Science.gov

Sample records for ocean thermal stress

  1. Thermal stresses due to cooling of a viscoelastic oceanic lithosphere

    SciTech Connect

    Denlinger, R.P. ); Savage, W.Z. )

    1989-01-10

    Theories based upon thermal contraction of cooling oceanic lithosphere provide a successful basis for correlating seafloor bathymetry and heat flow. The horizontal components of the contraction of the lithosphere as it cools potentially give rise to large thermal stresses. Current methods to calculate these stresses assume that on the time scales of cooling, the lithosphere initially behaves as an inviscid fluid and instantly freezes into an elastic solid at some critical temperature. These instant-freezing methods inaccurately predict transient thermal stresses in rapidly cooling silicate glass plates because of the temperature dependent rheology of the material. The temperature dependent rheology of the lithosphere may affect the transient thermal stress distribution in a similar way, and for this reason the authors use a thermoviscoelastic model to estimate thermal stresses in young oceanic lithosphere. This theory is formulated here for linear creep processes that have an Arrhenius rate dependence on temperature. Results show that the stress differences between instant freezing and linear thermoviscoelastic theory are most pronounced at early times (0-20 m.y.) when the instant freezing stresses may be twice as large. The solutions for the two methods asymptotically approach the same solution with time. A comparison with intraplate seismicity shows that both methods underestimate the depth of compressional stresses inferred from the seismicity in a systematic way.

  2. Thermal stresses due to cooling of a viscoelastic oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Denlinger, Roger P.; Savage, William Z.

    1989-01-01

    Theories based upon thermal contraction of cooling oceanic lithosphere provide a successful basis for correlating seafloor bathymetry and heat flow. The horizontal components of the contraction of the lithosphere as it cools potentially give rise to large thermal stresses. Current methods to calculate these stresses assume that on the time scales of cooling, the lithosphere initially behaves as an inviscid fluid and instantly freezes into an elastic solid at some critical temperature. These instant-freezing methods inaccurately predict transient thermal stresses in rapidly cooling silicate glass plates because of the temperature dependent rheology of the material. The temperature dependent rheology of the lithosphere may affect the transient thermal stress distribution in a similar way, and for this reason we use a thermoviscoelastic model to estimate thermal stresses in young oceanic lithosphere. This theory is formulated here for linear creep processes that have an Arrhenius rate dependence on temperature. Our results show that the stress differences between instant freezing and linear thermoviscoelastic theory are most pronounced at early times (0-20 m.y.) when the instant freezing stresses may be twice as large. The solutions for the two methods asymptotically approach the same solution with time. A comparison with intraplate seismicity shows that both methods underestimate the depth of compressional stresses inferred from the seismicity in a systematic way.

  3. Thermal stresses, differential subsidence, and flexure at oceanic fracture zones

    NASA Technical Reports Server (NTRS)

    Wessel, Pal; Haxby, William F.

    1990-01-01

    Geosat geoid undulations over four Pacific fracture zones have been analyzed. After correcting for the isostatic thermal edge effect, the amplitudes of the residuals are shown to be proportional to the age offset. The shape of the residuals seems to broaden with increasing age. Both geoid anomalies and available ship bathymetry data suggest that slip must sometimes occur on the main fracture zone or secondary faults. Existing models for flexure at fracture zones cannot explain the observed anomalies. A combination model accounting for slip and including flexure from thermal stresses and differential subsidence is presented. This model accounts for lateral variations in flexural rigidity from brittle and ductile yielding due to both thermal and flexural stresses and explains both the amplitudes and the shape of the anomalies along each fracture zone. The best fitting models have mechanical plate thicknesses that are described by the depth to the 600-700 C isotherms.

  4. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification.

    PubMed

    Gori, Andrea; Ferrier-Pagès, Christine; Hennige, Sebastian J; Murray, Fiona; Rottier, Cécile; Wicks, Laura C; Roberts, J Murray

    2016-01-01

    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species. PMID:26855864

  5. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification

    PubMed Central

    Ferrier-Pagès, Christine; Hennige, Sebastian J.; Murray, Fiona; Rottier, Cécile; Wicks, Laura C.; Roberts, J. Murray

    2016-01-01

    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species. PMID:26855864

  6. Ocean Thermal Energy.

    ERIC Educational Resources Information Center

    Berkovsky, Boris

    1987-01-01

    Describes Ocean Thermal Energy Conservation (OTEC) as a method for exploiting the temperature difference between warm surface waters of the sea and its cold depths. Argues for full-scale demonstrations of the technique for producing energy for coastal regions. (TW)

  7. Ocean thermal plant

    NASA Technical Reports Server (NTRS)

    Owens, L. J. (Inventor)

    1978-01-01

    A floating energy converter is described which uses large volumes of sea water to produce electrical power. In this plant, a fluid working medium is pumped to an evaporator where is is heated by a flow of warm surface sea water. The fluid in liquid form boils to a pressurized gas vapor which is routed to drive a turbine that, in turn, drives a generator for producing electricity. The gas vapor then enters a condenser immersed in cold sea water pumped from lower depths, condenses to its original liquid form, and then pumped to the evaporator to repeat the cycle. Modular components can be readily interchanged on the ocean thermal unit and inlet pipes for the sea water are provided with means for maintaining the pipes in alignment with the oncoming current. The modular construction allows for the testing of various components to provide a more rapid optimization of a standardized plant.

  8. Ocean Thermal Extractable Energy Visualization

    SciTech Connect

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  9. Simulation and observations of annual density banding in skeletons of Montastraea (Cnidaria: Scleractinia) growing under thermal stress associated with ocean warming

    USGS Publications Warehouse

    Worum, F.P.; Carricart-Ganivet, J. P.; Benson, L.; Golicher, D.

    2007-01-01

    We present a model of annual density banding in skeletons of Montastraea coral species growing under thermal stress associated with an ocean-warming scenario. The model predicts that at sea-surface temperatures (SSTs) <29??C, high-density bands (HDBs) are formed during the warmest months of the year. As temperature rises and oscillates around the optimal calcification temperature, an annual doublet in the HDB (dHDB) occurs that consists of two narrow HDBs. The presence of such dHDBs in skeletons of Montastraea species is a clear indication of thermal stress. When all monthly SSTs exceed the optimal calcification temperature, HDBs form during the coldest, not the warmest, months of the year. In addition, a decline in mean-annual calcification rate also occurs during this period of elevated SST. A comparison of our model results with annual density patterns observed in skeletons of M. faveolata and M. franksi, collected from several localities in the Mexican Caribbean, indicates that elevated SSTs are already resulting in the presence of dHDBs as a first sign of thermal stress, which occurs even without coral bleaching. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  10. Ocean Thermal Energy Conversion (OTEC)

    NASA Technical Reports Server (NTRS)

    Lavi, A.

    1977-01-01

    Energy Research and Development Administration research progress in Ocean Thermal Energy Conversion (OTEC) is outlined. The development program is being focused on cost effective heat exchangers; ammonia is generally used as the heat exchange fluid. Projected costs for energy production by OTEC vary between $1000 to $1700 per kW.

  11. The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the history of ocean thermal stress.

    PubMed

    Stat, Michael; Pochon, Xavier; Franklin, Erik C; Bruno, John F; Casey, Kenneth S; Selig, Elizabeth R; Gates, Ruth D

    2013-05-01

    Spatially intimate symbioses, such as those between scleractinian corals and unicellular algae belonging to the genus Symbiodinium, can potentially adapt to changes in the environment by altering the taxonomic composition of their endosymbiont communities. We quantified the spatial relationship between the cumulative frequency of thermal stress anomalies (TSAs) and the taxonomic composition of Symbiodinium in the corals Montipora capitata, Porites lobata, and Porites compressa across the Hawaiian archipelago. Specifically, we investigated whether thermally tolerant clade D Symbiodinium was in greater abundance in corals from sites with high frequencies of TSAs. We recovered 2305 Symbiodinium ITS2 sequences from 242 coral colonies in lagoonal reef habitats at Pearl and Hermes Atoll, French Frigate Shoals, and Kaneohe Bay, Oahu in 2007. Sequences were grouped into 26 operational taxonomic units (OTUs) with 12 OTUs associated with Montipora and 21 with Porites. Both coral genera associated with Symbiodinium in clade C, and these co-occurred with clade D in M. capitata and clade G in P. lobata. The latter represents the first report of clade G Symbiodinium in P. lobata. In M. capitata (but not Porites spp.), there was a significant correlation between the presence of Symbiodinium in clade D and a thermal history characterized by high cumulative frequency of TSAs. The endogenous community composition of Symbiodinium and an association with clade D symbionts after long-term thermal disturbance appear strongly dependent on the taxa of the coral host. PMID:23762518

  12. The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the history of ocean thermal stress

    PubMed Central

    Stat, Michael; Pochon, Xavier; Franklin, Erik C; Bruno, John F; Casey, Kenneth S; Selig, Elizabeth R; Gates, Ruth D

    2013-01-01

    Spatially intimate symbioses, such as those between scleractinian corals and unicellular algae belonging to the genus Symbiodinium, can potentially adapt to changes in the environment by altering the taxonomic composition of their endosymbiont communities. We quantified the spatial relationship between the cumulative frequency of thermal stress anomalies (TSAs) and the taxonomic composition of Symbiodinium in the corals Montipora capitata, Porites lobata, and Porites compressa across the Hawaiian archipelago. Specifically, we investigated whether thermally tolerant clade D Symbiodinium was in greater abundance in corals from sites with high frequencies of TSAs. We recovered 2305 Symbiodinium ITS2 sequences from 242 coral colonies in lagoonal reef habitats at Pearl and Hermes Atoll, French Frigate Shoals, and Kaneohe Bay, Oahu in 2007. Sequences were grouped into 26 operational taxonomic units (OTUs) with 12 OTUs associated with Montipora and 21 with Porites. Both coral genera associated with Symbiodinium in clade C, and these co-occurred with clade D in M. capitata and clade G in P. lobata. The latter represents the first report of clade G Symbiodinium in P. lobata. In M. capitata (but not Porites spp.), there was a significant correlation between the presence of Symbiodinium in clade D and a thermal history characterized by high cumulative frequency of TSAs. The endogenous community composition of Symbiodinium and an association with clade D symbionts after long-term thermal disturbance appear strongly dependent on the taxa of the coral host. PMID:23762518

  13. Thermal stress and toxicity.

    PubMed

    Gordon, Christopher J; Johnstone, Andrew F M; Aydin, Cenk

    2014-07-01

    Elevating ambient temperature above thermoneutrality exacerbates toxicity of most air pollutants, insecticides, and other toxic chemicals. On the other hand, safety and toxicity testing of toxicants and drugs is usually performed in mice and rats maintained at sub-thermoneutral temperatures of ~22∘C. When exposed to chemical toxicants under these relatively cool conditions, rodents typically undergo a regulated hypothermic response, characterized by preference for cooler ambient temperatures and controlled reduction in core temperature. Reducing core temperature delays the clearance of most toxicants from the body; however, a mild hypothermia also improves recovery and survival from the toxicant. Raising ambient temperature to thermoneutrality and above increases the rate of clearance of the toxicant but also exacerbates toxicity. Furthermore, heat stress combined with work or exercise is likely to worsen toxicity. Body temperature of large mammals, including humans, does not decrease as much in response to exposure to a toxicant. However, heat stress can nonetheless worsen toxic outcome in humans through a variety of mechanisms. For example, heat-induced sweating and elevation in skin blood flow accelerates uptake of some insecticides. Epidemiological studies suggest that thermal stress may exacerbate the toxicity of airborne pollutants such as ozone and particulate matter. Overall, translating results of studies in rodents to that of humans is a formidable task attributed in part to the interspecies differences in thermoregulatory response to the toxicants and to thermal stress. PMID:24944028

  14. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  15. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  16. Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Froidevaux, C.; Yuen, D. A.

    1976-01-01

    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor.

  17. Ocean Thermal Energy Conversion: An overview

    SciTech Connect

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  18. French work on ocean thermal energy conversion

    NASA Astrophysics Data System (ADS)

    Marchand, P.

    The ocean is discussed as a world-wide potential source of renewable energy, with special attention given to the 'deposit' of ocean thermal energy, which is determined by the temperature difference existing between surface water and that at a depth of 1000 m. A brief history of work done in France is presented, and mention is made of the work of d'Arsonval (1881), Claude and Boucherot (1926), and of projects, such as those at Abidjan and Guadeloupe. Attention is given to the French ocean thermal energy sites, to the Empain-Schneider closed-cycle studies, and the open-cycle floating ocean thermal energy station, with a discussion of thermodynamic considerations and cold water pipes. Problems and prospects are reviewed.

  19. Sensitivity of Southern Ocean circulation to wind stress changes: Role of relative wind stress

    NASA Astrophysics Data System (ADS)

    Munday, D. R.; Zhai, X.

    2015-11-01

    The influence of different wind stress bulk formulae on the response of the Southern Ocean circulation to wind stress changes is investigated using an idealised channel model. Surface/mixed layer properties are found to be sensitive to the use of the relative wind stress formulation, where the wind stress depends on the difference between the ocean and atmosphere velocities. Previous work has highlighted the surface eddy damping effect of this formulation, which we find leads to increased circumpolar transport. Nevertheless the transport due to thermal wind shear does lose sensitivity to wind stress changes at sufficiently high wind stress. In contrast, the sensitivity of the meridional overturning circulation is broadly the same regardless of the bulk formula used due to the adiabatic nature of the relative wind stress damping. This is a consequence of the steepening of isopycnals offsetting the reduction in eddy diffusivity in their contribution to the eddy bolus overturning, as predicted using a residual mean framework.

  20. Thermal stress and human performance.

    PubMed

    Enander, A E; Hygge, S

    1990-01-01

    There is evidence that the thermal stress encountered in many work environments may negatively affect various aspects of human performance and behavior. Evaluation of the empirical research is, however, complicated by differences in both the methodology and the definition of the basic stimulus. Effects of heat and cold stress are briefly reviewed, with particular regard to theoretical considerations. PMID:2189219

  1. Thermal anomalies in stressed Teflon.

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Wulff, C. A.

    1972-01-01

    In the course of testing polytetrafluoroethylene (Teflon) as a calorimetric gasketing material, serendipity revealed a thermal anomaly in stressed film that occurs concomitantly with the well-documented 25 C transition. The magnitude of the excess energy absorption - about 35 cal/g - is suggested to be related to the restricted thermal expansion of the film.

  2. Ocean thermal gradient hydraulic power plant.

    PubMed

    Beck, E J

    1975-07-25

    Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump. PMID:17813707

  3. Oceanic lithosphere and asthenosphere - Thermal and mechanical structure

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Yuen, D. A.; Froidevaux, C.

    1976-01-01

    A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.

  4. Thermal stresses in composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.

    1986-01-01

    This paper summarizes work to determine the thermally-induced stresses and deformations in specially-constructed angle-ply composite tubes subjected to a uniform temperature change relative to their stress-free cure state. The tubes are designed for application to space structures and have high axial stiffness. Four angle-ply designs are examined in an effort to determine which design might have the most favorable thermally-induced response. A planar elasticity solution is used, the solution being valid away from the ends of the tube. Of the four designs considered, none has any particular advantage as far as stress levels are concerned. However, despite the fact that the tube wall is a balanced laminate, one design exhibits a significant amount of thermally-induced twist.

  5. Ocean thermal energy conversion: A review

    NASA Astrophysics Data System (ADS)

    Yuen, P. C.

    1981-10-01

    The OTEC principle along with general system and cycle, types, specific OTEC designs, OTEC applications, and the ocean thermal resource are discussed. The historic development of OTEC is reviewed, and the status of French, Japanese, EUROCEAN, and US programs is assessed. Power system components of the more technically advanced closed cycle OTEC concept are examined. These include: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on platform seawater systems. Several open cycle features are also discussed. The ocean engineering aspects of OTEC power systems are reviewed. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system, power transmission cable system are assessed for their relationships with the ocean environment and with each other. Possible environmental and social effects of OTEC development are discussed.

  6. Thermal and mechanical structure of the upper mantle: A comparison between continental and oceanic models

    NASA Technical Reports Server (NTRS)

    Froidevaux, C.; Schubert, G.; Yuen, D. A.

    1976-01-01

    Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.

  7. Open cycle ocean thermal energy conversion system

    SciTech Connect

    Wittig, J.M.

    1980-02-19

    An improved open cycle ocean thermal energy conversion system is described including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirtconduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a tranversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure.

  8. Ocean thermal energy conversion: a review

    SciTech Connect

    Yuen, P.C.

    1981-10-01

    The OTEC principle is discussed along with general system and cycle types, specific OTEC designs, OTEC applications, and the ocean thermal resource. The historic development of OTEC is briefly reviewed, and the status of French, Japanese, EUROCEAN, and US programs is assessed. US efforts are detailed and DOE's strategy outlined with OTEC-1 and Mini-OTEC information. Power system components of the more technically advanced closed-cycle OTEC concept are discussed. These include: heat exchangers, corrosion and biofouling countermeasures, working fluids, ammonia power systems, and on-platform seawater systems. Several open-cycle features are also discussed. A critical review is presented of the ocean engineering aspects of OTEC power systems. Major subsystems such as platform, cold water pipe, mooring system, dynamic positioning system, power transmission cable system are assessed for their relationships with the ocean environment and with each other. Nine available studies of OTEC costs are reviewed. Tentative comparisons are made between OTEC and traditional fuel costs, and OTEC products and markets are considered. Possible environmental and social effects of OTEC development are discussed. International, national, and local laws regulating OTEC plants and OTEC energy products are reviewed. Tax incentives, attitudes of the utilities, and additional legislative needs are considered. (LEW)

  9. Open cycle ocean thermal energy conversion system

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  10. Open cycle ocean thermal energy conversion system

    SciTech Connect

    Wittig, J.M.

    1980-02-19

    An improved open cycle ocean thermal energy conversion system includes a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flow path of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flow path and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support there for and impart a desired flow direction to the steam. 10 figs.

  11. Ocean Thermal Energy Conversion Act of 1980

    SciTech Connect

    Not Available

    1980-01-01

    A legislative proposal to develop ocean thermal energy conversion (OTEC) facilities for power generation was the subject of hearings held on April 10 and May 1, 1980. Following the test of S. 2492 are the statements of 20 witnesses and additional materials submitted for consideration. The need for a large-scale demonstration of OTEC and the need for a Federal regulatory, siting, and financial-assistance framework are the major commercialization issues. S. 2492 provides one-stop licensing by treating the facilities as vessels and making them eligible for loan guarantees. The bill complements S. 1430, which deals with the demonstration program. OTEC development in Hawaii has progressed to a second pilot project. (DCK)

  12. OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT

    SciTech Connect

    Sands, M. Dale

    1980-08-01

    Significant achievements in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power in this decade with subsequent large-scale commercialization to follow by the turn of the century. Under U.S. Department of Energy funding, Interstate Electronics has prepared an OTEC Programmatic Environmental Assessment (EA) that considers tne development, demonstration, and commercialization of OTEC power systems. The EA considers several tecnnological designs (open cycle and closed cycle), plant configurations (land-based, moored, and plantship), and power usages (baseload electricity and production of ammonia and aluminum). Potencial environmental impacts, health and safety issues, and a status update of international, federal, and state plans and policies, as they may influence OTEC deployments, are included.

  13. Ocean thermal energy conversion: Perspective and status

    NASA Astrophysics Data System (ADS)

    Thomas, Anthony; Hillis, David L.

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully by George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250 to 400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed cycle concept. Cost effective heat exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat transfer augmentation techniques were identified, which promised a reduction on heat exchanger size and cost. Fresh water was produced by an OTEC open cycle flash evaporator, using the heat energy in the seawater itself. The current R and D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open cycle process. The 10 MW shore-based, closed cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power; both valuable commodities on many tropical islands. The open cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources.

  14. Thermal-Mechanical Behavior of Oceanic Transform Faults- Implications for Hydration of the Upper Oceanic Mantle

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; Behn, M. D.; Hirth, G.

    2007-12-01

    The presence of water at oceanic transform faults influences the thermal structure, rheology, and petrology of the upper mantle. Serpentinization at ridges and transforms plays an important role for the large-scale water budget of the mantle and eventual flux melting that is responsible for arc volcanism at convergent margins. The extent to which hydrous minerals (e.g., serpentine and talc) are incorporated into the upper mantle at oceanic transform faults is highly dependent on the thermal structure and stress state. Previous numerical modeling studies have suggested that the mantle beneath oceanic transform faults is anomalously cold, with depressed isotherms relative to a half-space cooling model [1,2,3]. However, recent models, that incorporate brittle rheology, show that transform faults may represent a region of enhanced mantle upwelling and elevated temperatures [4]. To investigate the thermal-mechanical behavior of oceanic transform faults, we utilize a 3D finite element model, assuming mantle convection, conduction, and steady-state incompressible mantle flow. Our model incorporates a non-linear viscous rheology with a visco-plastic approximation to simulate lithospheric brittle failure. The introduction of water into the lithosphere causes rheological changes with additional feedbacks on the thermal and rheologic structure such as enhanced conductive cooling and changes in frictional behavior. We incorporate the effects of these feedbacks, and our derived thermal structures are integrated with the estimated zone of permeable fluid flow to approximate the stability fields of hydrous phases in the upper mantle. Through examining a rage of parameters, including spreading rate, fault length, and the efficiency of hydrothermal circulation, we constrain the potential for transform faults to act as a source for mantle hydration, and estimate the amount of water that could be bound in hydrous phases as a result of brittle cracking at oceanic faults. 1. Furlong et

  15. Thermal-Mechanical Behavior of Oceanic Transform Faults- Implications for Hydration of the Upper Oceanic Mantle

    NASA Astrophysics Data System (ADS)

    Roland, E. C.; Behn, M. D.; Hirth, G.

    2004-12-01

    The presence of water at oceanic transform faults influences the thermal structure, rheology, and petrology of the upper mantle. Serpentinization at ridges and transforms plays an important role for the large-scale water budget of the mantle and eventual flux melting that is responsible for arc volcanism at convergent margins. The extent to which hydrous minerals (e.g., serpentine and talc) are incorporated into the upper mantle at oceanic transform faults is highly dependent on the thermal structure and stress state. Previous numerical modeling studies have suggested that the mantle beneath oceanic transform faults is anomalously cold, with depressed isotherms relative to a half-space cooling model [1,2,3]. However, recent models, that incorporate brittle rheology, show that transform faults may represent a region of enhanced mantle upwelling and elevated temperatures [4]. To investigate the thermal-mechanical behavior of oceanic transform faults, we utilize a 3D finite element model, assuming mantle convection, conduction, and steady-state incompressible mantle flow. Our model incorporates a non-linear viscous rheology with a visco-plastic approximation to simulate lithospheric brittle failure. The introduction of water into the lithosphere causes rheological changes with additional feedbacks on the thermal and rheologic structure such as enhanced conductive cooling and changes in frictional behavior. We incorporate the effects of these feedbacks, and our derived thermal structures are integrated with the estimated zone of permeable fluid flow to approximate the stability fields of hydrous phases in the upper mantle. Through examining a rage of parameters, including spreading rate, fault length, and the efficiency of hydrothermal circulation, we constrain the potential for transform faults to act as a source for mantle hydration, and estimate the amount of water that could be bound in hydrous phases as a result of brittle cracking at oceanic faults. 1. Furlong et

  16. Alternative energy sources session ocean thermal energy conversion: Technology development

    NASA Astrophysics Data System (ADS)

    Richards, W. E.; Vadus, J. R.

    1980-03-01

    Four ocean-energy technologies with significant promise are explored: ocean thermal energy conversion; wave power; ocean currents; and salinity gradients. The major funding emphasis has been in OTEC. Technical developments, accomplishments and major findings, remaining problems, and proposed plans for the future are discussed.

  17. Transient thermal stress recovery for structural models

    NASA Technical Reports Server (NTRS)

    Walls, William

    1992-01-01

    A method for computing transient thermal stress vectors from temperature vectors is described. The three step procedure involves the use of NASTRAN to generate an influence coefficient matrix which relates temperatures to stresses in the structural model. The transient thermal stresses are then recovered and sorted for maximum and minimum values. Verification data for the procedure is also provided.

  18. Thermal stress studies using optical holographic interferometry

    NASA Technical Reports Server (NTRS)

    Harris, W. J.; Woods, D. C.

    1974-01-01

    The application of holography to thermal stress studies is discussed. Interference fringes as produced by holograms and their interpretation are reviewed in relation to workpiece displacement. Three potential mechanisms are given to explain thermal displacement as detected by holographic methods. Results of some thermal stressing studies are reported, including tests on a live rocket motor.

  19. Contribution to encyclopedia of thermal stresses

    NASA Astrophysics Data System (ADS)

    Taler, Jan; Ocłoń, Pawel

    2015-06-01

    This paper lists the contribution in the international interdisciplinary reference - Encyclopedia of Thermal Stresses (ETS). The ETS, edited by the world famous expert in field of Thermal Stresses - Professor Richard Hetnarski from Rochester Institute of Technology, was published by Springer in 2014. This unique Encyclopedia, subdivided into 11 volumes is the most extensive and comprehensive work related to the Thermal Stresses topic. The entries were carefully prepared by specialists in the field of thermal stresses, elasticity, heat conduction, optimization among others. The Polish authors' contribution within this work is significant; over 70 entries were prepared by them.

  20. Topographic form stress in the Southern Ocean State Estimate

    NASA Astrophysics Data System (ADS)

    Masich, Jessica; Chereskin, Teresa K.; Mazloff, Matthew R.

    2015-12-01

    We diagnose the Southern Ocean momentum balance in a 6 year, eddy-permitting state estimate of the Southern Ocean. We find that 95% of the zonal momentum input via wind stress at the surface is balanced by topographic form stress across ocean ridges, while the remaining 5% is balanced via bottom friction and momentum flux divergences at the northern and southern boundaries of the analysis domain. While the time-mean zonal wind stress field exhibits a relatively uniform spatial distribution, time-mean topographic form stress concentrates at shallow ridges and across the continents that lie within the Antarctic Circumpolar Current (ACC) latitudes; nearly 40% of topographic form stress occurs across South America, while the remaining 60% occurs across the major submerged ridges that underlie the ACC. Topographic form stress can be divided into shallow and deep regimes: the shallow regime contributes most of the westward form stress that serves as a momentum sink for the ACC system, while the deep regime consists of strong eastward and westward form stresses that largely cancel in the zonal integral. The time-varying form stress signal, integrated longitudinally and over the ACC latitudes, tracks closely with the wind stress signal integrated over the same domain; at zero lag, 88% of the variance in the 6 year form stress time series can be explained by the wind stress signal, suggesting that changes in the integrated wind stress signal are communicated via rapid barotropic response down to the level of bottom topography.

  1. Thermal stress effects in intermetallic matrix composites

    NASA Technical Reports Server (NTRS)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  2. Comprehensive plate models for the thermal evolution of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Grose, Christopher J.; Afonso, Juan Carlos

    2013-09-01

    Seafloor spreading and the cooling of oceanic lithosphere is a fundamental feature of plate tectonics in the Earth, the details of which are unveiled by modeling with constraints from mineral physics and geophysical observations. To work toward a more complete model of the thermal evolution of oceanic lithosphere, we investigate the contributions of axial hydrothermal circulation, oceanic crust, and temperature-pressure-dependent thermal properties. We find that models with only temperature-dependent properties disagree with geophysical observations unless properties are artificially modified. On the other hand, more comprehensive models are in better agreement with geophysical observations. Our preferred model requires a thermal expansivity reduction of 15% from a mineral physics estimate, and predicts a plate thickness of about 110-130 km. A principal result of our analysis is that the oceanic crust is a major contributor to the cooling of oceanic lithosphere. The oceanic crust acts as an insulating lid on the mantle, causing the rate of lithospheric cooling to increase from "crustal" values near the ridge to higher mantle values at old-age. Major consequences of this insulation effect are: (a) low seafloor subsidence rate in proximity to ridge axes (<5 Ma), (b) the thermal structure of oceanic lithosphere is significantly warmer than previous models, (c) seafloor heat flow is significantly lower over young (<35 Ma) seafloor compared to simple models, (d) a low net seafloor heat flux (˜27 TW), and (e) temperature at the base of the seismogenic zone extends to 700-800°C mantle.

  3. Thermal Stresses In Space-Shuttle Wing

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jenkins, Jerald M.

    1989-01-01

    Combined thermal deformations of wing-skin panel and TPS would not tear SIP layer. Report presents analysis of thermal stresses induced in skin panel, thermal-protection system (TPS), and strain-isolation pad (SIP) of Space Shuttle orbiter. Purpose of analysis to determine whether any part of above mentioned structures overstressed and overdeformed under reentry heating, assuming one TPS tile lost at end of reentry heating.

  4. Rotor thermal stress monitoring in steam turbines

    NASA Astrophysics Data System (ADS)

    Antonín, Bouberle; Jan, Jakl; Jindřich, Liška

    2015-11-01

    One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.

  5. Thermal stress in high temperature cylindrical fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    1988-01-01

    Uninsulated structures fabricated from carbon or silicon-based materials, which are allowed to become hot during flight, are attractive for the design of some components of hypersonic vehicles. They have the potential to reduce weight and increase vehicle efficiency. Because of manufacturing contraints, these structures will consist of parts which must be fastened together. The thermal expansion mismatch between conventional metal fasteners and carbon or silicon-based structural materials may make it difficult to design a structural joint which is tight over the operational temperature range without exceeding allowable stress limits. In this study, algebraic, closed-form solutions for calculating the thermal stresses resulting from radial thermal expansion mismatch around a cylindrical fastener are developed. These solutions permit a designer to quickly evaluate many combinations of materials for the fastener and the structure. Using the algebraic equations developed, material properties and joint geometry were varied to determine their effect on thermal stresses. Finite element analyses were used to verify that the closed-form solutions derived give the correct thermal stress distribution around a cylindrical fastener and to investigate the effect of some of the simplifying assumptions made in developing the closed-form solutions for thermal stresses.

  6. Thermal stresses in thick laminated composite shells

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1993-01-01

    The paper provides an analytical formulation to investigate the thermomechanical behavior of thick composite shells subjected to a temperature distribution which varies arbitrarily in the radial direction. For illustrative purposes, shells under uniform temperature change are presented. It is found that thermal twist would occur even for symmetric laminated shells. Under uniform temperature rise, results for off-axis graphite/epoxy shells show that extensional-shear coupling can cause tensile radial stress throughout the shell and tensile hoop stress in the inner region. Laminated graphite/epoxy shells can exhibit negative effective thermal expansion coefficients in the longitudinal and transverse directions. Finally, the stacking sequence has a strong influence on the thermal stress distributions.

  7. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  8. Apparent Stress and Centroid Time Shift: Oceanic vs Continental Earthquakes

    NASA Astrophysics Data System (ADS)

    Pérez-Campos, X.; McGuire, J. J.; Beroza, G. C.

    2001-12-01

    Seismic energy is a broadband measure of the strength of radiation in an earthquake. Slow earthquakes, for which the rupture velocity and/or the rise time, are longer than usual, are characterized by having anomalously little seismic radiation at high frequencies. Thus, the apparent stress, the ratio of the seismic energy to the seismic moment times the shear modulus, is a natural measure of whether or not an earthquake is slow. Slow events have long been associated with oceanic tranforms. It is unusual then, that in a global study of strike slip earthquakes, Choy and Boatwright (1995) found that oceanic transform events have values of apparent stress approximately an order of magnitude higher than normal and reverse faulting events. Part of this discrepancy appears to be a selection bias in that some slow events that are deficient in high frequency energy are not routinely reported by the NEIC. We find that the average apparent stress for oceanic ridge-ridge transform events is lower than for continental strike-slip events. Another possible measure of whether or not an earthquake is slow is the centroid time shift. We find a population of slow events on oceanic transforms with both a very low apparent stress and a very large centroid time shift, as might be expected. Continental transform events that have similarly low apparent stress do not show the same correlation with centroid time shift. It is not clear why these two populations differ, but by comparing spectra for different events with low apparent stress but different centroid time shift, we should be able to test possible sources of the differences, such as variations in the spectral shape for continental versus oceanic events, that could explain these observations.

  9. Intraplate earthquakes and the state of stress in oceanic lithosphere

    NASA Technical Reports Server (NTRS)

    Bergman, Eric A.

    1986-01-01

    The dominant sources of stress relieved in oceanic intraplate earthquakes are investigated to examine the usefulness of earthquakes as indicators of stress orientation. The primary data for this investigation are the detailed source studies of 58 of the largest of these events, performed with a body-waveform inversion technique of Nabelek (1984). The relationship between the earthquakes and the intraplate stress fields was investigated by studying, the rate of seismic moment release as a function of age, the source mechanisms and tectonic associations of larger events, and the depth-dependence of various source parameters. The results indicate that the earthquake focal mechanisms are empirically reliable indicators of stress, probably reflecting the fact that an earthquake will occur most readily on a fault plane oriented in such a way that the resolved shear stress is maximized while the normal stress across the fault, is minimized.

  10. Residual Stresses Modeled in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Freborg, A. M.; Ferguson, B. L.; Petrus, G. J.; Brindley, W. J.

    1998-01-01

    Thermal barrier coating (TBC) applications continue to increase as the need for greater engine efficiency in aircraft and land-based gas turbines increases. However, durability and reliability issues limit the benefits that can be derived from TBC's. A thorough understanding of the mechanisms that cause TBC failure is a key to increasing, as well as predicting, TBC durability. Oxidation of the bond coat has been repeatedly identified as one of the major factors affecting the durability of the ceramic top coat during service. However, the mechanisms by which oxidation facilitates TBC failure are poorly understood and require further characterization. In addition, researchers have suspected that other bond coat and top coat factors might influence TBC thermal fatigue life, both separately and through interactions with the mechanism of oxidation. These other factors include the bond coat coefficient of thermal expansion, the bond coat roughness, and the creep behavior of both the ceramic and bond coat layers. Although it is difficult to design an experiment to examine these factors unambiguously, it is possible to design a computer modeling "experiment" to examine the action and interaction of these factors, as well as to determine failure drivers for TBC's. Previous computer models have examined some of these factors separately to determine their effect on coating residual stresses, but none have examined all the factors concurrently. The purpose of this research, which was performed at DCT, Inc., in contract with the NASA Lewis Research Center, was to develop an inclusive finite element model to characterize the effects of oxidation on the residual stresses within the TBC system during thermal cycling as well as to examine the interaction of oxidation with the other factors affecting TBC life. The plasma sprayed, two-layer thermal barrier coating that was modeled incorporated a superalloy substrate, a NiCrAlY bond coat, and a ZrO2-8 wt % Y2O3 ceramic top coat. We

  11. Thermal Coupling Between the Ocean and Mantle of Europa: Implications for Ocean Convection

    NASA Astrophysics Data System (ADS)

    Soderlund, Krista M.; Schmidt, Britney E.; Wicht, Johannes; Blankenship, Donald D.

    2015-11-01

    Magnetic induction signatures at Europa indicate the presence of a subsurface ocean beneath the cold icy crust. The underlying mantle is heated by radioactive decay and tidal dissipation, leading to a thermal contrast sufficient to drive convection and active dynamics within the ocean. Radiogenic heat sources may be distributed uniformly in the interior, while tidal heating varies spatially with a pattern that depends on whether eccentricity or obliquity tides are dominant. The distribution of mantle heat flow along the seafloor may therefore be heterogeneous and impact the regional vigor of ocean convection. Here, we use numerical simulations of thermal convection in a global, Europa-like ocean to test the sensitivity of ocean dynamics to variations in mantle heat flow patterns. Towards this end, three end-member cases are considered: an isothermal seafloor associated with dominant radiogenic heating, enhanced seafloor temperatures at high latitudes associated with eccentricity tides, and enhanced equatorial seafloor temperatures associated with obliquity tides. Our analyses will focus on convective heat transfer since the heat flux pattern along the ice-ocean interface can directly impact the ice shell and the potential for geologic activity within it.

  12. Thermal stress and diabetic complications

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Yoshinori; Yabunaka, Noriyuki; Watanabe, Ichiro; Noro, Hiroshi; Fujisawa, Hiroyuki; Agishi, Yuko

    1995-06-01

    Activities of erythrocyte aldose reductase were compared in 34 normal subjects, 45 diabetic patients, and nine young men following immersion in water at 25, 39, and 42° C. Mean basal enzyme activity was 1.11 (SEM 0.12) U/g Hb and 2.07 (SEM 0.14) U/g Hb in normal controls and diabetic patients, respectively ( P<0.0001). Activities of the enzyme showed a good correlation with hemaglobin A1 (HbA1) concentrations ( P<0.01) but not with fasting plasma glucose concentrations. After immersion at 42° C for 10 min, enzyme activity was increased by 37.6% ( P<0.01); however, the activity decreased by 52.2% ( P<0.005) after immersion for 10 min at 39° C and by 47.0% ( P<0.05) at 25° C. These changes suggest that heat stress might aggravate diabetic complications, and body exposure to hot environmental conditions is not recommended for diabetic patients.

  13. The thermal infrared radiance properties of dust aerosol over ocean

    NASA Astrophysics Data System (ADS)

    Hao, Zengzhou; Pan, Delu; Tu, Qianguang; Gong, Fang; Chen, Jianyu

    2015-10-01

    Asian dust storms, which can long-range transport to ocean, often occur on spring. The present of Asian dust aerosols over ocean makes some difficult for other studies, such as cloud detection, and also take some advantage for ocean, such as take nutrition into the ocean by dry or wet deposition. Therefore, it is important to study the dust aerosol and retrieve the properties of dust from satellite observations that is mainly from the thermal infrared radiance. In this paper, the thermal infrared radiance properties of dust aerosol over ocean are analyzed from MODIS and MTSAT2 observations and Streamer model simulations. By analyzing some line samples and a series of dust aerosol region, it shows that the dust aerosol brightness temperature at 12μm (BT12) is always greater than BT11 and BT8.5, and BT8.5 is general greater than BT11. The brightness temperature different between 11μm and 12μm (BTD11-12) increases with the dust intensity. And the BTD11-12 will become positive when the atmospheric relative humidity is greater than 70%. The BTD11-12 increases gradually with the surface temperature while the effect on BTD11-12 of dust layer temperature is not evident. Those are caused by the transmission of the dust aerosol is different at the two thermal infrared channels. During daytime, dust infrared brightness temperature at mid-infrared bands should reduce the visual radiance, which takes about 25K or less. In general, BT3.7 is greater than BT11 for dust aerosol. Those results are helpful to monitor or retrieve dust aerosol physical properties over ocean from satellite.

  14. Thermal analysis of thermoelectric power generator; Including thermal stresses

    NASA Astrophysics Data System (ADS)

    Al-Merbati, Abdulrahman Salman

    In recent years, the energy demand is increasing leads to use and utilization of clean energy becomes target of countries all over the world. Thermoelectric generator is one type of clean energy generators which is a solid-state device that converts heat energy into electrical energy through the Seebeck effect. With availability of, heat from different sources such as solar energy and waste energy from systems, thermoelectric research becomes important research topic and researchers investigates efficient means of generating electricity from thermoelectric generators. One of the important problems with a thermoelectric is development of high thermal stresses due to formation of temperature gradient across the thermoelectric generator. High thermal stress causes device failure through cracks or fractures and these short comings may reduce the efficiency or totally fail the device. In this thesis work, thermodynamic efficiency and thermal stresses developed in thermoelectric generator are analyzed numerically. The bismuth telluride (Bi2Te3) properties are used in simulation. Stress levels in thermoelectric device pins are computed for various pin geometric configurations. MASTER.

  15. Utilizing Ocean Thermal Energy in a Submarine Robot

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Chao, Yi

    2009-01-01

    A proposed system would exploit the ocean thermal gradient for recharging the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. The proposed system is related to, but not the same as, previously reported ocean thermal energy conversion (OTEC) systems that exploit the ocean thermal gradient but consist of stationary apparatuses that span large depth ranges. The system would include a turbine driven by working fluid subjected to a thermodynamic cycle. CO2 has been provisionally chosen as the working fluid because it has the requisite physical properties for use in the range of temperatures expected to be encountered in operation, is not flammable, and is much less toxic than are many other commercially available refrigerant fluids. The system would be housed in a pressurized central compartment in a UUV equipped with a double hull (see figure). The thermodynamic cycle would begin when the UUV was at maximum depth, where some of the CO2 would condense and be stored, at relatively low temperature and pressure, in the annular volume between the inner and outer hulls. The cycle would resume once the UUV had ascended to near the surface, where the ocean temperature is typically greater than or equals 20 C. At this temperature, the CO2 previously stored at depth in the annular volume between the inner and outer hulls would be pressurized to approx. equals 57 bar (5.7 MPa). The pressurized gaseous CO2 would flow through a check valve into a bladder inside the pressurized compartment, thereby storing energy of the relatively warm, pressurized CO2 for subsequent use after the next descent to maximum depth.

  16. Conversion of ocean thermal energy with the salt cycle

    SciTech Connect

    Saikia, S.

    1997-07-01

    A temperature gradient exists between the top and the depths of oceans, the Salt Cycle is targeted at converting this thermal energy. The phases of certain solutions (liquid-liquid or solid-liquid) separate out at lower temperatures enabling the separation of the solute. By placing the solute behind a semipermeable membrane, at a higher temperature, an osmotic pressure can be developed. The pressure released into a turbine can generate power or may be put to other uses like desalination.

  17. Environmental programs for ocean thermal energy conversion (OTEC)

    SciTech Connect

    Wilde, P.

    1981-07-01

    The environmental research effort in support of the US Department of Energy's Ocean Thermal Energy Conversion (OTEC) program has the goal of providing documented information on the effect of proposed operations on the ocean and the effect of oceanic conditions on the plant. The associated environment program consists of archival studies in potential areas serial oceanographic cruises to sites or regions of interest, studies from various fixed platforms at sites, and compilation of such information for appropriate legal compliance and permit requirements and for use in progressive design of OTEC plants. Site/regions investigated are south of Mobile and west of Tampa, Gulf of Mexico; Punta Tuna, Puerto Rico; St. Croix, Virgin Islands; Kahe Point, Oahu and Keahole Point, Hawaii, Hawaiian Islands; and off the Brazilian south Equatorial Coast. Four classes of environmental concerns identified are: redistribution of oceanic properties (ocean water mixing, impingement/entrainment etc.); chemical pollution (biocides, working fluid leaks, etc.); structural effects (artificial reef, aggregation, nesting/migration, etc.); socio-legal-economic (worker safety, enviromaritime law, etc.).

  18. Thermal stress fracturing of magma simulant materials

    SciTech Connect

    Wemple, R.P.; Longcope, D.B.

    1986-10-01

    Direct contact heat exchanger concepts for the extraction of energy from magma chambers are being studied as part of the DOE-funded Magma Energy Research Program at Sandia National Laboratories. These concepts require the solidification of molten material by a coolant circulated through a borehole drilled into the magma and subsequent fracture of the solid either as a natural consequence of thermal stress or by deliberate design (intentional flaws, high pressure, etc.). This report summarizes the results of several thermal stress fracturing experiments performed in the laboratory and compares the results with an analysis developed for use as a predictive tool. Information gained from this test series has been the basis for additional work now under way to simulate magma melt solidification processes.

  19. Thermal stress analysis for a wood composite blade. [wind turbines

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    Heat conduction throughout the blade and the distribution of thermal stresses caused by the temperature distribution were determined for a laminated wood wind turbine blade in both the horizontal and vertical positions. Results show that blade cracking is not due to thermal stresses induced by insulation. A method and practical example of thermal stress analysis for an engineering body of orthotropic materials is presented.

  20. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  1. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  2. 40 CFR 90.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for... effect of thermal stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture...

  3. 40 CFR 90.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for... effect of thermal stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture...

  4. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  5. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  6. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  7. 40 CFR 90.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for... effect of thermal stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture...

  8. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  9. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  10. 40 CFR 90.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for... effect of thermal stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture...

  11. 40 CFR 90.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress resistance... Gaseous Exhaust Test Procedures § 90.427 Catalyst thermal stress resistance evaluation. (a) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress...

  12. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  13. 40 CFR 91.427 - Catalyst thermal stress resistance evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Catalyst thermal stress resistance... Procedures § 91.427 Catalyst thermal stress resistance evaluation. (a)(1) The purpose of the evaluation procedure specified in this section is to determine the effect of thermal stress on catalyst...

  14. 40 CFR 90.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Catalyst thermal stress test. 90.329... Equipment Provisions § 90.329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for... effect of thermal stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture...

  15. 40 CFR 91.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the... stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture must have the...

  16. 40 CFR 91.329 - Catalyst thermal stress test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Catalyst thermal stress test. 91.329....329 Catalyst thermal stress test. (a) Oven characteristics. The oven used for termally stressing the... stress on catalyst conversion efficiency. (2) The synthetic exhaust gas mixture must have the...

  17. OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT

    SciTech Connect

    Sands, M. Dale

    1980-08-01

    Significant acccrmplishments in Ocean Thermal Energy Conversion (OTEC) technology have increased the probability of producing OTEC-derived power within this decade with subsequent large scale commercialization following by the turn of the century. Under U.S. Department of Energy funding, the Oceanic Engineering Operations of Interstate Electronics Corporation has prepared several OTEC Environmental Assessments over the past years, in particular, the OTEC Programmatic Environmental Assessment. The Programmatic EA considers several technological designs (open- and closed-cycle), plant configuratlons (land-based, moored, and plant-ship), and power usages (baseload electricity, ammonia and aluminum production). Potential environmental impacts, health and safetv issues and a status update of the institutional issues as they influence OTEC deployments, are included.

  18. Observed ocean thermal response to Hurricanes Gustav and Ike

    NASA Astrophysics Data System (ADS)

    Meyers, Patrick C.; Shay, Lynn K.; Brewster, Jodi K.; Jaimes, Benjamin

    2016-01-01

    The 2008 Atlantic hurricane season featured two hurricanes, Gustav and Ike, crossing the Gulf of Mexico (GOM) within a 2 week period. Over 400 airborne expendable bathythermographs (AXBTs) were deployed in a GOM field campaign before, during, and after the passage of Gustav and Ike to measure the evolving upper ocean thermal structure. AXBT and drifter deployments specifically targeted the Loop Current (LC) complex, which was undergoing an eddy-shedding event during the field campaign. Hurricane Gustav forced a 50 m deepening of the ocean mixed layer (OML), dramatically altering the prestorm ocean conditions for Hurricane Ike. Wind-forced entrainment of colder thermocline water into the OML caused sea surface temperatures to cool by over 5°C in GOM common water, but only 1-2°C in the LC complex. Ekman pumping and a near-inertial wake were identified by fluctuations in the 20°C isotherm field observed by AXBTs and drifters following Hurricane Ike. Satellite estimates of the 20° and 26°C isotherm depths and ocean heat content were derived using a two-layer model driven by sea surface height anomalies. Generally, the satellite estimates correctly characterized prestorm conditions, but the two-layer model inherently could not resolve wind-forced mixing of the OML. This study highlights the importance of a coordinated satellite and in situ measurement strategy to accurately characterize the ocean state before, during, and after hurricane passage, particularly in the case of two consecutive storms traveling through the same domain.

  19. Heat transfer research for ocean thermal energy conversion

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  20. Carbon dioxide release from ocean thermal energy conversion (OTEC) cycles

    SciTech Connect

    Green, H.J. ); Guenther, P.R. )

    1990-09-01

    This paper presents the results of recent measurements of CO{sub 2} release from an open-cycle ocean thermal energy conversion (OTEC) experiment. Based on these data, the rate of short-term CO{sub 2} release from future open-cycle OTEC plants is projected to be 15 to 25 times smaller than that from fossil-fueled electric power plants. OTEC system that incorporate subsurface mixed discharge are expected to result in no long-term release. OTEC plants can significantly reduce CO{sub 2} emissions when substituted for fossil-fueled power generation. 12 refs., 4 figs., 3 tabs.

  1. Physiological Responses to Thermal Stress and Exercise

    NASA Astrophysics Data System (ADS)

    Iyota, Hiroyuki; Ohya, Akira; Yamagata, Junko; Suzuki, Takashi; Miyagawa, Toshiaki; Kawabata, Takashi

    The simple and noninvasive measuring methods of bioinstrumentation in humans is required for optimization of air conditioning and management of thermal environments, taking into consideration the individual specificity of the human body as well as the stress conditions affecting each. Changes in human blood circulation were induced with environmental factors such as heat, cold, exercise, mental stress, and so on. In this study, the physiological responses of human body to heat stress and exercise were investigated in the initial phase of the developmental research. We measured the body core and skin temperatures, skin blood flow, and pulse wave as the indices of the adaptation of the cardiovascular system. A laser Doppler skin blood flowmetry using an optical-sensor with a small portable data logger was employed for the measurement. These results reveal the heat-stress and exercise-induced circulatory responses, which are under the control of the sympathetic nerve system. Furthermore, it was suggested that the activity of the sympathetic nervous system could be evaluated from the signals of the pulse wave included in the signals derived from skin blood flow by means of heart rate variability assessments and detecting peak heights of velocity-plethysmogram.

  2. Thermal stress analysis of wrapped pipes in steady temperature state

    SciTech Connect

    Kawaguchi, Kouji; Sawa, Toshiyuki

    1995-11-01

    Thermal stress distributions of wrapped pipes subjected to heat loading are analyzed using an axisymmetrical theory of elasticity. The wrapped pipes consist of two finite hollow pipes of dissimilar material. In the numerical calculations, the effects of the thermal expansion coefficient and Young`s modulus on the interface thermal stress distributions are investigated. The residual thermal stress distributions are examined in the case of alumina-metal wrapped pipes. Experiments on the strains were conducted. It is found that the interface thermal stresses increase with an increase of the ratios of the thermal expansion coefficient and of Young`s modulus between the inner and the outer pipes. Moreover, it is demonstrated that the residual thermal stress in the case of alumina-metal wrapped pipes decreases as Young`s modulus of the outer pipe decreases and the thermal expansion coefficient of the outer pipe increases. The analytical results show good agreement with the experiments.

  3. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Masubuchi, K.

    1973-01-01

    The research is reported concerning the development of a system of mathematical solutions and computer programs for one- and two-dimensional analyses for thermal stresses. Reports presented include: the investigation of thermal stress and buckling of tantalum and columbium sheet; and analysis of two dimensional thermal strains and metal movement during welding.

  4. Thermal-Stress Reducer For Metal/Composite Joint

    NASA Technical Reports Server (NTRS)

    Glinski, Robert L.

    1993-01-01

    Simple insert called "thermal link" reduces stresses caused by mismatches between thermal expansions of metal part and nonmetallic part made of fiber/matrix composite material. Link conceived for use in casing of advanced jet engine.

  5. Seafloor morphology and the thermal evolution of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Stein, Carol

    2010-05-01

    Standard reference models for the cooling of oceanic lithosphere, on average, predict the observed temperature-dependent properties, such as depth and heat flow with age. However, for all generally accepted models a significant discrepancy exists between measured and expected heat flow for ages less than about 65 million years. Traditionally lower measured heat flow average values are explained by significant hydrothermal circulation through the uppermost oceanic crust. In this approach, it is assumed that some of the heat transferred by conduction from lithospheric depths is removed by the water flow and transferred between the oceans and crust at locations where the seafloor is bare or poorly sedimented. This component of heat transfer would not be detected by the measurements, which record only conductive transfer. However, recently Hofmeister and Criss [2005] have suggested that hydrothermal circulation is not a significant factor, so the measured marine heat flow results should be used instead of the thermal models in calculating total heat loss for the earth. This approach lowers the loss by about 25%. This hypothesis is tested by examining whether the discrepancy between the predicted and measured heat flows varies between sites such that the highest heat flow is observed where hydrothermal flux should be least due to the regional topography of the igneous basement and sediment thickness. This appears to be the case. Sites with ages less than 65 million years in areas with smooth basement and thick sediment cover have average heat flow equal to that expected from thermal cooling models, except at the very youngest ages. In contrast, sites in areas with thinly sedimented basement outcrops have significantly lower heat flow. These sites make up a progressively lower fraction of the total at older ages as sedinent cover increases. Moreover, for all site types, the measured heat flow approaches the cooling model's predictions at older ages. As a result, by 65

  6. Modeling Thermal and Environmental Effects of Prototype Scale Ocean Thermal Energy Conversion

    NASA Astrophysics Data System (ADS)

    Hamrick, J. M.

    2010-12-01

    Ocean thermal energy conversion (OTEC) utilizes the temperature difference between the mix lay and deep water electricity generation. The small temperature difference compared to other thermal-electric generation devises, typically between 20 and 25 C, requires the substantial volumetric flows on the order of hundreds of cubic meters per second to generate net energy and recover capital investments. This presentation described the use of a high resolution three-dimensional EFDC model with an embedded jet-plume model to simulate the thermal and environmental impacts of a number of prototype OTEC configurations on the southwest coast of Oahu, Hawaii. The EFDC model is one-way nested into a larger scale ROMS model to allow for realistic incorporation of region processes including external and internal tides and sub-tidal circulation. Impacts on local thermal structure and the potential for nutrient enrichment of the mixed layer are addressed with model and presented.

  7. Coupled thermal stress simulations of ductile tearing

    DOE PAGESBeta

    Neilsen, Michael K.; Dion, Kristin

    2016-03-01

    Predictions for ductile tearing of a geometrically complex Ti-6Al-4V plate were generated using a Unified Creep Plasticity Damage model in fully coupled thermal stress simulations. Uniaxial tension and butterfly shear tests performed at displacement rates of 0.0254 and 25.4 mm/s were also simulated. Results from these simulations revealed that the material temperature increase due to plastic work can have a dramatic effect on material ductility predictions in materials that exhibit little strain hardening. Furthermore, this occurs because the temperature increase causes the apparent hardening of the material to decrease which leads to the initiation of deformation localization and subsequent ductilemore » tearing earlier in the loading process.« less

  8. Thermal structure, radial anisotropy, and dynamics of oceanic boundary layers

    NASA Astrophysics Data System (ADS)

    Auer, Ludwig; Becker, Thorsten W.; Boschi, Lapo; Schmerr, Nicholas

    2015-11-01

    Defining the oceanic lithosphere as a thermal boundary layer allows to explain, to first order, age-dependent bathymetry and isotropic wave speeds. In contrast, SS precursors and receiver functions suggest a subhorizontal interface within this layer, on top of a radially anisotropic zone. Comparing a suite of geodynamic scenarios against surface wave dispersion data and seismic discontinuities, we find that only weak age dependency of the radially anisotropic zone is compatible with observations. We show that this zone is confined from below by a second weaker seismic interface. While observed azimuthal anisotropy is consistent with lattice-preferred orientation of olivine due to asthenospheric flow underneath the lithosphere, radial anisotropy requires additional contributions, perhaps from petrological fabrics or melt ponding. This implies that seismic reflectors previously associated with the base of the lithosphere are instead associated with preserved structures embedded in it. They carry information about plate formation but have little control on plate deformation.

  9. Thermal-stress-free fasteners for joining orthotropic materials

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    1987-01-01

    Hot structures fabricated from orthotropic materials are an attractive design option for future high speed vehicles. Joining subassemblies of these materials with standard cylindrical fasteners can lead to loose joints or highly stressed joints due to thermal stress. A method has been developed to eliminate thermal stress and maintain a tight joint by shaping the fastener and mating hole. This method allows both materials (fastener and structure), with different coefficients of thermal expansion (CTE's) in each of the three principal material directions, to expand freely with temperature yet remain in contact. For the assumptions made in the analysis, the joint will remain snug, yet free of thermal stress at any temperature. Finite element analysis was used to verify several thermal-stress-free fasteners and to show that conical fasteners, which are thermal-stress-free for isotropic materials, can reduce thermal stresses for transversely isotropic materials compared to a cylindrical fastener. Equations for thermal-stress-free shapes are presented and typical fastener shapes are shown.

  10. Thermal-stress-free fasteners for joining orthotropic materials

    NASA Technical Reports Server (NTRS)

    Blosser, M. L.

    1987-01-01

    Hot structures fabricated from orthotropic materials are an attractive design option for future high speed vehicles. Joining subassemblies of these materials with standard cylindrical fasteners can lead to loose joints or highly stressed joints due to thermal stress. A method has been developed to eliminate thermal stresses and maintain a tight joint by shaping the fastener and mating hole. This method allows both materials (fastener and structure), with different coefficients of thermal expansion (CTEs) in each of the three material directions, to expand freely with temperature yet remain in contact. For the assumptions made in the analysis, the joint will remain snug, yet free of thermal stress at any temperature. Finite element analysis was used to verify several thermal-stress-free fasteners and to show that conical fasteners, which are thermal-stress-free for isotropic materials, can reduce thermal stresses for transversely isotropic materials compared to a cylindrical fastener. Equations for thermal-stress-free shapes are presented and typical fastener shapes are shown.

  11. Thermal Residual Stress in Environmental Barrier Coated Silicon Nitride - Modeled

    NASA Technical Reports Server (NTRS)

    Ali, Abdul-Aziz; Bhatt, Ramakrishna T.

    2009-01-01

    When exposed to combustion environments containing moisture both un-reinforced and fiber reinforced silicon based ceramic materials tend to undergo surface recession. To avoid surface recession environmental barrier coating systems are required. However, due to differences in the elastic and thermal properties of the substrate and the environmental barrier coating, thermal residual stresses can be generated in the coated substrate. Depending on their magnitude and nature thermal residual stresses can have significant influence on the strength and fracture behavior of coated substrates. To determine the maximum residual stresses developed during deposition of the coatings, a finite element model (FEM) was developed. Using this model, the thermal residual stresses were predicted in silicon nitride substrates coated with three environmental coating systems namely barium strontium aluminum silicate (BSAS), rare earth mono silicate (REMS) and earth mono di-silicate (REDS). A parametric study was also conducted to determine the influence of coating layer thickness and material parameters on thermal residual stress. Results indicate that z-direction stresses in all three systems are small and negligible, but maximum in-plane stresses can be significant depending on the composition of the constituent layer and the distance from the substrate. The BSAS and REDS systems show much lower thermal residual stresses than REMS system. Parametric analysis indicates that in each system, the thermal residual stresses can be decreased with decreasing the modulus and thickness of the coating.

  12. Temperature, Thermal Stress, And Creep In A Structure

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1991-01-01

    Report presents comparison of predicted and measured temperatures, thermal stresses, and residual creep stresses in heated and loaded titanium structure. Study part of continuing effort to develop design capability to predict and reduce deleterious effects of creep, which include excessive deformations, residual stresses, and failure.

  13. Thermal stress fracture in elastic-brittle materials

    NASA Technical Reports Server (NTRS)

    Emery, A. F.

    1980-01-01

    The reported investigation shows that the assessment of the possibility of the thermal fracture of brittle materials depends upon an accurate evaluation of the thermal stresses and the determination of the resulting stress intensity factors. The stress intensity factors can be calculated in a variety of ways ranging from the very precise to approximate, but only for a limited number of geometries. The main difficulty is related to the determination of the thermal stress field because of its unusual character and its dependence upon boundary conditions at points far from the region of thermal activity. Examination of a number of examples suggests that the best visualization of the thermal stresses and any associated fracture can be made by considering the problem to be the combination of thermal and isothermal problems or by considering that the prime effect of the temperature is in the generation of thermal strains and that the thermal stresses are simply the result of the region trying to accommodate these strains.

  14. Ocean thermal energy conversion: Historical highlights, status, and forecast

    SciTech Connect

    Dugger, G.L.; Avery, W.H.; Francis, E.J.; Richards, D.

    1983-07-01

    In 1881, d'Arsonval conceived the closed-Rankine-cycle ocean thermal energy conversion (OTEC) system in which a working fluid is vaporized by heat exchange with cold water drawn from a 700-1200 m depth. In 1930, Claude demonstrated an open-cycle process in Cuba. Surface water was flash-vaporized at 3 kPa to drive a turbine directly (no secondary working fluid) and then was condensed by direct contact with water drawn from a 700-m depth through a 1.6m-diam, 1.75-km-long cold-water pipe (CWP). From a delta T of 14/sup 0/C his undersized turbine generated 22 kW. In 1956 a French team designed a 3.5-MW (net) open-cycle plant for installation off Abidjan on the Ivory Coast of Africa and demonstrated the necessary CWP deployment. The at-sea demonstrations by Mini-OTEC and OTEC-1 and other recent advances in OTEC technology summarized herein represent great progress. All of the types of plants proposed for the DOE's PON program may be worthy of development; certainly work on a grazing plant is needed. Our estimates indicate that the U.S. goals established by Public Law 96-310 leading to 10 GW of OTEC power and energy product equivalents by 1999 are achievable, provided that adequate federal financial incentives are retained to assure the building of the first few plants.

  15. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  16. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    SciTech Connect

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  17. Waterborne noise due to ocean thermal energy conversion plants

    NASA Astrophysics Data System (ADS)

    Janota, C. P.; Thompson, D. E.

    1982-06-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the sea-water pumps is expected to dominate in the frequency range 10 Hz to 1 kHZ. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  18. Waterborne noise due to ocean thermal energy conversion plants

    SciTech Connect

    Janota, C.P.; Thompson, D.E.

    1983-07-01

    Public law reflects a United States national commitment to the rapid development of Ocean Thermal Energy Conversion (OTEC) as an alternate energy source. OTEC plants extract the stored solar energy from the world's tropical seas and in so doing pose a potential for altering the character of the ambient noise there. The sources of noise from an OTEC plant are analyzed in the context of four configurations, two of which were built and tested, and two which are concepts for future full-scale moored facilities. The analysis indicates that the noise resulting from the interaction of turbulence with the seawater pumps is expected to dominate in the frequency range 10 Hz to 1 kHz. Measured radiated noise data from the OTEC-I research plant, located near the island of Hawaii, are compared with the analysis. The measured data diverge from the predicted levels at frequencies above about 60 Hz because of dominant non-OTEC noise sources on this platform. However, at low frequency, the measured broadband noise is comparable to that predicted.

  19. Calibration of sonic flowmeters for Ocean Thermal Energy Conversion (OTEC)

    NASA Astrophysics Data System (ADS)

    Lott, D. F.; Salsman, G. G.; Hodges, C. E.

    1980-12-01

    Scientists at the Naval Coastal Systems Center (NCSC) at Panama City, Florida, have used a commercially available acoustic flowmeter to monitor critical flow conditions during an OTEC (Ocean Thermal Energy Conversion) funded study of the effects of biofouling on the efficiency of a prototype heat transfer system. Flowmeters of this type are particularly useful in applications requiring unimpeded flow; i.e., no sensor projecting into the moving fluid. Unfortunately, sonic flowmeters are somewhat difficult to calibrate and may be subject to drift. A method of calibration devised by NCSC may thus be of some interest to other users. It is the purpose of this report to document the special procedures used by test personnel to calibrate the flowmeters. Briefly, the calibration consisted of pumping sea water through the flowmeter into a tank suspended beneath a special load cell which provided an output voltage proportional to the weight of water in the tank. A programmable desktop calculator system was used to monitor changes in voltage as a function of time and convert these changes into flow rates for direct comparison with values read from the sonic flowmeter's digital display. Calibration checks were made at metered flows of 8, 10, 12, 14, 16, and 18 gallons per minute (gpm). It was found that computed flows were essentially linear but differed from metered values by as much as 9.0 percent.

  20. Thermal stress effects in intermetallic matrix composites. Final report

    SciTech Connect

    Wright, P.K.; Sensmeier, M.D.; Kupperman, D.S.; Wadley, H.N.G.

    1993-09-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  1. Transient thermal stress analysis of a laminated composite beam

    SciTech Connect

    Tanigawa, Y.; Murakami, H.; Ootao, Y. California Univ., La Jolla Osaka Prefectural Industrial Technology Research Institute )

    1989-01-01

    This paper considers a transient thermal stress analysis of a laminated beam made of different materials in multilayers. To simplify the problem, the heat conduction problem is treated as a one-dimensional case in the direction of thickness; then, the transient temperature solution is evaluated using the Laplace transform method. For the thermoelastic fields, thermal stress distributions are obtained using the elementary beam theory and Airy's thermal stress function method. As an example, numerical calculations are carried out for a laminated beam made of five layers, and the numerical results are examined.

  2. Measuring of residual stresses in thermal sprayed coatings

    SciTech Connect

    Brandt, O.C.

    1995-12-31

    The Modified Almen Method (MAM) uses the deformation of test samples for measuring the residual stress and with small mathematical expenditure it yields the distribution in the coating. This paper presents the basic theory of MAM and the boundary conditions for using this method for the classification of thermal sprayed coatings with respect to the residual stress. The residual stress distribution of different HVOF coatings are shown in this work. Typical spray parameters are compared. The results are also compared with the ones calculated with other methods for the determination of the residual stress in thermal sprayed coatings.

  3. Phase composition and residual stresses in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Betsofen, S. Ya.; Ryabenko, B. V.; Ashmarin, A. A.; Molostov, D. E.

    2015-10-01

    The phase composition and the residual stresses in multilayer thermal barrier coatings, which consist of an external ZrO2-8Y2O3 ceramic layer, an intermediate gradient (metal ceramic) layer, and a transient metallic NiCrAlY sublayer, are studied. It is shown that an increase in the specific volume of the metallic sublayer as a result of the formation of thermal growing oxide Al2O3 generates high compressive stresses in this sublayer. The ceramic layer undergoes tensile stresses in this case. A method is proposed to estimate the stresses in gradient coatings from X-ray diffraction results.

  4. The Warming Hiatus, Natural Variability and Thermal Ocean Structure

    NASA Astrophysics Data System (ADS)

    Groth, A.; Moron, V.; Robertson, A. W.; Kondrashov, D. A.; Ghil, M.

    2015-12-01

    Long before the recent concern with the warming hiatus, Ghil and Vautard (1991, Nature) stated at the end of their abstract that "The oscillatory components [in global temperature time series] have combined (peak-to-peak) amplitudes of 0.2°C, and therefore limit our ability to predict whether the inferred secular warming of 0.005°C/yr will continue." Present capabilities of the advanced spectral methods introduced into the global warming problem by that paper permit us now to consider oscillatory aspects of natural variability in much greater detail. In a multivariate analysis of the upper-ocean thermal structure, we examine properties of the recent long-term changes and of the naturally occurring global-climate fluctuations on interannual-to-interdecadal time scales. M. Ghil and associates (Ghil and Vautard 1991; Plaut et al. 1995, Science; Ghil et al. 2002, Rev. Geophys.), among others, have argued that this natural variability has some regularity embedded into it. Although the existence of such regularity on the interannual time scale is fairly well established by now, evidence for similar regularity on decadal and interdecadal time scales is more difficult to establish, due to the shortness of instrumental temperature data. To identify spatio-temporal patterns, we rely on the method of multichannel singular spectrum analysis [M-SSA; see Ghil et al. (2002) for a review] and on its recent improvements that help separate distinct patterns (Groth and Ghil 2011, Phys. Rev. E; Groth and Ghil 2015, J. Climate). Results on the temperature field from the Simple Ocean Data Assimilation (SODA) reanalysis (Carton and Giese 2008, Mon. Wea. Rev.; Giese and Ray 2011, J. Geophys. Res.) will be shown and contrasted with results on the HadCRUT surface temperature dataset (Morice et al. 2012, J. Geophys. Res.). We will focus, in particular, on the robustness of the geographical distribution of long-term changes in both data sets and discuss the significance of superimposed

  5. Lipid biomarkers in Symbiodinium dinoflagellates: new indicators of thermal stress

    NASA Astrophysics Data System (ADS)

    Kneeland, J.; Hughen, K.; Cervino, J.; Hauff, B.; Eglinton, T.

    2013-12-01

    Lipid content and fatty acid profiles of corals and their dinoflagellate endosymbionts are known to vary in response to high-temperature stress. To better understand the heat-stress response in these symbionts, we investigated cultures of Symbiodinium goreauii type C1 and Symbiodinium sp. clade subtype D1 grown under a range of temperatures and durations. The predominant lipids produced by Symbiodinium are palmitic (C16) and stearic (C18) saturated fatty acids and their unsaturated analogs, the polyunsaturated fatty acid docosahexaenoic acid (C22:6, n-3; DHA), and a variety of sterols. Prolonged exposure to high temperature causes the relative amount of unsaturated acids within the C18 fatty acids in Symbiodinium tissue to decrease. Thermal stress also causes a decrease in abundance of fatty acids relative to sterols, as well as the more specific ratio of DHA to an algal 4-methyl sterol. These shifts in fatty acid unsaturation and fatty acid-to-sterol ratios are common to both types C1 and D1, but the apparent thermal threshold of lipid changes is lower for type C1. This work indicates that ratios among free fatty acids and sterols in Symbiodinium can be used as sensitive indicators of thermal stress. If the Symbiodinium lipid stress response is unchanged in hospite, the algal heat-stress biomarkers we have identified could be measured to detect thermal stress within the coral holobiont. These results provide new insights into the potential role of lipids in the overall Symbiodinium thermal stress response.

  6. When depth is no refuge: cumulative thermal stress increases with depth in Bocas del Toro, Panama

    NASA Astrophysics Data System (ADS)

    Neal, B. P.; Condit, C.; Liu, G.; dos Santos, S.; Kahru, M.; Mitchell, B. G.; Kline, D. I.

    2014-03-01

    Coral reefs are increasingly affected by high-temperature stress events and associated bleaching. Monitoring and predicting these events have largely utilized sea surface temperature data, due to the convenience of using large-scale remotely sensed satellite measurements. However, coral bleaching has been observed to vary in severity throughout the water column, and variations in coral thermal stress across depths have not yet been well investigated. In this study, in situ water temperature data from 1999 to 2011 from three depths were used to calculate thermal stress on a coral reef in Bahia Almirante, Bocas del Toro, Panama, which was compared to satellite surface temperature data and thermal stress calculations for the same area and time period from the National Oceanic and Atmospheric Administration Coral Reef Watch Satellite Bleaching Alert system. The results show similar total cumulative annual thermal stress for both the surface and depth-stratified data, but with a striking difference in the distribution of that stress among the depth strata during different high-temperature events, with the greatest thermal stress unusually recorded at the deepest measured depth during the most severe bleaching event in 2005. Temperature records indicate that a strong density-driven temperature inversion may have formed in this location in that year, contributing to the persistence and intensity of bleaching disturbance at depth. These results indicate that depth may not provide a stress refuge from high water temperature events in some situations, and in this case, the water properties at depth appear to have contributed to greater coral bleaching at depth compared to near-surface locations. This case study demonstrates the importance of incorporating depth-stratified temperature monitoring and small-scale oceanographic and hydrologic data for understanding and predicting local reef responses to elevated water temperature events.

  7. Thermal stress vs. thermal transpiration: A competition in thermally driven cavity flows

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Alireza; Rana, Anirudh Singh; Struchtrup, Henning

    2015-11-01

    The velocity dependent Maxwell (VDM) model for the boundary condition of a rarefied gas, recently presented by Struchtrup ["Maxwell boundary condition and velocity dependent accommodation coefficient," Phys. Fluids 25, 112001 (2013)], provides the opportunity to control the strength of the thermal transpiration force at a wall with temperature gradient. Molecular simulations of a heated cavity with varying parameters show intricate flow patterns for weak, or inverted transpiration force. Microscopic and macroscopic transport equations for rarefied gases are solved to study the flow patterns and identify the main driving forces for the flow. It turns out that the patterns arise from a competition between thermal transpiration force at the boundary and thermal stresses in the bulk.

  8. Thermal stress tectonics on the satellites of Saturn and Uranus

    NASA Technical Reports Server (NTRS)

    Hillier, John; Squyres, Steven W.

    1991-01-01

    Thermal stress histories of the Saturnian and Uranian satellites are investigated. To this end, the thermal evolution of an icy satellite subjected to accretional and radiogenic heating, thermal conduction, and solid-state convection is modeled, and changes in the internal stress that occur during satellite evolution are examined. Results show that internal temperature changes that occur during normal evolution of many of the satellites of Saturn and Uranus can be expected to generate large extensional stresses in the satellites' outer regions. These stresses arise from three sources: (1) radiogenic warming, causing thermal expansion of materials in the satellite's deep interior; (2) radiogenic warming in larger satellites that can induce a phase transition from ice II to ice I and to produce a volume increase in the deep interior; and (3) accretional heating depositing heat in the satellite'e outer regions.

  9. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1983-01-01

    The paper is concerned with the transient thermal stress problem for a long hollow circular cylinder containing an internal axisymmetric circumferential edge crack that is suddenly cooled from inside. It is assumed that the transient thermal stress problem is quasi-static, i.e., the inertial effects are negligible. Also, all thermoelastic coupling effects and the possible temperature dependence of the thermoelastic constants are neglected. The problem is considered in two parts. The first part is the evaluation of transient thermal stresses in an uncracked cylinder; the second part is the isothermal perturbation problem for the cracked cylinder in which the crack surface tractions, equal and opposite to the thermal stresses obtained from the first problem, are the only external loads. The superposition of the two solutions gives results for the cracked cylinder.

  10. Tidal stress in Enceladus' ice shell: dependence on the internal ocean width

    NASA Astrophysics Data System (ADS)

    Behounkova, M.; Tobie, G.; Choblet, G.; Cadek, O.

    2013-12-01

    The eruptions of water vapor and ice particles on Enceladus' south pole together with huge heat production suggest the presence of a strong source of energy within Enceladus' interior. The abnormal endogenic power is most likely the consequence of strong tidal dissipation along the ridges and within the ice shell. Here, we study tidal stress associated to tidal flexing in Enceladus' ice shell for simulations described in Behounkova et al. (2013). In these simulations, we have investigated the conditions for the initiation of convection by systematically varying the orbital parameters (eccentricity), ice grain size and width of an internal ocean (D). For the current eccentricity and global ocean (D=360deg), our results show maximum tidal stress is approximately equal to 0.1MPa. For regional oceans of 120deg and 180deg, the maximum tidal stress is reduced by a factor of ~2.2 and ~1.3, respectively. Maximum tidal stresses differ less than 5% for internal oceans covering more than the southern hemisphere (D>180deg). Moreover, tidal stress patterns vary significantly with the ocean width. Whereas the tidal stresses above the rock interface are high even for areas without internal ocean, a considerable stress decrease is observed toward the surface above areas with no internal ocean. This effect is especially pronounced for cases with small internal ocean (D=<120 deg). The maximum tidal stress scales with eccentricity as expected and the tidal stress changes during onset of convection are rather low. Additionally, we will discuss the effect of rheological model (Maxwell vs. Andrade) on the tidal stress pattern and the heating distribution, as well as the possible effect of reduced viscosity in the active south polar terrain.

  11. Thermal stress analysis of a planar SOFC stack

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  12. Sensitivity of an oceanic general circulation model forced by satellite wind stress fields

    NASA Astrophysics Data System (ADS)

    Grima, Nicolas; Bentamy, Abderrahim; Katsaros, Kristina; Quilfen, Yves; Delecluse, Pascale; Levy, Claire

    1999-04-01

    Satellite wind and wind stress fields at the sea surface, derived from the scatterometers on European Remote Sensing satellites 1 and 2 (ERS-1 and ERS-2) are used to drive the ocean general circulation model (OGCM) "OPA" in the tropical oceans. The results of the impact of ERS winds are discussed in terms of the resulting thermocline, current structures, and sea level anomalies. Their adequacy is evaluated on the one hand by comparison with simulations forced by the Arpege-Climat model and on the other hand by comparison with measurements of the Tropical Atmosphere-Ocean (TAO) buoy network and of the TOPEX/Poseidon altimeter. Regarding annual mean values, the thermal and current responses of the OGCM forced by ERS winds are in good agreement with the TAO buoy observations, especially in the central and eastern Pacific Ocean. In these regions the South Equatorial Current, the Equatorial Undercurrent, and the thermocline features simulated by the OGCM forced by scatterometer wind fields are described. The impact of the ERS-1 winds is particularly significant to the description of the main oceanic variability. Compared to the TAO buoy observations, the high-frequency (a few weeks) and the low-frequency of the thermocline and zonal current variations are described. The correlation coefficients between the time series of the thermocline simulated by ERS winds and that observed by the TAO buoy network are highly significant; their mean value is 0.73, over the whole basin width, while it is 0.58 between Arpege model simulation and buoy observations. At the equator the time series of the zonal current simulated by the ERS winds, at three locations (110°W, 140°W, and 165°E) and at two depths, are compared to the TAO current meter and acoustic Doppler current profiler (ADCP) measurements. The mean value of the significant correlation coefficients computed with the in situ measurements is 0.72 for ERS, while it is 0.51 for the Arpege-Climat model. Thus ERS wind fields

  13. Low thermal stress ceramic turbine nozzle

    DOEpatents

    Glezer, Boris; Bagheri, Hamid; Fierstein, Aaron R.

    1996-01-01

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and being attached to conventional metallic components. The metallic components having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes therebetween. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component.

  14. Thermally induced micromechanical stresses in ceramic/ceramic composites

    SciTech Connect

    Li, Zhuang; Bradt, R.C.

    1992-11-01

    The internal micromechanical stresses which develop in ceramic-ceramic composites as a consequence of temperature changes and thermoelastic property differences between the reinforcing and matrix phases are addressed by the Eshelby method. Results for two whisker reinforced ceramic matrix composites and for quartz particles in porcelain are discussed. It is concluded that the stresses which develop in the second phase reinforcing inclusions are quite substantial (GPa-levels) and may be highly anisotropic in character. These stresses are additive to the macroscopic thermal stresses from temperature gradients which are encountered during heating and cooling, and also to externally apphed mechanical stresses (loads). These micromechanical stresses are expected to be highly significant for thermal cycling fatigue and other failure processes.

  15. Behavior of Materials Under Conditions of Thermal Stress

    NASA Technical Reports Server (NTRS)

    Manson, S S

    1954-01-01

    A review is presented of available information on the behavior of brittle and ductile materials under conditions of thermal stress and thermal shock. For brittle materials, a simple formula relating physical properties to thermal-shock resistance is derived and used to determine the relative significance of two indices currently in use for rating materials. For ductile materials, thermal-shock resistance depends upon the complex interrelation among several metallurgical variables which seriously affect strength and ductility. These variables are briefly discussed and illustrated from literature sources. The importance of simulating operating conditions in tests for rating materials is especially to be emphasized because of the importance of testing conditions in metallurgy. A number of practical methods that have been used to minimize the deleterious effects of thermal stress and thermal shock are outlined.

  16. Possible Factors affecting the Thermal Contrast between Middle-Latitude Asian Continent and Adjacent Ocean

    NASA Astrophysics Data System (ADS)

    Cheng, Huaqiong; Wu, Tongwen; Dong, Wenjie

    2015-04-01

    A middle-latitude Land-Sea thermal contrast Index was used in this study which has close connection to the East Asian summer precipitation. The index has two parts which are land thermal index defined as JJA 500-hPa geopotential height anomalies at a land area (75°-90° E, 40° -55°N ) and ocean thermal index defined as that at an oceanic area (140° -150°E, 35° -42.5°N). The impact of the surface heat flux and atmospheric diabatic heating over the land and the ocean on the index was studied. The results show that the surface heat flux over Eurasian inner land has little influence to the land thermal index, while the variation of the surface latent heat flux and long-wave radiation over the Pacific adjacent to Japan has highly correlation with the ocean thermal index. The changes with height of the atmospheric diabatic heating rates over the Eurasian inner land and the Pacific adjacent to Japan have different features. The variations of the middle troposphere atmospheric long-wave and short-wave radiation heating have significantly influences on land thermal index, and that of the low troposphere atmospheric long-wave radiation, short-wave radiation and deep convective heating also have impact on the yearly variation of the land thermal index. For the ocean thermal index, the variations of the surface layer atmospheric vertical diffuse heating, large-scale latent heating and long-wave radiation heating are more important, low and middle troposphere atmospheric large-scale latent heating and shallow convective heating also have impact on the yearly variation of the ocean thermal index. And then the ocean thermal index has closely connection with the low troposphere atmospheric temperature, while the land thermal index has closely connection with the middle troposphere atmospheric temperature. The Effect of the preceding global SST anomalies on the index also was analyzed. The relations of land thermal index and ocean thermal index and the global SST anomalies

  17. Thermal stress analysis of a silicon carbide/aluminum composite

    NASA Technical Reports Server (NTRS)

    Gdoutos, E. E.; Karalekas, D.; Daniel, I. M.

    1991-01-01

    Thermal deformations and stresses were studied in a silicon-carbide/aluminum filamentary composite at temperatures up to 370 C (700 F). Longitudinal and transverse thermal strains were measured with strain gages and a dilatometer. An elastoplastic micromechanical analysis based on a one-dimensional rule-of-mixtures model and an axisymmetric two-material composite cylinder model was performed. It was established that beyond a critical temperature thermal strains become nonlinear with decreasing longitudinal and increasing transverse thermal-expansion coefficients. This behavior was attributed to the plastic stresses in the aluminum matrix above the critical temperature. An elastoplastic analysis of both micromechanical models was performed to determine the stress distributions and thermal deformation in the fiber and matrix of the composite. While only axial stresses can be determined by the rule-of-mixtures model, the complete triaxial state of stress is established by the composite cylinder model. Theoretical predictions for the two thermal-expansion coefficients were in satisfactory agreement with experimental results.

  18. Thermal evolution and chemical differentiation of the terrestrial magma ocean

    NASA Technical Reports Server (NTRS)

    Abe, Y.

    1992-01-01

    The release of gravitational energy resulted in global melting and formation of a magma ocean during accretion of the Earth. Although it is believed that the formation of the magma ocean resulted in gravitational differentiation of melt and solid, the differentiation might be disturbed by the following processes: (1) convective mixing; (2) cooling and solidification; and (3) growth of the earth, which results in secular increase of pressure, and stirring by planetesimal impacts. The purpose of this study is to investigate the differentiation processes of the terrestrial magma ocean by taking into account various disturbing processes.

  19. Analysis of thermal stresses in polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Griffin, O. H., Jr.

    1989-01-01

    In the present micromechanics study of the thermally-induced stress field which emerges at very low temperatures in the matrix and fibers of continuous fiber-reinforced polymer composites, the results obtained by a specialized FEM analysis are compared to an analytical solution of the composite cylinder model for several composite materials. Attention is given to the influence of microstructural geometry and constituent properties; it is established that the distributions and magnitudes of the thermally-induced stresses are affected by the assumed microstructural geometry of the sample. While matrix stresses are not a strong function of fiber properties, the temperature dependence of the matrix properties significantly affects the magnitudes of thermally-induced matrix stresses.

  20. Ectotherm thermal stress and specialization across altitude and latitude.

    PubMed

    Buckley, Lauren B; Miller, Ethan F; Kingsolver, Joel G

    2013-10-01

    Gradients of air temperature, radiation, and other climatic factors change systematically but differently with altitude and latitude. We explore how these factors combine to produce altitudinal and latitudinal patterns of body temperature, thermal stress, and seasonal overlap that differ markedly from patterns based solely on air temperature. We use biophysical models to estimate body temperature as a function of an organism's phenotype and environmental conditions (air and surface temperatures and radiation). Using grasshoppers as a case study, we compare mean body temperatures and the incidence of thermal extremes along altitudinal gradients both under past and current climates. Organisms at high elevation can experience frequent thermal stress despite generally cooler air temperatures due to high levels of solar radiation. Incidences of thermal stress have increased more rapidly than have increases in mean conditions due to recent climate change. Increases in air temperature have coincided with shifts in cloudiness and solar radiation, which can exacerbate shifts in body temperature. We compare altitudinal thermal gradients and their seasonality between tropical and temperate mountains to ask whether mountain passes pose a greater physiological barrier in the tropics (Janzen's hypothesis). We find that considering body temperature rather than air temperature generally increases the amount of overlap in thermal conditions along gradients in elevation and thus decreases the physiological barrier posed by tropical mountains. Our analysis highlights the limitations of predicting thermal stress based solely on air temperatures, and the importance of considering how phenotypes influence body temperatures. PMID:23620253

  1. Constraints on lithospheric thermal structure for the Indian Ocean from depth and heat flow data

    NASA Technical Reports Server (NTRS)

    Shoberg, Tom; Stein, Carol A.; Stein, Seth

    1993-01-01

    Models for the thermal evolution of oceanic lithosphere are primarily constrained by variations in seafloor depth and heat flow with age. These models have been largely based on data from the Pacific and Atlantic Ocean basins. We construct seafloor age relations for the Indian Ocean which we combine with bathymetric, sediment isopach and heat flow data to derive curves for depth and heat flow versus age. Comparison of these curves with predictions from three thermal models shows that they are better fit by the shallower depths and higher heat flow for the GDH1 model, which is characterized by a thinner and hotter lithosphere than previous models.

  2. Low thermal stress ceramic turbine nozzle

    DOEpatents

    Glezer, B.; Bagheri, H.; Fierstein, A.R.

    1996-02-27

    A turbine nozzle vane assembly having a preestablished rate of thermal expansion is positioned in a gas turbine engine and is attached to conventional metallic components, the metallic components having a preestablished rate of thermal expansion greater than the preestablished rate of thermal expansion of the turbine nozzle vane assembly. The turbine nozzle vane assembly includes an outer shroud and an inner shroud having a plurality of vanes there between. Each of the plurality of vanes have a device for heating and cooling a portion of each of the plurality of vanes. Furthermore, the inner shroud has a plurality of bosses attached thereto. A cylindrical member has a plurality of grooves formed therein and each of the plurality of bosses are positioned in corresponding ones of the plurality of grooves. The turbine nozzle vane assembly provides an economical, reliable and effective ceramic component having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the other component. 4 figs.

  3. Micromechanics thermal stress analysis of composites for space structure applications

    NASA Technical Reports Server (NTRS)

    Bowles, David E.

    1991-01-01

    This paper presents results from a finite element micromechanics analysis of thermally induced stresses in composites at cryogenic temperatures typical of spacecraft operating environments. The influence of microstructural geometry, constituent and interphase properties, and laminate orientation were investigated. Stress field results indicated that significant matrix stresses occur in composites exposed to typical spacecraft thermal excursions; these stresses varied with laminate orientation and circumferential position around the fiber. The major difference in the predicted response of unidirectional and multidirectional laminates was the presence of tensile radial stresses, at the fiber/matrix interface, in multidirectional laminates with off-axis ply angles greater than 15 deg. The predicted damage initiation temperatures and modes were in good agreement with experimental data for both low (207 GPa) and high (517 GPa) modulus carbon fiber/epoxy composites.

  4. Coping with Commitment: Projected Thermal Stress on Coral Reefs under Different Future Scenarios

    PubMed Central

    Donner, Simon D.

    2009-01-01

    Background Periods of anomalously warm ocean temperatures can lead to mass coral bleaching. Past studies have concluded that anthropogenic climate change may rapidly increase the frequency of these thermal stress events, leading to declines in coral cover, shifts in the composition of corals and other reef-dwelling organisms, and stress on the human populations who depend on coral reef ecosystems for food, income and shoreline protection. The ability of greenhouse gas mitigation to alter the near-term forecast for coral reefs is limited by the time lag between greenhouse gas emissions and the physical climate response. Methodology/Principal Findings This study uses observed sea surface temperatures and the results of global climate model forced with five different future emissions scenarios to evaluate the “committed warming” for coral reefs worldwide. The results show that the physical warming commitment from current accumulation of greenhouse gases in the atmosphere could cause over half of the world's coral reefs to experience harmfully frequent (p≥0.2 year−1) thermal stress by 2080. An additional “societal” warming commitment, caused by the time required to shift from a business-as-usual emissions trajectory to a 550 ppm CO2 stabilization trajectory, may cause over 80% of the world's coral reefs to experience harmfully frequent events by 2030. Thermal adaptation of 1.5°C would delay the thermal stress forecast by 50–80 years. Conclusions/Significance The results suggest that adaptation – via biological mechanisms, coral community shifts and/or management interventions – could provide time to change the trajectory of greenhouse gas emissions and possibly avoid the recurrence of harmfully frequent events at the majority (97%) of the world's coral reefs this century. Without any thermal adaptation, atmospheric CO2 concentrations may need to be stabilized below current levels to avoid the degradation of coral reef ecosystems from frequent thermal

  5. Potential environmental consequences of ocean thermal energy conversion (OTEC) plants. A workshop

    SciTech Connect

    Walsh, J.J.

    1981-05-01

    The concept of generating electrical power from the temperature difference between surface and deep ocean waters was advanced over a century ago. A pilot plant was constructed in the Caribbean during the 1920's but commercialization did not follow. The US Department of Energy (DOE) earlier planned to construct a single operational 10MWe Ocean Thermal Energy Conversion (OTEC) plant by 1986. However, Public Law P.L.-96-310, the Ocean Thermal Energy Conversion Research, Development and Demonstration Act, and P.L.-96-320, the Ocean Thermal Energy Conversion Act of 1980, now call for acceleration of the development of OTEC plants, with capacities of 100 MWe in 1986, 500 MWe in 1989, and 10,000 MWe by 1999 and provide for licensing and permitting and loan guarantees after the technology has been demonstrated.

  6. ZPPR FUEL ELEMENT THERMAL STRESS-STRAIN ANALYSIS

    SciTech Connect

    Charles W. Solbrig; Jason Andrus; Chad Pope

    2014-04-01

    The design temperature of high plutonium concentration ZPPR fuel assemblies is 600 degrees C. Cladding integrity of the 304L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradion of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292°C). In fact, thermal stress can not cause cladding failure as long as the fuel temperatures are below the design limit of 600 degrees C (1,112 degrees F).

  7. Thermal stresses in the microchannel heatsink cooled by liquid nitrogen

    SciTech Connect

    Riddle, R.A.

    1993-06-30

    Microchannel heatsinks represent a highly efficient and compact method for heat removal in high heat flux components. Excellent thermal performance of a silicon microchannel heatsink has been demonstrated using liquid nitrogen as the coolant. For the heating of a 1 square centimeter area, at a heat dissipation of 500 W, a typical silicon heatsink cooled by liquid nitrogen has a thermal resistance of 0.046 cm{sup 2}{degrees}K/W. The actual heatsink structure in this case is only 0.1 cm high. Silicon, although it has excellent thermal properties at liquid nitrogen temperatures, may fracture with very little plastic deformation due to mechanical and thermal stresses. Because the fracture strength of silicon depends on the presence of small defects, strength of the heatsink structures must be addressed to insure highly reliable heatsink devices. Microchannel heatsink reliability can be affected by thermal stresses that arise due to temperature gradients between the base and fin and along the film length. These stresses are combined with the bonding stresses that arise in attaching components at elevated temperatures to the silicon heatsink and then cooling the structure to the cryogenic operating temperatures. These bonding stresses are potentially large because of the differences in the values of the coefficients of thermal expansion in silicon heatsink material, and the attached component materials. The stress results are shown for a 17:1 aspect ratio heatsink cooled in liquid nitrogen. The temperature gradients are a result of a surface heat flux of 1.3 kW/cm{sup 2}, approximating the heat dissipation of an RF power chip. The chip is connected to an aluminum nitride substrate, then the chip and substrate module are attached to the heatsink at a bonding temperature of 600{degrees}K, as for a gold tin eutectic bond. The stresses are shown to be within the allowables of the materials involved.

  8. Non-thermal Plasma and Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  9. Nonsteady thermal stress analysis and thermal fatigue strength of metal-CFRP bonded joints

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Shiratori, Masaki; Mori, Takao

    1993-01-01

    In this paper, a finite-element method (FEM) system of nonsteady thermal stress analysis has been developed to analyze the problem of metal-fiber-reinforced plastic (FRP) bonded joints. The authors have presented a new algorithm for the system, which can provide an effective thermal stress analysis for metal-carbon-FRP (CFRP) bonded joints. The effectiveness, in terms of the accuracy and central processing unit (CPU) time, has been discussed by analyzing some typical problems. The thermal fatigue strength of Al-CFRP bonded joints has been studied through a series of thermal cyclic fatigue tests. It has been shown that the thermal fatigue strength of the joints can be well described by the maximum equivalent stress at the adhesive layer, which can be calculated by the developed FEM system.

  10. Analysis of thermal stresses in composite laminates by assumed stress hybrid multilayer element

    SciTech Connect

    Wang Liangzhong; Wang Cheng )

    1993-03-01

    Based on Hellinger-Reissner principle, a hybrid multilayer element is presented in this article. This element can be used for analyzing thermoelastic stresses in composite laminates induced by nonuniform temperature distribution. The thermal loads are derived from the functional directly in the element model. Numerical results show that this multilayer element model is suitable for thermal stress analysis of laminated composite structures. 9 refs.

  11. Thermal stresses investigation of a gas turbine blade

    NASA Astrophysics Data System (ADS)

    Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.

    2012-06-01

    The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.

  12. Modeling of thermal stresses in elastic multilayer coating systems

    NASA Astrophysics Data System (ADS)

    Gao, Chunxue; Zhao, Zhiwei; Li, Xuehua

    2015-02-01

    The performance and reliability of multilayer coating systems are strongly influenced by thermal stresses. The present study develops an alternative analytical model to predict the thermal stresses in elastic multilayer coating systems. An exact closed-form solution is obtained which is independent of the number of coating layers. In addition, with the definition of the coordinate system, the closed-form solution is concisely formulated. Specific results are calculated for thermal stresses in HfO2/SiO2 multilayer optical coatings, and a finite element analysis is performed to confirm the analytical results. The two results agree fairly well with each other. Also, when the thicknesses of the coating layers are much less than the substrate thickness, the approximate solution is obtained based on the exact closed-form solution, and its accuracy is examined.

  13. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    SciTech Connect

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.

  14. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGESBeta

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  15. Transient thermal stress problem for a circumferentially cracked hollow cylinder

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Erdogan, F.

    1982-01-01

    The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.

  16. Thermal mechanical stress modeling of GCtM seals

    SciTech Connect

    Dai, Steve Xunhu; Chambers, Robert

    2015-09-01

    Finite-element thermal stress modeling at the glass-ceramic to metal (GCtM) interface was conducted assuming heterogeneous glass-ceramic microstructure. The glass-ceramics were treated as composites consisting of high expansion silica crystalline phases dispersed in a uniform residual glass. Interfacial stresses were examined for two types of glass-ceramics. One was designated as SL16 glass -ceramic, owing to its step-like thermal strain curve with an overall coefficient of thermal expansion (CTE) at 16 ppm/ºC. Clustered Cristobalite is the dominant silica phase in SL16 glass-ceramic. The other, designated as NL16 glass-ceramic, exhibited clusters of mixed Cristobalite and Quartz and showed a near-linear thermal strain curve with a same CTE value.

  17. Thermal-stress fatigue behavior of twenty-six superalloys

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Spera, D. A.

    1976-01-01

    The comparative thermal-stress fatigue resistances of 26 nickeland cobalt-base alloys were determined by fluidized bed tests. Cycles to cracking differed by almost three orders of magnitude for these materials, with directional solidification and surface protection showing definite benefit. The alloy-coating combination with the highest thermal-stress fatigue resistance was directionally solidified NASA TAZ-8A with an RT-SP coating. Its oxidation resistance was also excellent, showing approximately a 1/2 percent weight loss after 14,000 fluidized bed cycles.

  18. Stresses in a submarine topography under ocean waves

    SciTech Connect

    Mei, C.C.; McTigue, D.F.

    1984-09-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, and obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular, the dynamic pore pressure and the combined static and dynamic effective stresses are presented.

  19. Stresses in a submarine topography under ocean waves

    SciTech Connect

    Mei, C.C.; McTigue, D.F.

    1984-01-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, to obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular the dynamic pore pressure and the combined static and dynamic effective stresses are presented. 10 references, 11 figures.

  20. Thermal stress analysis of reusable surface insulation for shuttle

    NASA Technical Reports Server (NTRS)

    Ojalvo, I. U.; Levy, A.; Austin, F.

    1974-01-01

    An iterative procedure for accurately determining tile stresses associated with static mechanical and thermally induced internal loads is presented. The necessary conditions for convergence of the method are derived. An user-oriented computer program based upon the present method of analysis was developed. The program is capable of analyzing multi-tiled panels and determining the associated stresses. Typical numerical results from this computer program are presented.

  1. Orientation of in situ stresses in the oceanic crust

    USGS Publications Warehouse

    Newmark, R.L.; Zoback, M.D.; Anderson, R.N.

    1984-01-01

    Two in situ measurements of principal stress directions have been made in DSDP Holes 504B, south of the Costa Rica Rift on the Nazca plate, and 597C, west of the East Pacific Rise on the Pacific plate. In both cases, the orientations of in situ principal stresses determined from borehole breakouts are consistent with the stress directions inferred from intraplate earthquakes located near the sites. ?? 1984 Nature Publishing Group.

  2. Investigating Earthquake Stress Drops on Mid-Ocean Ridge Transform Faults (Invited)

    NASA Astrophysics Data System (ADS)

    Boettcher, M. S.; Moyer, P. A.; McGuire, J. J.; Collins, J. A.

    2013-12-01

    A key question concerning the development of mid-ocean ridge transform faults (RTFs) is why have full fault ruptures not been observed in the historic record? Similarly, why do the rupture areas of the largest earthquakes on RTFs not scale directly with area above the 600°C isotherm? Recent studies have shown that Blanco, Discovery, Gofar, Heezen, Tharp, and Hollister RTFs all have multiple rupture patches on a single fault segment that repeatedly fail in characteristic largest (Mc) earthquakes. We develop a scaling relation for the stress drop of repeating Mc earthquakes assuming full-coupling on Mc rupture patches, such that slip (Dc) in Mc earthquakes is given by the product of the repeat time (tR) and plate tectonic slip (V), and assuming that slip scales with the square root of rupture area (Ac), Dc = ΔσAc1/2μ-1, where μ is the shear modulus. Using the definition of seismic moment, Mc = μAcDc, we directly solve for stress drop given observed repeat times: Δσ = μVtR3/2Mc-1/2. For stress drops in the range of 1-2 MPa, slip in repeating Mc earthquakes on each of the RTFs noted above is approximately equal to the accumulated plate tectonic motion. We analyze the source parameters of 3.0 < Mw < 5.0 earthquakes recorded in 2008 during a yearlong ocean bottom seismic (OBS) experiment on Gofar transform fault to determine the stress drop of earthquakes in both repeating Mc patches and the rupture barriers between the rupture patches. The OBS deployment captured the end of a seismic cycle, including a foreshock sequence that was both extensive (~20,000 earthquakes within the week prior to the mainshock) and localized (within a ~10 km region), as well as the Mw 6.0 mainshock and its aftershock sequence [McGuire et. al, 2012]. The foreshocks occurred in a rupture barrier on the western segment of Gofar and the aftershocks occurred in the rupture patch. Using waveforms recorded with a sample rate of 50 Hz on OBS accelerometers, we investigate the corner

  3. Coupling Ocean Thermal Energy Conversion technology /OTEC/ with nuclear power plants

    NASA Astrophysics Data System (ADS)

    Goldstein, M. K.; Rezachek, D.; Chen, C. S.

    The use of an Ocean Thermal Energy Conversion Related Bottoming Cycle (ORBC) to recover the waste heat generated by a large nuclear or fossil power plant is considered. To take advantage of an ORBC, a plant must be located close to cold, deep ocean water, either open-ocean or shore-based. The ORBC can also be retrofitted to existing shore-based nuclear plants or it can be a part of the design of future plants. The increased efficiency of a nuclear floating system due to the ammonia bottoming cycle and ORBC systems is shown for the example of the proposed facility in Murata, Japan. It is noted that the size of the heat exchangers and the diameter of the cold water pipe would be relatively smaller for an ORBC than for a conventional ocean thermal energy conversion system.

  4. Thermal convection in high-pressure ice layers beneath a buried ocean within Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Tobie, G.; Dumont, M.

    2015-10-01

    Deep interiors of large icy satellites such as Titan and Ganymede probably harbor a buried ocean above highpressure (HP) ice layers. The nature and location of the lower interface of the ocean involves equilibration of heat and melt transfer in the HP ices. It is ultimately controlled by the amount of heat transferred through the surface ice Ih layer. We describe 3D spherical simulations of thermal convection in these HP ices layers that address for the first time this complex interplay.

  5. Meridional overturning in the thermally-driven ocean

    NASA Astrophysics Data System (ADS)

    LaCasce, Joe; Gjermundsen, Ada

    2015-04-01

    As opposed to the wind-driven ocean circulation, there is no commonly accepted dynamical framework for rationalizing the buoyancy-driven circulation. However, an analytical model of the overturning exists, based on the quasigeostrophic model of Pedlosky (1969) and studied subsequently by Salmon (1986), LaCasce (2004) and Pedloksy and Spall (2005). A key aspect is that the overturning in the model is determined almost exclusively by upwelling and sinking occurring in the interior; the boundary layers have little net contribution to the vertical transport. Thus the overturning in the model can be understood by the baroclinic flow in the interior, which is conceptually simple. The only exception is when a form of "convection" is allowed, in which case the northern boundary can contribute significantly as well. We review key aspects of the model circulation and demonstrate how the boundary current dynamics are consistent between models with different frictional parameterizations. We also compare to numerical simulations using a full GCM in an idealized basin. References: Pedlosky, J. (1969). Linear theory of the circulation of a stratified ocean. Journal of Fluid Mechanics, 35, 185-205. Salmon. R. (1986). A simplified linear ocean circulation theory. Journal of Marine Research, 44, 695-711. LaCasce, J. H. (2004). Diffusivity and viscosity dependence in the linear thermocline. Journal of Marine Research, 62, 743-769. Pedlosky, J. and M. A. Spall (2005). Boundary intensification of vertical velocity in a β-plane basin. Journal of Physical Oceanography, 35(12), 2487-2500.

  6. Thermal diffusion by Brownian-motion-induced fluid stress

    NASA Astrophysics Data System (ADS)

    Kreft, Jennifer; Chen, Yeng-Long

    2007-08-01

    The Ludwig-Soret effect, the migration of a species due to a temperature gradient, has been extensively studied without a complete picture of its cause emerging. Here we investigate the dynamics of DNA and spherical particles subjected to a thermal gradient using a combination of Brownian dynamics and the lattice Boltzmann method. We observe that the DNA molecules will migrate to colder regions of the channel, an observation also made in experiments. In fact, the thermal diffusion coefficient found agrees quantitatively with the experimentally measured value. We also observe that the thermal diffusion coefficient decreases as the radius of the studied spherical particles increases. Furthermore, we observe that the thermal-fluctuation-fluid-momentum-flux coupling induces a gradient in the stress which leads to thermal migration in both systems.

  7. Thermal lensing and stress in Cr,Er:YSGG

    NASA Astrophysics Data System (ADS)

    Gollihar, William A.; Margo, Satrijo T.; DeShazer, Larry G.; Kennedy, Chandler J.

    1995-04-01

    Thermal and stress lensing effects have been measured in a Cr,Er:YSGG rod by observing a transmitted 1064 nm Nd:YAG beam diverging from an operating Cr,Er:YSGG laser. The results compare favorably with theory and estimated thermal-optic properties of YSGG, which is intermediate between YAG and GSGG. Numerical simulations of the laser agree substantially with the threshold and power observed and show a heat generation rate which is consistent with our observations of lensing. Thermal fracture of the rod has been observed on several occasions, leading to an estimate of the thermal fracture figure of merit which is also intermediate between YAG and GSGG. Back focal distances of less than 20 cm occur in the vicinity of half the thermal rupture limit.

  8. The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation

    NASA Technical Reports Server (NTRS)

    Mills, Ryan D.

    2013-01-01

    Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.

  9. Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Zhu, J.; Sriver, R. L.

    2015-09-01

    Argo floats are used to examine tropical cyclone (TC) induced ocean thermal changes on the global scale by comparing temperature profiles before and after TC passage. We present a footprint method that analyzes cross-track thermal responses along all storm tracks during the period 2004-2012. We combine the results into composite representations of the vertical structure of the average thermal response for two different categories: tropical storms/tropical depressions (TS/TD) and hurricanes. The two footprint composites are functions of three variables: cross-track distance, water depth and time relative to TC passage. We find that this footprint strategy captures the major features of the upper-ocean thermal response to TCs on timescales up to 20 days when compared against previous case study results using in situ measurements. On the global scale, TCs are responsible for 1.87 PW (11.05 W m-2) of heat transfer annually from the global ocean to the atmosphere during storm passage (0-3 days). Of this total, 1.05 ± 0.20 PW (4.80 ± 0.85 W m-2) is caused by TS/TD and 0.82 ± 0.21 PW (6.25 ± 1.5 W m-2) is caused by hurricanes. Our findings indicate that ocean heat loss by TCs may be a substantial missing piece of the global ocean heat budget. Changes in ocean heat content (OHC) after storm passage are estimated by analyzing the temperature anomalies during wake recovery following storm events (4-20 days after storm passage) relative to pre-storm conditions. Results indicate the global ocean experiences a 0.75 ± 0.25 PW (5.98 ± 2.1 W m-2) heat gain annually for hurricanes. In contrast, under TS/TD conditions, the ocean experiences 0.41 ± 0.21 PW (1.90 ± 0.96 W m-2) ocean heat loss, suggesting the overall oceanic thermal response is particularly sensitive to the intensity of the event. The ocean heat uptake caused by all storms during the restorative stage is 0.34 PW.

  10. Evolution of the Upper-Ocean Thermal Structure beneath Hurricanes Iselle and Julio (2014)

    NASA Astrophysics Data System (ADS)

    Sanabia, E.; Jayne, S. R.

    2014-12-01

    The impact of Hurricanes Iselle and Julio (2014) on the upper-ocean thermal structure east of the Hawaiian Islands is investigated in this analysis of data collected from AXBT and Alamo profiling floats deployed from USAF WC-130Js as part of the Training and Research in Oceanic and atmospheric Processes In tropical Cyclones (TROPIC) 2014 field program. Originating in the eastern Pacific, Hurricanes Iselle and Julio followed very similar paths west northwestward. The passage of Julio over the wake of Iselle presented a unique opportunity to explore the impact of consecutive tropical cyclones on the upper ocean.

  11. Detection and classification of stress using thermal imaging technique

    NASA Astrophysics Data System (ADS)

    Hong, Kan; Yuen, Peter; Chen, Tong; Tsitiridis, Aristeidis; Kam, Firmin; Jackman, James; James, David; Richardson, Mark; Oxford, William; Piper, Jonathan; Thomas, Francis; Lightman, Stafford

    2009-09-01

    This paper reports how Electro-Optics (EO) technologies such as thermal and hyperspectral [1-3] imaging methods can be used for the detection of stress remotely. Emotional or physical stresses induce a surge of adrenaline in the blood stream under the command of the sympathetic nerve system, which, cannot be suppressed by training. The onset of this alleviated level of adrenaline triggers a number of physiological chain reactions in the body, such as dilation of pupil and an increased feed of blood to muscles etc. The capture of physiological responses, specifically the increase of blood volume to pupil, have been reported by Pavlidis's pioneer thermal imaging work [4-7] who has shown a remarkable increase of skin temperature in the periorbital region at the onset of stress. Our data has shown that other areas such as the forehead, neck and cheek also exhibit alleviated skin temperatures dependent on the types of stressors. Our result has also observed very similar thermal patterns due to physical exercising, to the one that induced by other physical stressors, apparently in contradiction to Pavlidis's work [8]. Furthermore, we have found patches of alleviated temperature regions in the forehead forming patterns characteristic to the types of stressors, dependent on whether they are physical or emotional in origin. These stress induced thermal patterns have been seen to be quite distinct to the one resulting from having high fever.

  12. Assessing the potential for tropical cyclone induced sea surface cooling to reduce thermal stress on the world's coral reefs

    NASA Astrophysics Data System (ADS)

    Carrigan, A. D.; Puotinen, M. L.

    2011-12-01

    Coral reefs face an uncertain future as rising sea surface temperature (SST) continues to lead to increasingly frequent and intense mass bleaching. At broad spatial scales, tropical cyclone (TC) induced cooling of the upper ocean (SST drops up to 6° C persisting for weeks) reduces thermal stress and accelerates recovery of bleached corals - yet the global prevalence and spatial distribution of this effect remains undocumented and unquantified. A global dataset (1985-2009) of TC wind exposure was constructed and examined against existing thermal stress data to address this. Significant correlations were found between TC activity and the severity of thermal stress at various spatial scales, particularly for Caribbean reefs. From this, it is apparent that TCs play a role in bleaching dynamics at a global scale. However, the prevalence and distribution of this interaction varies by region and requires further examination at finer spatial and temporal scales using actual SST data.

  13. Open-cycle Ocean Thermal Energy Conversion (OTEC): Status and potential

    NASA Astrophysics Data System (ADS)

    Bharathan, D.

    1984-08-01

    Tropical oceans with a 20 C or more temperature difference between surface and deep water represent a vast resource of renewable thermal energy. One of the methods of harnessing this resource is an open-cycle Ocean Thermal Energy Conversion (OTEC) system utilizing steam evaporated from the surface water for powering the turbine. In this paper, the state of the art of research and component development, as related to heat and mass transfer processes, power production, noncondensable gas handling, and seawater flow hydraulics, are described through an illustrated preliminary design study of a 1-MW facility.

  14. Ocean Thermal Energy Conversion moored pipe/mobile platform design study

    SciTech Connect

    Bullock, H.O.; McNatt, T.R.; Ross, J.M.; Stambaugh, K.A.; Watts, J.L.

    1982-07-30

    The Ocean Thermal Energy Conversion (OTEC) Moored Pipe/Mobile Platform (MP-Squared) Design Study was carried out to investigate an innovative approach to the moored floating OTEC plant. In the past, a number of concepts have been examined by NOAA for floating OTEC plants. These concepts have considered various configurations for platforms, cold water pipes and mooring systems. In most cases the cold water pipe (CWP) was permanently attached to the platform and the platform was permanently moored on station. Even though CWP concepts incorporating articulated joints or flexible pipes were used, the CWP stresses induced by platform motion were frequently excessive and beyond the design limits of the CWP. This was especially true in the survival (100-year storm) case. It may be feasible that the concept of a permanently moored CWP attached through a flexible transition CWP to the platform could reduce the degree of technical risk by de-coupling the CWP from the motions of the platform. In addition, if the platform is capable of disconnecting from the CWP during survival conditions, even less technical risk may be inherent in the OTEC system. The MP-Squared Design Study was an engineering evaluation of the concepts described above. The effort has been carried through to the conceptual design level, and culminated in model tests in an experimental wave basin.

  15. Combined thermal and herbicide stress in functionally diverse coral symbionts.

    PubMed

    van Dam, J W; Uthicke, S; Beltran, V H; Mueller, J F; Negri, A P

    2015-09-01

    Most reef building corals rely on symbiotic microalgae (genus Symbiodinium) to supply a substantial proportion of their energy requirements. Functional diversity of different Symbiodinium genotypes, endorsing the host with physiological advantages, has been widely reported. Yet, the influence of genotypic specificity on the symbiont's susceptibility to contaminants or cumulative stressors is unknown. Cultured Symbiodinium of presumed thermal-tolerant clade D tested especially vulnerable to the widespread herbicide diuron, suggesting important free-living populations may be at risk in areas subjected to terrestrial runoff. Co-exposure experiments where cultured Symbiodinium were exposed to diuron over a thermal stress gradient demonstrated how fast-growing clade C1 better maintained photosynthetic capability than clade D. The mixture toxicity model of Independent Action, considering combined thermal stress and herbicide contamination, revealed response additivity for inhibition of photosynthetic yield in both tested cultures, emphasizing the need to account for cumulative stressor impacts in ecological risk assessment and resource management. PMID:25989453

  16. Thermal Stress Behavior of Aluminum Nanofilms under Heat Cycling

    SciTech Connect

    Kusaka, Kazuya; Hanabusa, Takao; Shingubara, Shoso; Matsue, Tatsuya; Sakata, Osami; Noda, Kazuhiro; Hataya, Mitsuhiko

    2004-12-08

    In-situ thermal stress in aluminum nanofilms with silicon oxide glass (SOG) passivation was investigated by using synchrotron radiation at the SPring-8. Aluminum films of varying thickness (10, 20, 50 nm) were deposited on thermally oxidized silicon wafers by RF magnetron sputtering. Each specimen was heated in air over two cycles between room temperature and 300 deg. C. The following results were obtained: (1) {l_brace}111{r_brace} planes of aluminum nanofilm crystals were oriented parallel to the substrate normal; (2) the intensity of 111 diffraction was almost independent of temperature except in the case of the 50-nm-thick film; (3) the FWHM of 111 diffraction was almost independent of temperature at any given film thickness; and (4) for all films, the thermal stress varied linearly with heating temperature, and the hysteresis between the heating and cooling steps disappeared.

  17. Growth instabilities in mechanical breakdown under mechanical and thermal stresses

    NASA Astrophysics Data System (ADS)

    Zhang, S.-Z.; Louis, E.; Plá, O.; Guinea, F.

    1995-12-01

    A linear stability analysis is used to investigate crack growth in two dimensional elastic media, and under mechanical or thermal stresses. Although in most cases a circular geometry is considered, the instability of a planar crack is also discussed. Several boundary conditions and size effects are considered. The results indicate that the tendency towards instabilities in mechanical breakdown is stronger than in the case of growth in fields governed by the Laplace equation (diffusion or electrostatic fields), in line with the smaller fractal dimensions obtained in the first case. Instabilities under thermal stresses are shown to depend on the actual thermal gradients. Finally, a model previously investigated numerically is used to show that plasticity decreases the strength of the instability. (c) 1995 The American Physical Society

  18. Reduction of Near-Inertial Energy by Ocean-Surface-Velocity-Dependent Wind Stress

    NASA Astrophysics Data System (ADS)

    Rath, Willi; Greatbatch, Richard; Zhai, Xiaoming

    2013-04-01

    This study aims at understanding the effect of including or neglecting the surface velocity of the ocean into the wind stress parameterization for the strength and distribution of near-inertial oscillations. Wind-generated near-inertial oscillations are an important source of energy for surface mixed layer deepening as well as for internal wave breaking and the associated diapycnal mixing at depth which, in turn, is thought to be important for driving the meridional overturning circulation. By using a realistic primitive equation model of the Southern Ocean at eddying resolution, we find that including ocean surface velocities into the wind stress leads to a large reduction of both wind power input into near-inertial oscillations (WPI) and near-inertial energy (NIE) in the surface mixed layer. The relative reduction of WPI can be as large as 30 percent and the relative reduction of NIE can be as large as 50 percent. Using both, the primitive equation model and a simple linear local slab-ocean model for illustration, we find that a large part of this reduction can be explained by the leading order modification to the wind stress if ocean surface velocities are included. We also find that the strength of the reduction is modulated by the inverse of the ocean surface mixed layer depth.

  19. Sensitivity of Calcification to Thermal Stress Varies among Genera of Massive Reef-Building Corals

    PubMed Central

    Carricart-Ganivet, Juan P.; Cabanillas-Terán, Nancy; Cruz-Ortega, Israel; Blanchon, Paul

    2012-01-01

    Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR), and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR), and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm−2 year−1 in Porites spp. and 0.12 g cm−2 year−1 in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ωar) at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ωar changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological breakdown, seriously

  20. Sensitivity of calcification to thermal stress varies among genera of massive reef-building corals.

    PubMed

    Carricart-Ganivet, Juan P; Cabanillas-Terán, Nancy; Cruz-Ortega, Israel; Blanchon, Paul

    2012-01-01

    Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR), and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR), and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm(-2) year(-1) in Porites spp. and 0.12 g cm(-2) year(-1) in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ω(ar)) at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ω(ar) changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological breakdown

  1. Ocean Warming Enhances Malformations, Premature Hatching, Metabolic Suppression and Oxidative Stress in the Early Life Stages of a Keystone Squid

    PubMed Central

    Rosa, Rui; Pimentel, Marta S.; Boavida-Portugal, Joana; Teixeira, Tatiana; Trübenbach, Katja; Diniz, Mário

    2012-01-01

    Background The knowledge about the capacity of organisms’ early life stages to adapt to elevated temperatures is very limited but crucial to understand how marine biota will respond to global warming. Here we provide a comprehensive and integrated view of biological responses to future warming during the early ontogeny of a keystone invertebrate, the squid Loligo vulgaris. Methodology/Principal Findings Recently-spawned egg masses were collected and reared until hatching at present day and projected near future (+2°C) temperatures, to investigate the ability of early stages to undergo thermal acclimation, namely phenotypic altering of morphological, behavioural, biochemical and physiological features. Our findings showed that under the projected near-future warming, the abiotic conditions inside the eggs promoted metabolic suppression, which was followed by premature hatching. Concomitantly, the less developed newborns showed greater incidence of malformations. After hatching, the metabolic burst associated with the transition from an encapsulated embryo to a planktonic stage increased linearly with temperature. However, the greater exposure to environmental stress by the hatchlings seemed to be compensated by physiological mechanisms that reduce the negative effects on fitness. Heat shock proteins (HSP70/HSC70) and antioxidant enzymes activities constituted an integrated stress response to ocean warming in hatchlings (but not in embryos). Conclusions/Significance The stressful abiotic conditions inside eggs are expected to be aggravated under the projected near-future ocean warming, with deleterious effects on embryo survival and growth. Greater feeding challenges and the lower thermal tolerance limits of the hatchlings are strictly connected to high metabolic demands associated with the planktonic life strategy. Yet, we found some evidence that, in the future, the early stages might support higher energy demands by adjusting some cellular functional properties

  2. Minimizing Thermal Stress for Data Center Servers through Thermal-Aware Relocation

    PubMed Central

    Ling, T. C.; Hussain, S. A.

    2014-01-01

    A rise in inlet air temperature may lower the rate of heat dissipation from air cooled computing servers. This introduces a thermal stress to these servers. As a result, the poorly cooled active servers will start conducting heat to the neighboring servers and giving rise to hotspot regions of thermal stress, inside the data center. As a result, the physical hardware of these servers may fail, thus causing performance loss, monetary loss, and higher energy consumption for cooling mechanism. In order to minimize these situations, this paper performs the profiling of inlet temperature sensitivity (ITS) and defines the optimum location for each server to minimize the chances of creating a thermal hotspot and thermal stress. Based upon novel ITS analysis, a thermal state monitoring and server relocation algorithm for data centers is being proposed. The contribution of this paper is bringing the peak outlet temperatures of the relocated servers closer to average outlet temperature by over 5 times, lowering the average peak outlet temperature by 3.5% and minimizing the thermal stress. PMID:24987743

  3. Diagnostic gene expression biomarkers of coral thermal stress.

    PubMed

    Kenkel, C D; Sheridan, C; Leal, M C; Bhagooli, R; Castillo, K D; Kurata, N; McGinty, E; Goulet, T L; Matz, M V

    2014-07-01

    Gene expression biomarkers can enable rapid assessment of physiological conditions in situ, providing a valuable tool for reef managers interested in linking organism physiology with large-scale climatic conditions. Here, we assessed the ability of quantitative PCR (qPCR)-based gene expression biomarkers to evaluate (i) the immediate cellular stress response (CSR) of Porites astreoides to incremental thermal stress and (ii) the magnitude of CSR and cellular homeostasis response (CHR) during a natural bleaching event. Expression levels largely scaled with treatment temperature, with the strongest responses occurring in heat-shock proteins. This is the first demonstration of a 'tiered' CSR in a coral, where the magnitude of expression change is proportional to stress intensity. Analysis of a natural bleaching event revealed no signature of an acute CSR in normal or bleached corals, indicating that the bleaching stressor(s) had abated by the day of sampling. Another long-term stress CHR-based indicator assay was significantly elevated in bleached corals, although assay values overall were low, suggesting good prospects for recovery. This study represents the first step in linking variation in gene expression biomarkers to stress tolerance and bleaching thresholds in situ by quantifying the severity of ongoing thermal stress and its accumulated long-term impacts. PMID:24354729

  4. OBIC analysis of stressed, thermally-isolated polysilicon resistors

    SciTech Connect

    Cole, E.I. Jr.; Peterson, K.A.; Campbell, A.N.; Snyder, E.S.; Pierce, D.G.; Suehle, J.S.; Chaparala, P.

    1994-12-31

    High gain Optical Beam Induced Current (OBIC) imaging has been used for the first time to examine the internal structural effects of electrical stress on thermally-isolated polysilicon resistors. The resistors are examined over a wide range of current densities, producing Joule heating up to {approximately}1200{degrees}C. Throughout this current density range, the OBIC images indicate a clustering of dopant under dc stress and a more uniform distribution under ac conditions. The OBIC images also reveal areas that are precursors to catastrophic resistor failure. In addition to OBIC imaging, conventional electrical measurements were performed, examining the polysilicon resistance degradation and time-to-failure as a function of electrical stress. The electrical measurements show a monotonic increase in polysilicon resistor lifetime with frequency (up to 2 kHz) when subjected to a bipolar ac stress. The enhanced lifetime was observed even under high temperature (from Joule heating) stress conditions previously reported to be electromigration-free. The dopant redistribution indicated by the OBIC images is consistent with an electromigration stress experienced by the polysilicon resistors. The implications for thermally-isolated polysilicon resistor reliability are examined briefly.

  5. The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces

    NASA Astrophysics Data System (ADS)

    Pearlmutter, David; Jiao, Dixin; Garb, Yaakov

    2014-12-01

    Outdoor thermal comfort has important implications for urban planning and energy consumption in the built environment. To better understand the relation of subjective thermal experience to bioclimatic thermal stress in such contexts, this study compares micrometeorological and perceptual data from urban spaces in the hot-arid Negev region of Israel. Pedestrians reported on their thermal sensation in these spaces, whereas radiation and convection-related data were used to compute the Index of Thermal Stress (ITS) and physiologically equivalent temperature (PET). The former is a straightforward characterization of energy exchanges between the human body and its surroundings, without any conversion to an "equivalent temperature." Although the relation of ITS to subjective thermal sensation has been analyzed in the past under controlled indoor conditions, this paper offers the first analysis of this relation in an outdoor setting. ITS alone can account for nearly 60 % of the variance in pedestrians' thermal sensation under outdoor conditions, somewhat more than PET. A series of regressions with individual contextual variables and ITS identified those factors which accounted for additional variance in thermal sensation, whereas multivariate analyses indicated the considerable predictive power ( R-square = 0.74) of models including multiple contextual variables in addition to ITS. Our findings indicate that pedestrians experiencing variable outdoor conditions have a greater tolerance for incremental changes in thermal stress than has been shown previously under controlled indoor conditions, with a tapering of responses at high values of ITS. However, the thresholds of ITS corresponding to thermal "neutrality" and thermal "acceptability" are quite consistent regardless of context.

  6. Thermal models of dyke intrusion during development of continent-ocean transition

    NASA Astrophysics Data System (ADS)

    Daniels, K. A.; Bastow, I. D.; Keir, D.; Sparks, R. S. J.; Menand, T.

    2014-01-01

    A consensus has emerged in recent years from a variety of geoscientific disciplines that extension during continental rifting is achieved only partly by plate stretching: dyke intrusion also plays an important role. Magma intrusion can accommodate extension at lower yield stresses than are required to extend thick, strong, unmodified continental lithosphere mechanically, thereby aiding the breakup process. Dyke intrusion is also expected to heat and thereby weaken the plate, but the spatial extent of heating and the effect of different rates of magmatic extension on the timescales over which heating occurs are poorly understood. To address this issue, a numerical solution to the heat-flow equation is developed here to quantify the thermal effects of dyke intrusion on the continental crust during rifting. The thermal models are benchmarked against a priori constraints on crustal structure and dyke intrusion episodes in Ethiopia. Finite difference models demonstrate that magmatic extension rate exerts a first-order control on the crustal thermal structure. Once dyke intrusion supersedes faulting and stretching as the principal extensional mechanism the crust will heat and weaken rapidly (less than 1 Ma). In the Main Ethiopian Rift (MER), the majority of present-day extension is focused on ∼20 km-wide Quaternary-Recent axial magmatic segments that are mostly seismogenic to mid-crustal depths and show P-wave seismic velocities characteristic of heavily intruded continental crust. When reviewed in light of our models, these observations require that no more than half of the MER's extension since ∼2 Ma has been achieved by dyke intrusion. Magmatic heating and weakening of the crust would have rendered it aseismic if dyke intrusion accounted for the entire 6 mm/yr extension rate. In the older, faster extending (16 mm/yr) Red Sea rift (RSR) in Afar, dyke intrusion is expected to have had a more dramatic impact on crustal rheology. Accordingly, effective elastic plate

  7. Thermal stresses from large volumetric expansion during freezing of biomaterials.

    PubMed

    Shi, X; Datta, A K; Mukherjee, Y

    1998-12-01

    Thermal stresses were studied in freezing of biomaterials containing significant amounts of water. An apparent specific heat formulation of the energy equation and a viscoelastic model for the mechanics problem were used to analyze the transient axi-symmetric freezing of a long cylinder. Viscoelastic properties were measured in an Instron machine. Results show that, before phase change occurs at any location, both radial and circumferential stresses are tensile and keep increasing until phase change begins. The maximum principal tensile stress during phase change increases with a decrease in boundary temperature (faster cooling). This is consistent with experimentally observed fractures at a lower boundary temperature. Large volumetric expansion during water to ice transformation was shown to be the primary contributor to large stress development. For very rapid freezing, relaxation may not be significant, and an elastic model may be sufficient. PMID:10412455

  8. Information on stress conditions in the oceanic crust from oval fractures in a deep borehole

    USGS Publications Warehouse

    Morin, R.H.

    1990-01-01

    Oval images etched into the wall of a deep borehole were detected in DSDP Hole 504B, eastern equatorial Pacific Ocean, from analysis of an acoustic televiewer log. A systematic inspection of these ovals has identified intriguing consistencies in appearance that cannot be explained satisfactorily by a random, coincidental distribution of pillow lavas. As an alternative hypothesis, Mohr-Coulomb failure criterion is used to account for the generation and orientation of similarly curved, stress-induced fractures. Consequently, these oval features can be interpreted as fractures and related directly to stress conditions in the oceanic crust at this site. The azimuth of the oval center corresponds to the orientation of maximum horizontal principal stress (SH), and the oval width, which spans approximately 180?? of the borehole, is aligned with the azimuth of minimum horizontal principal stress (Sh). The oval height is controlled by the fracture angle and thus is a function of the coefficient of internal friction of the rock. -from Author

  9. Open cycle ocean thermal energy conversion system structure

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    A generally mushroom-shaped, open cycle OTEC system and distilled water producer which has a skirt-conduit structure extending from the enlarged portion of the mushroom to the ocean. The enlarged part of the mushroom houses a toroidal casing flash evaporator which produces steam which expands through a vertical rotor turbine, partially situated in the center of the blossom portion and partially situated in the mushroom's stem portion. Upon expansion through the turbine, the motive steam enters a shell and tube condenser annularly disposed about the rotor axis and axially situated beneath the turbine in the stem portion. Relatively warm ocean water is circulated up through the radially outer skirt-conduit structure entering the evaporator through a radially outer portion thereof, flashing a portion thereof into motive steam, and draining the unflashed portion from the evaporator through a radially inner skirt-conduit structure. Relatively cold cooling water enters the annular condenser through the radially inner edge and travels radially outwardly into a channel situated along the radially outer edge of the condenser. The channel is also included in the radially inner skirt-conduit structure. The cooling water is segregated from the potable, motive steam condensate which can be used for human consumption or other processes requiring high purity water. The expansion energy of the motive steam is partially converted into rotational mechanical energy of the turbine rotor when the steam is expanded through the shaft attached blades. Such mechanical energy drives a generator also included in the enlarged mushroom portion for producing electrical energy. Such power generation equipment arrangement provides a compact power system from which additional benefits may be obtained by fabricating the enclosing equipment, housings and component casings from low density materials, such as prestressed concrete, to permit those casings and housings to also function as a floating

  10. Formation of mountains on Io: Variable volcanism and thermal stresses

    NASA Astrophysics Data System (ADS)

    Kirchoff, Michelle R.; McKinnon, William B.

    2009-06-01

    Thermal stresses are potentially important drivers of Io's tectonics and mountain building. It has been hypothesized that sustained local or regional shut down of heat-pipe volcanism on Io could lead to deep crustal heating and large compressive stresses [McKinnon, W.B., Schenk, P.M., Dombard, A.J., 2001. Geology 29, 103-106]. Such large stresses would then be relieved by thrust faulting and uplifting of crustal blocks, producing mountains like those observed on Io. Here we analyze the tectonic consequences of the heat-pipe model in detail, considering both the initial thermal stress state of a basalt or peridotite crust created by heat-pipe volcanism, and relative roles of subsidence stresses (due to burial of preexisting layers) and thermal stresses arising from variable volcanism and changes in crustal (˜lithosphere) thickness. We limit the magnitude of the potential subsidence stresses in our study, because the magnitude of subsidence stresses can be quite large, if not dominant. Results indicate that for a fixed crustal thickness, the region of failure and faulting moves closer to the surface as eruption rate decreases and time increases. When the crust melts at its base as volcanism decreases (as might occur under steady state tidal heating), resulting in crustal thinning, the region of failure is brought even closer to the surface. Naturally, when compressive, subsidence stresses are included, the vertical extent of crust in brittle failure thickens to include most of the lithosphere. In contrast, increases in eruption rate cause the extent of the region in compressional failure to decrease and be driven very deep in the crust (in the absence of sufficient subsidence stress). Therefore, regions of declining volcanism are more likely to produce mountains, whereas regions of extensive or increasing volcanism are less likely to do so. This is consistent with the observation of a global anticorrelation between mountains and volcanic centers on Io. Finally, we

  11. Arctic Crustal Thickness and Ocean-Continent Transition from Gravity Inversion Incorporating a Lithosphere Thermal Correction

    NASA Astrophysics Data System (ADS)

    Greenhalgh, E.; Kusznir, N. J.; Lebedeva-Ivanova, N.; Alvey, A.; Gaina, C.; Torsvik, T. H.

    2007-12-01

    Crustal thickness and continental lithosphere thinning factors have been determined for the High Arctic using a gravity inversion method which incorporates a lithosphere thermal gravity anomaly correction. Continental lithosphere thinning factor maps, determined by the inversion of the NGA (U) Arctic Gravity Project data have been used to predict the distribution of oceanic lithosphere and ocean-continent transition (OCT) location for the Amerasia Basin. Thin crust and high lithosphere thinning factors are predicted in the Makarov, Podvodnikov and Canada Basins consistent with these basins being oceanic. Larger crustal thicknesses, in the range 20 - 30 km, are predicted for the Lomonosov, Alpha and Mendeleev Ridges. Moho depths predicted by gravity inversion have been compared with seismic estimates for the TransArctica and Arctica profiles with seismically observed sediment thickness included in the gravity inversion. Agreement between gravity and seismic Moho depths is generally good. The largest differences between gravity and seismic Moho depths occur where lower crustal seismic velocities, Vp, are in excess of ~ 7.3km/s. Gravity inversion to determine Moho depth and crustal thickness variation is carried out in the 3D spectral domain. A correction for the large negative residual thermal gravity anomaly within oceanic and stretched continental margin lithosphere is made and requires a lithosphere thermal model to predict the present day lithosphere thermal anomaly. For continental margin lithosphere, the lithosphere thermal perturbation is calculated from the lithosphere thinning factor (1-1/beta) obtained from crustal thinning determined by gravity inversion and breakup age for thermal re-equilibration time. A correction is made for crustal volcanic addition due to decompression melting during breakup and sea-floor spreading. For the Amerasia Basin, where ocean isochrons are uncertain, all lithosphere is assumed to be initially continental, and a lithosphere

  12. Meridional thermal field of a coupled ocean-atmosphere system: a conceptual model

    NASA Astrophysics Data System (ADS)

    Ou, Hsien-Wang

    2006-05-01

    This paper constitutes the author's continuing effort in the construction of a minimal theory of the earth's climate. In an earlier paper published in the Journal of Climate in 2001, this author has derived the global-mean fields of an aquatic planet forced by the solar insolation, which provide the necessary constraints for the present derivation of the meridional thermal field. The model closure invokes maximized entropy production (MEP), a thermodynamic principle widely used in turbulence and climate studies. Based on differing convective regimes of the ocean and atmosphere, both fluids are first reduced two thermal masses with aligned fronts, consistent with a minimal description of the observed field. Subjected to natural bounds, a robust solution is then found, characterized by an ice-free ocean, near-freezing cold fluid masses, mid-latitude fronts, and comparable ocean and atmosphere heat transports. The presence of polar continents, however, sharply reduces the ocean heat transport outside the tropics, but leaves the thermal field largely unchanged. Given the limitation of an extremely crude model, the deduced thermal field nonetheless seems sensible, suggesting that the model has captured the physics for a minimal account of the observed field. Together with the above-mentioned paper, the model reinforces the pre-eminent role of the triple point of water in stabilizing the surface temperature - against changing external condition. Such internal control is made possible by the turbulent nature of the climate fluids, which necessitates a selection rule based on extremization.

  13. Geotechnical and geologic design considerations for a shelf mounted OTEC (Ocean Thermal Energy Conversion) facility

    NASA Astrophysics Data System (ADS)

    Miller, J. S.; Smith, R. E.

    1984-04-01

    Topics relating to the siting of an ocean thermal energy conversion facility off the coast of Oahu, Hawaii are discussed. Anticipated site conditions which would affect information requirements; potential foundation schemes used to identify key geotechnical parameters; techniques available for exploration and site characterization; and geologic and geotechnical factors and uncertainties that may be associated with site exploration and design information are discussed.

  14. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Francis, Robert W.

    1987-01-01

    Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.

  15. Correlation of predicted and measured thermal stresses on an advanced aircraft structure with similar materials

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    A laboratory heating test simulating hypersonic heating was conducted on a heat-sink type structure to provide basic thermal stress measurements. Six NASTRAN models utilizing various combinations of bar, shear panel, membrane, and plate elements were used to develop calculated thermal stresses. Thermal stresses were also calculated using a beam model. For a given temperature distribution there was very little variation in NASTRAN calculated thermal stresses when element types were interchanged for a given grid system. Thermal stresses calculated for the beam model compared similarly to the values obtained for the NASTRAN models. Calculated thermal stresses compared generally well to laboratory measured thermal stresses. A discrepancy of signifiance occurred between the measured and predicted thermal stresses in the skin areas. A minor anomaly in the laboratory skin heating uniformity resulted in inadequate temperature input data for the structural models.

  16. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  17. Using thermal stress to model aspects of disease states.

    PubMed

    Wilson, Thad E; Klabunde, Richard E; Monahan, Kevin D

    2014-07-01

    Exposure to acute heat or cold stress elicits numerous physiological responses aimed at maintaining body temperatures. Interestingly, many of the physiological responses, mediated by the cardiovascular and autonomic nervous systems, resemble aspects of, or responses to, certain disease states. The purpose of this Perspective is to highlight some of these areas in order to explore how they may help us better understand the pathophysiology underlying aspects of certain disease states. The benefits of using this human thermal stress approach are that (1) no adjustments for inherent comparative differences in animals are needed, (2) non-medicated healthy humans with no underlying co-morbidities can be studied in place of complex patients, and (3) more mechanistic perturbations can be safely employed without endangering potentially vulnerable populations. Cold stress can be used to induce stable elevations in blood pressure. Cold stress may also be used to model conditions where increases in myocardial oxygen demand are not met by anticipated increases in coronary blood flow, as occurs in older adults. Lower-body negative pressure has the capacity to model aspects of shock, and the further addition of heat stress improves and expands this model because passive-heat exposure lowers systemic vascular resistance at a time when central blood volume and left-ventricular filling pressure are reduced. Heat stress can model aspects of heat syncope and orthostatic intolerance as heat stress decreases cerebral blood flow and alters the Frank-Starling mechanism resulting in larger decreases in stroke volume for a given change in left-ventricular filling pressure. Combined, thermal perturbations may provide in vivo paradigms that can be employed to gain insights into pathophysiological aspects of certain disease states. PMID:24956954

  18. Method for alleviating thermal stress damage in laminates

    NASA Technical Reports Server (NTRS)

    Hoffman, C. A.; Weeton, J. W.; Orth, N. W. (Inventor)

    1981-01-01

    The method is for metallic matrix composites, such as laminated sheet or foil composites. Non-intersecting discrete discontinuities are positively introduced into the interface between the layers so as to reduce the thermal stress produced by unequal expansion of the materials making up the composite. The discontinuities are preferably produced by drilling holes in the metallic matrix layer. However, a plurality of discrete elements may be used between the layers to carry out this purpose.

  19. Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii

    PubMed Central

    Berger, Leslie Ralph; Berger, Joyce A.

    1986-01-01

    Countermeasures to biofouling in simulated ocean thermal energy conversion heat exchangers have been studied in single-pass flow systems, using cold deep and warm surface ocean waters off the island of Hawaii. Manual brushing of the loops after free fouling periods removed most of the biofouling material. However, over a 2-year period a tenacious film formed. Daily free passage of sponge rubber balls through the tubing only removed the loose surface biofouling layer and was inadequate as a countermeasure in both titanium and aluminum alloy tubes. Chlorination at 0.05, 0.07, and 0.10 mg liter-1 for 1 h day-1 lowered biofouling rates. Only at 0.10 mg liter-1 was chlorine adequate over a 1-year period to keep film formation and heat transfer resistance from rising above the maximum tolerated values. Lower chlorination regimens led to the buildup of uneven or patchy films which produced increased flow turbulence. The result was lower heat transfer resistance values which did not correlate with the amount of biofouling. Surfaces which were let foul and then treated with intermittent or continuous chlorination at 0.10 mg of chlorine or less per liter were only partially or unevenly cleaned, although heat transfer measurements did not indicate that fact. It took continuous chlorination at 0.25 mg liter-1 to bring the heat transfer resistance to zero and eliminate the fouling layer. Biofouling in deep cold seawater was much slower than in the warm surface waters. Tubing in one stainless-steel loop had a barely detectable fouling layer after 1 year in flow. With aluminum alloys sufficient corrosion and biofouling material accumulated to require that some fouling coutermeasure be used in long-term operation of an ocean thermal energy conversion plant. Images PMID:16347076

  20. Effect of element density on the NASTRAN calculated mechanical and thermal stresses of a spar

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1979-01-01

    A NASTRAN model of a spar was examined to determine the sensitivity of calculated axial thermal stresses and bending stresses to changes in element density of the model. The thermal stresses calculated with three different element densities resulted in drastically differing values. The position of the constraint also significantly affected the value of the calculated thermal stresses. Mechanical stresses calculated from an applied loading were insensitive to element density.

  1. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1992-01-01

    The potential of using interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix has been investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  2. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1990-01-01

    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  3. Thermal isostasy, elevation of continental North America and intraplate stresses

    NASA Astrophysics Data System (ADS)

    Mareschal, J.; Perry, C.

    2009-12-01

    We determine variations in gravitational potential energy (GPE) in North America due to internal loads associated with lithospheric density anomalies. To constrain GPE estimates within the continental interior, we calculate the predicted elevation of North America assuming local isostatic equilibrium due to crustal density variations and thermal isostasy. The contribution of internal loads to intraplate stresses are determined and compared to other tectonic stresses. Internal horizontal stresses are calculated from the gradient of the GPE, and follow variations in topography. Transient thermal models are developed for the tectonically active zones of the Basin&Range Province, the Colorado Plateau and Canadian Cordillera, and the validity of these models is tested through comparison of the observed and predicted topography and gravity in each region. Standard steady-state thermal models are used for non-active regions. We do not calculate here the dynamic component of observed surface topography, however the misfit between the predicted and observed surface topography is largely associated with the dynamic mantle signal. The RMS difference in observed and predicted topography over all North America is found to be ~250 m which is close to the average North American dynamic component of topography inferred from seismic-geodynamic inversion techniques.

  4. Coefficient of thermal expansion dependent thermal stress analysis of thermal barrier coatings (TBCs) using finite element model

    NASA Astrophysics Data System (ADS)

    Coker, Omotola

    Thermal barrier coatings (TBCs) are highly sophisticated micro scale ceramic insulation applied on high temperature components such as gas turbine blades. TBCs create a large temperature drop between the gas turbine environment and the underlying metal blades. TBC lifetime is finite and influenced by several factors such as: Bond Coat (BC) oxidation, BC roughness, Coefficient of thermal expansion (CTE) mismatch between the layers, and creep properties of the TBC system. However, there is a lack of reliable methods of TBC life prediction which result in under utilization of these coatings. This research study focuses on modeling the steady state thermal stresses in TBC systems of various oxide thicknesses, and BC roughness, using Finite Element Analysis (FEA). The model factors into it the temperature dependent thermo mechanical properties of each layer, as well as the creep properties. The steady state model results show similar results to the existing transient models: an increase in tensile stresses as the oxide thickness increases, an increase in tensile stresses with BC roughness and stress relaxation in the ceramic BC interface due to creep. It also shows in each model, initially compressive stresses in the BC - Top Coat (TC) interface, and its evolution into higher tensile stresses which lead to crack formation and ultimately failure of the TBC by spallation.

  5. Thermally induced stresses and deformations in layered composite tubes

    NASA Technical Reports Server (NTRS)

    Cooper, D. E.; Cohen, D.; Rousseau, C. Q.; Hyer, M. W.; Tompkins, S. S.

    1985-01-01

    The thermally induced stresses and deformations in layered, orthotropic tubes are studied. The motivation for studying tubes is their likely application for use in space structures. Tubes are a strong candidate for this application because of their high structural efficiency, as measured by stiffness per unit weight, and their relative ease of fabrication. Also, tubes have no free edges to deteriorate or delaminate. An anticipated thermal condition for tubes in space is a circumferential temperature gradient. This type of gradient will introduce dimensional changes into the structure and may cause stresses large enough to cause damage to the material. There are potentially large differences in temperatures at different circumferential locations on the tube. Because of this, the effects of temperature dependent material properties on the stresses and deformations may be important. The study is composed of three parts: experiments to determine the functional form of the circumferential gradient and to measure tube deflections; an elasticity solution to compute the stresses and deformations; and an approximate approach to determine the effects of temperature dependent material properties.

  6. Modeling Oxidation Induced Stresses in Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Ferguson, B. L.; Freborg, A. M.; Petrus, G. J.; Brindley, William J.

    1998-01-01

    The use of thermal barrier coatings (TBC's) in gas turbines has increased dramatically in recent years, due mainly to the need for component protection from ever increasing service temperatures. Oxidation of the bond coat has been identified as an important contributing factor to spallation of the ceramic top coat during service. Additional variables found to influence TBC thermal cycle life include bond coat coefficient of thermal expansion, creep behavior of both the ceramic and bond coat layers, and modulus of elasticity. The purpose of this work was to characterize the effects of oxidation on the stress states within the TBC system, as well as to examine the interaction of oxidation with other factors affecting TBC life.

  7. Analytical Model for Thermal Elastoplastic Stresses of Functionally Graded Materials

    SciTech Connect

    Zhai, P. C.; Chen, G.; Liu, L. S.; Fang, C.; Zhang, Q. J.

    2008-02-15

    A modification analytical model is presented for the thermal elastoplastic stresses of functionally graded materials subjected to thermal loading. The presented model follows the analytical scheme presented by Y. L. Shen and S. Suresh [6]. In the present model, the functionally graded materials are considered as multilayered materials. Each layer consists of metal and ceramic with different volume fraction. The ceramic layer and the FGM interlayers are considered as elastic brittle materials. The metal layer is considered as elastic-perfectly plastic ductile materials. Closed-form solutions for different characteristic temperature for thermal loading are presented as a function of the structure geometries and the thermomechanical properties of the materials. A main advance of the present model is that the possibility of the initial and spread of plasticity from the two sides of the ductile layers taken into account. Comparing the analytical results with the results from the finite element analysis, the thermal stresses and deformation from the present model are in good agreement with the numerical ones.

  8. INFLUENCE OF THERMAL STRESS ON MARGINAL INTEGRITY OF RESTORATIVE MATERIALS

    PubMed Central

    Cenci, Maximiliano Sérgio; Pereira-Cenci, Tatiana; Donassollo, Tiago Aurélio; Sommer, Leandro; Strapasson, André; Demarco, Flávio Fernando

    2008-01-01

    The aim of this study was to evaluate the influence of thermal stress on the marginal integrity of restorative materials with different adhesive and thermal properties. Three hundred and sixty Class V cavities were prepared in buccal and lingual surfaces of 180 bovine incisors. Cervical and incisal walls were located in dentin and enamel, respectively. Specimens were restored with resin composite (RC); glass ionomer (GI) or amalgam (AM), and randomly assigned to 18 groups (n=20) according to the material, number of cycles (500 or 1,000 cycles) and dwell time (30 s or 60 s). Dry and wet specimens served as controls Specimens were immersed in 1% basic fuchsine solution (24 h), sectioned, and microleakage was evaluated under x40 magnification. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests: Thermal cycling regimens increased leakage in all AM restorations (p<0.05) and its effect on RC and GI restorations was only significant when a 60-s dwell time was used (p<0.05). Marginal integrity was more affected in AM restorations under thermal cycling stress, whereas RC and GI ionomer restoration margins were only significantly affected only under longer dwell times. PMID:19089200

  9. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching.

    PubMed

    Cardini, Ulisse; van Hoytema, Nanne; Bednarz, Vanessa N; Rix, Laura; Foster, Rachel A; Al-Rshaidat, Mamoon M D; Wild, Christian

    2016-09-01

    Coral holobionts (i.e., coral-algal-prokaryote symbioses) exhibit dissimilar thermal sensitivities that may determine which coral species will adapt to global warming. Nonetheless, studies simultaneously investigating the effects of warming on all holobiont members are lacking. Here we show that exposure to increased temperature affects key physiological traits of all members (herein: animal host, zooxanthellae and diazotrophs) of both Stylophora pistillata and Acropora hemprichii during and after thermal stress. S. pistillata experienced severe loss of zooxanthellae (i.e., bleaching) with no net photosynthesis at the end of the experiment. Conversely, A. hemprichii was more resilient to thermal stress. Exposure to increased temperature (+ 6°C) resulted in a drastic increase in daylight dinitrogen (N2 ) fixation, particularly in A. hemprichii (threefold compared with controls). After the temperature was reduced again to in situ levels, diazotrophs exhibited a reversed diel pattern of activity, with increased N2 fixation rates recorded only in the dark, particularly in bleached S. pistillata (twofold compared to controls). Concurrently, both animal hosts, but particularly bleached S. pistillata, reduced both organic matter release and heterotrophic feeding on picoplankton. Our findings indicate that physiological plasticity by coral-associated diazotrophs may play an important role in determining the response of coral holobionts to ocean warming. PMID:27234003

  10. Nutritional and environmental studies on an ocean-going oil tanker. 1. Thermal environment

    PubMed Central

    Collins, K. J.; Eddy, T. P.; Lee, D. E.; Swann, P. G.

    1971-01-01

    Collins, K. J., Eddy, T. P., Lee, D. E., and Swann, P. G. (1971).Brit. J. industr. Med.,28, 237-245. Nutritional and environmental studies on an ocean-going oil tanker. I. Thermal environment. Investigations were made on board a modern, air-conditioned oil tanker (S.S. Esso Newcastle) en route to the Persian Gulf in July to August 1967 in order to study thermal conditions in the working environment, and the nutritional status of the crew, and to examine the interrelationship between climate and nutritional balance. In this introductory paper an account is given of the aims and design of the experiments together with details of the environmental survey. The voyage round Africa lasted one month, with high ambient temperatures of 37·7°C dry bulb, 30·8°C wet bulb (100/87°F) occurring only on the last few days into and out of the Persian Gulf. Mean accommodation temperature was maintained in the zone of comfort throughout, and at 23·9°C (75°F) Corrected Effective Temperature (CET) in the Gulf. On a previous voyage in a tanker without air-conditioning CETs up to 31·6°C (89°F) had been recorded in the accommodation in the same ambient conditions. With exposure to high solar radiation in the Gulf, the deck officer's cabins and bridge house in the upper superstructure became uncomfortably warm (CET exceeding 26·6°C (80°F)) and in these temperatures skilled performance is likely to deteriorate. The main thermal problems in the working environment were associated with the engine and boiler rooms which were consistently 11 to 17°C (20 to 30°F) higher than ambient temperature. For personnel on watch, the levels of heat stress were high but not intolerable if advantage was taken of the air blowers. Conditions under which emergency or repair tasks were carried out in very hot engine-room spaces were examined and often found to allow only a small margin of safety. Predicted average tolerance times were deduced from the Wet Bulb Globe Temperature (WBGT) scale of

  11. Ocean thermal energy at the Johns Hopkins University Applied Physics Laboratory

    NASA Astrophysics Data System (ADS)

    1982-07-01

    Ocean Thermal Energy Conversion (OTEC) systems that provide synthetic fuels (e.g., methanol), energy intensive products such as ammonia (for fertilizers and chemicals), and aluminum were developed. The work also includes assessment and design concepts for hybrid plants, such as geothermal OTEC (GEOTEC) plants. Management of the conceptual design activity of the two industry teams that are designing offshore OTEC pilot plants that could deliver power to Oahu, Hawaii is discussed. In addition, a program in which tests of a different kind of ocean energy device, a turbine that is air driven as a result of wave action in a chamber is being planned.

  12. Investigation of Thermal Stress Convection in Nonisothermal Gases Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Mackowski, Daniel W.; Knight, Roy W.

    1996-01-01

    Microgravity conditions offer an environment in which convection in a nonisothermal gas could be driven primarily by thermal stress. A direct examination of thermal stress flows would be invaluable in assessing the accuracy of the Burnett terms in the fluid stress tensor. We present a preliminary numerical investigation of the competing effects of thermal stress, thermal creep at the side walls, and buoyancy on gas convection in nonuniformly heated containers under normal and reduced gravity levels. Conditions in which thermal stress convection becomes dominant are identified, and issues regarding the experimental measurement of the flows are discussed.

  13. Surface Residual Stresses in Ti-6Al-4V Friction Stir Welds: Pre- and Post-Thermal Stress Relief

    NASA Astrophysics Data System (ADS)

    Edwards, P.; Ramulu, M.

    2015-09-01

    The purpose of this study was to determine the residual stresses present in titanium friction stir welds and if a post-weld thermal stress relief cycle would be effective in minimizing those weld-induced residual stresses. Surface residual stresses in titanium 6Al-4V alloy friction stir welds were measured in butt joint thicknesses ranging from 3 to 12 mm. The residual stress states were also evaluated after the welds were subjected to a post-weld thermal stress relief cycle of 760 °C for 45 min. High (300-400 MPa) tensile residual stresses were observed in the longitudinal direction prior to stress relief and compressive residual stresses were measured in the transverse direction. After stress relief, the residual stresses were decreased by an order of magnitude to negligible levels.

  14. Design and cost of near-term OTEC (Ocean Thermal Energy Conversion) plants for the production of desalinated water and electric power. [Ocean Thermal Energy Conversion (OTEC)

    SciTech Connect

    Rabas, T.; Panchal, C.; Genens, L.

    1990-01-01

    There currently is an increasing need for both potable water and power for many islands in the Pacific and Caribbean. The Ocean Thermal Energy Conversion (OTEC) technology fills these needs and is a viable option because of the unlimited supply of ocean thermal energy for the production of both desalinated water and electricity. The OTEC plant design must be flexible to meet the product-mix demands that can be very different from site to site. This paper describes different OTEC plants that can supply various mixes of desalinated water and vapor -- the extremes being either all water and no power or no water and all power. The economics for these plants are also presented. The same flow rates and pipe sizes for both the warm and cold seawater streams are used for different plant designs. The OTEC plant designs are characterized as near-term because no major technical issues need to be resolved or demonstrated. The plant concepts are based on DOE-sponsored experiments dealing with power systems, advanced heat exchanger designs, corrosion and fouling of heat exchange surfaces, and flash evaporation and moisture removal from the vapor using multiple spouts. In addition, the mature multistage flash evaporator technology is incorporated into the plant designs were appropriate. For the supply and discharge warm and cold uncertainties do exist because the required pipe sizes are larger than the maximum currently deployed -- 40-inch high-density polyethylene pipe at Keahole Point in Hawaii. 30 refs., 6 figs., 8 tabs.

  15. Thermal imaging to detect physiological indicators of stress in humans

    NASA Astrophysics Data System (ADS)

    Cross, Carl B.; Skipper, Julie A.; Petkie, Douglas T.

    2013-05-01

    Real-time, stand-off sensing of human subjects to detect emotional state would be valuable in many defense, security and medical scenarios. We are developing a multimodal sensor platform that incorporates high-resolution electro-optical and mid-wave infrared (MWIR) cameras and a millimeter-wave radar system to identify individuals who are psychologically stressed. Recent experiments have aimed to: 1) assess responses to physical versus psychological stressors; 2) examine the impact of topical skin products on thermal signatures; and 3) evaluate the fidelity of vital signs extracted from thermal imagery and radar signatures. Registered image and sensor data were collected as subjects (n=32) performed mental and physical tasks. In each image, the face was segmented into 29 non-overlapping segments based on fiducial points automatically output by our facial feature tracker. Image features were defined that facilitated discrimination between psychological and physical stress states. To test the ability to intentionally mask thermal responses indicative of anxiety or fear, subjects applied one of four topical skin products to one half of their face before performing tasks. Finally, we evaluated the performance of two non-contact techniques to detect respiration and heart rate: chest displacement extracted from the radar signal and temperature fluctuations at the nose tip and regions near superficial arteries to detect respiration and heart rates, respectively, extracted from the MWIR imagery. Our results are very satisfactory: classification of physical versus psychological stressors is repeatedly greater than 90%, thermal masking was almost always ineffective, and accurate heart and respiration rates are detectable in both thermal and radar signatures.

  16. Methodology for assessment of amount and amplitude of thermal stress cycles in masonry

    NASA Astrophysics Data System (ADS)

    Beran, Pavel

    2016-06-01

    Analysis of amount and amplitude of thermal stress cycles in historic masonry has been made by means of combination of three 2-D numerical models of heterogeneous ashlar masonry. The numerical models were used to simulate thermal stress cycles during June, July and August in reference climatic year valid for Prague Castle, Czech Republic. For evaluation of amplitude and amount of the thermal stress cycles the effective stress in selected point in masonry was used. Afterwards rainflow method was used to count the amplitude and amount of the stress cycles. The results show that during summer quite a lot of significant thermal stress cycles originate in masonry, especially during sunny hot days. The results presented in this paper confirm the significant fatigue character of the thermal stress cycles and the method presented here could be suitable to evaluate thermal stress in building materials and structures.

  17. YoeB toxin is activated during thermal stress

    PubMed Central

    Janssen, Brian D; Garza-Sánchez, Fernando; Hayes, Christopher S

    2015-01-01

    Type II toxin-antitoxin (TA) modules are thought to mediate stress-responses by temporarily suppressing protein synthesis while cells redirect transcription to adapt to environmental change. Here, we show that YoeB, a ribosome-dependent mRNase toxin, is activated in Escherichia coli cells grown at elevated temperatures. YoeB activation is dependent on Lon protease, suggesting that thermal stress promotes increased degradation of the YefM antitoxin. Though YefM is efficiently degraded in response to Lon overproduction, we find that Lon antigen levels do not increase during heat shock, indicating that another mechanism accounts for temperature-induced YefM proteolysis. These observations suggest that YefM/YoeB functions in adaptation to temperature stress. However, this response is distinct from previously described models of TA function. First, YoeB mRNase activity is maintained over several hours of culture at 42°C, indicating that thermal activation is not transient. Moreover, heat-activated YoeB does not induce growth arrest nor does it suppress global protein synthesis. In fact, E. coli cells proliferate more rapidly at elevated temperatures and instantaneously accelerate their growth rate in response to acute heat shock. We propose that heat-activated YoeB may serve a quality control function, facilitating the recycling of stalled translation complexes through ribosome rescue pathways. PMID:26147890

  18. YoeB toxin is activated during thermal stress.

    PubMed

    Janssen, Brian D; Garza-Sánchez, Fernando; Hayes, Christopher S

    2015-08-01

    Type II toxin-antitoxin (TA) modules are thought to mediate stress-responses by temporarily suppressing protein synthesis while cells redirect transcription to adapt to environmental change. Here, we show that YoeB, a ribosome-dependent mRNase toxin, is activated in Escherichia coli cells grown at elevated temperatures. YoeB activation is dependent on Lon protease, suggesting that thermal stress promotes increased degradation of the YefM antitoxin. Though YefM is efficiently degraded in response to Lon overproduction, we find that Lon antigen levels do not increase during heat shock, indicating that another mechanism accounts for temperature-induced YefM proteolysis. These observations suggest that YefM/YoeB functions in adaptation to temperature stress. However, this response is distinct from previously described models of TA function. First, YoeB mRNase activity is maintained over several hours of culture at 42°C, indicating that thermal activation is not transient. Moreover, heat-activated YoeB does not induce growth arrest nor does it suppress global protein synthesis. In fact, E. coli cells proliferate more rapidly at elevated temperatures and instantaneously accelerate their growth rate in response to acute heat shock. We propose that heat-activated YoeB may serve a quality control function, facilitating the recycling of stalled translation complexes through ribosome rescue pathways. PMID:26147890

  19. Sympathetic regulation during thermal stress in human aging and disease.

    PubMed

    Greaney, Jody L; Kenney, W Larry; Alexander, Lacy M

    2016-04-01

    Humans control their core temperature within a narrow range via precise adjustments of the autonomic nervous system. In response to changing core and/or skin temperature, several critical thermoregulatory reflex effector responses are initiated and include shivering, sweating, and changes in cutaneous blood flow. Cutaneous vasomotor adjustments, mediated by modulations in sympathetic nerve activity (SNA), aid in the maintenance of thermal homeostasis during cold and heat stress since (1) they serve as the first line of defense of body temperature and are initiated before other thermoregulatory effectors, and (2) they are on the efferent arm of non-thermoregulatory reflex systems, aiding in the maintenance of blood pressure and organ perfusion. This review article highlights the sympathetic responses of humans to thermal stress, with a specific focus on primary aging as well as impairments that occur in both heart disease and type 2 diabetes mellitus. Age- and pathology-related changes in efferent muscle and skin SNA during cold and heat stress, measured directly in humans using microneurography, are discussed. PMID:26627337

  20. Crack Growth in First Wall by Cyclic Thermal Stress

    SciTech Connect

    Nishimura, T.; Hatano, T.; Honda, T.; Saito, M.

    2003-07-15

    The long pulse operation is assumed in ITER and future reactors. If the first wall has a defect, the crack may be propagated by cyclic thermal loads. In addition, flattop of more than 300 sec during plasma burning is expected, therefore, an effect of transient creep must be included. In order to simulate a severe temperature gradient in the first wall, an experimental facility was designed using an electron beam (EB) as a heat source, which has a distinct feature that the various plasma burning scenarios can be simulated by controlling the beam power so as to make surface temperature of the specimen to be fixed. To clarify the crack growth mechanism and the effects of transient creep, elastic-plastic stress analysis and creep analysis were performed. It is concluded that the creep effect during the operation duration period enlarges the residual tensile stress in the cooling period, and that consequently the crack propagation length increases.

  1. Deposition stress effects on thermal barrier coating burner rig life

    NASA Technical Reports Server (NTRS)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  2. Crop water-stress assessment using an airborne thermal scanner

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  3. Ocean thermal plantships for production of ammonia as the hydrogen carrier.

    SciTech Connect

    Panchal, C.B.; Pandolfini, P. P.; Kumm, W. H.; Energy Systems; Johns Hopkins Univ.; Arctic Energies, Ltd.

    2009-12-02

    Conventional petroleum, natural gas, and coal are the primary sources of energy that have underpinned modern civilization. Their continued availability in the projected quantities required and the impacts of emission of greenhouse gases (GHGs) on the environment are issues at the forefront of world concerns. New primary sources of energy are being sought that would significantly reduce the emissions of GHGs. One such primary source that can help supply energy, water, and fertilizer without GHG emissions is available in the heretofore unexploited thermal gradients of the tropical oceans. The world's oceans are the largest natural collector and reservoir of solar energy. The potential of ocean energy is limitless for producing base-load electric power or ammonia as the hydrogen carrier and fresh water from seawater. However, until now, ocean energy has been virtually untapped. The general perception is that ocean thermal energy is limited to tropical countries. Therefore, the full potential of at-sea production of (1) ammonia as a hydrogen carrier and (2) desalinated water has not been adequately evaluated. Using ocean thermal plantships for the at-sea co-production of ammonia as a hydrogen carrier and desalinated water offer potential energy, environmental, and economic benefits that support the development of the technology. The introduction of a new widespread solution to our projected energy supply requires lead times of a decade or more. Although continuation of the ocean thermal program from the 1970s would likely have put us in a mitigating position in the early 2000s, we still have a window of opportunity to dedicate some of our conventional energy sources to the development of this renewable energy by the time new sources would be critically needed. The primary objective of this project is to evaluate the technical and economic viability of ocean thermal plantships for the production of ammonia as the hydrogen carrier. This objective is achieved by

  4. Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing

    NASA Astrophysics Data System (ADS)

    Morlighem, M.; Bondzio, J.; Seroussi, H.; Rignot, E.; Larour, E.; Humbert, A.; Rebuffi, S.

    2016-03-01

    Glacier-front dynamics is an important control on Greenland's ice mass balance. Warmer ocean waters trigger ice-front retreats of marine-terminating glaciers, and the corresponding loss in resistive stress leads to glacier acceleration and thinning. Here we present an approach to quantify the sensitivity and vulnerability of marine-terminating glaciers to ocean-induced melt. We develop a plan view model of Store Gletscher that includes a level set-based moving boundary capability, a parameterized ocean-induced melt, and a calving law with complete and precise land and fjord topographies to model the response of the glacier to increased melt. We find that the glacier is stabilized by a sill at its terminus. The glacier is dislodged from the sill when ocean-induced melt quadruples, at which point the glacier retreats irreversibly for 27 km into a reverse bed. The model suggests that ice-ocean interactions are the triggering mechanism of glacier retreat, but the bed controls its magnitude.

  5. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin

    2016-04-01

    Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.

  6. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, A. N.; Haley, B. A.; Tripati, A. K.; Frank, M.

    2015-06-01

    Global warming during the Paleocene Eocene Thermal Maximum (PETM) ~55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role for changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites and comparing data with published data from fossil fish debris to reconstruct past deep ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for global recovery of the ocean-atmosphere system after the PETM.

  7. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Penman, Donald E.; Hönisch, Bärbel; Zeebe, Richard E.; Thomas, Ellen; Zachos, James C.

    2014-05-01

    The Paleocene-Eocene Thermal Maximum (PETM) has been associated with the release of several thousands of petagrams of carbon (Pg C) as methane and/or carbon dioxide into the ocean-atmosphere system within ~10 kyr, on the basis of the co-occurrence of a carbon isotope excursion (CIE), widespread dissolution of deep sea carbonates, and global warming. In theory, this rapid carbon release should have severely acidified the surface ocean, though no geochemical evidence has yet been presented. Using boron-based proxies for surface ocean carbonate chemistry, we present the first observational evidence for a drop in the pH of surface and thermocline seawater during the PETM. Planktic foraminifers from a drill site in the North Pacific (Ocean Drilling Program Site 1209) show a ~0.8‰ decrease in boron isotopic composition (δ11B) at the onset of the event, along with a 30-40% reduction in shell B/Ca. Similar trends in δ11B are present in two lower-resolution records from the South Atlantic and Equatorial Pacific. These observations are consistent with significant, global acidification of the surface ocean lasting at least 70 kyr and requiring sustained carbon release. The anomalies in the B records are consistent with an initial surface pH drop of ~0.3 units, at the upper range of model-based estimates of acidification.

  8. Bond strength and stress measurements in thermal barrier coatings

    SciTech Connect

    Gell, M.; Jordan, E.

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  9. The effect of thermal stresses on the integrity of three built-up aircraft structures

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.

    1980-01-01

    A Mach 6 flight was simulated in order to examine heating effects on three frame/skin specimens. The specimens included: a titanium truss frame with a lockalloy skin; a stainless steel z-frame with a lockalloy skin; and a titanium z-frame with a lockalloy skin. Thermal stresses and temperature were measured on these specimens for the purpose of examining their efficiency, performance, and integrity. Measured thermal stresses were examined with respect to material yield strengths, buckling criteria, structural weight, and geometric locations. Principal thermal stresses were studied from the standpoint of uniaxial stress assumptions. Measured thermal stresses were compared to predicted values.

  10. Basin-Specific Variations in the Thermal Aging of Oceanic Asthenosphere

    NASA Astrophysics Data System (ADS)

    Paulson, E.; Jordan, T. H.

    2014-12-01

    To investigate the depth extent of mantle thermal aging beneath ocean basins, we project 3D Voigt averaged S-velocity variations from an ensemble of global tomographic models onto a 1º x 1º degree age-based regionalization and average each major ocean basin (Pacific, Atlantic, and Indian) in equal increments of the square-root of crustal age. By comparing the age averaged S-wave profiles, we estimate convergence depths, the minimum depths where age variations become statistically insignificant. Following Jordan & Paulson (JGR, doi:10.1002/jgrb.50263, 2013), we estimate aleatory variability in the S-wave profiles, correct for vertical smearing bias, and estimate epistemic uncertainties over the model ensemble. We can assert with 90% confidence that the age-correlated variations in Voigt-averaged S velocities persist to depths greater than 170 km. Given the strong evidence that the G discontinuity (~70 km) approximates the lithosphere-asthenosphere boundary (LAB) beneath ocean basins, we conclude that the upper part of the oceanic asthenosphere participates in the cooling that forms the kinematic plates. Age-averaged profiles show significant differences among the ocean basins. To quantify this, we fit age-dependent vertical travel times through the uppermost mantle of the models with an idealized Earth model having a strict square-root of age velocity structure in the ocean basins, suitably filtered to mimic tomographic smoothing. Good fits can be obtained for the Atlantic and Indian ocean basins out to 170 My, although the travel-time slopes for the former are steeper than the latter, implying more rapid cooling in the Atlantic. The Pacific basin shows significant deviations from simple conductive cooling for ages greater than about 50 My, in general agreement with previously published surface-wave models, indicating perturbations associated with small-scale convective processes. We conclude that large-scale flow advects small-scale heterogeneities due to

  11. Fluid shifts during thermal stress with and without fluid replacement

    NASA Technical Reports Server (NTRS)

    Myhre, L. G.; Robinson, S.

    1977-01-01

    Six unacclimatized men rested for 4 hr in a hot, dry environment without fluid replacement (DH). Another group of six men were exposed to the same thermal stress, replacing evaporative fluid loss with warm 0.1% NaCl solution (FRP). Total grams of circulating hemoglobin, determined by CO immediately prior to and again during the last minutes of heat exposure, increased an insignificant 1.6 and 1.3% during DH and FRP, respectively. With DH, body weight loss of 2.6% was accompanied by a 7.8% reduction in calculated plasma volume (PV). Even when body weight was maintained (FRP), PV decreased 2.9% during the heat exposure. Total circulating serum protein did not change as a result of the heat stress with either DH or FRP. In a test-retest series of experiments on four men, DH was not detrimental to sweat rate. It is shown that hemodilution is not a general response to acute heat exposure. The disproportionately large reduction in PV during thermal dehydration is confirmed.

  12. Graphite having improved thermal stress resistance and method of preparation

    DOEpatents

    Kennedy, Charles R.

    1980-01-01

    An improved method for fabricating a graphite article comprises the steps of impregnating a coke article by first heating the coke article in contact with a thermoplastic pitch at a temperature within the range of 250.degree.-300.degree. C. at a pressure within the range of 200-2000 psig for at least 4-10 hours and then heating said article at a temperature within the range of 450.degree.-485.degree. C. at a pressure of 200-2000 psig for about 16-24 hours to provide an impregnated article; heating the impregnated article for sufficient time to carbonize the impregnant to provide a second coke article, and graphitizing the second coke article. A graphite having improved thermal stress resistance results when the coke to be impregnated contains 1-3 wt.% sulfur and no added puffing inhibitors. An additional improvement in thermal stress resistance is achieved when the second coke article is heated above about 1400.degree. C. at a rate of at least 10.degree. C./minute to a temperature above the puffing temperature.

  13. Forced and intrinsic variability in the response to increased wind stress of an idealized Southern Ocean

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; Hughes, Chris W.; Blundell, Jeffrey R.

    2015-01-01

    use ensemble runs of a three layer, quasi-geostrophic idealized Southern Ocean model to explore the roles of forced and intrinsic variability in response to a linear increase of wind stress imposed over a 30 year period. We find no increase of eastward circumpolar volume transport in response to the increased wind stress. A large part of the resulting time series can be explained by a response in which the eddy kinetic energy is linearly proportional to the wind stress with a possible time lag, but no statistically significant lag is found. However, this simple relationship is not the whole story: several intrinsic time scales also influence the response. We find an e-folding time scale for growth of small perturbations of 1-2 weeks. The energy budget for intrinsic variability at periods shorter than a year is dominated by exchange between kinetic and potential energy. At longer time scales, we find an intrinsic mode with period in the region of 15 years, which is dominated by changes in potential energy and frictional dissipation in a manner consistent with that seen by Hogg and Blundell (2006). A similar mode influences the response to changing wind stress. This influence, robust to perturbations, is different from the supposed linear relationship between wind stress and eddy kinetic energy, and persists for 5-10 years in this model, suggestive of a forced oscillatory mode with period of around 15 years. If present in the real ocean, such a mode would imply a degree of predictability of Southern Ocean dynamics on multiyear time scales.

  14. Resistance to thermal stress in corals without changes in symbiont composition

    PubMed Central

    Bellantuono, Anthony J.; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    Discovering how corals can adjust their thermal sensitivity in the context of global climate change is important in understanding the long-term persistence of coral reefs. In this study, we showed that short-term preconditioning to higher temperatures, 3°C below the experimentally determined bleaching threshold, for a period of 10 days provides thermal tolerance for the symbiosis stability between the scleractinian coral, Acropora millepora and Symbiodinium. Based on genotypic analysis, our results indicate that the acclimatization of this coral species to thermal stress does not come down to simple changes in Symbiodinium and/or the bacterial communities that associate with reef-building corals. This suggests that the physiological plasticity of the host and/or symbiotic components appears to play an important role in responding to ocean warming. The further study of host and symbiont physiology, both of Symbiodinium and prokaryotes, is of paramount importance in the context of global climate change, as mechanisms for rapid holobiont acclimatization will become increasingly important to the long-standing persistence of coral reefs. PMID:21976690

  15. Ocean thermal gradient as a generator of electricity. OTEC power plant

    NASA Astrophysics Data System (ADS)

    Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel

    2016-04-01

    The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.

  16. Thermal stress prediction in mirror and multilayer coatings.

    PubMed

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision. PMID:25723932

  17. Prognostics Approach for Power MOSFET Under Thermal-Stress

    NASA Technical Reports Server (NTRS)

    Galvan, Jose Ramon Celaya; Saxena, Abhinav; Kulkarni, Chetan S.; Saha, Sankalita; Goebel, Kai

    2012-01-01

    The prognostic technique for a power MOSFET presented in this paper is based on accelerated aging of MOSFET IRF520Npbf in a TO-220 package. The methodology utilizes thermal and power cycling to accelerate the life of the devices. The major failure mechanism for the stress conditions is dieattachment degradation, typical for discrete devices with leadfree solder die attachment. It has been determined that dieattach degradation results in an increase in ON-state resistance due to its dependence on junction temperature. Increasing resistance, thus, can be used as a precursor of failure for the die-attach failure mechanism under thermal stress. A feature based on normalized ON-resistance is computed from in-situ measurements of the electro-thermal response. An Extended Kalman filter is used as a model-based prognostics techniques based on the Bayesian tracking framework. The proposed prognostics technique reports on preliminary work that serves as a case study on the prediction of remaining life of power MOSFETs and builds upon the work presented in [1]. The algorithm considered in this study had been used as prognostics algorithm in different applications and is regarded as suitable candidate for component level prognostics. This work attempts to further the validation of such algorithm by presenting it with real degradation data including measurements from real sensors, which include all the complications (noise, bias, etc.) that are regularly not captured on simulated degradation data. The algorithm is developed and tested on the accelerated aging test timescale. In real world operation, the timescale of the degradation process and therefore the RUL predictions will be considerable larger. It is hypothesized that even though the timescale will be larger, it remains constant through the degradation process and the algorithm and model would still apply under the slower degradation process. By using accelerated aging data with actual device measurements and real

  18. Effect of thermal stress on the vestibulosympathetic reflexes in humans.

    PubMed

    Wilson, Thad E; Ray, Chester A

    2004-10-01

    Both heat stress and vestibular activation alter autonomic responses; however, the interaction of these two sympathetic activators is unknown. To determine the effect of heat stress on the vestibulosympathetic reflex, eight subjects performed static head-down rotation (HDR) during normothermia and whole body heating. Muscle sympathetic nerve activity (MSNA; peroneal microneurography), mean arterial blood pressure (MAP), heart rate (HR), and internal temperature were measured during the experimental trials. HDR during normothermia caused a significant increase in MSNA (Delta5 +/- 1 bursts/min; Delta53 +/- 14 arbitrary units/min), whereas no change was observed in MAP, HR, or internal temperature. Whole body heating significantly increased internal temperature (Delta0.9 +/- 0.1 degrees C), MSNA (Delta10 +/- 3 bursts/min; Delta152 +/- 44 arbitrary units/min), and HR (Delta25 +/- 6 beats/min), but it did not alter MAP. HDR during whole body heating increased MSNA (Delta16 +/- 4 bursts/min; Delta233 +/- 90 arbitrary units/min from normothermic baseline), which was not significantly different from the algebraic sum of HDR during normothermia and whole body heating (Delta15 +/- 4 bursts/min; Delta205 +/- 55 arbitrary units/min). These data suggest that heat stress does not modify the vestibulosympathetic reflex and that both the vestibulosympathetic and thermal reflexes are robust, independent sympathetic nervous system activators. PMID:15169749

  19. Thermal effects of fiber sensing coils in different winding pattern considering both thermal gradient and thermal stress

    NASA Astrophysics Data System (ADS)

    Ling, Weiwei; Li, Xuyou; Xu, Zhenlong; Zhang, Zhiyong; Wei, Yanhui

    2015-12-01

    By studying the temperature gradient and thermal stress of the difference-winding interferometric fiber optic gyroscope (IFOG) sensing coils, the improvement of the IFOG's temperature performance is realized. A new turn-by-turn quantization thermal-induced bias error model including the traditional "pure Shupe effect", elastic strain interactions and elasto-optical interactions are established. Compared with the traditional "pure Shupe effect" model, the experimental results show that the new model can more fully describe the thermal effect of the coils. Based on the temperature and stress distribution models mentioned above, the effects of the fiber coils with the quadrupolar (QAD) winding pattern, octupolar winding pattern and cross winding pattern on the temperature performance of IFOG are simulated under the same temperature gradient, respectively. The results show that the elastic strain and the elasto-optical effect must be considered when calculated the thermal-induced bias error of the fiber coil. Furthermore, we also come to the conclusion that cross-winding coil of the IFOG have more wonderful temperature performance than the fiber coil with quadruple winding and octupole-winding.

  20. Thermal-stress analysis for wood composite blade. [horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Fu, K. C.; Harb, A.

    1984-01-01

    The thermal-stress induced by solar insolation on a wood composite blade of a Mod-OA wind turbine was investigated. The temperature distribution throughout the blade (a heat conduction problem) was analyzed and the thermal-stress distribution of the blades caused by the temperature distribution (a thermal-stress analysis problem) was then determined. The computer programs used for both problems are included along with output examples.

  1. Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress

    USGS Publications Warehouse

    Choy, G.L.; McGarr, A.

    2002-01-01

    The radiated energies, Es, and seismic moments, Mo, for 942 globally distributed earthquakes that occurred between 1987 to 1998 are examined to find the earthquakes with the highest apparent stresses (??a = ?? Es/Mo, where ?? is the modulus of rigidity). The globally averaged ??a for shallow earthquakes in all tectonic environments and seismic regions is 0.3 MPa. However, the subset of 49 earthquakes with the highest apparent stresses (??a greater than about 5.0 MPa) is dominated almost exclusively by strike-slip earthquakes that occur in oceanic environments. These earthquakes are all located in the depth range 7-29 km in the upper mantle of the young oceanic lithosphere. Many of these events occur near plate-boundary triple junctions where there appear to be high rates of intraplate deformation. Indeed, the small rapidly deforming Gorda Plate accounts for 10 of the 49 high-??a events. The depth distribution of ??a, which shows peak values somewhat greater than 25 MPa in the depth range 20-25 km, suggests that upper bounds on this parameter are a result of the strength of the oceanic lithosphere. A recently proposed envelope for apparent stress, derived by taking 6 per cent of the strength inferred from laboratory experiments for young (less than 30 Ma) deforming oceanic lithosphere, agrees well with the upper-bound envelope of apparent stresses over the depth range 5-30 km. The corresponding depth-dependent shear strength for young oceanic lithosphere attains a peak value of about 575 MPa at a depth of 21 km and then diminishes rapidly as the depth increases. In addition to their high apparent stresses, which suggest that the strength of the young oceanic lithosphere is highest in the depth range 10-30 km, our set of high-??a earthquakes show other features that constrain the nature of the forces that cause interplate motion. First, our set of events is divided roughly equally between intraplate and transform faulting with similar depth distributions of ??a for

  2. In-situ biofouling of ocean thermal energy conversion (OTEC) evaporator tubes

    SciTech Connect

    Sasscer, D.S.; Morgan, T.

    1981-05-01

    The Puerto Rico Center for Energy and Environmental Research equipped a LCU facility in 1100 m of water near Punta Tuna, Puerto Rico to measure in situ biofouling of simulated Ocean Thermal Energy Conversion evaporator tubes. The system consisted of two 5052 aluminum alloy and two titanium tubes, through which a continuous flow of ocean water was maintained. The tubes were cleaned three times and the fouling resistance was measured, showing only slight differences between the tubes with respect to heat transfer loss resulting from biofouling. In all units, the average fouling rate after cleaning was greater than before cleaning, and only after the first cleaning did the aluminum units show greater fouling rates than did the titanium. The titanium units showed a progressive increase in the fouling rates with each cleaning. The subsequent average fouling rates for all units after eight months were between 4 and 4.6 x 0.000010 sq m-k/W-day.

  3. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    NASA Astrophysics Data System (ADS)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  4. Thermal stress-relief treatments for 2219 aluminum alloy are evaluated

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Evaluation of three thermal stress relief treatments for 2219 aluminum alloy in terms of their effect on residual stress, mechanical properties, and stress corrosion resistance. The treatments are post aging and stress relieving fullscale and subscale parts formed in the aged T81 condition, and aging subscale parts formed in the unaged T31 condition.

  5. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    PubMed Central

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-01-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress. PMID:27460544

  6. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals.

    PubMed

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-01-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70's mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6-24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48-72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress. PMID:27460544

  7. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals

    NASA Astrophysics Data System (ADS)

    Kvitt, Hagit; Rosenfeld, Hanna; Tchernov, Dan

    2016-07-01

    Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress.

  8. A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings

    SciTech Connect

    Nair, B. G.; Singh, J. P.; Grimsditch, M.

    2000-02-28

    Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.

  9. Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Baker, J. Mark

    2003-01-01

    The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.

  10. Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years

    NASA Astrophysics Data System (ADS)

    Meissner, K. J.; Lippmann, T.; Sen Gupta, A.

    2012-06-01

    One-third of the world's coral reefs have disappeared over the last 30 years, and a further third is under threat today from various stress factors. The main global stress factors on coral reefs have been identified as changes in sea surface temperature (SST) and changes in surface seawater aragonite saturation (Ωarag). Here, we use a climate model of intermediate complexity, which includes an ocean general circulation model and a fully coupled carbon cycle, in conjunction with present-day observations of inter-annual SST variability to investigate three IPCC representative concentration pathways (RCP 3PD, RCP 4.5, and RCP 8.5), and their impact on the environmental stressors of coral reefs related to open ocean SST and open ocean Ωarag over the next 400 years. Our simulations show that for the RCP 4.5 and 8.5 scenarios, the threshold of 3.3 for zonal and annual mean Ωarag would be crossed in the first half of this century. By year 2030, 66-85% of the reef locations considered in this study would experience severe bleaching events at least once every 10 years. Regardless of the concentration pathway, virtually every reef considered in this study (>97%) would experience severe thermal stress by year 2050. In all our simulations, changes in surface seawater aragonite saturation lead changes in temperatures.

  11. The effect of water on thermal stresses in polymer composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    1994-01-01

    The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.

  12. Cracking of coated materials under transient thermal stresses

    NASA Technical Reports Server (NTRS)

    Rizk, A. A.; Erdogan, F.

    1989-01-01

    The crack problem for a relatively thin layer bonded to a very thick substrate under thermal shock conditions is considered. The effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. Among the crack geometries considered are the edge crack in the coating layer, the broken layer, the edge crack going through the interface, the undercoat crack in the substrate and the embedded crack crossing the interface. The primary calculated quantity is the stress intensity factor at various singular points and the main variables are the relative sizes and locations of cracks, the time, and the duration of the cooling ramp. The problem is solved and rather extensive results are given for two material pairs, namely a stainless steel layer welded on a ferritic medium and a ceramic coating on a steel substrate.

  13. Cracking of coated materials under transient thermal stresses

    SciTech Connect

    Rizk, A.A.; Erdogan, F. )

    1989-01-01

    The crack problem for a relatively thin layer bonded to a very thick substrate under thermal shock conditions is considered. The effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. Among the crack geometries considered are the edge crack in the coating layer, the broken layer, the edge crack going through the interface, the undercoat crack in the substrate and the embedded crack crossing the interface. The primary calculated quantity is the stress intensity factor at various singular points and the main variables are the relative sizes and locations of cracks, the time, and the duration of the cooling ramp. The problem is solved and rather extensive results are given for two material pairs, namely a stainless steel layer welded on a ferritic medium and a ceramic coating on a steel substrate. 12 refs.

  14. Cracking of coated materials under transient thermal stresses

    NASA Technical Reports Server (NTRS)

    Rizk, A. A.; Erdogan, Fazil

    1988-01-01

    The crack problem for a relatively thin layer bonded to a very thick substrate under thermal shock conditions is considered. The effect of surface cooling rate is studied by assuming the temperature boundary condition to be a ramp function. Among the crack geometries considered are the edge crack in the coating layer, the broken layer, the edge crack going through the interface, the undercoat crack in the substrate and the embedded crack crossing the interface. The primary calculated quantity is the stress intensity factor at various singular points and the main variables are the relative sizes and locations of cracks, the time, and the duration of the cooling ramp. The problem is solved and rather extensive results are given for two material pairs, namely a stainless steel layer welded on a ferritic medium and a ceramic coating on a steel substrate.

  15. Episodic and non-uniform shifts of thermal habitats in a warming ocean

    NASA Astrophysics Data System (ADS)

    Sen Gupta, A.; Brown, J. N.; Jourdain, N. C.; van Sebille, E.; Ganachaud, A.; Vergés, A.

    2015-03-01

    Ocean temperatures have warmed in most regions over the last century and are expected to warm at a faster rate in the future. Consistent with the view that marine species are thermally constrained, there is growing evidence that many marine species have already undergone poleward range shifts in line with warming trends. This study uses historical observations of ocean temperature and climate model projections to examine the movement of isotherms that mark the boundaries for species‧ thermal habitats. In particular, we compare the rates of isotherm movement between different ocean regions and at different time scales and examine to what extent the implied movement is uniform or sporadic. Widespread long-term warming implies poleward shifts of isotherms in almost all regions. However, as the speed of isotherm movement is inversely related to local meridional SST gradients and the pattern of ocean warming is heterogeneous, speeds vary considerably between regions, season and over time. At present on decadal and longer timescales, changes due to low frequency natural SST variability can dominate over human-induced changes. As such, there are multidecadal periods in certain regions when we would expect to see range shifts that are much faster or in the opposite direction to that implied by a monotonic warming. Based on central estimates from the latest suite of climate model projections, median isotherm speeds will be about seven times faster in the 21st century compared to the 20th century under business as usual emissions. Moreover, SST warming is projected to be greater in summer than in winter in most oceanic regions, contrary to what is projected to occur over land. As such net poleward isotherm speeds, particularly in the northern hemisphere summer, are projected to be considerably faster than in winter. Finally we show that isotherms can exhibit erratic migration rates over time, even under uniform warming. Isotherm movement tends to stall at thermal fronts

  16. Thermal diffusion of the lunar magma ocean and the formation of the lunar crust

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Wang, S.

    2010-12-01

    The magma ocean hypothesis is consistent with several lines of evidence including planet formation, core-mantle differentiation and geochemical observations, and it is proved as an inevitable stage in the early evolution of planets. The magma ocean is assumed to be homogeneous in previous models during solidification or crystallization[1]. Based on the recent advance and our new data in experimental igneous petrology[2], we question this assumption and propose that an gabbrotic melt, from which the anorthositic lunar crust crystallized, can be produced by thermal diffusion, rather than by magma fractionation. This novel model can provide explanations for the absence of the advection in lunar magma ocean[3] and the old age of the anorthositic lunar crust[4-5]. 1. Solomatov, V., Magma Oceans and Primordial Mantle Differentiation, in Treatise on Geophysics, S. Gerald, Editor. 2007, Elsevier: Amsterdam. p. 91-119. 2. Huang, F., et al., Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica Et Cosmochimica Acta, 2009. 73(3): p. 729-749. 3. Turcotte, D.L. and L.H. Kellogg, Implications of isotope data for the origin of the Moon, in Origin of the Moon, W.K. Hartmann, R.J. Phillips, and G.J. Taylor, Editors. 1986, Lunar and Planet. Inst.: Houston, TX. p. 311-329. 4. Alibert, C., M.D. Norman, and M.T. McCulloch, An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochimica Et Cosmochimica Acta, 1994. 58(13): p. 2921-2926. 5. Touboul, M., et al., Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean. Icarus, 2009. 199(2): p. 245-249.

  17. Exploring the Use of Thermal Infrared Imaging in Human Stress Research

    PubMed Central

    Grant, Joshua A.; Cardone, Daniela; Tusche, Anita; Singer, Tania

    2014-01-01

    High resolution thermal infrared imaging is a pioneering method giving indices of sympathetic activity via the contact-free recording of facial tissues (thermal imprints). Compared to established stress markers, the great advantage of this method is its non-invasiveness. The goal of our study was to pilot the use of thermal infrared imaging in the classical setting of human stress research. Thermal imprints were compared to established stress markers (heart rate, heart rate variability, finger temperature, alpha-amylase and cortisol) in 15 participants undergoing anticipation, stress and recovery phases of two laboratory stress tests, the Cold Pressor Test and the Trier Social Stress Test. The majority of the thermal imprints proved to be change-sensitive in both tests. While correlations between the thermal imprints and established stress markers were mostly non-significant, the thermal imprints (but not the established stress makers) did correlate with stress-induced mood changes. Multivariate pattern analysis revealed that in contrast to the established stress markers the thermal imprints could not disambiguate anticipation, stress and recovery phases of both tests. Overall, these results suggest that thermal infrared imaging is a valuable method for the estimation of sympathetic activity in the stress laboratory setting. The use of this non-invasive method may be particularly beneficial for covert recordings, in the study of special populations showing difficulties in complying with the standard instruments of data collection and in the domain of psychophysiological covariance research. Meanwhile, the established stress markers seem to be superior when it comes to the characterization of complex physiological states during the different phases of the stress cycle. PMID:24675709

  18. GEOTEC (Geothermal-Enhanced Ocean Thermal Energy Conversion) engineering concept study

    SciTech Connect

    Not Available

    1984-03-01

    The project was to provide a conceptual design for a modular state-of-the-art geothermal-enhanced ocean thermal energy conversion (GEOTEC) plant for implementation at a Navy site on Adak Island, Alaska. This report includes the following appendices: (1) statement of work; (2) geothermal resource assessment; (3) assessment of environmental issues; (4) design optimization program formulations for GEOTEC; (5) calculation of geofluid temperature drop in brine collection system; (6) pressure losses and pumping requirements for seawater pipeline system; (7) geocost comparison of single and dual binary cycle systems; (8) description of seawater pipeline system; and (9) plant system installed cost estimates. (ACR)

  19. Test results of heat exchanger cleaning in support of ocean thermal energy conversion

    NASA Astrophysics Data System (ADS)

    Lott, D. F.

    1980-12-01

    This report documents tests conducted at the Naval Coastal Systems Center (NCSC) in support of the Department of Energy's Ocean Thermal Energy Conversion (OTEC) Program. These tests covered the period September 1978 to May 1980 and evaluated flow-driven brushes, recirculating sponge rubber balls, chlorination, and mechanical system/chlorination combinations for in-situ cleaning of two potential heat exchanger materials: titanium and aluminum alloy 5052. Tests were successful when fouling resistance was 0.0003 sq. ft. hr-F/Btu. Results indicated systems and cleaning techniques using brushes, soft sponge balls, and various concentrations of chlorine had some potential for maintaining heat transfer efficiency.

  20. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    SciTech Connect

    Martel, Laura; Smith, Paul; Rizea, Steven; Van Ryzin, Joe; Morgan, Charles; Noland, Gary; Pavlosky, Rick; Thomas, Michael; Halkyard, John

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  1. Gas exchange in seawater with special emphasis on open-cycle ocean thermal energy conversion

    SciTech Connect

    Zapka, M.J.

    1988-01-01

    This study examined gas-transfer characteristics of seawater. Special emphasis is on gas-transfer processes in connection with Open-Cycle Ocean Thermal Energy Conversion (OC-OTEC) applications. Experiments probed the mechanism regulating gas transfer in bubbles and in a packed column. In order to compare gas transfer in seawater with extensively documented transfer characteristics of fresh water, all tests were conducted using both seawater and fresh water in the same experimental setting. Ten main findings are listed and briefly discussed. With appropriate system conditions, an approximately 85% removal of dissolved gas from the OC-OTEC feed stream appears to be feasible.

  2. Thermal stress analysis of symmetric shells subjected to asymmetric thermal loads

    NASA Technical Reports Server (NTRS)

    Negaard, G. R.

    1980-01-01

    The performance of the NASTRAN level 16.0 axisymmetric solid elements when subjected to both symmetric and asymmetric thermal loading was investigated. A ceramic radome was modeled using both the CTRAPRG and the CTRAPAX elements. The thermal loading applied contained severe gradients through the thickness of the shell. Both elements were found to be more sensitive to the effect of the thermal gradient than to the aspect ratio of the elements. Analysis using the CTRAPAX element predicted much higher thermal stresses than the analysis using the CTRAPRG element, prompting studies of models for which theoretical solutions could be calculated. It was found that the CTRAPRG element solutions were satisfactory, but that the CTRAPAX element was very geometry dependent. This element produced erroneous results if the geometry was allowed to vary from a rectangular cross-section. The most satisfactory solution found for this type of problem was to model a small segment of a symmetric structure with isoparametric solid elements and apply the cyclic symmetry option in NASTRAN.

  3. Thermal Indices and Thermophysiological Modeling for Heat Stress.

    PubMed

    Havenith, George; Fiala, Dusan

    2015-01-01

    The assessment of the risk of human exposure to heat is a topic as relevant today as a century ago. The introduction and use of heat stress indices and models to predict and quantify heat stress and heat strain has helped to reduce morbidity and mortality in industrial, military, sports, and leisure activities dramatically. Models used range from simple instruments that attempt to mimic the human-environment heat exchange to complex thermophysiological models that simulate both internal and external heat and mass transfer, including related processes through (protective) clothing. This article discusses the most commonly used indices and models and looks at how these are deployed in the different contexts of industrial, military, and biometeorological applications, with focus on use to predict related thermal sensations, acute risk of heat illness, and epidemiological analysis of morbidity and mortality. A critical assessment is made of tendencies to use simple indices such as WBGT in more complex conditions (e.g., while wearing protective clothing), or when employed in conjunction with inappropriate sensors. Regarding the more complex thermophysiological models, the article discusses more recent developments including model individualization approaches and advanced systems that combine simulation models with (body worn) sensors to provide real-time risk assessment. The models discussed in the article range from historical indices to recent developments in using thermophysiological models in (bio) meteorological applications as an indicator of the combined effect of outdoor weather settings on humans. PMID:26756633

  4. Crack propagation and fracture in silicon wafers under thermal stress

    PubMed Central

    Danilewsky, Andreas; Wittge, Jochen; Kiefl, Konstantin; Allen, David; McNally, Patrick; Garagorri, Jorge; Elizalde, M. Reyes; Baumbach, Tilo; Tanner, Brian K.

    2013-01-01

    The behaviour of microcracks in silicon during thermal annealing has been studied using in situ X-ray diffraction imaging. Initial cracks are produced with an indenter at the edge of a conventional Si wafer, which was heated under temperature gradients to produce thermal stress. At temperatures where Si is still in the brittle regime, the strain may accumulate if a microcrack is pinned. If a critical value is exceeded either a new or a longer crack will be formed, which results with high probability in wafer breakage. The strain reduces most efficiently by forming (hhl) or (hkl) crack planes of high energy instead of the expected low-energy cleavage planes like {111}. Dangerous cracks, which become active during heat treatment and may shatter the whole wafer, can be identified from diffraction images simply by measuring the geometrical dimensions of the strain-related contrast around the crack tip. Once the plastic regime at higher temperature is reached, strain is reduced by generating dislocation loops and slip bands and no wafer breakage occurs. There is only a small temperature window within which crack propagation is possible during rapid annealing. PMID:24046487

  5. Seawater test results of Open-Cycle Ocean Thermal Energy Conversion (OC-OTEC) components

    NASA Astrophysics Data System (ADS)

    Zangrando, F.; Bharathan, D.; Link, H.; Panchal, C. B.

    Key components of open-cycle ocean thermal energy conversion systems- the flash evaporator, mist eliminator, passive predeaerator, two surface condenser stages, and two direct-contact condenser stages- have been tested using seawater. These components operate at lower steam pressures and higher inlet noncondensable gas concentrations than do conventional power plant heat exchangers. The rate of heat exchanged between the evaporator and the condenser is on the order of 1.25MW-thermal, requiring a warm seawater flow of about 0.1 cu m/s; the cold seawater flow is on the order of half the warm water flow. In addition to characterizing the performance of the various components, the system has produced potable water from condensation of the steam produced in the evaporator. The information obtained in these tests is being used to design a larger scale experiment in which net power production is expected to be demonstrate for the first time using OC-OTEC technology.

  6. Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

    PubMed Central

    Eakin, C. Mark; Morgan, Jessica A.; Heron, Scott F.; Smith, Tyler B.; Liu, Gang; Alvarez-Filip, Lorenzo; Baca, Bart; Bartels, Erich; Bastidas, Carolina; Bouchon, Claude; Brandt, Marilyn; Bruckner, Andrew W.; Bunkley-Williams, Lucy; Cameron, Andrew; Causey, Billy D.; Chiappone, Mark; Christensen, Tyler R. L.; Crabbe, M. James C; Day, Owen; de la Guardia, Elena; Díaz-Pulido, Guillermo; DiResta, Daniel; Gil-Agudelo, Diego L.; Gilliam, David S.; Ginsburg, Robert N.; Gore, Shannon; Guzmán, Héctor M.; Hendee, James C.; Hernández-Delgado, Edwin A.; Husain, Ellen; Jeffrey, Christopher F. G.; Jones, Ross J.; Jordán-Dahlgren, Eric; Kaufman, Les S.; Kline, David I.; Kramer, Philip A.; Lang, Judith C.; Lirman, Diego; Mallela, Jennie; Manfrino, Carrie; Maréchal, Jean-Philippe; Marks, Ken; Mihaly, Jennifer; Miller, W. Jeff; Mueller, Erich M.; Muller, Erinn M.; Orozco Toro, Carlos A.; Oxenford, Hazel A.; Ponce-Taylor, Daniel; Quinn, Norman; Ritchie, Kim B.; Rodríguez, Sebastián; Ramírez, Alberto Rodríguez; Romano, Sandra; Samhouri, Jameal F.; Sánchez, Juan A.; Schmahl, George P.; Shank, Burton V.; Skirving, William J.; Steiner, Sascha C. C.; Villamizar, Estrella; Walsh, Sheila M.; Walter, Cory; Weil, Ernesto; Williams, Ernest H.; Roberson, Kimberly Woody; Yusuf, Yusri

    2010-01-01

    Background The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. Methodology/Principal Findings Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. Conclusions/Significance Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate. PMID:21125021

  7. Stress analysis in curved composites due to thermal loading

    NASA Astrophysics Data System (ADS)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge

  8. On thermal stress failure of the SNAP-19A RTG heat shield

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Anderson, L. A.

    1974-01-01

    Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.

  9. Anisotropic internal thermal stress in sea ice from the Canadian Arctic Archipelago

    NASA Astrophysics Data System (ADS)

    Hata, Y.; Tremblay, L. B.

    2015-08-01

    Results from an ice stress buoy deployed near the center of a multi-year floe in the Viscount Melville Sound of the Canadian Arctic Archipelago between 10 October 2010 and 17 August 2011 are presented. The position record indicates the landlocked season was approximately 5 months, from 18 January to 22 June, when the sea ice was fast to Melville Island and Victoria Island. Thermal stresses (ranging from -84 to 66 kPa) dominate the internal stress record, with only a few dynamic stress events (˜50 kPa) recorded before the landlocked season. Intriguingly, the thermal stresses are isotropic before the landlocked ice onset and anisotropic during the landlocked season. Two possible causes to explain anisotropy in thermal stresses are considered: preferred c axis alignment of the ice crystal, and land confinement associated with the nearby coastline. The orientation of the principal stresses indicates that land confinement is responsible for the anisotropy. The stress record also clearly shows the presence of residual compressive stresses at the melt onset, suggesting a viscous creep relaxation time constant of several days. Finally, results show an interesting reversal in the sign of the correlation (from negative to positive) between surface air temperature and thermal stress after the onset of surface melt. We attribute this to the onset of water infiltration within sea ice after which colder night temperature leads to refreezing and compressive stresses. To the best of the authors' knowledge, this is the first time that anisotropic thermal stresses have been reported in sea ice.

  10. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    USGS Publications Warehouse

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C., Jr.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.