Science.gov

Sample records for oceanic circulation

  1. Ocean circulation

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew F.; Rahmstorf, Stefan

    The ocean moderates the Earth's climate due to its vast capacity to store and transport heat; the influence of the large-scale ocean circulation on changes in climate is considered in this chapter. The ocean experiences both buoyancy forcing (through heating/cooling and evaporation/precipitation) and wind forcing. Almost all ocean forcing occurs at the surface, but these changes are communicated throughout the entire depth of the ocean through the meridional overturning circulation (MOC). In a few localized regions, water become sufficiently dense to penetrate thousands of meters deep, where it spreads, providing a continuous source of deep dense water to the entire ocean. Dense water returns to the surface and thus closes the MOC, either through density modification due to diapycnal mixing or by upwelling along sloping isopycnals across the Southern Ocean. Determination of the relative contributions of these two processes in the MOC remains an active area of research. Observations obtained primarily from isotopic compositions in ocean sediments provide substantial evidence that the structure of the MOC has changed significantly in the past. Indeed, large and abrupt changes to the Earth's climate during the past 120,000 years can be linked to either a reorganization or a complete collapse of the MOC. Two of the more dramatic instances of abrupt change include Dansgaard-Oeschger events, abrupt warmings that could exceed 10°C over a period as short as a few decades, and Heinrich events, which are associated with massive freshwater fluxes due to rapid iceberg discharges into the North Atlantic. Numerical models of varying complexity that have captured these abrupt transitions all underscore that the MOC is a highly nonlinear system with feedback loops, multiple equilibria, and hysteresis effects. Prediction of future abrupt shifts in the MOC or "tipping points" remains uncertain. However, the inferred behavior of the MOC during glacial climates suggests that

  2. Ocean circulation using altimetry

    NASA Technical Reports Server (NTRS)

    Minster, Jean-Francois; Brossier, C.; Gennero, M. C.; Mazzega, P.; Remy, F.; Letraon, P. Y.; Blanc, F.

    1991-01-01

    Our group has been very actively involved in promoting satellite altimetry as a unique tool for observing ocean circulation and its variability. TOPEX/POSEIDON is particularly interesting as it is optimized for this purpose. It will probably be the first instrument really capable of observing the seasonal and interannual variability of subtropical and polar gyres and the first to eventually document the corresponding variability of their heat flux transport. The studies of these phenomena require data of the best quality, unbiased extraction of the signal, mixing of these satellite data with in situ measurements, and assimilation of the whole set into a dynamic description of ocean circulation. Our group intends to develop responses to all these requirements. We will concentrate mostly on the circulation of the South Atlantic and Indian Oceans: This will be done in close connection with other groups involved in the study of circulation of the tropical Atlantic Ocean, in the altimetry measurements (in particular, those of the tidal issue), and in the techniques of data assimilation in ocean circulation models.

  3. World Ocean Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Clarke, R. Allyn

    1992-01-01

    The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.

  4. Ocean circulation studies

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.

    1984-01-01

    Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.

  5. Modeling ocean circulation

    SciTech Connect

    Semtner, A.J.

    1995-09-08

    Ocean numerical models have become quite realistic over the past several years as a result of improved methods, faster computers, and global data sets. Models now treat basin-scale to global domains while retaining the fine spatial scales that are important for modeling the transport of heat, salt, and other properties over vast distances. Simulations are reproducing observed satellite results on the energetics of strong currents and are properly showing diverse aspects of thermodynamic and dynamic ocean responses ranging from deep-water production of El Nino. Now models can represent not only currents but also the consequences for climate, biology, and geo-chemistry over time spans for months to decades. However, much remains to be understood from models about ocean circulation on longer time scales, including the evolution of the dominant water masses, the predictability of climate, and the ocean`s influence on global change. 34 refs., 6 figs.

  6. Ocean General Circulation Models

    SciTech Connect

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  7. LLNL Ocean General Circulation Model

    Energy Science and Technology Software Center (ESTSC)

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.

  8. General circulation of the ocean

    SciTech Connect

    Abarbanel, H.D.I.; Young, W.R.

    1986-01-01

    This book is an analysis of the geophysics of ocean circulation and its interaction with the atmosphere. It reviews the new concepts and models which have emerged in the last five years, as well as classical theories and observations. The contributions cover topics such as: the observational basis for large-scale circulation, including surface and deep circulation and subtropical gyres; thermocline theories; inverse methods for ocean circulation; baroclinic theories of the wind-driven circulation; and single layer models. This volume sets the current research literature in context, and suggests promising avenues for future study.

  9. Global ocean circulation by altimetry

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl; Haidvogel, D.

    1991-01-01

    The overall objectives of this project are to determine the general circulation of the oceans and many of its climate and biochemical consequences through the optimum use of altimetry data from TOPEX/POSEIDON and related missions. Emphasis is on the global-scale circulation, as opposed to the regional scale, but some more local studies will be carried out. Because of funding limitations, the primary initial focus will be on the time-dependent global-scale circulation rather than the mean; eventually, the mean circulation must be dealt with as well.

  10. Tracers of Past Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Lynch-Stieglitz, J.

    2003-12-01

    Information about how the ocean circulated during the past is useful in understanding changes in ocean and atmospheric chemistry, changes in the fluxes of heat and freshwater between the ocean and atmosphere, and changes in global wind patterns. The circulation of surface waters in the ocean leaves an imprint on sea surface temperature, and is also inextricably linked to the patterns of oceanic productivity. Much valuable information about past ocean circulation has been inferred from reconstructions of surface ocean temperature and productivity, which are covered in separate chapters. Here the focus is on the geochemical tracers that are used to infer the flow patterns and mixing of subsurface water masses.Several decades ago it was realized that chemistry of the shells of benthic foraminifera (carbon isotope and Cd/Ca ratios) carried an imprint of the nutrient content of deep-water masses (Shackleton, 1977; Broecker, 1982; Boyle, 1981). This led rapidly to the recognition that the water masses in the Atlantic Ocean were arrayed differently during the last glacial maximum than they are today, and the hypothesis that the glacial arrangement reflected a diminished contribution of low-nutrient North Atlantic deep water (NADW) ( Curry and Lohmann, 1982; Boyle and Keigwin, 1982). More detailed spatial reconstructions indicated a shallow nutrient-depleted water mass overlying a more nutrient-rich water mass in the glacial Atlantic. These findings spurred advances not only in geochemistry but in oceanography and climatology, as workers in these fields attempted to simulate the inferred glacial circulation patterns and assess the vulnerability of the modern ocean circulation to changes such as observed for the last ice age.While the nutrient distributions in the glacial Atlantic Ocean were consistent with a diminished flow of NADW, they also could have reflected an increase in inflow from the South Atlantic and/or a shallower yet undiminished deep-water mass. Clearly

  11. Spaceborne studies of ocean circulation

    NASA Technical Reports Server (NTRS)

    Patzert, W. C.

    1984-01-01

    The history and near-term future of ocean remote sensing to study ocean circulation are examined. Seasat provided the first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) and laid the foundation for the next generation of satellite missions planned for the late 1980s. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (TOPography EXperiment) and NROSS (Navy Remote Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans' role in climate variability. The significance of such studies to such matters as climatic changes, fisheries, commerce, waste disposal, and national defense is noted.

  12. Ocean circulation and climate change

    NASA Astrophysics Data System (ADS)

    Hasselmann, Klaus

    1991-09-01

    Recent numerical simulations using global ocean circulation models are reviewed together with model experiments involving further important climate sub-systems with which the ocean interacts: the atmosphere, the air-sea interface and the global carbon cycle. A common feature of all ocean circulation experiments considered is the strong sensitivity of the circulation to relatively minor changes in surface forcing, particularly to the buoyancy fluxes in regions of deep water formation in high latitudes. This may explain some of the well-known deficiencies of past global ocean circulation simulations. The strong sensitivity may also have been the cause of rapid climate changes observed in paleoclimatic records and can lead further to significant natural climate variability on the time scales of a few hundred years through the stochastic forcing of the ocean by atmospheric weather variability. Gobal warming computations using two different coupled ocean-atmosphere models for the "business-as-usual" scenario of the Intergovernmental Panel on Climate Change yield a significantly stronger warming delay due to the heat uptake by the oceans in the Southern Ocean than estimated on the basis of box-diffusion models. Recent advances in surface wave modelling, illustrated by a comparison of wave height fields derived from the WAM model and the GEOSAT altimeter, hold promise for the development of an improved representation of ocean-atmosphere coupling based on an explicit description of the dynamical processes at the air-sea interface. Global carbon cycle simulations with a three dimensional carbon cycle model tuned to reproduce past variations of carbon cycle indices show a significant impact of variations in the ocean circulation on the CO2 concentration in the atmosphere and thereby on climate. The series of experiments suggest that for the study of climate in the time scale range from 10-Ocean circulation and climate change

    NASA Astrophysics Data System (ADS)

    Hasselmann, Klaus

    1991-08-01

    Recent numerical simulations using global ocean circulation models are reviewed together with model experiments involving further important climate sub-systems with which the ocean interacts: the atmosphere, the air-sea interface and the global carbon cycle. A common feature of all ocean circulation experiments considered is the strong sensitivity of the circulation to relatively minor changes in surface forcing, particularly to the buoyancy fluxes in regions of deep water formation in high latitudes. This may explain some of the well-known deficiencies of past global ocean circulation simulations. The strong sensitivity may also have been the cause of rapid climate changes observed in paleoclimatic records and can lead further to significant natural climate variability on the time scales of a few hundred years through the stochastic forcing of the ocean by atmospheric weather variability. Gobal warming computations using two different coupled ocean-atmosphere models for the "business-as-usual" scenario of the Intergovernmental Panel on Climate Change yield a significantly stronger warming delay due to the heat uptake by the oceans in the Southern Ocean than estimated on the basis of box-diffusion models. Recent advances in surface wave modelling, illustrated by a comparison of wave height fields derived from the WAM model and the GEOSAT altimeter, hold promise for the development of an improved representation of ocean-atmosphere coupling based on an explicit description of the dynamical processes at the air-sea interface. Global carbon cycle simulations with a three dimensional carbon cycle model tuned to reproduce past variations of carbon cycle indices show a significant impact of variations in the ocean circulation on the CO2 concentration in the atmosphere and thereby on climate. The series of experiments suggest that for the study of climate in the time scale range from 10-Numerical Modeling of Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  13. Global warming and changes in ocean circulation

    SciTech Connect

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  14. Heinrich events induced by oceanic circulation changes

    NASA Astrophysics Data System (ADS)

    Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa; Banderas, Rubén; Ritz, Catherine

    2014-05-01

    Proxy data reveal the existence of episodes of increased deposition of ice-rafted debris in the North Atlantic Ocean during the last glacial period. These are interpreted as massive iceberg discharges mainly from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence points to an active role of the oceanic circulation. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet-ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg calving that closely agrees with ice-rafted debris records over the past 80 ka. Our results indicate that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age through the control that ice shelves exert on the dynamics of the inland ice sheet

  15. Warm World Ocean Thermohaline Circulation Model

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2014-12-01

    Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic, filling the ocean interior with cold and heavy water. However, ocean circulation diminished during the last glaciation and consequently the downwelling of the cold. Therefore interior ocean water temperatures must have been affected by other mechanisms which are negligible in the current state. We propose that the submergence of highly saline water from warm seas with high rates of evaporation (like the Red or Mediterranean Sea) was a major factor controlling ocean circulation during the last glaciation. Even today, waters in these poorly connected seas are the heaviest waters in the World ocean (1.029 g/cm3). The second mechanism affecting ocean temperature is the geothermal heat flux. With no heat exchange between the atmosphere and the ocean, geothermal heat flux through the ocean floor is capable of increasing ocean temperature by tens of degrees C over a 100 thousand year glacial cycle. To support these hypotheses we present an ocean box model that describes thermohaline circulation in the World Ocean. According to the model parameters, all water circulation is driven by the water density gradient. Boxes include high-latitude seas, high salinity seas, surface ocean, glaciers, and rift and lateral zones of the ocean interior. External heat sources are radiative forcing, affected by Milankovich cycles, and geothermal heat flux. Additionally this model accounts for the heat produced by organic rain decay. Taking all input parameters close to currently observed values, the model manages to recreate the glacial-interglacial cycles. During the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior ocean accumulates heat while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal

  16. Sedimentary response to ocean gateway circulation changes

    NASA Astrophysics Data System (ADS)

    Heinze, Christoph; Crowley, Thomas J.

    1997-12-01

    Previous modeling studies suggested that changes in ocean gateways may have exerted a dramatic influence on the ocean circulation. In this pilot study we extend those results to examining the potential ramifications of circulation changes on the sedimentary record. A version of the Hamburg carbon cycle/sediment model is used in these sensitivity experiments. Results indicate that internal reorganization of the ocean circulation can potentially cause very large regional changes in lysocline depth (1500-3000 m) and opal deposition. These shifts are sometimes comparable in magnitude to those imposed by changes in external forcing (e.g., climate, sea level, and weathering). Comparisons of the model response with the geologic record indicate some significant levels of first-order agreement. This exercise suggests that opportunities now exist for physically based modeling of past sediment responses to circulation and climate changes.

  17. Sustaining observations of the unsteady ocean circulation.

    PubMed

    Frajka-Williams, E

    2014-09-28

    Sustained observations of ocean properties reveal a global warming trend and rising sea levels. These changes have been documented by traditional ship-based measurements of ocean properties, whereas more recent Argo profiling floats and satellite records permit estimates of ocean changes on a near real-time basis. Through these and newer methods of observing the oceans, scientists are moving from quantifying the 'state of the ocean' to monitoring its variability, and distinguishing the physical processes bringing signals of change. In this paper, I give a brief overview of the UK contributions to the physical oceanographic observations, and the role they have played in the wider global observing systems. While temperature and salinity are the primary measurements of physical oceanography, new transbasin mooring arrays also resolve changes in ocean circulation on daily timescales. Emerging technologies permit routine observations at higher-than-ever spatial resolutions. Following this, I then give a personal perspective on the future of sustained observations. New measurement techniques promise exciting discoveries concerning the role of smaller scales and boundary processes in setting the large-scale ocean circulation and the ocean's role in climate. The challenges now facing the scientific community include sustaining critical observations in the case of funding system changes or shifts in government priorities. These long records will enable a determination of the role and response of the ocean to climate change. PMID:25157191

  18. Satellite Altimetry, Ocean Circulation, and Data Assimilation

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng

    1999-01-01

    Ocean circulation is a critical factor in determining the Earth's climate. Satellite altimetry has been proven a powerful technique for measuring the height of the sea surface for the study of global ocean circulation dynamics. A major objective of my research is to investigate the utility of altimeter data for ocean circulation studies. The 6 years' data record of TOPEX/POSEIDON have been analyzed to study the spatial and temporal characteristics of large-scale ocean variability. A major result obtained in 1998 is the discovery of large-scale oscillations in sea level with a period of 25 days in the Argentine Basin of the South Atlantic Ocean (see diagram). They exhibit a dipole pattern with counterclockwise rotational propagation around the Zapiola Rise (centered at 45S and 317E), a small seamount in the abyssal plain of the basin. The peak-to-trough amplitude is about 10 cm over a distance of 500-1000 km. The amplitude of these oscillations has large seasonal-to-interannual variations. The period and rotational characteristics of these oscillations are remarkably similar to the observations made by two current meters deployed near the ocean bottom in the region. What TOPEX/POSEIDON has detected apparently are manifestations of the movement of the entire water column (barotropic motion). The resultant transport variation is estimated to be about 50 x 10(exp 6) cubic M/S, which is about 50% of the total water transport in the region. Preliminary calculations suggest that these oscillations are topographically trapped waves. A numerical model of the South Atlantic is used to investigate the nature of and causes for these waves. A very important property of sea surface height is that it is directly related to the surface geostrophic velocity, which is related to deep ocean circulation through the density field. Therefore altimetry observations are not only useful for determining the surface circulation but also for revealing information about the deep ocean. Another

  1. Variability in deep ocean circulation from GRACE

    NASA Astrophysics Data System (ADS)

    Boening, C.; Watkins, M. M.

    2015-12-01

    Although nearly impossible to observe on a global scale, total water mass transport and inter-basin exchange are central to understanding long-term changes in ocean circulation. Of particular interest are changes in the Meridional Overturning Circulation (MOC) as they pose potential impacts in continental climtae. However, in-situ observations are limited in space and time preventing a holistic view of current variability. The representation of long-term transports in ocean models is highly dependent on the atmospheric forcing fields, which may misrepresent real interannual variability. The bottom pressure observations from the Gravity Recovery And Climate Experiment (GRACE) provide for the first time the ability to observe this global water mass transport. Here, we present the first near-global maps of variability in the depth-independent ocean circulation derived from advanced analysis of GRACE data. We find that significant variability on annual to decadal time scales exists in the deep large-scale circulation, some of which are related to the Southern Annular Mode forcing dominating Southern Ocean variability.

  2. Ice sheet collapse affects ocean circulation

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-06-01

    As Earth's climate warms and ice melts, freshwater input to oceans could weaken the large-scale Atlantic meridional overturning circulation, which acts as an important conveyor of heat and has significant effects on climate. Green et al. used an intermediate complexity climate model to study how freshwater input to oceans can affect the meridional overturning circulation. They applied their model to the collapse of the Barents ice sheet about 140,000 years ago—the first study of this kind for the time period—which resulted in a huge influx of freshwater to the North Atlantic Ocean as large icebergs calved off of the ice sheet. (Paleoceanography, doi:10.1029/ 2010PA002088, 2011)

  3. Ocean circulation on the North Australian Shelf

    NASA Astrophysics Data System (ADS)

    Schiller, Andreas

    2011-07-01

    The ocean circulation on Australia's Northern Shelf is dominated by the Monsoon and influenced by large-scale interannual variability. These driving forces exert an ocean circulation that influences the deep Timor Sea Passage of the Indonesian Throughflow, the circulation on the Timor and Arafura Shelves and, further downstream, the Leeuwin Current. Seasonal maxima of northeastward (southwestward) volume transports on the shelf are almost symmetric and exceed 10 6 m 3/s in February (June). The associated seasonal cycle of vertical upwelling from June to August south of 8.5°S and between 124°E and 137.5°E exceeds 1.5×10 6 m 3/s across 40 m depth. During El Niño events, combined anomalies from the seasonal means of high regional wind stresses and low inter-ocean pressure gradients double the northeastward volume transport on the North Australian Shelf to 1.5×10 6 m 3/s which accounts for 20% of the total depth-integrated transport across 124°E and reduce the total transport of the Indonesian Throughflow. Variability of heat content on the shelf is largely determined by Pacific and Indian Ocean equatorial wind stress anomalies with some contribution from local wind stress forcing.

  4. Numerical simulation of the world ocean circulation

    NASA Technical Reports Server (NTRS)

    Takano, K.; Mintz, Y.; Han, Y. J.

    1973-01-01

    A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.

  5. Early concepts and charts of ocean circulation

    NASA Astrophysics Data System (ADS)

    Peterson, R. G.; Stramma, L.; Kortum, G.

    Charts of ocean currents from the late nineteenth century show that already by then the patterns of surface circulation in regions away from polar latitudes were well understood. This fundamental knowledge accumulated gradually through centuries of sea travel and had reached a state of near correctness by the time dedicated research cruises, full-depth measurements and the practical application of the dynamical method were being instituted. Perhaps because of the foregoing, many of the pioneering works, critical to establishing what the upper-level circulation is like, the majority of the charts accompanying them, and several of the groundbreaking theoretical treatments on the physics of currents, are only poorly known to present-day oceanographers. In this paper we trace Western developments in knowledge and understanding of ocean circulation from the earliest times to the late-1800s transition into the modern era. We also discuss certain peripheral advances that proved critical to the subject. The earliest known ideas, dating from the Bronze Age and described by Homer, necessarily reflect severe limitations to geographical knowledge, as well as basic human predilections toward conjecture and exaggeration in the face of inadequate information. People considered the earth to be flat and circular, with the ocean flowing like a river around it. They also believed in horrific whirlpools, a concept that persisted into the Renaissance and which would later provide subject material for modern literature. From the Greek Classical Age, we find hydrologic theories of Earth's interior being laced with subterranean channels (Socrates) and all motion deriving from a divine force forever propelling the heavens toward the west, the primum mobile (Aristotle). These ideas, particularly the latter, dominated opinions about ocean circulation into the late Renaissance. By late Antiquity mariners had very likely acquired intimate knowledge of coastal currents in the Mediterranean, but

  6. Early concepts and charts of ocean circulation

    NASA Astrophysics Data System (ADS)

    Peterson, R. G.; Stramma, L.; Kortum, G.

    Charts of ocean currents from the late nineteenth century show that already by then the patterns of surface circulation in regions away from polar latitudes were well understood. This fundamental knowledge accumulated gradually through centuries of sea travel and had reached a state of near correctness by the time dedicated research cruises, full-depth measurements and the practical application of the dynamical method were being instituted. Perhaps because of the foregoing, many of the pioneering works, critical to establishing what the upper-level circulation is like, the majority of the charts accompanying them, and several of the groundbreaking theoretical treatments on the physics of currents, are only poorly known to present-day oceanographers. In this paper we trace Western developments in knowledge and understanding of ocean circulation from the earliest times to the late-1800s transition into the modern era. We also discuss certain peripheral advances that proved critical to the subject. The earliest known ideas, dating from the Bronze Age and described by Homer, necessarily reflect severe limitations to geographical knowledge, as well as basic human predilections toward conjecture and exaggeration in the face of inadequate information. People considered the earth to be flat and circular, with the ocean flowing like a river around it. They also believed in horrific whirlpools, a concept that persisted into the Renaissance and which would later provide subject material for modern literature. From the Greek Classical Age, we find hydrologic theories of Earth's interior being laced with subterranean channels (Socrates) and all motion deriving from a divine force forever propelling the heavens toward the west, the primum mobile (Aristotle). These ideas, particularly the latter, dominated opinions about ocean circulation into the late Renaissance. By late Antiquity mariners had very likely acquired intimate knowledge of coastal currents in the Mediterranean, but

  7. Ocean general circulation models for parallel architectures

    SciTech Connect

    Smith, R.D.

    1993-05-01

    The authors report continuing work in developing ocean general circulation models for parallel architectures. In earlier work, they began with the widely-used Bryan-Cox ocean model, but reformulated the barotropic equations (which describe the vertically integrated flow) to solve for the surface-pressure field rather than the volume-transport streamfunction as in the original model. This had the advantage of being more easily parallelized and allowed for a more realistic representation of coastal and bottom topography. Both streamfunction and surface-pressure formulations use a rigid-lid approximation to eliminate fast surface waves. They have now replaced the rigid-lid with a free surface, and solve the barotropic equations implicitly to overcome the timestep restriction associated with the fast waves. This method has several advantages, including: (1) a better physical representation of the barotropic mode, and (2) a better-conditioned operator matrix, which leads to much faster convergence in the conjugate-gradient solver. They have also extended the model to allow use of arbitrary orthogonal curvilinear coordinates for the horizontal grid. The original model uses a standard polar grid that has a singularity at each pole, making it difficult to include the Arctic basin, which plays an important role in global ocean circulation. They can now include the Arctic (while still using an explicit time-integration scheme without high-latitude filtering) by using a distorted grid with a displaced pole for the North Atlantic - Arctic region of the ocean. The computer code, written in Fortran 90 and developed on the Connection Machine, has been substantially restructured so that all communication occurs in low-level stencil routines. The idea is that the stencil routines may be rewritten to optimize communication costs on a particular architecture, while the remainder of the code is for the most part machine-independent, involving only the simplest Fortran 90 constructs.

  8. Ocean circulation modeling by use of radar altimeter data

    NASA Technical Reports Server (NTRS)

    Olbers, Dirk; Alpers, W.; Hasselmann, K.; Maier-Reimer, E.; Kase, R.; Krauss, W.; Siedler, G.; Willebrand, J.; Zahel, W.

    1991-01-01

    The project will investigate the use of radar altimetry (RA) data in the determination of the ocean circulation models. RA data will be used to verify prognostic experiments of the steady state and seasonal cycle of large-scale circulation models and the statistical steady state of eddy-resolving models. The data will serve as initial and update conditions in data assimilation experiments and as constraints in inverse calculations. The aim of the project is a better understanding of ocean physics, the determination and mapping of ocean currents, and a contribution to the establishment of ocean circulation models for climate studies. The goal of the project is to use satellite radar altimetry data for improving our knowledge of ocean circulation both in a descriptive sense and through the physics that govern the circulation state. The basic tool is a series of ocean circulation models. Depending on the model, different techniques will be applied to incorporate the RA data.

  9. Topographic Effects On Wind Driven Oceanic Circulation

    NASA Astrophysics Data System (ADS)

    Bigorre, S.; Dewar, W. K.

    A large scale oceanic anticyclone has been recently observed above the Zapiola Drift in the Argentine Basin. Its transports are comparable to those of the Gulf Stream. Its proximity to the Malvinas-Brazil current confluence render it potentially important to several aspects of the South Atlantic oceanic climate. A conceptual multilayer turbu- lent quasigeostrophic model simulated a comparable anticyclonic circulation in the presence of an isolated topography. The model is able to generate an upslope eddy mass flux, in agreement with downgradient eddy potential vorticity diffusion. Maps of EKE are consistent with the eddy kinetic energy minimum observed by TOPEX above the Zapiola Drift. This paper investigates the time dependent dynamics of the flow, from a 150 years long simulation. Compared to the flat bottom case, the spectrum over the bump is redder, a multi-year (7 years) band is energized, and the mesoscale band is comparatively suppressed. The presence of the 7 years oscillation is variable and connected to an apparent tendency for the flow regime to switch between 'sta- ble' and 'unstable' states. During unstable periods, the phenomenology of the oscil- lation consists of the slow development of a large potential vorticity anomaly above the seamount driven by surface Ekman pumping. This is followed by a rapid ejection phase. In stable regimes, the potential vorticity anomaly can persist for longer peri- ods and is accompanied by a stronger eddy variability. Eddy potential vorticity fluxes show that relative vorticity flux, caused by vortex tube stretching along the slope of the seamount is dominant. A low order relaxation oscillator model has successfully reproduced the results of the turbulent numerical model.

  10. Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    2000-01-01

    The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.

  11. The Atlantic Multidecadal Oscillation without a role for ocean circulation.

    PubMed

    Clement, Amy; Bellomo, Katinka; Murphy, Lisa N; Cane, Mark A; Mauritsen, Thorsten; Rädel, Gaby; Stevens, Bjorn

    2015-10-16

    The Atlantic Multidecadal Oscillation (AMO) is a major mode of climate variability with important societal impacts. Most previous explanations identify the driver of the AMO as the ocean circulation, specifically the Atlantic Meridional Overturning Circulation (AMOC). Here we show that the main features of the observed AMO are reproduced in models where the ocean heat transport is prescribed and thus cannot be the driver. Allowing the ocean circulation to interact with the atmosphere does not significantly alter the characteristics of the AMO in the current generation of climate models. These results suggest that the AMO is the response to stochastic forcing from the mid-latitude atmospheric circulation, with thermal coupling playing a role in the tropics. In this view, the AMOC and other ocean circulation changes would be largely a response to, not a cause of, the AMO. PMID:26472908

  12. The Ocean`s Thermohaline Circulation in a Fish Tank

    NASA Astrophysics Data System (ADS)

    Lavender, K.; Joyce, P.; Graziano, L.; Harris, S.; Jaroslow, G.; Lea, C.; Schell, J.; Witting, J.

    2005-12-01

    This demonstration develops intuition about density stratification, a concept critical to understanding the ocean`s thermohaline circulation. In addition, students learn how temperature and salinity affect density, how these characteristics may be density-compensating, and students gain practice in graphing and interpreting vertical profiles and temperature-salinity (T-S) diagrams. The demonstration requires a rectangular fish tank (5-10 gallons) with a plexiglass partition, preparation of three colored ''water masses'' representing surface water (warm and fresh), ''mystery'' Mediterranean Water (warm and salty), and North Atlantic Deep Water (NADW; cold and salty), a kitchen sponge, and a temperature and salinity probe. Density may be computed using an Equation of State calculator (e.g. online version at http://fermi.jhuapl.edu/denscalc.html). The larger side of the fish tank is filled halfway with NADW, then surface water is layered on top by carefully pouring it on a floating sponge. A student volunteer measures the temperature and salinity of the two water masses, while another computes the densities. Students draw vertical profiles and T-S diagrams representing the temperature, salinity, and density of the water column. The properties of the ''mystery'' water are measured and students predict what will happen when the water is poured on the opposite side of the partition and is allowed to overflow into the layered water. If the density gradients are sufficiently large, a beautiful internal wave develops as the mystery water overflows the sill and becomes intermediate Mediterranean Water. If time permits, having a student blow on the surface illustrates the limited influence of ''wind'' with depth; an internal wave may by forced by depressing the thermocline with a large, flat spoon; and pouring extra NADW on the sponge floating at the surface may illustrate deep convection.

  13. Acoustic Studies of the Large Scale Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  14. Strong coupling among Antarctic ice shelves, ocean circulation and sea ice in a global sea-ice - ocean circulation model

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2016-04-01

    The thermodynamic effects of Antarctic ice shelf interaction with ocean circulation are investigated using a global, high-resolution, isopycnal ocean-circulation model coupled to a sea-ice model. The model uses NASA MERRA Reanalysis from 1992 to 2011 as atmospheric forcing. The simulated long-period variability of ice-shelf melting/freezing rates differ across geographic locations. The ice shelves in Antarctic Peninsula, Amundsen and Bellingshausen sea embayments and the Amery Ice Shelf experience an increase in melting starting from 2005. This increase in melting is due to an increase in the subsurface (100-500 m) ocean heat content in the embayments of these ice shelves, which is caused by an increase in sea-ice concentration after 2005, and consequent reduction of the heat loss to the atmosphere. Our simulations provide a strong evidence for a coupling between ocean circulation, sea ice and ice shelves.

  15. Currents connecting communities: nearshore community similarity and ocean circulation.

    PubMed

    Watson, J R; Hays, C G; Raimondi, P T; Mitarai, S; Dong, C; McWilliams, J C; Blanchette, C A; Caselle, J E; Siegel, D A

    2011-06-01

    Understanding the mechanisms that create spatial heterogeneity in species distributions is fundamental to ecology. For nearshore marine systems, most species have a pelagic larval stage where dispersal is strongly influenced by patterns of ocean circulation. Concomitantly, nearshore habitats and the local environment are also influenced by ocean circulation. Because of the shared dependence on the seascape, distinguishing the relative importance of the local environment from regional patterns of dispersal for community structure remains a challenge. Here, we quantify the "oceanographic distance" and "oceanographic asymmetry" between nearshore sites using ocean circulation modeling results. These novel metrics quantify spatial separation based on realistic patterns of ocean circulation, and we explore their explanatory power for intertidal and subtidal community similarity in the Southern California Bight. We find that these metrics show significant correspondence with patterns of community similarity and that their combined explanatory power exceeds that of the thermal structure of the domain. Our approach identifies the unique influence of ocean circulation on community structure and provides evidence for oceanographically mediated dispersal limitation in nearshore marine communities. PMID:21797147

  16. EXPLORING THE FEEDBACKS BETWEEN CRETACEOUS OCEAN CIRCULATION, OCEANIC REDOX DYNAMICS AND SEDIMENT DIAGENESIS

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Godderis, Y.; Donnadieu, Y.; Regnier, P.

    2009-12-01

    The Mid-Cretaceous oceanic anoxic events (OAEs) are witnesses of major perturbations of the Earth climate, which resulted from important changes in structure of the ocean-atmosphere system and its biogeochemical functioning. They are globally well documented by the ubiquitous presence of organic carbon-rich black shale layers. However, the exact nature and functioning of the palaeo-environment that fostered the massive and almost ubiquitous deposition of organic carbon-rich sediments is still a matter of debate. Numerous outstanding questions remain, not only concerning the dependence of black shale deposition on ocean circulation and redox zonation, but also its influence on the global ocean-atmosphere system. A new version of the coupled Earth system model GEOCLIM, which combines a climate model (FOAM 3-D GCM) with a vertically resolved diffusion-advection box model of the global ocean, a pelagic biogeochemical model and a fully formulated diagenetic model (BNRS) is used to examine the feedbacks between paleocirculation, ocean redox dynamics, sediment diagenesis and global climate. Different scenarios are designed to assess the influence of the global circulation on the biogeochemical functioning of the ocean during a mid-Cretaceous OAE. Simulation results illustrate the strong feedbacks between Cretaceous ocean circulation, oceanic geochemical dynamics, bioproductivity and sediment diagenesis. A weakening of the deep ocean ventilation increases the importance of diagenetic processes on the geochemical characteristics of the ocean. Ocean anoxia/euxinia can easily develop if the sedimentary nutrient recycling is high enough to sustain enhanced primary production. Thus, the earth system model provides a rational support for a detailed quantitative understanding of the ocean's biogeochemical response to potential circulation changes during a mid-Cretaceous OAE. It helps identify plausible scenarios for black shale deposition which are compared with simulation

  17. The buoyancy-driven ocean circulation with realistic bathymetry

    NASA Astrophysics Data System (ADS)

    Gjermundsen, Ada; LaCasce, Joseph H.; Denstad, Liv

    2015-04-01

    In contrast to the wind-driven ocean circulation, where the concept of a Sverdrup interior and western boundary currents is generally accepted, we lack a simple dynamical framework for rationalizing the buoyancy-driven circulation. Thus most of our intuition is based on numerical solutions, primarily in idealized basins (e.g. Huck et al., 1999; Park and Bryan, 2001). Here we examine numerical solutions of the global circulation with realistic bathymetry, driven solely by surface buoyancy forcing. Explicit wind forcing is excluded, although vertical mixing is retained. The model (the MITgcm) is run with a hybrid resolution scheme, to capture approximately the variation of the deformation radius. The character of the resulting flow is consistent in many ways with the observed ocean circulation. There is inflow to and sinking in the Nordic Seas, baroclinic western boundary currents and an overturning streamfunction which closely resembles those obtained in full GCMs and in observations. Furthermore, the solutions share many features with solutions obtained with a linear analytical model (Pedlosky, 1969; LaCasce, 2004), suggesting the latter may be conceptually useful, despite lacking bathymetry. We discuss these points, as well as implications for the climate system in general. References: Pedlosky, J. (1969). Linear theory of the circulation of a stratified ocean. Journal of Fluid Mechanics, 35, 185-205. Huck, T., A. J. Weaver and A. Colin de Verdière (1999). On the influence of the parameterization of lateral boundary layers on the thermohaline circulation in coarse-resolution ocean models. Journal of Marine Research, 57(3), 387-426. Park, Y. G. and K. Bryan (2001). Comparison of thermally driven circulations from a depth-coordinate model and an isopycnal-layer model. Part II: The difference and structure of the circulations. Journal of Physical Oceanography, 31(9), 2612-2624. LaCasce, J. H. (2004). Diffusivity and viscosity dependence in the linear thermocline

  18. A fully-implicit model of the global ocean circulation

    NASA Astrophysics Data System (ADS)

    Weijer, Wilbert; Dijkstra, Henk A.; Öksüzoğlu, Hakan; Wubs, Fred W.; de Niet, Arie C.

    2003-12-01

    With the recent developments in the solution methods for large-dimensional nonlinear algebraic systems, fully-implicit ocean circulation models are now becoming feasible. In this paper, the formulation of such a three-dimensional global ocean model is presented. With this implicit model, the sensitivity of steady states to parameters can be investigated efficiently using continuation methods. In addition, the implicit formulation allows for much larger time steps than can be used with explicit models. To demonstrate current capabilities of the implicit global ocean model, we use a relatively low-resolution (4° horizontally and 12 levels vertically) version. For this configuration, we present: (i) an explicit calculation of the bifurcation diagram associated with hysteresis behavior of the ocean circulation and (ii) the scaling behavior of the Atlantic meridional overturning versus the magnitude of the vertical mixing coefficient of heat and salt.

  19. Adaptation of a general circulation model to ocean dynamics

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  20. Evaluating the deep-ocean circulation of a global ocean model using carbon isotopic ratios

    NASA Astrophysics Data System (ADS)

    Paul, André; Dutkiewicz, Stephanie; Gebbie, Jake; Losch, Martin; Marchal, Olivier

    2016-04-01

    We study the sensitivity of a global three-dimensional biotic ocean carbon-cycle model to the parameterizations of gas exchange and biological productivity as well as to deep-ocean circulation strength, and we employ the carbon isotopic ratios δ13C and Δ14C of dissolved inorganic carbon for a systematic evaluation against observations. Radiocarbon (Δ14C) in particular offers the means to assess the model skill on a time scale of 100 to 1000 years relevant to the deep-ocean circulation. The carbon isotope ratios are included as tracers in the MIT general circulation model (MITgcm). The implementation involves the fractionation processes during photosynthesis and air-sea gas exchange. We present the results of sixteen simulations combining two different parameterizations of the piston velocity, two different parameterizations of biological productivity (including the effect of iron fertilization) and four different overturning rates. These simulations were first spun up to equilibrium (more than 10,000 years of model simulation) and then continued from AD 1765 to AD 2002. For the model evaluation, we followed the OCMIP-2 (Ocean Carbon-Cycle Model Intercomparision Project phase two) protocol, comparing the results to GEOSECS (Geochemical Ocean Sections Survey) and WOCE (World Ocean Circulation Experiment) δ13C and natural Δ14C data in the world ocean. The range of deep natural Δ14C (below 1000 m) for our single model (MITgcm) was smaller than for the group of different OCMIP-2 models. Furthermore, differences between different model parameterizations were smaller than for different overturning rates. We conclude that carbon isotope ratios are a useful tool to evaluate the deep-ocean circulation. Since they are also available from deep-sea sediment records, we postulate that the simulation of carbon isotope ratios in a global ocean model will aid in estimating the deep-ocean circulation and climate during present and past.

  1. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  2. Exploring the feedbacks between Cretaceous ocean circulation, oceanic redox dynamics and sediment diagenesis

    NASA Astrophysics Data System (ADS)

    Arndt, Sandra; Regnier, Pierre; Donnadieu, Yannick; Godderis, Yves

    2010-05-01

    The Mid-Cretaceous oceanic anoxic events (OAEs) are witnesses of major perturbations of the Earth climate, which resulted from important changes in structure of the ocean-atmosphere system and its biogeochemical functioning. They are globally well documented by the ubiquitous presence of organic carbon-rich black shale layers. However, the exact nature and functioning of the palaeo-environment that fostered the massive and almost ubiquitous deposition of organic carbon-rich sediments is still a matter of debate. Numerous outstanding questions remain, not only concerning the dependence of black shale deposition on ocean circulation and redox zonation, but also its influence on the global ocean-atmosphere system. A new version of the coupled Earth system model GEOCLIM, which combines a climate model (FOAM 3-D GCM) with a vertically resolved diffusion-advection box model of the global ocean, a pelagic biogeochemical model and a fully formulated diagenetic model (BNRS) is used to examine the feedbacks between paleocirculation, ocean redox dynamics, sediment diagenesis and global climate. Different scenarios are designed to assess the influence of the global circulation on the biogeochemical functioning of the ocean during a mid-Cretaceous OAE. Simulation results illustrate the strong feedbacks between Cretaceous ocean circulation, oceanic geochemical dynamics, bioproductivity and sediment diagenesis. A weakening of the deep ocean ventilation increases the importance of diagenetic processes on the geochemical characteristics of the ocean. Ocean anoxia/euxinia can easily develop if the sedimentary nutrient recycling is high enough to sustain enhanced primary production. Thus, the earth system model provides a rational support for a detailed quantitative understanding of the ocean's biogeochemical response to potential circulation changes during a mid-Cretaceous OAE.

  3. Upper-level circulation in the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Peterson, Ray G.; Stramma, Lothar

    In this paper we present a literature survey of the South Atlantic's climate and its oceanic upper-layer circulation and meridional heat transport. The opening section deals with climate and is focused upon those elements having greatest oceanic relevance, i.e., distributions of atmospheric sea level pressure, the wind fields they produce, and the net surface energy fluxes. The various geostrophic currents comprising the upper-level general circulation are then reviewed in a manner organized around the subtropical gyre, beginning off southern Africa with the Agulhas Current Retroflection and then progressing to the Benguela Current, the equatorial current system and circulation in the Angola Basin, the large-scale variability adn interannual warmings at low latitudes, the Brazil Current, the South Atlantic Current, and finally to the Antarctic Circumpolar Current system in which the Falkland (Malvinas) Current is included. A summary of estimates of the meridional heat transport at various latitudes in the South Atlantic ends the survey.

  4. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean

    NASA Astrophysics Data System (ADS)

    Cunningham, Stuart A.; Roberts, Christopher D.; Frajka-Williams, Eleanor; Johns, William E.; Hobbs, Will; Palmer, Matthew D.; Rayner, Darren; Smeed, David A.; McCarthy, Gerard

    2013-12-01

    show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales.

  5. Biogeochemical Proxies in Scleractinian Corals used to Reconstruct Ocean Circulation

    SciTech Connect

    Guilderson, T P; Kashgarian, M; Schrag, D P

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon ({sup 14}C) in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as these, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment onetime surveys such as GEOSECS and WOCE. These data not only provide fundamental information about the shallow circulation of the Pacific, but can be used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate change.

  6. Protactinium-thorium ratio as a proxy for ocean circulation

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2011-12-01

    The Atlantic meridional overturning circulation (AMOC) transports water and heat over long distances in the Atlantic Ocean and is believed to have an important effect on Earth's climate. Knowing how strong the AMOC was in the past is essential to understanding past climate. One proxy researchers have used to assess the past strength of the AMOC is the sedimentary protactinium- thorium ratio (231Pa/230Th). Both 231Pa and 230Th are produced through decay of uranium at a constant rate in the ocean water column, but 230Th does not last long enough in the water to be transported away from the location where it was produced, while 231Pa has a longer residence time in the water. Therefore, sedimentary 231Pa/230Th ratios could provide information about the strength of past ocean circulation.

  7. The impact of oceanic heat transport on the atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Knietzsch, M.-A.; Schröder, A.; Lucarini, V.; Lunkeit, F.

    2015-09-01

    A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.

  8. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  9. An integrated modeling study of ocean circulation, the ocean carbon cycle, marine ecosystems, and climate change

    NASA Astrophysics Data System (ADS)

    Cao, Long

    The unifying theme of this study is to conduct an extensive exploration of various interactions between ocean circulation, the carbon cycle, marine ecosystems, and climate change using an earth system model of intermediate complexity, ISAM-2.5D (Integrated Science Assessment Model). First, through the simulation of radiocarbon (in terms of Delta14C) it is demonstrated that the inclusion of isopycnal diffusion and a parameterization of eddy-induced circulation in the ISAM-2.5D model yields the most realistic representation of ocean mixing and circulation. Secondly, I demonstrate the value of the simulation of multiple tracers, combined with a variety of observational data, in constraining the ISAM-2.5D model that has been constrained by the simulation of Delta14C. Through the simulation of ocean biogeochemical cycles and CFC-11 and the use of the updated observational data of bomb radiocarbon, I improve the Delta14C-constrained ISAM-2.5D model's performance in simulating ocean circulation and air-sea gas exchange, as well as its credibility in predicting oceanic carbon uptake. Third, I use the ISAM-2.5D model to assess the efficiency of direct carbon injection into the deep ocean with the influence of climate change. It is shown that the consideration of climate change enhances the retention time of injected carbon into the Atlantic Ocean as a result of weakened North Atlantic overturning circulation in a warming climate. However, the climatic effect is insignificant on the efficiency of carbon injection into the Pacific and Indian Oceans. Finally, I quantify that increased atmospheric CO2 concentrations would be mainly responsible for future ocean acidification, including lowering in ocean pH and sea water saturation state with respect to carbonate minerals. The consideration of climate change produces a second-order modification to projected ocean acidification. Therefore, in addition to its radiative effects on climate change, increased atmospheric CO2

  10. Circulation of Antarctic intermediate water in the South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Fine, Rana A.

    1993-10-01

    Chlorofluorocarbon (CFC) and hydrographic data collected on the R.R.S. Charles Darwin Cruise 29 along 32°S during November-December 1987, are used to examine the circulation in the South Indian Ocean. The emphasis is on Antarctic Intermediate Water (AAIW); bottom waters and mode waters are also examined. Bottom waters entering in the western boundary of the Crozet Basin (about 60°E) and in the Mozambique Basin (about 40°E) have low concentrations of anthropogenic CFCs. The rest of the bottom and deep waters up to about 2000 m have concentrations that are below blank levels. Above the intermediate waters there are injections of mode waters, which are progressively denser in the eastward direction. They form a broad subsurface CFC maximum between 200 and 400 m. The injections of recently ventilated (with respect to CFCs and oxygen) Subantarctic Mode Waters (SAMWs) at different densities indicate that there is considerable exchange between the subtropical and subantarctic regions. The tracer data presented show that the circulation of AAIW in the South Indian Ocean is different from that in the South Atlantic and South Pacific oceans in several ways. (1) The most recently ventilated AAIW is observed in a compact anticyclonic gyre west of 72°E. The shallow topography (e.g. that extending northeastward from the Kerguelen Plateau) may deflect and limit the eastward extent of the most recently ventilated AAIW. As a consequence, there is a zonal offset in the South Indian Ocean of the location of the most recently ventilated SAMW and AAIW, which does not occur in the other two oceans. The strongest component of SAMW is in the east, while the AAIW is strongest in the western-central South Indian Ocean. The offset results in a higher vertical gradient in CFCs in the east. (2) The Agulhas Current may impede input of AAIW along the western boundary. (3) Tracers are consistent with an inter-ocean flow from the South Pacific into the Eastern Indian Ocean, similar to the

  11. The Seasonal Variability of the South Indian Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Matano, R. P.; Beier, E. J.; Strub, P. T.

    2006-07-01

    This article compares the seasonal variability patterns of the South Indian Ocean circulation derived from a global, eddy-permitting, numerical model and altimeter observations. The seasonal variability of the Indian Ocean circulation is driven by the inflow from the Indonesian Passages and by the local wind forcing. Our analysis indicates that the influence of the Indonesian throughflow is confined to the easternmost portion of the basin, while the influence of the wind stress forcing is important everywhere. Model and observations indicates that, between ~105°E and 75°E, the seasonal variability is characterized by the southwestward propagation of an annual wave in a lapse of ~4 months. Preliminary calculations using Pathfinder data also indicates that, in the western region, there are seasonal perturbations that originates in the tropics and propagates poleward through the Mozambique Channel.

  12. Reconstructing Ocean Circulation using Coral (triangle)14C Time Series

    SciTech Connect

    Kashgarian, M; Guilderson, T P

    2001-02-23

    We utilize monthly {sup 14}C data derived from coral archives in conjunction with ocean circulation models to address two questions: (1) how does the shallow circulation of the tropical Pacific vary on seasonal to decadal time scales and (2) which dynamic processes determine the mean vertical structure of the equatorial Pacific thermocline. Our results directly impact the understanding of global climate events such as the El Nino-Southern Oscillation (ENSO). To study changes in ocean circulation and water mass distribution involved in the genesis and evolution of ENSO and decadal climate variability, it is necessary to have records of climate variables several decades in length. Continuous instrumental records are limited because technology for continuous monitoring of ocean currents (e.g. satellites and moored arrays) has only recently been available, and ships of opportunity archives such as COADS contain large spatial and temporal biases. In addition, temperature and salinity in surface waters are not conservative and thus can not be independently relied upon to trace water masses, reducing the utility of historical observations. Radiocarbon in sea water is a quasi-conservative water mass tracer and is incorporated into coral skeletal material, thus coral {sup 14}C records can be used to reconstruct changes in shallow circulation that would be difficult to characterize using instrumental data. High resolution {Delta}{sup 14}C timeseries such as ours, provide a powerful constraint on the rate of surface ocean mixing and hold great promise to augment one time oceanographic surveys. {Delta}{sup 14}C timeseries such as these, not only provide fundamental information about the shallow circulation of the Pacific, but can also be directly used as a benchmark for the next generation of high resolution ocean models used in prognosticating climate. The measurement of {Delta}{sup 14}C in biological archives such as tree rings and coral growth bands is a direct record of

  13. Barotropic-baroclinic time splitting for ocean circulation modeling

    SciTech Connect

    Higdon, R.L.; Szoeke, R.A. de

    1997-07-15

    This paper discusses the following topics on oceanic circulation modeling: time splitting in context of the nonlinear primitive equations; analysis of the stability of this splitting when applied to a linearized flow in two-layer fluid with one horizontal dimensions and a flat lower boundary; analysis of this splitting for horizontal dimensions in a rotating reference frame with constant coriolis parameters; and then numerical tests of the new splitting are discussed.

  14. Numerical simulation and prediction of coastal ocean circulation

    SciTech Connect

    Chen, P.

    1992-01-01

    Numerical simulation and prediction of coastal ocean circulation have been conducted in three cases. 1. A process-oriented modeling study is conducted to study the interaction of a western boundary current (WBC) with coastal water, and its responses to upstream topographic irregularities. It is hypothesized that the interaction of propagating WBC frontal waves and topographic Rossby waves are responsible for upstream variability. 2. A simulation of meanders and eddies in the Norwegian Coastal Current (NCC) for February and March of 1988 is conducted with a newly developed nested dynamic interactive model. The model employs a coarse-grid, large domain to account for non-local forcing and a fine-grid nested domain to resolve meanders and eddies. The model is forced by wind stresses, heat fluxes and atmospheric pressure corresponding Feb/March of 1988, and accounts for river/fjord discharges, open ocean inflow and outflow, and M[sub 2] tides. The simulation reproduced fairly well the observed circulation, tides, and salinity features in the North Sea, Norwegian Trench and NCC region in the large domain and fairly realistic meanders and eddies in the NCC in the nested region. 3. A methodology for practical coastal ocean hindcast/forecast is developed, taking advantage of the disparate time scales of various forcing and considering wind to be the dominant factor in affecting density fluctuation in the time scale of 1 to 10 days. The density field obtained from a prognostic simulation is analyzed by the empirical orthogonal function method (EOF), and correlated with the wind; these information are then used to drive a circulation model which excludes the density calculation. The method is applied to hindcast the circulation in the New York Bight for spring and summer season of 1988. The hindcast fields compare favorably with the results obtained from the prognostic circulation model.

  15. Ocean Surface Circulation with Implication for Marine Debris Distribution

    NASA Astrophysics Data System (ADS)

    Hafner, Jan; Maximenko, Nikolai; Niiler, Peter

    2010-05-01

    Modern, multi-instrumental Global Ocean Observing System (GOOS) includes satellites and in situ observations, monitoring the ocean state at the highest accuracy and resolution ever. By combining data of satellite altimetry, surface drifters, wind and gravity, ocean currents can be assessed globally and at research quality. The map of the mean surface currents shows a complex pattern of oceanic fronts and gyres. Distinct are the convergences of Ekman currents in subtropical gyres that, through the Sverdrup mechanism, are feeding anticyclonic circulation in the gyres. Drifter trajectories can also be utilized to simulate the evolution of the marine debris. Main problem is the inhomogeneous drifter data density, both due to convergence/divergence of the ocean currents and due to the drifter deployment scheme. A model constructed from statistics of the drifters exchange between small bins corrects this bias and was run from the uniform initial condition to study the fate of debris in the ocean. In addition to such actively studied debris accumulation areas as the Great Garbage Patch in the North Pacific, a new so far unrecognized, the world-strongest convergence is discovered in the South Pacific from the model solution. The same model reveals a complex pattern of convergence/divergence on the cold/warm flanks of major oceanic fronts. This pattern is studied in the framework of nonlinear interaction between Ekman drift and geostrophic baroclinic fronts outcropping at the sea surface. Results are generalized to assess the dynamics of internal Ekman layer distributed along the thermocline and controlling the secondary circulation at the fronts.

  16. Testing Components of New Community Isopycnal Ocean Circulation Model

    SciTech Connect

    Bryan, Kirk

    2008-05-09

    The ocean and atmosphere are both governed by the same physical laws and models of the two media have many similarities. However, there are critical differences that call for special methods to provide the best simulation. One of the most important difference is that the ocean is nearly opaque to radiation in the visible and infra-red part of the spectrum. For this reason water mass properties in the ocean are conserved along trajectories for long distances and for long periods of time. For this reason isopycnal coordinate models would seem to have a distinct advantage in simulating ocean circulation. In such a model the coordinate surfaces are aligned with the natural paths of near adiabatic, density conserving flow in the main thermocline. The difficulty with this approach is at the upper and lower boundaries of the ocean, which in general do not coincide with density surfaces. For this reason hybrid coordinate models were proposed by Bleck and Boudra (1981) in which Cartesian coordinates were used near the ocean surface and isopycnal coordinates were used in the main thermocline. This feature is now part of the HICOM model (Bleck, 2002).

  17. (CO sub 2 uptake in an Ocean Circulation Model)

    SciTech Connect

    Siegenthaler, U.C.

    1990-11-06

    The traveler collaborated with Drs. J. L. Sarmiento and J. C. Orr of the Program in Atmospheric Sciences at Princeton University to finish the article A Perturbation Simulation of CO{sub 2} Uptake in an Ocean Circulation Model,'' which has been submitted to the Journal of Geophysical Research for publication. With F. Joos, a graduate student from the University of Bern, the traveler started writing a journal article describing a box model of the global carbon cycle that is an extension of the one-dimensional box-diffusion model. The traveler further collaborated with F. Joos and Dr. J. L. Sarmiento on modeling the potential enhancement of oceanic CO{sub 2} uptake by fertilizing the southern ocean with iron. A letter describing the results is currently being written for the journal Nature.

  18. The World Ocean Circulation Experiment (WOCE): An ocean climatology for the 1990s

    SciTech Connect

    Chapman, P.; Nowlin, W.D. Jr.

    1997-11-01

    During the last ten years, scientists have made remarkable progress in predicting seasonal and interannual climate variability, based on interactions between the atmosphere and the tropical ocean. The goals of the World Ocean Circulation Experiment (WOCE) are to develop models useful for predicting climate variability on longer time scales and to collect the data from the global ocean necessary to test them. Using a variety of instrument platforms, researchers in the US and other nations have been sampling a suite of ocean variables which will be used to build up a climatology of the oceans in the 1990s and from the basis for developing both new models of ocean circulation and coupled models of the ocean and atmosphere. This paper presents some recent results from WOCE research. It includes examples of advances in the fields of sea surface temperature measurements, sea level monitoring, current velocities, upper ocean heat content, and air-sea flux measurements. In addition, we discuss some of the recent advances in modeling and the link between WOCE research and future programs such as CLIVAR, GOOS and GCOS. 27 refs., 2 tabs.

  19. Changes in North Atlantic nitrogen fixation controlled by ocean circulation.

    PubMed

    Straub, Marietta; Sigman, Daniel M; Ren, Haojia; Martínez-García, Alfredo; Meckler, A Nele; Hain, Mathis P; Haug, Gerald H

    2013-09-12

    In the ocean, the chemical forms of nitrogen that are readily available for biological use (known collectively as 'fixed' nitrogen) fuel the global phytoplankton productivity that exports carbon to the deep ocean. Accordingly, variation in the oceanic fixed nitrogen reservoir has been proposed as a cause of glacial-interglacial changes in atmospheric carbon dioxide concentration. Marine nitrogen fixation, which produces most of the ocean's fixed nitrogen, is thought to be affected by multiple factors, including ocean temperature and the availability of iron and phosphorus. Here we reconstruct changes in North Atlantic nitrogen fixation over the past 160,000 years from the shell-bound nitrogen isotope ratio ((15)N/(14)N) of planktonic foraminifera in Caribbean Sea sediments. The observed changes cannot be explained by reconstructed changes in temperature, the supply of (iron-bearing) dust or water column denitrification. We identify a strong, roughly 23,000-year cycle in nitrogen fixation and suggest that it is a response to orbitally driven changes in equatorial Atlantic upwelling, which imports 'excess' phosphorus (phosphorus in stoichiometric excess of fixed nitrogen) into the tropical North Atlantic surface. In addition, we find that nitrogen fixation was reduced during glacial stages 6 and 4, when North Atlantic Deep Water had shoaled to become glacial North Atlantic intermediate water, which isolated the Atlantic thermocline from excess phosphorus-rich mid-depth waters that today enter from the Southern Ocean. Although modern studies have yielded diverse views of the controls on nitrogen fixation, our palaeobiogeochemical data suggest that excess phosphorus is the master variable in the North Atlantic Ocean and indicate that the variations in its supply over the most recent glacial cycle were dominated by the response of regional ocean circulation to the orbital cycles. PMID:23965620

  20. OCEAN CIRCULATION. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises.

    PubMed

    Srokosz, M A; Bryden, H L

    2015-06-19

    The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat transport for climate is well acknowledged. Climate models predict that the AMOC will slow down under global warming, with substantial impacts, but measurements of ocean circulation have been inadequate to evaluate these predictions. Observations over the past decade have changed that situation, providing a detailed picture of variations in the AMOC. These observations reveal a surprising degree of AMOC variability in terms of the intraannual range, the amplitude and phase of the seasonal cycle, the interannual changes in strength affecting the ocean heat content, and the decline of the AMOC over the decade, both of the latter two exceeding the variations seen in climate models. PMID:26089521

  1. Atlantic Meridional Overturning Circulation slowdown cooled the subtropical ocean

    PubMed Central

    Cunningham, Stuart A; Roberts, Christopher D; Frajka-Williams, Eleanor; Johns, William E; Hobbs, Will; Palmer, Matthew D; Rayner, Darren; Smeed, David A; McCarthy, Gerard

    2013-01-01

    [1] Observations show that the upper 2 km of the subtropical North Atlantic Ocean cooled throughout 2010 and remained cold until at least December 2011. We show that these cold anomalies are partly driven by anomalous air-sea exchange during the cold winters of 2009/2010 and 2010/2011 and, more surprisingly, by extreme interannual variability in the ocean's northward heat transport at 26.5°N. This cooling driven by the ocean's meridional heat transport affects deeper layers isolated from the atmosphere on annual timescales and water that is entrained into the winter mixed layer thus lowering winter sea surface temperatures. Here we connect, for the first time, variability in the northward heat transport carried by the Atlantic Meridional Overturning Circulation to widespread sustained cooling of the subtropical North Atlantic, challenging the prevailing view that the ocean plays a passive role in the coupled ocean-atmosphere system on monthly-to-seasonal timescales. PMID:26074634

  2. Stochastic Ocean Eddy Perturbations in a Coupled General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Howe, N.; Williams, P. D.; Gregory, J. M.; Smith, R. S.

    2014-12-01

    High-resolution ocean models, which are eddy permitting and resolving, require large computing resources to produce centuries worth of data. Also, some previous studies have suggested that increasing resolution does not necessarily solve the problem of unresolved scales, because it simply introduces a new set of unresolved scales. Applying stochastic parameterisations to ocean models is one solution that is expected to improve the representation of small-scale (eddy) effects without increasing run-time. Stochastic parameterisation has been shown to have an impact in atmosphere-only models and idealised ocean models, but has not previously been studied in ocean general circulation models. Here we apply simple stochastic perturbations to the ocean temperature and salinity tendencies in the low-resolution coupled climate model, FAMOUS. The stochastic perturbations are implemented according to T(t) = T(t-1) + (∆T(t) + ξ(t)), where T is temperature or salinity, ΔT is the corresponding deterministic increment in one time step, and ξ(t) is Gaussian noise. We use high-resolution HiGEM data coarse-grained to the FAMOUS grid to provide information about the magnitude and spatio-temporal correlation structure of the noise to be added to the lower resolution model. Here we present results of adding white and red noise, showing the impacts of an additive stochastic perturbation on mean climate state and variability in an AOGCM.

  3. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  4. A Pacific Ocean general circulation model for satellite data assimilation

    NASA Technical Reports Server (NTRS)

    Chao, Y.; Halpern, D.; Mechoso, C. R.

    1991-01-01

    A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.

  5. A parallel coupled oceanic-atmospheric general circulation model

    SciTech Connect

    Wehner, M.F.; Bourgeois, A.J.; Eltgroth, P.G.; Duffy, P.B.; Dannevik, W.P.

    1994-12-01

    The Climate Systems Modeling group at LLNL has developed a portable coupled oceanic-atmospheric general circulation model suitable for use on a variety of massively parallel (MPP) computers of the multiple instruction, multiple data (MIMD) class. The model is composed of parallel versions of the UCLA atmospheric general circulation model, the GFDL modular ocean model (MOM) and a dynamic sea ice model based on the Hiber formulation extracted from the OPYC ocean model. The strategy to achieve parallelism is twofold. One level of parallelism is accomplished by applying two dimensional domain decomposition techniques to each of the three constituent submodels. A second level of parallelism is attained by a concurrent execution of AGCM and OGCM/sea ice components on separate sets of processors. For this functional decomposition scheme, a flux coupling module has been written to calculate the heat, moisture and momentum fluxes independent of either the AGCM or the OGCM modules. The flux coupler`s other roles are to facilitate the transfer of data between subsystem components and processors via message passing techniques and to interpolate and aggregate between the possibly incommensurate meshes.

  6. The Southwest Pacific Ocean circulation and climate experiment (SPICE)

    NASA Astrophysics Data System (ADS)

    Ganachaud, A.; Cravatte, S.; Melet, A.; Schiller, A.; Holbrook, N. J.; Sloyan, B. M.; Widlansky, M. J.; Bowen, M.; Verron, J.; Wiles, P.; Ridgway, K.; Sutton, P.; Sprintall, J.; Steinberg, C.; Brassington, G.; Cai, W.; Davis, R.; Gasparin, F.; Gourdeau, L.; Hasegawa, T.; Kessler, W.; Maes, C.; Takahashi, K.; Richards, K. J.; Send, U.

    2014-11-01

    The Southwest Pacific Ocean Circulation and Climate Experiment (SPICE) is an international research program under the auspices of CLIVAR. The key objectives are to understand the Southwest Pacific Ocean circulation and the South Pacific Convergence Zone (SPCZ) dynamics, as well as their influence on regional and basin-scale climate patterns. South Pacific thermocline waters are transported in the westward flowing South Equatorial Current (SEC) toward Australia and Papua-New Guinea. On its way, the SEC encounters the numerous islands and straits of the Southwest Pacific and forms boundary currents and jets that eventually redistribute water to the equator and high latitudes. The transit in the Coral, Solomon, and Tasman Seas is of great importance to the climate system because changes in either the temperature or the amount of water arriving at the equator have the capability to modulate the El Niño-Southern Oscillation, while the southward transports influence the climate and biodiversity in the Tasman Sea. After 7 years of substantial in situ oceanic observational and modeling efforts, our understanding of the region has much improved. We have a refined description of the SPCZ behavior, boundary currents, pathways, and water mass transformation, including the previously undocumented Solomon Sea. The transports are large and vary substantially in a counter-intuitive way, with asymmetries and gating effects that depend on time scales. This paper provides a review of recent advancements and discusses our current knowledge gaps and important emerging research directions.

  7. Studies of Current Circulation at Ocean Waste Disposal Sites

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Henry, R.

    1976-01-01

    The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.

  8. Studies of Current Circulation at Ocean Waste Disposal Sites. [Delaware

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Henry, R.

    1975-01-01

    The author has identified the following significant results. Circulation processes at the acid waste disposal site are highly event-dominated, with the majority of the water transport occurring during strong northeasters. There is a mean flow to the south alongshore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months, the ocean stratifies with warm water over cold water. A distinct thermocline was observed with expendable bathythermographs during all summer cruises at depths ranging from 10 to 21 meters. During stratified conditions, the near-bottom drogues showed very little movements. The duPont waste plume was observed in LANDSAT satellite imagery during dump up to 54 hours after dump.

  9. Volume, heat, and freshwater transports of the global ocean circulation 1993-2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data

    NASA Astrophysics Data System (ADS)

    Stammer, D.; Wunsch, C.; Giering, R.; Eckert, C.; Heimbach, P.; Marotzke, J.; Adcroft, A.; Hill, C. N.; Marshall, J.

    2003-01-01

    An analysis of ocean volume, heat, and freshwater transports from a fully constrained general circulation model (GCM) is described. Output from a data synthesis, or state estimation, method is used by which the model was forced to large-scale, time-varying global ocean data sets over 1993 through 2000. Time-mean horizontal transports, estimated from this fully time-dependent circulation, have converged with independent time-independent estimates from box inversions over most parts of the world ocean but especially in the southern hemisphere. However, heat transport estimates differ substantially in the North Atlantic where our estimates result in only 1/2 previous results. The models drift over the estimation period is consistent with observations from TOPEX/Poseidon in their spatial pattern, but smaller in their amplitudes by about a factor of 2. Associated temperature and salinity changes are complex, and both point toward air-sea interaction over water mass formation regions as the primary source for changes in the deep ocean. The estimated mean circulation around Australia involves a net volume transport of 11 Sv through the Indonesian Throughflow and the Mozambique Channel. In addition, we show that this flow regime exists on all timescales above 1 month, rendering the variability in the South Pacific strongly coupled to the Indian Ocean. Moreover, the dynamically consistent variations in the model show temporal variability of oceanic heat transports, heat storage, and atmospheric exchanges that are complex and with a strong dependence upon location, depth, and timescale. Our results demonstrate the great potential of an ocean state estimation system to provide a dynamical description of the time-dependent observed heat transport and heat content changes and their relation to air-sea interactions.

  10. World Ocean Circulation Experiment (WOCE) Young Investigator Workshops

    NASA Technical Reports Server (NTRS)

    Austin, Meg

    2004-01-01

    The World Ocean Circulation Experiment (WOCE) Young Investigator Workshops goals and objectives are: a) to familiarize Young Investigators with WOCE models, datasets and estimation procedures; b) to offer intensive hands-on exposure to these models ard methods; c) to build collaborations among junior scientists and more senior WOCE investigators; and finally, d) to generate ideas and projects leading to fundable WOCE synthesis projects. To achieve these goals and objectives, the Workshop will offer a mixture of tutorial lectures on numerical models and estimation procedures, advanced seminars on current WOCE synthesis activities and related projects, and the opportunity to conduct small projects which put into practice the techniques advanced in the lectures.

  11. Large-scale ocean circulation-cloud interactions reduce the pace of transient climate change

    NASA Astrophysics Data System (ADS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-04-01

    Changes to the large-scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  12. circulation of the upper layer of the south Indian Ocean

    NASA Astrophysics Data System (ADS)

    de Ruijter, Will; Lambert, Erwin; Aguiar Gonzalez, Borja

    2016-04-01

    The south IO is characterized by high variability and mesoscale eddies. After separation the East Madagascar Current forms dipoles that continue to the south-west and connect remote (eco)systems. The Mozambique Current breaks up in eddies that move southward. They connect upstream to the Indonesian Through Flow and downstream to the Agulhas system. East of Madagascar the 'South Indian Ocean Counter Current' (SICC) flows to the east into the Leeuwin Current system while submerged eddies form a return flow to the west. Hypotheses on the coherence of these flows range from local scale frontal systems to large scale connection via the subtropical super gyre. We aim to present a coherent large-scale picture of the upper south Indian Ocean circulation, the role of the eddies as connectors and drivers of vertical exchanges that may control observed large-scale phenomena like the plankton blooms east of Madagascar.

  13. Modeling the impact of polar mesocyclones on ocean circulation

    NASA Astrophysics Data System (ADS)

    Condron, Alan; Bigg, Grant R.; Renfrew, Ian A.

    2008-10-01

    Subsynoptic polar mesoscale cyclones (or mesocyclones) are underrepresented in atmospheric reanalysis data sets and are subgrid scale processes in most models used for seasonal or climate forecasting. This lack of representation, particularly over the Nordic Seas, has a significant impact on modeled ocean circulation due to a consequent underestimation of atmospheric forcing at the air-sea boundary. Using Rankine vortices and a statistically significant linear relationship between mesocyclone diameter and maximum wind speed, a novel parameterization is developed that allows the bogusing in of missing or underrepresented vortices by exploiting a satellite-derived mesocyclone database. From October 1993 to September 1995, more than 2500 cyclones known to be missing from reanalysis data over the northeast Atlantic are parameterized into the forcing fields for a global ocean-only numerical modeling experiment. A comparison of this perturbed forcing simulation to a control simulation shows enhanced surface latent and sensible heat fluxes and a dramatic increase in the cyclonic rotation of the Nordic Seas gyre by four times the average interannual variability. In response to these changes, Greenland Sea Deep Water (GSDW) formation generally increases by up to 20% in 1 month, indicating more active open ocean convection. However such enhancements are smaller than the considerable monthly variability in GSDW production. An accompanying increase in the volume transport of intermediate and deep water overflowing the Denmark Strait highlights an important coupling between short-lived, intense atmospheric activity and deep ocean circulation. The parameterization scheme has the potential to be adapted for use in coupled climate models.

  14. Global thermohaline circulation and ocean-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli

    1997-09-01

    A global ocean general circulation model (GCM) with idealized geometry (two basins of equal size, Marotzke and Willebrand, 1991) is coupled to an energy balance atmospheric model with nonlinear parameterizations of meridional atmospheric transports of heat and moisture. With the coupled model that prescribes the atmospheric heat and moisture transports, the North Atlantic meridional mass overturning rates at equilibrium increases as the global hydrological cycle strength increases. Furthermore, the equilibrium overturning rate is primarily controlled by the hydrological cycle of the Southern Hemisphere, whereas the Northern Hemispheric hydrological cycle has little impact. The transition of the thermohaline circulation from the conveyor belt to the southern sinking state is controlled by two factors, the hydrological cycle in Northern Hemisphere, and the ratio of hydrological cycle strengths between the Northern Hemisphere and the Southern Hemisphere. Increasing either of them destabilizes the thermohaline circulation. The large-scale dynamics of the North Atlantic overturning is mainly interhemispheric, with the bulk of the overturning rising in the Southern Hemisphere. Multiple intermediate states exist that are only quantitatively different, under very small salinity perturbations. The coupled feedbacks between the thermohaline circulation and the atmospheric heat and moisture transports are demonstrated to exist in the coupled model, and all of them are positive. In addition, it is identified that the coupled feedbacks associated with the atmospheric transports in the Southern Hemisphere are also positive. Two different flux adjustments are used in the coupled model, with one adjusting the atmospheric transports efficiencies, the other adjusting the surface fluxes. Different flux adjustments influence the coupled feedback intensities, and hence the stability of the thermohaline circulation. (Copies available exclusively from MIT Libraries, Rm. 14

  15. A new geometrical approach to Eulerian transport: an application to the ocean circulation; final report

    NASA Technical Reports Server (NTRS)

    McWilliams, J. C.; Chao, Y.

    2003-01-01

    The main objective of this work is to investigate the transport processes in the large-scale ocean circulations using the new transport theory. We focus on the mid-latitude ocean circulation, especially the Gulf Stream, because it is recognized as a most energetic ocean current and plays a crucial role in maintaining the earth's climate system.

  16. Seasonal Characteristics of Circulation in the Southeastern Tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Qu, T.; Meyers, G.

    2004-12-01

    The circulation in the southeastern tropical Indian Ocean is studied using historical temperature and salinity data. A southward shift of the subtropical gyre at increasing depth dominates the structure of the annual mean circulation. Near the southern Indonesian coast, the westward South Equatorial Current (SEC) is at the sea surface and strongest near 10°-11°S, reflecting strong influence of the Indonesian Throughflow (ITF). In latitudes 13°-25°S the SEC is a subsurface flow and its velocity core deepens toward the south, falling below 500 m at 25°S. The Eastern Gyral Current (EGC) is a surface flow overlying the SEC, associated with the meridional gradients of near-surface temperature and salinity. The ITF supplies water to the SEC mainly in the upper 400 m, and below that depth the flow is reversed along the coast of Sumatra and Java. Monsoon-winds strongly force the annual variation in circulation. Dynamic height at the sea surface has a maximum amplitude at 10°-13°S, and the maximum at deeper levels is located further south. Annual variation is also strong in the coastal wave guides, but is mainly confined to the near-surface layer. Although the South Java Current at the sea surface is not well resolved in the present dataset, semiannual variation is markedly evident at depth and tends to extend much deeper than annual variation along the coast of Sumatra and Java.

  17. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    PubMed

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales. PMID:19020618

  18. Ocean water cycle: its recent amplification and impact on ocean circulation

    NASA Astrophysics Data System (ADS)

    Vinogradova, Nadya

    2016-04-01

    Oceans are the largest reservoir of the world's water supply, accounting for 97% of the Earth's water and supplying more than 75% of the evaporated and precipitated water in the global water cycle. Therefore, in order to predict the future of the global hydrological cycle, it is essential to understand the changes in its largest component, which is the flux of freshwater over the oceans. Here we examine the change in the ocean water cycle and the ocean's response to such changes that were happening during the last two decades. The analysis is based on a data-constrained ocean state estimate that synthesizes all of the information available in the surface fluxes, winds, observations of sea level, temperature, salinity, geoid, etc., as well as in the physical constraints, dynamics, and conservation statements that are embedded in the equations of the MIT general circulation model. Closeness to observations and dynamical consistency of the solution ensures a physically realistic correspondence between the atmospheric forcing and oceanic fluxes, including the ocean's response to freshwater input. The results show a robust pattern of change in the ocean water cycle in the last twenty years. The pattern of changes indicates a general tendency of drying of the subtropics, and wetting in the tropics and mid-to-high latitudes, following the "rich get richer and the poor get poorer" paradigm in many ocean regions. Using a closed property budget analysis, we then investigate the changes in the oceanic state (salinity, temperature, sea level) during the same twenty-year period. The results are discussed in terms of the origin of surface signatures, and differentiated between those that are attributed to short-term natural variability and those that result from an intensified hydrological cycle due to warming climate.

  19. Interpreting 231Pa/230Th observations and changes in ocean circulation

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-05-01

    Understanding past changes in ocean circulation is important, because the ocean transports heat and changes in ocean circulation can affect climate. To better understand past ocean circulation changes, some researchers have used the ratio of two isotopes, protactinium-231 (231Pa) and thorium-230 (230Th), in sediments as a proxy to infer changes in the Atlantic meridional overturning circulation (AMOC). Some studies have suggested that AMOC during the climate fluctuations of the Last Glacial Maximum (LGM; ˜21,000-18,000 years ago) and Heinrich Event 1 (H1; ˜17,000-15,000 years ago) was different from modern AMOC.

  20. Arctic Ocean circulation during the anoxic Eocene Azolla event

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  1. Changes in ocean circulation in the South-east Atlantic Ocean during the Pliocene

    NASA Astrophysics Data System (ADS)

    Petrick, B. F.; McClymont, E.; Felder, S.; Leng, M. J.

    2013-12-01

    The Southeast Atlantic Ocean is an important ocean gateway because major oceanic systems interact with each other in a relatively small geographic area. These include the Benguela Current, Antarctic Circumpolar Current, and the input of warm and saline waters from the Indian Ocean via the Agulhas leakage. However, there remain questions about circulation change in this region during the Pliocene, including whether there was more or less Agulhas Leakage, which may have implications for the strength of the global thermohaline circulation. ODP Site 1087 (31°28'S, 15°19'E, 1374m water depth) is located outside the Benguela upwelling region and is affected by Agulhas leakage in the modern ocean. Sea-surface temperatures (SSTs) are thus sensitive to the influence of Agulhas Leakage at this site. Our approach is to apply several organic geochemistry proxies and foraminiferal analyses to reconstruct the Pliocene history of ODP 1087, including the UK37' index (SSTs), pigments (primary productivity) and planktonic foraminifera (water mass changes). SSTs during the Pliocene range from 17 to 22.5 °C (mean SSTs at 21 °C), and show variability on orbital and suborbital time scales. Our results indicate that the Benguela upwelling system had intensified and/or shifted south during the Pliocene. We find no evidence of Agulhas leakage, meaning that either Agulhas Leakage was severely reduced or displaced during the mid-Pliocene. Potential causes of the observed signals include changes to the local wind field and/or changes in the temperature of intermediate waters which upwell in the Benguela system. Pronounced cooling is observed during cold stages in the Pliocene, aligned with the M2 and KM2 events. These results may indicate that changes to the extent of the Antarctic ice sheet had impact on circulation in the south east Atlantic during the Pliocene via displacement of the Antarctic Circumpolar Currents.

  2. Horizontal density compensation in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Koch, Andrey O.; Helber, Robert W.; Richman, James G.; Barron, Charlie N.

    2013-04-01

    Density compensation is the condition where temperature (T) and salinity (S) gradients counteract in their effect on density. Open ocean observations with SeaSoar tows and recent glider observations in the Gulf of Mexico reported in the scientific literature suggest that horizontal gradients in the surface mixed layer tend to be strongly density compensated over a range of spatial scales while in seasonal thermocline and deeper layers T,S-fronts are only partially compensated or uncompensated. We assess the capability of ocean general circulation models (OGCM) to develop horizontal density compensation as observed in the upper ocean. The physics required to evolve the initial density compensated mixed layer toward the partially compensated conditions of the thermocline is tested. Idealistic scenarios with horizontal, partially compensated density fronts in the mixed layer are examined in submesoscale-resolved run-down simulations on Hybrid Coordinate Ocean Model (HYCOM). Simulations with no atmospheric forcing show that initial Density compensation does not change substantially experiencing only minor decrease with time simultaneously with the restratification of the mixed layer by submesoscale eddies. Submesoscale fronts tend to be more compensated than mesoscale fronts. A sensitivity analysis shows that the density compensation of submesoscale fronts is particularly sensitive to the horizontal diffusion rate. Simulations with wind forcing exhibit destruction of initial density compensation due to ageostrophic frontogenesis which is confirmed by recent glider observations in the Gulf of Mexico. The lack of the model skill to develop and maintain compensated thermohaline variability is attributed to the T, S horizontal diffusion parameterization used in HYCOM and generally in modern OGCMs: it is decoupled from vertical diffusion and T and S diffusion is horizontally identical. Our findings suggest that OGCM's skill to develop compensated thermohaline variability

  3. Ocean Bottom Pressure Seasonal Cycles and Decadal Trends from GRACE Release-05: Ocean Circulation Implications

    NASA Astrophysics Data System (ADS)

    Johnson, G. C.; Chambers, D. P.

    2013-12-01

    Ocean mass variations are important for diagnosing sea level budgets, the hydrological cycle and global energy budget, as well as ocean circulation variability. Here seasonal cycles and decadal trends of ocean mass from January 2003 to December 2012, both global and regional, are analyzed using GRACE Release 05 data. The trend of global flux of mass into the ocean approaches 2 cm decade-1 in equivalent sea level rise. Regional trends are of similar magnitude, with the North Pacific, South Atlantic, and South Indian oceans generally gaining mass and other regions losing mass. These trends suggest a spin-down of the North Pacific western boundary current extension and the Antarctic Circumpolar Current in the South Atlantic and South Indian oceans. The global average seasonal cycle of ocean mass is about 1 cm in amplitude, with a maximum in early October and volume fluxes in and out of the ocean reaching 0.5 Sv (1 Sv = 1 × 106 m3 s-1) when integrated over the area analyzed here. Regional patterns of seasonal ocean mass change have typical amplitudes of 1-4 cm, and include maxima in the subtropics and minima in the subpolar regions in hemispheric winters. The subtropical mass gains and subpolar mass losses in the winter spin up both subtropical and subpolar gyres, hence the western boundary current extensions. Seasonal variations in these currents are order 10 Sv, but since the associated depth-averaged current variations are only order 0.1 cm s-1, they would be difficult to detect using in situ oceanographic instruments. a) Amplitude (colors, in cm) and b) phase (colors, in months of the year) of an annual harmonic fit to monthly GRACE Release 05 CSR 500 km smoothed maps (concurrently with a trend and the semiannual harmonic). The 97.5% confidence interval for difference from zero is also indicated (solid black line). Data within 300 km of coastlines are not considered.

  4. Mean Upper-Ocean Circulation of the Southern Hemisphere Oceans Based on Goce Data

    NASA Astrophysics Data System (ADS)

    Menezes, V. V.; Bingham, R. J.; Vianna, M. L.; Phillips, H. E.

    2012-12-01

    One of the main goals of the Gravity and steady-state Ocean Circulation Explorer (GOCE) satellite mission launched in 2009 is to improve the previous estimates of the global ocean circulation structures determined from Mean Dynamic Topographies (MDTs). Recently published studies suggest that the GOCE-based MDTs and their respective mean geostrophic circulation fields (MGCs) are superior to those obtained from GRACE (Gravity Recovery and Climate Experiment)-only data. These studies focus mostly on the circulation of the North Atlantic and North Pacific oceans with emphasis on the strong western boundary current systems. In contrast, no detailed assessment has yet been made to determine the impact of the GOCE models in the southern hemisphere (SH) upper-ocean circulation especially in the subtropical region. It is generally recognized that the SH circulation is still not well established even at large scales, and the new GOCE and GRACE products can contribute to increase our understanding of the dominant currents in these regions, which may have even greater impact on the global climate than the NH counterparts. In the present work, we compute five global GOCE-derived MDTs with a 0.25 x 0.25 degree spatial grid based on three GOCE geoid models (TIM3, GOCO02S, GOCO3S) and three mean sea surfaces (CLS01, CLS11, DTU10) using the standard spectral approach (MSS minus Geoid). These MDTs do not have the well-known large-amplitude striation-type noise that plagued all of the GRACE-only MDTs with he same resolution, but still present commission errors which are filptered out with Singular Spectrum Analysis methods. Additionally, the MGCs were calculated by use of a Anderssen-Hegland averaging scheme for estimation of derivatives, which is able to filter out the well-known high amplitude noise caused by standard finite-difference methods. Comparisons with previous GRACE-only MGCs show that GOCE permits retrieval of currents with much higher intensities (e.g. the Agulhas

  5. Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model

    NASA Astrophysics Data System (ADS)

    Saynisch, J.; Bergmann-Wolf, I.; Thomas, M.

    2015-02-01

    To study the sub-seasonal distribution and generation of ocean mass anomalies, Gravity Recovery and Climate Experiment (GRACE) observations of daily and monthly resolution are assimilated into a global ocean circulation model with an ensemble-based Kalman-Filter technique. The satellite gravimetry observations are processed to become time-variable fields of ocean mass distribution. Error budgets for the observations and the ocean model's initial state are estimated which contain the full covariance information. The consistency of the presented approach is demonstrated by increased agreement between GRACE observations and the ocean model. Furthermore, the simulations are compared with independent observations from 54 bottom pressure recorders. The assimilation improves the agreement to high-latitude recorders by up to 2 hPa. The improvements are caused by assimilation-induced changes in the atmospheric wind forcing, i.e., quantities not directly observed by GRACE. Finally, the use of the developed Kalman-Filter approach as a destriping filter to remove artificial noise contaminating the GRACE observations is presented.

  6. Ocean circulation and climate during the past 120,000 years.

    PubMed

    Rahmstorf, Stefan

    2002-09-12

    Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is thus an active and highly nonlinear player in the global climate game. Increasingly clear evidence implicates ocean circulation in abrupt and dramatic climate shifts, such as sudden temperature changes in Greenland on the order of 5-10 degrees C and massive surges of icebergs into the North Atlantic Ocean --events that have occurred repeatedly during the last glacial cycle. PMID:12226675

  7. A Coupled Ocean General Circulation, Biogeochemical, and Radiative Model of the Global Oceans: Seasonal Distributions of Ocean Chlorophyll and Nutrients

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.

  8. Circulation in Vilkitsky Canyon in the eastern Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Janout, Markus; Hölemann, Jens

    2016-04-01

    The eastern Arctic Ocean is characterized by steep continental slopes and vast shallow shelf seas that receive a large amount of riverine freshwater from some of the largest rivers on earth. The northwestern Laptev Sea is of particular interest, as it is a freshwater transport pathway for a swift surface-intensified current from the Kara Sea toward the Arctic Basin, as was recently highlighted by high-resolution model studies. The region features complex bathymetry including a narrow strait and a large submarine canyon, strong tides, polynyas and severe sea ice conditions throughout much of the year. A year-long mooring record as well as detailed hydrographic shipboard measurements resulted from summer expeditions to the area in 2013 and 2014, and now provide a detailed picture of the region's water properties and circulation. The hydrography is characterized by riverine Kara Sea freshwater near the surface in the southern part of the canyon, while warmer (~0°C) saline Atlantic-derived waters dominate throughout the canyon at depths >150m. Cold shelf-modified waters near the freezing point are found along the canyon edges. The mean flow at the 300 m-deep mooring location near the southern edge of the canyon is swift (30 cm/s) and oriented eastward near the surface as suggested by numerical models, while the deeper flow follows the canyon topography towards the north-east. Wind-driven deviations from the mean flow coincide with sudden changes in temperature and salinity. This study characterizes the general circulation in Vilkitsky Canyon and investigates its potential as a conduit for upwelling of Atlantic-derived waters from the Arctic Basin to the Laptev Sea shelf.

  9. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover

    NASA Astrophysics Data System (ADS)

    Nummelin, Aleksi; Ilicak, Mehmet; Li, Camille; Smedsrud, Lars H.

    2016-01-01

    The Arctic Ocean has important freshwater sources including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high-latitude precipitation, and river runoff. Previous modeling studies show some robust responses to high-latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation; some idealized modeling studies also document a stronger cyclonic circulation within the Arctic Ocean itself. With the broad range of scales and processes involved, the overall effect of increasing runoff requires an understanding of both the local processes and the broader linkages between the Arctic and surrounding oceans. Here we adopt a more comprehensive modeling approach by increasing river runoff to the Arctic Ocean in a coupled ice-ocean general circulation model, and show contrasting responses in the polar and subpolar regions. Within the Arctic, the stratification strengthens, the halocline and Atlantic Water layer warm, and the cyclonic circulation spins up, in agreement with previous work. In the subpolar North Atlantic, the model simulates a colder and fresher water column with weaker barotropic circulation. In contrast to the estuarine circulation theory, the volume exchange between the Arctic Ocean and the surrounding oceans does not increase with increasing runoff. While these results are robust in our model, we require experiments with other model systems and more complete observational syntheses to better constrain the sensitivity of the climate system to high-latitude freshwater perturbations.

  10. Comment on "The Atlantic Multidecadal Oscillation without a role for ocean circulation".

    PubMed

    Zhang, Rong; Sutton, Rowan; Danabasoglu, Gokhan; Delworth, Thomas L; Kim, Who M; Robson, Jon; Yeager, Stephen G

    2016-06-24

    Clement et al (Reports, 16 October 2015, p. 320) claim that the Atlantic Multidecadal Oscillation (AMO) is a thermodynamic response of the ocean mixed layer to stochastic atmospheric forcing and that ocean circulation changes have no role in causing the AMO. These claims are not justified. We show that ocean dynamics play a central role in the AMO. PMID:27339976

  11. Interannual variability in the stratospheric-tropospheric circulation in a coupled ocean-atmosphere GCM

    SciTech Connect

    Kitoh, Akio; Koide, Hiroshi; Kodera, Kunihiko

    1996-03-01

    The authors look for interannual variations in circulation patterns in the stratosphere/troposphere circulation and sea surface temperatures within the Meteorological Research Institute coupled ocean-atmosphere general circulation model. They are able to identify two modes in this model which exhibit this type of variability. One involves the stratospheric polar vortex, coupled via tropospheric circulation to SST variations. The second mode involves El Nino type phenomena coupled into the tropospheric subtropical jet.

  12. Correlated signals and causal transport in ocean circulation

    NASA Astrophysics Data System (ADS)

    Jeffress, Stephen

    2014-05-01

    This paper presents a framework for interpreting the time-lagged correlation of oceanographic data in terms of physical transport mechanisms. Previous studies have inferred aspects of ocean circulation by correlating fluctuations in temperature and salinity measurements at distant stations. Typically, the time-lag of greatest correlation is interpreted as an advective transit time and hence the advective speed of the current. In this paper we relate correlation functions directly to the underlying equations of fluid transport. This is accomplished by expressing the correlation functions in terms of the Green's function of the transport equation. Two types of correlation functions are distinguished: field-forcing correlation and field-field correlation. Their unique relationships to the Green's function are illustrated in two idealized models of geophysical transport: a leaky pipe model and an advective-diffusive model. Both models show that the field-forcing correlation function converges to the Green's function as the characteristic (time or length) scale of forcing autocorrelation decreases. The leaky pipe model provides an explanation for why advective speeds inferred from time-lagged correlations are often less than the speed of the main current. The advective-diffusive model reveals a structural bias in the field-field correlation function when used to estimate transit times.

  13. Uncertainty quantification for large-scale ocean circulation predictions.

    SciTech Connect

    Safta, Cosmin; Debusschere, Bert J.; Najm, Habib N.; Sargsyan, Khachik

    2010-09-01

    Uncertainty quantificatio in climate models is challenged by the sparsity of the available climate data due to the high computational cost of the model runs. Another feature that prevents classical uncertainty analyses from being easily applicable is the bifurcative behavior in the climate data with respect to certain parameters. A typical example is the Meridional Overturning Circulation in the Atlantic Ocean. The maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO{sub 2} forcing. We develop a methodology that performs uncertainty quantificatio in the presence of limited data that have discontinuous character. Our approach is two-fold. First we detect the discontinuity location with a Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve location in presence of arbitrarily distributed input parameter values. Furthermore, we developed a spectral approach that relies on Polynomial Chaos (PC) expansions on each sides of the discontinuity curve leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification and propagation. The methodology is tested on synthetic examples of discontinuous data with adjustable sharpness and structure.

  14. Determination of the ocean circulation using Geosat altimetry

    SciTech Connect

    Nerem, R.S.; Tapley, B.D.; Shum, C.K. )

    1990-03-15

    A spherical harmonic model of the sea surface topography complete to degree and order 10 and a model of the Earth's geopotential field complete to degree and order 50 have been obtained in a simultaneous solution using Geosat altimeter data and tracking data from 14 different satellites. The sea surface topography model compares well with oceanographic models computed using hydrographic data and ship drift data. Currently, errors in the estimated gravity field model limit the determination of the spherical harmonic coefficients of the general ocean circulation to degrees 10 and lower, corresponding to a minimum wavelength of 4,000 km. Error analysis indicates that the correlation between the geoid and the sea surface topography model is less than 0.2, indicating good separation of the geoid and the sea surface topography at wavelengths of 4,000 km or longer. Estimates of the scale factor for the significant wave height (H{sub 1/3}), which is used to compute the electromagnetic bias correction and the bias for the Geosat altimeter, are obtained. The estimate of the H{sub 1/3} correction is 3.6 {plus minus} 1.5%, and the height bias estimate is zero.

  15. Assimilation impacts on Arctic Ocean circulation, heat and freshwater budgets

    NASA Astrophysics Data System (ADS)

    Zuo, Hao; Mugford, Ruth I.; Haines, Keith; Smith, Gregory C.

    We investigate the Arctic basin circulation, freshwater content (FWC) and heat budget by using a high-resolution global coupled ice-ocean model implemented with a state-of-the-art data assimilation scheme. We demonstrate that, despite a very sparse dataset, by assimilating hydrographic data in and near the Arctic basin, the initial warm bias and drift in the control run is successfully corrected, reproducing a much more realistic vertical and horizontal structure to the cyclonic boundary current carrying the Atlantic Water (AW) along the Siberian shelves in the reanalysis run. The Beaufort Gyre structure and FWC and variability are also more accurately reproduced. Small but important changes in the strait exchange flows are found which lead to more balanced budgets in the reanalysis run. Assimilation fluxes dominate the basin budgets over the first 10 years (P1: 1987-1996) of the reanalysis for both heat and FWC, after which the drifting Arctic upper water properties have been restored to realistic values. For the later period (P2: 1997-2004), the Arctic heat budget is almost balanced without assimilation contributions, while the freshwater budget shows reduced assimilation contributions compensating largely for surface salinity damping, which was extremely strong in this run. A downward trend in freshwater export at the Canadian Straits and Fram Strait is found in period P2, associated with Beaufort Gyre recharge. A detailed comparison with observations and previous model studies at the individual Arctic straits is also included.

  16. Determination of the ocean circulation using Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Tapley, B. D.; Shum, C. K.

    1990-01-01

    A spherical harmonic model of the sea surface topography complete to degree and order 10 and a model of the earth's geopotential field complete to degree and order 50 have been obtained in a simultaneous solution using Geosat altimeter data and tracking data from 14 different satellites. The sea surface topography model compares well with oceanographic models computed using hydrographic data and ship drift data. Currently, errors in the estimated gravity field model limit the determination of the spherical harmonic coefficients of the general ocean circulation to degrees 10 and lower, corresponding to a minimum wavelength of 4000 km. Error analysis indicates that the correlation between the geoid and the sea surface topography model is less than 0.2, indicating good separation of the geoid and the sea surface topography at wavelengths of 4000 km or longer. Estimates of the scale factor for the significant wave height (H1/3), which is used to compute the electromagnetic bias correction and the bias for the Geosat altimeter, are obtained. The estimate of the H1/3 correction is 3.6 + or - 1.5 percent, and the height bias estimate is zero.

  17. Global Observations and Understanding of the General Circulation of the Oceans

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The workshop was organized to: (1) assess the ability to obtain ocean data on a global scale that could profoundly change our understanding of the circulation; (2) identify the primary and secondary elements needed to conduct a World Ocean Circulation Experiment (WOCE); (3) if the ability is achievable, to determine what the U.S. role in such an experiment should be; and (4) outline the steps necessary to assure that an appropriate program is conducted. The consensus of the workshop was that a World Ocean Circulation Experiment appears feasible, worthwhile, and timely. Participants did agree that such a program should have the overall goal of understanding the general circulation of the global ocean well enough to be able to predict ocean response and feedback to long-term changes in the atmosphere. The overall goal, specific objectives, and recommendations for next steps in planning such an experiment are included.

  18. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    PubMed

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future. PMID:25079555

  19. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation.

    PubMed

    Knorr, Gregor; Lohmann, Gerrit

    2003-07-31

    During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic thermohaline circulation became more vigorous, in the transition from a weak glacial to a strong interglacial mode. Here we use a three-dimensional ocean circulation model to investigate the impact of Southern Ocean warming and the associated sea-ice retreat on the Atlantic thermohaline circulation. We find that a gradual warming in the Southern Ocean during deglaciation induces an abrupt resumption of the interglacial mode of the thermohaline circulation, triggered by increased mass transport into the Atlantic Ocean via the warm (Indian Ocean) and cold (Pacific Ocean) water route. This effect prevails over the influence of meltwater discharge, which would oppose a strengthening of the thermohaline circulation. A Southern Ocean trigger for the transition into an interglacial mode of circulation provides a consistent picture of Southern and Northern hemispheric climate change at times of deglaciation, in agreement with the available proxy records. PMID:12891352

  20. Temporal relationships of carbon cycling and ocean circulation at glacial boundaries.

    PubMed

    Piotrowski, Alexander M; Goldstein, Steven L; Hemming, Sidney R; Fairbanks, Richard G

    2005-03-25

    Evidence from high-sedimentation-rate South Atlantic deep-sea cores indicates that global and Southern Ocean carbon budget shifts preceded thermohaline circulation changes during the last ice age initiation and termination and that these were preceded by ice-sheet growth and retreat, respectively. No consistent lead-lag relationships are observed during abrupt millennial warming events during the last ice age, allowing for the possibility that ocean circulation triggered some millenial climate changes. At the major glacial-interglacial transitions, the global carbon budget and thermohaline ocean circulation responded sequentially to the climate changes that forced the growth and decline of continental ice sheets. PMID:15790848

  1. Oceanic variability around Madagascar : connections to the large-scale Indian Ocean circulation and its forcing

    NASA Astrophysics Data System (ADS)

    Palastanga, V.

    2007-06-01

    The connection between the mesoscale eddy activity around Madagascar and the large-scale interannual variability in the Indian Ocean is investigated. We use the combined TOPEX/Poseidon-ERS sea surface height (SSH) data for the period 1993-2003. The SSH-fields in the Mozambique Channel and east of Madagascar exhibit a significant interannual oscillation. This is related to the arrival of large-scale anomalies that propagate westward in the band 10-15S in response to the Indian Ocean dipole (IOD) events. Positive (negative) SSH anomalies associated to a positive (negative) IOD phase induce a shift in the intensity and position of the tropical and subtropical gyres in the Indian Ocean. A weakening (strengthening) results in the intensity of the South Equatorial Current and its branches along east Madagascar. In addition, the flow through the narrows of the Mozambique Channel around 17S increases (decreases) during periods of a stronger and northward (southward) extension of the subtropical (tropical) gyre. Interaction between the currents in the narrows and southward propagating eddies from the northern Channel leads to interannual variability in the eddy kinetic energy of the central Channel in phase with the one in the SSH-field. The origin of the eddy variability along the 25S band in the Indian Ocean is also investigated. We have found that the surface circulation east of Madagascar shows an anticyclonic subgyre bounded to the south by eastward flow from southwest Madagascar and to the north by the westward flowing South Equatorial Current (SEC) between 15-20S. The shallow, eastward flow, named the South Indian Ocean Countercurrent (SICC), extends above the deep reaching, westward flowing SEC up to 95E, with its core over the latitude of the high variability band. Applying a 2-layer model reveals that regions of large vertical shear along the SICC-SEC system are baroclinically unstable. Estimates of the frequencies (3.5-6 times/year) and wavelengths (290-470 km

  2. A numerical method for the study of the circulation of the world ocean

    SciTech Connect

    Bryan, K.

    1997-08-01

    This paper describes a detail computational procedure involving a finite difference numerical schemes to study the circulation models of the world oceans. To obtain an efficient numerical method for low-frequency, large-scale current systems, surfaces gravity-inertial waves are filtered out by the rigid-lid approximation. Special features of the ocean circulation are resolved in the numerical model by allowing for a variable spacing in either the zonal or meridional direction. 20 refs., 5 figs., 1 tab.

  3. Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse

    NASA Astrophysics Data System (ADS)

    Voigt, Silke; Jung, Claudia; Friedrich, Oliver; Frank, Martin; Teschner, Claudia; Hoffmann, Julia

    2013-05-01

    The evolution of global ocean circulation toward deep-water production in the high southern latitudes is thought to have been closely linked to the transition from extreme mid-Cretaceous warmth to the cooler Cenozoic climate. The relative influences of climate cooling and the opening and closure of oceanic gateways on the mode of deep-ocean circulation are, however, still unresolved. Here we reconstruct intermediate- to deep-water circulation for the latest Cretaceous based on new high-resolution radiogenic neodymium (Nd) isotope data from several sites and for different water depths in the South Atlantic, Southern Ocean, and proto-Indian Ocean. Our data document the presence of markedly different intermediate water Nd-isotopic compositions in the South Atlantic and Southern Ocean. In particular, a water mass with a highly radiogenic Nd isotope signature most likely originating from intense hotspot-related volcanic activity bathed the crest of Walvis Ridge between 71 and 69 Ma, which formed a barrier that prevented deep-water exchange between the Southern Ocean and the North Atlantic basins. We suggest that the Cenozoic mode of global deep-ocean circulation was still suppressed by tectonic barriers in the latest Cretaceous, and that numerous, mostly regionally-formed and sourced intermediate to deep waters supplied the deep ocean prior to 68 million yr ago.

  4. Tectonically restricted deep-ocean circulation at the end of the Cretaceous greenhouse

    NASA Astrophysics Data System (ADS)

    Voigt, Silke; Jung, Claudia; Friedrich, Oliver; Frank, Martin; Teschner, Claudia; Hoffman, Julia

    2013-04-01

    The evolution of global ocean circulation towards deep-water production in the high southern latitudes is thought to have been closely linked to the transition from extreme mid-Cretaceous warmth to the cooler Cenozoic climate. The relative influences of climate cooling and the opening and closure of oceanic gateways on the mode of deep-ocean circulation are, however, still unresolved. Here we reconstruct intermediate- to deep-water circulation for the latest Cretaceous based on new high-resolution radiogenic neodymium (Nd) isotope data from several sites and for different water depths in the South Atlantic, Southern Ocean, and proto-Indian Ocean. Our new late Campanian to Maastrichtian data documents the presence of markedly different intermediate water Nd-isotopic compositions in the South Atlantic and Southern Ocean suggesting the presence of multiple, local water sources at nearly every site and a circulation system that was fundamentally different from the modern. In particular, a water mass with a highly radiogenic Nd isotope signature most likely originating from intense hotspot-related volcanic activity bathed the crest of Walvis Ridge between 71 and 69 Ma, which formed a barrier that prevented deep-water exchange between the Southern Ocean and the North Atlantic basins. The narrow geometry of the Atlantic Ocean together with tight to closed connections towards the Tethys and the Pacific Ocean limited volumetrically substantial deep-water exchange and promoted a local mode of deep oceanic convection in the Atlantic. Available Nd isotope data from the North Atlantic indicate the prevalence of different water masses in the abyssal plains and support a mode of ocean circulation that was maintained by down- and upwelling in various meso-scale eddies as proposed by Hay (2011, Sedim. Geol. 235, 5-26). Climatic cooling and the opening of gateways between 83-78 Ma may have initiated SCW formation in the southern hemisphere oceans. However, SCW formation did not

  5. Ocean topography mapping, improvement of the marine geoid, and global permanent ocean circulation studies from TOPEX/Poseidon altimeter data

    NASA Technical Reports Server (NTRS)

    Marsh, James G.; Lerch, F. J.; Koblinsky, C. J.; Nerem, R. S.; Klosko, S. M.; Williamson, R. G.

    1991-01-01

    The TOPEX/POSEIDON altimeter measurements will be the first global observations of the sea surface with accuracy sufficient to make quantitative determinations of the ocean's general circulation and its variations. These measurements are an important step to understanding global change in the ocean and its impact on the climate. Our investigation will focus on the examination of features in the sea surface elevation at the largest spatial and temporal scales. TOPEX/POSEIDON altimeter measurements will be used in conjunction with observations from past satellite-altimeter missions, such as NASA's GEOS-3 and Seasat, the U.S. Navy's Geosat and SALT, and the European Remote Sensing satellite in order to address the following issues: (1) Improve models of the marine geoid, especially at wavelengths needed to understand the basin-scale ocean dynamic topograpy. (2) Measure directly from the altimeter data the expression of the mean global ocean circulation in the sea surface at the largest scales through a simultaneous solution for gravity, orbital, and oceanographic parameters. (3) Examine the sea surface measurements for changes in global ocean mass or volume, interannual variations in the basin-scale ocean circulation, and annual changes in the heating and cooling of the upper ocean.

  6. Remote sensing of surface ocean circulation with satellite altimetry.

    PubMed

    Mather, R S; Rizos, C; Coleman, R

    1979-07-01

    The Geodynamics Experimental Ocean Satellite (GEOS-3) radar altimeter has provided some information on the dynamic sea-surface topography of the global oceans. Regional studies of the densely surveyed Sargasso Sea indicate that the average nontidal variability of the oceans is +/- 28 centimeters. Sea-surface highs and lows determined from GEOS-3 altimetry correlate favorably with eddy structures inferred from Nimbus-6 infrared imagery. PMID:17778877

  7. Application of Satellite Altimetry to Ocean Circulation Studies: 1987-1994

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.; Cheney, R. E.

    1994-01-01

    Altimetric measurement of the height of the sea surface from space provides global observation of the world's oceans. The last eight years have witnessed a rapid growth in the use of altimetry data from the study of the ocean circulations, thanks to the multiyear data from the Geosat Mission.

  8. Iceberg discharges of the last glacial period driven by oceanic circulation changes.

    PubMed

    Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa; Ritz, Catherine

    2013-10-01

    Proxy data reveal the existence of episodes of increased deposition of ice-rafted detritus in the North Atlantic Ocean during the last glacial period interpreted as massive iceberg discharges from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence of the crucial role that the ocean plays both for past and future behavior of the cryosphere suggests a climatic control of these ice surges. Here, we present simulations of the last glacial period carried out with a hybrid ice sheet-ice shelf model forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. The model generates a time series of iceberg discharge that closely agrees with ice-rafted debris records over the past 80 ka, indicating that oceanic circulation variations were responsible for the enigmatic ice purges of the last ice age. PMID:24062437

  9. Dynamical response of the oceanic circulation and temperature to interdecadal variability in the surface winds over the Indian Ocean

    SciTech Connect

    Reason, C.J.C.; Allan, R.J.; Lindesay, J.A.

    1996-01-01

    A global ocean general circulation model (OGCM) is used to investigate the sensitivity of the circulation and temperature fields to observed interdecadal variability in Indian Ocean winds for the austral summer. Focus is placed on the dynamical response of the model to the imposed winds. These comprise the observed winds from COADS for the region 46{degrees}S-30{degrees}N, 17{degrees}-152{degrees}E organized into four 21-yr epochs. During the first two epochs, the southern Indian anticyclone, African monsoonal flow, and associated trades were anomalously weak, whereas during the 1963-1983 period the reverse was true. The 1942-1962 epoch appears to be a transition. The model indicates an overall decrease (increase) in the transports of the southern Indian and tropical Indian gyres for the 1900-1920, 1921-1941 cases in dynamical response to the variability in the surface winds over the Indian Ocean. Sea surface temperature (SST) perturbations in the southern Indian Ocean have the same sign as the observed anomalies but are smaller in magnitude. The model SST patterns are restricted to the southern Indian Ocean midlatitudes, whereas observations indicate anomalies throughout the Indian Ocean basin. Analysis of the streamfunction anomalies induced by the epoch winds in the model indicates that the JEBAR term is important in modulating Indian gyre transports. While it is noted that thermodynamic effects not explicitly included in the model may contribute toward the observed SST variability in certain regions and that previous model studies have shown that SST in the southern Indian Ocean is sensitive to variations in the Indonesian throughflow and the Pacific trade winds, the results lend support to the hypothesis that changes in the basin-scale ocean circulation driven by the Indian Ocean epoch winds may contribute significantly toward the observed interdecadal variability in SST in the southern regions of this ocean. 29 refs., 17 figs.

  10. The influence of wind-driven ocean circulation on earth rotation

    SciTech Connect

    Steinberg, D.J.

    1992-01-01

    In this work, the authors have studied the role of barotropic, wind driven ocean circulation in exciting polar motion and the length of day at weekly to seasonal frequencies. The rotation of the earth is variable in length of day and in position of the rotation pole. The sources of these variations are not fully known. They have used the Cox and Bryan (1984) general circulation ocean model driven by daily NMC global winds to compute first the ocean currents and sea level variations, and then the rotational excitation functions, between 1980 and 1986. It is found that the wind driven ocean circulation can explain much of the residual power in the length of day which is not accounted for by atmospheric angular momentum. It also appears that there is significant power, as much as 50% of that needed, in polar motion excitation at the Chandler and seasonal frequencies.

  11. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large

  12. Benchmarking ocean circulation models on massively parallel computers

    SciTech Connect

    Poling, D.A.

    1997-08-01

    General circulation models are becoming the premier theoretical tools for studying the complex structure of the global climate. GEONET was envisioned as exercising the resources developed for the nuclear weapons program to address environmental problems. The similarity of circulation models to weapons codes made them an attractive field for them to develop expertise. The author hoped to become an active player in mainline climate research through computer simulation. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The intention of this research was to establish the Laboratory in mainstream climate research in conjunction with the GEONET project.

  13. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records

    NASA Astrophysics Data System (ADS)

    Butzin, Martin; Lohmann, Gerrit; Bickert, Torsten

    2011-02-01

    In a modeling sensitivity study we investigate the evolution of the ocean circulation and of marine carbon isotope (δ13C) records during the Miocene (about 23-5 million years ago). For this purpose we ran an ocean-circulation carbon cycle model of intermediate complexity (Large Scale Geostrophic- Hamburg Ocean Carbon Cycle Model, version 2s) exploring various seaway configurations. Our investigations confirm that the Central American Seaway played a decisive role in the history of the Miocene ocean circulation. In simulations with a deep Central American Seaway (depth range 1-3 km), typical for the early to middle Miocene, deep water production in the North Atlantic is absent or weak, while the meridional overturning circulation is dominated by water mass formation in the Southern Ocean. Deep water formation in the North Atlantic begins when the Central American Seaway shoals to a few hundreds of meters, which is typical for the late Miocene. Our results do not support ideas that the mid-Miocene closing of the Eastern Tethys contributed to Antarctic glaciation. On the other hand, we find some water exchange between the Indian Ocean and the Atlantic via the Eastern Tethys during the early Miocene. Our model results for the Atlantic meridional overturning circulation and for Atlantic δ13C during the late Miocene are largely independent from depth variations of the Greenland-Scotland Ridge. To a large extent, the evolution of Miocene deep-sea δ13C records can be explained with large-scale ocean circulation changes. Our model-data comparison for the middle and early Miocene suggests that during the early Neogene the seaway effect on benthic δ13C may have been superimposed by further factors such as climate regime shifts and/or terrestrial carbon cycle changes.

  14. The effect of low ancient greenhouse climate temperature gradients on the ocean's overturning circulation

    NASA Astrophysics Data System (ADS)

    Sijp, Willem P.; England, Matthew H.

    2016-02-01

    We examine whether the reduced meridional temperature gradients of past greenhouse climates might have reduced oceanic overturning, leading to a more quiescent subsurface ocean. A substantial reduction of the pole-to-Equator temperature difference is achieved in a coupled climate model via an altered radiative balance in the atmosphere. Contrary to expectations, we find that the meridional overturning circulation and deep ocean kinetic energy remain relatively unaffected. Reducing the wind strength also has remarkably little effect on the overturning. Instead, overturning strength depends on deep ocean density gradients, which remain relatively unaffected by the surface changes, despite an overall decrease in ocean density. Ocean poleward heat transport is significantly reduced only in the Northern Hemisphere, as now the circulation operates across a reduced temperature gradient, suggesting a sensitivity of Northern Hemisphere heat transport in greenhouse climates to the overturning circulation. These results indicate that climate models of the greenhouse climate during the Cretaceous and early Paleogene may yield a reasonable overturning circulation, despite failing to fully reproduce the extremely reduced temperature gradients of those time periods.

  15. The effect of low ancient greenhouse climate temperature gradients on the ocean's overturning circulation

    NASA Astrophysics Data System (ADS)

    Sijp, W. P.; England, M. H.

    2015-10-01

    We examine whether the reduced meridional temperature gradients of past greenhouse climates might have reduced oceanic overturning, leading to a more quiescent subsurface ocean. A substantial reduction of the pole to equator temperature difference is achieved in a coupled climate model via an altered radiative balance in the atmosphere. Contrary to expectations, we find that the meridional overturning circulation and deep ocean kinetic energy remain relatively unaffected. Reducing the wind strength also has remarkably little effect on the overturning. Instead, overturning strength depends on deep ocean density gradients, which remain relatively unaffected by the surface changes, despite an overall decrease in ocean density. Ocean poleward heat transport is significantly reduced only in the Northern Hemisphere, as now the circulation operates across a reduced temperature gradient, suggesting the overturning circulation dominates heat transport in greenhouse climates. These results indicate that climate models of the greenhouse climate during the Cretaceous and early Paleogene may yield a reasonable overturning circulation, despite failing to fully reproduce the extremely reduced temperature gradients of those time periods.

  16. Calibrating the ECCO ocean general circulation model using Green's functions

    NASA Technical Reports Server (NTRS)

    Menemenlis, D.; Fu, L. L.; Lee, T.; Fukumori, I.

    2002-01-01

    Green's functions provide a simple, yet effective, method to test and calibrate General-Circulation-Model(GCM) parameterizations, to study and quantify model and data errors, to correct model biases and trends, and to blend estimates from different solutions and data products.

  17. Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models

    SciTech Connect

    Gleckler, P.J.; Randall, D.A.; Boer, G.

    1994-03-01

    This paper reports on energy fluxes across the surface of the ocean as simulated by fifteen atmospheric general circulation models in which ocean surface temperatures and sea-ice boundaries are prescribed. The oceanic meridional energy transport that would be required to balance these surface fluxes is computed, and is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean energy transport can be affected by the errors in simulated cloud-radiation interactions.

  18. Arctic Ocean circulation and variability - advection and external forcing encounter constraints and local processes

    NASA Astrophysics Data System (ADS)

    Rudels, B.

    2011-12-01

    The first hydrographic data from the Arctic Ocean, the section from the Laptev Sea to the passage between Greenland and Svalbard obtained by Nansen on the drift by Fram 1893-1896, aptly illustrate the main features of Arctic Ocean oceanography and indicate possible processes active in transforming the water masses in the Arctic Ocean. Many, perhaps most, of these processes were identified already by Nansen, who put his mark on almost all subsequent research in the Arctic Ocean. Here we shall revisit some key questions and follow how our understanding has evolved from the early 20th century to present. What questions, if any, can now be regarded as solved and which remain still open? Five different but connected topics will be discussed: (1) The low salinity surface layer and the storage and export of freshwater. (2) The vertical heat transfer from the Atlantic water to sea ice and to the atmosphere. (3) The circulation and mixing of the two Atlantic inflow branches. (4) The formation and circulation of deep and bottom waters in the Arctic Ocean. (5) The exchanges through Fram Strait. Foci will be on the potential effects of increased freshwater input and reduced sea ice export on the freshwater storage and residence time in the Arctic Ocean, on the deep waters of the Makarov Basin and on the circulation and relative importance of the two inflows, over the Barents Sea and through Fram Strait, for the distribution of heat in the intermediate layers of the Arctic Ocean.

  19. The early Miocene onset of a ventilated circulation regime in the Arctic Ocean.

    PubMed

    Jakobsson, Martin; Backman, Jan; Rudels, Bert; Nycander, Jonas; Frank, Martin; Mayer, Larry; Jokat, Wilfried; Sangiorgi, Francesca; O'Regan, Matthew; Brinkhuis, Henk; King, John; Moran, Kathryn

    2007-06-21

    Deep-water formation in the northern North Atlantic Ocean and the Arctic Ocean is a key driver of the global thermohaline circulation and hence also of global climate. Deciphering the history of the circulation regime in the Arctic Ocean has long been prevented by the lack of data from cores of Cenozoic sediments from the Arctic's deep-sea floor. Similarly, the timing of the opening of a connection between the northern North Atlantic and the Arctic Ocean, permitting deep-water exchange, has been poorly constrained. This situation changed when the first drill cores were recovered from the central Arctic Ocean. Here we use these cores to show that the transition from poorly oxygenated to fully oxygenated ('ventilated') conditions in the Arctic Ocean occurred during the later part of early Miocene times. We attribute this pronounced change in ventilation regime to the opening of the Fram Strait. A palaeo-geographic and palaeo-bathymetric reconstruction of the Arctic Ocean, together with a physical oceanographic analysis of the evolving strait and sill conditions in the Fram Strait, suggests that the Arctic Ocean went from an oxygen-poor 'lake stage', to a transitional 'estuarine sea' phase with variable ventilation, and finally to the fully ventilated 'ocean' phase 17.5 Myr ago. The timing of this palaeo-oceanographic change coincides with the onset of the middle Miocene climatic optimum, although it remains unclear if there is a causal relationship between these two events. PMID:17581581

  20. Zonal momentum budget along the equator in the Indian Ocean from a high-resolution ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Nagura, Motoki; McPhaden, Michael J.

    2014-07-01

    This study examines the zonal momentum budget along the equator in the Indian Ocean in a high-resolution ocean general circulation model. Wyrtki Jets, wind-driven eastward flows in the upper 100 m that appear typically twice per year in boreal spring and fall, are a prominent feature of the ocean circulation in this region. Our results indicate that nonlinearity associated with these jets is an important element of the zonal momentum budget, with wind driven eastward momentum advected downward into the thermocline. This advection results in annually averaged zonal currents that flow against the zonal pressure gradient in the upper 200 m, such that there is no mean subsurface undercurrent in the Indian Ocean as there is in the Pacific and Atlantic Oceans. Zonal momentum is further distributed along the equator by zonal advection, with eastward flow substantially enhanced in the eastern basin relative to the western basin. Meridional advection, though generally weak, tends to decelerate surface eastward flow along the equator. These results contrast with those from previous idealized wind-forced model experiments that primarily emphasized the importance of vertical momentum advection. Also, beyond semiannual period fluctuations, significant momentum advection results from a broad range of interacting processes, spanning intraseasonal to interannual time scales. We conclude that proper simulation of zonal flows along the equator in the Indian Ocean, including their climatically relevant impacts on the mass and heat balance, requires accurate representation of nonlinearities that derive from a broad range of time and space scales.

  1. Assimilation of TOPEX/POSEIDON Altimeter Data into a Global Ocean Circulation Model: Are the Results Any Good?

    NASA Technical Reports Server (NTRS)

    Fukumori, I.; Fu, L. L.; Chao, Y.

    1998-01-01

    The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.

  2. Variability of the thermohaline circulation in a simple coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Taboada, J. J.; Lorenzo, M. N.

    2003-04-01

    The behavior of the Atlantic thermohaline circulation (THC) is essential to a better understanding of climate change. Paleoclimatic studies suggest that this circulation has experimented repeated changes throughout the history of the Earth associated to climate changes [1]. The coupled 3-dimensional climate models are useful in quantitatively assessing the details of the thermohaline circulation and for comparison with observations. However, the currently available computing capacity reduces the possibility of carry out exhaustive parametric studies of the THC. Models of reduced complexity can help overcome this difficulty and make valuable contributions to a better understanding of parameter space. Moreover, these models are most useful as exploratory tools for hypothesis building. Here we study a low-order coupled atmosphere-ocean general circulation model in order to understand the behavior of the thermohaline circulation through different changes on the interaction between atmosphere-ocean [1,2]. The atmosphere is represented by a low-order atmospheric "general circulation" model introduced by Lorenz in 1984 [3] and the ocean model considered here is a 3-box model which simulates the North Atlantic thermohaline circulation [2]. [1] Broecker W.S. (1997) Thermohaline circulation, the Achilles Heel of our climate system: will man-made CO_2 upset the current balance?. Science, 278, 1582-1588. [2] Roebber, P.J. (1995) Climate variability in a low-order coupled atmosphere-ocean model. Tellus, 47A, 473-494. [3] Lorenz, E.N. (1984) Irregularity. A fundamental property of the atmosphere. Tellus, 36A, 98-110.

  3. Observed impact of mesoscale circulation on oceanic response to Typhoon Man-Yi (2007)

    NASA Astrophysics Data System (ADS)

    Nam, Sunghyun; Kim, Duk-Jin; Moon, Wooil M.

    2012-01-01

    The oceanic response to a typhoon, where mesoscale ocean circulations co-exist, was investigated by analyzing the independent observations of profiling floats data at three different locations, satellite altimetry data near the eye of Typhoon Man-Yi (2007) before and after its passage, and synthetic aperture radar data taken during the typhoon's passage. In spite of the nearly symmetric wind pattern around the eye, the distribution of mesoscale eddies had a major impact on the surface currents and mixed layer (ML) depths. As a result, the entrainment of the water below the ML into the ML was affected by the mesoscale circulation and became asymmetric, which accounted for most of the changes observed in the temperature profiles. Changes in the isotherms were driven primarily by the westward propagation of the mesoscale pattern rather than by the typhoon-induced shoaling. The typhoon-induced shoaling could have played a significant role in the generation of high-frequency (e.g., near-inertial) oscillations and/or sub-mesoscale structures. Although a similar or even greater energy flux was observed at the surface, the entrainment within the anticyclonic circulation was weaker than that within the cyclonic circulation and at the edge of the anticyclonic circulation because of the thick pre-existing ML. A strong ocean response to Typhoon Man-Yi (2007) within a cyclonic circulation or at the edge of an anticyclonic circulation, rather than within an anticyclonic eddy, has implications for the role of mesoscale ocean circulations in better understanding and forecasting the typhoon intensity.

  4. Idealised modelling of ocean circulation driven by geothermal and hydrothermal fluxes at the seabed

    NASA Astrophysics Data System (ADS)

    Barnes, Jowan; Morales Maqueda, Miguel; Polton, Jeff

    2016-04-01

    There are two distinct processes by which heat is transferred from the solid Earth into the abyssal ocean. The first is conductive geothermal heating and the second is hydrothermal heating, involving advection of heated water from within the Earth's crust. Here, the noticeably different impacts of these two physical systems on ocean circulation are investigated. Previous modelling studies have applied geothermal heat fluxes at the seabed and shown discrepancies in circulation compared to cases which neglected heat from the Earth in their boundary conditions. The true heat flux in the ocean, however, is not entirely geothermal. From areas where the crust is younger a significant proportion of the heat input from the Earth could be in the form of fluid flow from hydrothermal vents, introducing forcing to the circulation which has previously been unaccounted for. In this study a set of idealised modelling experiments are run in order to investigate the effects of changing the balance of the total heat flux from purely geothermal to purely hydrothermal, via intermediate states in which the two boundary conditions are combined in different ratios. By performing such experiments it will be shown which of the two processes is dominant in its effects on circulation driven by heating at the seabed, and whether neglecting the hydrothermal advection in favour of a fully conductive geothermal boundary condition is justifiable. The results will inform the construction of boundary conditions for future circulation models involving ocean floor heat fluxes, specifically a regional study of geothermal and hydrothermal contributions within the Panama Basin.

  5. Bipolar Atlantic deepwater circulation in the middle-late Eocene: Effects of Southern Ocean gateway openings

    NASA Astrophysics Data System (ADS)

    Borrelli, Chiara; Cramer, Benjamin S.; Katz, Miriam E.

    2014-04-01

    We present evidence for Antarctic Circumpolar Current (ACC)-like effects on Atlantic deepwater circulation beginning in the late-middle Eocene. Modern ocean circulation is characterized by a thermal differentiation between Southern Ocean and North Atlantic deepwater formation regions. In order to better constrain the timing and nature of the initial thermal differentiation between Northern Component Water (NCW) and Southern Component Water (SCW), we analyze benthic foraminiferal stable isotope (δ18Obf and δ13Cbf) records from Ocean Drilling Program Site 1053 (upper deep water, western North Atlantic). Our data, compared with published records and interpreted in the context of ocean circulation models, indicate that progressive opening of Southern Ocean gateways and initiation of a circum-Antarctic current caused a transition to a modern-like deep ocean circulation characterized by thermal differentiation between SCW and NCW beginning ~38.5 Ma, in the initial stages of Drake Passage opening. In addition, the relatively low δ18Obf values recorded at Site 1053 show that the cooling trend of the middle-late Eocene was not global, because it was not recorded in the North Atlantic. The timing of thermal differentiation shows that NCW contributed to ocean circulation by the late-middle Eocene, ~1-4 Myr earlier than previously thought. We propose that early NCW originated in the Labrador Sea, based on tectonic reconstructions and changes in foraminiferal assemblages in this basin. Finally, we link further development of meridional isotopic gradients in the Atlantic and Pacific in the late Eocene with the Tasman Gateway deepening (~34 Ma) and the consequent development of a circumpolar proto-ACC.

  6. Characterizing the circulation off the Kenyan-Tanzanian coast using an ocean model

    NASA Astrophysics Data System (ADS)

    Gabriela Mayorga-Adame, C.; Ted Strub, P.; Batchelder, Harold P.; Spitz, Yvette H.

    2016-02-01

    The Kenyan-Tanzanian coastal region in the western Indian Ocean faces several environmental challenges including coral reef conservation, fisheries management, coastal erosion, and nearshore pollution. The region lacks hydrodynamic records and oceanographic studies at adequate spatial and temporal scales to provide information relevant to the local environmental issues. We have developed a 4 km horizontal resolution ocean circulation model of the region: the Kenyan-Tanzanian Coastal Model (KTCM) that provides coastal circulation and hydrography with higher resolution than previous models and observational studies of this region. Comparisons to temperature profiles, satellite-derived sea surface temperature and sea surface height anomaly fields, indicate that the model reproduces the main features of the regional circulation, while greatly increasing the details of the nearshore circulation. We describe the seasonal ocean circulation and hydrography of the Kenyan-Tanzanian coastal region based on a climatology of 8 years (2000-2007) of the KTCM simulations. The regional monsoon seasonality produces two distinct coastal circulation regimes: (1) during December-March, there are relatively sluggish shelf flows and (2) during April-November, there are strong northward transports. Simulations from the model will be useful for examining dispersal of pollutants and spatial connectivity of coral reef species.

  7. Cloud-radiative effects on implied oceanic energy transport as simulated by atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Gleckler, P. J.; Randall, D. A.; Boer, G.; Colman, R.; Dix, M.; Galin, V.; Helfand, M.; Kiehl, J.; Kitoh, A.; Lau, W.

    1995-01-01

    This paper summarizes the ocean surface net energy flux simulated by fifteen atmospheric general circulation models constrained by realistically-varying sea surface temperatures and sea ice as part of the Atmospheric Model Intercomparison Project. In general, the simulated energy fluxes are within the very large observational uncertainties. However, the annual mean oceanic meridional heat transport that would be required to balance the simulated surface fluxes is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean heat transport can be affected by the errors in simulated cloud-radiation interactions. It is suggested that improved treatment of cloud radiative effects should help in the development of coupled atmosphere-ocean general circulation models.

  8. Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission

    NASA Technical Reports Server (NTRS)

    Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.

    2011-01-01

    Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.

  9. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, April N.; Haley, Brian A.; Tripati, Aradhna K.; Frank, Martin

    2016-04-01

    Global warming during the Paleocene-Eocene Thermal Maximum (PETM) ˜ 55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role of changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites to reconstruct past deep-ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth Nd isotopes and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for initiation and recovery of the ocean-atmosphere system associated with the PETM.

  10. Constraints on ocean circulation at the Paleocene-Eocene Thermal Maximum from neodymium isotopes

    NASA Astrophysics Data System (ADS)

    Abbott, A. N.; Haley, B. A.; Tripati, A. K.; Frank, M.

    2015-06-01

    Global warming during the Paleocene Eocene Thermal Maximum (PETM) ~55 million years ago (Ma) coincided with a massive release of carbon to the ocean-atmosphere system, as indicated by carbon isotopic data. Previous studies have argued for a role for changing ocean circulation, possibly as a trigger or response to climatic changes. We use neodymium (Nd) isotopic data to reconstruct short high-resolution records of deep-water circulation across the PETM. These records are derived by reductively leaching sediments from seven globally distributed sites and comparing data with published data from fossil fish debris to reconstruct past deep ocean circulation across the PETM. The Nd data for the leachates are interpreted to be consistent with previous studies that have used fish teeth and benthic foraminiferal δ13C to constrain regions of convection. There is some evidence from combining Nd isotope and δ13C records that the three major ocean basins may not have had substantial exchanges of deep waters. If the isotopic data are interpreted within this framework, then the observed pattern may be explained if the strength of overturning in each basin varied distinctly over the PETM, resulting in differences in deep-water aging gradients between basins. Results are consistent with published interpretations from proxy data and model simulations that suggest modulation of overturning circulation had an important role for global recovery of the ocean-atmosphere system after the PETM.

  11. Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.

    PubMed

    Gent, Peter R

    2016-01-01

    Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability. PMID:26163010

  12. The response of an ocean general circulation model to surface wind stress produced by an atmospheric general circulation model

    SciTech Connect

    Huang, B.; Schneider, E.K.

    1995-10-01

    Two surface wind stress datasets for 1979-91, one based on observations and the other from an investigation of the COLA atmospheric general circulation model (AGCM) with prescribed SST, are used to drive the GFDL ocean general circulation model. These two runs are referred to as the control and COLA experiments, respectively. Simulated SST and upper-ocean heat contents (HC) in the tropical Pacific Ocean are compared with observations and between experiments. Both simulation reproduced the observed mean SST and HC fields as well as their annual cycles realistically. Major errors common to both runs are colder than observed SST in the eastern equatorial ocean and HC in the western Pacific south of the equator, with errors generally larger in the COLA experiment. New errors arising from the AGCM wind forcing include higher SST near the South American coast throughout the year and weaker HC gradients along the equator in boreal spring. The former is associated with suppressed coastal upwelling by weak along shore AGCM winds, and the latter is caused by weaker equatorial easterlies in boreal spring. The low-frequency ENSO fluctuations are also realistic for both runs. Correlations between the observed and simulated SST anomalies from the COLA simulation are as high as those from the control run in the central equatorial Pacific. A major problem in the COLA simulation is the appearance of unrealistic tropical cold anomalies during the boreal spring of mature El Nino years. These anomalies propagate along the equator from the western Pacific to the eastern coast in about three months, and temporarily eliminate the warm SST and HC anomalies in the eastern Pacific. This erroneous oceanic response in the COLA simulation is caused by a reversal of the westerly wind anomalies on the equator, associated with an unrealistic southward shift of the ITCZ in boreal spring during El Nino events. 66 refs., 16 figs.

  13. Arctic Ocean circulation and variability - advection and external forcing encounter constraints and local processes

    NASA Astrophysics Data System (ADS)

    Rudels, B.

    2012-04-01

    The first hydrographic data from the Arctic Ocean, the section from the Laptev Sea to the passage between Greenland and Svalbard obtained by Nansen on his drift with Fram 1893-1896, aptly illustrate the main features of Arctic Ocean oceanography and indicate possible processes active in transforming the water masses in the Arctic Ocean. Many, perhaps most, processes were identified already by Nansen, who put his mark on almost all subsequent research in the Arctic. Here we shall revisit some key questions and follow how our understanding has evolved from the early 20th century to present. What questions, if any, can now be regarded as solved and which remain still open? Five different but connected topics will be discussed: (1) The low salinity surface layer and the storage and export of freshwater. (2) The vertical heat transfer from the Atlantic water to sea ice and to the atmosphere. (3) The circulation and mixing of the two Atlantic inflow branches. (4) The formation and circulation of deep and bottom waters in the Arctic Ocean. (5) The exchanges through Fram Strait. Foci will be on the potential effects of increased freshwater input and reduced sea ice export on the freshwater storage and residence time in the Arctic Ocean, on the deep waters of the Makarov Basin, and on the circulation and relative importance of the two inflows, over the Barents Sea and through Fram Strait, for the distribution of heat in the intermediate layers of the Arctic Ocean.

  14. A Nd Isotopic Composition Modeling Approach of the Oceanic Thermohaline Circulation Change During LGM

    NASA Astrophysics Data System (ADS)

    Arsouze, T.; Dutay, J.; Lacan, F.; Jeandel, C.; Alkama, R.; Kageyama, M.; Piotrowski, A.

    2006-12-01

    The role of thermohaline circulation in climate change has been a matter of debate for a long time. Proxies of past ocean circulation such as δ13C or 231Pa/230Th suggest a relationship between North Atlantic Deep Water (NADW) strength and rapid climate change. Neodymium isotopic composition (Nd IC) is a quasi conservative geochemical tracer of water masses in the ocean interior and thus can be used as a proxy for NADW. Seawater Nd IC being recorded in marine sediments, this proxy is used to infer paleo-circulations on various time scales. Recent studies of Nd IC records, in the ferromanganese oxide components of a South Atlantic core, confirm the close relation between thermohaline circulation and North Atlantic climate changes through the last deglaciation (Piotrowski et al., 2004). Our purpose here is to model the Nd IC during the LGM and the Holocene with the Ocean Global Circulation Model NEMO, in the ORCA2 (2°) configuration. The explicit simulation of this proxy in the model allows to investigate and quantify the circulation change that corresponds to the Nd isotopic composition variation recorded in the sediments. We consider that the main source of Nd into the ocean is the interaction between water masses and continental margins (Boundary Exchange process; (Lacan and Jeandel, 2005). Boundary exchange is parameterized using a relaxing term (Arsouze et al., 2006). Simulated Nd IC distributions are evaluated by comparison with available records for the LGM and Holocene. References: Arsouze, T., Dutay, J.-C., Lacan, F. and Jeandel, C., 2006. Modeling the neodymium isotopic composition with a global ocean circulation model Chemical Geology, in press. Lacan, F. and Jeandel, C., 2005. Neodymium isotopes as a new tool for quantifying exchange fluxes at the continent - ocean interface. Earth and Planetary Science Letters, 232(3-4): 245-257. Piotrowski, A.M., Goldstein, S.L., Hemming, S.R. and Fairbanks, R.G., 2004. Intensification and variability of ocean

  15. A Preliminary Study on the Circulation of an ocean covering a Synchronously Rotating Planet

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Ishiwatari, M.; Takehiro, S.; Hayashi, Y.; Nakajima, K.

    2012-12-01

    Recently, nearly 800 extrasolar planets have been detected. It seems that some of them present into habitable zone, in which planets can have ocean, and such planets rotate synchronously with their central stars. Ocean is necessary for life, and the circulation makes climate mild by heat transport on the earth. The earth is the only planet that has ocean in the solar system so that it has not been understood what oceanic circulation is like in another planets. The purpose of this study is prediction of oceanic circulation on extrasolar planets by using numerical simulation. As a first step, elementary consideration is made. The planet is almost entirely covered with ocean and whose rotation period corresponds with its orbital period. On synchronously rotating planets, the thermal contrast between day-hemisphere and night-hemisphere would be extreme. However, it may be lessend if there is significant zonal heat transport. The circulation in such conditions has not been known well. We performed a numerical experiment based on the linear shallow water equation, assuming that both the evaporation and the precipitation occur only on day-hemisphere (Noda et al., 2011). With these distributions of the evaporation and the precipitation, one may anticipate the circulation occurs in only day-hemisphere. However, the resulting calculation is characterized with zonally uniform zonal flow, which also covers night hemisphere. In addition, the intensity of the flow increases with time. That behavior can be understood by constructing asymptotic solution which is first degree in time. The importance of Coriolis force, which bends meridional flow to zonal flow, is identified. It is implied that, even when only day-hemisphere has the evaporation and precipitation, there may be significant amount of heat can be transported from the day-hemisphere to the night-hemisphere by the strong zonal flow. The growth of zonal flow would be stopped when the evaporation and the precipitation are

  16. Southern Ocean circulation changes across the last deglaciation: contribution from Marion-Dufresne cruises

    NASA Astrophysics Data System (ADS)

    Michel, Elisabeth; Siani, Giuseppe; Mazaud, Alain; Paterne, Martine; deVries, Tim; Jaccard, Samuel; Waelbroeck, Claire; Crosta, Xavier; Isguder, Gulay; Dewilde, Fabien; De Pol-Holz, Ricardo; Skinner, Luke; Kissel, Catherine

    2015-04-01

    The last deglaciation is marked by rapid climatic events linked to large reorganizations of the deep ocean circulation. To decipher the role of the Southern Ocean in these deep circulation changes requires reconstructing the evolution of its stratification and its zonal behavior during the last deglaciation from high resolution, well dated records. Furthermore, nowadays the connection between atmosphere and the deep ocean occurs through the Southern Ocean, and it might had a leading role in the evolution of atmospheric CO2 concentrations across the deglaciation. However, establishing a precise chronology for marine sediment records in high latitudes is a difficult task, as it requires the determination of radiocarbon surface water age changes. It has been possible to retrieve high sedimentation rate cores during Indian and Pacific oceanographic cruises, particularly PACHIDERME and INDIEN SUD expeditions. We pre. We aim at tying these marine records to terrestrial records, using tephra deposited in marine and terrestrial region in the different sector of the Southern Ocean when it is possible. This work is in progress within a French-Swedish project. We will present results at different depth from South West Pacific sector of the Southern Ocean and from the Indian sector. A precise chronology in the Indian sector requires to first establish the tephrochronology of Kerguelen Islands that is under progress. We compare these new records with previously published records of the Atlantic and Pacific sectors. It indicates that upwelling events drive radiocarbon changes in waters above 2500 m depth and increases in atmospheric CO2. Oceanic circulation changes are not synchroneous at deeper depth between 2500 and 4000 m depth. Southern Ocean temperature and vertical mixing increases occurs synchroneously with temperature increase above the Antarctic and atmospheric CO2 increases within error of marine and Ice chronologies, while the ACC current intensity decrease (or

  17. Mid-latitude wind forced ocean circulation studies

    NASA Technical Reports Server (NTRS)

    Harrison, D. E.

    1981-01-01

    A simple barotropic vorticity equation model was developed to study some of the various modeling factors that affect the characteristics of strong western boundary currents like the Gulf Stream and Kuroshio. Successful prediction of sea surface temperature, both in the climatological mean and over periods as short as 1 month requires that the heating tendency, due to horizontal advection of heat by these currents, be accurately modeled. Conventional, coarse resolution ocean models do not satisfactorily reproduce the dominant features of these currents. It is concluded that it is important to understand why they do not and what must be done to do so in the future.

  18. Relaxation oscillations in an idealized ocean circulation model

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew; Saha, Raj

    2016-06-01

    This work is motivated by a desire to understand transitions between stable equilibria observed in Stommel's 1961 thermohaline circulation model. We adapt the model, including a forcing parameter as a dynamic slow variable. The resulting model is a piecewise-smooth, three time-scale system. The model is analyzed using geometric singular perturbation theory to demonstrate the existence of attracting periodic orbits. The system is capable of producing classical relaxation oscillations as expected, but there is also a parameter regime in which the model exhibits small amplitude oscillations known as canard cycles. Forcing the model with obliquity variations from the last 100,000 years produces oscillations that are modulated in amplitude and frequency. The output shows similarities with important features of the climate proxy data of the same period.

  19. Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation

    PubMed Central

    Rubino, Angelo; Bensi, Manuel; Hainbucher, Dagmar; Zanchettin, Davide; Mapelli, Francesca; Ogrinc, Nives; Marchetto, Davide; Borin, Sara; Cardin, Vanessa; Fajon, Vesna; Horvat, Milena; Taricco, Carla; Baldi, Franco

    2016-01-01

    We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements. PMID:26761666

  20. Anisotropic mesoscale eddy transport in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan

    2014-11-01

    In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.

  1. Biogeochemical, Isotopic and Bacterial Distributions Trace Oceanic Abyssal Circulation.

    PubMed

    Rubino, Angelo; Bensi, Manuel; Hainbucher, Dagmar; Zanchettin, Davide; Mapelli, Francesca; Ogrinc, Nives; Marchetto, Davide; Borin, Sara; Cardin, Vanessa; Fajon, Vesna; Horvat, Milena; Taricco, Carla; Baldi, Franco

    2016-01-01

    We explore the possibility of tracing routes of dense waters toward and within the ocean abyss by the use of an extended set of observed physical and biochemical parameters. To this purpose, we employ mercury, isotopic oxygen, biopolymeric carbon and its constituents, together with indicators of microbial activity and bacterial diversity found in bottom waters of the Eastern Mediterranean. In this basin, which has been considered as a miniature global ocean, two competing sources of bottom water (one in the Adriatic and one in the Aegean seas) contribute to the ventilation of the local abyss. However, due to a recent substantial reduction of the differences in the physical characteristics of these two water masses it has become increasingly complex a water classification using the traditional approach with temperature, salinity and dissolved oxygen alone. Here, we show that an extended set of observed physical and biochemical parameters allows recognizing the existence of two different abyssal routes from the Adriatic source and one abyssal route from the Aegean source despite temperature and salinity of such two competing sources of abyssal water being virtually indistinguishable. Moreover, as the near-bottom development of exogenous bacterial communities transported by convectively-generated water masses in the abyss can provide a persistent trace of episodic events, intermittent flows like those generating abyssal waters in the Eastern Mediterranean basin may become detectable beyond the availability of concomitant measurements. PMID:26761666

  2. Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean

    PubMed Central

    Chang, Yu-Lin; Sheng, Jinyu; Ohashi, Kyoko; Béguer-Pon, Mélanie; Miyazawa, Yasumasa

    2015-01-01

    The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines–Taiwan Oscillation (PTO). This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D) particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2). Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels (“v-eels”) can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years. PMID:26642318

  3. Impacts of Interannual Ocean Circulation Variability on Japanese Eel Larval Migration in the Western North Pacific Ocean.

    PubMed

    Chang, Yu-Lin; Sheng, Jinyu; Ohashi, Kyoko; Béguer-Pon, Mélanie; Miyazawa, Yasumasa

    2015-01-01

    The Japanese eel larvae hatch near the West Mariana Ridge seamount chain and travel through the North Equatorial Current (NEC), the Kuroshio, and the Subtropical Countercurrent (STCC) region during their shoreward migration toward East Asia. The interannual variability of circulation over the subtropical and tropical regions of the western North Pacific Ocean is affected by the Philippines-Taiwan Oscillation (PTO). This study examines the effect of the PTO on the Japanese eel larval migration routes using a three-dimensional (3D) particle tracking method, including vertical and horizontal swimming behavior. The 3D circulation and hydrography used for particle tracking are from the ocean circulation reanalysis produced by the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2). Our results demonstrate that bifurcation of the NEC and the strength and spatial variation of the Kuroshio affect the distribution and migration of eel larvae. During the positive phase of PTO, more virtual eels ("v-eels") can enter the Kuroshio to reach the south coast of Japan and more v-eels reach the South China Sea through the Luzon Strait; the stronger and more offshore swing of the Kuroshio in the East China Sea leads to fewer eels entering the East China Sea and the onshore movement of the Kuroshio to the south of Japan brings the eels closer to the Japanese coast. Significant differences in eel migration routes and distributions regulated by ocean circulation in different PTO phases can also affect the otolith increment. The estimated otolith increment suggests that eel age tends to be underestimated after six months of simulation due to the cooler lower layer temperature. Underestimation is more significant in the positive PTO years due to the wide distribution in higher latitudes than in the negative PTO years. PMID:26642318

  4. Numerics-Characteristics-Asymptotics: A Case Study from Large Scale Ocean Circulation

    ERIC Educational Resources Information Center

    Hodnett, P. F.; Courtney, C.

    2007-01-01

    This paper uses a partial differential equation which occurs in a reduced model of large scale circulation in an ocean basin as an educational vehicle through which to demonstrate the usefulness of a set of mathematical techniques in analysing the equation. A parameter occurring in the equation does in reality vary from very small through…

  5. Barbi: a simplified general circulation model for a baroclinic ocean with topography

    NASA Astrophysics Data System (ADS)

    Eden, C.; Olbers, D.

    2003-04-01

    A new type of ocean general circulation model with simplified physics is described and tested for various simple wind--driven circulation problems.The model consists of the vorticity balance of the depth-averaged flow and a hierarchy of equations for ``vertical moments'' of density and baroclinic velocity. The first vertical density moment is the (vertically integrated) potential energy, which is used to describe the predominant link between the barotropic and the baroclinic oceanic flow in the presence of sloping topography. Tendency equations for the vertical moments of density and baroclinic velocity and an appropriate truncation of the coupled hierarchy of moments are derived which, together with the barotropic vorticity balance, yield a closed set of equations describing the BARotropic-Baroclinic-Interaction (BARBI) model of the oceanic circulation. Idealized companion experiments with a numerical implementation of the BARBI model and a primitive equation model indicate that wave propagation properties and baroclinic adjustments are correctly represented in BARBI in mid latitudes as well as in equatorial latitudes. Furthermore, a set of experiments with a realistic application to the Atlantic/Southern Ocean system reproduces important aspects which have been previously reported by studies of gyre circulations and circumpolar currents using full primitive equation models.

  6. Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.

    2014-03-01

    A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.

  7. Oceanic circulation models help to predict global biogeography of pelagic yellow-bellied sea snake.

    PubMed

    Brischoux, François; Cotté, Cédric; Lillywhite, Harvey B; Bailleul, Frédéric; Lalire, Maxime; Gaspar, Philippe

    2016-08-01

    It is well recognized that most marine vertebrates, and especially tetrapods, precisely orient and actively move in apparently homogeneous oceanic environments. Here, we investigate the presumptive role of oceanic currents in biogeographic patterns observed in a secondarily marine tetrapod, the yellow-bellied sea snake (Hydrophis [Pelamis] platurus). State-of-the-art world ocean circulation models show how H. platurus, the only pelagic species of sea snake, can potentially exploit oceanic currents to disperse and maintain population mixing between localities that spread over two-thirds of the Earth's circumference. The very close association of these snakes with surface currents seems to provide a highly efficient dispersal mechanism that allowed this species to range extensively and relatively quickly well beyond the central Indo-Pacific area, the centre of origin, abundance and diversity of sea snakes. Our results further suggest that the pan-oceanic population of this species must be extraordinarily large. PMID:27555651

  8. Improvement in Geoid Models for Ocean Circulation Studies

    NASA Technical Reports Server (NTRS)

    Tapley, Byron D.; Chambers, Don P.; Poole, Steve; Ries, John c.

    2003-01-01

    At wavelengths of 500 km and longer, the GRACE GGM01 Model produces a significantly better marine geoid than any previous model. This conclusion follows from evaluating the geostrophic currents determined by combining the model with a mean sea surface from altimetry. The agreement with currents computed from a traditional hydrographic map is very close, which suggests that one of the primary missions of the TOPEX/POSEIDON mission, to determine the absolute dynamic ocean topography, may soon be met. This solution has been made available to the public at http://www.csr.utexs.edu/grace/gravity. The results reported in this paper have been presented at the 2003 EGS-AGU-EUG Joint Assembly. Two articles are currently being prepared for Geophysical Research Letters to summarize these results.

  9. The shallow meridional overturning circulation in the northern Indian Ocean and its interannual variability

    NASA Astrophysics Data System (ADS)

    Hu, Ruijin; Liu, Qinyu; Wang, Qi; Godfrey, J. Stuart; Meng, Xiangfeng

    2005-03-01

    The shallow meridional overturning circulation (upper 1000 m) in the northern Indian Ocean and its interannual variability are studied, based on a global ocean circulation model (MOM2) with an integration of 10 years (1987 1996). It is shown that the shallow meridional overturning circulation has a prominent seasonal reversal characteristic. In winter, the flow is northward in the upper layer and returns southward at great depth. In summer, the deep northward inflow upwells north of the equator and returns southward in the Ekman layer. In the annual mean, the northward inflow returns through two branches: one is a southward flow in the Ekman layer, the other is a flow that sinks near 10°N and returns southward between 500 m and 1000 m. There is significant interannual variability in the shallow meridional overturning circulation, with a stronger (weaker) one in 1989 (1991) and with a period of about four years. The interannual variability of the shallow meridional overturning circulation is intimately related to that of the surface wind stress. Several indices are proposed to describe the anomaly of this circulation associated with the cross-equatorial part.

  10. Impact of ocean heat transport variations on the zonal mean circulation in an idealized moist GCM

    NASA Astrophysics Data System (ADS)

    Bischoff, T.; Schneider, T.

    2012-12-01

    We study how equatorial surface heat sources affect the strength and width of the Hadley circulation to elucidate the dynamics of tropical-extratropical interactions. The well-known atmospheric response to El Niño-like forcings includes an equatorward shift in the Hadley circulation terminus and the subtropical jets. One proposed mechanisms for this response involves changes in subtropical baroclinicity and associated equatorward shifts in critical latitudes. Here we use an idealized aquaplanet general circulation model with a hydrological cycle and a time-independent, zonally symmetric background ocean heat transport to investigate systematically how the zonal mean climate responds to imposed equatorial ocean heating anomalies. This approach allows for dynamically adjusted surface temperatures and closed surface energy budgets. We study the sensitivity to the equatorial heating anomalies for different imposed longwave optical thickness profiles representing cold, Earth-like and warm climates. Consistent with previous studies, we find a shift of the Hadley circulation terminus towards the equator and a concomitant increase in subtropical baroclinicity for equatorial warming, and vice versa for an equatorial cooling. Together with the Hadley circulation terminus, the subtropical jets, regions of poleward eddy momentum and heat fluxes as well as storm tracks, shift towards (away from) the equator for simulations with imposed equatorial warming (cooling). We account for the circulation response with theoretical arguments for the structure of baroclinic eddies.

  11. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Piotrowski, Alexander M.; Galy, Albert; Banakar, Virupaxa K.

    2015-06-01

    Changes in ocean circulation structure, together with biological cycling, have been proposed for trapping carbon in the deep ocean during glacial periods of the Late Pleistocene, but uncertainty remains in the nature and timing of deep ocean circulation changes through glacial cycles. In this study, we use neodymium (Nd) and carbon isotopes from a deep Indian Ocean sediment core to reconstruct water mass mixing and carbon cycling in Circumpolar Deep Water over the past 250 thousand years, a period encompassing two full glacial cycles and including a range of orbital forcing. Building on recent studies, we use reductive sediment leaching supported by measurements on isolated phases (foraminifera and fish teeth) in order to obtain a robust seawater Nd isotope reconstruction. Neodymium isotopes record a changing North Atlantic Deep Water (NADW) component in the deep Indian Ocean that bears a striking resemblance to Northern Hemisphere climate records. In particular, we identify both an approximately in-phase link to Northern Hemisphere summer insolation in the precession band and a longer-term reduction of NADW contributions over the course of glacial cycles. The orbital timescale changes may record the influence of insolation forcing, for example via NADW temperature and/or Antarctic sea ice extent, on deep stratification and mixing in the Southern Ocean, leading to isolation of the global deep oceans from an NADW source during times of low Northern Hemisphere summer insolation. That evidence could support an active role for changing deep ocean circulation in carbon storage during glacial inceptions. However, mid-depth water mass mixing and deep ocean carbon storage were largely decoupled within glacial periods, and a return to an interglacial-like circulation state during marine isotope stage (MIS) 6.5 was accompanied by only minor changes in atmospheric CO2. Although a gradual reduction of NADW export through glacial periods may have produced slow climate feedbacks

  12. North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    PubMed

    Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D

    2016-07-29

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change. PMID:27365315

  13. Chemical Clues of a Changing Upper Arctic Ocean Circulation: A tribute to John M. Edmond

    NASA Astrophysics Data System (ADS)

    Falkner, K. K.

    2001-12-01

    Chemical Clues of a Changing Upper Arctic Ocean Circulation: A tribute to John M. Edmond In April 2000, an international research team, supported by the National Science Foundation (NSF), embarked on a five-year program to undertake atmosphere-ice-ocean observations at distributed locations in the high Arctic Ocean. The first temporary camp at the North Pole that year laid the groundwork for taking the pulse of the Arctic Ocean and learning how the world's northernmost sea helps regulate global climate. The Arctic Ocean has been affected in recent years by dramatic thinning of sea ice and shifts in ocean circulation which seem to be related to a pattern of change in the atmospheric circulation of the Northern Hemisphere. The objective of the "North Pole Environmental Observatory" or NPEO is to document further change and to understand what is controlling the Arctic system. Among other things, the NPEO includes a hydrographic component in which Twin Otter aircraft are landed on the ice at targeted stations in order to record ocean properties and take water samples through holes drilled in the ice. I am responsible for contributing chemical measurements to deciphering upper ocean circulation patterns under the ice. Properties analyzed thus far include salinity, nutrients, oxygen, oxygen isotopic composition of water and barium. Results are posted at http://chemoc.oce.orst.edu/users/kfalkner/index.html this web-site by year. This site is linked to the main project web-site where additional information about NPEO can be found. In my AGU presentation, I will describe the challenging field program and summarize implications of the chemical data to date. The news of John Edmond's untimely death reached me while I was en route to the North Pole camp this past April. Seemingly endless hours on a Canadian Hercules allowed me to reflect on the many influences John had on me as his graduate student and beyond. One thing is certain; there was no way in hell I'd have been

  14. Iceberg discharges and oceanic circulation changes during glacial abrupt climate changes

    NASA Astrophysics Data System (ADS)

    Alvarez-Solas, Jorge; Robinson, Alexander; Banderas, Rubén; Montoya, Marisa

    2015-04-01

    Proxy data reveal the existence of episodes of increased deposition of ice-rafted debris in the North Atlantic Ocean during the last glacial period. These are interpreted as massive iceberg discharges mainly from the Laurentide Ice Sheet. Although these have long been attributed to self-sustained ice sheet oscillations, growing evidence points to an active role of the oceanic circulation. Here we will present simulations of the last glacial period carried out with a hybrid ice sheet-ice shelf model. Two mechanisms producing iceberg discharges are compared. First, we reproduce the classic binge-purge by which the iceberg surges are produced thanks to the existence of an internal thermo-mechanical feedback that allows the ice sheet to behave under an oscillatory regime. Second, our ice-sheet model is forced by an oceanic warming index derived from proxy data that accounts for the impact of past ocean circulation changes on ocean temperatures. In this case, the model generates a time series of iceberg calving that agrees with ice-rafted debris records over the past 80 ka. We compare the two theories and discuss their advantages and weaknesses in terms of both the robustness of the physics on which they are based and their comparison with proxies. This comparison highlights the importance of considering past oceanic circulation changes in order to understand the ice-sheet dynamics. However, the ultimate processes determining abrupt changes in the Atlantic Meridional Overturning Circulation (AMOC) remain elusive. Therefore we will also analyze several proposed mechanisms that aims to explain such AMOC reorganizations, focusing on those that do not require freshwater flux forcing.

  15. Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Furue, Ryo; Schloesser, Fabian; Burkhardt, Theodore W.; Nonaka, Masami

    2016-04-01

    A steady-state, variable-density, 2-layer, ocean model (VLOM) is used to investigate basic dynamics of the Atlantic meridional overturning circulation and Southern Ocean. The domain consists of idealized (rectangular) representations of the Atlantic, Southern, and Pacific Oceans. The model equations represent the depth-averaged, layer-1 response (except for one solution in which they represent the depth-integrated flow over both layers). To allow for overturning, water can cross the bottom of layer 1 at the velocity we =wd +wm +wn , the three parts representing: interior diffusion wd that increases the layer-1 thickness h throughout the basin, mixed-layer entrainment wm that ensures h is never less than a minimum value hm , and diapycnal (cooling) processes external to the basin wn that adjust h to hn . For most solutions, horizontal mixing has the form of Rayleigh damping with coefficient ν , which we interpret to result from baroclinic instability through the closure, V∗ = - (ν /f2) ∇P , where ∇P = ∇(1/2 g‧h2) is the depth-integrated pressure gradient, g‧ is the reduced-gravity coefficient, and ν is a mixing coefficient; with this interpretation, the layer-1 flow corresponds to the sum of the Eulerian-mean and eddy-mean (V∗) transport/widths, that is, the "residual" circulation. Finally, layer-1 temperature cools polewards in response to a surface heat flux Q, and the cooling can be strong enough in the Southern Ocean for g‧ = 0 south of a latitude y0 , in which case layer 1 vanishes and the model reduces to a single layer 2. Solutions are obtained both numerically and analytically. The analytic approach splits fields into interior and boundary-layer parts, from which a coupled set of integral constraints can be derived. The set allows properties of the circulation (upwelling-driven transport out of the Southern Ocean M , downwelling transport in the North Atlantic, transport of the Antarctic Circumpolar Current) and stratification (Atlantic

  16. Simulating the three-dimensional circulation and hydrography of Halifax Harbour using a multi-nested coastal ocean circulation model

    NASA Astrophysics Data System (ADS)

    Shan, Shiliang; Sheng, Jinyu; Thompson, Keith Richard; Greenberg, David Alexander

    2011-07-01

    Halifax Harbour is located on the Atlantic coast of Nova Scotia, Canada. It is one of the world's largest, ice-free natural harbours and of great economic importance to the region. A good understanding of the physical processes controlling tides, flooding, transport and dispersion, and hydrographic variability is required for pollution control and sustainable development of the Harbour. For the first time, a multi-nested, finite difference coastal ocean circulation model is used to reconstruct the three-dimensional circulation and hydrography of the Harbour and its variability on timescales of hours to months for 2006. The model is driven by tides, wind and sea level pressure, air-sea fluxes of heat, and terrestrial buoyancy fluxes associated with river and sewage discharge. The predictive skill of the model is assessed by comparing the model simulations with independent observations of sea level from coastal tide gauges and currents from moored instruments. The simulated hydrography is also compared against a new monthly climatology created from all available temperature and salinity observations made in the Harbour over the last century. It is shown that the model can reproduce accurately the main features of the observed tides and storm surge, seasonal mean circulation and hydrography, and wind driven variations. The model is next used to examine the main physical processes controlling the circulation and hydrography of the Harbour. It is shown that non-linear interaction between tidal currents and complex topography occurs over the Narrows. The overall circulation can be characterized as a two-layer estuarine circulation with seaward flow in the thin upper layer and landward flow in the broad lower layer. An important component of this estuarine circulation is a relatively strong, vertically sheared jet situated over a narrow sill connecting the inner Harbour to the deep and relatively quiescent Bedford Basin. Local wind driven variability is strongest in

  17. Evaporites and the Salinity of the Ocean During the Phanerozoic: Implications for Climate, Ocean Circulation and Life

    NASA Astrophysics Data System (ADS)

    Floegel, S.; Hay, W. W.; Migdisov, A.; Balukhovsky, A. N.; Wold, C. N.; Soeding, E.

    2005-12-01

    A compilation of data on volumes and masses of evaporite deposits is used as the basis for reconstruction of the salinity of the ocean in the past. Chloride is tracked as the only ion essentially restricted to the ocean, and past salinities are calculated from reconstructed chlorine content of the ocean. Models for ocean salinity through the Phanerozoic are developed using maximal and minimal estimates of the volumes of existing evaporite deposits, and constant and declining volumes of ocean water through the Phanerozoic. We conclude that there have been significant changes in the mean salinity of the ocean accompanying a general decline throughout the Phanerozoic. The greatest changes are related to major extractions of salt into the ocean basins which developed during the Mesozoic as Pangaea broke apart. Unfortunately, the sizes of these salt deposits are also the least well known. The last major extractions of salt from the ocean occurred during the Miocene, shortly after the large scale extraction of water from the ocean to form the ice cap of Antarctica. However, these two modifications of the masses of H2O and salt in the ocean followed in sequence and did not cancel each other out. Accordingly, salinities during the Early Miocene were reconstructed to be between 37‰ and 39‰. The Mesozoic was a time of generally declining salinity associated with the deep sea salt extractions of the North Atlantic and Gulf of Mexico (Middle to Late Jurassic) and South Atlantic (Early Cretaceous). The earliest of the major extractions of the Phanerozoic occurred during the Permian. There were few large extractions of salt during the earlier Paleozoic. The models suggest that this was a time of relatively stable but slowly increasing salinities ranging through the upper 40‰'s into the lower 50‰'s. Higher salinities for the world ocean had profound consequences for the thermohaline circulation of the ocean in the past. In the modern ocean, with an average salinity of

  18. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean

    NASA Astrophysics Data System (ADS)

    Thiagarajan, Nivedita; Subhas, Adam V.; Southon, John R.; Eiler, John M.; Adkins, Jess F.

    2014-07-01

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the

  19. Two regimes of the Arctic's circulation from ocean models with ice and contaminants.

    PubMed

    Proshutinsky, A Y; Johnson, M

    2001-01-01

    A two-dimensional barotropic, coupled, ocean-ice model with a space resolution of 55.5 km and driven by atmospheric forces, river run-off, and sea-level slope between the Pacific and the Arctic Oceans, has been used to simulate the vertically averaged currents and ice drift in the Arctic Ocean. Results from 43 years of numerical simulations of water and ice motions demonstrate that two wind-driven circulation regimes are possible in the Arctic, a cyclonic and an anti-cyclonic circulation. These two regimes appear to alternate at 5-7 year intervals with the 10-15 year period. It is important to pollution studies to understand which circulation regime prevails at any time. It is anticipated that 1995 is a year with a cyclonic regime, and during this cyclonic phase and possibly during past cyclonic regimes as well, pollutants may reach the Alaskan shelf. The regime shifts demonstrated in this paper are fundamentally important to understanding the Arctic's general circulation and particularly important for estimating pollution transport. PMID:11601534

  20. Carbon dioxide induced ocean climatic change and tracer experiment with an atmosphere-ocean general circulation model

    SciTech Connect

    Jiang, Xingjian.

    1991-01-01

    The principal objective of this study is to determine whether or not the penetration of a passive tracer is analogous to the penetration of a greenhouse-gas-induced heating. The Atmosphere Ocean General Circulation Model (A-O GCM) has been used to study CO2-induced climate change and the penetration of passive tracers into the world ocean. The present climate and a 2 x CO2 climate have been simulated. The passive tracers tritium, CFC-11, CFC-12 and a 'passive CO2- induced heating' are simulated. The CO2-induced active and passive warmings are larger in the subtropics and high latitudes than in the tropics. The largest difference between the active and passive CO2-induced heatings occur in the North Atlantic deep ocean, with maximum cooling about -1.5C for the active case in layer four of the ocean (1150m). There is no hemispherically asymmetric warming as that found by Manabe et al. (1990) and Stouffer et al. (1990). The convective overturning and large-scale sinking motion are responsible for the large penetration of CO2-induced warming in high latitudes. The CO2-induced circulation changes show that the North Atlantic thermohaline circulation is significantly weakened due to the penetration of CO2-induced heating. Associated with this change, the strength of North Atlantic conveyor belt is reduced, which results in a large warming in the upper ocean and cooling in the deep layers. The characteristic response time ranges from 40-50 years for the active CO2-induced climate change, and 70-160 years for passive CO2-induced climate change. The physical processes controlling the geochemical tracer penetration are very similar to those for the CO2-induced heating. There is not a single tracer which penetrates into the ocean exactly like the active CO2-induced heating in terms of distribution, transport or physical process. CFC's may be the best candidate as a surrogate for the CO2-induced oceanic climate study.

  1. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    NASA Astrophysics Data System (ADS)

    Chen, K.; He, R.

    2015-07-01

    A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, in situ temperature and salinity measurements in the GOM, and observed mean depth-averaged velocities. Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv over the Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  2. Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model

    NASA Astrophysics Data System (ADS)

    Chen, K.; He, R.

    2014-12-01

    A regional-scale ocean model was used to hindcast the coastal circulation over the Middle Atlantic Bight (MAB) and Gulf of Maine (GOM) from 2004 to 2013. The model was nested inside a data assimilative global ocean model that provided initial and open boundary conditions. Realistic atmospheric forcing, tides and observed river runoff were also used to drive the model. Hindcast solutions were compared against observations, which included coastal sea levels, satellite altimetry sea surface height, temperature and salinity time series in the GOM, glider transects in the MAB, and observed mean depth-averaged velocities by Lentz (2008a). Good agreements with observations suggest that the hindcast model is capable of capturing the major circulation variability in the MAB and GOM. Time- and space-continuous hindcast fields were used to depict the mean circulation, along- and cross-shelf transport and the associated momentum balances. The hindcast confirms the presence of the equatorward mean shelf circulation, which varies from 2.33 Sv at Scotian Shelf to 0.22 Sv near Cape Hatteras. Using the 200 m isobath as the shelf/slope boundary, the mean cross-shelf transport calculations indicate that the shelfbreak segments off the Gulf of Maine (including the southern flank of Georges Bank and the Northeast Channel) and Cape Hatteras are the major sites for shelf water export. The momentum analysis reveals that the along-shelf sea level difference from Nova Scotia to Cape Hatteras is about 0.36 m. The nonlinear advection, stress, and horizontal viscosity terms all contribute to the ageostrophic circulation in the along-isobath direction, whereas the nonlinear advection plays a dominant role in determining the ageostrophic current in the cross-isobath direction.

  3. Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Irrgang, C.; Saynisch, J.; Thomas, M.

    2016-01-01

    Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal global ocean currents, an electromagnetic induction model is implemented into the Ocean Model for Circulation and Tides (OMCT). This provides the opportunity to not only model ocean-induced magnetic signals but also to assess the impact of oceanographic phenomena on the induction process. In this paper, the sensitivity of the induction process due to spatial and temporal variations in seawater conductivity is investigated. It is shown that assuming an ocean-wide uniform conductivity is insufficient to accurately capture the temporal variability of the magnetic signal. Using instead a realistic global seawater conductivity distribution increases the temporal variability of the magnetic field up to 45 %. Especially vertical gradients in seawater conductivity prove to be a key factor for the variability of the ocean-induced magnetic field. However, temporal variations of seawater conductivity only marginally affect the magnetic signal.

  4. Century-scale variability in a randomly forced, two-dimensional thermohaline ocean circulation model

    SciTech Connect

    Mysak, L.A.; Stocker, T.F.; Huang, F.

    1993-01-01

    The response of a two-dimensional thermohaline ocean circulation model to a random freshwater flux superimposed on the usual mixed boundary conditions for temperature and salinity is considered. It is shown that for a wide range of vertical and horizontal diffusivities and a box geometry that approximates the Atlantic Ocean, 200-300 yr period oscillations exist in the basic-state, interhemispheric meridional overturning circulation with deep convection in the north. These fluctuations can also be described in terms of propagating salinity anomalies which travel in the direction of the thermohaline flow. For large horizontal (K{sub h} = 15 x 10{sup 3} m{sup 2}/s) and small vertical (K{sub v}=0.5 x 10{sup -4}m{sup 2}/s) diffusivities, the random forcing also excites deca-millennial oscillations in the basic structure of the thermohaline circulation. In this case, the meridional circulation pattern slowly oscillates between three different stages: a large positive cell, with deep convection in the North Atlantic and upwelling in the south; a symmetric two-cell circulation, with deep convection in both polar regions and upwelling near the equator; and a large negative cell, with deep convection in the South Atlantic and upwelling in the north. Each state can persist for 0 (10 kyr).

  5. A parallel Atmosphere-Ocean Global Circulation Model of intermediate complexity for Earth system climate research

    NASA Astrophysics Data System (ADS)

    Silva, T. A.; Schmittner, A.

    2007-12-01

    We present the evolution of an Earth System model of intermediate complexity featuring an ocean global circulation model to include a fully coupled 3D primitive equations atmospheric model. The original Earth System climate model, UVic ESCM (Weaver et al. 2001), uses an ocean global circulation model coupled to a one layer atmospheric energy-moisture balance model. It also comprises a viscous-plastic rheology sea ice model, a mechanical land ice model, land surface, oceanic and terrestrial carbon models and a simple 3D marine ecosystem model (Schmittner et al. 2005). A spectral atmospheric, model, PUMA (Fraedrich et al. 2005), was coupled to the UVic ESCM to provide an atmosphere with nonlinear dynamics in target resolutions of T21, T31 and T42, as required. The coupling with the atmosphere, which involves data transfer, preprocessing and interpolation, is done through the OASIS3 coupler. During a run there are 2 + 2N parallel processes: the UVic ESCM, the Oasis3 coupler and the PUMA model with its domain split across 2N processes. The choice of N allows to balance more or less complex configurations of UVic model (e.g. higher level marine ecosystem model or number of biogeochemical tracers) with the atmospheric model at different resolutions, in order to maintain computational efficiency. The relatively simple parameterizations make this new atmosphere-ocean global circulation model much faster than a state-of-the-art Atmosphere-Ocean Global Circulation Model, and so optimally geared for decadal to millennial scale integrations. The latter require special care with the conservation of fluxes during coupling. A second order conservative interpolation method was applied (Jones 1999) and this is compared with the use of typical non-conservative methods.

  6. Zoogeography of Intertidal Communities in the West Indian Ocean as Determined by Ocean Circulation Systems: Patterns from the Tetraclita Barnacles

    PubMed Central

    Tsang, Ling Ming; Achituv, Yair; Chu, Ka Hou; Chan, Benny Kwok Kan

    2012-01-01

    The Indian Ocean is the least known ocean in the world with the biogeography of marine species in the West Indian Ocean (WIO) understudied. The hydrography of WIO is characterized by four distinct oceanographic systems and there were few glacial refugia formations in the WIO during the Pleistocene. We used the widely distributed intertidal barnacle Tetraclita to test the hypothesis that the distribution and connectivity of intertidal animals in the WIO are determined by the major oceanographic regime but less influenced by historical events such as Pleistocene glaciations. Tetraclita were studied from 32 locations in the WIO. The diversity and distribution of Tetraclita species in the Indian Ocean were examined based on morphological examination and sequence divergence of two mitochondrial genes (12S rDNA and COI) and one nuclear gene (histone 3, H3). Divergence in DNA sequences revealed the presence of seven evolutionarily significant units (ESUs) of Tetraclita in WIO, with most of them recognized as valid species. The distribution of these ESUs is closely tied to the major oceanographic circulation systems. T. rufotincta is distributed in the Monsoonal Gyre. T. ehsani is present in the Gulf of Oman and NW India. Tetraclita sp. nov. is associated with the Hydrochemical Front at 10°S latitude. T. reni is confined to southern Madagascan and Mauritian waters, influenced by the West Wind Drift. The endemic T. achituvi is restricted to the Red Sea. Tetraclita serrata consists of two ESUs (based on mtDNA analysis) along the east to west coast of South Africa. The two ESUs could not be distinguished from morphological analysis and nuclear H3 sequences. Our results support that intertidal species in the West Indian Ocean are associated with each of the major oceanographic circulation systems which determine gene flow. Geographical distribution is, however, less influenced by the geological history of the region. PMID:23024801

  7. Modeling of submarine melting of Greenland tidewater glaciers using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Rignot, E. J.; Menemenlis, D.; Koppes, M.

    2010-12-01

    The acceleration of Greenland tidewater glaciers has increased the mass loss from the Greenland Ice Sheet. Submarine melting is one of the possible drivers for glacier acceleration. Enhanced submarine melting could result from ocean warming, changes in ocean current, and increase in sub-glacial runoff. We use a combination of numerical modeling and field data to understand the mechanism of submarine melting in Greenland. Specifically, oceanographic data (temperature, salinity, and current velocity) were collected in August 2008 and 2010 near the calving fronts of the Lille Gletscher, Store Gletscher, Eqip Sermia, Kangilerngata Sermia, Sermeq Kujatdleq and Sermeq Avangnardleq glaciers in central West Greenland. These data are compared to high-resolution regional ocean simulations carried out using the Massachusetts Institute of Technology general circulation model (MITgcm). MITgcm includes submarine melting at the base of an ice shelf and we have added a new module to simulate the melting process along the vertical calving face of Greenland tidewater glaciers. We integrate the MITgcm with JRA25 atmospheric and ECCO2 oceanic boundary conditions and compare the simulation results with the West Greenland data. We also conduct model sensitivity studies for ocean temperature, sub-glacial runoff, and fjord. The preliminary results show a quadratic increase in submarine melting with warmer ocean temperature and a role of sub-glacial runoff in changing ocean circulation. This study could help us evaluate the impact of ocean warming and enhanced runoff on submarine melting and in turn on glacier mass balance. This work is performed at UCI under a contact with NASA Cryosphere Science Program.

  8. On the water masses and mean circulation of the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Stramma, Lothar; England, Matthew

    1999-09-01

    We examine recent observations of water mass distribution and circulation schemes at different depths of the South Atlantic Ocean to propose a layered, qualitative representation of the mean distribution of flow in this region. This furthers the simple upper layer geostrophic flow estimates of Peterson and Stramma [1991]. In addition, we assess how well ocean general circulation models (GCMs) capture the overall structure of flow in the South Atlantic in this regard. The South Atlantic Central Water (SACW) is of South Atlantic origin in the subtropical gyre, while the SACW in the tropical region in part originates from the South Indian Ocean. The Antarctic Intermediate Water in the South Atlantic originates from a surface region of the circumpolar layer, especially in the northern Drake Passage and the Falkland Current loop, but also receives some water from the Indian Ocean. The subtropical South Atlantic above the North Atlantic Deep Water and north of the Antarctic Circumpolar Current (ACC) is dominated by the anticyclonic subtropical gyre. In the eastern tropical South Atlantic the cyclonic Angola Gyre exists, embedded in a large tropical cyclonic gyre. The equatorial part of the South Atlantic shows several depth-dependent zonal current bands besides the Angola Gyre. Ocean GCMs have difficulty capturing this detailed zonal circulation structure, even at eddy-permitting resolution. The northward extent of the subtropical gyre reduces with increasing depth, located near Brazil at 16°S in the near-surface layer and at 26°S in the Antarctic Intermediate Water layer, while the tropical cyclonic gyre progresses southward. The southward shift of the northern part of the subtropical gyre is well resolved in global ocean GCMs. However, high horizontal resolution is required to capture the South Atlantic Current north of the ACC. The North Atlantic Deep Water in the South Atlantic progresses mainly southward in the Deep Western Boundary Current, but some water also

  9. Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation.

    PubMed

    Knutti, R; Flückiger, J; Stocker, T F; Timmermann, A

    2004-08-19

    The climate of the last glacial period was extremely variable, characterized by abrupt warming events in the Northern Hemisphere, accompanied by slower temperature changes in Antarctica and variations of global sea level. It is generally accepted that this millennial-scale climate variability was caused by abrupt changes in the ocean thermohaline circulation. Here we use a coupled ocean-atmosphere-sea ice model to show that freshwater discharge into the North Atlantic Ocean, in addition to a reduction of the thermohaline circulation, has a direct effect on Southern Ocean temperature. The related anomalous oceanic southward heat transport arises from a zonal density gradient in the subtropical North Atlantic caused by a fast wave-adjustment process. We present an extended and quantitative bipolar seesaw concept that explains the timing and amplitude of Greenland and Antarctic temperature changes, the slow changes in Antarctic temperature and its similarity to sea level, as well as a possible time lag of sea level with respect to Antarctic temperature during Marine Isotope Stage 3. PMID:15318212

  10. Geochemical constraints on ocean general circulation models. Final report, May 1, 1995--April 30, 1997

    SciTech Connect

    Broecker, W.S.

    1998-05-17

    A better understanding of the manner in which the ocean operates is essential to the preparation for the consequences of the generation of CO{sub 2} by fossil fuel burning. Examples are as follows: (1) the ocean will ultimately take up a major fraction of the CO{sub 2} produced, but this uptake is retarded by the slow mixing rates, in order to predict the uptake, researchers must develop and validate general circulation models for the ocean; (2) during glacial time large global climate changes occurred. The changes were abrupt happening in a few decades. The trigger for these changes appears to have been reorganizations of the large-scale thermohaline circulation of the ocean. Models suggest that if the CO{sub 2} content of the atmosphere rises to more than 700 ppm, then a possibility exists that another such reorganization might occur. Hence, researchers must learn more about the factors influencing deep-water formation both in the northern Atlantic and in the Souther Ocean. The thrust of this research was to develop constraints based on the distributions of chemicals and tracers in the sea. The accomplishments are outlined in this report.

  11. Influence of changing deep ocean circulation on the Phanerozoic oxygen isotopic record

    SciTech Connect

    Railsback, L.B. )

    1990-05-01

    Isotopic segregation in seawater caused by changing ocean circulation may in part explain the enigmatic oxygen isotopic record of Phanerozoic marine carbonates. Paleoceanographic evidence suggests that circulation of warm saline deep waters has occurred during at least two periods of warm global climate; those saline deep waters should have preferentially stored {sup 18}O in the deep oceans. Corresponding depletion of {sup 18}O in surface waters would have resulted in lower {delta}{sup 18}O of marine carbonates deposited on continental shelves. Modeling of paleoceanographic isotopic data suggests that this storage effect is similar in magnitude (but opposite in sign) to that of modern enrichment of {sup 18}O in the oceans by glacial storage. Modeling of carbonate compositions through time that takes into account such storage effects (as predicted by changing global climate) suggests that large changes in the mean oceanic isotopic composition, but neither extreme temperatures nor sudden changes in mean ocean compositions are needed to explain the isotopic record.

  12. A review of the Southern Oscillation - Oceanic-atmospheric circulation changes and related rainfall anomalies

    NASA Technical Reports Server (NTRS)

    Kousky, V. E.; Kagano, M. T.; Cavalcanti, I. F. A.

    1984-01-01

    The region of South America is emphasized in the present consideration of the Southern Oscillation (SO) oceanic and atmospheric circulation changes. The persistence of climate anomalies associated with El Nino-SO events is due to strong atmosphere-ocean coupling. Once initiated, the SO follows a certain sequence of events with clearly defined effects on tropical and subtropical rainfall. Excessive rainfall related to the SO in the central and eastern Pacific, Peru, Ecuador, and southern Brazil, are complemented by drought in Australia, Indonesia, India, West Africa, and northeast Brazil. El Nino-SO events are also associated with dramatic changes in the tropospheric flow pattern over a broad area of both hemispheres.

  13. Effects of tropical cyclones on large-scale circulation and ocean heat transport in the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Xidong; Wang, Chunzai; Han, Guijun; Li, Wei; Wu, Xinrong

    2014-12-01

    In this study, we investigate the influence of tropical cyclones (TCs) on large-scale circulation and ocean heat transport in the South China Sea (SCS) by using an ocean general circulation model at a 1/8° resolution during 2000-2008. The model uses a data assimilation system to assimilate observations in order to improve the representation of SCS circulation. The results reveal an unexpected deep SCS circulation anomaly induced by TCs, which suggests that effects of TC can penetrate deeper into the ocean. This deep effect may result from the near inertial oscillations excited by TCs. The inertial oscillations can propagate downward to the oceanic interior. The analyses confirm that TCs have two effects on ocean heat transport of the SCS. Firstly, the wind stress curl induced by TCs affects the structure of SCS circulation, and then changes heat transport. Secondly, TCs pump surface heat downward to the thermocline, increasing the heat injection from the atmosphere to the ocean. Two effects together amplify the outflow of the surface heat southward away the SCS through the Mindoro and Karimata Straits. The TC-induced heat transports through the Mindoro, Balabac and Karimata Straits account for 20 % of the total heat transport through three straits. An implication of this study is that ocean models need to simulate the TC effect on heat transport in order to correctly evaluate the role of the SCS through flow in regulating upper ocean circulation and climate in the Indonesian maritime continent and its adjacent regions.

  14. Development of a high-resolution coastal circulation model for the ocean observatory in lunenburg bay

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Sheng, Jinyu

    2005-10-01

    An advanced ocean observatory has been established in Lunenburg Bay of Nova Scotia, Canada as part of an interdisciplinary research project of marine environmental prediction. The development of a high-resolution coastal circulation model is one of important components of the observatory. The model horizontal resolution is 60 m and the vertical resolution is about lm. The coastal circulation model is used to simulate the semi-diurnal tidal circulation and associated nonlinear dynamics with the M2 forcing specified at the model open boundaries. The model is also used to simulate the storm-induced circulation in the bay during Hurricane Juan in September 2003, with the model forcing to be the combination of tides and remotely generated waves specified at the model open boundaries and wind stress applied at the sea surface. The model results demonstrate strong interactions between the local wind stress, tidal forcing, and remotely generated waves during this period. Comparison of model results with the surface elevation and current observations demonstrates that the coastal circulation model has reasonable skills in simulating the tidal and storm-induced circulation in the bay.

  15. Global coupled ocean-atmosphere general circulation models in LASG/IAP

    NASA Astrophysics Data System (ADS)

    Yongqiang, Yu; Xuehong, Zhang; Yufu, Guo

    2004-06-01

    Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), have been working to develop a global OGCM and a global coupled ocean-atmosphere general circulation model (CGCM). From the original flux anomaly-coupling model developed in the beginning of the 1990s to the latest directly-coupling model, LASG scientists have developed four global coupled GCMs. This study summarizes the development history of these models and describes the third and fourth coupled GCMs and selected applications. Strengths and weaknesses of these models are highlighted.

  16. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model

    SciTech Connect

    Delworth, T.; Manabe, S.; Stouffer, R.J. )

    1993-11-01

    A fully coupled ocean-atmosphere model is shown to have irregular oscillations of the thermohaline circulation in the NOrth Atlantic Ocean with a time scale of approximately 50 years. The irregular oscillation appears to be driven by density anomalies in the sinking region of the thermohaline circulation (approximately 52[degrees]N to 72[degrees]N) combined with much smaller density anomalies of opposite sign in the broad, rising region. The spatial pattern of sea surface temperature anomalies associated with this irregular oscillation bears an encouraging resemblance to a pattern of observed interdecadal variability in the North Atlantic. The anomalies of sea surface temperature induce model surface air temperature anomalies over the northern North Atlantic, Arctic, and northwestern Europe. 21 refs., 28 figs.

  17. Recurring Cold Winters over the Gulf Stream and Implications for Northern Hemisphere Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Strey, S. T.

    2015-12-01

    As polar amplification of climate warming continues, the potential for increased blocking patterns in the Northern Hemisphere jet stream in conjunction with Arctic climate change exists. During such blocking events the Gulf Stream may be exposed to repeated Cold Air Outbreak (CAO) events, especially during winter. Hypothesizing, based upon basic physical and thermodynamic properties of seawater, one would expect increased CAO events to lead alteration of key characteristics of the Gulf Stream. As the Gulf Stream is a well-known participant in the Atlantic meridional overturning circulation (AMOC), and the Gulf Stream feeds the North Atlantic Current into the Arctic Ocean, interesting consequences to alterations of this local system into the large-scale general climate circulation are expected. This study uses CESM's POP to examine 30 years of CAO intensive winters alongside 30 years of repeated winter warm events to quantify potential subsequent changes in the AMOC and North Atlantic Arctic Ocean inflow.

  18. Sensitivity of Southern Ocean circulation to wind stress changes: Role of relative wind stress

    NASA Astrophysics Data System (ADS)

    Munday, D. R.; Zhai, X.

    2015-11-01

    The influence of different wind stress bulk formulae on the response of the Southern Ocean circulation to wind stress changes is investigated using an idealised channel model. Surface/mixed layer properties are found to be sensitive to the use of the relative wind stress formulation, where the wind stress depends on the difference between the ocean and atmosphere velocities. Previous work has highlighted the surface eddy damping effect of this formulation, which we find leads to increased circumpolar transport. Nevertheless the transport due to thermal wind shear does lose sensitivity to wind stress changes at sufficiently high wind stress. In contrast, the sensitivity of the meridional overturning circulation is broadly the same regardless of the bulk formula used due to the adiabatic nature of the relative wind stress damping. This is a consequence of the steepening of isopycnals offsetting the reduction in eddy diffusivity in their contribution to the eddy bolus overturning, as predicted using a residual mean framework.

  19. The Influence of Indian Ocean Atmospheric Circulation on Warm Pool Hydroclimate During the Holocene Epoch

    NASA Technical Reports Server (NTRS)

    Tierney, J.E.; Oppo, D. W.; LeGrande, A. N.; Huang, Y.; Rosenthal, Y.; Linsley, B. K.

    2012-01-01

    Existing paleoclimate data suggest a complex evolution of hydroclimate within the Indo-Pacific Warm Pool (IPWP) during the Holocene epoch. Here we introduce a new leaf wax isotope record from Sulawesi, Indonesia and compare proxy water isotope data with ocean-atmosphere general circulation model (OAGCM) simulations to identify mechanisms influencing Holocene IPWP hydroclimate. Modeling simulations suggest that orbital forcing causes heterogenous changes in precipitation across the IPWP on a seasonal basis that may account for the differences in time-evolution of the proxy data at respective sites. Both the proxies and simulations suggest that precipitation variability during the September-November (SON) season is important for hydroclimate in Borneo. The preeminence of the SON season suggests that a seasonally lagged relationship between the Indian monsoon and Indian Ocean Walker circulation influences IPWP hydroclimatic variability during the Holocene.

  20. The seasonal variability of the circulation in the South Indian Ocean: Model and observations

    NASA Astrophysics Data System (ADS)

    Matano, R. P.; Beier, E. J.; Strub, P. T.

    2008-11-01

    This article compares the seasonal variability patterns of the South Indian Ocean circulation derived from a global, eddy-permitting, numerical model and altimeter observations. The seasonal variability of the Indian Ocean circulation is driven by the inflow from the Indonesian Passages and by the local wind forcing. Our analysis indicates that the influence of the Indonesian throughflow is confined to the easternmost portion of the basin, while the influence of the wind stress forcing is important everywhere. Model and observations indicate that, between ~ 105°E and 75°E, the seasonal variability is characterized by the southwestward propagation of an annual wave over a period of ~ 4 months. Preliminary calculations using Pathfinder data also indicate that, in the western region, there are seasonal perturbations that originate in the tropics and propagate poleward through the Mozambique Channel. Our calculations, however, did not find the connections between the tropical and the Agulhas Current variability suggested by earlier modeling studies.

  1. North Atlantic ocean circulation and abrupt climate change during the last glaciation

    NASA Astrophysics Data System (ADS)

    Henry, L. G.; McManus, J. F.; Curry, W. B.; Roberts, N. L.; Piotrowski, A. M.; Keigwin, L. D.

    2016-07-01

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ13C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean’s persistent, central role in abrupt glacial climate change.

  2. A multi-level adaptation model of circulation for the western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Shaji, C.; Bahulayan, N.; Dube, S. K.; Rao, A. D.

    1999-12-01

    A three-dimensional, fully non-linear semi-diagnostic (adaptation) model is described. This model is used to compute the climatological mean circulation and to understand the role of local, steady forcing of the wind and thermohaline forcing on the observed circulation in the western tropical Indian Ocean. The model consists of equations of motion and continuity, sea surface topography, equations of state and temperature, and salinity diffusion equations. While the sea surface topography equation is solved by a successive overrelaxation technique, the other model equations are solved by a leap-frog numerical scheme. Two versions of the model, having 18 and 33 levels in the vertical direction, were prepared to study climatological mean circulation in the western tropical Indian Ocean. The first numerical experiment is carried out with the 18-level adaptation model to study the sensitivity of the solution to different values of eddy coefficients. The main scientific rationale behind these numerical experiments was to obtain the most appropriate values of the eddy coefficients for the realistic computation of climatological circulation in the western tropical Indian Ocean. Three numerical experiments were conducted for the month of February to understand the sensitivity of the model solution to different eddy coefficients. The model reproduced the circulation features during February, even with low values of horizontal and vertical eddy coefficients. In the second experiment, the adaptation model, with 33 levels in the vertical direction, is applied to study the seasonal mean climatological circulation at selected depths during Spring in the western tropical Indian Ocean. Adapted (steady state) results of currents, sea surface topography, temperature and salinity anomaly fields are presented. Reasonable agreement is obtained between the model results on currents and the observational data. The computed anomaly fields for temperature and salinity at selected depths

  3. Impact of oceanic circulation changes on the CO2 concentration during past interglacials

    NASA Astrophysics Data System (ADS)

    Bouttes, Nathaelle; Swingedouw, Didier; Crosta, Xavier; Fernanda Sanchez Goñi, Maria; Roche, Didier

    2016-04-01

    Interglacials before the Mid-Bruhnes Event (around 430 kyrs BP) were characterized by colder temperature in Antarctica, lower sea level and lower atmospheric CO2 compared to the more recent interglacials. Recent climate simulations have shown that the climate of the interglacials before and after the MBE can only be reproduced when taking into account changes in orbital parameters and atmospheric CO2 concentrations (Yin and Berger, 2010; Yin and Berger, 2012). Indeed, interglacial atmospheric CO2 concentrations were ~250 ppm and ~280 ppm prior and after the MBE, respectively. Yet, the cause for this change in atmospheric CO2 remains mainly unknown. climate simulations suggest that oceanic circulation was different during the interglacials due to the different climate states (Yin, 2013). The changes of oceanic circulation could have modified the carbon cycle: a more sluggish circulation would lead to greater carbon sequestration in the deep ocean and, subsequently, a decrease of atmospheric CO2. However, the impact of oceanic circulation changes on the carbon cycle during the interglacials of the last 800 kyrs has never been tested in coupled carbon-climate models. Here, we evaluate the role of ocean circulation changes on the carbon cycle during interglacials by using the intermediate complexity model iLOVECLIM (Goosse et al., 2010 ; Bouttes et al., 2015). This model includes a carbon cycle module on land and in the ocean and simulates carbon isotopes. The interglacial simulations are forced with orbital parameters, ice sheets and CO2 concentrations from data reconstructions. The model computes carbon fluxes between the reservoirs and an atmospheric CO2 that is distinct from the one used as a forcing. We will present simulations from this climate model for different interglacial periods of the last 800 000 years and use model-data comparison to analyse and evaluate the changes in the carbon cycle, including CO2. References Bouttes, N. et al. (2015), Geosci. Model

  4. Vertical heat flux in the ocean: Estimates from observations and from a coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Cummins, Patrick F.; Masson, Diane; Saenko, Oleg A.

    2016-06-01

    The net heat uptake by the ocean in a changing climate involves small imbalances between the advective and diffusive processes that transport heat vertically. Generally, it is necessary to rely on global climate models to study these processes in detail. In the present study, it is shown that a key component of the vertical heat flux, namely that associated with the large-scale mean vertical circulation, can be diagnosed over extra-tropical regions from global observational data sets. This component is estimated based on the vertical velocity obtained from the geostrophic vorticity balance, combined with estimates of absolute geostrophic flow. Results are compared with the output of a non-eddy resolving, coupled atmosphere-ocean general circulation model. Reasonable agreement is found in the latitudinal distribution of the vertical heat flux, as well as in the area-integrated flux below about 250 m depth. The correspondence with the coupled model deteriorates sharply at depths shallower than 250 m due to the omission of equatorial regions from the calculation. The vertical heat flux due to the mean circulation is found to be dominated globally by the downward contribution from the Southern Hemisphere, in particular the Southern Ocean. This is driven by the Ekman vertical velocity which induces an upward transport of seawater that is cold relative to the horizontal average at a given depth. The results indicate that the dominant characteristics of the vertical transport of heat due to the mean circulation can be inferred from simple linear vorticity dynamics over much of the ocean.

  5. Use of Ocean Remote Sensing Data to Enhance Predictions with a Coupled General Circulation Model

    NASA Technical Reports Server (NTRS)

    Rienecker, Michele M.

    1999-01-01

    Surface height, sea surface temperature and surface wind observations from satellites have given a detailed time sequence of the initiation and evolution of the 1997/98 El Nino. The data have beet complementary to the subsurface TAO moored data in their spatial resolution and extent. The impact of satellite observations on seasonal prediction in the tropical Pacific using a coupled ocean-atmosphere general circulation model will be presented.

  6. Use of variational methods in the determination of wind-driven ocean circulation

    NASA Technical Reports Server (NTRS)

    Gelos, R.; Laura, P. A. A.

    1976-01-01

    Simple polynomial approximations and a variational approach were used to predict wind-induced circulation in rectangular ocean basins. Stommel's and Munk's models were solved in a unified fashion by means of the proposed method. Very good agreement with exact solutions available in the literature was shown to exist. The method was then applied to more complex situations where an exact solution seems out of the question.

  7. Observation of the Global Ocean Circulation From the TOPEX/POSEIDON Mission

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.

    1995-01-01

    Since 1992, the TOPEX/POSEIDON satellite has been making altimetric sea surface observations with a sea level accuracy of 4.4 cm. This data can be used for studying regional and seasonal differences in sea level and for evaluating oceanic circulation models and tidal models. Longer term changes can also be studied, such as El Nino and overall sea level rising (although the latter is still within the margin of error).

  8. An implementation of a barotropic quasigeostrophic model of ocean circulation on the MPP

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Fatoohi, R.

    1987-01-01

    The implementation on the Massively Parallel Processor (MPP) of a barotropic quasigeostrophic model of ocean circulation is discussed. The mathematical model, including scalings and boundary conditions is discussed. The numerical scheme, which uses compact differencing is also discussed. The implementation of this model on the MPP is then presented. Finally, some performance results are given and compared to results obtained using the VPS-32 and one processor of a CRAY-2.

  9. Pliocene pre-glacial North Atlantic: A coupled sea surface-deep ocean circulation climate response

    SciTech Connect

    Ishman, S.E.; Dowsett, H.J. . National Center)

    1992-01-01

    A latitudinal transect of North Atlantic Deep Sea Drilling Project Holes from the equatorial region to 56 N in the 2,300- to 3,000-meter depth range was designed for a high-resolution study of coupled sea surface and deep ocean response to climate change. Precise age control was provided using magnetostratigraphic and biostratigraphic data from the cores to identify the 4.0 to 2.2 Ma interval, a period of warm-to-cool climatic transitions in the North Atlantic. The objective is to evaluate incremental (10 kyr) changes in sea surface temperatures (SST) and deep North Atlantic circulation patterns between 4.0 and 2.2 Ma to develop a coupled sea surface-deep ocean circulation response model. Sea surface temperature (SST) estimates are based on planktic foraminifer-based factor-analytic transfer functions. Oxygen isotopic data from paired samples provide tests of the estimated temperature gradients between localities. Benthic foraminifer assemblage data and [partial derivative]O-18 and [partial derivative]C-13 Isotopic data are used to quantitatively determine changes in deep North Atlantic circulation. These data are used to determine changes in source area (North Atlantic Deep Water (NADW) or Antarctic Bottom Water) and (or) in the components of NADW that were present (Upper or Lower NADW). These paired paleoceanographic sea surface and deep circulation interpretations over a 1.8 my interval form the basis for a coupled sea surface-deep circulation response model for the Pliocene North Atlantic Ocean.

  10. Stochastic Forcing of the North Atlantic Wind-Driven Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Chhak, K. C.; Moore, A. M.; Milliff, R. F.; Branstator, G.; Holland, W. R.; Fisher, M.

    2004-12-01

    At midlatitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that associated with the seasonal cycle. Stochastic forcing is therefore likely to have a significant influence on the ocean circulation. In this work, we examine the influence of the stochastic component of the wind stress forcing on the large-scale, wind-driven circulation of the North Atlantic Ocean. To this end a quasi-geostrophic model of the North Atlantic was forced with estimates of the stochastic component of wind stress curl obtained from the NCAR Community Climate Model. Analysis reveals that much of the stochastically-induced variability in the ocean circulation occurs in the vicinity of the western boundary and some major bathymetric features. Using the ideas of generalized stability theory (GST), we find that the patterns of wind stress curl that are most effective for inducing variability in the model have their largest projection on the most nonnormal eigenmodes of the system. These eigenmodes are confined primarily to the western boundary region and are composed of long Rossby wave packets that are Doppler shifted by the Gulf Stream to have eastward group velocity. Linear interference of these eigenmodes yields transient growth of stochastically-induced perturbations, and it is this process that maintains the variance of the stochastically-induced circulations. By examining the model pseudospectra, we find that the nonnormal nature of the system enhances the transient growth of perturbation enstrophy and therefore elevates and also maintains the variance of the stochastically-induced circulations in the aforementioned regions.

  11. Ocean circulation during the Middle Jurassic in the presence/absence of a circumglobal current system

    NASA Astrophysics Data System (ADS)

    Brunetti, Maura; Baumgartner, Peter O.; Vérard, Christian; Hochard, Cyril

    2013-04-01

    Pangea breakup started in the Early Jurassic by the formation of the Central Atlantic and its connection with the Neotethys. By the Middle Jurassic, rifting between North and South America may have opened a first marine proto-Caribbean passage. However, the oldest known proto-Caribbean ocean crust is only of early Late Jurassic age. Based on earlier plate tectonic reconstructions featuring a wide open proto-Caribbean seaway, the existence of a circumglobal equatorial current system has been suggested by many authors as a possible physical mechanism for increasing the poleward ocean heat transport, and hence, producing the reduced meridional temperature gradient documented for the Middle Jurassic. Models with increased atmospheric pCO2, estimated to be between 1 and 7 times pre-industrial values in the Jurassic, generate elevated temperatures both in the tropics and in polar regions, but do not reduce the meridional gradient. A different mechanism needs to be considered in order to reproduce such reduced meridional temperature gradient. A possibility is enhanced poleward heat transport through the ocean. However, this hypothesis has been questioned by Late Jurassic simulations with a specified, reduced meridional gradient, which showed that the required ocean heat transport is much smaller than in present-day simulations. We investigate the critical role of a Tethyan-Atlantic-proto-Caribbean passage with respect to the Middle Jurassic ocean circulation by means of coupled ocean/sea-ice numerical models based on detailed plate reconstructions of the oceanic realms. We perform numerical experiments with an open/closed western boundary of the proto-Caribbean basin and we discuss the water properties, the gyre transport and the overturning meridional circulation for these different bathymetric configurations. For an open western boundary, we find a trans-Pangean circumglobal current of the order of 1 Sv, that flows in the upper 300 m along the northern margin of the

  12. Ensemble simulations of the magnetic field induced by global ocean circulation: Estimating the uncertainty

    NASA Astrophysics Data System (ADS)

    Irrgang, Christopher; Saynisch, Jan; Thomas, Maik

    2016-03-01

    The modeling of the ocean global circulation induced magnetic field is affected by various uncertainties that originate from errors in the input data and from the model itself. The amount of aggregated uncertainties and their effect on the modeling of electromagnetic induction in the ocean is unknown. For many applications, however, the knowledge of uncertainties in the modeling is essential. To investigate the uncertainty in the modeling of motional induction at the sea surface, simulation experiments are performed on the basis of different error scenarios and error covariance matrices. For these error scenarios, ensembles of an ocean general circulation model and an electromagnetic induction model are generated. This ensemble-based approach allows to estimate both the spatial distribution and temporal variation of the uncertainty in the ocean-induced magnetic field. The largest uncertainty in the ocean-induced magnetic field occurs in the area of the Antarctic Circumpolar Current. Local maxima reach values of up to 0.7 nT. The estimated global annual mean uncertainty in the ocean-induced magnetic field ranges from 0.1 to 0.4 nT. The relative amount of uncertainty reaches up to 30% of the signal strength with largest values in regions in the northern hemisphere. The major source of uncertainty is found to be introduced by wind stress from the atmospheric forcing of the ocean model. In addition, the temporal evolution of the uncertainty in the induced magnetic field shows distinct seasonal variations. Specific regions are identified which are robust with respect to the introduced uncertainties.

  13. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten

    2015-11-01

    Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.

  14. Ross ice shelf cavity circulation, residence time, and melting: Results from a model of oceanic chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Reddy, Tasha E.; Holland, David M.; Arrigo, Kevin R.

    2010-04-01

    Despite their harmful effects in the upper atmosphere, anthropogenic chlorofluorocarbons dissolved in seawater are extremely useful for studying ocean circulation and ventilation, particularly in remote locations. Because they behave as a passive tracer in seawater, and their atmospheric concentrations are well-mixed, well-known, and have changed over time, they are ideal for gaining insight into the oceanographic characteristics of the isolated cavities found under Antarctic ice shelves, where direct observations are difficult to obtain. Here we present results from a modeling study of air-sea chlorofluorocarbon exchange and ocean circulation in the Ross Sea, Antarctica. We compare our model estimates of oceanic CFC-12 concentrations along an ice shelf edge transect to field data collected during three cruises spanning 16 yr. Our model produces chlorofluorocarbon concentrations that are quite similar to those measured in the field, both in magnitude and distribution, showing high values near the surface, decreasing with depth, and increasing over time. After validating modeled circulation and air-sea gas exchange through comparison of modeled temperature, salinity, and chlorofluorocarbons with field data, we estimate that the residence time of water in the Ross Ice Shelf cavity is approximately 2.2 yr and that basal melt rates for the ice shelf average 10 cm yr -1. The model predicts a seasonal signature to basal melting, with highest melt rates in the spring and also the fall.

  15. Seasonal dynamics of circulation in Hooghly Estuary and its adjacent coastal oceans

    NASA Astrophysics Data System (ADS)

    Mishra, Shashank Kr.; Nayak, Gourav; Nayak, R. K.; Dadhwal, V. K.

    2016-05-01

    Hooghly is one of the major estuaries in Ganges, the largest and longest river in the Indian subcontinent. The Hooghly estuary is a coastal plain estuary lying approximately between 21°-23° N and 87°-89° E. We used a terrain following ocean model to study tide driven residual circulations, seasonal mean flow patterns and its energetics in the Hooghly estuary and adjacent coastal oceans on the north eastern continental shelf of India. The model is driven by tidal levels at open ocean end and winds at the air-sea interface. The sources of forcing fields for tides were from FES2012, winds from ECMWF. Harmonic analysis is carried out to compute the tidal and non-tidal components of currents and sea level from the model solutions. The de-tidal components were averaged for the entire period of simulation to describe residual and mean-seasonal circulations in the regions. We used tide-gauge, SARAL-ALTIKA along track sea level measurements to evaluate model solutions. Satellite measure Chla were used along with simulated currents to describe important features of the circulations in the region.

  16. Mechanisms of Interannual Variations of the Meridional Overturning Circulation of the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Cabanes, Cecile; Lee, Tong; Fu, Lee-Lueng

    2008-01-01

    The authors investigate the nature of the interannual variability of the meridional overturning circulation (MOC) of the North Atlantic Ocean using an Estimating the Circulation and Climate of the Ocean (ECCO) assimilation product for the period of 1993-2003. The time series of the first empirical orthogonal function of the MOC is found to be correlated with the North Atlantic Oscillation (NAO) index, while the associated circulation anomalies correspond to cells extending over the full ocean depth. Model sensitivity experiments suggest that the wind is responsible for most of this interannual variability, at least south of 40(deg)N. A dynamical decomposition of the meridional streamfunction allows a further look into the mechanisms. In particular, the contributions associated with 1) the Ekman flow and its depth-independent compensation, 2) the vertical shear flow, and 3) the barotropic gyre flowing over zonally varying topography are examined. Ekman processes are found to dominate the shorter time scales (1.5-3 yr), while for longer time scales (3-10 yr) the MOC variations associated with vertical shear flow are of greater importance. The latter is primarily caused by heaving of the pycnocline in the western subtropics associated with the stronger wind forcing. Finally, how these changes in the MOC affect the meridional heat transport (MHT) is examined. It is found that overall, Ekman processes explain a larger part of interannual variability (3-10 yr) for MHT (57%) than for the MOC (33%).

  17. Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Frierson, Dargan M. W.; Hwang, Yen-Ting; Fučkar, Neven S.; Seager, Richard; Kang, Sarah M.; Donohoe, Aaron; Maroon, Elizabeth A.; Liu, Xiaojuan; Battisti, David S.

    2013-11-01

    Rainfall in the tropics is largely focused in a narrow zonal band near the Equator, known as the intertropical convergence zone. On average, substantially more rain falls just north of the Equator. This hemispheric asymmetry in tropical rainfall has been attributed to hemispheric asymmetries in ocean temperature induced by tropical landmasses. However, the ocean meridional overturning circulation also redistributes energy, by carrying heat northwards across the Equator. Here, we use satellite observations of the Earth's energy budget, atmospheric reanalyses and global climate model simulations to study tropical rainfall using a global energetic framework. We show that the meridional overturning circulation contributes significantly to the hemispheric asymmetry in tropical rainfall by transporting heat from the Southern Hemisphere to the Northern Hemisphere, and thereby pushing the tropical rain band north. This northward shift in tropical precipitation is seen in global climate model simulations when ocean heat transport is included, regardless of whether continents are present or not. If the strength of the meridional overturning circulation is reduced in the future as a result of global warming, as has been suggested, precipitation patterns in the tropics could change, with potential societal consequences.

  18. Seasonal Distributions of Global Ocean Chlorophyll and Nutrients: Analysis with a Coupled Ocean General Circulation Biogeochemical, and Radiative Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    1999-01-01

    A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological

  19. Summer mean full depth circulation in North Atlantic Ocean along 59.5 N

    NASA Astrophysics Data System (ADS)

    Gladyshev, Vsevolod; Sokov, Alexey; Gladyshev, Sergey

    2016-04-01

    The large scale oceanic circulation in the North Atlantic is an important part of the climate system. Warm saline upper-ocean waters derived in subtropics release heat into the atmosphere while moving northward as North Atlantic Current and by mixing with colder fresher Arctic waters sink in the subpolar basins therefore originating reverse equatorward flow of cold fresh water. This mechanism, known as Atlantic Meridional Overturning Circulation (MOC) is of fundamental importance in the meridional heat transport. Using data from yearly direct hydrographic measurements at 59.5 N with satellite altimetry data in the period 2009-2015 a mean state of the full-depth summer circulation in the region is estimated. Zonal distribution of the 2009-2015 mean summer velocities across the 59.5 N is obtained using four different data sets from (1) pair of WS 300 kHz LADCPs measurements, (2) ship mounted TRDI OS 38 kHz ADCP measurements, (3) AVISO altimetry data (surface absolute geostrophic velocities), and (4) geostrophic velocities data calculated using CTD measurements. By combining those data mean absolute transport is estimated. Results are compared and analyzed confirming and elaborating previous research. Also assessment of the errors associated with full-depth ADCP profiles is settled. This evaluation allows arguing about certainty of collected data and can be used to improve accuracy of circulation rating.

  20. Transport of 137Cs to the Southern Hemisphere in an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi; Bryan, Frank O.; Lindsay, Keith; Danabasoglu, Gokhan

    2011-04-01

    137Cs originating from global fallout is transported into the ocean interior by advection and diffusion, and the 137Cs concentration is reduced by radioactive decay. 137Cs concentrations in the global ocean can be simulated by global integration of the coarse-resolution Parallel Ocean Program to understand the mechanism of material transport in the ocean. We investigated the transport mechanism of 137Cs to the Southern Hemisphere using an ocean general circulation model (OGCM) and compared the simulated results with observations of 137Cs concentrations in the Southern Hemisphere. 137Cs was deposited on the ocean surface mainly as global fallout originating from atmospheric nuclear weapons testing since 1945, and the global distribution of cumulative 137Cs deposition has been reconstructed from global measurements of 137Cs in rain, seawater, and soil. We estimated the global distribution of 137Cs deposition from 1945 to 2003 using these distribution data, 137Cs deposition data observed at the Meteorological Research Institute, Tsukuba, Japan, from 1958 to 2003, and 137Cs deposition data for 1945-1957 estimated from ice-core data. We compared the simulated results with 137Cs sections from the South Pacific, Indian, and South Atlantic Oceans obtained during the BEAGLE2003 cruise in 2003. The simulated 137Cs sections were in good agreement with the observations, except for the effects of mesoscale eddies, which not be simulated by the model because of its coarse resolution. OGCMs can simulate the general pattern of 137Cs distribution in the world’s oceans and improve our understanding of the transport mechanism leading to those 137Cs distributions on a time scale of several decades. The model simulation results suggest that the 137Cs deposited in the North Pacific advected to the South Pacific and Indian Ocean, and then to the South Atlantic over about four decades. The North Pacific is thus an important source area of 137Cs to the Southern Hemisphere.

  1. Dynamic Proxies of Ocean Circulation in the North Atlantic During the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Praetorius, S.; McManus, J.

    2007-05-01

    The North Atlantic Deep Water (NADW) is a major component of the Atlantic's meridional overturning circulation, which is strongly linked to climate through the sea-to-air heat transfer by water transported from low to high latitudes. Changes in this circulation system have been implicated in the abrupt climate reversal of the Younger Dryas. Previous studies using nutrient proxies such as δ13C and Cd/Ca show a nutrient enrichment in the North Atlantic during the Younger Dryas, reflecting a reduction in the volume of nutrient-depleted NADW. Although valuable, water mass tracers cannot constrain the rate of overturning; a crucial factor in the overall heat flux of deep water formation. Dynamic proxies such as 231Pa/230Th disequilibria and the grain size of deep sea sediments provide tools to measure changes in the vigor of ocean circulation. 231Pa/230Th ratios act as a proxy for the export rate of subsurface waters from the North Atlantic. Changes in the non-cohesive sortable silt (SS) size fraction (10-63μm) of terrigenous sediments reflect variations in the current strength as a result of the relative entrainment capacity of flow velocity. Here we compare the grain size record from site 984, along the Rekjanes Ridge, with 231Pa/230Th data from core GGC5 on the Bermuda Rise. Site 984 is well situated to monitor both the modern deep water overflows and the intermediate depth waters of the glacial period, whereas core GGC5 offers a more basin-wide measure of circulation export. These records indicate similarly robust overturning circulation during the last glacial maximum and Holocene. In contrast, the deglacial period reveals significant reductions in the circulation. The Younger Dryas exhibits the most dramatic decrease in grain size throughout the 20,000 year record, and the 231Pa/230Th data indicate a reduction in export rate that is rivaled only by the first Heinrich iceberg discharge event. The reduction in current strength during the Younger Dryas is

  2. Predictive Understanding of the Oceans' Wind-Driven Circulation on Interdecadal Time Scales

    SciTech Connect

    Michael Ghil; Temam, Roger; Y. Feliks; Simonnet, E.; Tachim-Medjo, T.

    2008-09-30

    The goal of this project was to obtain a predictive understanding of a major component of the climate system's interdecadal variability: the oceans' wind-driven circulation. To do so, we developed and applied advanced computational and statistical methods to the problem of climate variability and climate change. The methodology was developed first for models of intermediate complexity, such as the quasi-geostrophic and the primitive equations, which describe the wind-driven, near-surface flow in mid-latitude ocean basins. Our computational work consisted in developing efficient multi-level methods to simulate this flow and study its dependence on physically relevant parameters. Our oceanographic and climate work consisted in applying these methods to study the bifurcations in the wind-driven circulation and their relevance to the flows observed at present and those that might occur in a warmer climate. Both aspects of the work are crucial for the efficient treatment of large-scale, eddy-resolving numerical simulations of the oceans and an increased understanding and better prediction of climate change. Considerable progress has been achieved in understanding ocean-atmosphere interaction in the mid-latitudes. An important by-product of this research is a novel approach to explaining the North Atlantic Oscillation.

  3. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  4. Investigation of Deep Ocean Circulation and Mixing Using Ar-39 (Invited)

    NASA Astrophysics Data System (ADS)

    Smethie, W. M.; Schlosser, P.

    2013-12-01

    Ar-39 is a radioactive noble gas that forms in the atmosphere by cosmic ray interaction with Ar-40. It has a half-life of 269 years and its production rate in the atmosphere has varied no more than 7% during the past 1000 years. It enters the surface ocean with an average equilibration time of about one month and thus the entire surface ocean, except for ice covered regions at high latitudes, is in quasi-equilibrium with the atmospheric Ar-39:Ar ratio. The well known input to the ocean, radioactive decay constant and chemical inertness make Ar-39 an ideal tracer of circulation and mixing in the deep ocean, where anthropogenic transient tracers such as CFCs and tritium have not yet penetrated. However, due to the difficult measurement, only about 125 oceanic Ar-39 samples have been measured to date. This was done by counting the decays of Ar-39 atoms and required a half liter of argon gas per sample, extracted from about 1500 liters of water. The 125 samples that have been measured provide a glimpse of the information that can be gained from Ar-39 observations. In the Pacific Ocean three vertical profiles show a decrease in Ar-39 from the surface mixed layer through the thermocline to a minimum at intermediate depths and an increase from there to the bottom. This reflects formation of bottom water around the Antarctic continent, spreading of this water northward and upwelling and mixing into intermediate depths. The lowest concentration was 6×4% modern which is equivalent to a 900-1600 year isolation time from the surface. In the Atlantic Ocean newly formed North Atlantic Deep Water has an Ar-39 concentration of about 85% modern compared to 55% modern for newly formed Antarctic Bottom Water and reach values as low as about 40% modern in the interior reflecting the more rapid ventilation of the deep Atlantic Ocean relative to the deep Pacific Ocean. In the Arctic Ocean the mean residence time of deep water in the Nansen, Amundsen and Makarov Basins based on Ar-39

  5. Linkages between ocean circulation, heat uptake and transient warming: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik; Stocker, Thomas

    2016-04-01

    Transient global warming due to greenhouse gas radiative forcing is substantially reduced by ocean heat uptake (OHU). However, the fraction of equilibrium warming that is realized in transient climate model simulations differs strongly between models (Frölicher and Paynter 2015). It has been shown that this difference is not only related to the magnitude of OHU, but also to the radiative response the OHU causes, measured by the OHU efficacy (Winton et al., 2010). This efficacy is strongly influenced by the spatial pattern of the OHU and its changes (Rose et al. 2014, Winton et al. 2013), predominantly caused by changes in the Atlantic meridional overturning circulation (AMOC). Even in absence of external greenhouse gas forcing, an AMOC weakening causes a radiative imbalance at the top of the atmosphere (Peltier and Vettoretti, 2014), inducing in a net warming of the Earth System. We investigate linkages between those findings by performing both freshwater and greenhouse gas experiments in an Earth System Model of Intermediate Complexity. To assess the sensitivity of the results to ocean and atmospheric transport as well as climate sensitivity, we use an ensemble of model versions, systematically varying key parameters. We analyze circulation changes and radiative adjustments in conjunction with traditional warming metrics such as the transient climate response and the equilibrium climate sensitivity. This aims to improve the understanding of the influence of ocean circulation and OHU on transient climate change, and of the relevance of different metrics for describing this influence. References: Frölicher, T. L. and D.J. Paynter (2015), Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales, Environ. Res. Lett., 10, 075022 Peltier, W. R., and G. Vettoretti (2014), Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: A "kicked" salt oscillator in the Atlantic, Geophys. Res

  6. Global ocean circulation and equator-pole heat transport as a function of ocean GCM resolution

    SciTech Connect

    Covey, C.

    1994-06-01

    To determine whether resolution of smaller scales is necessary to simulate large-scale ocean climate correctly, I examine results from a global ocean GCM run with horizontal grid spacings spanning a range from coarse resolutions traditionally used in climate modeling to nearly the highest resolution attained with today`s computers. The experiments include four cases employing 4{degrees}, 2{degrees}, 1{degrees} and 1/2{degrees} spacing in latitude and longitude, which were run with minimal differences among them, i.e., in a controlled experiment. Two additional cases-1/2{degrees} spacing with a more scale-selective sub-gridscale mixing of heat and momentum, and approximate 1/4{degrees} spacing-are also included. The 1/4{degrees} run resolves most of the observed mesoscale eddy energy in the ocean. Several artificial constraints on the model tend to minimize differences among the different resolution cases. Nevertheless, for quantities of interest to global climate studies,the simulations show significant changes as resolution increases.

  7. Assessing reconstruction techniques of the Atlantic Ocean circulation variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Moreno-Chamarro, Eduardo; Ortega, Pablo; González-Rouco, Fidel; Montoya, Marisa

    2016-04-01

    We assess the use of the meridional thermal-wind transport estimated from zonal density gradients to reconstruct the oceanic circulation variability during the last millennium in a forced simulation with the ECHO-G coupled climate model. Following a perfect-model approach, model-based pseudo-reconstructions of the Atlantic meridional overturning circulation (AMOC) and the Florida Current volume transport (FCT) are evaluated against their true simulated variability. The pseudo-FCT is additionally verified as proxy for AMOC strength and compared with the available proxy-based reconstruction. The thermal-wind component reproduces most of the simulated AMOC variability, which is mostly driven by internal climate dynamics during the preindustrial period and by increasing greenhouse gases afterwards. The pseudo-reconstructed FCT reproduces well the simulated FCT and reasonably well the variability of the AMOC strength, including the response to external forcing. The pseudo-reconstructed FCT, however, underestimates/overestimates the simulated variability at deep/shallow levels. Density changes responsible for the pseudo-reconstructed FCT are mainly driven by zonal temperature differences; salinity differences oppose but play a minor role. These results thus support the use of the thermal-wind relationship to reconstruct the oceanic circulation past variability, in particular at multidecadal timescales. Yet model-data comparison highlights important differences between the simulated and the proxy-based FCT variability. ECHO-G simulates a prominent weakening in the North Atlantic circulation that contrasts with the reconstructed enhancement. Our model results thus do not support the reconstructed FC minimum during the Little Ice Age. This points to a failure in the reconstruction, misrepresented processes in the model, or an important role of internal ocean dynamics.

  8. Primary reasoning behind the double ITCZ phenomenon in a coupled ocean-atmosphere general circulation model

    NASA Astrophysics Data System (ADS)

    Li, Jianglong; Zhang, Xuehong; Yu, Yongqiang; Dai, Fushan

    2004-12-01

    This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the first two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Pacific in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, affected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Pacific. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.

  9. Changes in the strength of Atlantic Ocean overturning circulation across repeated Eocene warming events

    NASA Astrophysics Data System (ADS)

    Kirtland Turner, S.; Sexton, P. F.; Norris, R. D.; Wilson, P. A.; Charles, C. D.; Ridgwell, A.

    2015-12-01

    The Paleogene Period (~65 to 34 Ma) was a time of acute climatic warmth, with deep ocean temperatures exceeding 12°C at the height of the Early Eocene Climatic Optimum (~53 to 50 Ma). Multiple rapid warming events, associated with transient deep sea temperature increases of 2 to 4°C (termed 'hyperthermals'), potentially related to orbital forcing of the carbon cycle and climate, occurred from the late Paleocene through at least the early middle Eocene and onset of long-term Cenozoic cooling (~47 Ma). While deep ocean circulation patterns associated with the great glaciations of the Plio-Pleistocene have been studied extensively, the behavior of the ocean's overturning circulation on orbital-timescales in the extreme warmth of the early Cenozoic is largely unknown. Here we present new evidence for changing patterns of ocean overturning in the southern hemisphere associated with four orbitally paced hyperthermal events in the early-middle Eocene (~50 to 48 Ma) based on a combination of multi-site bulk carbonate and benthic foraminiferal stable isotope measurements and Earth system modeling. Our results suggest that southern-sourced overturning weakens and shoals in response to modest atmospheric carbon injections and consequent warming, and is replaced by invasion of nutrient-rich North Atlantic-sourced deep water, leading to predictable spatial patterns in deep-sea carbon isotope records. The changes in abyssal carbon isotope 'aging' gradients associated with these hyperthermals are, in fact, two to three times larger than the change in aging gradient associated with the switch in Atlantic overturning between the Last Glacial Maximum and today. Our results suggest that the Atlantic overturning circulation was sensitive to orbital-scale climate variability during Eocene extreme warmth, not just to interglacial-glacial climatic variability of the Plio-Pleistocene.

  10. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    PubMed

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-01

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the

  11. Atlantic Ocean Circulation during the Latest Cretaceous and Early Paleogene: Progressive Deep Water Exchange

    NASA Astrophysics Data System (ADS)

    Batenburg, Sietske J.; Voigt, Silke; Friedrich, Oliver; Osborne, Ann; Frank, Martin

    2015-04-01

    The Atlantic deep ocean circulation in the Latest Cretaceous (75-66 Ma) was dominated by regional processes, as indicated by the presence of distinct deep water masses. Due to the opening of the Atlantic Ocean, its different sub-basins became progressively connected and a global mode of ocean circulation commenced in the early Paleogene, ~60 Ma. To understand the evolution of deep water formation and exchange, Nd-isotope data and δ13C stratigraphies are generated for a range of sites in the North and South Atlantic. These permit to identify different intermediate and deep-water masses, to recognize their potential source regions and to determine the exact timing of deep water connection. The carbonate-rich pelagic sediments of Site U1403 near Newfoundland can be astronomically tuned and correlated to the global δ13C framework. Relatively negative seawater ɛNd(t) signatures in the 67-62 Ma interval at Site U1403 of ~-10 are distinct from those recorded further south in the North Atlantic. Possible explanations could include elevated non-radiogenic weathering inputs from the North American craton. In the latest Maastrichtian, the Site U1403 ɛNd(t) record displays a short-term positive excursion before the K/Pg boundary (67-66 Ma) followed by a sudden drop to unradiogenic values at the boundary. Changes in ocean circulation might be related to climatic changes in the pre-extinction interval and the impact itself. The ɛNd(t) records at Sites 1267 and 525 at Walvis Ridge show that an early Maastrichtian excursion to highly radiogenic values reflects a brief interval at 72-70 Ma, related to a period of increased hot-spot volcanism. Concomitant measurements of ɛNd(t) values in three different archives, fish teeth, ferromanganese coatings of bulk sediments and of foraminifera, provide a test for the partial influence of detrital particles on the isotopic composition of coatings. The first data of Sites U1403, 1267 and 525 indicate the occurrence of a common deep

  12. Oceanic mesoscale variability and general circulation from satellite altimetry: A status report

    NASA Technical Reports Server (NTRS)

    Fu, L. L.

    1983-01-01

    Progress on the applications of satellite altimetry from SEASAT and Geos-3 to the study of oceanic mesoscale variability and general circulation is reviewed. The major conclusion for the applications to mesoscale variability is that an optimally designed altimetric mission with a lifetime of several years will improve our knowledge of the global mesoscale variability to an extent unattainable by any other practical means. The proposed Topex mission will allow one to view the global oceanic variability in such a wide range of periods and wavelengths: from 20 days to 3 to 5 years; from 50 to 10,000 km. However, the goal of determining the general circulation cannot be achieved by a single altimetric mission, because a highly accurate geoid needs to be determined independently. The scenario of the combination of Topex with Gravsat, a gravity mission that will give accurate geoid information, will allow the global general circulation to be determined at scales as small as 100 km. Areas of research needing to be performed with existing altimeter data are also discussed.

  13. Ocean circulation model predicts high genetic structure observed in a long-lived pelagic developer.

    PubMed

    Sunday, J M; Popovic, I; Palen, W J; Foreman, M G G; Hart, M W

    2014-10-01

    Understanding the movement of genes and individuals across marine seascapes is a long-standing challenge in marine ecology and can inform our understanding of local adaptation, the persistence and movement of populations, and the spatial scale of effective management. Patterns of gene flow in the ocean are often inferred based on population genetic analyses coupled with knowledge of species' dispersive life histories. However, genetic structure is the result of time-integrated processes and may not capture present-day connectivity between populations. Here, we use a high-resolution oceanographic circulation model to predict larval dispersal along the complex coastline of western Canada that includes the transition between two well-studied zoogeographic provinces. We simulate dispersal in a benthic sea star with a 6-10 week pelagic larval phase and test predictions of this model against previously observed genetic structure including a strong phylogeographic break within the zoogeographical transition zone. We also test predictions with new genetic sampling in a site within the phylogeographic break. We find that the coupled genetic and circulation model predicts the high degree of genetic structure observed in this species, despite its long pelagic duration. High genetic structure on this complex coastline can thus be explained through ocean circulation patterns, which tend to retain passive larvae within 20-50 km of their parents, suggesting a necessity for close-knit design of Marine Protected Area networks. PMID:25231198

  14. Towards Improved Forecasts of Atmospheric and Oceanic Circulations over the Complex Terrain of the Eastern Mediterranean

    NASA Technical Reports Server (NTRS)

    Chronis, Themis; Case, Jonathan L.; Papadopoulos, Anastasios; Anagnostou, Emmanouil N.; Mecikalski, John R.; Haines, Stephanie L.

    2008-01-01

    Forecasting atmospheric and oceanic circulations accurately over the Eastern Mediterranean has proved to be an exceptional challenge. The existence of fine-scale topographic variability (land/sea coverage) and seasonal dynamics variations can create strong spatial gradients in temperature, wind and other state variables, which numerical models may have difficulty capturing. The Hellenic Center for Marine Research (HCMR) is one of the main operational centers for wave forecasting in the eastern Mediterranean. Currently, HCMR's operational numerical weather/ocean prediction model is based on the coupled Eta/Princeton Ocean Model (POM). Since 1999, HCMR has also operated the POSEIDON floating buoys as a means of state-of-the-art, real-time observations of several oceanic and surface atmospheric variables. This study attempts a first assessment at improving both atmospheric and oceanic prediction by initializing a regional Numerical Weather Prediction (NWP) model with high-resolution sea surface temperatures (SST) from remotely sensed platforms in order to capture the small-scale characteristics.

  15. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    NASA Astrophysics Data System (ADS)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  16. Impact of oceanic circulation changes on atmospheric δ13CO2

    NASA Astrophysics Data System (ADS)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-11-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using carbon isotope-enabled versions of the LOVECLIM and Bern3D models, we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW), and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW, and AAIW are negatively correlated with changes in δ13CO2: namely, strong oceanic ventilation decreases atmospheric δ13CO2. However, since large-scale oceanic circulation reorganizations also impact nutrient utilization and the Earth's climate, the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the transport of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent. This results from complex interplay between global climate, carbon cycle, and the formation rate of NADW, a water body characterized by relatively high δ13C.

  17. The impact of polar mesoscale storms on northeast Atlantic ocean circulation (Invited)

    NASA Astrophysics Data System (ADS)

    Condron, A.; Renfrew, I.

    2013-12-01

    Every year thousands of mesoscale (<1000 km) storms cross the climatically sensitive sub-polar regions of the world's oceans. These storms are frequently too small, or short-lived, to be captured in meteorological reanalyses or numerical climate prediction models. As a result, the magnitude of the near-surface wind speeds and heat fluxes are considerably under-represented over the world's oceans where the atmosphere influences mixing, deep convection, upwelling, and deep water mass formation. Numerical models must, however, realistically simulate these processes in order to accurately predict future changes in the strength of the Atlantic Meridional Overturning Circulation (MOC) and the climate system. Implementing a parameterization to simulate mesoscale cyclones in the atmospheric fields driving an ocean model produced air-sea fluxes in remarkable agreement with observations. Over the Nordic Seas we found that mesoscale cyclones increased the depth, frequency and area of open ocean deep convection. At Denmark Strait we found a significant increase in the southward transport of Denmark Strait Overflow Water (DSOW); the deep water mass that plays a major role in driving the Atlantic MOC. Further south there was an increase in the cyclonic rotation of the sub-polar gyres and an increase in the northward transport of heat into the region. We conclude that polar mesoscale cyclones play an important role in driving the large-scale ocean circulation and so must be simulated globally in order to make accurate short-term climate predictions. An illustration of the effectiveness of our polar mesoscale parameterization. Panels show a 6-hourly snapshot of 10-m wind speed for (left) ECMWF ERA-40, (middle) ERA-40 with a polar mesoscale cyclone parameterized (right) satellite derived wind speed. The satellite data reveal a polar mesoscale cyclone over the Norwegian Sea with a diameter of ~400 km. The standard ERA-40 reanalysis (~1 deg.) does not capture this vortex

  18. Changing currents: a strategy for understanding and predicting the changing ocean circulation.

    PubMed

    Bryden, Harry L; Robinson, Carol; Griffiths, Gwyn

    2012-12-13

    Within the context of UK marine science, we project a strategy for ocean circulation research over the next 20 years. We recommend a focus on three types of research: (i) sustained observations of the varying and evolving ocean circulation, (ii) careful analysis and interpretation of the observed climate changes for comparison with climate model projections, and (iii) the design and execution of focused field experiments to understand ocean processes that are not resolved in coupled climate models so as to be able to embed these processes realistically in the models. Within UK-sustained observations, we emphasize smart, cost-effective design of the observational network to extract maximum information from limited field resources. We encourage the incorporation of new sensors and new energy sources within the operational environment of UK-sustained observational programmes to bridge the gap that normally separates laboratory prototype from operational instrument. For interpreting the climate-change records obtained through a variety of national and international sustained observational programmes, creative and dedicated UK scientists should lead efforts to extract the meaningful signals and patterns of climate change and to interpret them so as to project future changes. For the process studies, individual scientists will need to work together in team environments to combine observational and process modelling results into effective improvements in the coupled climate models that will lead to more accurate climate predictions. PMID:23129709

  19. M2 baroclinic tide variability modulated by the ocean circulation south of Japan

    NASA Astrophysics Data System (ADS)

    Varlamov, Sergey M.; Guo, Xinyu; Miyama, Toru; Ichikawa, Kaoru; Waseda, Takuji; Miyazawa, Yasumasa

    2015-05-01

    We analyze a concurrent simulation result of the ocean circulation and tidal currents using a data-assimilative ocean general circulation model covering the Western North Pacific with horizontal resolution of 1/36° to investigate possible interactions between them. Four sites of active M2 internal tide variability in open ocean (hot spots), such as Tokara Strait, Izu Ridge, Luzon Strait, and Ogasawara Ridge, are detected from both the satellite observation and the simulation. Energy cycle analysis of the simulated M2 baroclinic tide indicates two types of the hot spots: dissipation (Tokara Strait and Izu Ridge) and radiation (Luzon Strait and Ogasawara Ridge) dominant sites. Energy conversion from barotropic to baroclinic M2 tides at the hot spots is modulated considerably by the lower-frequency changes in the density field. Modulation at the two spots (Tokara Strait and Izu Ridge) is affected by the Kuroshio path variation together with the seasonal variation of the shallow thermocline. At the other two sites, influence from changes in the relatively deep stratification through the Kuroshio intrusion into South China Sea (Luzon Strat) and mesoscale eddy activity (Ogasawara Ridge) is dominant in the modulation.

  20. Revisiting annual mean and seasonal cycle of deep meridional overturning circulation of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Weiqiang; Xie, Qiang; Li, Sha; Zhu, Xiuhua

    2014-05-01

    The annual mean and seasonal cycle of the deep meridional overturning circulation (MOC) of the Indian Ocean is being revisited here using GECCO synthesis. Resulting from ocean general circulation models, the annual mean deep MOC of the Indian Ocean are generally weak with inflow in the bottom layer and outflow in the intermediate and upper layer mixing with strong Indonesian Throughflow. For seasonal cycle of deep MOC, two significant and seasonal reversed counter-rotating deep cells over full depth of water column, roughly separated by 20S, are revealed during boreal summer and winter. The coincidences of the latitude 20S with where the maximum climatological wind curl for most of seasons reveals intimate relations between the deep meridional overturning and surface winds. Dynamical decompositions on annual mean and complete seasonal cycle of the meridional overturning show varying relative contribution of each dynamical component at different time scale. For annual mean deep MOC, Ekman dynamics is found to be dominant in the region of north of 25S, particularly in upper 3000m, whereas south of 25S external and vertical shear components show remarkable "seamount" features and are compensated with much larger strengths because of topo-modulated strong western boundary topography. At seasonal time scale, dominant role of Ekman dynamics and secondary role of external mode are found in the deep cell north of 20S in January and July. However in transition seasons, vertical shear is responsible for major part of meridional overturning and Ekman dynamics has comparable contribution north of Equator.

  1. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent.

    PubMed

    Nicol, S; Pauly, T; Bindoff, N L; Wright, S; Thiele, D; Hosie, G W; Strutton, P G; Woehler, E

    2000-08-01

    Sea ice and oceanic boundaries have a dominant effect in structuring Antarctic marine ecosystems. Satellite imagery and historical data have identified the southern boundary of the Antarctic Circumpolar Current as a site of enhanced biological productivity. Meso-scale surveys off the Antarctic peninsula have related the abundances of Antarctic krill (Euphausia superba) and salps (Salpa thompsoni) to inter-annual variations in sea-ice extent. Here we have examined the ecosystem structure and oceanography spanning 3,500 km of the east Antarctic coastline, linking the scales of local surveys and global observations. Between 80 degrees and 150 degrees E there is a threefold variation in the extent of annual sea-ice cover, enabling us to examine the regional effects of sea ice and ocean circulation on biological productivity. Phytoplankton, primary productivity, Antarctic krill, whales and seabirds were concentrated where winter sea-ice extent is maximal, whereas salps were located where the sea-ice extent is minimal. We found enhanced biological activity south of the southern boundary of the Antarctic Circumpolar Current rather than in association with it. We propose that along this coastline ocean circulation determines both the sea-ice conditions and the level of biological productivity at all trophic levels. PMID:10952309

  2. Simulated strengthening of the Atlantic Meridional Overturning Circulation in response to abyssal ocean warming around Antarctica

    NASA Astrophysics Data System (ADS)

    Patara, L.; Boning, C. W.

    2013-12-01

    Studies of repeat hydrographic observations have revealed a conspicuous multi-decadal warming, and partly, freshening, of the frigid abyssal ocean waters originating from the fringes of the Antarctic continent. The warming and contraction of Antarctic Bottom Water (AABW) represents one of the most prominent signals of change in Earth's climate and accounts for a substantial fraction of the present global energy and sea level budgets. Here we present a set of ocean model experiments demonstrating that the ongoing loss of AABW also has important dynamical consequences for the large-scale meridional overturning circulation in the Atlantic Ocean. In conjunction with a slowdown of the bottom cell, we find that the upper cell of the Atlantic Meridional Overturning Circulation (AMOC) progressively strengthens in response to changes in density gradients in the deep South Atlantic. Changes in the AMOC are tightly connected to increased meridional heat transport and therefore have a strong influence on global and regional climate patterns in the North Atlantic. The simulations suggest that the AABW-induced strengthening of the AMOC is already extending into the North Atlantic, progressing at a rate of about 0.2 Sv per decade, implying that the process may need to be taken into account in projections of future North Atlantic climate.

  3. Upper-Ocean Heat Balance Processes and the Walker Circulation in CMIP5 Model Projections

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Roberts, J. B.; Funk, C.; Lyon, B.; Ricciardulli, L.

    2012-01-01

    Considerable uncertainty remains as to the importance of mechanisms governing decadal and longer variability of the Walker Circulation, its connection to the tropical climate system, and prospects for tropical climate change in the face of anthropogenic forcing. Most contemporary climate models suggest that in response to elevated CO2 and a warmer but more stratified atmosphere, the required upward mass flux in tropical convection will diminish along with the Walker component of the tropical mean circulation as well. Alternatively, there is also evidence to suggest that the shoaling and increased vertical stratification of the thermocline in the eastern Pacific will enable a muted SST increase there-- preserving or even enhancing some of the dynamical forcing for the Walker cell flow. Over the past decade there have been observational indications of an acceleration in near-surface easterlies, a strengthened Pacific zonal SST gradient, and globally-teleconnected dislocations in precipitation. But is this evidence in support of an ocean dynamical thermostat process posited to accompany anthropogenic forcing, or just residual decadal fluctuations associated with variations in warm and cold ENSO events and other stochastic forcing? From a modeling perspective we try to make headway on this question by examining zonal variations in surface energy fluxes and dynamics governing tropical upper ocean heat content evolution in the WCRP CMIP5 model projections. There is some diversity among model simulations; for example, the CCSM4 indicates net ocean warming over the IndoPacific region while the CSIRO model concentrates separate warming responses over the central Pacific and Indian Ocean regions. The models, as with observations, demonstrate strong local coupling between variations in column water vapor, downward surface longwave radiation and SST; but the spatial patterns of changes in the sign of this relationship differ among models and, for models as a whole, with

  4. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry

    NASA Astrophysics Data System (ADS)

    Brovkin, Victor; Ganopolski, Andrey; Archer, David; Rahmstorf, Stefan

    2007-12-01

    We use an Earth system model of intermediate complexity, CLIMBER-2, to investigate what recent improvements in the representation of the physics and biology of the glacial ocean imply for the atmospheric concentration. The coupled atmosphere-ocean model under the glacial boundary conditions is able to reproduce the deep, salty, stagnant water mass inferred from Antarctic deep pore water data and the changing temperature of the entire deep ocean. When carbonate compensation is included in the model, we find a CO2 drawdown of 43 ppmv associated mainly with the shoaling of the Atlantic thermohaline circulation and an increased fraction of water masses of southern origin in the deep Atlantic. Fertilizing the Atlantic and Indian sectors of the Southern Ocean north of the polar front leads to a further drawdown of 37 ppmv. Other changes to the glacial carbon cycle include a decrease in the amount of carbon stored in the terrestrial biosphere (540 Pg C), which increases atmospheric CO2 by 15 ppmv, and a change in ocean salinity resulting from a drop in sea level, which elevates CO2 by another 12 ppmv. A decrease in shallow water CaCO3 deposition draws down CO2 by 12 ppmv. In total, the model is able to explain more than two thirds (65 ppmv) of the glacial to interglacial CO2 change, based only on mechanisms that are clearly documented in the proxy data. A good match between simulated and reconstructed distribution of δ13C changes in the deep Atlantic suggests that the model captures the mechanisms of reorganization of biogeochemistry in the Atlantic Ocean reasonably well. Additional, poorly constrained mechanisms to explain the rest of the observed drawdown include changes in the organic carbon:CaCO3 ratio of sediment rain reaching the seafloor, iron fertilization in the subantarctic Pacific Ocean, and changes in terrestrial weathering.

  5. Modelling of the circulation in the Northwestern Mediterranean Sea with the Princeton Ocean Model

    NASA Astrophysics Data System (ADS)

    Ahumada, M. A.; Cruzado, A.

    2006-08-01

    The Princeton Ocean Model - POM (Blumberg and Mellor, 1987) has been implemented in the Northwestern Mediterranean nested (in one-way off-line mode) to a general circulation model of the Mediterranean Sea - OGCM (Pinardi and Masetti, 2000; Demirov and Pinardi, 2002) in order to investigate if this model configuration is capable of reproducing the major features of the circulation as known from observations and to improve what has been made by previous numerical modeling works. According to the model results, the large-scale cyclonic circulation in the northern part of the Northwestern Mediterranean is, at least in the upper layers, less coherent in winter and spring than in summer and autumn. Furthermore, there is evidence that the mesoscale structure (eddies and meanders) is, during all year, a significant dynamic characteristic in this region of the Mediterranean Sea. Finally, concerning the circulation in the lower layers has been confirmed that the Levantine Intermediate Water and the Western Mediterranean Deep Water follow essentially a cyclonic path during all year.

  6. Modeling of the circulation in the Northwestern Mediterranean Sea with the Princeton Ocean Model

    NASA Astrophysics Data System (ADS)

    Ahumada, M. A.; Cruzado, A.

    2007-02-01

    The Princeton Ocean Model - POM (Blumberg and Mellor, 1987) has been implemented in the Northwestern Mediterranean nested (in one-way off-line mode) to a general circulation model of the Mediterranean Sea - OGCM (Pinardi and Masetti, 2000; Demirov and Pinardi, 2002) in order to investigate if this model configuration is capable of reproducing the major features of the circulation as known from observations and to improve what has been made by previous numerical modeling works. According to the model results, the large-scale cyclonic circulation in the northern part of the Northwestern Mediterranean is, at least in the upper layers, less coherent in winter and spring than in summer and autumn. Furthermore, there is evidence that the mesoscale structure (eddies and meanders) is, during all year, a significant dynamic characteristic in this region of the Mediterranean Sea. Finally, concerning the circulation in the lower layers, the model results have confirmed that Levantine Intermediate Water (LIW) and Western Mediterranean Deep Water (WMDW) follow essentially a cyclonic path during all year.

  7. Regional eddy vorticity transport and the equilibrium vorticity budgets of a numerical model ocean circulation

    NASA Technical Reports Server (NTRS)

    Harrison, D. E.; Holland, W. R.

    1981-01-01

    A mean vorticity budget analysis is presented of Holland's (1978) numerical ocean general circulation experiment. The stable budgets are compared with classical circulation theory to emphasize the ways in which the mesoscale motions of the model alter (or leave unaltered) classical vorticity balances. The basinwide meridional transports of vorticity by the mean flow and by the mesoscale flow in the mean are evaluated to establish the role(s) of the mesoscale in the larger scale equilibrium vorticity transports. The vorticity equation for this model fluid system is presented and the budget analysis method is described. Vorticity budgets over the selected regions and on a larger scale are given, and a summary of budget results is provided along with remarks about the utility of this type of analysis.

  8. An eddy-permitting oceanic general circulation model and its preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Hailong; Zhang, Xuehong; Li, Wei; Yu, Yongqiang; Yu, Rucong

    2004-10-01

    An eddy-permitting, quasi-global oceanic general circulation model, LICOM (LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics) Climate System Ocean Model), with a uniform grid of 0.5° × 0.5° is established. Forced by wind stresses from Hellerman and Rosenstain (1983), a 40-yr integration is conducted with sea surface temperature and salinity being restored to the Levitus 94 datasets. The evaluation of the annual mean climatology of the LICOM control run shows that the large-scale circulation can be well reproduced. A comparison between the LICOM control run and a parallel integration of L30T63, which has the same framework but a coarse resolution, is also made to confirm the impact of resolution on the model performance. On account of the reduction of horizontal viscosity with the enhancement of the horizontal resolution, LICOM improves the simulation with respect to not only the intensity of the large scale circulations, but also the magnitude and structure of the Equatorial Undercurrent and South Equatorial Current. Taking advantage of the fine grid size, the pathway of the Indonesian Throughflow (ITF) is better represented in LICOM than in L30T63. The transport of ITF in LICOM is more convergent in the upper layer. As a consequence, the Indian Ocean tends to get warmer in LICOM. The poleward heat transports for both the global and individual basins are also significantly improved in LICOM. A decomposed analysis indicates that the transport due to the barotropic gyre, which primarily stands for the barotropic effect of the western boundary currents, plays a crucial role in making the difference.

  9. Monitoring estuarine circulation and ocean waste dispersion using an integrated satellite-aircraft-drogue approach

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Davis, G.; Wang, H.; Whelan, W.; Tornatore, G.

    1976-01-01

    The mounting economic pressure to extract oil and other resources from the Continental Shelf and to continue using the Shelf for waste disposal is creating a need for cost-effective synoptic means of determining currents in this area. An integrated satellite-aircraft-drogue approach has been developed which employs remotely tracked expendable drogues together with satellite and aircraft observations of waste plumes and tracers, such as dyes or suspended sediment. Tests conducted on the Continental Shelf and in Delaware Bay indicate that the system provides a cost-effective means of studying current circulation, oil slick movement, and ocean waste dispersion even under severe environmental conditions.

  10. On determining the large-scale ocean circulation from satellite altimetry

    NASA Technical Reports Server (NTRS)

    Tai, C.-K.

    1983-01-01

    It is contended that a spherical harmonic expansion of the difference between the altimeter-derived mean sea surface and the geoid estimate should reveal the large-scale circulation of the ocean surface layer when the low-degree terms are examined. Methods based on this principle are proposed and partially demonstrated over the Pacific Ocean with the aid of the mean sea surface derived from the Seasat altimeter and the Goddard Earth Model 9 earth gravity model. The preliminary results reveal a well-defined clockwise gyre in the North Pacific and a much less well defined counterclockwise gyre in the South Pacific. When the dynamic topography thus obtained is compared with Wyrtki's (1975) dynamic topography derived from hydrographic data, the agreement is found to be within the limit of geoid uncertainties and satellite orbital errors.

  11. Observing Global Ocean Circulation From Space: The First Year's Results From the TOPEX/POSEIDON Mission

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.

    1993-01-01

    The joint U.S./France TOPEX/Poseidon satellite was launched on August 10, 1992, and became operational 43 days later. The major goal of the mission is to use a radar altimeter system for making precise measurements of the height of the sea surface for the study of the dynamics of large-scale ocean circulation, which is a key to understanding global climate change. Additionally, the data are used for studying ocean tides and marine geophysics. The radar altimeter also measures wave height and wind speed. The mission is being conducted to optimize the sea surface height measurements for a minimum of three years. The primary objective of the first six months of the mission was to calibrate and validate the mission's measurements...

  12. On the choice of orbits for an altimetric satellite to study ocean circulation and tides

    NASA Technical Reports Server (NTRS)

    Parke, Michael E.; Stewart, Robert H.; Farless, David L.; Cartwright, David E.

    1987-01-01

    The choice of an orbit for satellite altimetric studies of the ocean's circulation and tides requires an understanding of the orbital characteristics that influence the accuracy of the satellite's measurements of sea level and the temporal and spatial distribution of the measurements. The orbital characteristics that influence accurate calculations of the satellite's position as a function of time are examined, and the pattern of ground tracks laid down on the ocean's surface as a function of the satellite's altitude and inclination is studied. The results are used to examine the aliases in the measurements of surface geostrophic currents and tides. Finally, these considerations are used to specify possible orbits that may be useful for the upcoming Topex/Poseidon mission.

  13. Observing Global Ocean Circulation From Space: The First Year's Results From the TOPEX/POSEIDON Mission

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.

    1993-01-01

    The joint U.S./France TOPEX/Poseidon satellite was launched on August 10, 1992, and became operational 42 days later. The major goal of the mission is to use a radar altimeter system for making precise measurements of the height of the sea surface for the study of the dynamics of large-scale ocean circulation, which is a key to understanding global climate change. Additionally, the data are used for studying ocean tides and marine geophysics. The radar altimeter also measures wave height and wind speed. The mission is being conducted to optimize the sea surface height measurements for a minimum of three years. The primary objective of the first six months of the mission was to calibrate and validate the mission's measurements. The verification results indicate that all the measurement objectives have been met...

  14. Millennial-scale interaction between ice sheets and ocean circulation during marine isotope stage 100

    NASA Astrophysics Data System (ADS)

    Ohno, Masao; Hayashi, Tatsuya; Sato, Masahiko; Kuwahara, Yoshihiro; Mizuta, Asami; Kita, Itsuro; Sato, Tokiyuki; Kano, Akihiro

    2016-05-01

    Waxing/waning of the ice sheets and the associated change in thermohaline circulation have played an important role in global climate change since major continental ice sheets appeared in the northern hemisphere about 2.75 million years ago. In the earliest glacial stages, however, establishment of the linkage between ice sheet development and ocean circulation remain largely unclear. Here we show new high-resolution records of marine isotope stage 100 recovered from deep-sea sediments on the Gardar Drift, in the subpolar North Atlantic. Results of a wide range of analyses clearly reveal the influence of millennial-scale variability in iceberg discharge on ocean surface condition and bottom current variability in the subpolar North Atlantic during marine isotope stage 100. We identified eight events of ice-rafted debris, which occurred mostly with decreases in sea surface temperature and in current components indicating North Atlantic Deep Water. These decreases are interpreted by weakened deep water formation linked to iceberg discharge, similarly to observations from the last glacial period. Dolomite fraction of the ice-rafted events in early MIS 100 like the last glacial Heinrich events suggests massive collapse of the Laurentide ice sheet in North America. At the same time, our early glacial data suggest differences from the last glacial period: absence of 1470-year periodicity in the interactions between ice sheets and ocean, and northerly shift of the ice-rafted debris belt. Our high-resolution data largely improve the picture of ice-sheet/ocean interactions on millennial time scales in the early glacial period after major Northern Hemisphere glaciation.

  15. Ocean Circulation and Gateway Closures During the Late Miocene (~13-5 Ma)

    NASA Astrophysics Data System (ADS)

    Nathan, S. A.; Leckie, R. M.

    2004-12-01

    Long-term climate change is driven by tectonic influences, including changes in ocean circulation that are the result of ocean gateway closure. During the middle to late Miocene (~13-5 Ma), both tropical ocean circulation and deep water production were reorganized due to the increasing constriction of the Indonesian and Central American seaways. For example, the waters of the modern Pacific equatorial current system do not move freely into the Indian Ocean (i.e., via the Indonesian Throughflow, ITF) but instead pile up to form the Western Pacific Warm Pool (a thermal anomaly that greatly influences tropical Pacific climate and ocean circulation). Here we use a continuous record of multispecies stable isotope stratigraphy and foraminiferal assemblage counts from Ontong Java Plateau to demonstrate that during middle to late Miocene time, progressive restriction of the ITF, modulated by sea level fluctuations, resulted in the waxing and waning of a proto-warm pool in the western equatorial Pacific (WEP). The proto-warm pool profoundly affected the early late Miocene "carbonate crash" (an anomalous decrease of carbonate in deep sea sediments) and the late Miocene "biogenic bloom" (sharp increase in carbonate accumulation rates across the tropical Indo-Pacific). We hypothesize that El Niño/La Niña-like alternations of tropical carbonate preservation and productivity between the western and eastern equatorial Pacific during the late Miocene were the consequence of early warm pool development and decay. A proto-warm pool was formed ~12.1-10.6 Ma, which initiated a nutrient-rich Equatorial Undercurrent and/or increased Trade Wind strength. These La Niña-like conditions sustained carbonate productivity in the eastern equatorial Pacific (EEP) at a time when carbonate preservation sharply declined in the Caribbean. Proto-warm pool weakening and El Niño-like conditions ~10.6-8.8 Ma intensified a "carbonate crash" in the EEP, while resurgence of the warm pool and La Ni

  16. Reconstruction of ocean circulation from sparse data using the adjoint method: LGM and the present

    NASA Astrophysics Data System (ADS)

    Kurahashi-Nakamura, T.; Losch, M. J.; Paul, A.; Mulitza, S.; Schulz, M.

    2010-12-01

    Understanding the behavior of the Earth's climate system under different conditions in the past is the basis for more robust projections of future climate. It is thought that the ocean circulation plays a very important role in the climate system, because it can greatly affect climate by dynamic-thermodynamic (as a medium of heat transport) and biogeochemical processes (by affecting the global carbon cycle). In this context, studying the period of the Last Glacial Maximum (LGM) is particularly promising, as it represents a climate state that is very different from today. Furthermore the LGM, compared to other paleoperiods, is characterized by a relatively good paleo-data coverage. Unfortunately, the ocean circulation during the LGM is still uncertain, with a range of climate models estimating both a stronger and a weaker formation rate of North Atlantic Deep Water (NADW) as compared to the present rate. Here, we present a project aiming at reducing this uncertainty by combining proxy data with a numerical ocean model using variational techniques. Our approach, the so-called adjoint method, employs a quadratic cost function of model-data differences weighted by their prior error estimates. We seek an optimal state estimate at the global minimum of the cost function by varying the independent control variables such as initial conditions (e.g. temperature), boundary conditions (e.g. surface winds, heat flux), or internal parameters (e.g. vertical diffusivity). The adjoint or dual model computes the gradient of the cost function with respect to these control variables and thus provides the information required by gradient descent algorithms. The gradients themselves provide valuable information about the sensitivity of the system to perturbations in the control variables. We use the Massachusetts Institute of Technology ocean general circulation model (MITgcm) with a cubed-sphere grid system that avoids converging grid lines and pole singularities. This model code is

  17. Mechanical power input from buoyancy and wind to the circulation in an ocean model

    NASA Astrophysics Data System (ADS)

    Saenz, J. A.; Hogg, A. M.; Hughes, G. O.; Griffiths, R. W.

    2012-07-01

    We make a systematic quantitative comparison of the effects that surface buoyancy forcing and wind stress have on the energy balance of an idealized, rotating, pole-to-pole ocean model with a zonally re-entrant channel in the south, forced by realistic heat (buoyancy) fluxes and wind stresses representative of global climatology. Surface buoyancy fluxes and wind stress forcing are varied independently; both have significant effects on the reservoirs of various forms of energy and the rates of transfer between them. Importantly, we show for the first time that in the ocean, each power input has a positive feedback on the other. Changes in the rate of generation of available potential energy by buoyancy fluxes at the surface lead to similar changes in the rate of conversion of potential energy to kinetic energy by buoyancy forces (sinking) in the interior, and to changes in the rate of generation of kinetic energy by wind stress. Conversely, changes in the rate of generation of kinetic energy by wind stress lead to changes in the rate of generation of available potential energy by buoyancy forcing. We discuss how this feedback is mediated by the circumpolar current, and processes involving buoyancy, mixing and geostrophic balances. Our results support the notion that surface buoyancy forcing, along with wind and tidal forcing, plays an active role in the energy balance of the oceans. The overturning circulation in the oceans is not the result of a single driving force. Rather, it is a manifestation of a complex and subtle balance.

  18. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model. Final report

    SciTech Connect

    Menawat, A.S.

    1992-09-21

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO{sub 2}. It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO{sub 2}. In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach.

  19. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    SciTech Connect

    Menawat, A.S.

    1992-09-21

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO[sub 2]. It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO[sub 2]. In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach.

  20. Behavior of 137Cs concentrations in the North Pacific in an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Tsumune, Daisuke; Aoyama, Michio; Hirose, Katsumi

    2003-08-01

    We have carried out a first simulation of the spatial distributions and the temporal variations of 137Cs concentrations in the North Pacific in off line calculations by using archived output of an ocean general circulation model (OGCM) developed by the National Center of Atmospheric Research (NCAR). Artificial radionuclides including 137Cs are introduced into ocean surface due to global fallout originating from the large-scale atmospheric nuclear weapons tests in 1961-1962. The distribution of radioactive deposition used as forcing for this simulation is estimated from global precipitation data and observed values of annual deposition of radionuclides at the Meteorological Research Institute (MRI) in Japan. 137Cs originating from global fallout have been transported into the ocean interior by advection and diffusion, and the 137Cs concentrations reduced by radioactive decay. We assess the skill of the model calculations by comparing simulated values of 137Cs in seawater with the observed values included in the database compiled by MRI because 137Cs is one of the most useful tracers regarding water motion in the ocean. The vertical and horizontal distributions of the calculated 137Cs concentrations were in good agreement with those of the observed 137Cs concentrations, except in the deep layer.

  1. El Nino-southern oscillation simulated in an MRI atmosphere-ocean coupled general circulation model

    SciTech Connect

    Nagai, T.; Tokioka, T.; Endoh, M.; Kitamura, Y. )

    1992-11-01

    A coupled atmosphere-ocean general circulation model (GCM) was time integrated for 30 years to study interannual variability in the tropics. The atmospheric component is a global GCM with 5 levels in the vertical and 4[degrees]latitude X 5[degrees] longitude grids in the horizontal including standard physical processes (e.g., interactive clouds). The oceanic component is a GCM for the Pacific with 19 levels in the vertical and 1[degrees]x 2.5[degrees] grids in the horizontal including seasonal varying solar radiation as forcing. The model succeeded in reproducing interannual variations that resemble the El Nino-Southern Oscillation (ENSO) with realistic seasonal variations in the atmospheric and oceanic fields. The model ENSO cycle has a time scale of approximately 5 years and the model El Nino (warm) events are locked roughly in phase to the seasonal cycle. The cold events, however, are less evident in comparison with the El Nino events. The time scale of the model ENSO cycle is determined by propagation time of signals from the central-eastern Pacific to the western Pacific and back to the eastern Pacific. Seasonal timing is also important in the ENSO time scale: wind anomalies in the central-eastern Pacific occur in summer and the atmosphere ocean coupling in the western Pacific operates efficiently in the first half of the year.

  2. Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Miyama, Toru; Furue, Ryo; Jensen, Tommy; Kang, Hyoun-Woo; Bang, Bohyun; Qu, Tangdong

    2007-10-01

    Circulations associated with the Indonesian Throughflow (IT), particularly concerning subsurface currents in the Pacific Ocean, are studied using three types of models: a linear, continuously stratified (LCS) model and a nonlinear, 4{1}/{2}-layer model (LOM), both confined to the Indo-Pacific basin; and a global, ocean general circulation model (COCO). Solutions are wind forced, and obtained with both open and closed Indonesian passages. Layers 1-4 of LOM correspond to near-surface, thermocline, subthermocline (thermostad), and upper-intermediate (AAIW) water, respectively, and analogous layers are defined for COCO. The three models share a common dynamics. When the Indonesian passages are abruptly opened, barotropic and baroclinic waves radiate into the interiors of both oceans. The steady-state, barotropic flow field from the difference (open - closed) solution is an anticlockwise circulation around the perimeter of the southern Indian Ocean, with its meridional branches confined to the western boundaries of both oceans. In contrast, steady-state, baroclinic flows extend into the interiors of both basins, a consequence of damping of baroclinic waves by diapycnal processes (internal diffusion, upwelling and subduction, and convective overturning). Deep IT-associated currents are the subsurface parts of these baroclinic flows. In the Pacific, they tend to be directed eastward and poleward, extend throughout the basin, and are closed by upwelling in the eastern ocean and Subpolar Gyre. Smaller-scale aspects of their structure vary significantly among the models, depending on the nature of their diapycnal mixing. At the exit to the Indonesian Seas, the IT is highly surface trapped in all the models, with a prominent, deep core in the LCS model and in LOM. The separation into two cores is due to near-equatorial, eastward-flowing, subsurface currents in the Pacific Ocean, which drain layer 2 and layer 3 waters from the western ocean to supply water for the upwelling

  3. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    NASA Astrophysics Data System (ADS)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  4. Higher Laurentide and Greenland ice sheets strengthen the North Atlantic ocean circulation

    NASA Astrophysics Data System (ADS)

    Gong, Xun; Zhang, Xiangdong; Lohmann, Gerrit; Wei, Wei; Zhang, Xu; Pfeiffer, Madlene

    2015-07-01

    During the last glacial-interglacial cycle, changes in the large-scale North Atlantic ocean circulation occurred, and at the same time topography of the Laurentide and Greenland ice sheets also varied. In this study, we focus on detecting the changes of the North Atlantic gyres, western boundary current, and the Atlantic meridional overturning circulation (AMOC) corresponding to different Laurentide and Greenland ice sheet topographies. Using an Earth System Model, we conducted simulations for five climate states with different ice sheet topographies: Pre-industrial, Mid Holocene, Last Glacial Maximum, 32 kilo years before present and Eemian interglacial. Our simulation results indicate that higher topographies of the Laurentide and Greenland ice sheets strengthen surface wind stress curl over the North Atlantic ocean, intensifying the subtropical and subpolar gyres and the western boundary currents. The corresponding decrease in sea surface height from subtropical to subpolar favors a stronger AMOC. An offshore shift of the Gulf Stream is also identified during the glacial periods relative to that during the Pre-industrial due to lower sea levels, explaining a weaker glacial Gulf Stream detected in proxy data. Meanwhile, the North Atlantic gyres and AMOC demonstrate a positively correlated relation under each of the climate conditions with higher ice sheets.

  5. Modeling of the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields

    NASA Astrophysics Data System (ADS)

    Marchuk, G. I.; Zalesny, V. B.

    2012-02-01

    The problem of modeling the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields is considered. A mathematical model of the ocean general circulation and a numerical algorithm for its solution are formulated. The model equations are written in a σ coordinate system on the sphere with the North Pole shifted to the point of the continent (60° E, 60.5° N). The model has a flexible numerical structure and consists of two parts: the forward prognostic model and its adjoint analog. The numerical algorithm for solving the forward and adjoint problems is based on the method of multicomponent splitting. This method includes splitting with respect to physical processes and geometric coordinates. Three series of numerical experiments are performed: (1) a test solution to the problem of the four-dimensional variational assimilation, (2) modeling of the World Ocean circulation with the variational assimilation of climatic temperature and salinity fields, and (3) modeling of the World Ocean circulation with the variational assimilation of climatic temperature and salinity fields and the data of Argo buoys. The results of calculations demonstrate the expediency of using the model of World Ocean circulation with the procedure of assimilating observational data for a description of the general structure of thermohaline fields.

  6. Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.

    2015-12-01

    Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae

  7. An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models

    NASA Technical Reports Server (NTRS)

    Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.

    2001-01-01

    This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.

  8. Drastic changes in the Nordic Seas oceanic circulation and deepwater formation in a Pliocene context

    NASA Astrophysics Data System (ADS)

    Contoux, Camille; Zhang, Zhongshi; De Schepper, Stijn; Li, Camille; Nisancioglu, Kerim; Risebrobakken, Bjorg

    2016-04-01

    The Nordic Seas are a major area of deepwater formation, thus playing a crucial role in the global oceanic circulation. In the recent years a cooling and freshening of the Norwegian Sea has been observed (Blindheim et al., 2000), highlighting potential changes in this area linked to climate change. Here, we use climate simulations of the mid-Pliocene warm period with the NorESM-L model. This period is considered to be the last interval when Earth experienced temperatures higher than today for a sustained period of time, in equilibrium with CO2 concentrations similar to present-day and a reduced Greenland Ice Sheet. We find that oceanic circulation in the Nordic Seas is drastically modified. The strength of the East Greenland Current is reduced, which implies less Arctic water going to the North Atlantic from the west of the Fram strait, which creates a compensating outflow current from the east of the Fram Strait to the North Atlantic along the Voring plateau (coast of Norway). The Norwegian Atlantic current is shifted westward, meaning that there is increased Atlantic water influence in the Greenland Sea, which becomes much warmer, and increased Arctic influence along Norway, which becomes colder than present. Circulation becomes anticyclonic instead of cyclonic. Circulation in the subpolar gyre is strongly reduced, together with deepwater formation on average both in the Irminger Sea and the Nordic Seas. Convection sites in the Nordic Seas shift from the eastern part to the western part. Sensitivity experiments show that these changes are not reproduced in other Pliocene contexts, such as when CO2 is low (280 ppm) or when Barents Sea is turned to land, suggesting that the ultimate driver of these changes is higher CO2. When Barents Sea is land, which was the reality of the Pliocene, circulation and sea-surface temperature show a good agreement with reconstructions from marine proxies (De Schepper et al., 2015). This means that NorESM-L is able to properly

  9. Deglacial Ocean Circulation Scheme at Intermediate Depths in the Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Xie, R. C.; Marcantonio, F.; Schmidt, M. W.

    2014-12-01

    In the modern Atlantic Ocean, intermediate water circulation is largely governed by the southward flowing upper North Atlantic Deep Water (NADW) and the northward return flow Antarctic Intermediate Water (AAIW). During the last deglaciation, it is commonly accepted that the southward flow Glacial North Atlantic Intermediate Water, the glacial analogue of NADW, contributed significantly to past variations in intermediate water circulation. However, to date, there is no common consensus of the role AAIW played during the last deglaciation, especially across abrupt climate events such as the Heinrich 1 and the Younger Dryas. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between AAIW and northern-sourced intermediate waters in the past. High-resolution Nd isotopic compositions (ɛNd thereafter) of fish debris and bulk sediment acid-reductive leachate from the Southern Caribbean (VM12-107; 1079 m) are inconsistent, again casting concerns, as already raised by recent studies, on the reliability of the leachate method in extracting seawater ɛNd signature. This urges the need to carefully verify the seawater ɛNd integrity in sediment acid-reductive leachate in various oceanic settings. Fish debris Nd isotope record in our study displays a two-step decreasing trend from the early deglaciation to early Holocene. We interpret this as recording a two-step deglacial recovery of the upper NADW, given the assumption on a more radiogenic glacial northern-sourced water is valid. Comparing with authigenic ɛNd records in the Florida Straits [1] and the Demarara Rise [2], our new fish debris ɛNd results suggest that, in the tropical western North Atlantic, glacial and deglacial AAIW never penetrated beyond the lower depth limit of modern AAIW. [1] Xie et al., GCA (140) 2014; [2] Huang et al., EPSL (389) 2014

  10. A zonally averaged, three-basin ocean circulation model for climate studies

    SciTech Connect

    Hovine, S.; Fichefet, T.

    1994-09-01

    A two-dimensional, three-basin ocean model suitable for long-term climate studies is developed. The model is based on the zonally averaged form of the primitive equations written in spherical coordinates. The east-west density difference which arises upon averaging the momentum equations is taken to be proportional to the meridional density gradient. Lateral exchanges of heat and salt between the basins are explicitly resolved. Moreover, the model includes bottom topography and has representations of the Arctic Ocean and of the Weddell and Ross seas. Under realistic restoring boundary conditions, the model reproduces the global conveyor belt: deep water is formed in the Atlantic between 60 and 70{degree}N at a rate of about 17 Sv (1 Sv=10{sup 6} m{sup 3}S{sup {minus}1}) and in the vicinity of the Antarctic continent, while the Indian and Pacific basins show broad upwelling. Superimposed on this thermohaline circulation are vigorous wind-driven cells in the upper thermocline. The simulated temperature and salinity fields and the computed meridional heat transport compare reasonably well with the observational estimates. When mixed boundary conditions i.e., a restoring condition no sea-surface temperature and flux condition on sea-surface salinity are applied, the model exhibits an irregular behavior before reaching a steady state characterized by self-sustained oscillations of 8.5-y period. The conveyor-belt circulation always results at this stage. A series of perturbation experiments illustrates the ability of the model to reproduce different steady-state circulations under mixed boundary conditions. Finally, the model sensitivity to various factors is examined. This sensitivity study reveals that the bottom topography and the presence of a submarine meridional ridge in the zone of the Drake passage play a crucial role in determining the properties of the model bottom-water masses. The importance of the seasonality of the surface forcing is also stressed.