to the planet and the odd moon Amalthea is discussed. There is tabular data on several of the other major moons. There are many thumbnail photographs that can be enlarged, including a grand view of the red spot. The radiation and radio noise of Jupiter is discussed, along with its atmosphere as compared to Saturn. The Galileo mission is discussed and links are provided for more information.

260

Planet Under Pressure  

NSDL National Science Digital Library

Planet Under Pressure is a six-part British Broadcasting Company (BBC) News Online series looking at some of the most pressing environmental issues facing the human race today. The series takes a detailed look at six areas where most experts agree that a crisis is brewing. They include food, water, energy, climate change, biodiversity, and pollution. In addition there are special features including: an animated guide that shows how the greenhouse effect might shape our climate; before and after images of the effects of climate change; the European Union (EU) emissions trading scheme and the carbon revolution; opinions about the Kyoto Protocol; graphic climate evidence of a warming world, rising sea, and melting ice; teenagers' opinions on how they would tackle environmental damage; the results of an eco-friendly garden competition; pictures of environmental change around the world; and a link to a BBC website exploring the UN's goals for the planet in 2015.

261

Astronomers Report Discovery of New Extra-solar Planets: Four Reports  

NSDL National Science Digital Library

If you are feeling alone in the universe, this news from 2000 of the search for new planets might inspire you. This account is from the popular space science Website, Space.com. It chronicles the latest detection of at least nine possible planetary bodies orbiting stars outside of our solar system. The text includes a discussion of how detection of wobble behavior is used in the search for extra-solar planets and plans for future planet hunts. This site also features links to Websites of the observatories involved in extra-solar planet detection, related Space.com stories, a diagram of Doppler shift due to stellar wobble and a table of the nine planet candidates's size and distance from Earth.

Weinstock, Maia.

2000-01-01

262

Plant for the Planet  

NSDL National Science Digital Library

This video describes the foundation Plant for the Planet, a foundation created by a 9-year-old German boy, Felix. This foundation has planted more than 500,000 trees in Germany, which he says help sequester carbon and reduce greenhouse gas emissions. The student rallies, first his community and then other children, to plant millions of trees to offset our energy-use emissions.

Change, Young V.

263

Planet Forming Protostellar Disks  

NASA Technical Reports Server (NTRS)

The project achieved many of its objectives. The main area of investigation was the interaction of young binary stars with surrounding protostellar disks. A secondary objective was the interaction of young planets with their central stars and surrounding disks. The grant funds were used to support visits by coinvestigators and visitors: Pawel Artymowicz, James Pringle, and Gordon Ogilvie. Funds were also used to support travel to meetings by Lubow and to provide partial salary support.

Lubow, Stephen

1998-01-01

264

Changing Planet: Thawing Permafrost  

NSDL National Science Digital Library

This video explains the current status of permafrost - the frozen ground that covers the top of the world. Because of a warming atmosphere, permafrost has been thawing rapidly and impacting other Earth systems over the last three decades. There is additional cause for concern beyond the far north, because the carbon released from thawing permafrost could raise global temperatures even higher. Changing Planet is produced in partnership with the National Science Foundation.

2011-03-25

265

Terrestrial Planet Geophysics  

NASA Astrophysics Data System (ADS)

Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence of a few diehards, we may eventually have a seismic and heat flow network on Mars.

Phillips, R. J.

2008-12-01

266

Planet Formation with Migration  

E-print Network

In the core-accretion model, gas-giant planets form solid cores which then accrete gaseous envelopes. Tidal interactions with disk gas cause a core to undergo inward type-I migration in 10^4 to 10^5 years. Cores must form faster than this to survive. Giant planets clear a gap in the disk and undergo inward type-II migration in migration times exceed typical disk lifetimes if viscous accretion occurs mainly in the surface layers of disks. Low turbulent viscosities near the midplane may allow planetesimals to form by coagulation of dust grains. The radius r of such planetesimals is unknown. If rmigration timescale and cores will survive. Migration is substantial in most cases, leading to a wide range of planetary orbits, consistent with the observed variety of extrasolar systems. When r is of order 100m and midplane alpha is of order 3 times 10^-5, giant planets similar to those in the Solar System can form.

J. E. Chambers

2006-10-30

267

The Rocky Planet Survey  

NASA Astrophysics Data System (ADS)

In direct support of the NASA Origins program, we propose the Rocky Planet Survey, a high cadence exoplanet search of sixty late G and K dwarf stars using the CHIRON spectrometer, which we built and commissioned at CTIO. CHIRON operates in two high- resolution modes (R=90,000 and R=120,000) and has a demonstrated precision of better than 1 m s-1. We are contributing 200 nights of telescope time for the next three years, for the excellent phase coverage needed to carry out this work. We have developed simulation software to optimize scheduling of observations to suppress aliases and quickly extract dynamical signals. Our science objectives are to (1) provide a statistical assessment of planet occurrence as a function of decreasing mass in the range of parameter space 3 < Msini < 30 MEARTH for orbital periods up to 50 days, (2) to determine the fraction of low mass planets in multi-planet architectures, and (3) detect planets with Msini < 3 MEARTH in orbital periods shorter than ~20 days. In addition to the science objectives, we intend to push the frontiers of extreme precision Doppler measurements to keep the U.S. competitive with the next generation of European Doppler spectroscopy (ESPRESSO on the VLT). Our team has significant expertise in optical design, fiber coupling, raw extraction, barycentric velocity corrections, and Doppler analysis. The proposed work includes a new optimal extraction algorithm, with the optical designers and software engineers working together on the 2-D PSF description needed for a proper row-by-row extraction and calibration. We will also develop and test upgrades to the barycentric correction code and improvements in the Doppler code that take advantage of stability in the dispersion solution, afforded by a new vacuum-enclosed grating upgrade (scheduled for November 2011). We will test use of emission wavelength calibrations to extend the iodine (absorption) wavelength calibration that we currently use to prepare for eventual use of stabilized etalons or laser frequency combs. Radial velocity measurements play a fundamental role, both in the detection of exoplanets and in support of NASA missions. This program will train postdoctoral fellows, grad students and undergrads, while helping the astronomical community to develop of instrumentation and software that outperform our current programs.

Fischer, Debra

268

[Seguro popular: achievements and perspectives].  

PubMed

Healthcare systems are organized following one of two basic models: social security systems, which link access to health services to labor status, and national health systems, which grant access to health as a citizen's right. Mexico adopted, since the institutionalization of social security and healthcare services in 1943, a mixed system. Social security institutions covered the salaried workers and public assistance was granted to the remaining of the population. At the beginning of the XXI century the Mexican health system entered a crisis as the conditions to expand health coverage through social security were not met and public assistance services were insufficient. In order to address these developments, the Healthcare Social Protection System was founded (2004) as a mechanism to effectively guarantee every person's right to health as established after the constitutional amendment of article fourth in 1983. Seguro Popular is the mechanism that through federal and states' contributions seeks to financially protect the population without access to social security's health services, and thus prevent impoverishment due to out of pocket and catastrophic health expenditures. PMID:22116179

Chertorivski-Woldenberg, Salomón

2011-01-01

269

Acid Test: The Global Challenge of Ocean Acidification  

NSDL National Science Digital Library

"Acid Test", a film produced by NRDC, was made to raise awareness about the largely unknown problem of ocean acidification, which poses a fundamental challenge to life in the seas and the health of the entire planet. Like global warming, ocean acidification stems from the increase of carbon dioxide in the earthâs atmosphere since the start of the Industrial Revolution.

2009-09-17

270

On detecting terrestrial planets with timing of giant planet transits  

NASA Astrophysics Data System (ADS)

The transits of a distant star by a planet on a Keplerian orbit occur at time intervals exactly equal to the orbital period. If a second planet orbits the same star, the orbits are not Keplerian and the transits are no longer exactly periodic. We compute the magnitude of the variation in the timing of the transits, ?t. We investigate analytically several limiting cases: (i) interior perturbing planets with much smaller periods; (ii) exterior perturbing planets on eccentric orbits with much larger periods; (iii) both planets on circular orbits with arbitrary period ratio but not in resonance; (iv) planets on initially circular orbits locked in resonance. Using subscripts `out' and `in' for the exterior and interior planets, ? for planet-to-star mass ratio and the standard notation for orbital elements, our findings in these cases are as follows. (i) Planet-planet perturbations are negligible. The main effect is the wobble of the star due to the inner planet, and therefore ?t~?in(ain/aout)Pout. (ii) The exterior planet changes the period of the interior planet by ?out(ain/rout)3Pin. As the distance of the exterior planet changes due to its eccentricity, the inner planet's period changes. Deviations in its transit timing accumulate over the period of the outer planet, and therefore ?t~?outeout(ain/aout)3Pout. (iii) Halfway between resonances the perturbations are small, of the order of ?outa2in/(ain-aout)2Pin for the inner planet (switch `out' and `in' for the outer planet). This increases as one gets closer to a resonance. (iv) This is perhaps the most interesting case because some systems are known to be in resonances and the perturbations are the largest. As long as the perturber is more massive than the transiting planet, the timing variations would be of the order of the period regardless of the perturber mass. For lighter perturbers, we show that the timing variations are smaller than the period by the perturber-to-transiting-planet mass ratio. An earth-mass planet in 2:1 resonance with a three-dimensional period transiting planet (e.g. HD 209458b) would cause timing variations of the order of 3 min, which would be accumulated over a year. This signal of a terrestrial planet is easily detectable with current ground-based measurements. For the case in which both planets are on eccentric orbits, we compute numerically the transit timing variations for several known multiplanet systems, assuming they are edge-on. Transit timing measurements may be used to constrain the masses, radii and orbital elements of planetary systems, and, when combined with radial velocity measurements, provide a new means of measuring the mass and radius of the host star.

Agol, Eric; Steffen, Jason; Sari, Re'em; Clarkson, Will

2005-05-01

271

Astrometric Planet Searches with SIM PlanetQuest  

NASA Technical Reports Server (NTRS)

SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

2007-01-01

272

Early planet formation as a trigger for further planet formation  

E-print Network

Recent discoveries of extrasolar planets at small orbital radii, or with significant eccentricities, indicate that interactions between massive planets and the disks of gas and dust from which they formed are vital for determining the final shape of planetary systems. We show that if this interaction occurs at an early epoch, when the protoplanetary disc was still massive, then rapid planet growth through accretion causes an otherwise stable disc to fragment into additional planetary mass bodies when the planetary mass reaches 4-5 Jupiter masses. We suggest that such catastrophic planet formation could account for apparent differences in the mass function of massive planets and brown dwarfs, and the existence of young stars that appear to have dissipated their discs at an early epoch. Subsequent gravitational interactions will lead to planetary systems comprising a small number of massive planets in eccentric orbits.

Philip J. Armitage; Brad M. S. Hansen

1999-12-08

273

Formation of Outer Planets: Overview  

NASA Technical Reports Server (NTRS)

An overview of current theories of planetary formation, with emphasis on giant planets is presented. The most detailed models are based upon observation of our own Solar System and of young stars and their environments. Terrestrial planets are believe to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk disspates. The primary questions regarding the core instability model is whether planets with small cores can accrete gaseous enveloples within the lifetimes of gaseous protoplanetary disks. The main alternative giant planet formation model is the disk instability model, in which gaseous planets form directly via gravitational instabilities within protoplanetary disks. Formation of giant planets via gas instability has never been demonstrated for realistic disk conditions. Moreover, this model has difficulty explaining the supersolar abundances of heavy elements in Jupiter and Saturn, and it does not explain the orgin of planets like Uranus and Neptune.

Lissauer, Jack

2003-01-01

274

Water Trapping on Tidally Locked Terrestrial Planets Requires Special Conditions  

NASA Astrophysics Data System (ADS)

Surface liquid water is essential for standard planetary habitability. Calculations of atmospheric circulation on tidally locked planets around M stars suggest that this peculiar orbital configuration lends itself to the trapping of large amounts of water in kilometers-thick ice on the night side, potentially removing all liquid water from the day side where photosynthesis is possible. We study this problem using a global climate model including coupled atmosphere, ocean, land, and sea ice components as well as a continental ice sheet model driven by the climate model output. For a waterworld, we find that surface winds transport sea ice toward the day side and the ocean carries heat toward the night side. As a result, nightside sea ice remains {O}(10 m) thick and nightside water trapping is insignificant. If a planet has large continents on its night side, they can grow ice sheets {O}(1000 m) thick if the geothermal heat flux is similar to Earth's or smaller. Planets with a water complement similar to Earth's would therefore experience a large decrease in sea level when plate tectonics drives their continents onto the night side, but would not experience complete dayside dessiccation. Only planets with a geothermal heat flux lower than Earth's, much of their surface covered by continents, and a surface water reservoir {O}(10%) of Earth's would be susceptible to complete water trapping.

Yang, Jun; Liu, Yonggang; Hu, Yongyun; Abbot, Dorian S.

2014-12-01

275

Ocean Animals  

NSDL National Science Digital Library

There are many types of Ocean Animals, today we wil be going to identify several Ocean Anumals through specific body parts that makeOcean Animals different from one another. To begin examine the links below to see what different types of ocean animals there are and what makes those animals different from one another Beluga Whales- National Geographic Kids Dolphins- Who lives in the sea? Puffer fish- National Geographic Stingrays- National Geographic Kids ...

2011-12-05

276

Ocean tides  

NASA Technical Reports Server (NTRS)

A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

Hendershott, M. C.

1975-01-01

277

The naked planet Earth : Most essential pre-requisite for the origin and evolution of life  

NASA Astrophysics Data System (ADS)

Our blue planet Earth has long been regarded as a standard to host evolving life with full of nutrients since the birth of the planet. Here, we synthesize the processes that led to the birth of early life on Earth and its aftermath, finally leading to the evolution of metazoans, based on an evaluation of: (1) source of nutrients, (2) chemistry of primordial ocean, (3) initial mass of ocean, and (4) size of rocky planet. Among the life-building nutrients, phosphorus (P) and potassium (K) play a key role. Only three types of rocks can serve as adequate source of nutrients. (a) Continent-forming TTG (granite), enabling the evolution of life to metazoans. (b) Primordial continents carrying anorthosite with KREEP (Potassium, Rare Earth Elements, and Phosphorus) basalts, which is a key to bear life. (c) Carbonatite magma, enriched in radiogenic elements such as U and Th, that can cause mutation to speed up evolution, and promote the birth of new species in continental rift settings. Second important factor is ocean chemistry. The primordial ocean was extremely acidic (pH=1-2) and enriched in halogens (Cl, F and others), S and N and metallic elements (Cd, Cu, Zn, and others), inhibiting the birth of life. Plate tectonics cleaned up these elements which interfered with RNA. Blue ocean finally appeared in the Phanerozoic with pH=7 through extensive interaction with surface continental crust by weathering, erosion and transportation into ocean. The initial ocean mass was also important. The birth of life and aftermath of evolution was possible in the habitable zone under a tight initial condition of 3-5 km thick ocean which enabled supply of sufficient nutrients. Without a huge landmass, sufficient amount of nutrients cannot be supplied into ocean. Finally, the size of the planet determines the fate of a planet. Due to suitable planet size, the dawn of Phanerozoic witnessed the initiation of return-flow of seawater into mantle, leading to the emergence of huge landmass above sea-level, and the distribution of nutrients on a global scale. It is necessary to meet above 4 conditions to enable the Earth as a habitable planet with evolved life forms. The tight constraints that we evaluate for birth and evolution of life on Earth would provide important guidelines for hunting for life in the exo-solar planets.

Maruyama, S.; Ikoma, M.; Genda, H.; Hirose, K.; Yokoyama, T.; Santosh, M.

2013-12-01

278

Debris Disks and Hidden Planets  

NASA Technical Reports Server (NTRS)

When a planet orbits inside a debris disk like the disk around Vega or Beta Pictoris, the planet may be invisible, but the patterns it creates in the disk may give it away. Observing and decoding these patterns may be the only way we can detect exo-Neptunes orbiting more than 20 AU from their stars, and the only way we can spot planets in systems undergoing the late stages of planet formation. Fortunately, every few months, a new image of a debris disk appears with curious structures begging for explanation. I'll describe some new ideas in the theory of these planet-disk interactions and provide a buyers guide to the latest models (and the planets they predict).

Kuchner, Marc

2008-01-01

279

Formation of the giant planets  

NASA Technical Reports Server (NTRS)

The observed properties of giant planets, models of their evolution and observations of protoplanetary disks provide constraints on the formation of gas giant planets. The four largest planets in our Solar System contain considerable quantities of hydrogen and helium, which could not have condensed into solid planetesimals within the protoplanetary disk. All three (transiting) extrasolar giant planets with well determined masses and radii also must contain substantial amounts of these light gases. Jupiter and Saturn are mostly hydrogen and helium, but have larger abundances of heavier elements than does the Sun. Neptune and Uranus are primarily composed of heavier elements. HD 149026 b, which is slightly more massive than is Saturn, appears to have comparable quantities of light gases and heavy elements. HD 209458 b and TrES-1 are primarily hydrogen and helium, but may contain supersolar abundances of heavy elements. Spacecraft flybys and observations of satellite orbits provide estimates of the gravitational moments of the giant planets in our Solar System, which in turn provide information on the internal distribution of matter within Jupiter, Saturn, Uranus and Neptune. Atmospheric thermal structure and heat flow measurements constrain the interior temperatures of planets. Internal processes may cause giant planets to become more compositionally differentiated or alternatively more homogeneous; high-pressure laboratory .experiments provide data useful for modeling these processes. The preponderance of evidence supports the core nucleated gas accretion model. According to this model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. The primary questions regarding the core nucleated growth model is under what conditions planets with small cores/total heavy element abundances can accrete gaseous envelopes within the lifetimes of gaseous protoplanetary disks.

Lissauer, Jack J.

2006-01-01

280

Five Planets Orbiting 55 Cancri  

E-print Network

We report 18 years of Doppler shift measurements of a nearby star, 55 Cancri, that exhibit strong evidence for five orbiting planets. The four previously reported planets are strongly confirmed here. A fifth planet is presented, with an apparent orbital period of 260 days, placing it 0.78 AU from the star in the large empty zone between two other planets. The velocity wobble amplitude of 4.9 \\ms implies a minimum planet mass \\msini = 45.7 \\mearthe. The orbital eccentricity is consistent with a circular orbit, but modest eccentricity solutions give similar \\chisq fits. All five planets reside in low eccentricity orbits, four having eccentricities under 0.1. The outermost planet orbits 5.8 AU from the star and has a minimum mass, \\msini = 3.8 \\mjupe, making it more massive than the inner four planets combined. Its orbital distance is the largest for an exoplanet with a well defined orbit. The innermost planet has a semi-major axis of only 0.038 AU and has a minimum mass, \\msinie, of only 10.8 \\mearthe, one of the lowest mass exoplanets known. The five known planets within 6 AU define a {\\em minimum mass protoplanetary nebula} to compare with the classical minimum mass solar nebula. Numerical N-body simulations show this system of five planets to be dynamically stable and show that the planets with periods of 14.65 and 44.3 d are not in a mean-motion resonance. Millimagnitude photometry during 11 years reveals no brightness variations at any of the radial velocity periods, providing support for their interpretation as planetary.

Debra A. Fischer; Geoffrey W. Marcy; R. Paul Butler; Steven S. Vogt; Greg Laughlin; Gregory W. Henry; David Abouav; Kathryn M. G. Peek; Jason T. Wright; John A. Johnson; Chris McCarthy; Howard Isaacson

2007-12-23

281

Starting a Planet Protectors Club  

ERIC Educational Resources Information Center

If your mission is to teach children how to reduce, reuse, and recycle waste and create the next generation of Planet Protectors, perhaps leading a Planet Protectors Club is part of your future challenges. You don't have to be an expert in waste reduction and recycling to lead a a Planet Protectors Club. You don't even have to be a teacher. You do…

US Environmental Protection Agency, 2007

2007-01-01

282

Planets in Evolved Binary Systems  

NASA Astrophysics Data System (ADS)

Exo-planets are typically thought to form in protoplanetary disks left over from protostellar disk of their newly formed host star. However, additional planetary formation and evolution routes may exist in old evolved binary systems. Here we discuss the implications of binary stellar evolution on planetary systems in such environments. In these binary systems stellar evolution could lead to the formation of symbiotic stars, where mass is lost from one star and could be transferred to its binary companion, and may form an accretion disk around it. This raises the possibility that such a disk could provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing first generation planets surviving the post-MS evolution of such systems would be dynamically effected by the mass loss in the systems and may also interact with the newly formed disk. Such planets and/or planetesimals may also serve as seeds for the formation of the second generation planets, and/or interact with them, possibly forming atypical planetary systems. Second generation planetary systems should be typically found in white dwarf binary systems, and may show various observational signatures. Most notably, second generation planets could form in environment which are inaccessible, or less favorable, for first generation planets. The orbital phase space available for the second generation planets could be forbidden (in terms of the system stability) to first generation planets in the pre-evolved progenitor binaries. In addition planets could form in metal poor environments such as globular clusters and/or in double compact object binaries. Observations of exo-planets in such forbidden or unfavorable regions could possibly serve to uniquely identify their second generation character. Finally, we point out a few observed candidate second generation planetary systems, including Gl 86, HD 27442 and all of the currently observed circumbinary planet candidates. A second generation origin for these systems could naturally explain their unique configurations.

Perets, Hagai B.

2011-03-01

283

Water Cycling Between Ocean and Mantle: Super-Earths Need Not be Waterworlds  

E-print Network

Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water pa...

Cowan, Nicolas B

2014-01-01

284

PlanetDiary  

NSDL National Science Digital Library

PlanetDiary records the events and phenomena that affect Earth and its residents. Every week this site presents 'Current Phenomena', which is news from around the globe on geology, astronomy, meteorology, biology, and environmental science issues. The site accompanies specific chapters in Pearson Education texts. These are: Science Explorer - Life Science, Earth Science, Physical Science; Science Insights - Living Things, Matter and Energy, Exploring Earth and Space; and Environmental Science. Students can check back each week and follow a story as it unfolds. Teachers can use these articles as the basis for classroom discussion, to introduce topics, or to pose a research question. Every story is linked to a 'Phenomena Backgrounder' relating to the events so students can explore the topic in more depth. These pages also provide links to additional hands-on and online activities. A review of each activity is given with the objective of the exercise, the concepts covered, and the preparation teachers and students should have before starting an activity. An archive contains prior PlanetDiary reports dating back to 1998. A page is devoted to universal measurements that links to outside sources which calculate conversions for time, numerous dimension units, and also link to map sources and earth statistics. Dates for eclipses, environmental-awareness days, the beginning of hurricane season, and many other events are found in the PlanetDiary calendar. An informative guide aids in site navigation. Also, a link is provided to Prentice Hall School with information on textbooks, accompanying multimedia, and online support for grades 6 through 12.

285

Exploring the Oceans With OOI and IODP: A New Partnership in Education and Outreach  

Microsoft Academic Search

The Ocean Observatories Initiative (OOI), a new program supported by the National Science Foundation (NSF), will investigate ocean and Earth processes using deep-sea and coastal observatories, as well as a lithospheric plate-scale cabled observatory that spans most of the geological and oceanographic processes of our planet. October 2003 marked the beginning of the Integrated Ocean Drilling Program (IODP), the third

H. Gröschel; V. Robigou; J. Whitman; S. K. Jagoda; D. Randle

2003-01-01

286

The atmospheric evolution of Venus the habitable planet. (Invited)  

NASA Astrophysics Data System (ADS)

Modern theories of planetary accumulation do not build Venus dry and Earth wet save by unlucky chance. If Venus and Earth were built of the same stuff, Venus’s descent into ruin must have been caused by its proximity to the Sun: too much sunlight brought a runaway greenhouse effect, the oceans and seas evaporated, and the hydrogen in the water was irrevocably lost to space. If the story has a moral, Venus would be the earth that lost its water. A complication to the story is that early Venus occupies an ambiguous position with respect to the runaway greenhouse effect. If Venus began as an ocean planet like Earth, both runaway and non-runaway states are plausible at first. In the 50 Myr before the Sun reached the main sequence, the Sun was both bright and faint, with Venus moving in and out of the conventional habitable zone. Once the Sun reached the main sequence it settled to a luminosity 70% of today’s. At this point the critical albedo triggering the runaway greenhouse on Venus was ~0.32, slightly higher than Earth’s today. This means that Earth’s albedo would put an ocean-covered Venus in the runaway greenhouse state, but only just barely, while an albedo of a slightly cloudier planet would have let Venus’s ancient oceans condenses. Early Venus’s indecisive state makes the recovery of liquid water oceans from giant impacts such as Earth’s moon-forming impact questionable. Another interesting plot twist is that dry planets (desert worlds with limited surface water) are expected to have some immunity with respect to the runaway greenhouse effect, because the limited water can be cold trapped at high latitudes. On a hot dry planet the dearth of tropical water vapor has two effects: it stabilizes the greenhouse effect (the tropics can radiate at rates well above the traditional runaway limit because the tropical atmosphere is not saturated) and it creates a dry stratosphere that severely limits hydrogen escape. Young Venus, if dry, would have been well within the dry-planet habitable zone. Here we consider the possibility that an ocean planet can evolve into a dry but habitable planet as the Sun brightens without first passing through an uninhabitable runaway greenhouse phase. This can happen because hydrogen escape in the diffusion limit depends on the wetness of the stratosphere: a warm planet can have a wet stratosphere and fast hydrogen escape while maintaining liquid water at the surface, provided that the atmosphere is not too thick. This requires in particular that most of the CO2 now in Venus’s atmosphere was sequestered as carbonate rock. If these conditions were all met, it is possible that Venus may have been a habitable planet as recently as 1 billion years ago.

Zahnle, K. J.; Abe, Y.; Abe-Ouchi, A.; Sleep, N. H.

2010-12-01

287

Comparing the Planets: Water  

NSDL National Science Digital Library

This set of images summarizes what scientists currently know about the occurrence of water ice and water vapor on the terrestrial planets and satellites in our Solar System. Accompanied by a brief description, the Jpeg images show the ice cap at Mars' south pole, ice rafting on Europa, liquid water covering the surface of Earth (the famous 'Blue Marble' photo), and an impact crater on the Moon that may contain water ice. There is also a diagram showing the possible distribution of ice on Mars, as it varies with latitude.

288

Polarimetry of Extrasolar Planets  

NASA Astrophysics Data System (ADS)

Polarimetry is a powerful technique for detecting directly the starlight that is scattered in a planetary atmosphere and, thus, possesses information on its geometry, chemistry, and thermodynamics. Recently, we have started a polarimetric survey of nearby planetary systems with hot Jupiters closely orbiting their host stars using the DiPol polarimeter at the KVA telescope and the TurPol polarimeter at the Nordic Optical Telescope, La Palma. Here we present our first results and discuss orbital parameters of the HD 189733 system and scattering properties of its planet.

Berdyugin, A.; Berdyugina, S.; Fluri, D.; Piirola, V.

2011-11-01

289

Ocean Terracing  

E-print Network

Artworks can improve humanity ability to apply macro-engineering principles which skirt or correct oceanographic problems impairing the economic usefulness of coastal land, the overhead airshed, and seawater temperature and salinity stability. A new form of Art, Ocean Art, is here proposed which centers on deliberate terracing of appropriate regions of our world ocean; a proposed example of macro-engineered useful Ocean Art is the technically possible 21-st Century terracing of the Mediterranean Sea. Ocean Art is applicable worldwide to places that might be practically improved by its judicious employment. Such Ocean Art may constitute an entirely unique category of solutions to coastal disaster prevention planning.

Richard Cathcart; Alexander Bolonkin

2007-01-09

290

Magma Oceans on Exoplanets and Early Earth  

NASA Astrophysics Data System (ADS)

Late, giant accretionary impacts likely form multiple magma oceans of some depth in young rocky planets. Models of magma ocean solidification that incorporate water, carbon, and other incompatible volatile elements in small amounts predict a range of first-order outcomes important to planetary evolution. First, initial planetary bulk composition and size determine the composition of the earliest degassed atmosphere. This early atmosphere appears in a rapid burst at the end of solidification, determined by the ability of nucleating bubbles to reach the surface. Larger planets will have briefer and more catastrophic atmospheric degassing during solidification of any magma ocean. Second, this early atmosphere is sufficiently insulating to keep the planetary surface hot for millions of years. Depending upon the atmospheric composition and temperature structure these hot young planets may be observable from Earth or from satellites. Third, small but significant quantities of volatiles remain in the planet's solid mantle, encouraging convection, plate tectonics, and later atmospheric degassing through volcanism. A critical outcome of magma ocean solidification is the development of a solid mantle density gradient with den-sity increasing with radius, which will flow to gravitational stability. Shallow, dense, damp material will carry its water content as it sinks into the perovskite stability zone and transforms into perovskite. Even in models with very low initial water contents, a large fraction of the sinking upper mantle material will be forced to dewater as it crosses the boundary into the relatively dry lower mantle, leaving its water behind in a rapid flux as it sinks. This water ad-dition could initiate or speed convection in planets in which perovskite is stable, that is, planets larger than Mars.

Elkins-Tanton, Linda

2009-09-01

291

The Nitrogen Constraint on Habitability of Planets around Low Mass M-stars  

NASA Astrophysics Data System (ADS)

The traditional habitable zones around stars are defined based on the stability of liquid water over geological timescales. Being too far away from the stars, the planet would be incapable of maintaining a warm surface and thus no liquid water. Being too close to the star, the planet would experience a 'runaway' greenhouse phase, during which its oceans could be lost quickly, and end up similar to our sister planet, Venus. The definition of tranditional habitable zones does not consider the availability of other elements important for life. All life as we know it needs nitrogen. Our calculations of upper planetary atmospheres show that nitrogen could be lost rapidly from planetary atmospheres with CO2 concentrations lower than certain threshold. This suggests that life on planets around low mass M-stars may be selflimiting, and planets of low mass M-stars are less favorable places to search for life than G- or K-type stars.

Tian, F.

2011-10-01

292

The Nitrogen Constraint on Habitability of Planets of Low Mass M-stars  

NASA Astrophysics Data System (ADS)

The traditional habitable zones around stars are defined based on the stability of liquid water over geological timescales. Being too far away from the stars, the planet would be incapable of maintaining a warm surface and thus no liquid water. Being too close to the star, the planet would experience a 'runaway' greenhouse phase, during which its oceans could be lost quickly, and end up similar to our sister planet, Venus. The definition of tranditional habitable zones does not consider the availability of other elements important for life. All life as we know it needs nitrogen. Our calculations of upper planetary atmospheres show that nitrogen could be lost rapidly from planetary atmospheres with CO2 concentrations lower than certain threshold. This suggests that life on planets around low mass M-stars may be selflimiting, and planets of low mass M-stars are less favorable places to search for life than G- or K-type stars.

Tian, F.

2011-12-01

293

The Nitrogen Constraint on the Habitability of Planets around Low Mass M-stars  

NASA Astrophysics Data System (ADS)

The traditional habitable zones around stars are defined based on the stability of liquid water over geological timescales. Being too far away from the stars, the planet would be incapable of maintaining a warm surface and thus no liquid water. Being too close to the star, the planet would experience a 'runaway' greenhouse phase, during which its oceans could be lost quickly, and end up similar to our sister planet, Venus. The definition of tranditional habitable zones does not consider the availability of other elements important for life. All life as we know it needs nitrogen. Our calculations of upper planetary atmospheres show that nitrogen could be lost rapidly from planetary atmospheres with CO2 concentrations lower than certain threshold. This suggests that life on planets around low mass M-stars may be self-limiting, and planets of low mass M-stars are less favorable places to search for life than G- or K-type stars.

Tian, Feng

2011-09-01

294

NASA's terrestial planet finder: the search for (habitable) planets  

NASA Technical Reports Server (NTRS)

One of the primary goals of NASA's Origins program is the search for hospitable planets. I will describe how the Terrestrial Planet Finder (TPF) will revolutionize our understanding of the origin and evolution of planetary systems, and possibly even find signs of life beyond Earth.

Beichman, C. A.

2000-01-01

295

Living-History Villages as Popular Entertainers.  

ERIC Educational Resources Information Center

Discusses the furor created when Walt Disney Studios announced plans to develop a "historic amusement park" near the Manassas (Virginia) National Battlefield Park. Maintains that the public debate over the popular understanding of history reflects an ongoing tension between academic historians and the purveyors of popular history. (CFR)

Geist, Christopher D.

1994-01-01

296

The personality of popular facebook users  

Microsoft Academic Search

We study the relationship between Facebook popularity (number of contacts) and personality traits on a large number of subjects. We test to which extent two prevalent viewpoints hold. That is, popular users (those with many social contacts) are the ones whose personality traits either predict many offline (real world) friends or predict propensity to maintain superficial relationships. We find that

Daniele Quercia; Renaud Lambiotte; David Stillwell; Michal Kosinski; Jon Crowcroft

2012-01-01

297

Tusker Project Fame: Ethnic States, Popular Flows  

Microsoft Academic Search

Ethnicity has come to be the dominant currency of Kenya's politics over recent years. This article explores the social meaning of ethnicity through an examination of ethnic stereotyping, as this is revealed in a variety of popular discourses. Stereotypes are forged and circulated within popular sites of cultural encounter, and they are one of the principal means through which the

Mbugua Wa-Mungai

2007-01-01

298

Love and money in Kinois popular music  

Microsoft Academic Search

This essay looks at the lyrical and performative conventions of popular music from Kinshasa, capital of the Democratic Republic of Congo, concentrating particularly on how these conventions interact with ideas of emotion and exchange in the region. Setting the romantic texts of popular songs in the context of wider patronage relationships, the essay argues that love and money are not

Joseph Trapido

2010-01-01

299

Friendship and Popularity in Preschool Classrooms.  

ERIC Educational Resources Information Center

Examined the development of friendships and peer acceptance and their relation to children's emotional regulation and socioemotional behavior with others. Found that having friends was related to popularity, that friendship was related to emotion regulation, and that popularity was related to socioemotional behavioral regulation in the peer group.…

Walden, Tedra; Lemerise, Elizabeth; Smith, Maureen C.

1999-01-01

300

Popular Music in American History. Revised.  

ERIC Educational Resources Information Center

This student book encourages an understanding of U.S. history through song, and of American song through history. The book is organized in two main parts, the first focuses on the nature of popular music. It examines "What is Popular Music?" and looks at pop themes, lyrics, melodies, rhythm, the composer, performer, and publisher. The second part…

Reid, William, Jr.

301

Finding Popular Places Marc Benkert1  

E-print Network

Finding Popular Places Marc Benkert1 , Bojan Djordjevic2 , Joachim Gudmundsson2 , and Thomas Wolle2 1 Department of Computer Science, Karlsruhe University, Germany. mbenkert@ira.uka.de 2 NICTA Sydney- cally we study so-called `popular places', that is, regions that are visited by many entities. We

Wolle, Thomas

302

Popular Culture Consumption and Identities in School  

Microsoft Academic Search

This paper draws from a three-year project entitled 'Urban Classroom Culture and Interaction' that investigates the significance of teen consumption of media and popular culture within the everyday environment of a multi-ethnic secondary school. This consumption plays an important part the formation and negotiation of these young people's identity. It is argued that the social significance of media and popular

Caroline Dover

303

Substance Use in Popular Movies and Music.  

ERIC Educational Resources Information Center

This study examines the frequency and nature of substance use in the most popular movie rentals and songs of 1996 and 1997. The intent was to determine the accuracy of public perceptions about extensive substance use in media popular among youth. Because teenagers are major consumers of movies and music, there is concern about the potential for…

Roberts, Donald F.; Henriksen, Lisa; Christenson, Peter G.

304

Teaching Personality Theories Using Popular Music  

ERIC Educational Resources Information Center

Previously, psychology instructors have used popular music to illustrate psychological concepts in the classroom. In this study, students enrolled in a personality theories class heard 13 popular songs that demonstrated various concepts. Students then selected and analyzed their own songs that contained elements of personality theories. Test…

Leck, Kira

2006-01-01

305

Investigating the Worldwide Popularity of Forensics  

Microsoft Academic Search

The popularity of forensic science has increased dramatically over the past decade throughout the United States. However, has this popularity spread to other countries around the world and to what extent? In the United States, there are numerous television shows focusing on the law and crime scene analysis, including “CSI,” “Law and Order,” “24,” “Crossing Jordan,” and “Forensic Files,” just

Heather Stankiewicz

2007-01-01

306

Using Popular Culture to Teach Quantitative Reasoning  

ERIC Educational Resources Information Center

Popular culture provides many opportunities to develop quantitative reasoning. This article describes a junior-level, interdisciplinary, quantitative reasoning course that uses examples from movies, cartoons, television, magazine advertisements, and children's literature. Some benefits from and cautions to using popular culture to teach…

Hillyard, Cinnamon

2007-01-01

307

Planet formation around stars of various masses: The snow line and the frequency of giant planets  

E-print Network

We use a semi-analytic circumstellar disk model that considers movement of the snow line through evolution of accretion and the central star to investigate how gas giant frequency changes with stellar mass. The snow line distance changes weakly with stellar mass; thus giant planets form over a wide range of spectral types. The probability that a given star has at least one gas giant increases linearly with stellar mass from 0.4 M_sun to 3 M_sun. Stars more massive than 3 M_sun evolve quickly to the main-sequence, which pushes the snow line to 10-15 AU before protoplanets form and limits the range of disk masses that form giant planet cores. If the frequency of gas giants around solar-mass stars is 6%, we predict occurrence rates of 1% for 0.4 M_sun stars and 10% for 1.5 M_sun stars. This result is largely insensitive to our assumed model parameters. Finally, the movement of the snow line as stars >2.5 M_sun move to the main-sequence may allow the ocean planets suggested by Leger et. al. to form without migration.

Grant M. Kennedy; Scott J. Kenyon

2007-10-04

308

EUCLID microlensing planet search  

NASA Astrophysics Data System (ADS)

The discovery of extrasolar planets is arguably the most exciting development in astrophysics during the past 15 years, rivalled only by the detection of dark energy. Two projects unite the communities of exoplanet scientists and cosmologists: the proposed ESA M class mission EUCLID and the large space mission WFIRST, top ranked by the Astronomy 2010 Decadal Survey report. The later states that: "Space-based microlensing is the optimal approach to providing a true statistical census of planetary systems in the Galaxy, over a range of likely semi-major axes". They also add: "This census, combined with that made by the Kepler mission, will determine how common Earth-like planets are over a wide range of orbital parameters" We will present a status report of the results obtained by microlensing on exoplanets, the new objectives of the next generation of ground based wide field imager networks. We will finally present the fantastic prospect offered by space based microlensing at the horizon 2020-2025.

Beaulieu, J.-P.; Tisserand, P.; Batista, V.

2013-09-01

309

Stars and Planets  

NASA Astrophysics Data System (ADS)

'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

Neta, Miguel

2014-05-01

310

Planets and Life  

NASA Astrophysics Data System (ADS)

Astrobiology involves the study of the origin and history of life on Earth, planets and moons where life may have arisen, and the search for extraterrestrial life. It combines the sciences of biology, chemistry, palaeontology, geology, planetary physics and astronomy. This textbook brings together world experts in each of these disciplines to provide the most comprehensive coverage of the field currently available. Topics cover the origin and evolution of life on Earth, the geological, physical and chemical conditions in which life might arise and the detection of extraterrestrial life on other planets and moons. The book also covers the history of our ideas on extraterrestrial life and the origin of life, as well as the ethical, philosophical and educational issues raised by astrobiology. Written to be accessible to students from diverse backgrounds, this text will be welcomed by advanced undergraduates and graduates who are taking astrobiology courses.• Compiled by world experts in their disciplines to create a truly comprehensive book • Accessible to students from a wide range of backgrounds • A welcome addition to this rapidly-growing field

Sullivan, Woodruff T., III; Baross, John

2001-12-01

311

Live Tonight: The Planets!  

NSDL National Science Digital Library

This activity is about viewing the planet Mars (and others) through a telescope. Learners will go outside on a clear evening to view the planets and other celestial bodies for themselves. Using sky charts and other resources, and possibly in partnership with a local astronomical society or club, children and their families view Mars with binoculars and/or telescopes. The children who have participated in the other Explore: Life on Mars? activities may serve as docents at this public, community event, sharing what they have done and learned about what life is, the requirements for life, and the possibility for life on Mars now â or in the past! It is recommended that the viewing event be paired with the hands-on experiment within the Searching for Life activity if space and time allow. It also includes specific tips for effectively engaging girls in STEM. This is activity 8 in Explore: Life on Mars? that was developed specifically for use in libraries.

312

Popular science publishing in contemporary China.  

PubMed

Since the 1950s China's popular science publishing has been the business of the government, and subject to its will. China adopted a system of planned economies, as the Soviet Union did, until the 1980s when a policy of reform and opening-up was adopted. During the period of the planned economies, popular science publishing was not a commercial but a governmental enterprise. More than 100 million copies of the most representative publication of this period, One Hundred Thousand Whys, have been distributed. The Unmoved Mover Series of the 1990s was a milestone in the new era. What is significant about this series is that it broke through the prevailing mode of science-popularization as 'serving for industrial and agricultural production, serving for ideology'. China's popular science publishing has its defects, genetically and culturally. In an age of marketization, popular science books are frequently applauded by the experts, but not enjoyed by general readers. PMID:23833166

Wu, Guosheng; Qiu, Hui

2013-07-01

313

Educational And Public Outreach Software On Planet Detection For The Macintosh (TM)  

NASA Technical Reports Server (NTRS)

The possibility of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections has only heightened the interest in the topic. School children are particularly interested in learning about space. Astronomers have the knowledge and responsibility to present this information in both an understandable and interesting format. Since most classrooms and homes are now equipped with computers this media can be utilized to provide more than a traditional "flat" presentation. An interactive "stack" has been developed using Hyperstudio (TM). The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Earth-Sized Planets"; and "A Mission Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program stacks to determine the orbit and planet size, the planet's temperature and surface gravity, and finally determines if the planet is habitable. Additional related sections are also included. Many of the figures are animated to assist in comprehension of the material. A set of a dozen lesson plans for the middle school has also been drafted.

Koch, David; Brady, Victoria; Cannara, Rachel; Witteborn, Fred C. (Technical Monitor)

1996-01-01

314

Educational and Public Outreach Software On Planet Detection For The Macintosh (TM)  

NASA Astrophysics Data System (ADS)

The possibility of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections has only heightened the interest in the topic. School children are particularly interested in learning about space. Astronomers have the knowledge and responsibility to present this information in both an understandable and interesting format. Since most classrooms and homes are now equipped with computers this media can be utilized to provide more than a traditional "flat" presentation. An interactive "stack" has been developed using Hyperstudio (TM). The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Earth-Sized Planets"; and "A Mission Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program stacks to determine the orbit and planet size, the planet's temperature and surface gravity, and finally determines if the planet is habitable. Additional related sections are also included. Many of the figures are animated to assist in comprehension of the material. A set of a dozen lesson plans for the middle school has also been drafted.

Koch, David; Brady, Victoria; Cannara, Rachel

1996-09-01

315

Frequency of Highly Inclined Planets from Planet-Planet Scattering plus Tidal Damping  

NASA Astrophysics Data System (ADS)

Previous studies of planet-planet scattering (e.g. Chatterjee et al. 2008 and Nagaswa et al. 2008) have predicted a broad range of inclination distributions for planetary orbits at the end of the scattering phase. We demonstrate that essentially all apparent discrepancies between such studies disappear if: (i) tidal effects are included for all close approaches within a critical tidal radius, rcrit, and (ii) consistent measurement metrics are implemented. Having reconciled previous results, we demonstrate that among planetary systems which have undergone planet-planet scattering, the orbital inclination distribution for planets with a pericenter distance less than a critical tidal damping radius, rcrit, is expected to differ significantly from that of planets beyond rcrit. Thus, we predict that if planet-planet scattering occurs in a significant fraction of planetary systems, then future Rossiter-McLaughin observations of the more distant transiting planets being revealed by NASA's Kepler mission will have a significantly different inclination distribution to that of the previously observed hot-Jupiters.

Payne, Matthew J.; Boley, A. C.; Ford, E. B.

2011-09-01

316

PLANET TOPERS: Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS  

NASA Astrophysics Data System (ADS)

The PLANET TOPERS (Planets, Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS) group is an Inter-university attraction pole (IAP) addressing the question of habitability in our Solar System. Habitability is commonly understood as "the potential of an environment (past or present) to support life of any kind" (Steele et al., 2005, http://mepag.jpl.nasa.gov/reports/archive.html). Based on the only known example of Earth, the concept refers to whether environmental conditions are available that could eventually support life, even if life does not currently exist (Javaux and Dehant, 2010, Astron. Astrophys. Rev., 18, 383-416, DOI: 10.1007/s00159-010-0030-4). Life includes properties such as consuming nutrients and producing waste, the ability to reproduce and grow, pass on genetic information, evolve, and adapt to the varying conditions on a planet (Sagan, 1970, Encyclopedia Britannica, 22, 964-981). Terrestrial life requires liquid water. The stability of liquid water at the surface of a planet defines a habitable zone (HZ) around a star. In the Solar System, it stretches between Venus and Mars, but excludes these two planets. If the greenhouse effect is taken into account, the habitable zone may have included early Mars while the case for Venus is still debated. Important geodynamic processes affect the habitability conditions of a planet. As envisaged by the group, this IAP develops and closely integrates the geophysical, geological, and biological aspects of habitability with a particular focus on Earth neighboring planets, Mars and Venus. It works in an interdisciplinary approach to understand habitability and in close collaboration with another group, the Helmholtz Alliance "Life and Planet Evolution", which has similar objectives. The dynamic processes, e.g. internal dynamo, magnetic field, atmosphere, plate tectonics, mantle convection, volcanism, thermo-tectonic evolution, meteorite impacts, and erosion, modify the planetary surface, the possibility to have liquid water, the thermal state, the energy budget and the availability of nutrients. Shortly after formation (Hadean 4.4-4.0 Ga (billion years)), evidence supports the presence of a liquid ocean and continental crust on Earth (Wilde et al., 2001, Nature, 409, 175-178), Earth may thus have been habitable very early on. The origin of life is not understood yet but the oldest putative traces of life occur in the early Archaean (~3.5 Ga). Studies of early Earth habitats documented in rock containing traces of fossil life provide information about environmental conditions suitable for life beyond Earth, as well as methodologies for their identification and analyses. The extreme values of environmental conditions in which life thrives today can also be used to characterize the "envelope" of the existence of life and the range of potential extraterrestrial habitats. The requirement of nutrients for biosynthesis, growth, and reproduction suggest that a tectonically active planet, with liquid water is required to replenish nutrients and sustain life (as currently known). These dynamic processes play a key role in the apparition and persistence of life. This contribution will focus on the highlights of the work of the IAP Planet TOPERS.

Dehant, Veronique; Breuer, Doris; Claeys, Philippe; Debaille, Vinciane; De Keyser, Johan; Javaux, Emmanuelle; Goderis, Steven; Karatekin, Ozgur; Mattielli, Nadine; Noack, Lena; Spohn, Tilman; Carine Vandaele, Ann; Vanhaecke, Frank; Van Hoolst, Tim; Wilquet, Valerie

2013-04-01

317

Do popular students smoke? The association between popularity and smoking among middle school students  

Microsoft Academic Search

Background: Several studies have shown an association between popularity and behavior, indi- cating that popular people tend to reflect the norms of their group. Among adolescents, it has been hypothesized that popular students are more likely to smoke, especially in schools with high smoking prevalence. Methods: Data were collected on friendship patterns and smoking from 1,486 sixth and seventh graders

Thomas W. Valente; Jennifer B. Unger; C. Anderson Johnson

2005-01-01

318

Elliptical instability in terrestrial planets and moons  

E-print Network

The presence of celestial companions means that any planet may be subject to three kinds of harmonic mechanical forcing: tides, precession/nutation, and libration. These forcings can generate flows in internal fluid layers, such as fluid cores and subsurface oceans, whose dynamics then significantly differ from solid body rotation. In particular, tides in non-synchronized bodies and libration in synchronized ones are known to be capable of exciting the so-called elliptical instability, i.e. a generic instability corresponding to the destabilization of two-dimensional flows with elliptical streamlines, leading to three-dimensional turbulence. We aim here at confirming the relevance of such an elliptical instability in terrestrial bodies by determining its growth rate, as well as its consequences on energy dissipation, on magnetic field induction, and on heat flux fluctuations on planetary scales. Previous studies and theoretical results for the elliptical instability are re-evaluated and extended to cope with ...

Cébron, David; Moutou, Claire; Gal, Patrice Le; 10.1051/0004-6361/201117741

2012-01-01

319

Oceans, Climate, and Weather  

NSDL National Science Digital Library

This resource guide from the Middle School Portal 2 project, written specifically for teachers, provides links to exemplary resources including background information, lessons, career information, and related national science education standards. What is the difference between weather and climate? What do the oceans have to do with them? Weather is the day-to-day state of the atmosphere and its short-term (minutes to weeks) variation. Climate is typically described by the regional patterns of seasonal temperature and precipitation over 30 years. The averages of annual temperature, rainfall, cloud cover, and depth of frost penetration are all typical climate-related statistics. The oceans influence the worlds climate by storing solar energy and distributing it around the planet through currents and atmospheric winds.This publication is all about developing your students understandings of earths oceans and the major effect they have on climate. Understanding and interpreting local weather data and understanding the relationship between weather and climate are important first steps to understanding larger-scale global climate changes. Activities that ask students to collect and analyze local weather data as well as analyze global data can be found in the Lessons and Activities section. Analyzing and interpreting data is a major focus of this publication. Numerous data sets can be found in the Sources for Real Data section. The Background Information section and the article Tomorrows Forecast will help reinforce your own content knowledge.

Lightle, Kimberly

2006-10-01

320

MATHEMATICS OF PLANET EARTH PRESS RELEASE  

E-print Network

MATHEMATICS OF PLANET EARTH PRESS RELEASE MARCH 5 2013 MATHEMATICS OF PLANET EARTH DAY AT UNESCO Paris (France) ­ March 5 2013 in a major world-wide initiative: Mathematics of Planet Earth 2013 (MPE2013). This year

321

FLIPPER: Validation for Remote Ocean Imaging  

NASA Technical Reports Server (NTRS)

one of the determining factors in the planet s ability to support life is the same factor that makes the Blue Planet blue: water. Therefore, NASA researchers have a focused interest in understanding Earth s oceans and their ability to continue sustaining life. A critical objective in this study is to understand the global processes that control the changes of carbon and associated living elements in the oceans. Since oceans are so large, one of the most widely used methods of this research is remote sensing, using satellites to observe changes in the ocean color that may be indicative of changes occurring at the surface. Major changes in carbon are due to photosynthesis conducted by phytoplankton, showing, among other things, which areas are sustaining life. Although valuable for large-scale pictures of an ocean, remote sensing really only provides a surface, and therefore incomplete, depiction of that ocean s sustainability. True and complete testing of the water requires local testing in conjunction with the satellite images in order to generate the necessary algorithm parameters to calculate ocean health. For this reason, NASA has spearheaded research to provide onsite validation for its satellite imagery surveys.

2006-01-01

322

The Fate of Scattered Planets  

NASA Astrophysics Data System (ADS)

As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ~100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

Bromley, Benjamin C.; Kenyon, Scott J.

2014-12-01

323

Pluto: The Farthest Planet (Usually).  

ERIC Educational Resources Information Center

Provides background information about the planet Pluto. Includes the history of Pluto and discusses some of the common misconceptions about the planets. Addresses some of the recent discoveries about Pluto and contains a resource list of books, articles, and a videotape. (TW)

Universe in the Classroom, 1988

1988-01-01

324

Revised orbital parameters for planets  

Microsoft Academic Search

Orbital parameters of planets are fitted directly to an appropriate set of observations. It is shown how to use the rigorous Deming method combined with a numerical integration of gravitation equations. In all, 65 parameters of the nine planets (masses and initial positions and velocities at J2000) are listed. The complete set of their standard errors, and the associated variance-covariance

A. C. Lefloch

2002-01-01

325

Geologic mapping of tectonic planets  

Microsoft Academic Search

Geological analysis of planets typically begins with the construction of a geologic map of the planets’ surfaces using remote data sets. Geologic maps provide the basis for interpretations of geologic histories, which in turn provide critical relations for understanding the range of processes that contributed to the evolution. Because geologic mapping should ultimately lead to the discovery of the types

Vicki L. Hansen

2000-01-01

326

Get Me Off This Planet  

NSDL National Science Digital Library

The purpose of this lesson is to teach students how a spacecraft gets from the surface of the Earth to Mars. Students first investigate rockets and how they are able to get us into space. Finally, the nature of an orbit is discussed as well as how orbits enable us to get from planet to planet â specifically from Earth to Mars.

Integrated Teaching And Learning Program

327

Hubble Discovers 100 New Planets  

NSDL National Science Digital Library

BBC News Online article published July 2, 2004 on the discovery by The Hubble Space Telescope of as many as 100 new planets orbiting stars in our galaxy, almosting doubling the number of planets known to be circling other stars to about 230.

Whitehouse, David

2005-05-17

328

Ionospheres of the terrestrial planets  

Microsoft Academic Search

The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionspheres, the

R. W. Schunk; A. F. Nagy

1980-01-01

329

Planets and Life  

NASA Astrophysics Data System (ADS)

Foreword; Preface; Contributors; Prologue; Part I. History: 1. History of astrobiological ideas W. T. Sullivan and D. Carney; 2. From exobiology to astrobiology S. J. Dick; Part II. The Physical Stage: 3. Formation of Earth-like habitable planets D. E. Brownlee and M. Kress; 4. Planetary atmospheres and life D. Catling and J. F. Kasting; Part III. The Origin of Life on Earth: 5. Does 'life' have a definition? C.E. Cleland and C. F. Chyba; 6. Origin of life: crucial issues R. Shapiro; 7. Origin of proteins and nucleic acids A. Ricardo and S. A. Benner; 8. The roots of metabolism G.D. Cody and J. H. Scott; 9. Origin of cellular life D. W. Deamer; Part IV. Life on Earth: 10. Evolution: a defining feature of life J. A. Baross; 11. Evolution of metabolism and early microbial communities J. A. Leigh, D. A. Stahl and J. T. Staley; 12. The earliest records of life on Earth R. Buick; 13. The origin and diversification of eukaryotes M. L. Sogin, D. J. Patterson and A. McArthur; 14. Limits of carbon life on Earth and elsewhere J. A. Baross, J. Huber and M. Schrenk; 15. Life in ice J. W. Deming and H. Eicken; 16. The evolution and diversification of life S. Awramik and K. J. McNamara; 17. Mass extinctions P. D. Ward; Part V. Potentially Habitable Worlds: 18. Mars B. M. Jakosky, F. Westall and A. Brack; 19. Europa C. F. Chyba and C. B. Phillips; 20. Titan J. I. Lunine and B. Rizk; 21. Extrasolar planets P. Butler; Part VI. Searching for Extraterrestrial Life: 22. How to search for life on other worlds C. P. McKay; 23. Instruments and strategies for detecting extraterrestrial life P. G. Conrad; 24. Societial and ethical concerns M. S. Race; 25. Planetary protection J. D. Rummel; 26. Searching for extraterrestrial intelligence J. C. Tarter; 27. Alien biochemistries P. D. Ward and S. A. Benner; Part VII. Future of the Field: 28. Disciplinary and educational opportunities L. Wells, J. Armstrong and J. Huber; Epilogue C. F. Chyba; Appendixes: A. Units and usages; B. Planetary properties; C. The geological time scale S. Awramik and K. J. McNamara; D. Astrobiological destinations on planet Earth J. Harnmeijer; E. Micro*scope web tool D. J. Patterson and M. L. Sogin; Index.

Sullivan, Woodruff T., III; Baross, John

2007-09-01

330

Extrasolar Planets Orbiting Active Stars  

NASA Astrophysics Data System (ADS)

New discoveries of transiting extrasolar planets are reported weekly. Ground based surveys as well as space borne observatories like CoRoT and Kepler are responsible for filling the statistical voids of planets on distant stellar systems. I want to discuss the stellar activity and its impact on the discovery of extrasolar planets. Up to now the discovery of small rocky planets called "Super-Earths" like CoRoT-7b and Kepler-10b are the only exceptions. The question arises, why among over 500 detected and verified planets the amount of smaller planets is strikingly low. An explanation besides that the verification of small planets is an intriguing task, is the high level of stellar activity that has been observed. Stellar activity can be observed at different time-scales from long term irradiance variations similar to the well known solar cycle, over stellar rotation in the regime of days, down to the observations of acoustic modes in the domain of minutes. But also non periodic events like flares or the activity signal of the granulation can prevent the detection of a transiting Earth sized planet. I will describe methods to detect transit-like signals in stellar photometric data, the influences introduced by the star, the observer and their impact on the success. Finally different mathematical models and approximations of transit signals will be examined on their sensibility of stellar activity. I present a statistical overview of stellar activity in the CoRoT dataset. The influence of stellar activity will be analysed on different transiting planets: CoRoT-2b, CoRoT-4b und CoRoT-6b. Stellar activity can prevent the successful detection of a transiting planet, where CoRoT-7b marks the borderline. Future missions like Plato will be required to provide long-term observations with mmag precision to overcome the limitations set by active stars in our Galactic neighbourhood.

Weingrill, Jörg

2011-09-01

331

Sizing up the planets  

NASA Technical Reports Server (NTRS)

Visual, scaled comparisons are made among prominent volcanic, tectonic, crater and impact basin features photographed on various planets and moons in the solar system. The volcanic formation Olympus Mons, on Mars, is 27 km tall, while Io volcanic plumes reach 200-300 km altitude. Valles Marineris, a tectonic fault on Mars, is several thousand kilometers long, and the Ithasa Chasma on the Saturnian moon Tethys extends two-thirds the circumference of the moon. Craters on the Saturnian moons Tethys and Mimas are large enough to suggest a collision by objects which almost shattered the planetoids. Large meteorite impacts may leave large impact basins or merely ripples, such as found on Callisto, whose icy surface could not support high mountains formed by giant body impacts.

Meszaros, S. P.

1985-01-01

332

Angry Red Planet  

NSDL National Science Digital Library

This mystery puts the reader in control, Mission Control, as he/she helps with a simulated flight to Mars. In this simulation, four "bionauts" are sealed into identical pods containing plants, animals and water. The goal is for them to survive for six months receiving no water, food or air from outside. The reader monitors the conditions in each pod, simulating Misson Control back on Earth. This story begins on the 34th day of the simulation, when the reader notices something wrong in one of the pods. The oxygen is getting low - why? Besides the usual Science Mystery themes (literacy, inquiry-based learning, problem-solving logic, inductive and deductive reasoning), "Angry Red Planet" puts your students hands-on with facts about respiration, ecosystems and ecological cycles, chemical and biochemical reactions, carbon dioxide poisoning, and the effects of stress on human physiology and psychology. They must learn how to read graphs and evaluate data to solve the mystery.

Ken Eklund (WriterGuy REV)

2000-12-15

333

Planets on the Edge  

NASA Astrophysics Data System (ADS)

Hot Jupiters formed through circularization of high-eccentricity orbits should be found at orbital separations a exceeding twice that of their Roche limit a R. Nevertheless, about a dozen giant planets have now been found well within this limit (a R < a < 2 a R), with one coming as close as 1.2 a R. In this Letter, we show that orbital decay (starting beyond 2 a R) driven by tidal dissipation in the star can naturally explain these objects. For a few systems (WASP-4 and 19), this explanation requires the linear reduction in convective tidal dissipation proposed originally by Zahn and verified by recent numerical simulations, but rules out the quadratic prescription proposed by Goldreich & Nicholson. Additionally, we find that WASP-19-like systems could potentially provide direct empirical constraints on tidal dissipation, as we could soon be able to measure their orbital decay through high precision transit timing measurements.

Valsecchi, Francesca; Rasio, Frederic A.

2014-05-01

334

Exploring the Planets: Mars  

NSDL National Science Digital Library

Students will learn that Mars, and each planet in the solar system, is unique due to the materials from which it is made and the processes that shaped it. Images and information from Mars exploration voyages, including the Viking Mission in 1975, the Pathfinder Landing in 1997, the Mars Global Surveyor project, the Mars Odyssey and Mars Express spacecrafts, the Mars Exploration Rovers, and the Reconnaissance Orbiter are presented. Students will learn about Mars mean distance from Sun, length of year, rotation period, mean orbital velocity, inclination of axis, average temperature (day and night), diameter, inclination to ecliptic, and number of observed satellites. The seasons, volcanoes, canyons and plains, craters, water, wind patterns, and two moons of Mars are also discussed.

335

From stars to planets  

NASA Astrophysics Data System (ADS)

A large program of multi-fibre (FLAMES) spectroscopic observations of the stellar population in two CoRoT/Exoplanet field with the GIRAFFE/VLT, took place in spring 2008. It aims at characterizing the brightest dwarf population and providing the ground for statistical analysis of the planetary population found by CoRoT. To perform such an ambitious analysis, we use an automated software based on the MATISSE algorithm, originally designed for the GAIA/RVS spectral analysis. This software derives the atmospheric stellar parameters: effective temperature, surface gravity and the overall metallicity. Further improvements are foreseen in order to measure also individual abundances. By comparing the main physical and chemical properties of the host stars to those of the stellar population they belong to, this will bring new insights into the formation and evolution of exoplanetary systems and the star-planet connection.

Gazzano, Jean-Christophe; Deleuil, Magali; De Laverny, Patrick; Blanco, Alejandra Recio; Bouchy, François; Gandolfi, Davide; Loeillet, Benoît

2009-02-01

336

THE FIRST PLANETS: THE CRITICAL METALLICITY FOR PLANET FORMATION  

SciTech Connect

A rapidly growing body of observational results suggests that planet formation takes place preferentially at high metallicity. In the core accretion model of planet formation this is expected because heavy elements are needed to form the dust grains which settle into the midplane of the protoplanetary disk and coagulate to form the planetesimals from which planetary cores are assembled. As well, there is observational evidence that the lifetimes of circumstellar disks are shorter at lower metallicities, likely due to greater susceptibility to photoevaporation. Here we estimate the minimum metallicity for planet formation, by comparing the timescale for dust grain growth and settling to that for disk photoevaporation. For a wide range of circumstellar disk models and dust grain properties, we find that the critical metallicity above which planets can form is a function of the distance r at which the planet orbits its host star. With the iron abundance relative to that of the Sun [Fe/H] as a proxy for the metallicity, we estimate a lower limit for the critical abundance for planet formation of [Fe/H]{sub crit} {approx_equal} -1.5 + log (r/1 AU), where an astronomical unit (AU) is the distance between the Earth and the Sun. This prediction is in agreement with the available observational data, and carries implications for the properties of the first planets and for the emergence of life in the early universe. In particular, it implies that the first Earth-like planets likely formed from circumstellar disks with metallicities Z {approx}> 0.1 Z{sub Sun }. If planets are found to orbit stars with metallicities below the critical metallicity, this may be a strong challenge to the core accretion model.

Johnson, Jarrett L.; Li Hui, E-mail: jlj@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2012-06-01

337

Ecological Impacts: Oceans Under-studied Oceans  

E-print Network

(more predators) Effects of Fish Capture & Handling #12;Chemistry of Ocean Acidification #12;High certainty: ocean acidification #12;Carbonate Life Forms in the Ocean #12;Ocean Acidification and CoralsEcological Impacts: Oceans #12;Under-studied Oceans #12;Example of long-term ocean records #12

Schweik, Charles M.

338

Which Ringed Planet...!?  

NASA Astrophysics Data System (ADS)

Don't worry - you are not the only one who thought this was a nice amateur photo of planet Saturn, Lord of the Rings in our Solar System! But then the relative brightness and positions of the moons may appear somewhat unfamiliar... and the ring system does look unusually bright when compared to the planetary disk...?? Well, it is not Saturn, but Uranus , the next giant planet further out, located at a distance of about 3,000 million km, or 20 times the distance between the Sun and the Earth. The photo shows Uranus surrounded by its rings and some of the moons, as they appear on a near-infrared image that was obtained in the K s -band (at wavelength 2.2 µm) with the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile) . The exposure was made on November 19, 2002 (03:00 hrs UT) during a planetary research programme. The observing conditions were excellent (seeing 0.5 arcsec) and the exposure lasted 5 min. The angular diameter of Uranus is about 3.5 arcsec. The observers at ISAAC were Emmanuel Lellouch and Thérése Encrenaz of the Observatoire de Paris (France) and Jean-Gabriel Cuby and Andreas Jaunsen (both ESO-Chile). The rings The rings of Uranus were discovered in 1977, from observations during a stellar occultation event by astronomer teams at the Kuiper Airborne Observatory (KAO) and the Perth Observatory (Australia). Just before and after the planet moved in front of the (occulted) star, the surrounding rings caused the starlight to dim for short intervals of time. Photos obtained from the Voyager-2 spacecraft in 1986 showed a multitude of very tenuous rings. These rings are almost undetectable from the Earth in visible light. However, on the present VLT near-infrared picture, the contrast between the rings and the planet is strongly enhanced. At the particular wavelength at which this observation was made, the infalling sunlight is almost completely absorbed by gaseous methane present in the planetary atmosphere and the disk of Uranus therefore appears unsually dark. At the same time, the icy material in the rings reflects the sunlight and appears comparatively bright. Uranus is unique among the planets of the solar system in having a tilted rotation axis that is close to the main solar system plane in which most planets move (the "Ecliptic"). At the time of the Voyager-2 encounter (1986), the southern pole was oriented toward the Earth. Now, sixteen years later (corresponding to about one-fifth of Uranus' 84-year period of revolution), we observe the Uranian ring system at an angle that is comparable to the one under which we see Saturn when its ring system is most "open". The moons ESO PR Photo 31b/02 ESO PR Photo 31b/02 [Preview - JPEG: 400 x 526 pix - 76k] [Full-Res - JPEG: 1460 x 1919 pix - 1.1M] Caption : PR Photo 31b/02 provides identifications of the Uranian moons present in PR Photo 31a/02 . The unidentified, round object to the left is a background star. The image scale in indicated by the bar. Seven of the moons of Uranus have been identified in PR Photo 31b/02 [1]. Of these, Titania and Oberon are the brightest (visual magnitude about 14). They were first seen in 1787 by the discoverer of Uranus, William Herschel (1738-1822), working at Bath in England. Ariel and Umbriel were found in 1851 by William Lassell (1799-1880) at Liverpool in the same country. Miranda was discovered in 1948 by Gerard Kuiper (1905-1973) at the 5-m Palomar telescope in California (USA). The much smaller and fainter Puck and Portia (visual magnitude about 21 and barely visible in the photo) were first found in 1985-86 by Stephen P. Synnott of the Jet Propulsion Laboratory (USA), during a study of Voyager-2 photos obtained soon before this NASA spacecraft flew by Uranus in January 1986. Other VLT images If you now want to see a fine VLT photo of Saturn, please look at PR Photo 04a/02 , obtained in late 2001. It was made with the NAOS-CONICA (NACO) Adaptive Optics facility and is therefore much less influenced by atmospheric turbulence and hence correspondingly shar

2002-12-01

339

Ocean Animals  

NSDL National Science Digital Library

What characteristics do animals have that help them to survive in the ocean? We have enjoyed learning about lots of different ocean animals in class, but there is still so much more to learn! Here are some websites with fun pictures and videos to teach us about the characteristics that help animals survive in the ocean. Beluga whales have been one of our favorite topics ...

Cole, Ms.

2011-04-07

340

Origin of the earth's ocean basins  

NASA Technical Reports Server (NTRS)

The earth's original ocean basins are proposed to be mare-type basins produced 4 billion y.a. by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upward from the observed number of lunar basins for the greater capture cross-section and impact velocity of the earth indicates that at least 50% of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60% oceanic, 40% continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

Frey, H.

1977-01-01

341

Origin of the earth's ocean basins  

NASA Technical Reports Server (NTRS)

The earth's original ocean basins were mare-type basins produced 4 billion years ago by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upwards from the observed number of lunar basins for the greater capture cross-section and impact velocity of the Earth indicates that at least 50 percent of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60 percent oceanic, 40 percent continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

Frex, H.

1977-01-01

342

NO PSEUDOSYNCHRONOUS ROTATION FOR TERRESTRIAL PLANETS AND MOONS  

SciTech Connect

We re-examine the popular belief that a telluric planet or a satellite on an eccentric orbit can, outside a spin-orbit resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the Darwin-Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of rheological properties of the mantle, which we choose to be a combination of the Andrade model at ordinary frequencies and the Maxwell model at low frequencies. This development demonstrates that there exist no stable equilibrium states for solid planets and moons, other than spin-orbit resonances.

Makarov, Valeri V.; Efroimsky, Michael, E-mail: vvm@usno.navy.mil, E-mail: michael.efroimsky@usno.navy.mil [US Naval Observatory, Washington, DC 20392 (United States)] [US Naval Observatory, Washington, DC 20392 (United States)

2013-02-10

343

The Planet-Metallicity Correlation  

NASA Astrophysics Data System (ADS)

We have recently carried out spectral synthesis modeling to determine Teff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on the Keck, Lick, and Anglo-Australian Telescope planet search programs. This is the first time that a single, uniform spectroscopic analysis has been made for every star on a large Doppler planet search survey. We identify a subset of 850 stars that have Doppler observations sufficient to detect uniformly all planets with radial velocity semiamplitudes K>30 m s-1 and orbital periods shorter than 4 yr. From this subset of stars, we determine that fewer than 3% of stars with -0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solar metallicity, there is a smooth and rapid rise in the fraction of stars with planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detected gas giant planets. A power-law fit to these data relates the formation probability for gas giant planets to the square of the number of metal atoms. High stellar metallicity also appears to be correlated with the presence of multiple-planet systems and with the total detected planet mass. This data set was examined to better understand the origin of high metallicity in stars with planets. None of the expected fossil signatures of accretion are observed in stars with planets relative to the general sample: (1) metallicity does not appear to increase as the mass of the convective envelopes decreases, (2) subgiants with planets do not show dilution of metallicity, (3) no abundance variations for Na, Si, Ti, or Ni are found as a function of condensation temperature, and (4) no correlations between metallicity and orbital period or eccentricity could be identified. We conclude that stars with extrasolar planets do not have an accretion signature that distinguishes them from other stars; more likely, they are simply born in higher metallicity molecular clouds. Based on observations obtained at Lick and Keck Observatories, operated by the University of California, and the Anglo-Australian Observatories.

Fischer, Debra A.; Valenti, Jeff

2005-04-01

344

What Should Children Know about the Arctic Ocean?  

ERIC Educational Resources Information Center

Lists essential information about the Arctic Ocean which should be taught in elementary social studies courses, and which teacher training programs should cover. Discusses popular misconceptions regarding the Arctic Ocean and factors, such as the coloration on maps and globes, which lead to these misconceptions. (LS)

Stockard, James W., Jr.

1989-01-01

345

Popularity versus similarity in growing networks  

NASA Astrophysics Data System (ADS)

Preferential attachment is a powerful mechanism explaining the emergence of scaling in growing networks. If new connections are established preferentially to more popular nodes in a network, then the network is scale-free. Here we show that not only popularity but also similarity is a strong force shaping the network structure and dynamics. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which preferential attachment emerges from local optimization processes. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.

Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Serrano, Mariangeles; Boguna, Marian

2012-02-01

346

The Fate of Scattered Planets  

E-print Network

As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primor...

Bromley, Benjamin C

2014-01-01

347

The evolution of ocean color  

NASA Astrophysics Data System (ADS)

Analog examples of what primeval oceans might have looked in the Precambrian are probably extant in various regions and at various size scales in present day oceans albeit they have not been sufficiently recognized and/or studied. The Eastern Boundary Current Ecosystems (EBCEs), with their characteristic high productivity-inducing coastal upwelling events, their extensive and intensive anoxic/hypoxic water column and methane and sulfide-rich benthic environment, appear to represent such analogs. Moreover, recent studies have shown that they possess diverse anaerobic prokaryotic communities of mat-forming large multi-cellular filamentous bacteria similar to fossils found in Archean and Proterozoic rocks. Observations in the Bay of Concepcion, central Chile (~36°S), inserted in the second most productive EBCE of the world, suggests that given similar oceanographic dynamics, past oceans may have presented different predominant colorations after the first probable "red" color of the reduced iron-rich Archean ocean and prior to the present day "blue" color. In this coastal ecosystem a "black" coloration has been observed to form as the result of the floating to the surface layer of sulfide-blackened benthic detritus together with chunks of microbial mats, and a "milky to turquoise" coloration resulting from different concentrations of colloidal, nano-sized particles which may include elemental sulfur and/or microorganisms. If the present is the key to the past we posit that "black" color oceans could have existed during the Proterozoic "Canfield sulfidic ocean" followed by "milky to turquoise" colored oceans during later stages of the Proterozoic. Meso-scale examples of "milky" and "turquoise" portions of oceans, caused by elemental sulfur from oxidized hydrogen sulfide eruptions, have been described from off Namibia and there appear to also exist elsewhere. Examples of "black" oceans have apparently not been reported but the name of the Black Sea, the largest permanent anoxic basin on Earth, suggests that at some point in time it may have been black, at least locally and/or for short periods, prompting the name. We conclude suggesting that analogous to the present "Blue Planet" denomination, in the past our Earth could possibly have deserved the successive names of "Red", "Black" and "Milky-Turquoise" Planet.

Gallardo, Victor A.; Espinoza, Carola

2008-08-01

348

Classical mythology in the Victorian popular theatre  

Microsoft Academic Search

This article argues that our picture of the uses of Greek and Roman authors in nineteenth-century Britain will remain incomplete\\u000a unless the popular and culturally subversive genre of classical burlesque, a staple of the mid-Victorian popular theatre,\\u000a is taken seriously by scholars. Dozens of burlesques of ancient epic and tragedy were performed between James Robinson Planch?’sOlympic Revels of 1831 and

Edith Hall

1999-01-01

349

Books and the popularization of science  

Microsoft Academic Search

This article discusses best-selling science books, the characteristics of the audience for popular science books, and the\\u000a role of books within science popularization and science education. Best-selling science books have been rare, but generally\\u000a readable. Regional books, also important sources of scientific information, aim at much smaller, far more price-sensitive\\u000a audiences. Many successful regional, nontechnical science books are readable, heavily

Rex Buchanan

1991-01-01

350

Planet Hunters: A Status Report  

NASA Astrophysics Data System (ADS)

The Planet Hunters (http://www.planethunters.org) citizen science project uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. Planet Hunters uses the Zooniverse (http://www.zooniverse.org) platform to present visitors to the Planet Hunters website with a randomly selected 30-day light curve segment from one of Kepler's 160,000 target stars. Volunteers are asked to draw boxes to mark the locations of visible transits with multiple independent classifiers reviewing each 30-day light curve segment. Since December 2010, more than 170,000 members of the general public have participated in Planet Hunters contributing over 12.5 million classifications searching the 1 1/2 years of publicly released Kepler observations. Planet Hunters is a novel and complementary technique to the automated transit detection algorithms, providing an independent assessment of the completeness of the Kepler exoplanet inventory. We report the latest results from Planet Hunters, highlighting in particular our latest efforts to search for circumbinary planets (planets orbiting a binary star) and single transit events in the first 1.5 years of public Kepler data. We will present a status report of our search of the first 6 Quarters of Kepler data, introducing our new planet candidates and sharing the results of our observational follow-up campaign to characterize these planetary systems. Acknowledgements: MES is supported by a NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1003258. This is research is supported in part by an American Philosophical Society Franklin Grant.

Schwamb, Megan E.; Orosz, J. A.; Carter, J. A.; Fischer, D. A.; Howard, A. W.; Crepp, J. R.; Welsh, W. F.; Kaib, N. A.; Lintott, C. J.; Terrell, D.; Jek, K. J.; Gagliano, R.; Parrish, M.; Smith, A. M.; Lynn, S.; Brewer, J. M.; Giguere, M. J.; Schawinski, K.; Simpson, R. J.

2012-10-01

351

Beitler Jane (2011) Repatterning the world. In: Sensing Our Planet: NASA Earth Science Research Features 2011. pp 14-17, Washington,  

E-print Network

scourge is revealed. The un-ice age 22 Earth's remaining ice sheets head for the ocean. Once moreCitation: Beitler Jane (2011) Repatterning the world. In: Sensing Our Planet: NASA Earth Science://earthdata.nasa.gov/featured-stories/featured-research/repatterning- world #12;Sensing Our Planet NASA Earth Science Research Features 2011 National Aeronautics and Space

Ellis, Erle C.

352

The Planet Venus  

NSDL National Science Digital Library

This resource covers early and modern views of Venus; the general features of Venus; its cloud layer, including high velocity winds, the absence of water vapor, and the different wavelengths used to analyze the Venusian atmosphere; properties of the Venusian atmosphere; a runaway greenhouse effect (where oceans would boil and rocks would sublimate), caused by radiation trapping by greenhouse gases; surface features of Venus, including different hemispheric views, mountains, volcanoes, lava flows, rift valleys and meteor craters; and a comparison of Venus and Earth.

2007-05-12

353

Workshop on Oxygen in the Terrestrial Planets  

NASA Technical Reports Server (NTRS)

This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in Lunar Metal Grains: Solar, Lunar or Terrestrial Origin? 22) Isotopic Zoning in the Inner Solar System; 23) Redox Conditions on Small Bodies; 24) Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update; 25) Mantle Redox Evolution and the Rise of Atmospheric O2; 26) Variation of Kd for Fe-Mg Exchange Between Olivine and Melt for Compositions Ranging from Alkaline Basalt to Rhyolite; 27) Determining the Partial Pressure of Oxygen (PO,) in Solutions on Mars; 28) The Influence of Oxygen Environment on Kinetic Properties of Silicate Rocks and Minerals; 29) Redox Evolution of Magmatic Systems; 30) The Constancy of Upper Mantlefo, Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric 0 2; 31) Nitrogen Solubility in Basaltic Melt. Effects of Oxygen Fugacity, Melt Composition and Gas Speciation; 32) Oxygen Isotope Anomalies in the Atmospheres of Earth and Mars; 33) The Effect of Oxygen Fugacity on Interdiffusion of Iron and Magnesium in Magnesiowiistite 34) The Calibration of the Pyroxene Eu-Oxybarometer for the Martian Meteorites; 35) The Europium Oxybarometer: Power and Pitfalls; 36) Oxygen Fugacity of the Martian Mantle from PigeoniteMelt Partitioning of Samarium, Europium and Gadolinium; 37) Oxidation-Reduction Processes on the Moon: Experimental Verification of Graphite Oxidation in the Apollo 17 Orange Glasses; 38) Oxygen and Core Formation in the Earth; 39) Geologic Record of the Atmospheric Sulfur Chemistry Before the Oxygenation of the Early Earth s Atmosphere; 40) Comparative Planetary Mineralogy: V/(CrCAl) Systematics in Chromite as an Indicator of Relative Oxygen Fugacity; 41) How Well do Sulfur Isotopes Constrain Oxygen Abundance in the Ancient Atmospheres? 42) Experimental Constraints on the Oxygen Isotope (O-18/ O-16) Fractionation in the Ice vapor and Adsorbant vapor Systems of CO2 at Conditions Relevant to the Surface of Mars; 43) Micro-XANES Measurements on Experimental Spinels andhe Oxidation State of Vanadium in Spinel-Melt Pairs; 44) Testing the Magma Ocean Hypothesis Using

2004-01-01

354

Extrasolar Planet Orbits and Eccentricities  

E-print Network

The known extrasolar planets exhibit many interesting and surprising features--extremely short-period orbits, high-eccentricity orbits, mean-motion and secular resonances, etc.--and have dramatically expanded our appreciation of the diversity of possible planetary systems. In this review we summarize the orbital properties of extrasolar planets. One of the most remarkable features of extrasolar planets is their high eccentricities, far larger than seen in the solar system. We review theoretical explanations for large eccentricities and point out the successes and shortcomings of existing theories.

Scott Tremaine; Nadia L. Zakamska

2003-12-01

355

Planets in our Solar System  

NSDL National Science Digital Library

Today, we're going to learn all about the planets in our solar system. First, watch these two short clips that introduce you to our solar system. Animaniacs Sing The Solar System Song Video on the Planets from IdahoPTV s D4K Once you are done watching the clip we are going to separate into groups. Your group will be everyone sitting at your table. Your group will then be drawing out the name of which planet you will become an ...

Barney, Miss

2011-09-26

356

Ocean tides  

Microsoft Academic Search

According to their spatial scales and to the generation mechanisms applying, tidal phenomena in the sea are presented together with hydrodynamic models explaining their existence and appearance. The astronomical tide generating forces, to which the tidal variations of the ocean state variables can finally be traced, have planetary scale and therefore can directly excite tidal oscillations in the open ocean.

Wilfried Zahel

1997-01-01

357

Oceanic Plateaus  

Microsoft Academic Search

Although the existence of large continental flood basalt provinces has been known for some considerable time, e.g., Holmes (1918), the recognition that similar flood basalt provinces also exist below the oceans is relatively recent. In the early 1970s increasing amounts of evidence from seismic reflection and refraction studies revealed that the crust in several large portions of the ocean floor

A. C. Kerr

2003-01-01

358

Migration & Extra-solar Terrestrial Planets: Watering the Planets  

NASA Astrophysics Data System (ADS)

A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

2014-04-01

359

Water Trapping on Tidally Locked Terrestrial Planets Requires Special Conditions  

E-print Network

Surface liquid water is essential for standard planetary habitability. Calculations of atmospheric circulation on tidally locked planets around M stars suggest that this peculiar orbital configuration lends itself to the trapping of large amounts of water in kilometers-thick ice on the night side, potentially removing all liquid water from the day side where photosynthesis is possible. We study this problem using a global climate model including coupled atmosphere, ocean, land, and sea-ice components as well as a continental ice sheet model driven by the climate model output. For a waterworld we find that surface winds transport sea ice toward the day side and the ocean carries heat toward the night side. As a result, night-side sea ice remains O(10 m) thick and night-side water trapping is insignificant. If a planet has large continents on its night side, they can grow ice sheets O(1000 m) thick if the geothermal heat flux is similar to Earth's or smaller. Planets with a water complement similar to Earth's w...

Yang, Jun; Hu, Yongyun; Abbot, Dorian S

2014-01-01

360

Planets to Cosmology  

NASA Astrophysics Data System (ADS)

Preface; 1. Hubble's view of transiting planets D. Charbonneau; 2. Unsolved problems in star formation C. J. Clarke; 3. Star formation in clusters S. S. Larson; 4. HST abundance studies of low metallicity stars J. W. Truran, C. Sneden, F. Primas, J. J. Cowan and T. Beers; 5. Physical environments and feedback: HST studies of intense star-forming environments J. S. Gallagher, L. J. Smith and R. W. O'Connell; 6. Quasar hosts: growing up with monstrous middles K. K. McLeod; 7. Reverberation mapping of active galactic nuclei B. M. Peterson and K. Horne; 8. Feedback at high redshift A. E. Shapley; 9. The baryon content of the local intergalactic medium J. T. Stocke, J. M. Shull, and S. V. Penton; 10. Hot baryons in supercluster filaments E. D. Miller, R. A. Dupke and J. N. Bregman; 11. Galaxy assembly E. F. Bell; 12. Probing the reionization history of the Universe Z. Haiman; 13. Studying distant infrared-luminous galaxies with Spitzer and Hubble C. Papovich, E. Egami, E. Le Floc'h, P. Pérez-González, G. Rieke, J. Rigby, H. Dole and M. Reike; 14. Galaxies at z = g-i'-drop selection and the GLARE Project E. R. Stanway, K. Glazebrook, A. J. Bunker and the GLARE Consortium; 15. The Hubble Ultra Deep Field with NIMCOS R. I. Thompson, R. J. Bouwens and G. Illingworth.

Livio, Mario; Casertano, Stefano

2011-11-01

361

Mission to Planet Earth  

NSDL National Science Digital Library

These four written and computer activities cover concepts of remote sensing in general and NASA's Mission to Planet Earth. The first is a written activity asking students to consider what about the earth they would want to study. The second combines a written activity on the Galileo spacecraft with a computer activity. Students will view images of the earth taken from the spacecraft. In the third activity, students receive their first introduction to image processing programs as they view two earth images and are asked to detect differences. They work with several software tools and become comfortable opening files and applying various image processing techniques. In the final section, students work with whole earth optical images and then open up their first radar image, seeing first an image of Los Angeles and then a close-up view of Elysium Park and Dodger Stadium taken at the same time, and derive an understanding of the various advantages and limitations of the remote sensing platforms.

362

Planets to Cosmology  

NASA Astrophysics Data System (ADS)

Preface; 1. Hubble's view of transiting planets D. Charbonneau; 2. Unsolved problems in star formation C. J. Clarke; 3. Star formation in clusters S. S. Larson; 4. HST abundance studies of low metallicity stars J. W. Truran, C. Sneden, F. Primas, J. J. Cowan and T. Beers; 5. Physical environments and feedback: HST studies of intense star-forming environments J. S. Gallagher, L. J. Smith and R. W. O'Connell; 6. Quasar hosts: growing up with monstrous middles K. K. McLeod; 7. Reverberation mapping of active galactic nuclei B. M. Peterson and K. Horne; 8. Feedback at high redshift A. E. Shapley; 9. The baryon content of the local intergalactic medium J. T. Stocke, J. M. Shull, and S. V. Penton; 10. Hot baryons in supercluster filaments E. D. Miller, R. A. Dupke and J. N. Bregman; 11. Galaxy assembly E. F. Bell; 12. Probing the reionization history of the Universe Z. Haiman; 13. Studying distant infrared-luminous galaxies with Spitzer and Hubble C. Papovich, E. Egami, E. Le Floc'h, P. Pérez-González, G. Rieke, J. Rigby, H. Dole and M. Reike; 14. Galaxies at z = g-i'-drop selection and the GLARE Project E. R. Stanway, K. Glazebrook, A. J. Bunker and the GLARE Consortium; 15. The Hubble Ultra Deep Field with NIMCOS R. I. Thompson, R. J. Bouwens and G. Illingworth.

Livio, Mario; Casertano, Stefano

2006-04-01

363

Gottesman Hall of Planet Earth  

NSDL National Science Digital Library

This Web site, created to complement the Museum's Gottesman Hall of Planet Earth, offers a virtual visit to the Museum, complete with text, photos, and a downloadable desktop background. The site contains information on ten exhibition highlights.

364

Magnetospheres of the outer planets  

NASA Technical Reports Server (NTRS)

The five qualitatively different types of magnetism that a planet body can exhibit are outlined. Potential sources of energetic particles in a planetary magnetosphere are discussed. The magnetosphere of Uranus and Neptune are then described using Pioneer 10 data.

Vanallen, James A.

1987-01-01

365

Extrasolar Planets Lecture 4: Discoveries & Results  

E-print Network

14 Most planets have eccentric orbits rather than circular like our Solar System #12;ASTR178 - other worlds: planets and planetary systems 15 Most planets have eccentric orbits rather than circular like ourExtrasolar Planets Lecture 4: Discoveries & Results Prof. Quentin A Parker ASTR178 - other worlds

Parker, Quentin A.

366

Planet Formation Is the Solar System Misleading?  

E-print Network

in order to understand giant planets orbiting their host stars with periods of a few days? Or do we have planets in orbits with periods of a few days, eccentricities much larger then any of the Sun's planets, and many giant planets with orbital radii much smaller than Jupiter's -- prompted strong comments: Upon

Wuchterl, Günther

367

G. P. Kuiper's Early Studies of Planets  

NASA Astrophysics Data System (ADS)

Gerard P. Kuiper was born on December 7, 1905; this is his centennial year. While he had an early interest in Solar System bodies, writing an extensive review about Mars for the popular Dutch astronomy journal, Hemel en Dampkring in 1931, Kuiper's first important observations began in 1944, when he discovered the atmosphere of Titan. In a letter dated February 29, 1944, to Lick Observatory director Joseph H. Moore, Kuiper noted that, ``The only reason I happened to observe the planets and the 10 brightest satellites was that they were nicely lined up in a region of the sky where I had run out of program stars (stars of large proper motion and parallax)." These spectroscopic observations were obtained with the new McDonald 82-inch telescope during a break from Kuiper's war-time work at Harvard's Radio Research Laboratory. In a letter of congratulations, his friend S. Chandrasekhar wrote, ``It is only on the impact of such discoveries that one realizes afresh the permanent value of science which no war -- not even of Hitler's -- can truly undermine. And it must be of satisfaction to you that if you took a vacation from war-work, it was only to make a fundamental discovery!" Using detectors declassified at the end of World War II, Kuiper began a study of the infrared spectra of planets and stars (with the first publication in 1947) that continued to the time of his death (December 24, 1973). Early in this work, on March 2, 1948, he wrote a lengthy letter to Henry Norris Russell in which he succinctly and enthusiastically summarized his observations and discoveries. Details in this letter give a fascinating perspective on some of the earliest physical studies of Solar System bodies, such as the detection of water ice on Saturn's rings and in the polar cap of Mars, spectral and photometric measurements of Mars' surface and atmospheric haze, and the discovery of Miranda.

Cruikshank, D. P.

2005-08-01

368

NewsMars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under  

NASA Astrophysics Data System (ADS)

Mars: Express journey to Mars ASE 2003: Knocked out by meteorites Events: Sun-Earth Day ASE 2003: Fun Physics - popular as ever Appointments: Sykes to bring science to the people UK Science Education: The future's bright, the future's science ASE 2003: A grand finale for Catherine Teaching Resources: UK goes to the planets Cambridge Physics Update: Basement physics Conferences: Earth Science Teachers' Association Conference 2003 New Website: JESEI sets sail GIREP: Teacher education seminar Malaysia: Rewards for curriculum change Cambridge Physics Update: My boomerang will come back! Teaching Resources: Widening particiption through ideas and evidence with the University of Surrey Wales: First Ffiseg Events: Nuna: Solar car on tour Physics on Stage: Physics on Stage 3 embraces life Symposium: In what sense a nuclear 'debate'? Gifted and Talented: Able pupils experiencing challenging science Australia: ISS flies high Down Under

2003-03-01

369

A Multi-Scale Detection Technique for Anomaly on Ocean Surface Using Optical Satellite Images  

Microsoft Academic Search

Using satellite images for monitoring oceanic surface has become popular recently. One of the striking feature can be detected from satellite image is the anomalous phenomenon on oceanic surface. In general, it is easy to observe the diversified anomalies, caused by abrupt change of the reflectance on oceanic surface, on the optical satellite images. Among them, the anomaly caused by

Chi-Farn Chen; Li-Yu Chang

370

Visions of our Planet's Atmosphere, Land and Oceans  

NASA Technical Reports Server (NTRS)

The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to South Africa, Cape Town and Johannesburg using NASA Terra/MODIS data, Landsat data and 1 m IKONOS 'Spy Satellite' data. Zoom in to any place South Africa using Earth Viewer 3D from Keyhole Inc. and Landsat data at 30 m resolution Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & 'tornadoes'. See the latest visualizations of spectacular images from NASANOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained.

Hasler, A. F.

2002-01-01

371

LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES  

SciTech Connect

Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180{sup 0}, whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30{sup 0}. Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74{sup 0}; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90{sup 0}, but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.

Zugger, M. E.; Kane, T. J. [Applied Research Laboratory, Penn State University, P.O. Box 30, State College, PA 16804 (United States); Kasting, J. F.; Williams, D. M. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Philbrick, C. R. [Physics Department, North Carolina State University, 432 Riddick Hall, Raleigh, NC 27695-8202 (United States)

2010-11-10

372

Accretion of Planets and Moons  

Microsoft Academic Search

\\u000a Planets are formed through accretion of planetesimals, while moons may accrete from a debris disk. Both are systems of a central\\u000a object and a surrounding particle disk. We have been working on N-body simulations of dynamical evolution of such systems.\\u000a For planet accretion, we directly showed “runaway growth” of planetesimals and suggested separation distance between protoplanets\\u000a as a result of

Ida Shigeru

2001-01-01

373

Development of a Habitable Planet  

NSDL National Science Digital Library

In this lesson, students investigate the origin of the elements, the process of planet formation, the evolution of life on Earth, and the conditions necessary for life as we know it. Using multimedia resources and a classroom activity, students identify and sequence the major events that caused Earth to develop into the planet we know, understand where the ingredients for Earth originated, including the conditions necessary for life, and consider the likelihood of other habitable worlds.

2005-01-01

374

Planet Hunters: Kepler by Eye  

NASA Astrophysics Data System (ADS)

Planet Hunters (http://www.planethunters.org), part of the Zooniverse's (http://www.zooniverse.org) collection of online citizen science projects, uses the World Wide Web to enlist the general public to identify transits in the pubic Kepler light curves. Planet Hunters utilizes human pattern recognition to identify planet transits that may be missed by automated detection algorithms looking for periodic events. Referred to as ‘crowdsourcing’ or ‘citizen science’, the combined assessment of many non-expert human classifiers with minimal training can often equal or best that of a trained expert and in many cases outperform the best machine-learning algorithm. Visitors to the Planet Hunters' website are presented with a randomly selected ~30-day light curve segment from one of Kepler’s ~160,000 target stars and are asked to draw boxes to mark the locations of visible transits in the web interface. 5-10 classifiers review each 30-day light curve segment. Since December 2010, more than 260,000 volunteers world wide have participated, contributing over 20 million classifications. We have demonstrated the success of a citizen science approach with the project’s more than 20 planet candidates, the discovery of PH1b, a transiting circumbinary planet in a quadruple star system, and the discovery of PH2-b, a confirmed Jupiter-sized planet in the habitable zone of a Sun-like star. I will provide an overview of Planet Hunters, highlighting several of project's most recent exoplanet and astrophysical discoveries. Acknowledgements: MES was supported in part by a NSF AAPF under award AST-1003258 and a American Philosophical Society Franklin Grant. We acknowledge support from NASA ADAP12-0172 grant to PI Fischer.

Schwamb, Megan E.; Lintott, C.; Fischer, D.; Smith, A. M.; Boyajian, T. S.; Brewer, J. M.; Giguere, M. J.; Lynn, S.; Parrish, M.; Schawinski, K.; Schmitt, J.; Simpson, R.; Wang, J.

2014-01-01

375

What makes a planet habitable ?  

E-print Network

Jupiter, first discovery (*) · HD209458 b [RV + transit]: Hot Jupiter, 3.5 day period, 0.045 AU, 0.69 MJ a planet: large disk (*) (*): naked-eye star #12;#12;HR 8799 planets imaged by Keck #12;#12;Life on other with time -> challenge for life around young stars ·Stars get brighter with time -> HZ moves out ! We have

Guyon, Olivier

376

The Planet-Metallicity Correlation  

Microsoft Academic Search

We have recently carried out spectral synthesis modeling to determine Teff, logg, vsini, and [Fe\\/H] for 1040 FGK-type stars on the Keck, Lick, and Anglo-Australian Telescope planet search programs. This is the first time that a single, uniform spectroscopic analysis has been made for every star on a large Doppler planet search survey. We identify a subset of 850 stars

Debra A. Fischer; Jeff Valenti

2005-01-01

377

Spitzer White Dwarf Planet Limits  

E-print Network

We present preliminary limits on the presence of planets around white dwarf stars using the IRAC photometer on the Spitzer space telescope. Planets emit strongly in the mid-infrared which allows their presence to be detected as an excess at these wavelengths. We place limits of $5 M_J$ for 8 stars assuming ages of $1 Gyr$, and $10 M_J$ for 23 stars.We describe our survey, present our results and comment on approaches to improve our methodology.

F. Mullally; Ted von Hippel; D. E. Winget

2006-10-28

378

44How to Build a Planet from the Inside Out! The planet Osiris orbits 7 million  

E-print Network

44How to Build a Planet from the Inside Out! The planet Osiris orbits 7 million kilometers from in orbit around other stars are enormous Jupiter-sized planets, but as our technology improves, astronomers has recently detected water, methane and carbon dioxide in the atmosphere of this planet. The planet

379

PREDICTING PLANETS IN KNOWN EXTRASOLAR PLANETARY SYSTEMS. III. FORMING TERRESTRIAL PLANETS  

E-print Network

that these systems of giant planets are complete and that their orbits are well determined. Assuming that the giantPREDICTING PLANETS IN KNOWN EXTRASOLAR PLANETARY SYSTEMS. III. FORMING TERRESTRIAL PLANETS Sean N that are stable for both Earth-mass and Saturn-mass planets. Here we simulate the formation of terrestrial planets

Barnes, Rory

380

Kuiper Prize: Giant Planet Atmospheres  

NASA Astrophysics Data System (ADS)

The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

Ingersoll, Andrew P.

2007-10-01

381

Taxonomy of the extrasolar planet  

E-print Network

When a star is described as a spectral class G2V, we know that the star is similar to our Sun.We know its approximate mass, temperature, age and size. In our work with extrasolar planets database, it is very useful to have a taxonomy scale (classification), for example, like the Harvard classification for stars. This new taxonomy has to be comprehensible and present the important information about extrasolar planets. The important information of extrasolar planets are their mass, radius, period, density, eccentricity, temperature, and their distance from the parent star. There are too many parameters, that is, taxonomy with six parameters would be complicated and difficult to apply. We propose following the extrasolar planet taxonomy scale with only four parameters. The first parameter is the information about the mass of an extrasolar planet in the form of the units of the mass of other known planets, where M - Mercury, E - Earth, N - Neptune, and J - Jupiter. The second parameter is the distance from its pa...

Plávalová, E

2011-01-01

382

Gravitational scattering by giant planets  

E-print Network

We seek to characterize giant-planet systems by their gravitational scattering properties. We do this to a given system by integrating it numerically along with a large number of hypothetical small bodies that are initially in eccentric habitable zone (HZ)-crossing orbits. Our analysis produces a single number, the escape rate, which represents the rate at which the small-body flux is perturbed away by the giant planets into orbits that no longer pose a threat to terrestrial planets inside the HZ. Obtaining the escape rate this way is similar to computing the largest Liapunov exponent as the exponential rate of divergence of two nearby orbits. For a terrestrial planet inside the HZ, the escape rate value quantifies the "protective" effect that the studied giant-planet system offers. Therefore, escape rates could provide information on whether certain giant-planet configurations produce a more desirable environment for life than the others. We present some computed escape rates on selected planetary systems, f...

Laakso, Teemu; Kaasalainen, Mikko

2014-01-01

383

Provenance of the terrestrial planets.  

PubMed

Earlier work on the simultaneous accumulation of the asteroid belt and the terrestrial planets is extended to investigate the relative contribution to the final planets made by material from different heliocentric distances. As before, stochastic variations intrinsic to the accumulation processes lead to a variety of final planetary configurations, but include systems having a number of features similar to our solar system. Fifty-nine new simulations are presented, from which thirteen are selected as more similar to our solar system than the others. It is found that the concept of "local feeding zones" for each final terrestrial planet has no validity for this model. Instead, the final terrestrial planets receive major contributions from bodies ranging from 0.5 to at least 2.5 AU, and often to greater distances. Nevertheless, there is a correlation between the final heliocentric distance of a planet and its average provenance. Together with the effect of stochastic fluctuations, this permits variation in the composition of the terrestrial planets, such as the difference in the decompressed density of Earth and Mars. Biologically important light elements, derived from the asteroidal region, are likely to have been significant constituents of the Earth during its formation. PMID:11539576

Wetherill, G W

1994-01-01

384

Geometric effects of Circumbinary Planets  

NASA Astrophysics Data System (ADS)

The largest fraction of random observers will never see a planet transit. Multiple systems contain a planet orbiting two sun-like stars that orbit and eclipse each other, creating unique effects for the planet and its transits. In the case of a perfectly coplanar binary and planet system looked upon exactly edge on, there is a transit every time the planet comes by. In between, there are a wide variety of possibilities. To understand the complicated geometry, probability of transits, and true frequency in these systems, determining bias in transits is essential. In looking at these possibilities, random observers from any location are considered for the most likely transits. We use three- body integration and we find the geometric probability depending on the number of random observations within a short interval in our model of transiting system. We will explore how these geometric effects vary as a function of binary and planetary orbital parameters, which will allow for a characterization of the unknown intrinsic properties of the circumbinary planet population.

Shahady, Anna K.; Ragozzine, Darin

2014-11-01

385

Terraforming planet Dune: Climate-vegetation interactions on a sandy planet  

NASA Astrophysics Data System (ADS)

The climate and the biosphere of planet Earth interact in multiple, complicated ways and on many spatial and temporal scales. Some of these processes can be studied with the help of simple mathematical models, as done for the effects of vegetation on albedo in desert areas and for the mechanisms by which terrestrial vegetation affects water fluxes in arid environments. Conceptual models of this kind do not attempt at providing quantitative descriptions of the climate-biosphere interaction, but rather to explore avenues and mechanisms which can play a role in the real system, providing inspiration for further research. In this work, we develop a simple conceptual box model in the spirit illustrated above, to explore whether and how vegetation affects the planetary hydrologic cycle. We imagine a planet with no oceans and whose surface is entirely covered with sand, quite similar to planet Dune of the science-fiction series by Frank Herbert (1965). We suppose that water is entirely in the sand, below the surface. Without vegetation, only evaporation takes place, affecting the upper sand layer for a maximum depth of a few cm. The amount of water that is evaporated in the atmosphere is relatively small, and not sufficient to trigger a full hydrologic cycle. The question is what happens to this planet when vegetation is introduced: the root depth can reach a meter or more, and plant transpiration can then transfer a much larger amount of water to the atmosphere. One may wonder whether the presence of vegetation is sufficient to trigger a hydrologic cycle with enough precipitation to sustain the vegetation itself and, if the answer is positive, what is the minimum vegetation cover that is required to maintain the cycle active. In more precise terms, we want to know whether the introduction of vegetation and of the evapotranspiration feedback allows for the existence of multiple equilibria (or solutions) in the soil-vegetation-atmosphere system. Although the box model introduced here is best formulated in terms of a hypothetical sandy planet, the results can be used to study the hydrologic cycle on wide continental regions of the Earth. On the other hand, our findings show how the definition of a habitable climate may also depend on surface characteristics, and in particular on biosphere and climate interactions.

Cresto Aleina, F.; Baudena, M.; D'Andrea, F.; Provenzale, A.

2012-04-01

386

Comprehensive Ocean Drilling  

E-print Network

Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

387

Towards the Rosetta Stone of planet formation  

Microsoft Academic Search

Transiting exoplanets (TEPs) observed just about 10 Myrs after formation of\\u000atheir host systems may serve as the Rosetta Stone for planet formation\\u000atheories. They would give strong constraints on several aspects of planet\\u000aformation, e.g. time-scales (planet formation would then be possible within 10\\u000aMyrs), the radius of the planet could indicate whether planets form by\\u000agravitational collapse (being

G. Maciejewski; R. Neuhaeuser; R. Errmann; M. Mugrauer; Ch. Adam; A. Berndt; T. Eisenbeiss; S. Fiedler; Ch. Ginski; M. Hohle; U. Kramm; C. Marka; M. Moualla; T. Pribulla; St. Raetz; T. Roell; T. O. B. Schmidt; M. Seeliger; I. Spaleniak; N. Tetzlaff; L. Trepl

2010-01-01

388

Water Cycling Between Ocean and Mantle: Super-Earths Need Not be Waterworlds  

NASA Astrophysics Data System (ADS)

Large terrestrial planets are expected to have muted topography and deep oceans, implying they should be entirely covered in water, so-called waterworlds. Quantitatively, a planet ten times the mass of Earth is not expected to have exposed continents unless it has a water mass fraction less than 3×10-5, roughly ten times drier than Earth. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. Water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridges and serpentinization of oceanic crust are mediated by sea-floor pressure, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water-partitioning on terrestrial planets. Since hydrostatic pressure is proportional to gravity, super-Earths with a deep water cycle will tend to store most of their water in the mantle. We conclude that tectonically active terrestrial planets with H2O mass fractions less than 3×10-3 will have both oceans and exposed continents. The circumstellar habitable zone is therefore equally wide for any tectonically active planet.

Cowan, Nicolas B.; Abbot, D. S.

2014-01-01

389

Acid Ocean  

NSDL National Science Digital Library

The I2I-Acid Ocean virtual lab is an e-learning activity where students become virtual scientists studying the impact of ocean acidification on sea urchin larval growth. Students recreate a real, up-to-date climate change experiment. They also learn important general scientific principles, such as the importance of sample size and numbers of replicates, and discuss what this research into a specific impact of climate change may mean for the future of our oceans. There is a French translation available.

390

Demographic studies of extrasolar planets  

NASA Astrophysics Data System (ADS)

Uncovering the demographics of extrasolar planets is crucial to understanding the processes of their formation and evolution. In this thesis, we present four studies that contribute to this end, three of which relate to NASA's Kepler mission, which has revolutionized the field of exoplanets in the last few years. In the pre-Kepler study, we investigate a sample of exoplanet spin-orbit measurements---measurements of the inclination of a planet's orbit relative to the spin axis of its host star---to determine whether a dominant planet migration channel can be identified, and at what confidence. Applying methods of Bayesian model comparison to distinguish between the predictions of several different migration models, we find that the data strongly favor a two-mode migration scenario combining planet-planet scattering and disk migration over a single-mode Kozai migration scenario. While we test only the predictions of particular Kozai and scattering migration models in this work, these methods may be used to test the predictions of any other spin-orbit misaligning mechanism. We then present two studies addressing astrophysical false positives in Kepler data. The Kepler mission has identified thousands of transiting planet candidates, and only relatively few have yet been dynamically confirmed as bona fide planets, with only a handful more even conceivably amenable to future dynamical confirmation. As a result, the ability to draw detailed conclusions about the diversity of exoplanet systems from Kepler detections relies critically on understanding the probability that any individual candidate might be a false positive. We show that a typical a priori false positive probability for a well-vetted Kepler candidate is only about 5-10%, enabling confidence in demographic studies that treat candidates as true planets. We also present a detailed procedure that can be used to securely and efficiently validate any individual transit candidate using detailed information of the signal's shape as well as follow-up observations, if available. Finally, we calculate an empirical, non-parametric estimate of the shape of the radius distribution of small planets with periods less than 90 days orbiting cool (less than 4000K) dwarf stars in the Kepler catalog. This effort reveals several notable features of the distribution, in particular a maximum in the radius function around 1-1.25 Earth radii and a steep drop-off in the distribution larger than 2 Earth radii. Even more importantly, the methods presented in this work can be applied to a broader subsample of Kepler targets to understand how the radius function of planets changes across different types of host stars.

Morton, Timothy

391

Collisional Evolution of Terrestrial Planets  

NASA Astrophysics Data System (ADS)

The currently accepted model for the formation of terrestrial planets describes their growth as the collisional accumulation of rocky or sometimes molten planetesimals. The characteristics of the planets produced by this process are, to a large degree, determined by their collisional evolution, and their associated differentiation and thermal evolution. Studies of planet formation and planetary collisional evolution have typically been conducted separately. Most works of late-stage planet formation use perfectly inelastic mergers to model collisions (e.g. Agnor, Canup & Levison 1999, Chambers 2001, Levison & Agnor 2003), with certain recognized inadequacies, notably rotationally unstable spin rates acquired as a planet grows. Do planets really accrete in this manner? On the other hand, most of the work studying the collisional evolution of terrestrial planets has focused on determining the efficacy of single impacts to account for particular planetary characteristics and the formation of satellites (e.g. Benz et al. 1988, Canup & Asphaug 2001). It has been recognized for some time (Wetherill 1985) that the final characteristics (e.g. spin state, bulk composition, isotopic age) of an accreting planet are determined not by the last or single largest collision (Agnor, Canup & Levison 1999) but by all of the major collisional encounters in a planet's history. As demonstrated in our impact models, each major impact changes the silicate to metal ratio, the thermal state, and the spin state, and sets the stage for subsequent collisions. We have commenced a detailed study of collision dynamics and outcomes common to the late stage of terrestrial planet accretion. We are modeling collisions using smooth particle hydrodynamics to examine, primarily, the regimes of impact that truly allow for accretion (i.e. mass accumulation instead of mass loss). We are also studying the cumulative affect of giant impacts on major planetary characteristics (such as composition and spin) and the extent to which collisional processes may account for planetary heterogeneity. One initial outcome of this study, to be presented, is whether, and under which circumstances, the use of perfectly inelastic collisions in late stage accretion studies is appropriate.

Agnor, C. B.; Asphaug, E. I.

2003-05-01

392

PLANET-PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS  

SciTech Connect

The known extrasolar multiple-planet systems share a surprising dynamical attribute: they cluster just beyond the Hill stability boundary. Here we show that the planet-planet scattering model, which naturally explains the observed exoplanet eccentricity distribution, can reproduce the observed distribution of dynamical configurations. We calculated how each of our scattered systems would appear over an appropriate range of viewing geometries; as Hill stability is weakly dependent on the masses, the mass-inclination degeneracy does not significantly affect our results. We consider a wide range of initial planetary mass distributions and find that some are poor fits to the observed systems. In fact, many of our scattering experiments overproduce systems very close to the stability boundary. The distribution of dynamical configurations of two-planet systems may provide better discrimination between scattering models than the distribution of eccentricity. Our results imply that, at least in their inner regions which are weakly affected by gas or planetesimal disks, planetary systems should be 'packed', with no large gaps between planets.

Raymond, Sean N. [Center for Astrophysics and Space Astronomy, 389 UCB, University of Colorado, Boulder, CO 80309 (United States); Barnes, Rory [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Veras, Dimitri [Astronomy Department, University of Florida, Gainesville, FL 32111 (United States); Armitage, Philip J. [JILA, University of Colorado, Boulder, CO 80309 (United States); Gorelick, Noel [Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043 (United States); Greenberg, Richard [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States)], E-mail: sean.raymond@colorado.edu

2009-05-01

393

GIANT PLANETS ORBITING METAL-RICH STARS SHOW SIGNATURES OF PLANET-PLANET INTERACTIONS  

SciTech Connect

Gas giants orbiting interior to the ice line are thought to have been displaced from their formation locations by processes that remain debated. Here we uncover several new metallicity trends, which together may indicate that two competing mechanisms deliver close-in giant planets: gentle disk migration, operating in environments with a range of metallicities, and violent planet-planet gravitational interactions, primarily triggered in metal-rich systems in which multiple giant planets can form. First, we show with 99.1% confidence that giant planets with semimajor axes between 0.1 and 1 AU orbiting metal-poor stars ([Fe/H] < 0) are confined to lower eccentricities than those orbiting metal-rich stars. Second, we show with 93.3% confidence that eccentric proto-hot Jupiters undergoing tidal circularization primarily orbit metal-rich stars. Finally, we show that only metal-rich stars host a pile-up of hot Jupiters, helping account for the lack of such a pile-up in the overall Kepler sample. Migration caused by stellar perturbers (e.g., stellar Kozai) is unlikely to account for the trends. These trends further motivate follow-up theoretical work addressing which hot Jupiter migration theories can also produce the observed population of eccentric giant planets between 0.1 and 1 AU.

Dawson, Rebekah I.; Murray-Clay, Ruth A., E-mail: rdawson@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

2013-04-20

394

Books and the popularization of science  

USGS Publications Warehouse

This article discusses best-selling science books, the characteristics of the audience for popular science books, and the role of books within science popularization and science education. Best-selling science books have been rare, but generally readable. Regional books, also important sources of scientific information, aim at much smaller, far more price-sensitive audiences. Many successful regional, nontechnical science books are readable, heavily illustrated, and in some cases, cross-disciplinary. To increase the attentive audience for scientific information, improvement in science education is necessary, and the most efficacious role for scientific institutions may be the production of materials that can be easily incorporated into school curricula. ?? 1991 Springer.

Buchanan, R.

1991-01-01

395

Catastrophic evaporation of rocky planets  

NASA Astrophysics Data System (ADS)

Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses ? 0.1 M? (less than twice the mass of Mercury) and surface temperatures ?2000 K are found to disintegrate entirely in ?10 Gyr. When our model is applied to Kepler planet candidate KIC 12557548b - which is believed to be a rocky body evaporating at a rate of dot{M} gtrsim 0.1 M_{{{oplus }}} Gyr-1 - our model yields a present-day planet mass of ? 0.02 M? or less than about twice the mass of the Moon. Mass-loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyr with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass-loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few per cent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10-100 close-in quiescent progenitors with sub-day periods whose hard-surface transits may be detectable by Kepler - if the progenitors are as large as their maximal, Mercury-like sizes (alternatively, the progenitors could be smaller and more numerous). According to our calculations, KIC 12557548b may have lost ˜70 per cent of its formation mass; today we may be observing its naked iron core.

Perez-Becker, Daniel; Chiang, Eugene

2013-08-01

396

Comparing Oceans  

NSDL National Science Digital Library

A variety of classroom activities and lessons that compare the world's oceans. Activities included: The Gulf of Maine, Satellite Comparisons, Design a Fish, What Migrations, Incredible Feasting of Whales, Paddle to the Sea, and Ocean Soundings. Discover why weather at identical latitudes is not always the same, learn the different ways whales eat, and find out the temperature difference between the Gulf Stream and surrounding water. Links to other Aquarium modules.

397

Popular journalism with Chinese characteristicsFrom revolutionary modernity to popular modernity  

Microsoft Academic Search

This paper is an interpretative attempt to explore the rise of what the author calls 'popular journalism with Chinese characteristics'. Inspired by the concept of 'popular journalism' discussed in numerous European works, the author uses this term for a new kind of market-driven, readership-oriented journalism that has emerged in the People's Republic of China along with the country's shift from

Zhurun Li

1998-01-01

398

Pragmatism and Popular Culture: Shusterman, Popular Art, and the Challenge of Visuality  

ERIC Educational Resources Information Center

In this article, the author discusses Richard Shusterman's defense of popular culture and intends to show that the entertainment industry has a dark side which Shusterman tends to ignore. Richard Shusterman is a pragmatist aesthetician who promotes art as an integral part of the ever-changing stream of life, believing that popular culture provides…

Snaevarr, Stefan

2007-01-01

399

Comparative Climatology of Terrestrial Planets  

NASA Astrophysics Data System (ADS)

Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons to a future volume. Our authors have taken on the task to look at climate on the terrestrial planets in the broadest sense possible — by comparing the atmospheric processes at work on the four terrestrial bodies, Earth, Venus, Mars, and Titan (Titan is included because it hosts many of the common processes), and on terrestrial planets around other stars. These processes include the interactions of shortwave and thermal radiation with the atmosphere, condensation and vaporization of volatiles, atmospheric dynamics, chemistry and aerosol formation, and the role of the surface and interior in the long-term evolution of climate. Chapters herein compare the scientific questions, analysis methods, numerical models, and spacecraft remote sensing experiments of Earth and the other terrestrial planets, emphasizing the underlying commonality of physical processes. We look to the future by identifying objectives for ongoing research and new missions. Through these pages we challenge practicing planetary scientists, and most importantly new students of any age, to find pathways and synergies for advancing the field. In Part I, Foundations, we introduce the fundamental physics of climate on terrestrial planets. Starting with the best studied planet by far, Earth, the first chapters discuss what is known and what is not known about the atmospheres and climates of the terrestrial planets of the solar system and beyond. In Part II, Greenhouse Effect and Atmospheric Dynamics, we focus on the processes that govern atmospheric motion and the role that general circulation models play in our current understanding. In Part III, Clouds and Hazes, we provide an in-depth look at the many effects of clouds and aerosols on planetary climate. Although this is a vigorous area of research in the Earth sciences, and very strongly influences climate modeling, the important role that aerosols and clouds play in the climate of all planets is not yet well constrained. This section is intended to stimulate further research on this critical subject. The study of climate involves much more than

Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

400

Collisional Evolution of Terrestrial Planets  

NASA Astrophysics Data System (ADS)

The terrestrial planets are generally thought to have formed via the collisional accumulation of rocky bodies. The characteristics of the planets produced by this process are, to a large degree, determined by their collisional evolution, and their associated differentiation and thermal evolution. Studies of planet formation and planetary collisional evolution have typically been conducted separately. Most works of late-stage planet formation use perfectly inelastic mergers to model collisions (e.g. Agnor, Canup & Levison 1999, Chambers 2001, Levison & Agnor 2003), with certain recognized inadequacies, notably prohibitively large spin angular momentum acquired as a planet grows. To date, studies of the collisional evolution of terrestrial planets has focused on determining the efficacy of single impacts to account for particular planetary characteristics and the formation of satellites (e.g. Benz et al. 1988, Canup & Asphaug 2001, Canup 2004). It has been recognized for some time (Wetherill 1985) that the final characteristics (e.g. spin state, bulk composition, isotopic age) of an accreting planet are determined not by the last or single largest collision but by all of the major collisional encounters in a planet's history (Agnor, Canup & Levison 1999). As demonstrated by our impact models, each major impact changes the silicate to metal ratio, the thermal state, and the spin state, and sets the stage for the subsequent collision. We are studying collisional dynamics and outcomes common to the late stage of terrestrial planet formation. We use smooth particle hydrodynamics model collisions in an effort to identify the range of impact dynamics that allow for accretion (i.e. mass growth instead of mass loss). In our initial study we found that for dynamical environments typical of most late stage accretion models, about half of all collisions between equal mass planetary embryos do not result in accumulation into a larger embryo (Agnor & Asphaug 2004). We will present new results of collisions for a variety of mass ratios and will discuss the cumulative affect of giant impacts and non-accretionary collisions on planetary characteristics (e.g. Mercury's collisional mantle loss and bulk composition, planetary spin states) and the extent to which collisional processes may account for planetary heterogeneity.

Agnor, C.; Asphaug, E.

2004-12-01

401

Magma ocean formation due to giant impacts  

NASA Technical Reports Server (NTRS)

The thermal effects of giant impacts are studied by estimating the melt volume generated by the initial shock wave and corresponding magma ocean depths. Additionally, the effects of the planet's initial temperature on the generated melt volume are examined. The shock pressure required to completely melt the material is determined using the Hugoniot curve plotted in pressure-entropy space. Once the melting pressure is known, an impact melting model is used to estimate the radial distance melting occurred from the impact site. The melt region's geometry then determines the associated melt volume. The model is also used to estimate the partial melt volume. Magma ocean depths resulting from both excavated and retained melt are calculated, and the melt fraction not excavated during the formation of the crater is estimated. The fraction of a planet melted by the initial shock wave is also estimated using the model.

Tonks, W. B.; Melosh, H. J.

1993-01-01

402

NASA's Terrestrial Planet Finder mission: the search for habitable planets  

NASA Astrophysics Data System (ADS)

The Terrestrial Planet Finder (TPF) is one of the major missions in the NASA Office of Space Science Origins Theme. The primary science objective of the TPF mission is to search for, detect, and characterize planetary systems beyond our own Solar System, including specifically Earth-like planets. This paper describes the current status of TPF as well as outlines the plans for near term science investigations, mission studies and technology development leading to a mission architecture selection in the 2006 time frame in support of a launch by the middle of the next decade.

Coulter, Daniel R.

2003-10-01

403

Earth Today: A Digital View of our Dynamic Planet  

NSDL National Science Digital Library

Earth Today: A Digital View of our Dynamic Planet is offered by the Smithsonian Institution's National Air and Space Museum and is described as a "state of the art digital theater that's updated several times daily to show near real-time satellite views of the Earth's atmosphere, oceans, and landmasses." The Our Dynamic Earth section contains several topics, such as The Atmosphere, in which users can read about the subject and see impressive satellite images and animations of Earth from space. The Earth in Near Real Time segment has similar topics but contains links to current data on global cloud cover, sea surface temperature, earthquakes, and more.

1998-01-01

404

The Search for Other Earths: Limits on the Giant Planet Orbits That Allow Habitable Terrestrial Planets to Form  

Microsoft Academic Search

Gas giant planets are far easier than terrestrial planets to detect around other stars, and they are thought to form much more quickly than terrestrial planets. Thus, in systems with giant planets, the late stages of terrestrial planet formation are strongly affected by the giant planets' dynamical presence. Observations of giant planet orbits may therefore constrain the systems that can

Sean N. Raymond

2006-01-01

405

Facebook Psychology: Popular Questions Answered by Research  

Microsoft Academic Search

Since its launch in February 2004, Facebook has become one of the most popular websites in the world, as well as a widely discussed media phenomenon. Unsurprisingly, the Facebook revolution has inspired a wealth of psychological study, which is growing exponentially. In this article, we review the recent empirical research into some of the key psychological themes concerning Facebook use.

Beth Anderson; Patrick Fagan; Tom Woodnutt; Tomas Chamorro-Premuzic

2012-01-01

406

"Value Added" Models Gain in Popularity  

ERIC Educational Resources Information Center

This article reports how "value-added" measures that track the "value" that schools add to individual students' learning over time are increasingly popular with educators and policymakers. Some view the methods as an antidote to accountability systems that focus solely on getting children to a specified achievement level on a state test,…

Olson, Lynn

2004-01-01

407

Understanding and Developing Black Popular Music Collections.  

ERIC Educational Resources Information Center

Enumerates types of black popular music (work songs, spirituals, gospel music, blues, race records, rock and roll, soul, funk, disco, Caribbean, and African) and discusses collection development (current, retrospective, monographs, periodicals, sheet music, motion picture film, photographs, oral history), cataloging, and preservation. A 229-item…

Murray, James Briggs

1983-01-01

408

The internet and the popularization of mathematics  

E-print Network

The internet and the popularization of mathematics �Etienne Ghys Abstract. In this paper activity with the general public. I would like to focus on the internet as a powerful tool to achieve of mathematics, Internet. 1. Introduction Even though the International Congress of Mathematicians has been

Ghys, Ã?tienne

409

Towards a digital library of popular music  

Microsoft Academic Search

Digital libraries of music have the potential to capture popu- lar imagination in ways that more scholarly libraries cannot. We are working towards a comprehensive digital library of musical material, including popular music. We have devel- oped new ways of collecting musical material, accessing it through searching and browsing, and presenting the results to the user. We work with different

David Bainbridge; Craig G. Nevill-Manning; Ian H. Witten; Lloyd A. Smith; Rodger J. McNab

1999-01-01

410

Communicacion Popular: The Language of Liberation.  

ERIC Educational Resources Information Center

"Communcacion popular" is an attempt by the peasant classes in Latin America to set up communication channels, independent of the hierarchy of intermediaries, that link them to the ruling elite. This language of liberation is self-reliant and defiant, coloring every aspect of its participants' lives. Its channels of communication are horizontal,…

White, Robert A.

411

Predicting Bullying: Maladjustment, Social Skills and Popularity  

ERIC Educational Resources Information Center

In order to prevent bullying, research has characterised the adolescents involved in terms of their social skills, maladjustment and popularity. However, there is a lack of knowledge concerning the relationships between these variables and how these relationships predict bullying involvement. Moreover, the literature has focused on pure bullies…

Postigo, Silvia; Gonzalez, Remedios; Mateu, Carmen; Montoya, Inmaculada

2012-01-01

412

Popular Education and the "Party Line"  

ERIC Educational Resources Information Center

Popular education, by which is meant adult education within and in support of radical social movements, has become a major topic in academic adult education in recent times. This paper criticises the lack of attention paid in most of this writing to the history, theory and practice of revolutionary parties in the communist and socialist tradition.…

Boughton, Bob

2013-01-01

413

Zimbabwe's popular music industry and copyright legislation  

Microsoft Academic Search

This article explores the potential for growth in Zimbabwean musicians' earnings through the strategic monitoring and use of their copyright and a coordinated collection of royalties. Zimbabwean popular music is now big business and employs large numbers of people, with many more aspiring to join the industry. Policies have been put into place in the last few years in an

Joyce T. Mhiripiri; Nhamo Mhiripiri

2006-01-01

414

Misreading Masculinity: Boys, Literacy, and Popular Culture.  

ERIC Educational Resources Information Center

This book takes an up-close and personal look at elementary school boys and their relationship to sports, movies, video games, and other avenues of popular culture. The book views these media not as enemies of literacy, but as resources "for" literacy. It contains a series of interviews with young boys and girls who describe the pleasure they take…

Newkirk, Thomas

415

Automatic lyrics alignment for Cantonese popular music  

Microsoft Academic Search

From lyrics-display on electronic music play- ers and Karaoke videos to surtitles for live Chinese opera performance, one feature is common to all these everyday functionalities: temporal synchronization of the written text and its corresponding musical phrase. Our goal is to automate the process of lyrics alignment, a procedure which, to date, is still handled manually in the Cantonese popular

Chi Hang Wong; Wai Man Szeto; Kin Hong Wong

2007-01-01

416

Practical Fishkeeping Popular shark myth dispelled  

E-print Network

Practical Fishkeeping Popular shark myth dispelled The notion that sharks have the ability to smell studying the olfactory capabilities of five species of elasmobranchs (the group that includes sharks, skates and rays) and concluded that sharks had a sense of smell no better than that of a typical fish

Belogay, Eugene A.

417

Using Popular Media to Build Literacy  

ERIC Educational Resources Information Center

When an adult student from China says he learned English from listening to the radio or a literacy teacher mentions that she is reading a book recommended on "Oprah", they are illustrating how popular media are used for informal adult learning. This chapter examines some of the issues and implications surrounding how a sector of adult learners,…

Heuer, Barbara P.

2007-01-01

418

Conflict Behaviors and Their Relationship to Popularity.  

ERIC Educational Resources Information Center

Examines conflict behaviors among 127 Turkish college students. Differences in conflict behaviors such as forcing, avoiding, or compromising, were explored in relation to popularity. Students reported engaging in more avoiding and compromising behaviors, while perceiving more forcing behaviors in others. Discusses conflict strategies and their…

Tezer, Esin

2001-01-01

419

The Guide to Teaching with Popular Music.  

ERIC Educational Resources Information Center

Popular music is often characterized as a short work with a prominent melody and simple chordal accompaniment. Yet, teaching with pop music in the era of standards-based curriculum can present challenges. These standards offer teachers a blueprint for teaching music performance, composition, improvisation, and the relationship of music to other…

Music Educators National Conference, Reston, VA.

420

A Comparison of "Popular Music Pedagogy" Discourses  

ERIC Educational Resources Information Center

The purpose of this study was to interrogate discourses of "popular music pedagogy" in order to better understand music education practices generally and specifically those in the United States. Employing a conceptual framework based on the work of Jan Blommaert (2005), a content analysis was conducted on a sample of 81 articles related…

Mantie, Roger

2013-01-01

421

SPRING 2013 CRASH Program's Popularity Grows  

E-print Network

are committed to promoting vehi- cle and driver safety for the protection of our military members and their fami safety for the protection of our military members and their families." -- Joel Camarano, USAA ExecutiveSPRING 2013 CRASH Program's Popularity Grows New Study Shines Light on Pavement Markings and Safety

422

Musical News: Popular Music in Political Movements  

Microsoft Academic Search

According to a survey of activists, popular musicians perform a journalistic role in political movements. By serving as an alternative headline service, these musicians continue and update an ancient musical news tradition. From the lyrical poets of ancient Greece to Mexican corridistas, music allowed storytellers to effectively compose, retain, and present news. Although print news replaced lyrical reporting as the

Mark Pedelty

423

Semantic Web research main streams, popular falacies,  

E-print Network

;10 Which Semantic Web? Version 2: "Enrichment of the current Web" recipe: Annotate, classify, index metaSemantic Web research anno 2006: main streams, popular falacies, current status, future challenges Frank van Harmelen Vrije Universiteit Amsterdam #12;2 This is NOT a Semantic Web evangelization talk (I

van Harmelen, Frank

424

A Feminist Analysis of Popular Music  

Microsoft Academic Search

A qualitative content analysis was conducted on lyrics to identify predominant themes in popular music. The songs for analysis were determined by “The Hot 100” list generated by Billboard Chart Research Services. Feminist and cognitive social learning theories provided a foundation to identify themes. Power over, objectification of, and violence against women was the overall framework that emerged from the

Brook Bretthauer; Toni Schindler Zimmerman; James H. Banning

2007-01-01

425

Ian Stewart's top 10 popular mathematics  

E-print Network

-chomping record player. DNA and computers get extensive treatment too. 3. The Colossal Book of Mathematics popular mathematics, and has won three gold medals for his work on the public understanding of science over the centuries. Biographies of great mathematicians tell us what it's like to work at the frontiers

Sigmund, Karl

426

Popular Financial Reports: Accountability through Readability.  

ERIC Educational Resources Information Center

Discusses colleges' use of popular financial reporting to make their annual financial reports more readable to citizens and legislators and to make their reports useful marketing and recruitment tools. Highlights research about financial reports and performance reporting conducted by the Governmental Accounting Standards Board. Describes the…

Anderson, Richard T.; Piotrowski, Craig L.

1994-01-01

427

Popular Music, Television, and Generational Identity.  

ERIC Educational Resources Information Center

Although previous generations have by no means been disloyal to the popular music of their youth, the tenacious attachment of the Baby Boomers to the music of the 1960s seems unprecedented. Three main reasons account for this constantly widening musical reclamation project. First, the Baby Boomers have a clearer sense of generational identity that…

Burns, Gary

428

Memory for Frequency of Hearing Popular Music.  

ERIC Educational Resources Information Center

This experiment was designed to better understand the effects of individual differences, intent to learn, and stimulus familiarity on frequency judgment accuracy. Half of the participants in the study heard popular songs, and the other half listened to unfamiliar songs. Participants were subdivided into three more groups, introducing the "intent…

Fidler, James R.; And Others

429

Using Popular Children's Films in Science  

ERIC Educational Resources Information Center

Watching films is a common activity for children outside of school, and incorporating popular films that contain scientific references has the potential to spark interest in the classroom. Clips rather than entire films can be used, as the children will maintain focus on the lesson objectives while being excited by the appeal of the film. The use…

Wadsworth, Elle; Croker, Stev; Harrison, Tim

2012-01-01

430

Popular Media and the Teenage Sexual Agenda.  

ERIC Educational Resources Information Center

A qualitative study examined how teenagers react to and interpret certain popular media messages. In addition it explored the relationship between content containing various sexual messages and teenagers' responses to those messages, with particular attention to the critical abilities this audience exhibits. Fifty male and female teenagers aged…

Strover, Sharon

431

On the Popular Support for Progressive Taxation  

Microsoft Academic Search

AbstractThe “popular support for progressive taxation theorem” ( Marhuenda and Ortuño-Ortín, 1995) provides an important formalization of the intuition that a majority of relatively poor voters over rich ones leads to progressive income taxation. Yet the theorem does not provide an equilibrium outcome. In addition, it assumes an overly restrictive domain of tax schedules and no incentive effects of income

Esteban F. Klor

2003-01-01

432

Elliptical instability in terrestrial planets and moons  

NASA Astrophysics Data System (ADS)

Context. The presence of celestial companions means that any planet may be subject to three kinds of harmonic mechanical forcing: tides, precession/nutation, and libration. These forcings can generate flows in internal fluid layers, such as fluid cores and subsurface oceans, whose dynamics then significantly differ from solid body rotation. In particular, tides in non-synchronized bodies and libration in synchronized ones are known to be capable of exciting the so-called elliptical instability, i.e. a generic instability corresponding to the destabilization of two-dimensional flows with elliptical streamlines, leading to three-dimensional turbulence. Aims: We aim here at confirming the relevance of such an elliptical instability in terrestrial bodies by determining its growth rate, as well as its consequences on energy dissipation, on magnetic field induction, and on heat flux fluctuations on planetary scales. Methods: Previous studies and theoretical results for the elliptical instability are re-evaluated and extended to cope with an astrophysical context. In particular, generic analytical expressions of the elliptical instability growth rate are obtained using a local WKB approach, simultaneously considering for the first time (i) a local temperature gradient due to an imposed temperature contrast across the considered layer or to the presence of a volumic heat source and (ii) an imposed magnetic field along the rotation axis, coming from an external source. Results: The theoretical results are applied to the telluric planets and moons of the solar system as well as to three Super-Earths: 55 CnC e, CoRoT-7b, and GJ 1214b. For the tide-driven elliptical instability in non-synchronized bodies, only the early Earth core is shown to be clearly unstable. For the libration-driven elliptical instability in synchronized bodies, the core of Io is shown to be stable, contrary to previously thoughts, whereas Europa, 55 CnC e, CoRoT-7b, and GJ 1214b cores can be unstable. The subsurface ocean of Europa is slightly unstable. However, these present states do not preclude more unstable situations in the past.

Cebron, D.; Le Bars, M.; Moutou, C.; Le Gal, P.

2012-03-01

433

Ecological Footprint: Only One Planet  

NSDL National Science Digital Library

This two-minute sound segment discusses the concept of your ecological footprint. This is the amount of nature it takes to support your lifestyle. The speaker explains that if we divide up the total ecologically productive space on the planet by the number of people, what we get is five acres per person. In the United States, on average, we use about twenty-five to thirty acres per person to provide all of our services. This site is from an archive of a daily radio program called Pulse of the Planet, which provides its listeners with a portrait of Planet Earth, tracking the rhythms of nature, culture and science worldwide and blending interviews and extraordinary natural sound. The site also provides a written transcript of the broadcast.

2006-10-13

434

The Capacity of the Planets  

NSDL National Science Digital Library

In this activity, students "demonstrate the ability to represent numbers in scientific notation and use geometry to solve problems about planets in the solar system." This is the third in a series of activities called Math Space Odyssey from PBS's Mathline, and it asks students to calculate the capacity and area of the planets in the Milky Way. In addition, students convert numbers to scientific notation, calculate the distance between planets, and are asked to create and solve their own problem dealing with distance or capacity in the solar system. All relevant data needed is provided on a chart on this site, and the activity and answers can be downloaded as PDFs and printed, ready for classroom use.

2009-01-01

435

Habitable planets with high obliquities  

NASA Technical Reports Server (NTRS)

Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

Williams, D. M.; Kasting, J. F.

1997-01-01

436

AN ULTRACOOL STAR'S CANDIDATE PLANET  

SciTech Connect

We report here the discovery of the first planet around an ultracool dwarf star. It is also the first extrasolar giant planet astrometrically discovered around a main-sequence star. The statistical significance of the detection is shown in two ways. First, there is a 2 x 10{sup -8} probability that the astrometric motion fits a parallax-and-proper-motion-only model. Second, periodogram analysis shows a false alarm probability of 3 x 10{sup -5} that the discovered period is randomly generated. The planetary mass is M {sub 2} = 6.4 (+2.6,-3.1) Jupiter-masses (M {sub J}), and the orbital period is P = 0.744 (+0.013,-0.008) yr in the most likely model. In less likely models, companion masses that are higher than the 13 M {sub J} planetary mass limit are ruled out by past radial velocity (RV) measurements unless the system RV is more than twice the current upper limits and the near-periastron orbital phase was never observed. This new planetary system is remarkable, in part, because its star, VB 10, is near the lower mass limit for a star. Our astrometric observations provide a dynamical mass measurement and will in time allow us to confront the theoretical models of formation and evolution of such systems and their members. We thus add to the diversity of planetary systems and to the small number of known M-dwarf planets. Planets such as VB 10b could be the most numerous type of planets because M stars comprise >70% of all stars. To date they have remained hidden since the dominant RV planet-discovery technique is relatively insensitive to these dim, red systems.

Pravdo, Steven H. [Jet Propulsion Laboratory, California Institute of Technology, 306-431, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Shaklan, Stuart B. [Jet Propulsion Laboratory, California Institute of Technology, 301-451, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)], E-mail: spravdo@jpl.nasa.gov, E-mail: stuart.shaklan@jpl.nasa.gov

2009-07-20

437

Habitable planets with high obliquities.  

PubMed

Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations. PMID:11541242

Williams, D M; Kasting, J F

1997-01-01

438

THE ANGLO-AUSTRALIAN PLANET SEARCH. XXII. TWO NEW MULTI-PLANET SYSTEMS  

SciTech Connect

We report the detection of two new planets from the Anglo-Australian Planet Search. These planets orbit two stars each previously known to host one planet. The new planet orbiting HD 142 has a period of 6005 {+-} 427 days, and a minimum mass of 5.3 M{sub Jup}. HD 142c is thus a new Jupiter analog: a gas-giant planet with a long period and low eccentricity (e = 0.21 {+-} 0.07). The second planet in the HD 159868 system has a period of 352.3 {+-} 1.3 days and m sin i = 0.73 {+-} 0.05 M{sub Jup}. In both of these systems, including the additional planets in the fitting process significantly reduced the eccentricity of the original planet. These systems are thus examples of how multiple-planet systems can masquerade as moderately eccentric single-planet systems.

Wittenmyer, Robert A.; Horner, J.; Salter, G. S.; Tinney, C. G.; Bailey, J. [Department of Astrophysics, School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Tuomi, Mikko; Zhang, Z. [Centre for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield AL10 9AB (United Kingdom); Butler, R. P. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States); Jones, H. R. A. [Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom); O'Toole, S. J. [Australian Astronomical Observatory, P.O. Box 296, Epping, NSW 1710 (Australia); Carter, B. D. [Faculty of Sciences, University of Southern Queensland, Toowoomba, Queensland 4350 (Australia); Jenkins, J. S. [Departamento de Astronomia, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Vogt, S. S.; Rivera, Eugenio J., E-mail: rob@phys.unsw.edu.au [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States)

2012-07-10

439

Mercury - the hollow planet  

NASA Astrophysics Data System (ADS)

Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image from orbit. Although the vent itself may have been excavated partly by explosive volcanism, the most recent event is collapse of a 7 km wide zone in the south centre of the vent. The sharpness of features within this (unmuted either by regolith-forming processes or by fall of volcanic ejecta) suggests that this collapse considerably post-dates the rest of the vent interior. It could reflect a late-stage minor 'throat clearing' explosive eruption, but (in the absence of evidence of associated volcanic ejecta) more likely reflects collapse into a void within the volcanic conduit, itself a result of magma-drainage. A class of 'hole' that is so far conspicuous by its absence on Mercury is sinuous rilles (as opposed to much straighter tectonic grabens) or aligned skylights representing collapsed or partly-collapsed drained lava tubes. Tube-fed flows are to be expected during emplacement of volcanic plains, and it will be surprising if no examples are revealed on MESSENGER and BepiColombo high-resolution images.

Rothery, D. A.

2012-04-01

440

The Cycle of Popularity: Interpersonal Relations among Female Adolescents.  

ERIC Educational Resources Information Center

This study showed that friendship with popular girls is an important avenue for peer status among junior high females. Many popular girls avoid interactions with students of lower status, causing resentment and dislike. There develops a cycle of popularity, in which feelings toward popular girls move from positive to negative. (Author/RM)

Eder, Donna

1985-01-01

441

The tube over time: characterizing popularity growth of youtube videos  

Microsoft Academic Search

Understanding content popularity growth is of great importance to Internet service providers, content creators and online marketers. In this work, we characterize the growth patterns of video popularity on the currently most popular video sharing application, namely YouTube. Using newly provided data by the application, we analyze how the popularity of individual videos evolves since the video's upload time. Moreover,

Flavio Figueiredo; Fabrício Benevenuto; Jussara M. Almeida

2011-01-01

442

Focus: Popular Culture, Censorship, Religion in the Schools.  

ERIC Educational Resources Information Center

This issue of "Kansas English" contains four articles related to popular culture, censorship, and religion. "Popular Culture Studies: A Complement to the Humanities" by Michael Marsden, focuses on the relationship between popular culture studies and the humanities, including English. "Popular Couture: La Vie En Blue" by Richard Martin, examines…

Stewart, Donald, Ed.

1976-01-01

443

The use of popular science articles in teaching scientific literacy  

Microsoft Academic Search

This article considers the use of popular science articles in teaching scientific literacy. Comparing the discourse features of popular science with research article and textbook science – the last two being target forms for students – it argues that popular science articles cannot serve as models for scientific writing. It does, however, suggest that popular articles can make science more

Jean Parkinson; Ralph Adendorff

2004-01-01

444

Stellar Collisions and Pulsar Planets  

E-print Network

I describe models for the formation of planetary systems surrounding the remnants of stellar mergers and collisions. I focus primarily on models for the viscous evolution of disks suitable for the formation of the planets surrounding the pulsar B1257+12. I show that the adaptation of models for traditional protoplanetary disks which invoke quiescent or `dead' zones are quite successful in producing disks appropriate for the formation of the pulsar planets. I also briefly describe some even more exotic possibilities that may arise from compact object mergers.

Brad M. S. Hansen

2000-08-16

445

Chemical kinetics on extrasolar planets.  

PubMed

Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets. PMID:24664912

Moses, Julianne I

2014-04-28

446

Alien Earth: Glint observations of a remote planet  

NASA Astrophysics Data System (ADS)

We give a preliminary report on a multi-wavelength study of specular reflections from the oceans and clouds of Earth. We use space-borne observations from a distance sufficient to ensure that light rays reflected from all parts of Earth are closely parallel, as they will be when studying exoplanets. We find that the glint properties of Earth in this far-field vantage point are surprising - in the sense that some of the brightest reflections are not from conventional ocean-glints, but appear to arise from cirrus cloud crystals. The Earth observations discussed here were acquired with the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope on the Deep Impact (DI) spacecraft during the Extrasolar Planet Observation and Characterization (EPOCh) investigation.

Barry, Richard K.; Deming, L. Drake

2011-11-01

447

The frequency of planets in multiple systems  

E-print Network

The frequency of planets in binaries is an important issue in the field of extrasolar planet studies, because of its relevance in estimating of the global planet population of our Galaxy and the clues it can give to our understanding of planet formation and evolution. However, only preliminary estimates are available in the literature. We analyze and compare the frequency of planets in multiple systems to the frequency of planets orbiting single stars. We also try to highlight possible connections between the frequency of planets and the orbital parameters of the binaries (such as the periastron and mass ratio.) A literature search was performed for binaries and multiple systems among the stars of the sample with uniform planet detectability defined by Fischer & Valenti (2005), and 202 of the 850 stars of the sample turned out to be binaries, allowing a statistical comparison of the frequency of planets in binaries and single stars and a study of the run of the planet frequency as a function of the binary separation. We found that the global frequency of planets in the binaries of the sample is not statistically different from that of planets in single stars. Even conservatively taking the probable incompleteness of binary detection in our sample into account, we estimate that the frequency of planets in binaries can be no more than a factor of three lower than that of planets in single stars. There is no significant dependence of planet frequency on the binary separation, except for a lower value of frequency for close binaries. However, this is probably not as low as required to explain the presence of planets in close binaries only as the result of modifications of the binary orbit after the planet formation.

M. Bonavita; S. Desidera

2007-03-29

448

Arctic Ocean  

NASA Technical Reports Server (NTRS)

The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

2000-01-01

449

Ocean Currents: Marine Science Activities for Grades 5-8. Teacher's Guide.  

ERIC Educational Resources Information Center

This teacher's guide attempts to answer questions such as: What causes ocean currents? What impact do they have on Earth's environment? and How have they influenced human history? Seven innovative activities are provided in which students can gain fascinating insights into the earth as the ocean planet. Activities focus on how wind, temperature,…

Halversen, Catherine; Beals, Kevin; Strang, Craig

450

Orbits and Interiors of Planets  

NASA Astrophysics Data System (ADS)

The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally, we considered planetary formation in highly inclined binary systems,

Batygin, Konstantin

2012-05-01

451

Ocean Acidification  

NSDL National Science Digital Library

The purpose of the lessons is to teach about ocean acidification, its causes and impacts on marine life especially zooplankton, an essential part of marine food webs. Included in the materials is background information on ocean acidification. There are four different activities included in this document. To do all four you should plan on at least two 45 minute periods. The activities define and explain the process of acidification as well as its impacts on shelled organism. The materials can be adapted and used for grades 5-6 and adding more indepth information makes it suitable for middle and high school students.

Osis, Vicki

452

Heterogeneity of Girls’ Consensual Popularity: Academic and Interpersonal Behavioral Profiles  

Microsoft Academic Search

The present study explored the heterogeneous nature of popularity by investigating subgroups of popular girls (N?=?365) in their first year of secondary school (mean age ?=? 13.05). Cluster analysis revealed the presence of five subgroups based upon sociometric popularity (i.e., those considered likeable by peers) and consensual popularity (i.e., those considered popular by peers), and academic behavioral indices. Two of

Eddy H. de Bruyn; Antonius H. N. Cillessen

2006-01-01

453

The Geology of the Terrestrial Planets  

NASA Technical Reports Server (NTRS)

The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

Carr, M. H. (editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

1984-01-01

454

Kepler-16: A Transiting Circumbinary Planet  

E-print Network

We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving ...

Winn, Joshua Nathan

455

Formation of the terrestrial planets from planetesimals  

NASA Technical Reports Server (NTRS)

Formation of the terrestrial planets from planetesimals is discussed. The following subject areas are covered: (1) formation of the original planetesimals; (2) growth of planetesimals into planetary embryos; and (3) growth of runaway planetary embryos into terrestrial planets.

Wetherill, George W.

1991-01-01

456

Extrasolar planets: Homing in on another Earth  

NASA Astrophysics Data System (ADS)

The identification of the closest analogue of Earth so far, orbiting another star, suggests that small planets are common, and that the discovery of a candidate habitable planet in an alien star system could be just around the corner.

Bean, Jacob

2011-10-01

457

Kepler Discovers Earth-size Planet Candidates  

NASA Video Gallery

NASA's Kepler mission has discovered its first Earth-size planet candidates and its first candidates in the habitable zone, a region where liquid water could exist on a planet's surface. Five of th...

458

From planetesimals to planets: volatile molecules  

E-print Network

Solar and extrasolar planets are the subject of numerous studies aiming to determine their chemical composition and internal structure. In the case of extrasolar planets, the composition is important as it partly governs their potential habitability. Moreover, observational determination of chemical composition of planetary atmospheres are becoming available, especially for transiting planets. The present works aims at determining the chemical composition of planets formed in stellar systems of solar chemical composition. The main objective of this work is to provide valuable theoretical data for models of planet formation and evolution, and future interpretation of chemical composition of solar and extrasolar planets. We have developed a model that computes the composition of ices in planets in different stellar systems with the use of models of ice and planetary formation. We provide the chemical composition, ice/rock mass ratio and C:O molar ratio for planets in stellar systems of solar chemical compositio...

Marboeuf, Ulysse; Alibert, Yann; Cabral, Nahuel; Benz, Willy

2014-01-01

459

Tour of Planet With Extreme Temperature Swings  

NASA Video Gallery

A computer simulation of the planet HD 80606b. The point of closest approach -- and maximum heating -- occurs about 4.5 seconds into the animation. As the planet whips around the star, we see the e...

460

Binary star systems and extrasolar planets  

E-print Network

For ten years, planets around stars similar to the Sun have been discovered, confirmed, and their properties studied. Planets have been found in a variety of environments previously thought impossible. The results have ...

Muterspaugh, Matthew Ward

2005-01-01

461

Tarlton Law Library in Popular Culture Collection  

NSDL National Science Digital Library

The Tarlton Law Library at the University of Texas School of Law hosts this collection, which focuses on law in popular culture. The goal of the collection is "to provide as broad a picture as possible of the image of the lawyer in the United States and British Commonwealth." The collection consists of works of fiction in all genres as well as legal humor, plays, and feature films. If you can't make it to Austin to check out these materials in person the site provides quite a bit for the virtual visitor. There are a number of E-texts available including "Collins to Grisham: A brief history of the legal thriller" as well as an entire bibliography of e-texts which tell "the lawyer's story." Visitors may also want to check out the fun section entitled "Lawyerly Quotations from Popular Culture". In addition, the site provides a number of movie posters, movie stills, and lobby cards to peruse.

462

Water Cycling between Ocean and Mantle: Super-Earths Need Not Be Waterworlds  

NASA Astrophysics Data System (ADS)

Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stabl