Science.gov

Sample records for ocean planet popular

  1. Planet Ocean

    NASA Astrophysics Data System (ADS)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  2. Ocean Planet. Interdisciplinary Marine Science Activities.

    ERIC Educational Resources Information Center

    Branca, Barbara

    The Ocean Planet is a traveling exhibition from the Smithsonian Institution designed to share with the public what recent research has revealed about the oceans and to encourage ocean conservation. This booklet of lessons and activities adapts several themes from the exhibition for use in middle and high school classrooms. Lesson plans include:…

  3. Visions of our Planet's Atmosphere, Land & Oceans

    NASA Technical Reports Server (NTRS)

    Hasler, Arthur F.

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to South Africa, Cape Town and Johannesburg using NASA Terra MODIS data, Landsat data and 1m IKONOS "Spy Satellite" data. Zoom in to any place South Africa using Earth Viewer 3D from Keyhole Inc. and Landsat data at 30 m resolution. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we present science to the public. See dust storms and flooding in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the north and south polar ice packs and with icebergs on the coasts of Greenland and off the coast of Antarctica. Spectacular new visualizations of the global land, atmosphere & oceans are shown. Listen to the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth

  4. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1). PMID:18163874

  5. The unstable CO2 feedback cycle on ocean planets

    NASA Astrophysics Data System (ADS)

    Kitzmann, Daniel; Alibert, Yann; Godolt, Mareike; Grenfell, John Lee; Heng, Kevin; Patzer, Beate; Rauer, Heike; Stracke, Barbara; von Paris, Philip

    2015-12-01

    Ocean planets are volatile rich planets, not present in our Solar System, which are dominated by deep, global oceans. Theoretical considerations and planet formation modeling studies suggest that extrasolar ocean planets should be a very common type of planet. One might therefore expect that low-mass ocean planets would be ideal candidates when searching for habitable exoplanets, since water is considered to be an essential requirement for life. However, a very large global ocean can also strongly influence the climate.The high pressure at the oceans bottom results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. In our study we, therefore, focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree.In contrast to the stabilising carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle on ocean planets is positive and has strong destabilising effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle is severely limiting the potential habitability of ocean planets.

  6. The unstable CO2 feedback cycle on ocean planets

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.; Alibert, Y.; Godolt, M.; Grenfell, J. L.; Heng, K.; Patzer, A. B. C.; Rauer, H.; Stracke, B.; von Paris, P.

    2015-10-01

    Ocean planets are volatile-rich planets, not present in our Solar system, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilizing carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilizing effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planets.

  7. DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT

    SciTech Connect

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David

    2010-09-20

    Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability of glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.

  8. Applications of Ocean Acoustic Monitoring to Understanding Our Planet

    SciTech Connect

    Tolstoy, Maya

    2005-10-26

    The ocean covers two-thirds of the surface of Earth, and hides long chains of seafloor volcanoes, bizarre and magnificent life forms, and many dynamic geological processes. Shrouded in darkness, much of what happens deep in the ocean is unknown to us. But sound can tell us a great deal about what is going on in the ocean. Changes in the physical properties of seawater with depth allow relatively quiet sounds to travel great distances without loosing much energy. In this way we are able to record many noises that occur within or on the boundary of the ocean, giving us insight into geological, biological and man-made activities in the ocean. One of the most interesting noises to a geophysicist is the sound of mid-ocean ridge volcanic eruptions. These eruptions are forming new surface for our planet and helping create an extraordinary seafloor ecosystem. Examples of sounds heard and some of their implications will be presented.

  9. Mission to Planet Earth. The living ocean: Observing ocean color from space

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Measurements of ocean color are part of NASA's Mission to Planet Earth, which will assess how the global environment is changing. Using the unique perspective available from space, NASA will observe, monitor, and study large-scale environmental processes, focusing on quantifying climate change. NASA will distribute the results of these studies to researchers worldwide to furnish a basis for informed decisions on environmental protection and economic policy. This information packet includes discussion on the reasons for measuring ocean color, the carbon cycle and ocean color, priorities for global climate research, and SeWiFS (sea-viewing wide field-of-view sensor) global ocean color measurements.

  10. Visions of Our Planet's Atmosphere, Land & Oceans - ETheater Presentation

    NASA Technical Reports Server (NTRS)

    Hasler, F.

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of ma'gazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUS, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  11. Emergence of two types of terrestrial planet on solidification of magma ocean.

    PubMed

    Hamano, Keiko; Abe, Yutaka; Genda, Hidenori

    2013-05-30

    Understanding the origins of the diversity in terrestrial planets is a fundamental goal in Earth and planetary sciences. In the Solar System, Venus has a similar size and bulk composition to those of Earth, but it lacks water. Because a richer variety of exoplanets is expected to be discovered, prediction of their atmospheres and surface environments requires a general framework for planetary evolution. Here we show that terrestrial planets can be divided into two distinct types on the basis of their evolutionary history during solidification from the initially hot molten state expected from the standard formation model. Even if, apart from their orbits, they were identical just after formation, the solidified planets can have different characteristics. A type I planet, which is formed beyond a certain critical distance from the host star, solidifies within several million years. If the planet acquires water during formation, most of this water is retained and forms the earliest oceans. In contrast, on a type II planet, which is formed inside the critical distance, a magma ocean can be sustained for longer, even with a larger initial amount of water. Its duration could be as long as 100 million years if the planet is formed together with a mass of water comparable to the total inventory of the modern Earth. Hydrodynamic escape desiccates type II planets during the slow solidification process. Although Earth is categorized as type I, it is not clear which type Venus is because its orbital distance is close to the critical distance. However, because the dryness of the surface and mantle predicted for type II planets is consistent with the characteristics of Venus, it may be representative of type II planets. Also, future observations may have a chance to detect not only terrestrial exoplanets covered with water ocean but also those covered with magma ocean around a young star. PMID:23719462

  12. A Preliminary Study on the Circulation of an ocean covering a Synchronously Rotating Planet

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Ishiwatari, M.; Takehiro, S.; Hayashi, Y.; Nakajima, K.

    2012-12-01

    Recently, nearly 800 extrasolar planets have been detected. It seems that some of them present into habitable zone, in which planets can have ocean, and such planets rotate synchronously with their central stars. Ocean is necessary for life, and the circulation makes climate mild by heat transport on the earth. The earth is the only planet that has ocean in the solar system so that it has not been understood what oceanic circulation is like in another planets. The purpose of this study is prediction of oceanic circulation on extrasolar planets by using numerical simulation. As a first step, elementary consideration is made. The planet is almost entirely covered with ocean and whose rotation period corresponds with its orbital period. On synchronously rotating planets, the thermal contrast between day-hemisphere and night-hemisphere would be extreme. However, it may be lessend if there is significant zonal heat transport. The circulation in such conditions has not been known well. We performed a numerical experiment based on the linear shallow water equation, assuming that both the evaporation and the precipitation occur only on day-hemisphere (Noda et al., 2011). With these distributions of the evaporation and the precipitation, one may anticipate the circulation occurs in only day-hemisphere. However, the resulting calculation is characterized with zonally uniform zonal flow, which also covers night hemisphere. In addition, the intensity of the flow increases with time. That behavior can be understood by constructing asymptotic solution which is first degree in time. The importance of Coriolis force, which bends meridional flow to zonal flow, is identified. It is implied that, even when only day-hemisphere has the evaporation and precipitation, there may be significant amount of heat can be transported from the day-hemisphere to the night-hemisphere by the strong zonal flow. The growth of zonal flow would be stopped when the evaporation and the precipitation are

  13. Moments of probable seas: statistical dynamics of Planet Ocean

    NASA Astrophysics Data System (ADS)

    Holloway, Greg

    The ocean is too big. From the scale of planetary radius to scales of turbulent microstructure, the range of length scales is 109. Likewise for time scales. Classical geophysical fluid dynamics does not have an apparatus for dealing with such complexity, while `brute force' computing on the most powerful supercomputers, extant or presently foreseen, barely scratches this complexity. Yet the everywhere-swirling-churning ocean interacts unpredictably in climate history and climate future - against which we attempt to devise planetary stewardship. Can we better take into account the unpredictability of oceans to improve upon present ocean/climate forecasting? What to do? First, recognize that our goal is to comprehend probabilities of possible oceans. Questions we would ask are posed as moments (expectations). Then the dynamical goal is clear: we seek equations of motion of moments of probable oceans. Classical fluid mechanics offers part of the answer but fails to recognize statistical dynamical aspects (missing the arrow of time as past==>future). At probabilities of oceans, the missing physics emerges: moments are forced by gradients of entropy with respect to moments. Time regains its arrow, and first (simplest) approximations to entropy-gradient forces enhance the fidelity of ocean theories and practical models.

  14. Hypothetical Inverted Critical Zones for Subsurface Biospheres on Desert Planets and Icy Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Boston, P. J.

    2015-10-01

    Earth as a model for cave habitable real-estate does not encompass other possibilities including desert planets like Mars, or icy ocean worlds viewed as planetary-scale water-filled caves in water ice bedrock which will have inverted Critical Zones.

  15. It's Only a Little Planet: A Primer for Ocean Studies.

    ERIC Educational Resources Information Center

    Meyland, Sarah J.

    Developed as part of the Day on the Bay Cruise Program, funded by the National Sea Grant Program, this learner's manual outlines ocean studies conducted on a seven-hour cruise of the Galveston Bay area. A description of the geology and human use of Galveston Bay follows a general introduction to coastal and estuarine ecology. Line drawings…

  16. The Blue Planet: Seas & Oceans. Young Discovery Library Series.

    ERIC Educational Resources Information Center

    de Beauregard, Diane Costa

    This book is written for children ages 5 through 10. Part of a series designed to develop their curiosity, facinate them and educate them, this volume explores the physical and environmental characteristics of the world's oceans. Topics are: (1) human exploration; (2) the food chain; (3) coral reefs; (4) currents and tides; (5) waves; (6)…

  17. CO2-dominated Atmosphere in Equilibrium with NH3-H2O Ocean: Application to Early Titan and Ocean Planets

    NASA Astrophysics Data System (ADS)

    Marounina, N.; Grasset, O.; Tobie, G.; Carpy, S.

    2015-12-01

    During the accretion of Titan, impact heating may have been sufficient to allow the global melting of water ice (Monteux et al. 2014) and the release of volatile compounds, with CO2 and NH3 as main constituents (Tobie et al. 2012). Thus, on primitive Titan, it is thought that a massive atmosphere was in contact with a global water ocean. Similar configurations may occur on temperate water-rich planets called ocean planets (Léger et al. 2004, Kitzmann et al. 2015).Due to its rather low solubility in liquid water, carbon dioxide is expected to be one of the major components in the atmosphere. The atmospheric amount of CO2 is a key parameter for assessing the thermal evolution of the planetary surface because of its strong greenhouse effect. However, ammonia significantly affects the solubility of CO2 in water and hence the atmosphere-ocean thermo-chemical equilibrium. For primitive Titan, estimating the mass, temperature and composition of the primitive atmosphere is important to determine mechanisms that led to the present-day N2-CH4 dominated atmosphere. Similarly, for ocean planets, the influence of ammonia on the atmospheric abundance in CO2 has consequences for the definition of the habitable zone.To investigate the atmospheric composition of the water-rich worlds for a wide range of initial compositions, we have developed a vapor-liquid equilibrium model of the NH3-CO2-H2O system, where we account for the non-ideal comportment of both vapor and liquid phases and the ion speciation of volatiles dissolved in the aqueous phase. We show that adding NH3 to the CO2-H2O binary system induces an efficient absorption of the CO2 in the liquid phase and thus a lower CO2 partial pressure in the vapor phase. Indeed, the CO2 partial pressure remains low for the CO2/NH3 ratio of liquid concentrations lower than 0.5.Assuming various initial compositions of Titan's global water ocean, we explore the thermal and compositional evolution of a massive primitive atmosphere using

  18. Layered double diffusive convection: From Earth oceans to giant planet interiors.

    NASA Astrophysics Data System (ADS)

    Leconte, J.; Chabrier, G.

    2012-12-01

    Many unknowns remain concerning the internal structure and composition of giant gaseous planets. The existence and the properties of an hypothetical central core, in particular, are still debated. Contrary to conventional interior models for giant (exo)planets, we consider an inhomogeneous mixing of heavy elements in the gaseous H/He envelope of these objects. As in the oceans, such compositional gradients can give rise to layered convection which impedes large scale convection, yielding a hotter, super adiabatic interior. As a result, the metal enrichment predicted by this model is up to 30 to 60% larger than previously thought for Jupiter and Saturn. However, metals are preferentially redistributed in the gaseous envelope and coreless models can be found for Jupiter. This inefficient, layered convection, yielding a slower cooling, can help to explain anomalously inflated Hot Jupiters, but also opens a new window on our understanding of giant planet formation and history inside our Solar System.

  19. Strong ocean tidal flow and heating on moons of the outer planets

    NASA Astrophysics Data System (ADS)

    Tyler, Robert H.

    2008-12-01

    Data from recent space missions have added strong support for the idea that there are liquid oceans on several moons of the outer planets, with Jupiter's moon Europa having received the most attention. But given the extremely cold surface temperatures and meagre radiogenic heat sources of these moons, it is still unclear how these oceans remain liquid. The prevailing conjecture is that these oceans are heated by tidal forces that flex the solid moon (rock plus ice) during its eccentric orbit, and that this heat entering the ocean does not rapidly escape because of the insulating layer of ice over the ocean surface. Here, however, I describe strong tidal dissipation (and heating) in the liquid oceans; I show that a subdominant and previously unconsidered tidal force due to obliquity (axial tilt of the moon with respect to its orbital plane) has the right form and frequency to resonantly excite large-amplitude Rossby waves in these oceans. In the specific case of Europa, the minimum kinetic energy of the flow associated with this resonance (7.3×1018J) is two thousand times larger than that of the flow excited by the dominant tidal forces, and dissipation of this energy seems large enough to be a primary ocean heat source.

  20. Oceanic Communities in a Changing Planet - The Tara Oceans Project (GSC8 Meeting)

    ScienceCinema

    Raes, Jeroen [University of Brussels

    2011-04-28

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Jeroen Raes of the University of Brussels discusses the Tara-Oceans expedition at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 9, 2009

  1. Oceanic Communities in a Changing Planet - The Tara Oceans Project (GSC8 Meeting)

    SciTech Connect

    Raes, Jeroen

    2009-09-09

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Jeroen Raes of the University of Brussels discusses the Tara-Oceans expedition at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 9, 2009

  2. Climate of Earth-Like Planets With and Without Ocean Heat Transport Orbiting a Range of M and K Stars

    NASA Technical Reports Server (NTRS)

    Kiang, N. Y.; Jablonski, Emma R.; Way, Michael J.; Del Genio, Anthony; Roberge, Aki

    2015-01-01

    The mean surface temperature of a planet is now acknowledged as insufficient to surmise its full potential habitability. Advancing our understanding requires exploration with 3D general circulation models (GCMs), which can take into account how gradients and fluxes across a planet's surface influence the distribution of heat, clouds, and the potential for heterogeneous distribution of liquid water. Here we present 3D GCM simulations of the effects of alternative stellar spectra, instellation, model resolution, and ocean heat transport, on the simulated distribution of heat and moisture of an Earth-like planet (ELP).

  3. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS , SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  4. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS 'Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of OUT planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center.

  5. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA E-Theater 2003

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    2003-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations from space in a spectacular way. Fly in from outer space to the conference location as well as the site of the 2002 Olympic Winter Games using data from NASA satellites and the IKONOS "Spy Satellite". See HDTV movie Destination Earth 2002 incorporating the Olympic Zooms, NBC footage of the 2002 Olympics, the shuttle, & the best NASA/NOAA Earth science visualizations. See the latest US and international global satellite weather movies including hurricanes, typhoons & "tornadoes". See the latest visualizations from NASA/NOAA and International remote sensing missions like Terra, Aqua, GOES, GMS, SeaWiFS, & Landsat. Feel the pulse of our planet. See how land vegetation, ocean plankton, clouds and temperatures respond to the sun & seasons. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP satellite. The presentation will be made using the latest HDTV and video projection technology by: Dr. Fritz Hasler NASA/Goddard Space Flight Center

  6. Visions of Our Planet's Atmosphere, Land and Oceans: Electronic-Theater 2000

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Delaware Bay and Philadelphia area. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer tropical cyclones & tornadic thunderstorms. See the latest spectacular images from NASA, NOAA & UMETSAT remote sensing missions like GOES, Meteosat, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. see visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including Landsat tours of the US, and Africa with drill downs of major global cities using 1 m resolution commercialized spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. see ocean vortexes and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across a super sized panoramic screen.

  7. A Presentation of Spectacular Visualizations. Visions of Our Planet's Atmosphere, Land and Oceans: ETheater Presentation

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz; Pierce, Hal; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The NASA/NOAA/AMS Earth Science Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Florida and the KSC Visitor's Center. Go back to the early weather satellite images from the 1960s see them contrasted with the latest International global satellite weather movies including killer hurricanes & tornadic thunderstorms. See the latest spectacular images from NASA and NOAA remote sensing missions like GOES, NOAA, TRMM, SeaWiFS, Landsat7, & new Terra which will be visualized with state-of-the art tools. Shown in High Definition TV resolution (2048 x 768 pixels) are visualizations of hurricanes Lenny, Floyd, Georges, Mitch, Fran and Linda. See visualizations featured on covers of magazines like Newsweek, TIME, National Geographic, Popular Science and on National & International Network TV. New Digital Earth visualization tools allow us to roam & zoom through massive global images including a Landsat tour of the US, with drill-downs into major cities using 1 m resolution spy-satellite technology from the Space Imaging IKONOS satellite. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See ocean vortices and currents that bring up the nutrients to feed tiny plankton and draw the fish, giant whales and fisherman. See how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Octane Graphics Supercomputer with dual CPUs, 5 Gigabytes of RAM and Terabyte disk using two projectors across the super sized Universe Theater panoramic screen.

  8. Visions of Our Planet's Atmosphere, Land and Oceans Electronic-Theater 2001

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Fredericton New Brunswick. Drop in on the Kennedy Space Center and Park City Utah, site of the 2002 Olympics using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and International global satellite weather movies including hurricanes & tornadoes. See the latest spectacular images from NASA/NOAA and Canadian remote sensing missions like Terra GOES, TRMM, SeaWiFS, Landsat 7, and Radarsat that are visualized & explained. See how High Definition Television (HDTV) is revolutionizing the way we communicate science in cooperation with the American Museum of Natural History in NYC. See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. New visualization tools allow us to roam & zoom through massive global images eg Landsat tours of the US, Africa, & New Zealand showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. The demonstration is interactively driven by a SGI Onyx II Graphics Supercomputer with four CPUs, 8 Gigabytes of RAM and Terabyte of disk. With multiple projectors on a giant screen. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP

  9. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Haser, Fritz; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes and "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science and on National and International Network TV. New computer software tools allow us to roam and zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds. data. Spectacular new visualizations of the global atmosphere and oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nino/La Nina climate changes. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  10. Giant Impacts on Terrestrial Planets: A High-Resolution 3D Study of Magma Ocean Formation and Atmospheric Blowoff

    NASA Astrophysics Data System (ADS)

    Stewart-Mukhopadhyay, Sarah

    The end stages of terrestrial planet formation are dominated by giant impact events, which may significantly affect the final composition of a planet. The physical changes from giant impacts include formation of magma oceans and atmospheric blowoff. We propose to conduct unique numerical experiments to investigate the physics of giant impacts in order to determine their effect on the thermal state and volatile budget of terrestrial planets (0.1 to 10 Earth masses). Proposed work: High-resolution 3D giant impacts between differentiated silicate-iron and ice-silicate planets will be modeled with both the widely-used CTH shock physics code and a new second-order Godunov finite-volume hydrocode called AREPO. AREPO's powerful arbitrary Lagrangian-Eulerian grid and computational efficiency allows for unprecedented resolution of planetary structure (e.g., crust and ocean). Expected results: (1) We will calculate the amount of melt generated and fraction of atmosphere lost during different classes of giant impacts (merging, graze and merge, hit and run, and erosion/disruption). (2) We will derive general scaling laws to describe these complicated phenomena. (3) We will consider the effect of re-accretion of ejected material at late times on the total thermal input of giant impact events. (4) And we will test the giant impact hypothesis for the high bulk density of Mercury by conducting orbital integrations of ejected debris to determine the amount of re-accreted mantle material for different impact orientations. The science team has an established collaborative body of work in giant impact simulations and hydrocode development. As in previous studies, the simulation results will be generalized into sets of simple equations describing collision outcomes that are suitable for N-body planet formation models. The proposed work supports the goals of the Origins of Solar Systems program by conducting a fundamental theoretical investigation of a key stage of planet formation

  11. Electronic-Theater 2001: Visions of Our Planet's Atmosphere, Land and Oceans

    NASA Technical Reports Server (NTRS)

    Hasler, Authur; Starr, David OC. (Technical Monitor)

    2001-01-01

    The NASA/NOAA/AMS Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to Wisconsin, Madison and the Monona Terrace Center. Drop in on the Kennedy Space Center and Park City Utah, site of the 2002 Olympics using I m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s pioneered by UW. Scientists and see them contrasted with the latest US and International global satellite weather movies including hurricanes & tornadoes. See the latest spectacular images from NASA/NOAA remote sensing missions like Terra GOES, TRMM, SeaWiFS, Landsat 7 that are visualized & explained. See how High Definition Television (HDTV) is revolutionizing the way we communicate science in cooperation with the American Museum of Natural History in NYC. See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on Newsweek, TIME, National Geographic, Popular Science covers & National & International Network TV. New visualization tools allow us to roam & zoom through massive global images eg Landsat tours of the US, Africa, & New Zealand showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa. See vortices and currents in the global oceans that bring up the nutrients to feed tiny plankton and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nina/La Nina climate changes. The demonstration is interactively driven by a SGI Onyx 11 Graphics Supercomputer with four CPUs, 8 Gigabytes of RAM and Terabyte of disk. With five projectors on a giant IMAX sized 18 x 72 ft screen. See the city lights, fishing fleets, gas flares and bio-mass burning of the Earth at night

  12. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2001-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vortexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  13. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic Theater 2002

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the Olympic Medals Plaza, the new Gateway Center, and the University of Utah Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through the Park City, and Snow Basin sites of the 2002 Winter Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. See the four seasons of the Wasatch Front as observed by Landsat 7 at 15m resolution and watch the trees turn color in the Fall, snow come and go in the mountains and the reservoirs freeze and melt. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies Including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC) See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers Of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software. tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tin) algae and draw the fish, whales and fisherman. See the how the ocean blooms in

  14. The Torque of the Planet: NASA Researcher Uses NCCS Computers to Probe Atmosphere-Land-Ocean Coupling

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The study of Earth science is like a giant puzzle, says Braulio Sanchez. "The more you know about the individual pieces, the easier it is to fit them together." A researcher with Goddard's Space Geodesy Branch, Sanchez has been using NCCS supercomputer and mass storage resources to show how the angular momenta of the atmosphere, the oceans, and the solid Earth are dynamically coupled. Sanchez has calculated the magnitude of atmospheric torque on the planet and has determined some of the possible effects that torque has on Earth's rotation.

  15. Atmospheres and Oceans of Rocky Planets In and Beyond the Habitable Zones of M dwarfs

    NASA Astrophysics Data System (ADS)

    Tian, Feng

    2015-12-01

    he evolution of M dwarfs during their pre-main-sequence phase causes rocky planets in and beyond the habitable zones these stars to be in the runaway and moist greenhouse states. This scenario has been studied by three groups of researchers recently (Ramirez and Kaltenegger 2014, Tian and Ida 2015, Luger and Barnes 2015), and their consensus is that massive amount of water could have been lost during this time -- early evolution of M dwarfs could have changed the water contents of rocky planets around them, which could strongly influence the habitability of rocky planets around low mass stars. It has been proposed that dense oxygen dominant atmospheres (up to 2000 bars, Luger and Barnes 2015) because of rapid water loss. Is this true? If so, what's the condition for such atmospheres to exist and can they be maintained? On the other hand, what's the likelihood for sub-Neptunes to shrink into habitable planets under such environment? In general how is the habitability of planets around M dwarfs different from those around Sun-type stars? These are the questions we will attempt to address in this work.

  16. The Biological Big Bang: The First Oceans of Primordial Planets at 2-8 Myr Explains Hoyle-Wickramasinghe Cometary Panspermia and a Primordial LUCA

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Wickramasinghe, N. C.; Schild, R. E.

    2011-10-01

    Hydrogravitional-dynamics (HGD) cosmology of Gibson/Schild 1996 predicts that the primordial H-He4 gas of big bang nucleosynthesis became proto-globular-star-cluster clumps of Earth-mass planets at 300 Kyr. The first stars formed from mergers of these 3000 K gas planets. Chemicals C, N, O, Fe etc. created by stars and supernovae then seeded many of the reducing hydrogen gas planets with oxides to give them hot water oceans with metallic iron-nickel cores. Water oceans at critical temperature 647 K then hosted the first organic chemistry and the first life, distributed to the 1080 planets of the cosmological big bang by comets produced by the new (HGD) planet-merger star formation mechanism. The biological big bang scenario occurs between 2 Myr when liquid oceans condensed and 8 Myr when they froze. HGD cosmology explains, very naturally, the Hoyle/Wickramasinghe concept of cometary panspermia by giving a vast, hot, nourishing, cosmological primordial soup for abiogenesis, and the means for transmitting the resulting life forms and their evolving chemical mechanisms widely throughout the universe from the resulting RNA last-universal-common-ancestor LUCA. A primordial astrophysical basis is provided for astrobiology by HGD cosmology. Concordance ΛCDMHC cosmology is rendered obsolete by the observation of complex life on Earth.

  17. The biological big bang: the first oceans of primordial planets at 2-8 million years explain Hoyle/Wickramasinghe cometary panspermia

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2011-10-01

    Hydrogravitional-dynamics (HGD) cosmology of Gibson/Schild 1996 predicts that the primordial H-He4 gas of big bang nucleosynthesis became proto-globular-star-cluster clumps of Earth-mass planets at 300 Kyr. The first stars formed from mergers of these 3000 K gas planets. Chemicals C, N, O, Fe etc. created by stars and supernovae then seeded many of the reducing hydrogen gas planets with oxides to give them hot water oceans with metallic iron-nickel cores. Water oceans at critical temperature 647 K then hosted the first organic chemistry and the first life, distributed to the 1080 planets of the cosmological big bang by comets produced by the new (HGD) planet-merger star formation mechanism. The biological big bang scenario occurs between 2 Myr when liquid oceans condensed and 8 Myr when they froze. HGD cosmology explains, very naturally, the Hoyle/Wickramasinghe concept of cometary panspermia by giving a vast, hot, nourishing, cosmological primordial soup for abiogenesis, and the means for transmitting the resulting life forms and their evolving chemical mechanisms widely throughout the universe. A primordial astrophysical basis is provided for astrobiology by HGD cosmology. Concordance ΛCDMHC cosmology is rendered obsolete by the observation of complex life on Earth.

  18. THE ORBITAL PHASES AND SECONDARY TRANSITS OF KEPLER-10b. A PHYSICAL INTERPRETATION BASED ON THE LAVA-OCEAN PLANET MODEL

    SciTech Connect

    Rouan, D.; Deeg, H. J.; Demangeon, O.; Samuel, B.; Cavarroc, C.; Leger, A.; Fegley, B.

    2011-11-10

    The Kepler mission has made an important observation: the first detection of photons from a terrestrial planet by observing its phase curve (Kepler-10b). This opens a new field in exoplanet science: the possibility of obtaining information about the atmosphere and surface of rocky planets, objects of prime interest. In this Letter, we apply the Lava-ocean model to interpret the observed phase curve. The model, a planet without atmosphere and a surface partially made of molten rocks, has been proposed for planets of the class of CoRoT-7b, i.e., rocky planets very close to their star (at a few stellar radii). Kepler-10b is a typical member of this family. It predicts that the light from the planet has an important emission component in addition to the reflected one, even in the Kepler spectral band. Assuming an isotropical reflection of light by the planetary surface (Lambertian-like approximation), we find that a Bond albedo of {approx}50% can account for the observed amplitude of the phase curve, as opposed to a first attempt where an unusually high value was found. We propose a physical process to explain this still large value of the albedo. The overall interpretation can be tested in the future with instruments such as the James Webb Space Telescope or the Exoplanet Characterization Observatory. Our model predicts a spectral dependence that is clearly distinguishable from that of purely reflected light and from that of a planet at a uniform temperature.

  19. A Perspective of Our Planet's Atmosphere, Land, and Oceans: A View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Graham, Steven M.

    2002-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in true high definition (HD) format. See the latest spectacular images from NASA & NOAA remote sensing missions like GOES, TRMM, Landsat 7, QuikScat, and Terra, which will be visualized and explained in the context of global change. Marvel at visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning, and global cloud properties. See the dynamics of vegetation growth and decay over South America over 17 years, and its contrast to the North American and Africa continents. Spectacular new visualizations of the global atmosphere & oceans will be shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, giant whales and fisher- man. See how the ocean blooms in response to these currents and El Nino/La Nina climate changes. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  20. A Perspective of Our Planet's Atmosphere, Land, and Oceans: A View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Tucker, Compton

    2002-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to South America with its Andes Mountains and the glaciers of Patagonia, ending up close and personal in Buenos Aires. See the latest spectacular images from NASA & NOAA remote sensing missions like GOES, TRMM, Landsat 7, QuikScat, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in South America and Africa, and global cloud properties. See the dynamics of vegetation growth and decay over South America over 17 years, and its contrast to the North American and Africa continents. New visualization tools allow us to roam & zoom through massive global mosaic images from the Himalayas to the dynamics of the Pacific Ocean that affect the climate of South and North America. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of South America and Africa showing land use and land cover change from Patagonia to the Amazon Basin, including the Andes Mountains, the Pantanal, and the Bolivian highlands. Landsat flyins to Rio Di Janeiro and Buenos Aires will be shows to emphasize the capabilities of new satellite technology to visualize our natural environment. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, giant whales and fisherman. See how the ocean blooms in response

  1. The effects of cloud radiative forcing on an ocean-covered planet

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1990-01-01

    Cumulus anvil clouds, whose importance has been emphasized by observationalists in recent years, exert a very powerful influence on deep tropical convection by tending to radiatively destabilize the troposphere. In addition, they radiatively warm the column in which they reside. Their strong influence on the simulated climate argues for a much more refined parameterization in the General Circulation Model (GCM). For Seaworld, the atmospheric cloud radiative forcing (ACRF) has a powerful influence on such basic climate parameters as the strength of the Hadley circulation, the existence of a single narrow InterTropical Convergence Zone (ITCZ), and the precipitable water content of the atmosphere. It seems likely, however, that in the real world the surface CRF feeds back negatively to suppress moist convection and the associated cloudiness, and so tends to counteract the effects of the ACRF. Many current climate models have fixed sea surface temperatures but variable land-surface temperatures. The tropical circulations of such models may experience a position feedback due to ACRF over the oceans, and a negative or weak feedback due to surface CRF over the land. The overall effects of the CRF on the climate system can only be firmly established through much further analysis, which can benefit greatly from the use of a coupled ocean-atmospheric model.

  2. The Polar Ocean in a Warming Planet: Understanding for managing a unique resource of the Humankind

    NASA Astrophysics Data System (ADS)

    Azzolini, R.; Campus, P.; Weber, J.

    2012-04-01

    There is no doubt that changes in the Polar Regions are of great significance at the global level, such as having far-reaching effects on atmospheric and ocean circulation. Changes in ocean currents, temperature conditions, ice cover and reduction of permafrost regions are having impacts on marine and terrestrial ecosystems in the Arctic Regions of Europe and Northern Hemisphere. Human activity is putting pressure on the environment in these regions; maritime transport between Europe and Asia through the northern sea route and accessibility conditions to hidden Arctic resources as well as new technologies of exploitation will have a significant impact on the marine environment, on the living resources and on the regional social organization and needs. There are still unresolved issues related to national claims on continental shelf and sea areas that involve international law; in these respects science can provide crucial elements for supporting political agreements. Such scenarios will present new opportunities for economic activities, but also risks which will result in new demands for marine management, monitoring systems, emergency response systems, search and rescue services as well as closer international cooperation. It will also require the development of an international regime based on the improvement of the present regulations on exploration, accessibility, exploitation and liability. Dialogue and international agreements based on scientific evidences and foresight are key elements for finding solutions. On the opposite hemisphere, the ocean surrounding Antarctica plays a primary role in all global climatic processes, through the annual sea ice evolution, the circum-Antarctic circulation driving the exchange of heat between low and high latitudes and the atmospheric circulation, through the density bottom currents that affect the global Thermohaline circulation (THC), and the biogeochemical cycles that have peculiar characteristics in the icy Antarctic

  3. Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Kaltenegger, Lisa; Sasselov, Dimitar

    2013-04-01

    The existence of Earth-size planets covered completely by a water envelope (water planets) has long fascinated scientists and the general public alike (Kuchner 2003; Leger et al. 2004). Sometimes referred to as "ocean planets", stemming from the implicit assumption of Habitable Zone (HZ) temperatures and a liquid water surface, water planets are a much broader class. Here we present a general approach to computing surface and atmospheric conditions on water planets in the HZ.

  4. Take a Planet Walk

    ERIC Educational Resources Information Center

    Schuster, Dwight

    2008-01-01

    Physical models in the classroom "cannot be expected to represent the full-scale phenomenon with complete accuracy, not even in the limited set of characteristics being studied" (AAAS 1990). Therefore, by modifying a popular classroom activity called a "planet walk," teachers can explore upper elementary students' current understandings; create an…

  5. A simple 1-D radiative-convective atmospheric model designed for integration into coupled models of magma ocean planets

    NASA Astrophysics Data System (ADS)

    Marcq, E.

    2012-01-01

    In order to understand the early history of telluric interiors and atmospheres during the ocean magma stage, a coupled interior-atmosphere-escape model is being developed. This paper describes the atmospheric part and its first preliminary results. A unidimensional, radiative-convective, H2O-CO2 atmosphere is modeled following a vertical T(z) profile similar to Kasting (1988) and Abe and Matsui (1988). Opacities in the thermal IR are then computed using a k-correlated code (KSPECTRUM), tabulated continuum opacities for H2O-H2O and CO2-CO2 absorption, and water or sulphuric acid clouds in the moist convective zone (whenever present). The first results show the existence of two regimes depending on the relative value of the surface temperature Ts compared to a threshold temperature Tc depending on the total gaseous inventory. For Ts < Tc, efficient blanketing results in a cool upper atmosphere, a cloud cover, and a long lifetime for the underneath magma ocean with a net thermal IR flux between 160 and 200 Wm-2. For Ts > Tc, the blanketing is not efficient enough to prevent large radiative heat loss to space through a hot, cloudless atmosphere. Our current calculations may underestimate the thermal flux in the case of hot surfaces with little gaseous content in the atmosphere.

  6. Visions of our Planet's Atmosphere, Land and Oceans: NASA/NOAA Electronic-Theater 2002. Spectacular Visualizations of our Blue Marble

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2002-01-01

    Spectacular Visualizations of our Blue Marble The NASA/NOAA Electronic Theater presents Earth science observations and visualizations in a historical perspective. Fly in from outer space to the 2002 Winter Olympic Stadium Site of the Olympic Opening and Closing Ceremonies in Salt Lake City. Fly in and through Olympic Alpine Venues using 1 m IKONOS "Spy Satellite" data. Go back to the early weather satellite images from the 1960s and see them contrasted with the latest US and international global satellite weather movies including hurricanes & "tornadoes". See the latest visualizations of spectacular images from NASA/NOAA remote sensing missions like Terra, GOES, TRMM, SeaWiFS, Landsat 7 including new 1 - min GOES rapid scan image sequences of Nov 9th 2001 Midwest tornadic thunderstorms and have them explained. See how High-Definition Television (HDTV) is revolutionizing the way we communicate science. (In cooperation with the American Museum of Natural History in NYC). See dust storms in Africa and smoke plumes from fires in Mexico. See visualizations featured on the covers of Newsweek, TIME, National Geographic, Popular Science & on National & International Network TV. New computer software tools allow us to roam & zoom through massive global images e.g. Landsat tours of the US, and Africa, showing desert and mountain geology as well as seasonal changes in vegetation. See animations of the polar ice packs and the motion of gigantic Antarctic Icebergs from SeaWinds data. Spectacular new visualizations of the global atmosphere & oceans are shown. See vertexes and currents in the global oceans that bring up the nutrients to feed tiny algae and draw the fish, whales and fisherman. See the how the ocean blooms in response to these currents and El Nicola Nina climate changes. See the city lights, fishing fleets, gas flares and biomass burning of the Earth at night observed by the "night-vision" DMSP military satellite.

  7. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2012-03-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  8. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2007-10-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  9. Hazards to Planet Formation

    NASA Astrophysics Data System (ADS)

    Bally, J.

    2001-05-01

    The Orion Nebula provides a remarkable window on the first few million years in the lives of typical young stars and planetary systems. HST has demonstrated that most young stars in the Nebula are surrounded by circumstellar disks (the so-called `proplyds'). While these observations show that planet forming environments may be common, they also demonstrate that Orion's disks are being destroyed by intense UV radiation fields. `Gravel' sufficiently large to resist photo-erosion (meter scale solids or ices) may lock-up sufficient material to eventually build rocky planets. Indeed, there is evidence for large solids in some proplyds. But, the hydrogen and helium needed for the formation of giant planets will be removed. To form in Orion-like environments, giant planets must be assembled promptly prior to UV exposure. Even rocky planets may not form if the photoionized disk corona causes surviving large particles in the disk to spiral into the central star. Thus, nearby massive stars pose severe hazards to planet formation. Star counts indicate that most stars form in Orion-like environments. Only about 10% of young stars are born in shielded environments such as the Taurus or L1641 clouds where disks may escape photo-erosion. In dark clouds, the majority of stars (> 80%) form in non-hierarchal multiple star systems where close encounters with sibling stars can destroy disks and eject young planets. Thus, most stars may never develop planetary systems. These considerations indicate that extra-Solar planets may be rare, contrary to the popular view. These conclusions are consistent with the recent discoveries of extra-Solar planets around a few percent of single stars.

  10. Popular Culture and English.

    ERIC Educational Resources Information Center

    Holbrook, Hilary Taylor

    1987-01-01

    Explores the origins and elements of popular culture--noting that English instruction and popular culture need not be mutually exclusive, and that selected materials from popular culture may serve goals of the English curriculum without compromising them. (NKA)

  11. Extrasolar planets

    PubMed Central

    Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru

    2000-01-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  12. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  13. Popular Culture and Curricula.

    ERIC Educational Resources Information Center

    Browne, Ray B., Ed.; Ambrosetti, Ronald J., Ed.

    The seven essays in this publication, including four read at the fall 1969 American Studies Association meeting, attempt to present both the nature of popular culture study and a guide for teachers of popular culture courses. Papers are (1) "Popular Culture: Notes toward a Definition" by Ray B. Browne; (2) "Can Popular Culture Save American…

  14. Defining popular iconic metaphor.

    PubMed

    Columbus, Peter J; Boerger, Michael A

    2002-04-01

    Popular Iconic Metaphor is added to the cognitive linguistic lexicon of figurative language. Popular Iconic Metaphors employ real or fictional celebrities of popular culture as source domains in figurative discourse. Some borders of Popular Iconic Metaphor are identified, and Elvis Presley is offered as a prototype example of a popular iconic source domain, due to his ubiquity in American popular culture, which affords his figurative usage in ways consistent with decision heuristics in everyday life. Further study of Popular Iconic Metaphors may serve to illuminate how figurative expressions emerge in their localized contexts, structure conduct and experience, and affect mediation of cultural and personal meanings. PMID:12061600

  15. Extreme Planets

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This artist's concept depicts the pulsar planet system discovered by Aleksander Wolszczan in 1992. Wolszczan used the Arecibo radio telescope in Puerto Rico to find three planets - the first of any kind ever found outside our solar system - circling a pulsar called PSR B1257+12. Pulsars are rapidly rotating neutron stars, which are the collapsed cores of exploded massive stars. They spin and pulse with radiation, much like a lighthouse beacon. Here, the pulsar's twisted magnetic fields are highlighted by the blue glow.

    All three pulsar planets are shown in this picture; the farthest two from the pulsar (closest in this view) are about the size of Earth. Radiation from charged pulsar particles would probably rain down on the planets, causing their night skies to light up with auroras similar to our Northern Lights. One such aurora is illustrated on the planet at the bottom of the picture.

    Since this landmark discovery, more than 160 extrasolar planets have been observed around stars that are burning nuclear fuel. The planets spotted by Wolszczan are still the only ones around a dead star. They also might be part of a second generation of planets, the first having been destroyed when their star blew up. The Spitzer Space Telescope's discovery of a dusty disk around a pulsar might represent the beginnings of a similarly 'reborn' planetary system.

  16. Conditions for oceans on Earth-like planets orbiting within the habitable zone: importance of volcanic CO{sub 2} degassing

    SciTech Connect

    Kadoya, S.; Tajika, E. E-mail: tajika@astrobio.k.u-tokyo.ac.jp

    2014-08-01

    Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowball climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.

  17. Outer Planets

    NASA Video Gallery

    Did you know that through NASA’s various satellite missions we have learned more about these planetary bodies in recent years than we knew collectively since we started to study our planets? Throu...

  18. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  19. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    PubMed

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well. PMID:15136756

  20. Microlensing Planets

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    The theory and practice of microlensing planet searches is developed in a systematic way, from an elementary treatment of the deflection of light by a massive body to a thorough discussion of the most recent results. The main concepts of planetary microlensing, including microlensing events, finite-source effects, and microlens parallax, are first introduced within the simpler context of point-lens events. These ideas are then applied to binary (and hence planetary) lenses and are integrated with concepts specific to binaries, including caustic topologies, orbital motion, and degeneracies, with an emphasis on analytic understanding. The most important results from microlensing planet searches are then reviewed, with emphasis both on understanding the historical process of discovery and the means by which scientific conclusions were drawn from light-curve analysis. Finally, the future prospects of microlensing planets searches are critically evaluated. Citations to original works provide the reader with multiple entry points into the literature.

  1. Pluto: Planet or "Dwarf Planet"?

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  2. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  3. Popularity Contagion among Adolescents

    ERIC Educational Resources Information Center

    Marks, Peter E. L.; Cillessen, Antonius H. N.; Crick, Nicki R.

    2012-01-01

    This study aimed to support the theory of popularity contagion, which posits that popularity spreads among friends spontaneously and regardless of behavioral changes. Peer nominations of status and behavior were collected annually between 6th and 12th grades from a total of 1062 adolescents. Longitudinal hypotheses were mostly supported using path…

  4. The Popular Culture Explosion.

    ERIC Educational Resources Information Center

    Browne, Ray B.; Madden, David

    Popular culture is defined here as anything produced by and/or dissembled by the mass media or mass production or transportation, either directly or indirectly, and that reaches the majority of the people. This sampler from mass magazines, intended for use in the study of popular culture, includes fiction from "Playboy"; articles on cars, Johnny…

  5. Popular Music Performance Class.

    ERIC Educational Resources Information Center

    Ginocchio, John

    2001-01-01

    Discusses the creation and content of a high school course on popular music performance. Describes how the teacher decided on aspects of the course, such as student background, transcription exercises, the student report on a popular music artist, and opportunities for performance. Reflects on what the teacher learned from the experience. (CMK)

  6. Popular Chat Day Q & A

    MedlinePlus

    ... Day / Popular Chat Day Q & A Popular Chat Day Q & A Print Read students’ most popular questions ... Cool Order Free Materials National Drugs & Alcohol Chat Day Chat Day Participant FAQs Popular Chat Day Q & ...

  7. The Role of Magma Ocean Material in the Formation and Evolution of Liquid-Metal Diapirs with Trailing Conduits During Differentiation of Planets and Large Planetesimals

    NASA Astrophysics Data System (ADS)

    Rains, C. L.; Weeraratne, D. S.

    2013-10-01

    We investigate the role of metal-silicate plumes with trailing conduits of entrained magma ocean material from large impacts in the differentiation of early bodies using a tri-fluid physical model with liquid gallium and glucose/salt solutions.

  8. A Planet Detection Tutorial and Simulator

    NASA Technical Reports Server (NTRS)

    Knoch, David; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Detection of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections (currently at about 50) has only heightened the interest in the topic. School children are particularly interested in learning about recent astronomical discoveries. Scientists have the knowledge and responsibility to present this information in both an understandable and interesting format. Most classrooms and homes are now connected to the internet, which can be utilized to provide more than a traditional 'flat' presentation. An interactive software package on planet detection has been developed. The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Terrestrial Planets"; and "A Planet Detection Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program. One can determine the orbit and planet size, the planet's temperature and surface gravity, and finally determine if the planet is habitable. Originally developed for the Macintosh, a web based browser version is being developed.

  9. Extrasolar Planets and Prospects for Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.; Butler, R. Paul; Vogt, Steven S.; Fischer, Debra A.

    2004-06-01

    Examination of ˜2000 sun--like stars has revealed 97 planets (as of 2002 Nov), all residing within our Milky Way Galaxy and within ˜200 light years of our Solar System. They have masses between 0.1 and 10 times that of Jupiter, and orbital sizes of 0.05--5 AU. Thus planets occupy the entire detectable domain of mass and orbits. News &summaries about extrasolar planets are provided at: http://exoplanets.org. These planets were all discovered by the wobble of the host stars, induced gravitationally by the planets, causing a periodicity in the measured Doppler effect of the starlight. Earth--mass planets remain undetectable, but space--based missions such as Kepler, COROT and SIM may provide detections of terrestrial planets within the next decade. The number of planets increases with decreasing planet mass, indicating that nature makes more small planets than jupiter--mass planets. Extrapolation, though speculative, bodes well for an even larger number of earth--mass planets. These observations and the theory of planet formation suggests that single sun--like stars commonly harbor earth--sized rocky planets, as yet undetectable. The number of planets increases with increasing orbital distance from the host star, and most known planets reside in non--circular orbits. Many known planets reside in the habitable zone (albeit being gas giants) and most newly discovered planets orbit beyond 1 AU from their star. A population of Jupiter--like planets may reside at 5--10 AU from stars, not easily detectable at present. The sun--like star 55 Cancri harbors a planet of 4--10 Jupiter masses orbiting at 5.5 AU in a low eccentricity orbit, the first analog of our Jupiter, albeit with two large planets orbiting inward. To date, 10 multiple--planet systems have been discovered, with four revealing gravitational interactions between the planets in the form of resonances. GJ 876 has two planets with periods of 1 and 2 months. Other planetary systems are ``hierarchical'', consisting

  10. Barnard’s Star: Planets or Pretense

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.

    2014-01-01

    Barnard’s Star remains popular with planet hunters because it is not only an extremely near, high proper motion star, but also the object of early planet-detection claims. In 1963, van de Kamp explained perturbations in its proper motion by the presence of a planet. In 1969, he produced another single-planet solution and a two-planet solution to the astrometric wobbles detected. At least 19 studies have failed to confirm his results using a range of techniques, including radial velocity, direct imaging, and speckle interferometry. However, most of them lacked the sensitivity to detect the planets he described, including astrometric studies at the McCormick and Naval Observatories. However, radial-velocity monitoring of Barnard’s Star at Lick and Keck Observatories from 1987 through 2012 appears to have ruled out such planets. Based upon observations made at the Sproul Observatory between 1916 and 1962, van de Kamp claimed that Barnard’s Star had a planet with about 1.6 times the mass of Jupiter and an orbital period of 24 years. After accounting for instrumentation effects that might have been partially responsible for his initial results, he continued to assert that this red dwarf had two planets. In his 1982 analysis of ~20,000 exposures collected between 1938 and 1981, he calculated that two planets with 0.7- and 0.5-Jupiter masses in 12- and 20-year orbits, respectively, orbited the second-closest stellar system to our own. Starting in 1995, the dramatic successes of radial velocity searches for extrasolar planets drove van de Kamp’s unsubstantiated claims from popular consciousness. Although many low-mass stellar companions were discovered through astrometry, the technique has been less successful for planets: “The Extrasolar Planets Encyclopaedia” identifies one such discovery out of the 997 planets listed on 2013 September 23. Although Barnard’s Star has lost its pretensions to hosting the first extrasolar planets known, its intrinsic

  11. Popularity in Wonderland.

    ERIC Educational Resources Information Center

    Nist, J.S.

    Specialists in the field of children's literature, who publish research and decide on awards for individual books, should give serious study to what children themselves choose to read. Among the children's books that were not originally awarded top honors by critics but that have proved extremely popular with children are the Oz books by L. Frank…

  12. Popular Music in Taiwan.

    ERIC Educational Resources Information Center

    Wang, Georgette

    1986-01-01

    Discusses the recent concern over the imbalanced international flow of cultural products into Taiwan--such as films, television programs, and news from developed to developing nations--as it has fed the apprehension that imported popular music may have socialized Taiwanese audiences with alien values and ethics. (JD)

  13. Exploring Planet Sizes

    NASA Video Gallery

    This lesson combines a series of activities to compare models of the size of Earth to other planets and the distances to other planets. Activities highlight space missions to other planets in our s...

  14. Exploring the Living Planet with David Attenborough.

    ERIC Educational Resources Information Center

    Burgess, Jacquelin; Unwin, David

    1984-01-01

    In this interview David Attenborough, the celebrated natural history film maker and writer, talks about his highly successful television series, "The Living Planet." Devoted to the exposition of the world's ecosystems, the film represents a significant example of popular geographic education. (RM)

  15. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    SciTech Connect

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-07-10

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M {sub tot} {approx}> 1 M{sub J} the final eccentricity distribution remains broad, whereas for M {sub tot} {approx}< 1 M{sub J} a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a {approx_equal} 5-10 AU.

  16. Dance of the Planets

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…

  17. Ocean Robotic Networks

    SciTech Connect

    Schofield, Oscar

    2012-05-23

    We live on an ocean planet which is central to regulating the Earth’s climate and human society. Despite the importance of understanding the processes operating in the ocean, it remains chronically undersampled due to the harsh operating conditions. This is problematic given the limited long term information available about how the ocean is changing. The changes include rising sea level, declining sea ice, ocean acidification, and the decline of mega fauna. While the changes are daunting, oceanography is in the midst of a technical revolution with the expansion of numerical modeling techniques, combined with ocean robotics. Operating together, these systems represent a new generation of ocean observatories. I will review the evolution of these ocean observatories and provide a few case examples of the science that they enable, spanning from the waters offshore New Jersey to the remote waters of the Southern Ocean.

  18. Popular perceptions of Galileo

    NASA Astrophysics Data System (ADS)

    Sobel, Dava

    2010-01-01

    Among the most persistent popular misperceptions of Galileo is the image of an irreligious scientist who opposed the Catholic Church and was therefore convicted of heresy-was even excommunicated, according to some accounts, and denied Christian burial. In fact, Galileo considered himself a good Catholic. He accepted the Bible as the true word of God on matters pertaining to salvation, but insisted Scripture did not teach astronomy. Emboldened by his discovery of the Medicean Moons, he took a stand on Biblical exegesis that has since become the official Church position.

  19. Our Changing Planet: The View From Space

    NASA Astrophysics Data System (ADS)

    Lakshmi, Venkat

    2008-10-01

    Through the use of satellite and aircraft-acquired images, color photographs, and scientific analysis, Our Changing Planet: The View From Space takes a look at the four components of the Earth system: the atmosphere, the land surface, the oceans, and the cryosphere. The book also highlights signatures of global climate change and human intervention on Earth system variables and processes.

  20. The origin of life from primordial planets

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.; Schild, Rudolph E.; Wickramasinghe, N. Chandra

    2011-04-01

    The origin of life and the origin of the Universe are among the most important problems of science and they might be inextricably linked. Hydro-gravitational-dynamics cosmology predicts hydrogen-helium gas planets in clumps as the dark matter of galaxies, with millions of planets per star. This unexpected prediction is supported by quasar microlensing of a galaxy and a flood of new data from space telescopes. Supernovae from stellar over-accretion of planets produce the chemicals (C, N, O, P, etc.) and abundant liquid-water domains required for first life and the means for wide scattering of life prototypes. Life originated following the plasma-to-gas transition between 2 and 20 Myr after the big bang, while planetary core oceans were between critical and freezing temperatures, and interchanges of material between planets constituted essentially a cosmological primordial soup. Images from optical, radio and infrared space telescopes suggest life on Earth was neither first nor inevitable.

  1. Comparative phylogeography of the ocean planet

    PubMed Central

    Bowen, Brian W.; Gaither, Michelle R.; DiBattista, Joseph D.; Iacchei, Matthew; Andrews, Kimberly R.; Grant, W. Stewart; Toonen, Robert J.; Briggs, John C.

    2016-01-01

    Understanding how geography, oceanography, and climate have ultimately shaped marine biodiversity requires aligning the distributions of genetic diversity across multiple taxa. Here, we examine phylogeographic partitions in the sea against a backdrop of biogeographic provinces defined by taxonomy, endemism, and species composition. The taxonomic identities used to define biogeographic provinces are routinely accompanied by diagnostic genetic differences between sister species, indicating interspecific concordance between biogeography and phylogeography. In cases where individual species are distributed across two or more biogeographic provinces, shifts in genotype frequencies often align with biogeographic boundaries, providing intraspecific concordance between biogeography and phylogeography. Here, we provide examples of comparative phylogeography from (i) tropical seas that host the highest marine biodiversity, (ii) temperate seas with high productivity but volatile coastlines, (iii) migratory marine fauna, and (iv) plankton that are the most abundant eukaryotes on earth. Tropical and temperate zones both show impacts of glacial cycles, the former primarily through changing sea levels, and the latter through coastal habitat disruption. The general concordance between biogeography and phylogeography indicates that the population-level genetic divergences observed between provinces are a starting point for macroevolutionary divergences between species. However, isolation between provinces does not account for all marine biodiversity; the remainder arises through alternative pathways, such as ecological speciation and parapatric (semiisolated) divergences within provinces and biodiversity hotspots. PMID:27432963

  2. Comparative phylogeography of the ocean planet.

    PubMed

    Bowen, Brian W; Gaither, Michelle R; DiBattista, Joseph D; Iacchei, Matthew; Andrews, Kimberly R; Grant, W Stewart; Toonen, Robert J; Briggs, John C

    2016-07-19

    Understanding how geography, oceanography, and climate have ultimately shaped marine biodiversity requires aligning the distributions of genetic diversity across multiple taxa. Here, we examine phylogeographic partitions in the sea against a backdrop of biogeographic provinces defined by taxonomy, endemism, and species composition. The taxonomic identities used to define biogeographic provinces are routinely accompanied by diagnostic genetic differences between sister species, indicating interspecific concordance between biogeography and phylogeography. In cases where individual species are distributed across two or more biogeographic provinces, shifts in genotype frequencies often align with biogeographic boundaries, providing intraspecific concordance between biogeography and phylogeography. Here, we provide examples of comparative phylogeography from (i) tropical seas that host the highest marine biodiversity, (ii) temperate seas with high productivity but volatile coastlines, (iii) migratory marine fauna, and (iv) plankton that are the most abundant eukaryotes on earth. Tropical and temperate zones both show impacts of glacial cycles, the former primarily through changing sea levels, and the latter through coastal habitat disruption. The general concordance between biogeography and phylogeography indicates that the population-level genetic divergences observed between provinces are a starting point for macroevolutionary divergences between species. However, isolation between provinces does not account for all marine biodiversity; the remainder arises through alternative pathways, such as ecological speciation and parapatric (semiisolated) divergences within provinces and biodiversity hotspots. PMID:27432963

  3. Popular weight reduction diets.

    PubMed

    Volpe, Stella Lucia

    2006-01-01

    The percentage of people who are overweight and obese has increased tremendously over the last 30 years. It has become a worldwide epidemic. This is evident by the number of children are being diagnosed with a body mass index >85th percentile, and the number of children begin diagnosed with type 2 diabetes mellitus, a disease previously reserved for adults. The weight loss industry has also gained from this epidemic; it is a billion dollar industry. People pay large sums of money on diet pills, remedies, and books, with the hope of losing weight permanently. Despite these efforts, the number of individuals who are overweight or obese continues to increase. Obesity is a complex, multifactorial disorder. It would be impossible to address all aspects of diet, exercise, and weight loss in this review. Therefore, this article will review popular weight loss diets, with particular attention given to comparing low fat diets with low carbohydrate diets. In addition, the role that the environment plays on both diet and exercise and how they impact obesity will be addressed. Finally, the National Weight Control Registry will be discussed. PMID:16407735

  4. Peeking at the Planets.

    ERIC Educational Resources Information Center

    Riddle, Bob

    2002-01-01

    Provides information about each of the planets in our solar system. Focuses on information related to the space missions that have visited or flown near each planet, and includes a summary of what is known about some of the features of each planet. (DDR)

  5. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  6. Terrestrial Planets: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.

  7. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Koczor, Ron; Lee, Jonathan; Grady, Kevin J.; Hudson, Wayne R.; Johnston, Gordon I.; Njoku, Eni G.

    1990-01-01

    To preserve the earth, it is necessary to understand the tremendously complex interactions of the atmosphere, oceans, land, and man's activities deeply enough to construct models that can predict the consequences of our actions and help us make sound environmental, energy, agriculture, and economic decisions. Mission to Planet Earth is NASA's suggested share and the centerpiece of the U.S. contribution to understanding the environment, the Global Change Research Program. The first major element of the mission would be the Earth Observing System, which would give the simultaneous, comprehensive, long-term earth coverage lacking previously. NASA's Geosynchronous Earth Observatory with two additional similar spacecraft would be orbited by the U.S., plus one each by Japan and the European Space Agency. These would be the first geostationary satellites to span all the disciplines of the earth sciences. A number of diverse data gathering payloads are also planned to be carried aboard the Polar Orbiting Platform. Making possible the long, continuous observations planned and coping with the torrent of data acquired will require technical gains across a wide front. Finally, how all this data is consolidated and disseminated by the EOS Data and Information System is discussed.

  8. Tomorrow's Forecast: Oceans and Weather.

    ERIC Educational Resources Information Center

    Smigielski, Alan

    1995-01-01

    This issue of "Art to Zoo" focuses on weather and climate and is tied to the traveling exhibition Ocean Planet from the Smithsonian's National Museum of Natural History. The lessons encourage students to think about the profound influence the oceans have on planetary climate and life on earth. Sections of the lesson plan include: (1) "Ocean…

  9. Kepler's missing planets

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.

    2013-08-01

    We investigate the distributions of the orbital period ratios of adjacent planets in high-multiplicity Kepler systems (four or more planets) and low-multiplicity systems (two planets). Modelling the low-multiplicity sample as essentially equivalent to the high-multiplicity sample, but with unobserved intermediate planets, we find some evidence for an excess of planet pairs between the 2:1 and 3:1 mean-motion resonances in the low-multiplicity sample. This possible excess may be the result of strong dynamical interactions near these or other resonances or it may be a byproduct of other evolutionary events or processes such as planetary collisions. Three-planet systems show a significant excess of planets near the 2:1 mean-motion resonance that is not as prominent in either of the other samples. This observation may imply a correlation between strong dynamical interactions and observed planet number - perhaps a relationship between resonance pairs and the inclinations or orbital periods of additional planets. The period ratio distributions can also be used to identify targets to search for missing planets in the each of the samples, the presence or absence of which would have strong implications for planet formation and dynamical evolution models.

  10. Planet Demographics from Transits

    NASA Astrophysics Data System (ADS)

    Howard, Andrew

    2015-08-01

    From the demographics of planets detected by the Kepler mission, we have learned that there exists approximately one planet per star for planets larger than Earth orbiting inside of 1 AU. We have also learned the relative occurrence of these planets as a function of their orbital periods, sizes, and host star masses and metallicities. In this talk I will review the key statistical findings that the planet size distribution peaks in the range 1-3 times Earth-size, the orbital period distribution is characterized by a power-law cut off at short periods, small planets are more prevalent around small stars, and that approximately 20% of Sun-like stars hosts a planet 1-2 times Earth-size in a habitable zone. Looking forward, I will describe analysis of photometry from the K2 mission that is yielding initial planet discoveries and offering the opportunity to measure planet occurrence in widely separated regions of the galaxy. Finally, I will also discuss recent techniques to discover transiting planets in space-based photometry and to infer planet population properties from the ensemble of detected and non-detected transit signals.

  11. DETECTING VOLCANISM ON EXTRASOLAR PLANETS

    SciTech Connect

    Kaltenegger, L.; Sasselov, D. D.; Henning, W. G.

    2010-11-15

    The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here, we investigate whether we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present-day Earth and derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloud cover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth-sized to super-Earth-sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars and ground-based telescopes, and report the frequency and magnitude of the expected signatures. The transit probability of a planet in the habitable zone decreases with distance from the host star, making small, nearby host stars the best targets.

  12. The SARG Planet Search

    NASA Astrophysics Data System (ADS)

    Desidera, S.; Gratton, R.; Endl, M.; Fiorenzano, A. F. Martinez; Barbieri, M.; Claudi, R.; Cosentino, R.; Scuderi, S.; Bonavita, M.

    The search for planets in multiple systems allows to improve our knowledge of planet formation and evolution. On one hand, the frequency of planets in binary systems has a strong effect on the global frequency of planets, as more than half of solar-type stars are in binary or multiple systems (Duquennoy and Mayor 1991). On the other hand, the properties of planets in binaries, and their differences with the properties of the planets orbiting single stars, would shed light on the effects caused by the presence of the companion stars. Indeed, the first analysis of the properties of planets in binaries showed the occurrence of some differences with respect to those orbiting single stars (Zucker and Mazeh 2002; Eggenberger et al. 2004).

  13. Satisfaction Analysis of Experiential Learning-Based Popular Science Education

    ERIC Educational Resources Information Center

    Dzan, Wei-Yuan; Tsai, Huei-Yin; Lou, Shi-Jer; Shih, Ru-Chu

    2015-01-01

    This study employed Kolb's experiential learning model-specific experiences, observations of reflections, abstract conceptualization, and experiment-action in activities to serve as the theoretical basis for popular science education planning. It designed the six activity themes of "Knowledge of the Ocean, Easy to Know, See the Large from the…

  14. New Dimensions in Popular Culture.

    ERIC Educational Resources Information Center

    Nye, Russel B., Ed.

    This document contains fifteen essays which study some of the didactic, moralistic literature which was popular in nineteenth century America, and speculate about the culture from which the literature evolved. The essays include "Millions of Moral Little Books: Sunday School Books in Their Popular Context"; "Nineteenth Century Gift Books: A…

  15. American Civilization--Popular Culture.

    ERIC Educational Resources Information Center

    Miller, Carol F.

    This syllabus introduces the purposes and organization of a course on Popular Culture as evidence of American civilization offered at Meramec Community College. The guide first presents a rationale for the study of popular culture and then lists course requirements; discusses techniques such as comparative analysis and psychoanalytic investigation…

  16. Popular Music: An Ongoing Challenge.

    ERIC Educational Resources Information Center

    Cutietta, Robert A.

    1991-01-01

    Addresses tendencies to force popular music into existing school music program formats, rather than include it as a form with its own musical integrity and authenticity. Urges music teachers not to dismiss popular music or turn it into elevator music. (CH)

  17. Rethinking Popular Culture and Media

    ERIC Educational Resources Information Center

    Marshall, Elizabeth, Ed.; Sensoy, Ozlem, Ed.

    2011-01-01

    "Rethinking Popular Culture and Media" is a provocative collection of articles that begins with the idea that the "popular" in classrooms and in the everyday lives of teachers and students is fundamentally political. This anthology includes outstanding articles by elementary and secondary public school teachers, scholars, and activists who…

  18. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  19. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  20. A Maximum Radius for Habitable Planets.

    PubMed

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope. PMID:26159097

  1. Life-sustaining planets in interstellar space?

    NASA Astrophysics Data System (ADS)

    Stevenson, David J.

    1999-07-01

    During planet formation, rock and ice embryos of the order of Earth's mass may be formed, some of which may be ejected from the Solar System as they scatter gravitationally from proto-giant planets. These bodies can retain atmospheres rich in molecular hydrogen which, upon cooling, can have basal pressures of 102 to 104 bars. Pressure-induced far-infrared opacity of H2 may prevent these bodies from eliminating internal radioactive heat except by developing an extensive adiabatic (with no loss or gain of heat) convective atmosphere. This means that, although the effective temperature of the body is around 30 K, its surface temperature can exceed the melting point of water. Such bodies may therefore have water oceans whose surface pressure and temperature are like those found at the base of Earth's oceans. Such potential homes for life will be difficult to detect.

  2. Popular Culture in the Classroom

    ERIC Educational Resources Information Center

    Allender, Dale

    2004-01-01

    Traditional and innovative elements such as bells and music with quick pacing accented by a voice that students could recognize is used to effortlessly bring students to the classroom. Popular culture is shown to work well using classroom examples.

  3. Racist Ideology and Popular Fiction

    ERIC Educational Resources Information Center

    Marshment, Margaret

    1978-01-01

    Three popular modern British novelists are compared in terms of their treatment of the ideology of racism. Racism in fiction is seen not only to reflect current social forces, but also to have influence upon society. (Author/GC)

  4. March of the Planets

    ERIC Educational Resources Information Center

    Thompson, Bruce

    2007-01-01

    The motion of the planets in their orbits can be demonstrated to students by using planetarium software programs. These allow time to be sped up so that the relative motions are readily observed. However, it is also valuable to have the students understand the real speed of the planets in their orbits. This paper describes an exercise that gives…

  5. Planets in Motion

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

  6. Name That Planet!

    ERIC Educational Resources Information Center

    Beck, Judy; Rust, Cindy

    2002-01-01

    Presents an activity in which students in groups explore one planet in the solar system and present their findings to the whole class. Focuses on the planet's location in the solar system, geological features, rate of revolutions, and calendar year. (YDS)

  7. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    stimulate further research on this critical subject. The study of climate involves much more than understanding atmospheric processes. This subtlety is particularly appreciated for Earth, where chemical cycles, geology, ocean influences, and biology are considered in most climate models. In Part IV, Surface and Interior, we look at the role that geochemical cycles, volcanism, and interior mantle processes play in the stability and evolution of terrestrial planetary climates. There is one vital commonality between the climates of all the planets of the solar system: Regardless of the different processes that dominate each of the climates of Earth, Mars, Venus, and Titan, they are all ultimately forced by radiation from the same star, albeit at variable distances. In Part V, Solar Influences, we discuss how the Sun's early evolution affected the climates of the terrestrial planets, and how it continues to control the temperatures and compositions of planetary atmospheres. This will be of particular interest as models of exoplanets, and the influences of much different stellar types and distances, are advanced by further observations. Comparisons of atmospheric and climate processes between the planets in our solar system has been a focus of numerous conferences over the past decade, including the Exoclimes conference series. In particular, this book project was closely tied to a conference on Comparative Climatology of Terrestrial Planets that was held in Boulder, Colorado, on June 25-28, 2012. This book benefited from the opportunity for the author teams to interact and obtain feedback from the broader community, but the chapters do not in general tie directly to presentations at the conference. The conference, which was organized by a diverse group of atmospheric and climate scientists led by Mark Bullock and Lori Glaze, sought to build connections between the various communities, focusing on synergies and complementary capabilities. Discussion panels at the end of most

  8. Formation of giant planets

    NASA Astrophysics Data System (ADS)

    Magni, G.; Coradini, A.

    2003-04-01

    In this presentation we address the problem of the formation of giant planets and their regular satellites. We study in particular the problem of formation of the Jupiter System comparing the results of the model with the present characteristics of the system, in order to identify what are those better represented by our approach. In fact here, using a 3-D hydro-dynamical code, we study the modalities of gas accretion onto a solid core, believed to be the seed from which Jupiter started. To do that we have modelled three main regions: the central planet, a turbulent accretion disk surrounding it and an extended region from which the gas is collected. In the extended region we treat the gas as a frictionless fluid. Our main goal is to identify what are the characteristics of the planet during its growth and the physical parameters affecting its growth at the expenses of the nebular gas present in the feeding zone. Moreover we want to understand what are the thermodynamical parameters characterizing the gas captured by the planet and swirling around it. Finally, we check if a disk can be formed in prograde rotation around the planet and if this disk can survive the final phases of the planet formation. Due to the interaction between the accreting planet and the disk it has been necessary to develop a complete model of the Jupiter’s structure. In fact the radiation emitted by the growing planet heats up the surrounding gas. In turn the planet’s thermodynamic structure depend on the mass accretion rate onto it. When the accretion is rapid, shock waves in the gas are formed close to the planet. This region cannot be safely treated by a numerical code; for this reason we have developed a semi-analytically model of a a turbulent accretion disk to be considered as transition between the planet and the surrounding disk.

  9. Popularizing Space Education in Indian Context

    NASA Astrophysics Data System (ADS)

    Yalagi, Amrut

    Indians have many mythological stories about many constellations and stars. Hindu months are based on MOON and 27 stars on Zodiac. They are very important for many Indians in ritual, religious functions. By prompting them to identify their birth star, really makes them elevated. Similarly conveying them the importance of star gazing with respect to their day today life makes them to take interest and active participation in Space Activities. Space activities should be driven by public; their requirements; their dreams and imaginations. Their active participation definitely gives valuable inputs to space scientists. Hence, there is a need of involving common man or public mass by appropriate motivation by organising sky gazing sessions, exhibitions, workshops, etc. In this connection, even if the some organisation are able to attract a small percent of qualified engineers/scientists,, enthusiastic students, it would result in the creation of a sizable pool of talent in space sciences,which may well determine the future mankind on this planet. Some simple motivation acts have made the people to take interest in space. we have been using certain methodologies to popularize space science - 1] Conducting theory sessions on basics of star gazing and conveying importance of sky gazing with respect to day-today life. 2] Organising seminars, workshops, lectures and other academic/popular science activities with special reference to space science 3] Projects - a] Cubsat Missions b] Automatic Weather Station Facility c] Model making d] Creating and simulating space models and rover making competitions. The 50 year's of Exploration has left tremendous impact on many society's working towards space education and exploration.

  10. Global stratigraphy. [of planet Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.; Scott, David H.; Greeley, Ronald

    1992-01-01

    Attention is given to recent major advances in the definition and documentation of Martian stratigraphy and geology. Mariner 9 provided the images for the first global geologic mapping program, resulting in the recognition of the major geologic processes that have operated on the planet, and in the definition of the three major chronostratigraphic divisions: the Noachian, Hesperian, and Amazonian Systems. Viking Orbiter images permitted the recognition of additional geologic units and the formal naming of many formations. Epochs are assigned absolute ages based on the densities of superposed craters and crater-flux models. Recommendations are made with regard to future areas of study, namely, crustal stratigraphy and structure, the highland-lowland boundary, the Tharsis Rise, Valles Marineris, channels and valley networks, and possible Martian oceans, lakes, and ponds.

  11. Popular Culture and the Teaching of English.

    ERIC Educational Resources Information Center

    Donelson, Ken, Ed.

    1975-01-01

    This issue of the "Arizona English Bulletin" contains 38 articles related to popular culture and the teaching of English. The articles discuss such topics as language in the popular arts, establishing a popular culture library, defining sexism in popular culture, detective literature and its uses in the traditional classroom, popular literature as…

  12. The Gemini Planet Imager

    SciTech Connect

    Macintosh, B; al., e

    2006-05-02

    The next major frontier in the study of extrasolar planets is direct imaging detection of the planets themselves. With high-order adaptive optics, careful system design, and advanced coronagraphy, it is possible for an AO system on a 8-m class telescope to achieve contrast levels of 10{sup -7} to 10{sup -8}, sufficient to detect warm self-luminous Jovian planets in the solar neighborhood. Such direct detection is sensitive to planets inaccessible to current radial-velocity surveys and allows spectral characterization of the planets, shedding light on planet formation and the structure of other solar systems. We have begun the construction of such a system for the Gemini Observatory. Dubbed the Gemini Planet Imager (GPI), this instrument should be deployed in 2010 on the Gemini South telescope. It combines a 2000-actuator MEMS-based AO system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 8. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets. We present here an overview of the GPI instrument design, an error budget highlighting key technological challenges, and models of the system performance.

  13. The Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, James; Palmer, David; Doyon, Rene; Gavel, Don; Larkin, James; Oppenheimer, Ben; Saddlemyer, Leslie; Wallace, J. Kent; Bauman, Brian; Evans, Julia; Erikson, Darren; Morzinski, Katie; Phillion, Donald; Poyneer, Lisa; Sivaramakrishnan, Anand; Soummer, Remi; Thibault, Simon; Veran, Jean-Pierre

    2006-06-01

    The next major frontier in the study of extrasolar planets is direct imaging detection of the planets themselves. With high-order adaptive optics, careful system design, and advanced coronagraphy, it is possible for an AO system on a 8-m class telescope to achieve contrast levels of 10 -7 to 10 -8, sufficient to detect warm self-luminous Jovian planets in the solar neighborhood. Such direct detection is sensitive to planets inaccessible to current radial-velocity surveys and allows spectral characterization of the planets, shedding light on planet formation and the structure of other solar systems. We have begun the construction of such a system for the Gemini Observatory. Dubbed the Gemini Planet Imager (GPI), this instrument should be deployed in 2010 on the Gemini South telescope. It combines a 2000-actuator MEMS-based AO system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 8. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets. We present here an overview of the GPI instrument design, an error budget highlighting key technological challenges, and models of the system performance.

  14. Planet formation and searches

    NASA Astrophysics Data System (ADS)

    Montgomery, Ryan Michael

    2009-08-01

    This thesis explores the possibilities for discovery of terrestrial-mass planets in the habitable zones of their host stars. Towards this aim, we present the results of three projects and discuss another two preliminary studies of further explorations. In so doing, we explore a fairly comprehensive range of possibilities regarding the formation and detection of terrestrial- mass planets in the habitable zone. We first study the potential for terrestrial planets to form in situ in and around the habitable zones of M-dwarf stars. We proceed to explore the feasibility of searches for these planets using the transit method via Monte- Carlo simulations. We find that M-dwarfs pose an interesting challenge for study: being inherently dim, widely spread on the sky, and photometrically variable. We present results of simulated ground-based transit search campaigns as well as simulated searches from a modest satellite mission. Our second project is a straightforward extension of the previous study: a collaborative effort to search for transit signals around the nearest M-dwarf: Proxima Centauri. We describe our observations as well as the Monte-Carlo analysis used to place constraints on the possible planetary radii and periods. Our third project is a search for transiting extra-solar Jovian planets using the Rossiter-McLaughlin effect. We search through the private Keck radial- velocity datasets for undiscovered Rossiter-McLaughlin signals. We present our results in the form of both strong null-result datasets as well as potential transiting systems. We then briefly analyze these larger Jovian planets for potential to harbor potentially habitable terrestrial satellites. Our final preliminary analysis looks into the potential for the Large Synoptic Survey Telescope to detect transiting Neptune-mass planets orbiting M-dwarfs which could then lead to terrestrial-mass planet detections. The sum of these efforts is a comprehensive investigation into the likelihood and

  15. Possibilities for the detection of microbial life on extrasolar planets.

    PubMed

    Knacke, Roger F

    2003-01-01

    We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life. PMID:14678662

  16. The planets and life.

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1971-01-01

    It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.

  17. Kepler's Multiple Planet Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2012-01-01

    Among the 1800 Kepler targets that have candidate planets, 20% have two or more candidate planets. While most of these objects have not yet been confirmed as true planets, several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Virtually all candidate systems are stable, as tested by numerical integrations (assuming a nominal mass-radius relationship). Statistical studies performed on these candidates reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness of planetary systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. The characteristics of the confirmed Kepler multi-planet systems will also be discussed.

  18. Magnetic Mystery Planets

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2013-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This presentation highlights a classroom presentation and accompanying activity that focuses on the differences between the magnetic fields of Venus, Earth, and Mars, what these differences mean, and how we measure these differences. During the activity, students make magnetic field measurements and draw magnetic field lines around "mystery planets" using orbiting "spacecraft" (small compasses). Based on their observations, the students then determine whether they are orbiting Venus-like, Earth-like, or Mars-like planets. This activity is targeted to middle/high school age audiences. However, we also show a scaled-down version that has been used with elementary school age audiences.

  19. Students Discover Unique Planet

    NASA Astrophysics Data System (ADS)

    2008-12-01

    Three undergraduate students, from Leiden University in the Netherlands, have discovered an extrasolar planet. The extraordinary find, which turned up during their research project, is about five times as massive as Jupiter. This is also the first planet discovered orbiting a fast-rotating hot star. Omega Centauri ESO PR Photo 45a/08 A planet around a hot star The students were testing a method of investigating the light fluctuations of thousands of stars in the OGLE database in an automated way. The brightness of one of the stars was found to decrease for two hours every 2.5 days by about one percent. Follow-up observations, taken with ESO's Very Large Telescope in Chile, confirmed that this phenomenon is caused by a planet passing in front of the star, blocking part of the starlight at regular intervals. According to Ignas Snellen, supervisor of the research project, the discovery was a complete surprise. "The project was actually meant to teach the students how to develop search algorithms. But they did so well that there was time to test their algorithm on a so far unexplored database. At some point they came into my office and showed me this light curve. I was completely taken aback!" The students, Meta de Hoon, Remco van der Burg, and Francis Vuijsje, are very enthusiastic. "It is exciting not just to find a planet, but to find one as unusual as this one; it turns out to be the first planet discovered around a fast rotating star, and it's also the hottest star found with a planet," says Meta. "The computer needed more than a thousand hours to do all the calculations," continues Remco. The planet is given the prosaic name OGLE2-TR-L9b. "But amongst ourselves we call it ReMeFra-1, after Remco, Meta, and myself," says Francis. The planet was discovered by looking at the brightness variations of about 15 700 stars, which had been observed by the OGLE survey once or twice per night for about four years between 1997 and 2000. Because the data had been made public

  20. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  1. Managing Planet Earth.

    ERIC Educational Resources Information Center

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  2. Atmospheres of Jovian Planets

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy

    The giant planets of the solar system have been studied for centuries using a wide range of remote sensing and in situ techniques. An understanding of the atmospheres of Jupiter, Saturn, Uranus, and Neptune has dramatically improved since the dawn of spacecraft exploration of the outer solar system in the 1970s. Cloud decks that were predicted to exist from thermochemical equilibrium arguments have been observationally confirmed, although the exact vertical distribution of condensible species in these atmospheres remains an active area of study. All four of the giant planets have fast zonal (east-west) winds with prograde and retrograde jets, which dominate their atmospheric circulations. Each planet also contains long-lived cyclonic features or convective cloud features that appear and disappear on short timescales. These features suggest a link between the energy transport in the deep atmosphere and the visible cloud tops; the exact nature of this connection remains an outstanding question in giant planet atmosphere studies. The chemistry of the giant planet atmospheres is driven by both the convective processes that loft disequilibrium species from the deep atmosphere into the stratosphere and the interaction between stratospheric materials and ultraviolet sunlight. A unique opportunity to study these interactions was presented to planetary scientists in 1994, when the 22 fragments of Comet Shoemaker-Levy 9 impacted Jupiter. The future of giant planet atmospheric studies is promising. Several mission concepts that will answer fundamental questions regarding giant planet atmospheres are in various stages of development, and the James Webb Space Telescope will also contribute especially to our understanding of Uranus and Neptune. As an understanding of giant planet formation and evolution expands and deepens, these knowledge gains must be examined against the backdrop of the numerous exoplanet systems recently discovered, very few of which resemble our own.

  3. The planet Mercury (1971)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  4. The planet Saturn (1970)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The present-day knowledge on Saturn and its environment are described for designers of spacecraft which are to encounter and investigate the planet. The discussion includes physical properties of the planet, gravitational field, magnetic and electric fields, electromagnetic radiation, satellites and meteoroids, the ring system, charged particles, atmospheric composition and structure, and clouds and atmospheric motions. The environmental factors which have pertinence to spacecraft design criteria are also discussed.

  5. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  6. Planets' magnetic environments

    SciTech Connect

    Lanzerotti, L.J.; Uberoi, C.

    1989-02-01

    The magnetospheres of Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and comets and the heliomagnetosphere are examined. The orientations of the planetary spin and magnetic axes, the size of the magnetospheres, and the magnetic properties and the radio emissions of the planets are compared. Results from spacecraft studies of the planets are included. Plans for the Voyager 2 mission and its expected study of the Neptune magnetosphere are considered.

  7. The Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, J. R.; Palmer, D.; Doyon, R.; Larkin, J.; Oppenheimer, B.; Saddlemyer, L.; Veran, J.; Wallace, J. K.; Gemini Planet Imager Team

    2007-12-01

    Direct detection of extrasolar planets would be a major step in the study of other solar systems, sensitive to planets beyond the period cutoff of Doppler surveys. Furthermore, such planets can be spectrally characterized to measure temperature, gravity, and perhaps composition, shedding light on planet formation and evolution. Surveys of 50-100 young stars with current generation AO systems have excluded the presence of massive (2-10 MJ), young (? Myr) planets in wide (? AU) orbits, but to probe 5-20 AU scales around a large sample of target stars will require dedicated next-generation instruments. One such facility will be the Gemini Planet Imager (GPI). It combines a 2000-actuator adaptive optics system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a near-infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 9. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets - opening up a new field in the characterization of the environments of nearby stars. I will present an overview of the instrument design and its scientific capabilities. GPI is currently in the design phase, scheduled for deployment as a facility instrument on the Gemini South telescope in early 2011. Portions of this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership.

  8. Transit of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.

    1998-01-01

    During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.

  9. Teaching the French Popular Front.

    ERIC Educational Resources Information Center

    Wall, Irwin M.

    1987-01-01

    Examines the French Popular Front of 1936 as a vehicle to investigate the turbulent decade of the 1930s. Reviews current historiography and discusses various facets of Leon Blum's government, examining the interrelationship of major economic and political forces. Concludes that the French Left still faces Blum's dilemma of implementing socialism…

  10. Readers' Knowledge of Popular Genre

    ERIC Educational Resources Information Center

    Dixon, Peter; Bortolussi, Marisa

    2009-01-01

    This research examined readers' knowledge of popular genres. Participants wrote short essays on fantasy, science fiction, or romance. The similarities among the essays were measured using latent semantic analysis (LSA) and were then analyzed using multidimensional scaling and cluster analysis. The clusters and scales were interpreted by searching…

  11. Popular Music in Early Adolescence.

    ERIC Educational Resources Information Center

    Christenson, Peter G.; Roberts, Donald F.

    This paper examines young adolescents' involvement with popular music and the health implications of that involvement. Initial discussion explores three central concepts: music media, adolescence, and mass media effects. A summary of research on music media in adolescence is offereed in two sections discussing exposure to, and gratifications and…

  12. In Defense of Popular Music.

    ERIC Educational Resources Information Center

    Luebke, Steven R.

    In his book "The Closing of the American Mind," Allan Bloom criticizes popular music for the "emptiness of its values." It has only one appeal, says Bloom, "a barbaric appeal, to sexual desire--not love, not eros, but sexual desire, undeveloped and untutored." However, to say "rock music is this or that" is a proposition that quickly crumbles…

  13. Popular Education in Solidarity Economy

    ERIC Educational Resources Information Center

    de Melo Neto, José Francisco; da Costa, Francisco Xavier Pereira

    2015-01-01

    This article seeks to show the relation between popular education and solidarity economy in experiences of solidarity economy enterprises in Brazil. It is based on diverse experiences which have occurred in various sectors of this economy, highlighting those experiences which took place in João Pessoa with the creation of a Cooperative of Workers…

  14. Arab Stereotypes in Popular Fiction.

    ERIC Educational Resources Information Center

    Terry, Janice J.

    1983-01-01

    Most popular fictional plots involving the Middle East--adventure stories, espionage, and themes of Western dependency on Arab oil--portray the Israelies as the good guys and the Arabs as the villians. People must be made aware that fictional literature is prejudiced and racially biased against Arabs. (RM)

  15. Building a virtual planet

    NASA Technical Reports Server (NTRS)

    Meadows, V. S.

    2002-01-01

    The virtual Planetary Laboratory (VPL) is a recently funded 5-yr project, which seeks toimprove our understanding of the range of plausible environments and the likely signatures for life on extrasolar terrestrial planets. To achieve these goals we are developing a suite of innovative modeling tools to simulate the environments and spectra of extrasolar planets. The core of the VPL IS a coupled radiative transfer/climate/chemistry model, which is augmented by interchangeable modules which characterize geological, exogenic, atmospheric escape, and life processes. The VPL is validated using data derived from terrestrial planets within our own solar system. The VPL will be used to explore the plausible range of atmospheric composittions and globally averaged spectra for extrasolar planets and for early Earth, and will improve our understanding of the effect of life on a planet's atmospheric spectrum and composition. The models will also be used to create a comprehensive spectral catalog to provide recommendations on the optimum wavelength range, spectral resolution, and instrument sensitivity required to characterize extrasolar terrestrial planets. Although developed by our team, the VPL is envisioned to be a comprehensive and flexible tool, which can be collaboratively used by the broader planetary science and astrobiology communities. This presentation will describe the project concept, the tasks involved, and will outline current progress to date. This work is funded by the NASA Astrobiology Institute.

  16. The deep ocean under climate change

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Le Bris, Nadine

    2015-11-01

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  17. All for the Planet, the Planet for everyone!

    NASA Astrophysics Data System (ADS)

    Drndarski, Marina

    2014-05-01

    The Eco-Musketeers are unique voluntary group of students. They have been established in Belgrade, in Primary school 'Drinka Pavlović'. Since the founding in year 2000, Eco-Musketeers have been involved in peer and citizens education guided by motto: All for the planet, the planet for all! Main goals of this group are spreading and popularization of environmental approach as well as gaining knowledge through collaborative projects and research. A great number of students from other schools in Serbia have joined Eco-Musketeers in observations aiming to better understand the problem of global climate change. In the past several years Eco-Musketeers have also participated in many national and international projects related to the active citizenship and rising the awareness of the importance of biodiversity and environment for sustainable development of society. In this presentation we will show some of the main activities, eco-performances and actions of our organization related to the environment, biodiversity, conservation and recycling, such as: spring cleaning the streets of Belgrade, cleaning the Sava and the Danube river banks, removing insect moth pupae in the area of Lipovica forest near Belgrade. Also, Eco-Musketeers worked on education of employees of Coca-Cola HBC Serbia about energy efficiency. All the time, we have working on raising public awareness of the harmful effects of plastic bags on the environment, too. In order to draw attention on rare and endangered species in Serbia and around the globe, there were several performing street-plays about biodiversity and also the plays about the water ecological footprint. Eco-Musketeers also participated in international projects Greenwave-signs of spring (Fibonacci project), European Schools For A Living Planet (WWF Austria and Erste stiftung) and Eco Schools. The eco dream of Eco-Musketeers is to influence the Government of the Republic of Serbia to determine and declare a 'green habits week'. This should

  18. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  19. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    SciTech Connect

    Ochiai, H.; Nagasawa, M.; Ida, S.

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  20. Astrobiological and Geological Implications of Convective Transport in Icy Outer Planet Satellites

    NASA Technical Reports Server (NTRS)

    Pappalardo, Robert T.; Zhong, Shi-Jie; Barr, Amy

    2005-01-01

    The oceans of large icy outer planet satellites are prime targets in the search for extraterrestrial life in our solar system. The goal of our project has been to develop models of ice convection in order to understand convection as an astrobiologically relevant transport mechanism within icy satellites, especially Europa. These models provide valuable constraints on modes of surface deformation and thus the implications of satellite surface geology for astrobiology, and for planetary protection. Over the term of this project, significant progress has been made in three areas: (1) the initiation of convection in large icy satellites, which we find probably requires tidal heating; (2) the relationship of surface features on Europa to internal ice convection, including the likely role of low-melting-temperature impurities; and (3) the effectiveness of convection as an agent of icy satellite surface-ocean material exchange, which seems most plausible if tidal heating, compositional buoyancy, and solid-state convection work in combination. Descriptions of associated publications include: 3 published papers (including contributions to 1 review chapter), 1 manuscript in revision, 1 manuscript in preparation (currently being completed under separate funding), and 1 published popular article. A myriad of conference abstracts have also been published, and only those from the past year are listed.

  1. Dynamical Simulations of Terrestrial Planet Formation During Giant Planet Migration

    NASA Astrophysics Data System (ADS)

    Mandell, A. M.; Raymond, S. N.; Sigurdsson, S.

    2005-12-01

    We present preliminary results of dynamical simulations of young planetary systems undergoing migration of a Jovian-type planet through the terrestrial region. We find that a significant fraction (10-40%) of the initial planetary embryos remain after giant planet migration, and subsequent evolution of the system results in the formation of terrestrial planets in various configurations, often including a planet in the Habitable Zone. In simulations with gas drag, 3-6 Earth mass planets are formed interior to the migrating Jovian planet, swept inward through moving resonances, and eccentricities are damped for all planets. Systematic variations are seen between simulations with and without gas drag. The presence of a second, non-migrating giant planet reduces the water content and mass of the planets formed throughout the system. This research was supported in part by the Penn State Astrobiology Research Center and the Goddard Center for Astrobiology.

  2. Protostars and Planets VI

    NASA Astrophysics Data System (ADS)

    Beuther, Henrik; Klessen, Ralf S.; Dullemond, Cornelis P.; Henning, Thomas

    The Protostars and Planets book and conference series has been a long-standing tradition that commenced with the first meeting led by Tom Gehrels and held in Tucson, Arizona, in 1978. The goal then, as it still is today, was to bridge the gap between the fields of star and planet formation as well as the investigation of planetary systems and planets. As Tom Gehrels stated in the preface to the first Protostars and Planets book, "Cross-fertilization of information and understanding is bound to occur when investigators who are familiar with the stellar and interstellar phases meet with those who study the early phases of solar system formation." The central goal remained the same for the subsequent editions of the books and conferences Protostars and Planets II in 1984, Protostars and Planets III in 1990, Protostars and Planets IV in 1998, and Protostars and Planets V in 2005, but has now been greatly expanded by the flood of new discoveries in the field of exoplanet science. The original concept of the Protostars and Planets series also formed the basis for the sixth conference in the series, which took place on July 15-20, 2013. It was held for the first time outside of the United States in the bustling university town of Heidelberg, Germany. The meeting attracted 852 participants from 32 countries, and was centered around 38 review talks and more than 600 posters. The review talks were expanded to form the 38 chapters of this book, written by a total of 250 contributing authors. This Protostars and Planets volume reflects the current state-of-the-art in star and planet formation, and tightly connects the fields with each other. It is structured into four sections covering key aspects of molecular cloud and star formation, disk formation and evolution, planetary systems, and astrophysical conditions for life. All poster presentations from the conference can be found at www.ppvi.org. In the eight years that have passed since the fifth conference and book in the

  3. Climate model studies of synchronously rotating planets.

    PubMed

    Joshi, Manoj

    2003-01-01

    M stars constitute 75% of main sequence stars though, until recently, their star systems have not been considered suitable places for habitable planets to exist. In this study the climate of a synchronously rotating planet around an M dwarf star is evaluated using a three-dimensional global atmospheric circulation model. The presence of clouds and evaporative cooling at the surface of the planet result in a cooler surface temperature at the subsolar point. Water ice forms at the polar regions and on the dark side, where the minimum temperature lies between -30 degrees C and 0 degrees C. As expected, rainfall is extremely high on the starlit side and extremely low on the dark side. The presence of a dry continent causes higher temperatures on the dayside, and allows accumulation of snow on the nightside. The absence of any oceans leads to higher day-night temperature differences, consistent with previous work. The present study reinforces recent conclusions that synchronously rotating planets within the circumstellar habitable zones of M dwarf stars should be habitable, and therefore M dwarf systems should not be excluded in future searches for exoplanets. PMID:14577888

  4. Popular democracy and waste management

    SciTech Connect

    Wallis, L.R.

    1986-01-01

    The US has moved from representative democracy to popular democracy and public scrutiny is unrelenting. Any hope of success on their part in resolving the nuclear waste question hinges on their ability to condition themselves to operate in a popular democracy environment. Those opposed to the siting of high- and low-level waste repositories have already developed a set of recurring themes: (1) the siting criteria are fatally flawed; (2) the criteria are not adequate; (3) the process is driven by politics not science; (4) unrealistic deadlines lead to dangerous shortcuts; (5) transportation experience is lacking; (6) the scientific community does not really know how to dispose of the wastes. They must continue to tell the public that if science has brought us problems, then the answer can be only more knowledge - not less. Failure by their profession to recognize that popular democracy is a fact and that nuclear issues need to be addressed in humanistic terms raises the question of whether America is philosophically suited for the expanded use of nuclear power in the future - or for that matter for leadership in the world of tomorrow.

  5. Characterizing extrasolar planets

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.

    Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this review, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass, and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature, and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.

  6. Outer Planet Flagship Mission

    NASA Astrophysics Data System (ADS)

    Cutts, James; Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  7. Outer Planet Flagship Missions

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.; Cutts, J. A.

    2008-05-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEM and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn and Europa/Jupiter Missions. We provide the background, organization and schedule that are presently envisaged for these two mission studies.

  8. Outer Planets Flagship Mission

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J. P.; Cutts, J. A.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  9. Magnetic Mystery Planets

    NASA Astrophysics Data System (ADS)

    Fillingim, M.; Brain, D.; Peticolas, L.; Yan, D.; Fricke, K.; Thrall, L.

    2014-07-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and they can even give us clues to the atmospheric history of these planets. This paper highlights a classroom presentation and accompanying activity that focuses on the differences between the magnetic fields of Venus, Earth, and Mars, what these differences mean, and how we measure these differences. During the activity, students make magnetic field measurements and draw magnetic field lines of “mystery planets” using orbiting “spacecraft” (small compasses). Based on their observations, the students then determine whether they are orbiting Venus-like, Earth-like, or Mars-like planets. This activity is targeted to middle and high school audiences. However, we have also used a scaled-down version with elementary school audiences.

  10. Commission 53: Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Boss, Alan; Lecavelier des Etangs, Alain; Mayor, Michel; Bodenheimer, Peter; Collier-Cameron, Andrew; Kokubo, Eiichiro; Mardling, Rosemary; Minniti, Dante; Queloz, Didier

    2012-04-01

    Commission 53 was created at the 2006 Prague General Assembly (GA) of the IAU, in recognition of the outburst of astronomical progress in the field of extrasolar planet discovery, characterization, and theoretical work that has occurred since the discovery of the first planet in orbit around a solar-type star in 1995. Commission 53 is the logical successor to the IAU Working Group on Extrasolar Planets (WGESP), which ended its six years of existence in August 2006. The founding President of Commission 53 was Michael Mayor, in honor of his seminal contributions to this new field of astronomy. The current President is Alan Boss, the former chair of the WGESP. The current members of the Commission 53 (C53) Organizing Committee (OC) began their service in August 2009 at the conclusion of the Rio de Janeiro IAU GA.

  11. Recipes for planet formation

    NASA Astrophysics Data System (ADS)

    Meyer, Michael R.

    2009-11-01

    Anyone who has ever used baking soda instead of baking powder when trying to make a cake knows a simple truth: ingredients matter. The same is true for planet formation. Planets are made from the materials that coalesce in a rotating disk around young stars - essentially the "leftovers" from when the stars themselves formed through the gravitational collapse of rotating clouds of gas and dust. The planet-making disk should therefore initially have the same gas-to-dust ratio as the interstellar medium: about 100 to 1, by mass. Similarly, it seems logical that the elemental composition of the disk should match that of the star, reflecting the initial conditions at that particular spot in the galaxy.

  12. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  13. Location of Planet X

    SciTech Connect

    Harrington, R.S.

    1988-10-01

    Observed positions of Uranus and Neptune along with residuals in right ascension and declination are used to constrain the location of a postulated tenth planet. The residuals are converted into residuals in ecliptic longitude and latitude. The results are then combined into seasonal normal points, producing average geocentric residuals spaced slightly more than a year apart that are assumed to represent the equivalent heliocentric average residuals for the observed oppositions. Such a planet is found to most likely reside in the region of Scorpius, with considerably less likelihood that it is in Taurus. 8 references.

  14. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  15. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  16. Atmospheric models for post- giant impact planets

    NASA Astrophysics Data System (ADS)

    Lupu, R.; Zahnle, K. J.; Marley, M. S.; Schaefer, L. K.; Fegley, B.; Morley, C.; Cahoy, K.; Freedman, R. S.; Fortney, J. J.

    2013-12-01

    The final assembly of terrestrial planets is now universally thought to have occurred through a series of giant impacts, such as Earth's own Moon-forming impact. These collisions take place over a time interval of about 100 million years, during which time it takes at least 10 collisions between planets to make a Venus or an Earth. In the aftermath of one of these collisions the surviving planet is hot, and can remain hot for millions of years. During this phase of accretion, the proto-terrestrial planet may have a dense steam atmosphere, that will affect both the cooling of the planet and our ability to detect it. Here we explore the atmospheric chemistry, photochemistry, and spectral signatures of post-giant-impact terrestrial planets enveloped by thick atmospheres consisting of vaporized rock material. The atmospheric chemistry is computed self-consistently for atmospheres in equilibrium with hot surfaces, with compositions reflecting either the bulk silicate Earth (BSE, which includes the crust, mantle, atmosphere and oceans) or Earth's continental crust (CC). These two cases allow us to examine differences in atmospheres formed by outgassing of silica-rich (felsic) rocks - like the Earth's continental crust - and MgO- and FeO-rich (mafic) rocks - like the BSE. Studies of detrital zircons from Jack Hills, Australia, show that the continental crust existed 164 million years after the formation of the solar system, in which case the material vaporized in a giant impact should likely reflect the CC composition. However, if at the time of impact the surface of the planet does not yet exhibit the formation of continents, then the BSE case becomes relevant. We compute atmospheric profiles for surface temperatures ranging from 1000 to 2200 K, surface pressures of 10 and 100 bar, and surface gravities of 10 and 30 m/s^2. We account for all major molecular and atomic opacity sources, including collision-induced absorption, to derive the atmospheric structure and compute

  17. Ocean-sized threats

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Jane Lubchenco, professor of marine biology and zoology at Oregon State University, and president-elect of the International Council for Science, said that scientists can do more than they currently are doing to clearly communicate to the public and to policy-makers those issues associated with the many ecological threats faced by the world's oceans. In doing so, scientists can overcome popularly-held misperceptions about the health of the world's oceans and thus, help protect the seas.“Science,” Lubchenco said, “has a huge role to play in informing [the public] what is happening and to guide the choice of solutions.

  18. THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE

    SciTech Connect

    Ueta, S.; Sasaki, T. E-mail: takanori@geo.titech.ac.jp

    2013-10-01

    Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ⊕} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

  19. Planets and satellites: tectonic twins

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2015-10-01

    There are only three solid planet-satellite pairs in the Solar system: Earth -Moon, Mars -Phobos, Pluto - Charon. For the first two pairs tectonic analogies were shown and explained by moving them in one circumsolar orbit. As it is known from the wave planetology [3, 4, 6], "orbits make structures". For the third pair the same was stated as a prediction based on this fundamental rule. Global tectonic forms of wave origin appear in cosmic bodies because they move in keplerian orbits with periodically changing accelerations. Warping bodies waves have a stationary character and obeying wave harmonics lengths. Starting from the fundamental 2πR-long wave 1 making the ubiquitous tectonic dichotomy (two-face appearance) warping wave lengths descend along harmonics. Very prominent along with the wave 1 are waves 2 responsible for tectonic sectoring superimposed on the wave 1 segments. Practically all bodies have traces of shorter waves making numerous polygons (rings) often confused with impact craters. Earth and the Moon moving in one circumsolar orbit both are distorted by wave 1, wave 2 and wave 4 features aligned along extent tectonic lines [4, 5]. At Earth they are: Pacific Ocean (2πR-structure) and Indian Ocean (πR-structure) from both ends with Malay Archipelago (πR/4-structure) in the middle. At Moon they are: Procellarum Ocean (2πR) and SPA Basin (πR) from ends and Mare Orientale (πR/4) in the middle. A regular disposition is surprising. Both Oceans and Basin occur on opposite hemispheres, lying in the middle both ring structures occur in the boundary between two hemispheres and are of the same relative size. These triads stretch along lines parallel to the equator (Earth) and with the angle about 30 degrees to it (Moon) indicating at a different orientation of the rotation axes in the ancient time [2]. On the whole, one could speak about a "lunar mould" of Earth [5] (Fig. 1-3). Another tectonic twin is the pair Mars -Phobos. Both bodies sharing one

  20. Noble gases in meteorites and terrestrial planets

    NASA Technical Reports Server (NTRS)

    Wacker, J. F.

    1985-01-01

    Terrestrial planets and chondrites have noble gas platforms that are sufficiently alike, especially Ne/Ar, that they may have acquired their noble gases by similar processes. Meteorites presumably obtained their noble gases during formation in the solar nebula. Adsorption onto C - the major gas carrier in chondrites - is the likely mechanism for trapping noble gases; recent laboratory simulations support this hypothesis. The story is more complex for planets. An attractive possibility is that the planets acquired their noble gases in a late accreting veneer of chondritic material. In chondrites, noble gases correlate with C, N, H, and volatile metals; by Occam's Razor, we would expect a similar coupling in planets. Indeed, the Earth's crust and mantle contain chondritic like trace volatiles and PL group metals, respectively and the Earth's oceans resemble C chondrites in their enrichment of D (8X vs 8-10X of the galactic D/H ratio). Models have been proposed to explain some of the specific noble gas patterns in planets. These include: (1) noble gases may have been directly trapped by preplanetary material instead of arriving in a veneer; (2) for Venus, irradiation of preplanetary material, followed by diffusive loss of Ne, could explain the high concentration of AR-36; (3) the Earth and Venus may have initially had similar abundances of noble gases, but the Earth lost its share during the Moon forming event; (4) noble gases could have been captured by planetestimals, possibly leading to gravitational fractionation, particularly of Xe isotopes and (5) noble gases may have been dissolved in the hot outer portion of the Earth during contact with a primordial atmosphere.

  1. Identifying Obstacles to Incorporating Ocean Content into California Secondary Classrooms

    ERIC Educational Resources Information Center

    Stock, Jennifer

    2010-01-01

    The ocean is the dominant feature on this planet that makes all life on Earth possible. Marine educators and scientists across the country have identified essential principles and concepts that define what an "ocean literate" person should know, but there is a lack of comprehensive ocean content coverage in secondary classrooms across the United…

  2. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  3. A Planet for Goldilocks

    NASA Astrophysics Data System (ADS)

    Batalha, N.

    2014-07-01

    The search for life beyond Earth has inspired Solar System exploration and SETI surveys. Today, the search for life also leads to exoplanet discovery and characterization. Launched in March 2009, NASA's Kepler Mission has discovered thousands of exoplanets with diverse properties. Though each new world is interesting in its own right, Kepler aims to understand the population as a whole. Its primary objective is to determine the frequency of exoplanets of different sizes and orbital periods. Of special interest are the Earth-size planets in the “Goldilocks” (or habitable) Zone where the flux of incoming starlight is conducive to the existence of surface liquid water. Once Kepler establishes the prevalence of such planets in the Solar neighborhood, future missions can be designed to find not just a planet in the Goldilocks Zone but a planet for Goldilocks—a truly habitable environment for life as we know it. Kepler discoveries and progress will be described as well as the resources available to bring Kepler science to the public and into the classroom. The possibility of finding evidence of life beyond Earth is working its way into the public consciousness and has the potential to inspire generations. Scientific literacy is a natural consequence of awakening the spirit of exploration and discovery that led Goldilocks into the forest and leads humans into space.

  4. The Artificial Planet

    NASA Astrophysics Data System (ADS)

    Glover, D. R.

    An interim milestone for interstellar space travel is proposed: the artificial planet. Interstellar travel will require breakthroughs in the areas of propulsion systems, energy systems, construction of large space structures, protection from space & radiation effects, space agriculture, closed environmental & life support systems, and many other areas. Many difficult problems can be attacked independently of the propulsion and energy challenges through a project to establish an artificial planet in our solar system. Goals of the project would include construction of a large space structure, development of space agriculture, demonstration of closed environmental & life support systems over long time periods, selection of gravity level for long-term spacecraft, demonstration of a self-sufficient colony, and optimization of space colony habitat. The artificial planet would use solar energy as a power source. The orbital location will be selected to minimize effects of the Earth, yet be close enough for construction, supply, and rescue operations. The artificial planet would start out as a construction station and evolve over time to address progressive goals culminating in a self-sufficient space colony.

  5. The Planet Formation Imager

    NASA Astrophysics Data System (ADS)

    Kraus, S.; Buscher, D. F.; Monnier, J. D.; PFI Science, the; Technical Working Group

    2014-04-01

    Among the most fascinating and hotly-debated areas in contemporary astrophysics are the means by which planetary systems are assembled from the large rotating disks of gas and dust which attend a stellar birth. Although important work is being done both in theory and observation, a full understanding of the physics of planet formation can only be achieved by opening observational windows able to directly witness the process in action. The key requirement is then to probe planet-forming systems at the natural spatial scales over which material is being assembled. By definition, this is the so-called Hill Sphere which delineates the region of influence of a gravitating body within its surrounding environment. The Planet Formation Imager project has crystallized around this challenging goal: to deliver resolved images of Hill-Sphere-sized structures within candidate planet-hosting disks in the nearest star-forming regions. In this contribution we outline the primary science case of PFI and discuss how PFI could significantly advance our understanding of the architecture and potential habitability of planetary systems. We present radiation-hydrodynamics simulations from which we derive preliminary specifications that guide the design of the facility. Finally, we give an overview about the interferometric and non-interferometric technologies that we are investigating in order to meet the specifications.

  6. Positions of minor planets

    NASA Astrophysics Data System (ADS)

    Gressmann, M.

    A continuation of Gressman's (1980) observations is given using the Schmidt-camera 34/40 cm, f = 76. Topocentric positions of several minor planets are presented, and reference stars are obtained from the AGK(3), and applied to the two-star method to avoid any major errors. Parallax constants are also given, along with coordinates for the epoch 1950.0.

  7. Planets and Pucks.

    ERIC Educational Resources Information Center

    Brueningsen, Christopher; Krawiec, Wesley

    1993-01-01

    Presents a simple activity designed to allow students to experimentally verify Kepler's second law, sometimes called the law of equal areas. It states that areas swept out by a planet as it orbits the Sun are equal for equal time intervals. (PR)

  8. Making and Differentiating Planets

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2015-07-01

    The rocky planets formed by progressive aggregation of dust to make planetesimals which joined to make large objects called planetary embryos that finally accumulated into planets, one of which we live on. This chaotic process is complicated further by chemical changes with distance from the Sun, including differences in oxidation conditions and water concentration. Once the inner planets began to form, metallic iron sank to form cores, reacting with the rocky portions in the process. David C. Rubie (University of Bayreuth, Germany) and colleagues in Germany, France, and the United States put all this planetary action into an impressively thorough computer model of planet formation and differentiation. They show that the observed compositions of the Earth can be matched by simulations that include the Grand Tack (Jupiter and Saturn migrate inwards towards the Sun and then back out), and chemical gradients in the Solar System, with more reducing conditions near the Sun, more oxidizing farther from the Sun, and oxidizing and hydrated conditions even farther from the Sun. The study identifies other important variables, such as the extent to which metallic iron chemically equilibrated with the silicate making up the Earth's mantle, the pressure at which it happened, and the likelihood that Earth accreted heterogeneously.

  9. Accumulation of the planets

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.

    1987-01-01

    In modeling the accumulation of planetesimals into planets, it is appropriate to distinguish between two stages: an early stage, during which approximately 10 km diameter planetesimals accumulate locally to form bodies approximate 10 to the 25th g in mass; and a later stage in which the approximately 10 to the 25th g planetesimals accumulate into the final planets. In the terrestrial planet region, an initial planetesimal swarm corresponding to the critical mass of dust layer gravitational instabilities is considered. In order to better understand the accumulation history of Mercury-sized bodies, 19 Monte-Carlo simulations of terrestrial planet growth were calculated. A Monte Carlo technique was used to investigate the orbital evolution of asteroidal collision debris produced interior to 2.6 AU. It was found that there are two regions primarily responsible for production of Earth-crossing meteoritic material and Apollo objects. The same techniques were extended to include the origin of Earth-approaching asteroidal bodies. It is found that these same two resonant mechanisms predict a steady-state number of Apollo-Amor about 1/2 that estimated based on astronomical observations.

  10. Twist planet drive

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1996-01-01

    A planetary gear system includes a sun gear coupled to an annular ring gear through a plurality of twist-planet gears, a speeder gear, and a ground structure having an internal ring gear. Each planet gear includes a solid gear having a first half portion in the form of a spur gear which includes vertical gear teeth and a second half portion in the form of a spur gear which includes helical gear teeth that are offset from the vertical gear teeth and which contact helical gear teeth on the speeder gear and helical gear teeth on the outer ring gear. One half of the twist planet gears are preloaded downward, while the other half are preloaded upwards, each one alternating with the other so that each one twists in a motion opposite to its neighbor when rotated until each planet gear seats against the sun gear, the outer ring gear, the speeder gear, and the inner ring gear. The resulting configuration is an improved stiff anti-backlash gear system.

  11. Finding Planets around other stars

    NASA Video Gallery

    Just as the Earth revolves around the sun, our closest star, other planets might orbit the stars you see in the night sky. Think of all the planets in the universe that may be just the right distan...

  12. NASA Reveals Most Unusual Planet

    NASA Video Gallery

    In exploring the universe, NASA has uncovered one planet more unusual than all others. This 30 second video shows you which planet that is, and explains that NASA science helps us better understand...

  13. Noninsect Arthropods in Popular Music

    PubMed Central

    Coelho, Joseph R.

    2011-01-01

    The occurrence of noninsect arthropods in popular music was examined in order to explore human attitudes toward these species, especially as compared to insects. Crustaceans were the most commonly referenced taxonomic group in artist names, album titles and cover art, followed by spiders and scorpions. The surprising prevalence of crustaceans may be related to the palatability of many of the species. Spiders and scorpions were primarily used for shock value, as well as totemic qualities of strength and ferocity. Spiders were the most abundant group among song titles, perhaps because of their familiarity to the general public. Three noninsect arthropod album titles were found from the early 1970s, then none appear until 1990. Older albums are difficult to find unless they are quite popular, and the resurgence of albums coincides with the rise of the internet. After 1990, issuance of such albums increased approximately linearly. Giant and chimeric album covers were the most common of themes, indicating the use of these animals to inspire fear and surprise. The lyrics of select songs are presented to illustrate the diversity of sentiments present, from camp spookiness to edibility. PMID:26467627

  14. Archaeoastronomical Concepts in Popular Culture

    NASA Astrophysics Data System (ADS)

    Krupp, Edwin C.

    Broad public embrace of archaic astronomy probably began in the eighteenth century with awareness of the summer solstice sunrise's affiliation with Stonehenge. Since that time, Stonehenge has retained an astronomical mystique that attracts crowds mobilized by the monument's supposed cosmic purpose. They are committed to witness prehistoric heritage operating in real time and with enduring function. More recently, mass media have intermittently thrown a spotlight on new archaeoastronomical discoveries. While the details, ambiguities, and nuances of disciplined study of astronomy in antiquity do not usually infiltrate popular culture, some astronomical alignments, celestial events, sky-tempered symbols, and astral narratives have become well known and referenced in popular culture. Places and relics that command public interest with astronomical connotations are transformed into cultural icons and capture visitors on a quest for the authenticity the past is believed to possess. Monuments and ideas that successfully forge a romantic bond with the past and inspire an imagined sense of sharing the experience, perspective, and wisdom of antiquity persist in the cultural landscape.

  15. Importance and Perspectives of the Earth Sciences Popularization in Mexico

    NASA Astrophysics Data System (ADS)

    Flores-Estrella, H.; Yussim, S.

    2007-05-01

    In our days the scientific popularization in Mexico has not a promising future and with the earth sciences is not better; most of the papers in the popularization magazines deal with subjects as earthquakes, volcanoes, plate tectonics, meteorite impacts and the massive extensions associated with them (e.g. Chicxulub). However, these subjects have not been enough to create conscience about the importance of earth sciences in the society and it has even motivated the idea of a community distant scientific with no social obligation, the idea that the earth scientists are responsible for all the problems in the planet (global warming, catastrophes) is wide spread. In these days that we need a change in our consumption, mainly in the energetic one, it's compulsory to change the relation between the subject and its environment; then, as we can not take care of something that we don't know, the scientific popularization has a fundamental role that we must start to pay attention to.

  16. Classifying Planets: Nature vs. Nurture

    NASA Astrophysics Data System (ADS)

    Beichman, Charles A.

    2009-05-01

    The idea of a planet was so simple when we learned about the solar system in elementary school. Now students and professional s alike are faced with confusing array of definitions --- from "Brown Dwarfs” to "Super Jupiters", from "Super Earths” to "Terrestrial Planets", and from "Planets” to "Small, Sort-of Round Things That Aren't Really Planets". I will discuss how planets might be defined by how they formed, where they are found, or by the life they might support.

  17. Experimental determination of salt partition coefficients between aqueous fluids, ice VI and ice VII: implication for the composition of the deep ocean and the geodynamics of large icy moons and water rich planets

    NASA Astrophysics Data System (ADS)

    Journaux, Baptiste; Daniel, Isabelle; Cardon, Hervé; Petitgirard, Sylvain; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2015-04-01

    The potential habitability of extraterrestrial large aqueous reservoir in icy moons and exoplanets requires an input of nutrients and chemicals that may come from the rocky part of planetary body. Because of the presence of high pressure (HP) water ices (VI, VII, etc.) between the liquid ocean and the silicates, such interactions are considered to be limited in large icy moons, like Ganymede and Titan, and water rich exoplanets. In the case of salty-rich oceans, recent experimental and modeling works have shown that aqueous fluids can be stable at higher pressures [1, 2]. This can ultimately allow direct interaction with the rocky core of icy moons. This effect is nevertheless limited and for larger bodies such as water rich exoplanets with much higher pressures in their hydrosphere, HP ice should be present between the rocky core and a putative ocean. Salts are highly incompatible with low pressure ice Ih, but recent experimental work has shown that alkali metal and halogen salts are moderately incompatible with ice VII, that can incorporate up to several mol/kg of salts [3, 4, 5]. As far as we know, no similar study has been done on ice VI, a HP ice phase expected inside large icy moons. We present here the first experimental data on the partition coefficient of RbI salt between aqueous fluids, ice VI and ice VII using in-situ synchrotron X-Ray single crystal diffraction and X-Ray fluorescence mapping (ESRF - ID-27 beam line [6]). Our experiment enable us to observe a density inversion between ice VI and the salty fluid, and to measure the values of salt partition coefficients between the aqueous fluid and ice VI (strongly incompatible) and ice VII (moderately incompatible). Using the volumes determined with X-Ray diffraction, we were able to measure the density of salty ice VI and ice VII and determine that salty ice VI is lighter than pure H2O ice VI. These results are very relevant for the study of water rich planetary bodies interior because the partition

  18. Remote Sensing of Ocean Color

    NASA Astrophysics Data System (ADS)

    Dierssen, Heidi M.; Randolph, Kaylan

    The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats

  19. Extrasolar Planets in the Classroom

    ERIC Educational Resources Information Center

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  20. Was There Really a Popular Science "Boom"?

    ERIC Educational Resources Information Center

    Lewenstein, Bruce V.

    1987-01-01

    Traces the major developments and trends in contemporary popular science. Identifies magazines, television shows, and newspaper sections devoted to popular science and discusses their status and impact. Comments on the rise, fall, and future of the "science boom." (ML)

  1. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    SciTech Connect

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G.; Marcy, Geoffrey W.; Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin; Buchhave, Lars A.; Ciardi, David R.; Fabrycky, Daniel C.; Ford, Eric B.; Morehead, Robert C.; Gilliland, Ronald L.; and others

    2012-05-10

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  2. How Giant Planets Shape the Characteristics of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa V.

    2016-01-01

    The giant planets in the Solar System likely played a defining role in shaping the properties of the Earth and other terrestrial planets during their formation. Observations from the Kepler spacecraft indicate that terrestrial planets are highly abundant. However, there are hints that giant planets a few AU from their stars are not ubiquitous. It therefore seems reasonable to assume that many terrestrial planets lack a Jupiter-like companion. We use a recently developed, state-of-the-art N-body model that allows for collisional fragmentation to perform hundreds of numerical simulations of the final stages of terrestrial planet formation around a Sun-like star -- with and without giant outer planets. We quantify the effects that outer giant planet companions have on collisions and the planet accretion process. We focus on Earth-analogs that form in each system and explore how giant planets influence the relative frequency of giant impacts occurring at late times and the delivery of volitiles. This work has important implications for determining the frequency of habitable planets.

  3. History of America: A Popular Music Approach.

    ERIC Educational Resources Information Center

    Chilcoat, George W.

    The study of popular music can be an effective method of examining social and cultural life. Popular music emphasizes the variety of human existence, goals, outlooks, and biases. A pervading theme in popular American music between 1959 and 1984 has been the theme of "America." Over 200 songs reflect personal, social, and political concerns about…

  4. Popular Music Pedagogy: Peer Learning in Practice

    ERIC Educational Resources Information Center

    Lebler, Don

    2008-01-01

    The inclusion of popular music as a content area in music education is not uncommon. The musicological study of popular music is well established in higher education, and even the practice of popular music is becoming more common in both secondary education and the post-compulsory sector. However, when this occurs, it is likely to be taught in…

  5. Popular Culture in the Junior College Library

    ERIC Educational Resources Information Center

    Lonergan, David; Ayers, Meredith

    2015-01-01

    Popular culture is extremely influential in both academe and society at large. However, formal disciplinary study of popular culture lags far behind that influence. Anthropology, film studies, history, musicology, and sociology are only some of the disciplines that frequently include popular culture as a research focus. This article advises on how…

  6. Mass Media and the Popular Arts.

    ERIC Educational Resources Information Center

    Rissover, Fredric; Birch, David C.

    This anthology consists of journalistic essays on each of these popular arts: advertising, journalism, cartoons, radio and television, photography and motion pictures, popular literature, popular music, and public education. Examples of most of the art forms are also included. The book is aimed at junior college students. Its purpose is to…

  7. Popular Culture and the New Journalism.

    ERIC Educational Resources Information Center

    Fishwick, Marshall W.

    This paper discusses the concept of popular culture, relating it to new journalism as a phenomenon which reflects the popular images of society. Style is the essential element of popular culture so that the kind of writing presently known as new journalism is the ultimate example of the philosophy that style is supreme. But the style of the best…

  8. An Undergraduate Course in American Popular Psychology.

    ERIC Educational Resources Information Center

    Fried, Stephen B.

    1998-01-01

    Describes a special topics course in American popular psychology. Course objectives are to trace the history of the popularization of psychology in America; discuss the efforts of William James, G. Stanley Hall, and others; and evaluate the quality of various examples of popular psychology. (MJP)

  9. Communicating meteorology through popular music

    NASA Astrophysics Data System (ADS)

    Brown, Sally; Aplin, Karen; Jenkins, Katie; Mander, Sarah; Walsh, Claire; Williams, Paul

    2015-04-01

    Previous studies of weather-inspired classical music showed that all forms of music (as well as visual arts and literature) reflect the significance of the environment in society. Here we quantify the extent to which weather has inspired popular musicians, and how weather is represented in English-language pop music. Our work is in press at Weather. Over 750 songs have been identified which were found to refer to meteorological phenomena, mainly in their lyrics, but also in the title of the song, name of the band or songwriter and occasionally in the song's music or sound effects. Over one third of the songs analysed referred to either sun or rain, out of a possible 20 weather categories. It was found that artists use weather to describe emotion, for example, to mirror the changes in a relationship. In this context, rain was broadly seen negatively, and might be used to signify the end of a relationship. Rain could also be perceived in a positive way, such as in songs from more agricultural communities. Wind was the next most common weather phenomenon, but did not represent emotions as much as sun or rain. However, it was the most frequently represented weather type in the music itself, such as in instrumental effects, or non-verbally in choruses. From the limited evidence available, we found that artists were often inspired by a single weather event in writing lyrics, whereas the outcomes were less clearly identifiable from longer periods of good or bad weather. Some artists were influenced more by their environment than others, but they were often inspired to write many songs about their surroundings as part of every-day life, rather than weather in particular. Popular singers and songwriters can therefore emotionally connect their listeners to the environment; this could be exploited to communicate environmental science to a broad audience.

  10. THE STEPPENWOLF: A PROPOSAL FOR A HABITABLE PLANET IN INTERSTELLAR SPACE

    SciTech Connect

    Abbot, D. S.; Switzer, E. R. E-mail: switzer@kicp.uchicago.edu

    2011-07-10

    Rogue planets have been ejected from their planetary system. We investigate the possibility that a rogue planet could maintain a liquid ocean under layers of thermally insulating water ice and frozen gas as a result of geothermal heat flux. We find that a rogue planet of Earth-like composition and age could maintain a subglacial liquid ocean if it were {approx}3.5 times more massive than Earth, corresponding to {approx}8 km of ice. Suppression of the melting point by contaminants, a layer of frozen gas, or a larger complement of water could significantly reduce the planetary mass that is required to maintain a liquid ocean. Such a planet could be detected from reflected solar radiation, and its thermal emission could be characterized in the far-IR if it were to pass within O(1000) AU of Earth.

  11. The Effect of Star-Planet Interactions on Planetary Climate

    NASA Astrophysics Data System (ADS)

    Shields, Aomawa; Meadows, Victoria; Bitz, Cecilia; Pierrehumbert, Raymond; Joshi, Manoj; Robinson, Tyler; Agol, Eric; Barnes, Rory; Charnay, Benjamin; Virtual Planetary Laboratory

    2015-01-01

    In this work I explored the effect on planetary climate and habitability of interactions between a host star, an orbiting planet and additional planets in a stellar system. I developed and tested models that include both radiative and gravitational effects, and simulated planets covered by ocean, land and water ice, with incident stellar radiation from stars of different spectral types. These simulations showed that ice-covered conditions occurred on an F-dwarf planet with a much smaller decrease in stellar flux than planets orbiting stars with less near-UV radiation, due to ice reflecting strongly in the visible and near-UV. The surface ice-albedo feedback effect is less important at the outer edge of the habitable zone, where ˜3-10 bars of CO2 could entirely mask the climatic effect of ice and snow, leaving the traditional outer limit of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. The exit out of global ice cover was also sensitive to host star spectral energy distribution. A planet orbiting an M-dwarf star exhibited a smaller resistance to melting out of a frozen state, requiring a smaller stellar flux to initiate deglaciation than planets orbiting hotter, brighter stars. Given their greater climate stability, planets orbiting cooler, lower-mass stars may be the best candidates for long-term habitability and life beyond the Solar System. A specific case was explored—that of Kepler-62f, a potentially habitable planet in a five-planet system orbiting a K-dwarf star. Simulations using a 3-D Global Climate Model indicated that Kepler-62f would have areas of the planet with surface temperatures above the freezing point of water with 1 bar or more of CO2 in its atmosphere. In a low-CO2 case, increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter generated regions of the planet with above-freezing surface temperatures, which may

  12. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. An overview of the MTPE, flight programs, data and information systems, interdisciplinary research efforts, and international coordination, is presented.

  13. Dark compact planets

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Schaffner-Bielich, Jürgen

    2015-12-01

    We investigate compact objects formed by dark matter admixed with ordinary matter made of neutron-star matter and white-dwarf material. We consider non-self annihilating dark matter with an equation of state given by an interacting Fermi gas. We find new stable solutions, dark compact planets, with Earth-like masses and radii from a few Km to few hundred Km for weakly interacting dark matter which are stabilized by the mutual presence of dark matter and compact star matter. For the strongly interacting dark matter case, we obtain dark compact planets with Jupiter-like masses and radii of few hundred Km. These objects could be detected by observing exoplanets with unusually small radii. Moreover, we find that the recently observed 2 M⊙ pulsars set limits on the amount of dark matter inside neutron stars which is, at most, 1 0-6 M⊙ .

  14. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-01

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance. PMID:23641110

  15. Dynamical Detection of Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Clark Fabrycky, Daniel; Orosz, Jerome; Welsh, William

    2015-12-01

    The Kepler data revealed a population of transiting gas-giant planets orbiting around close binary stars, beginning with Kepler-16, a highlight of the Extreme Solar Systems II meeting. Due to the restrictive geometry requirements of transit detections, this population is highly observationally biased towards coplanarity. However, a third of those planets detectably perturb their host binary's eclipse times, such that they could have been recognized even without transits. Here we announce the detection of three non-transiting planets based on this dynamical technique. Apsidal precession due to the planet makes the primary and secondary eclipse periods differ, and in addition a short-term modulation of the binary's eclipse times reveals the planet's orbital period. Several planetary periods are observed for each system, buttressing the interpretation. Though the method is nearly equally sensitive to all orbital orientations, each planet orbits near its host binary's plane, suggesting this class of planets formed in the circumbinary nebula.

  16. Planet Forming Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen

    1998-01-01

    The project achieved many of its objectives. The main area of investigation was the interaction of young binary stars with surrounding protostellar disks. A secondary objective was the interaction of young planets with their central stars and surrounding disks. The grant funds were used to support visits by coinvestigators and visitors: Pawel Artymowicz, James Pringle, and Gordon Ogilvie. Funds were also used to support travel to meetings by Lubow and to provide partial salary support.

  17. Pluto: Dwarf planet 134340

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2016-01-01

    In recent decades, investigations of Pluto with up-to-date astronomical instruments yielded results that have been generally confirmed by the New Horizons mission. In 2006, in Prague, the General Assembly of the International Astronomical Union (IAU) reclassified Pluto as a member of the dwarf planet category according to the criteria defined by the IAU for the term "planet". At the same time, interest in studies of Pluto was increasing, while the space investigations of Pluto were delayed. In 2006, the New Horizons Pluto spacecraft started its journey to Pluto. On July 14, 2015, the spacecraft, being in fly-by mode, made its closest approach to Pluto. The heterogeneities and properties of the surface and rarified atmosphere were investigated thoroughly. Due to the extreme remoteness of the spacecraft and the energy limitations, it will take 18 months to transmit the whole data volume. Along with the preliminary results of the New Horizons Pluto mission, this paper reviews the basics on Pluto and its moons acquired from the ground-based observations and with the Hubble Space Telescope (HST). There are only a few meteorite craters on the surfaces of Pluto and Charon, which distinctly marks them apart from such satellites of the giant planets as Ganymede and Callisto. The explanation is that the surface of Pluto is young: its age is estimated at less than 100 Myr. Ice glaciers of apparently a nitrogen nature were found. Nitrogen is also the main component of the atmosphere of Pluto. The planet demonstrates the signs of strong geologic activity, though the energy sources of these processes are unknown.

  18. The genesis of planets.

    PubMed

    Lin, Douglas N C

    2008-05-01

    Barely a decade ago scientists who study how planets form had to base their theory on a single example-our solar system. Now they have dozens of mature systems and dozens more in birth throes. No two are alike. The basic idea behind the leading theory of planetary formation--tiny grains stick together and swoop up gas--conceals many levels of intricacy. A chaotic interplay among competing mechanisms leads to a huge diversity of outcomes. PMID:18444325

  19. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  20. The Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Graham, James R.; Macintosh, Bruce; Perrin, Marshall D.; Ingraham, Patrick; Konopacky, Quinn M.; Marois, Christian; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam Seth; Cardwell, Andrew; Chilcote, Jeffrey K.; De Rosa, Robert John J.; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P.; Gavel, Donald; Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James E.; Maire, Jerome; Marchis, Franck; Marley, Mark S.; McBride, James; Millar-Blanchaer, Max; Morzinski, Kathleen M.; Nielsen, Eric L.; Norton, Andew; Oppenheimer, Rebecca; Palmer, David; Patience, Jenny; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemeyer, Leslie; Savransky, Dmitry; Serio, Andrew W.; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wang, Jason; Wiktorowicz, Sloane; Wolff, Schulyer; Gpi/Gpies Team

    2015-01-01

    The Gemini Planet Imager (GPI) is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of GPI has been tuned for maximum sensitivity to faint planets near bright stars. GPI has undergone a year of commissioning, verification, and calibration work. We have achieved an estimated H-band contrast (5-sigma) of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds in spectral mode, and suppression of unpolarized starlight by a factor of 800 in imaging polarimetry mode. Early science observations include study of the spectra of β Pic b and HR 8799, orbital investigations of β Pic b and PZ Tel, and observations of the debris disk systems associated with β Pic, AU Mic, and HR 4796A. An 890-hour exoplanet survey with GPI is scheduled to begin in late 2014. A status report for the campaign will be presented.

  1. Extrasolar planet detection

    NASA Technical Reports Server (NTRS)

    Korechoff, R. P.; Diner, D. J.; Tubbs, E. F.; Gaiser, S. L.

    1994-01-01

    This paper discusses the concept of extrasolar planet detection using a large-aperture infared imaging telescope. Coronagraphic stellar apodization techniques are less efficient at infrared wavelengths compared to the visible, as a result of practical limitations on aperture dimensions, thus necessitating additional starlight suppression to make planet detection feasible in this spectral domain. We have been investigating the use of rotational shearing interferometry to provide up to three orders of magnitude of starlight suppression over broad spectral bandwidths. We present a theoretical analysis of the system performance requirements needed to make this a viable instrument for planet detection, including specifications on the interferometer design and telescope aperture characteristics. The concept of using rotational shearing interferometry as a wavefront error detector, thus providing a signal that can be used to adaptively correct the wavefront, will be discussed. We also present the status of laboratory studies of on-axis source suppression using a recently constructed rotational shearing interferometer that currently operates in the visible.

  2. Complex patterns in the distribution of planets show planet migration and planet and star properties

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2015-08-01

    We present dramatic patterns in the distribution of exoplanet periods and eccentricities that vary as functions of iron abundance of the host star, planet mass, stellar properties, and presence of a stellar companion. These patterns include surprising peaks and gaps. They raise the question of whether planets themselves contribute to increasing stellar metallicity by causing other planets or material to “pollute” the star.We also show that the falloff in planets at the shortest periods can be used to determine the rate of planets migrating into the star as a function of the strength of tidal dissipation in the star. A small rate of planets migrating into the star can produce the observed population of the shortest period planets without having to invoke extremely weak tidal dissipation. Tidal dissipation strengths stronger than the tidal quality factor Q being equal to 107 are possible if there is a moderate flow of giant planets into the star. It is likely that within a decade it will be possible to measure the time shift of transits of the shortest period orbits due to orbital period decreases caused by tidal migration.The distribution of the shortest period planets indicates that the strength of tidal dissipation in stars is a function of stellar mass, making it worthwhile to monitor the shortest period systems for time shifts across a range of stellar masses. This time shift is inversely proportional to the lifetime of a planet.It is essential to know the rate of planets migrating into stars in order to understand whether inflated planets are only briefly inflated during a faster migration into the star, or if planets maintain anomalously large radii for longer periods of time.The paucity of Neptune-mass planets at the shortest periods could be due either to a lower rate of inward migration or to evaporation. Knowing how evaporation contributes to this paucity could help determine the fractions of planets that are rock, liquid water, or gas.

  3. PREDICTING PLANETS IN KEPLER MULTI-PLANET SYSTEMS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-05-20

    We investigate whether any multi-planet systems among Kepler candidates (2011 February release) can harbor additional terrestrial-mass planets or smaller bodies. We apply the packed planetary systems hypothesis that suggests all planetary systems are filled to capacity, and use a Hill stability criterion to identify eight two-planet systems with significant gaps between the innermost and outermost planets. For each of these systems, we perform long-term numerical integrations of 10{sup 7} years to investigate the stability of 4000-8000 test particles injected into the gaps. We map out stability regions in orbital parameter space, and therefore quantify the ranges of semimajor axes and eccentricities of stable particles. Strong mean-motion resonances can add additional regions of stability in otherwise unstable parameter space. We derive simple expressions for the extent of the stability regions, which is related to quantities such as the dynamical spacing {Delta}, the separation between two planets in units of their mutual Hill radii. Our results suggest that planets with separation {Delta} < 10 are unlikely to host extensive stability regions, and that about 95 out of a total of 115 two-planet systems in the Kepler sample may have sizeable stability regions. We predict that Kepler candidate systems including KOI 433, KOI 72/Kepler-10, KOI 555, KOI 1596, KOI 904, KOI 223, KOI 1590, and KOI 139 can harbor additional planets or low-mass bodies between the inner and outer detected planets. These predicted planets may be detected by future observations.

  4. The Effect of Giant Planets on Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa

    2015-12-01

    The giant planets in the Solar System likely played a defining role in shaping the properties of the Earth and other terrestrial planets during their formation. Observations from the Kepler spacecraft indicate that terrestrial planets are highly abundant. However, there are hints that giant planets a few AU from their stars are relatively uncommon based on long baseline radial velocity searches. It therefore seems reasonable to assume that many terrestrial planets lack a Jupiter-like companion. We use a recently developed, state-of-the-art N-body model that allows for collisional fragmentation to perform hundreds of numerical simulations of the final stages of terrestrial planet formation around a Sun-like star -- with and without giant outer planets. We quantify the effects that outer giant planet companions have on collisions and the planet accretion process. We focus on Earth-analogs that form in each system and explore how giant planets influence the relative frequency of giant impacts occurring at late times.

  5. Characterizing popularity dynamics of online videos

    NASA Astrophysics Data System (ADS)

    Ren, Zhuo-Ming; Shi, Yu-Qiang; Liao, Hao

    2016-07-01

    Online popularity has a major impact on videos, music, news and other contexts in online systems. Characterizing online popularity dynamics is nature to explain the observed properties in terms of the already acquired popularity of each individual. In this paper, we provide a quantitative, large scale, temporal analysis of the popularity dynamics in two online video-provided websites, namely MovieLens and Netflix. The two collected data sets contain over 100 million records and even span a decade. We characterize that the popularity dynamics of online videos evolve over time, and find that the dynamics of the online video popularity can be characterized by the burst behaviors, typically occurring in the early life span of a video, and later restricting to the classic preferential popularity increase mechanism.

  6. Toward Predicting Popularity of Social Marketing Messages

    NASA Astrophysics Data System (ADS)

    Yu, Bei; Chen, Miao; Kwok, Linchi

    Popularity of social marketing messages indicates the effectiveness of the corresponding marketing strategies. This research aims to discover the characteristics of social marketing messages that contribute to different level of popularity. Using messages posted by a sample of restaurants on Facebook as a case study, we measured the message popularity by the number of "likes" voted by fans, and examined the relationship between the message popularity and two properties of the messages: (1) content, and (2) media type. Combining a number of text mining and statistics methods, we have discovered some interesting patterns correlated to "more popular" and "less popular" social marketing messages. This work lays foundation for building computational models to predict the popularity of social marketing messages in the future.

  7. THE INTERIOR DYNAMICS OF WATER PLANETS

    SciTech Connect

    Fu, Roger; O'Connell, Richard J.; Sasselov, Dimitar D. E-mail: richard_oconnell@harvard.ed

    2010-01-10

    The ever-expanding catalog of detected super-Earths calls for theoretical studies of their properties in the case of a substantial water layer. This work considers such water planets with a range of masses and water mass fractions (2-5 M{sub Earth}, 0.02%-50% H{sub 2}O). First, we model the thermal and dynamical structure of the near-surface for icy and oceanic surfaces, finding separate regimes where the planet is expected to maintain a subsurface liquid ocean and where it is expected to exhibit ice tectonics. Newly discovered exoplanets may be placed into one of these regimes given estimates of surface temperature, heat flux, and gravity. Second, we construct a parameterized convection model for the underlying ice mantle of higher ice phases, finding that materials released from the silicate-iron core should traverse the ice mantle on the timescale of 0.1 to 100 megayears. We present the dependence of the overturn times of the ice mantle and the planetary radius on total mass and water mass fraction. Finally, we discuss the implications of these internal processes on atmospheric observables.

  8. Mass-Radius Relationships for Low-Mass Planets: From Iron Planets to Water Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2007-01-01

    Transit observations, and radial velocity measurements, have begun to populate the mass radius diagram for extrasolar planets; fubture astrometric measurements and direct images promise more mass and radius information. Clearly, the bulk density of a planet indicates something about a planet s composition--but what? I will attempt to answer this question in general for low-mass planets (planets obey a kind of universal mass-radius relationship: an expansion whose first term is M approx. R(sup 3).

  9. The Rocky Planet Survey

    NASA Astrophysics Data System (ADS)

    Fischer, Debra

    In direct support of the NASA Origins program, we propose the Rocky Planet Survey, a high cadence exoplanet search of sixty late G and K dwarf stars using the CHIRON spectrometer, which we built and commissioned at CTIO. CHIRON operates in two high- resolution modes (R=90,000 and R=120,000) and has a demonstrated precision of better than 1 m s-1. We are contributing 200 nights of telescope time for the next three years, for the excellent phase coverage needed to carry out this work. We have developed simulation software to optimize scheduling of observations to suppress aliases and quickly extract dynamical signals. Our science objectives are to (1) provide a statistical assessment of planet occurrence as a function of decreasing mass in the range of parameter space 3 < Msini < 30 MEARTH for orbital periods up to 50 days, (2) to determine the fraction of low mass planets in multi-planet architectures, and (3) detect planets with Msini < 3 MEARTH in orbital periods shorter than ~20 days. In addition to the science objectives, we intend to push the frontiers of extreme precision Doppler measurements to keep the U.S. competitive with the next generation of European Doppler spectroscopy (ESPRESSO on the VLT). Our team has significant expertise in optical design, fiber coupling, raw extraction, barycentric velocity corrections, and Doppler analysis. The proposed work includes a new optimal extraction algorithm, with the optical designers and software engineers working together on the 2-D PSF description needed for a proper row-by-row extraction and calibration. We will also develop and test upgrades to the barycentric correction code and improvements in the Doppler code that take advantage of stability in the dispersion solution, afforded by a new vacuum-enclosed grating upgrade (scheduled for November 2011). We will test use of emission wavelength calibrations to extend the iodine (absorption) wavelength calibration that we currently use to prepare for eventual use of

  10. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  11. [Seguro popular: achievements and perspectives].

    PubMed

    Chertorivski-Woldenberg, Salomón

    2011-01-01

    Healthcare systems are organized following one of two basic models: social security systems, which link access to health services to labor status, and national health systems, which grant access to health as a citizen's right. Mexico adopted, since the institutionalization of social security and healthcare services in 1943, a mixed system. Social security institutions covered the salaried workers and public assistance was granted to the remaining of the population. At the beginning of the XXI century the Mexican health system entered a crisis as the conditions to expand health coverage through social security were not met and public assistance services were insufficient. In order to address these developments, the Healthcare Social Protection System was founded (2004) as a mechanism to effectively guarantee every person's right to health as established after the constitutional amendment of article fourth in 1983. Seguro Popular is the mechanism that through federal and states' contributions seeks to financially protect the population without access to social security's health services, and thus prevent impoverishment due to out of pocket and catastrophic health expenditures. PMID:22116179

  12. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1. PMID:22506608

  13. Origin of the atmosphere and hydrosphere of the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Abe, Y.

    1985-01-01

    An early thermal evolution of a planet growing by planetesimal impacts was studied. An evolution of an impact induced atmosphere was considered. It is known that the surface of a growing planet is heated due to the blanketing effect of the atmosphere and exceeds the melting temperature, which means that the surface of a growing planet was entirely covered by a magma ocean. The amount of water in a proto-atmosphere is influenced by the formation of a magma ocean. It is suggested the solubility of water in silicate melt controls the water content in a proto-atmsphere. It is noted that irrespective of difference in initial water content of planetesimals the final water content in the atmosphere becomes almost constant and is about 10 to the 21st power kg which is almost identical with the present amount of the ocean. It is also shown that the water in a proto-atmosphere can be liquid for the Earth and becomes to be an ocean but this does not happen on Venus.

  14. Optimal Planet Properties For Plate Tectonics Through Time And Space

    NASA Astrophysics Data System (ADS)

    Stamenkovic, Vlada; Seager, Sara

    2014-11-01

    Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up

  15. The Role of Popularity Goal in Early Adolescents' Behaviors and Popularity Status

    ERIC Educational Resources Information Center

    Dawes, Molly; Xie, Hongling

    2014-01-01

    The effect of popularity goal on the use of 3 popularity-related behaviors and later popularity status was examined in a diverse sample of 314 6th-grade students (176 girls and 138 boys) in both fall (Time 1) and spring (Time 2) semesters. Popularity goal and the use of popularity-driven behaviors (e.g., "I change the way I dress in order to…

  16. Watching How Planets Form

    NASA Astrophysics Data System (ADS)

    2006-09-01

    Anatomy of a Planet-Forming Disc around a Star More Massive than the Sun With the VISIR instrument on ESO's Very Large Telescope, astronomers have mapped the disc around a star more massive than the Sun. The very extended and flared disc most likely contains enough gas and dust to spawn planets. It appears as a precursor of debris discs such as the one around Vega-like stars and thus provides the rare opportunity to witness the conditions prevailing prior to or during planet formation. "Planets form in massive, gaseous and dusty proto-planetary discs that surround nascent stars. This process must be rather ubiquitous as more than 200 planets have now been found around stars other than the Sun," said Pierre-Olivier Lagage, from CEA Saclay (France) and leader of the team that carried out the observations. "However, very little is known about these discs, especially those around stars more massive than the Sun. Such stars are much more luminous and could have a large influence on their disc, possibly quickly destroying the inner part." The astronomers used the VISIR instrument [1] on ESO's Very Large Telescope to map in the infrared the disc surrounding the young star HD 97048. With an age of a few million years [2], HD 97048 belongs to the Chameleon I dark cloud, a stellar nursery 600 light-years away. The star is 40 times more luminous than our Sun and is 2.5 times as massive. The astronomers could only have achieved such a detailed view due to the high angular resolution offered by an 8-metre size telescope in the infrared, reaching a resolution of 0.33 arcsecond. They discovered a very large disc, at least 12 times more extended than the orbit of the farthest planet in the Solar System, Neptune. The observations suggest the disc to be flared. "This is the first time such a structure, predicted by some theoretical models, is imaged around a massive star," said Lagage. ESO PR Photo 36/06 ESO PR Photo 36/06 A Flared Proto-Planetary Disc Such a geometry can only be

  17. Possible Habitability of Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Höning, Dennis; Bredehöft, Jan H.; Lammer, Helmut

    2014-05-01

    In the last decade, the number of detected exoplanets has increased to over thousand confirmed planets and more as yet unconfirmed planet candidates. The scientific community mainly concentrates on terrestrial planets (up to 10 Earth masses) in the habitable zone, which describes the distance from the host star where liquid water can exist at the surface (Kasting et al., 1993). Another target group of interest are ocean worlds, where a terrestrial-like body (i.e. with an iron core and a silicate mantle) is covered by a thick water-ice layer - similar to the icy moons of our solar system but with several Earth masses (e.g. Grasset et al., 2009). When an exoplanet is detected and confirmed as a planet, typically the radius and the mass of it are known, leading to the mean density of the planet that gives hints to possible interior structures. A planet with a large relative iron core and a thick ocean on top of the silicate mantle for example would have the same average planet density as a planet with a more Earth-like appearance (where the main contributor to the mass is the silicate mantle). In this study we investigate how the radius and mass of a planet depend on the amount of water, silicates and iron present (after Wagner et al., 2011) the occurence of high-pressure-ice in the water-ice layer (note: we only consider surface temperatures at which liquid water exists at the surface) if the ocean layer influences the initiation of plate tectonics We assume that ocean worlds with a liquid ocean layer (and without the occurence of high-pressure ice anywhere in the water layer) and plate tectonics (especially the occurence of subduction zones, hydrothermal vents and continental formation) may be called habitable (Class III/IV habitats after Lammer et al., 2009). References: Kasting, J.F., Whitmire, D.P., and Reynolds, R.T. (1993). Habitable Zones around Main Sequence Stars. Icarus 101, 108-128. Grasset, O., Schneider, J., and Sotin, C. (2009). A study of the accuracy

  18. Debris Disks and Hidden Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2008-01-01

    When a planet orbits inside a debris disk like the disk around Vega or Beta Pictoris, the planet may be invisible, but the patterns it creates in the disk may give it away. Observing and decoding these patterns may be the only way we can detect exo-Neptunes orbiting more than 20 AU from their stars, and the only way we can spot planets in systems undergoing the late stages of planet formation. Fortunately, every few months, a new image of a debris disk appears with curious structures begging for explanation. I'll describe some new ideas in the theory of these planet-disk interactions and provide a buyers guide to the latest models (and the planets they predict).

  19. Atmospheres of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  20. Planets Suitable for Life

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When searching for extraterrestrial life, and particularly intelligent life, elsewhere in the solar system or in our galaxy, the obvious places to look are habitable Earth-like planets. This is because most living organisms are quite vulnerable to harsh conditions, and thus the presence of life will be most likely when very favorable conditions occur. Here organisms that survive under extreme conditions on Earth represent no contradiction, because they have adapted to their way of life by the fierce battle of survival on the basis of Darwin's theory (discussed in Chap. 6). But what are the conditions that are favorable for life?

  1. Spinning Stardust into Planets

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A computerized animation simulates the formation of a stellar disk and planets. Ten images from the Hubble Space Telescope (HST) show young stellar disks (taken with the Near-Infrared Camera Multi-Object Spectrometer (NICMOS)) and stellar disks around young stars (taken with the Wide-Field Planetary Camera 2 (WFPC2)). Dr. Deborah Padgett describes what astronomers see in the images of young stellar disks and Dr. Karl Stapelfeldt explains HST's role in helping astronomers to examine young stars in order to understand how solar systems like our own may form.

  2. NASA's Terrestrial Planet Finder Missions

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    2004-01-01

    NASA has decided to move forward with two complementary Terrestrial Planet Finder (TPF) missions, a visible coronagraph and an infrared formation flying interferometer. These missions are major missions in the NASA Office of Space Science Origins Theme. The primary science objectives of the TPF missions are to search for, detect, and characterize planets and planetary systems beyond our own Solar System, including specifically Earth-like planets.

  3. Planet X - Fact or fiction?

    NASA Technical Reports Server (NTRS)

    Anderson, John

    1988-01-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  4. Planets in Evolved Binary Systems

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.

    2011-03-01

    Exo-planets are typically thought to form in protoplanetary disks left over from protostellar disk of their newly formed host star. However, additional planetary formation and evolution routes may exist in old evolved binary systems. Here we discuss the implications of binary stellar evolution on planetary systems in such environments. In these binary systems stellar evolution could lead to the formation of symbiotic stars, where mass is lost from one star and could be transferred to its binary companion, and may form an accretion disk around it. This raises the possibility that such a disk could provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing first generation planets surviving the post-MS evolution of such systems would be dynamically effected by the mass loss in the systems and may also interact with the newly formed disk. Such planets and/or planetesimals may also serve as seeds for the formation of the second generation planets, and/or interact with them, possibly forming atypical planetary systems. Second generation planetary systems should be typically found in white dwarf binary systems, and may show various observational signatures. Most notably, second generation planets could form in environment which are inaccessible, or less favorable, for first generation planets. The orbital phase space available for the second generation planets could be forbidden (in terms of the system stability) to first generation planets in the pre-evolved progenitor binaries. In addition planets could form in metal poor environments such as globular clusters and/or in double compact object binaries. Observations of exo-planets in such forbidden or unfavorable regions could possibly serve to uniquely identify their second generation character. Finally, we point out a few observed candidate second generation planetary systems, including Gl 86, HD 27442 and all of the

  5. Starting a Planet Protectors Club

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2007

    2007-01-01

    If your mission is to teach children how to reduce, reuse, and recycle waste and create the next generation of Planet Protectors, perhaps leading a Planet Protectors Club is part of your future challenges. You don't have to be an expert in waste reduction and recycling to lead a a Planet Protectors Club. You don't even have to be a teacher. You do…

  6. Planet X - ract or fiction

    SciTech Connect

    Anderson, J.

    1988-08-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  7. Dynamical Interactions Among Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Laughlin, G.

    For certain multiple planet systems such as GJ 876 and 55 Cancri, which have (1) been observed for a large number of orbital periods, and which (2) have strong planet-planet gravitational interactions, the approximation that the planets are orbiting on independent Keplerian ellipses is inadequate. We discuss the production of self-consistent dynamical fits to these interacting systems, in which a minimization scheme (such as the Levenberg-Marquardt technique, or a Genetic Algorithm) is used to repeatedly drive an N-body integrator and improve the agreement between the integrated reflex motion of the central star and the observed radial velocities.

  8. Popularizing dissent: A civil society perspective.

    PubMed

    Motion, Judy; Leitch, Shirley; Weaver, C Kay

    2015-05-01

    This article theorizes civil society groups' attempts to popularize opposition to genetic modification in New Zealand as deliberative interventions that seek to open up public participation in science-society governance. In this case, the popularization strategies were designed to intensify concerns about social justice and democratic incursions, mobilize dissent and offer meaningful mechanisms for navigating and participating in public protest. Such civic popularization efforts, we argue, are more likely to succeed when popularity and politicization strategies are judiciously integrated to escalate controversy, re-negotiate power relations and provoke agency and action. PMID:25394361

  9. Stars and Planets

    NASA Astrophysics Data System (ADS)

    Neta, Miguel

    2014-05-01

    'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

  10. The Planet Venus

    NASA Astrophysics Data System (ADS)

    Luhmann, Janet

    This book is not so much for the space scientist looking for background material for research as it is for one interested in the history of planetary exploration. The first half (˜100 pps) is devoted to studies of Venus before the space age, starting at several hundred years BC. It is obvious from the multitude of detailed descriptions of observers' accounts that considerable library research went into this section. While sometimes tedious, this chronology of Venus research is punctuated with amusing facts. While many may know about the Velikovsky theory of the cometary origin of the planet, few may know that Lowell drew pictures of Cytherian canals similar to the canals of Mars or that Frederick the Great of Prussia proposed to name the (once suspected) satellite of Venus D'Alembert, after the mathematician. An equally amusing appendix shows the ups and downs of the rotation period of this planet with the invisible surface. Much attention is focused on early telescope observations, the ashen light, and transits of Venus. At the end of this half, one appreciates that Venus has played a fairly important role in history in the areas of religion, science, and technology.

  11. Planets and Life

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III; Baross, John

    2001-12-01

    Astrobiology involves the study of the origin and history of life on Earth, planets and moons where life may have arisen, and the search for extraterrestrial life. It combines the sciences of biology, chemistry, palaeontology, geology, planetary physics and astronomy. This textbook brings together world experts in each of these disciplines to provide the most comprehensive coverage of the field currently available. Topics cover the origin and evolution of life on Earth, the geological, physical and chemical conditions in which life might arise and the detection of extraterrestrial life on other planets and moons. The book also covers the history of our ideas on extraterrestrial life and the origin of life, as well as the ethical, philosophical and educational issues raised by astrobiology. Written to be accessible to students from diverse backgrounds, this text will be welcomed by advanced undergraduates and graduates who are taking astrobiology courses.• Compiled by world experts in their disciplines to create a truly comprehensive book • Accessible to students from a wide range of backgrounds • A welcome addition to this rapidly-growing field

  12. The Giant Planet Jupiter

    NASA Astrophysics Data System (ADS)

    Rogers, John H.

    2009-07-01

    Part I. Observing Jupiter: 1. Observations from Earth; 2. Observations from spacecraft; Part II. The Visible Structure of the Atmosphere: 3. Horizontal structure: belts, currents, spots and storms; 4. Vertical structure: colours and clouds; Part III. The Observational Record of the Atmosphere: 5. The Polar Region; 6. North North Temperate Regions (57°N to 35°N); 7. North Temperate Region (35°N to 23°N); 8. North Tropical Region (23°N to 9°N); 9. Equatorial Region (9°N to 9°S); 10. South Tropical Region (9°S to 27°S); 11. South Temperate Region (27°S to 37°S); 12. South South Temperate Region (37°S to 53°S); Part IV: The Physics and Chemistry of the Atmosphere: 13. Possible large-scale and long-term patterns; 14. The dynamics of individual spots; 15. Theoretical models of the atmosphere; 16. The composition of the planet; Part V. The Electrodynamic Environment of Jupiter: 17. Lights in the Jovian night; 18. The magnetosphere and radiation belts; Part VI. The Satellites: 19. The inner satellites and the ring; 20. The Galilean satellites; 21. Io; 22. Europa; 23. Ganymede; 24. Callisto; 25. The outer satellites; Appendices: 1. Measurement of longitude; 2. Measurement of latitude; 3. Lists of apparitions and published reports; 4. Bibliography (The planet); 5. Bibliography (The magnetosphere and satellites); Index.

  13. New Indivisible Planetary Science Paradigm: Consequence of Questioning Popular Paradigms

    NASA Astrophysics Data System (ADS)

    Marvin Herndon, J.

    2014-05-01

    Progress in science involves replacing less precise understanding with more precise understanding. In science and in science education one should always question popular ideas; ask "What's wrong with this picture?" Finding limitations, conflicts or circumstances that require special ad hoc consideration sometimes is the key to making important discoveries. For example, from thermodynamic considerations, I found that the 'standard model of solar system formation' leads to insufficiently massive planetary cores. That understanding led me to discover a new indivisible planetary science paradigm. Massive-core planets formed by condensing and raining-out from within giant gaseous protoplanets at high pressures and high temperatures, accumulating heterogeneously on the basis of volatility with liquid core-formation preceding mantle-formation; the interior states of oxidation resemble that of the Abee enstatite chondrite. Core-composition was established during condensation based upon the relative solubilities of elements, including uranium, in liquid iron in equilibrium with an atmosphere of solar composition at high pressures and high temperatures. Uranium settled to the central region and formed planetary nuclear fission reactors, producing heat and planetary magnetic fields. Earth's complete condensation included a ~300 Earth-mass gigantic gas/ice shell that compressed the rocky kernel to about 66% of Earth's present diameter. T-Tauri eruptions, associated with the thermonuclear ignition of the Sun, stripped the gases away from the Earth and the inner planets. The T-Tauri outbursts stripped a portion of Mercury's incompletely condensed protoplanet and transported it to the region between Mars and Jupiter where it fused with in-falling oxidized condensate from the outer regions of the Solar System, forming the parent matter of ordinary chondrite meteorites, the main-Belt asteroids, and veneer for the inner planets, especially Mars. With its massive gas/ice shell

  14. Inside-out Planet Formation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Tan, Jonathan C.

    2014-01-01

    The compact multi-transiting planet systems discovered by Kepler challenge planet formation theories. Formation in situ from disks with radial mass surface density, Σ, profiles similar to the minimum mass solar nebula but boosted in normalization by factors >~ 10 has been suggested. We propose that a more natural way to create these planets in the inner disk is formation sequentially from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (~cm-m size) "pebbles," drifting inward via gas drag. Pebbles collect at the pressure maximum associated with the transition from a magnetorotational instability (MRI)-inactive ("dead zone") region to an inner MRI-active zone. A pebble ring builds up until it either becomes gravitationally unstable to form an ~1 M ⊕ planet directly or induces gradual planet formation via core accretion. The planet may undergo Type I migration into the active region, allowing a new pebble ring and planet to form behind it. Alternatively, if migration is inefficient, the planet may continue to accrete from the disk until it becomes massive enough to isolate itself from the accretion flow. A variety of densities may result depending on the relative importance of residual gas accretion as the planet approaches its isolation mass. The process can repeat with a new pebble ring gathering at the new pressure maximum associated with the retreating dead-zone boundary. Our simple analytical model for this scenario of inside-out planet formation yields planetary masses, relative mass scalings with orbital radius, and minimum orbital separations consistent with those seen by Kepler. It provides an explanation of how massive planets can form with tightly packed and well-aligned system architectures, starting from typical protoplanetary disk properties.

  15. Inside-out planet formation

    SciTech Connect

    Chatterjee, Sourav; Tan, Jonathan C. E-mail: jt@astro.ufl.edu

    2014-01-01

    The compact multi-transiting planet systems discovered by Kepler challenge planet formation theories. Formation in situ from disks with radial mass surface density, Σ, profiles similar to the minimum mass solar nebula but boosted in normalization by factors ≳ 10 has been suggested. We propose that a more natural way to create these planets in the inner disk is formation sequentially from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (∼cm-m size) 'pebbles', drifting inward via gas drag. Pebbles collect at the pressure maximum associated with the transition from a magnetorotational instability (MRI)-inactive ('dead zone') region to an inner MRI-active zone. A pebble ring builds up until it either becomes gravitationally unstable to form an ∼1 M {sub ⊕} planet directly or induces gradual planet formation via core accretion. The planet may undergo Type I migration into the active region, allowing a new pebble ring and planet to form behind it. Alternatively, if migration is inefficient, the planet may continue to accrete from the disk until it becomes massive enough to isolate itself from the accretion flow. A variety of densities may result depending on the relative importance of residual gas accretion as the planet approaches its isolation mass. The process can repeat with a new pebble ring gathering at the new pressure maximum associated with the retreating dead-zone boundary. Our simple analytical model for this scenario of inside-out planet formation yields planetary masses, relative mass scalings with orbital radius, and minimum orbital separations consistent with those seen by Kepler. It provides an explanation of how massive planets can form with tightly packed and well-aligned system architectures, starting from typical protoplanetary disk properties.

  16. The earth as a planet - Paradigms and paradoxes

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    The independent growth of the various branches of the earth sciences in the past two decades has led to a divergence of geophysical, geochemical, geological, and planetological models for the composition and evolution of a terrestrial planet. Evidence for differentiation and volcanism on small planets and a magma ocean on the moon contrasts with hypotheses for a mostly primitive, still undifferentiated, and homogeneous terrestrial mantle. In comparison with the moon, the earth has an extraordinarily thin crust. The geoid, which should reflect convection in the mantle, is apparently unrelated to the current distribution of continents and oceanic ridges. If the earth is deformable, the whole mantle should wander relative to the axis of rotation, but the implications of this are seldom discussed. The proposal of a mantle rich in olivine violates expectations based on evidence from extraterrestrial sources. These and other paradoxes force a reexamination of some long-held assumptions.

  17. WATER TRAPPING ON TIDALLY LOCKED TERRESTRIAL PLANETS REQUIRES SPECIAL CONDITIONS

    SciTech Connect

    Yang, Jun; Abbot, Dorian S.; Liu, Yonggang; Hu, Yongyun

    2014-12-01

    Surface liquid water is essential for standard planetary habitability. Calculations of atmospheric circulation on tidally locked planets around M stars suggest that this peculiar orbital configuration lends itself to the trapping of large amounts of water in kilometers-thick ice on the night side, potentially removing all liquid water from the day side where photosynthesis is possible. We study this problem using a global climate model including coupled atmosphere, ocean, land, and sea ice components as well as a continental ice sheet model driven by the climate model output. For a waterworld, we find that surface winds transport sea ice toward the day side and the ocean carries heat toward the night side. As a result, nightside sea ice remains O(10 m) thick and nightside water trapping is insignificant. If a planet has large continents on its night side, they can grow ice sheets O(1000 m) thick if the geothermal heat flux is similar to Earth's or smaller. Planets with a water complement similar to Earth's would therefore experience a large decrease in sea level when plate tectonics drives their continents onto the night side, but would not experience complete dayside dessiccation. Only planets with a geothermal heat flux lower than Earth's, much of their surface covered by continents, and a surface water reservoir O(10%) of Earth's would be susceptible to complete water trapping.

  18. New Martian paradigms. [concerning planet's nature and evolution

    NASA Technical Reports Server (NTRS)

    Mcewen, Alfred S.

    1991-01-01

    Several interrelated paradigms concerning the nature and the evolution of Mars are discussed. These include an impact origin of the northern lowland, Mars as a water-rich planet, former oceans in the northern lowlands, a warm wet climate on early Mars, and the possibility of ancient life on Mars. Locations on Mars suggested for the search of possible ancient life include the heavily cratered terrain dissected by valley networks, possible lacustrine deposits in Valles Marineris, the oxidizing layer below the surface, sites along the fringes of the hypothetical northern circumpolar ocean, and in evaporite deposits.

  19. Planets and Life

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III; Baross, John

    2007-09-01

    Foreword; Preface; Contributors; Prologue; Part I. History: 1. History of astrobiological ideas W. T. Sullivan and D. Carney; 2. From exobiology to astrobiology S. J. Dick; Part II. The Physical Stage: 3. Formation of Earth-like habitable planets D. E. Brownlee and M. Kress; 4. Planetary atmospheres and life D. Catling and J. F. Kasting; Part III. The Origin of Life on Earth: 5. Does 'life' have a definition? C.E. Cleland and C. F. Chyba; 6. Origin of life: crucial issues R. Shapiro; 7. Origin of proteins and nucleic acids A. Ricardo and S. A. Benner; 8. The roots of metabolism G.D. Cody and J. H. Scott; 9. Origin of cellular life D. W. Deamer; Part IV. Life on Earth: 10. Evolution: a defining feature of life J. A. Baross; 11. Evolution of metabolism and early microbial communities J. A. Leigh, D. A. Stahl and J. T. Staley; 12. The earliest records of life on Earth R. Buick; 13. The origin and diversification of eukaryotes M. L. Sogin, D. J. Patterson and A. McArthur; 14. Limits of carbon life on Earth and elsewhere J. A. Baross, J. Huber and M. Schrenk; 15. Life in ice J. W. Deming and H. Eicken; 16. The evolution and diversification of life S. Awramik and K. J. McNamara; 17. Mass extinctions P. D. Ward; Part V. Potentially Habitable Worlds: 18. Mars B. M. Jakosky, F. Westall and A. Brack; 19. Europa C. F. Chyba and C. B. Phillips; 20. Titan J. I. Lunine and B. Rizk; 21. Extrasolar planets P. Butler; Part VI. Searching for Extraterrestrial Life: 22. How to search for life on other worlds C. P. McKay; 23. Instruments and strategies for detecting extraterrestrial life P. G. Conrad; 24. Societial and ethical concerns M. S. Race; 25. Planetary protection J. D. Rummel; 26. Searching for extraterrestrial intelligence J. C. Tarter; 27. Alien biochemistries P. D. Ward and S. A. Benner; Part VII. Future of the Field: 28. Disciplinary and educational opportunities L. Wells, J. Armstrong and J. Huber; Epilogue C. F. Chyba; Appendixes: A. Units and usages; B. Planetary

  20. Tides in Giant Planets

    NASA Astrophysics Data System (ADS)

    Stevenson, David J.

    2015-11-01

    The arrival of Juno at Jupiter in less than a year necessitates analysis of what we can learn from the gravitational signal due to tides raised on the planet by satellites (especially Io but also Europa). In the existing literature, there is extensive work on static tidal theory (the response of the planet to a tidal potential whose time dependence is ignored) and this is what is usually quoted when people refer to tidal Love numbers. If this were correct then there would be almost no new information content in the measurement of tidally induced gravity field, since the perturbation is of the same kind as the response to rotation (i.e., the measurement of J2, a well-known quantity). However, tides are dynamic (that is, k2 is frequency dependent) and so there is new information in the frequency dependent part. There is also (highly important) information in the imaginary part (more commonly expressed as tidal Q) but there is no prospect of direct detection of this by Juno since that quadrature signal is so small. The difference between what we expect to measure and what we can already calculate directly from J2 is easily shown to be of order the square of tidal frequency over the lowest order normal mode frequency, and thus of order 10%. However, the governing equations are not simple (not separable) because of the Coriolis force. An approximate solution has been obtained for the n =1 polytrope showing that the correction to k2 is even smaller, typically a few percent, because the tidal frequency is not very different from twice the rotation frequency. Moreover, it is not highly sensitive to structure in standard models. However, the deep interior of the planet may be stably stratified because of a compositional gradient and this modifies the tidal flow amplitude, changing the dynamic k2 but not the static k2. This raises the exciting possibility that we can use the determination of k2 to set bounds on the extent of static stability, if any. There is also the slight

  1. Substance Use in Popular Movies and Music.

    ERIC Educational Resources Information Center

    Roberts, Donald F.; Henriksen, Lisa; Christenson, Peter G.

    This study examines the frequency and nature of substance use in the most popular movie rentals and songs of 1996 and 1997. The intent was to determine the accuracy of public perceptions about extensive substance use in media popular among youth. Because teenagers are major consumers of movies and music, there is concern about the potential for…

  2. Popular Media and the Teaching of English.

    ERIC Educational Resources Information Center

    Giblin, Thomas R., Ed.

    This work is a collection of ideas on the why and the how of popular media study in the secondary English classroom. Chapters are divided into eight sections: "Developing a Rationale for Popular Media Study,""An English Teacher's Challange,""Understanding McLuhan,""An Expanding View of Literature,""Paperbacks,""News, Newspapers, and…

  3. Using Popular Culture to Teach Quantitative Reasoning

    ERIC Educational Resources Information Center

    Hillyard, Cinnamon

    2007-01-01

    Popular culture provides many opportunities to develop quantitative reasoning. This article describes a junior-level, interdisciplinary, quantitative reasoning course that uses examples from movies, cartoons, television, magazine advertisements, and children's literature. Some benefits from and cautions to using popular culture to teach…

  4. Teaching Personality Theories Using Popular Music

    ERIC Educational Resources Information Center

    Leck, Kira

    2006-01-01

    Previously, psychology instructors have used popular music to illustrate psychological concepts in the classroom. In this study, students enrolled in a personality theories class heard 13 popular songs that demonstrated various concepts. Students then selected and analyzed their own songs that contained elements of personality theories. Test…

  5. Anthropology and Popular Culture: A Case Study.

    ERIC Educational Resources Information Center

    Estes, Jack

    The study of popular culture in the United States is an appropriate anthropological endeavor, as evidenced in a case study of the volcanic eruption of Mt. St. Helens in Oregon. By examining its popular arts, anthropologists gain understanding of the culture and its people. For example, an analysis of reactions to the Mt. St. Helens eruption…

  6. Popular Magazines Discuss Online Information Retrieval.

    ERIC Educational Resources Information Center

    Diodato, Virgil

    1984-01-01

    Examines 55 articles from 25 popular magazines such as "Better Homes and Gardens,""Business Week,""Popular Mechanics," and "Working Woman" and discusses purpose of the articles, consumer oriented online services, libraries and information centers, databases, and publishers and intermediaries. A list of the articles is appended. (EJS)

  7. Popularization and Formative Evaluation of Young Teachers

    ERIC Educational Resources Information Center

    Zheng, Yancai

    2005-01-01

    With the popularization of the higher education in China, training of young teachers has been more and more prominent. This paper, by using the "Formative Evaluation Theory", analyzes the relationship between popularization and university young teacher training. In addition, it also profoundly discusses the two factors influencing development of…

  8. Popular Adult Education: The Bolivian Experience.

    ERIC Educational Resources Information Center

    Luft, Murray

    A discussion paper on popular adult non-formal education in rural Bolivia, based on four months of 1982 fieldwork, focuses on the nature of popular education and its meaning in a contemporary Bolivian context, program methods and operational strategies employed, outcomes and impacts on peasant participants (many of them Indians), and problems and…

  9. Popular Music in American History. Revised.

    ERIC Educational Resources Information Center

    Reid, William, Jr.

    This student book encourages an understanding of U.S. history through song, and of American song through history. The book is organized in two main parts, the first focuses on the nature of popular music. It examines "What is Popular Music?" and looks at pop themes, lyrics, melodies, rhythm, the composer, performer, and publisher. The second part…

  10. Pluto: The Farthest Planet (Usually).

    ERIC Educational Resources Information Center

    Universe in the Classroom, 1988

    1988-01-01

    Provides background information about the planet Pluto. Includes the history of Pluto and discusses some of the common misconceptions about the planets. Addresses some of the recent discoveries about Pluto and contains a resource list of books, articles, and a videotape. (TW)