Sample records for oceanic crust

  1. The Oceanic Crust.

    ERIC Educational Resources Information Center

    Francheteau, Jean

    1983-01-01

    The earth's oceanic crust is created and destroyed in a flow outward from midocean ridges to subduction zones, where it plunges back into the mantle. The nature and dynamics of the crust, instrumentation used in investigations of this earth feature, and research efforts/findings are discussed. (JN)

  2. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  3. Aleutian basin oceanic crust

    USGS Publications Warehouse

    Christeson, Gail L.; Barth, Ginger A.

    2015-01-01

    We present two-dimensional P-wave velocity structure along two wide-angle ocean bottom seismometer profiles from the Aleutian basin in the Bering Sea. The basement here is commonly considered to be trapped oceanic crust, yet there is a change in orientation of magnetic lineations and gravity features within the basin that might reflect later processes. Line 1 extends ∼225 km from southwest to northeast, while Line 2 extends ∼225 km from northwest to southeast and crosses the observed change in magnetic lineation orientation. Velocities of the sediment layer increase from 2.0 km/s at the seafloor to 3.0–3.4 km/s just above basement, crustal velocities increase from 5.1–5.6 km/s at the top of basement to 7.0–7.1 km/s at the base of the crust, and upper mantle velocities are 8.1–8.2 km/s. Average sediment thickness is 3.8–3.9 km for both profiles. Crustal thickness varies from 6.2 to 9.6 km, with average thickness of 7.2 km on Line 1 and 8.8 km on Line 2. There is no clear change in crustal structure associated with a change in orientation of magnetic lineations and gravity features. The velocity structure is consistent with that of normal or thickened oceanic crust. The observed increase in crustal thickness from west to east is interpreted as reflecting an increase in melt supply during crustal formation.

  4. FERROMANGANESE CRUST RESOURCES IN THE PACIFIC AND ATLANTIC OCEANS.

    USGS Publications Warehouse

    Commeau, R.F.; Clark, A.; Johnson, Chad; Manheim, F.T.; Aruscavage, P. J.; Lane, C.M.

    1984-01-01

    Ferromanganese crusts on raised areas of the ocean floor have joined abyssal manganese nodules and hydrothermal sulfides as potential marine resources. Significant volumes of cobalt-rich (about 1% Co) crusts have been identified to date within the US Exclusive Economic Zone (EEZ) in the Central Pacific: in the NW Hawaiian Ridge and Seamount region and in the seamounts in the Johnston Island and Palmyra Island regions. Large volumes of lower grade crusts, slabs, and nodules are also present in shallow ( greater than 1000 m) waters on the Blake plateau, off Florida-South Carolina in the Atlantic Ocean. Data on ferromanganese crusts have been increased by recent German and USGS cruises, but are still sparse, and other regions having crust potential are under current investigation. The authors discuss economic potentials for cobalt-rich crusts in the Central Pacific and Western North Atlantic oceans, with special reference to US EEZ areas. Additional research is needed before more quantitative resource estimates can be made.

  5. Under the sea: microbial life in volcanic oceanic crust.

    PubMed

    Edwards, Katrina J; Wheat, C Geoffrey; Sylvan, Jason B

    2011-09-06

    Exploration of the microbiology in igneous, 'hard rock' oceanic crust represents a major scientific frontier. The igneous crust harbours the largest aquifer system on Earth, most of which is hydrologically active, resulting in a substantial exchange of fluids, chemicals and microorganisms between oceanic basins and crustal reservoirs. Study of the deep-subsurface biosphere in the igneous crust is technically challenging. However, technologies have improved over the past decade, providing exciting new opportunities for the study of deep-seated marine life, including in situ and cross-disciplinary experimentation in microbiology, geochemistry and hydrogeology. In this Progress article, we describe the recent advances, available technology and remaining challenges in the study of the marine intraterrestrial microbial life that is harboured in igneous oceanic crust.

  6. Transition from continental to oceanic crust on the Wilkes-Adelie margin of Antarctica

    NASA Astrophysics Data System (ADS)

    Eittreim, Stephen L.

    1994-12-01

    The Wilkes-Adelie margin of East Antarctica, a passive margin rifted in the Early Cretaceous, has an unusually reflective Moho which can be traced seismically across the continent-ocean transition. Velocity models and depth sections were constructed from a combined set of U.S. and French multichannel seismic reflection lines to investigate the transition from continental to oceanic crust. These data show that the boundary between oldest oceanic crust and transitional continental crust is marked by a minimum in subsediment crustal thickness and, in places, by a shoaling of Moho. The Moho reflection is continuous across the edge of oceanic crust, and gradually deepens landward under the continental edge. A marginal rift basin, some tens of kilometers in width, lies in the transition between continental and oceanic crust, contains an average of about 4 km of synrift sediment that is prograded in places, and has characteristics of a former rift valley, now subsided to about 10 km. Three types of reflections in the seismic data are interpreted as volcanic deposits: (1) high-amplitude reflections that floor the marginal rift basin, (2) irregularly seaward dipping sequences that comprise an anomalously thick edge of oceanic crust, and (3) highly irregular and diffractive reflections from oceanic crustal basins that cap a normal-thickness ocean crust. The present depth to the prefit surface of continental crust is compatible with passive margin subsidence since 95 Ma, corrected for its load of synrift and postrift sediment and mechanically stretched by factors of beta = 1.8 or higher. Comparison of seismic crustal thickness measurements with inferred crustal thinning from subsidence analysis shows agreement for areas where beta less than 4. In areas where beta greater than 4, measured thickness is greater than that inferred from subsidence analysis, a result that could be explained by underplating the crust beneath the marginal rift basin.

  7. Oceanic crust recycling and the formation of lower mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    van Keken, Peter E.; Ritsema, Jeroen; Haugland, Sam; Goes, Saskia; Kaneshima, Satoshi

    2016-04-01

    The Earth's lower mantle is heterogeneous at multiple scales as demonstrated for example by the degree-2 distribution of LLSVPs seen in global tomography and widespread distribution of small scale heterogeneity as seen in seismic scattering. The origin of this heterogeneity is generally attributed to leftovers from Earth's formation, the recycling of oceanic crust, or a combination thereof. Here we will explore the consequences of long-term oceanic crust extraction and recycling by plate tectonics. We use geodynamical models of mantle convection that simulate plates in an energetically consistent manner. The recycling of oceanic crust over the age of the Earth produces persistent lower mantle heterogeneity while the upper mantle tends to be significantly more homogeneous. We quantitatively compare the predicted heterogeneity to that of the present day Earth by tomographic filtering of the geodynamical models and comparison with S40RTS. We also predict the scattering characteristics from S-P conversions and compare these to global scattering observations. The geophysical comparison shows that lower mantle heterogeneity is likely dominated by long-term oceanic crust recycling. The models also demonstrate reasonable agreement with the geochemically observed spread between HIMU-EM1-DMM in ocean island basalts as well as the long-term gradual depletion of the upper mantle as observed in Lu-Hf systematics.

  8. Magnetization of the oceanic crust: TRM or CRM?

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Labrecque, J. L.

    1987-01-01

    A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80% of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness discrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.

  9. Magnetization of lower oceanic crust and upper mantle

    NASA Astrophysics Data System (ADS)

    Kikawa, E.

    2004-05-01

    The location of the magnetized rocks of the oceanic crust that are responsible for sea-floor spreading magnetic anomalies has been a long-standing problem in geophysics. The recognition of these anomalies was a key stone in the development of the theory of plate tectonics. Our present concept of oceanic crustal magnetization is much more complex than the original, uniformly magnetized model of Vine-Matthews-Morley Hypothesis. Magnetic inversion studies indicated that the upper oceanic extrusive layer (Layer 2A of 0.5km thick) was the only magnetic layer and that it was not necessary to postulate any contribution from deeper parts of oceanic crust. Direct measurements of the magnetic properties of the rocks recovered from the sea floor, however, have shown that the magnetization of Layer 2A, together with the observations that this layer could record geomagnetic field reversals within a vertical section, is insufficient to give the required size of observed magnetic anomalies and that some contribution from lower intrusive rocks is necessary. Magnetization of oceanic intrusive rocks were observed to be reasonably high enough to contribute to sea-floor spreading magnetic anomalies, but were considered somewhat equivocal until late 1980Os, in part because studies had been conducted on unoriented dredged and ophiolite samples and on intermittent DSDP/ODP cores. Since ODP Leg 118 that cored and recovered continuous 500m of oceanic intrusive layer at Site 735B, Southwest Indian Ridge with an extremely high recovery of 87 percent, there have been several ODP Legs (legs 147, 153, 176, 179 and 209) that were devoted to drilling gabbroic rocks and peridotites. In terms of the magnetization intensities, all of the results obtained from these ODP Legs were supportive of the model that a significant contribution must come from gabbros and peridotites and the source of the lineated magnetic anomalies must reside in most of the oceanic crust as well as crust-mantle boundary

  10. Can the composition and structure of the lower ocean crust and upper mantle be known without deep ocean drilling?

    NASA Astrophysics Data System (ADS)

    Dick, H.; Natland, J.

    2003-04-01

    No. With few exceptions, lower ocean crust sampled by dredge or submersible in tectonic windows such as Atlantis Bank in the Indian Ocean or the MARK area on the Mid-Atlantic Ridge are not representative of the ocean crust. They represent tectonic mixing of rocks from the mantle and crust on large faults that also localize late magmatic intrusion. Where this can be sorted out, the in-situ crustal sections may generally represent a sub-horizontal cross-section through the lower crust and mantle and not a vertical one. The gabbroic rocks exposed represent largely high-level intrusions, highly hybridized by late melt flow along deep faults, or highly evolved gabbro at the distal ends of larger intrusions emplaced into the mantle near transforms. Oceanic gabbros have average compositions that lie outside the range of primary MORB compositions, and rarely are equivalent to spatially associated MORB either as a parent to, or as a residue of their crystallization. Oceanic gabbros sampled from these complexes generally are very coarse-grained, and are unlike those seen in nearly all ophiolites and layered intrusions. In addition, there are few exposures of gabbro and lower ocean crust and mantle in Pacific tectonic windows, though there the possibility of more representative sections is greater due to their exposure in propagating rifts. Limited samples of the mantle from near the midpoints of ocean ridge segments at slow-spreading rifts are from anomalous crustal environments such as ultra-slow spreading ridges or failed rifts. These include abundant dunites, as opposed to samples from fracture zones, which contain only about 1% dunite. While this indicates focused mantle flow towards the midpoint of a ridge, it also shows that fracture zone peridotites are not fully representative of the oceanic upper mantle. Major classes of rocks common in ophiolites, such as fine to medium grained layered primitive olivine gabbros, troctolites, wherlites and dunites, sheeted dikes

  11. New Synthesis of Ocean Crust Velocity Structure From Two-Dimensional Profiles

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Goff, J.; Carlson, R. L.; Reece, R.

    2017-12-01

    The velocity structure of typical oceanic crust consists of Layer 2, where velocities increase rapidly with depth from seafloor, and Layer 3, which is thicker and has a lower velocity gradient. Previous syntheses have found no correlation of velocity structure with spreading rate, even though we know that magmatic processes differ between slow-spreading and fast-spreading crust. We present a new synthesis of ocean crust velocity structure, compiling observations from two-dimensional studies in the Atlantic, Pacific, and Indian ocean basins. The Layer 2/3 boundary was picked from each publication at a change in gradient either on velocity-depth functions or contour plots (with at least 0.5 km/s contour interval), or from the appropriate layer boundary for layered models. We picked multiple locations at each seismic refraction profile if warranted by model variability. Preliminary results show statistically significant differences in average Layer 2 and Layer 3 thicknesses between slow-spreading and superfast-spreading crust, with Layer 2 thinner and Layer 3 thicker for the higher spreading rate crust. The thickness changes are about equivalent, resulting in no change in mean crustal thickness. The Layer 2/3 boundary is often interpreted as the top of the gabbros; however, a comparison with mapped magma lens depths at the ridge axis shows that the boundary is typically deeper than average axial melt lens depth at superfast-spreading crust, and shallower at intermediate-spreading crust.

  12. Contraction or expansion of the Moon's crust during magma ocean freezing?

    PubMed Central

    Elkins-Tanton, Linda T.; Bercovici, David

    2014-01-01

    The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle. PMID:25114310

  13. The Stirring of Oceanic Crust in the Mantle: How it Changes with Time?

    NASA Astrophysics Data System (ADS)

    McNamara, A. K.; Li, M.

    2017-12-01

    The Large Low Shear Velocity Provinces (LLSVPs) beneath Africa and the Pacific are considerably-sized seismic anomalies in the lower mantle that likely play a key role in global mantle convection. Unfortunately, we do not know what they are, and hypotheses include thermal megaplumes, plume clusters, primordial piles, thermochemical superplumes, and large accumulations of ancient, subducted oceanic crust. Discovering which of these are the cause of LLSVPs will provide fundamental understanding toward the nature of global-scale mantle convection. Here, we focus on two of the possibilities: primordial piles and accumulations of subducted oceanic crust. In previous work, it seemed clear that each provide a distinguishably-different morphology: primordial piles are clearly defined entities with sharp edges and tops, whereas accumulations of oceanic crust appear quite messy and have fuzzy, advective boundaries, particularly at their tops. Therefore, it was thought that by performing seismic studies that define the tops of LLSVPs, we could distinguish between these possibilities. Here, we ask the following question: Can piles formed by ancient oceanic crust eventually "clean themselves up" and evolve into structures that more-resemble what we think primordial piles should look like at the present day? Here, we present geodynamics work that demonstrates that this is indeed the case. The driving mechanism is a thinning of oceanic crust through time (as the mantle cools, there is less melt at ridges, and therefore, crust is thinner). We find that in the early, hotter Earth, if crust is on the order of 20-30 km thick, it will accumulate into messy piles at the base of the mantle. As crust thins beyond a critical thinness, it will stop accumulating and be stirred into the background mantle instead. Once crust stops accumulating in the lower mantle, the pre-existing messy piles begin to sharpen into well-defined piles with sharp edges and tops. Furthermore, we find that this

  14. Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling

    NASA Astrophysics Data System (ADS)

    Ruh, J. B.; Le Pourhiet, L.; Agard, Ph.; Burov, E.; Gerya, T.

    2015-10-01

    Multikilometer-sized slivers of high-pressure low-temperature metamorphic oceanic crust and mantle are observed in many mountain belts. These blueschist and eclogite units were detached from the descending plate during subduction. Large-scale thermo-mechanical numerical models based on finite difference marker-in-cell staggered grid technique are implemented to investigate slicing processes that lead to the detachment of oceanic slivers and their exhumation before the onset of the continental collision phase. In particular, we investigate the role of the serpentinized subcrustal slab mantle in the mechanisms of shallow and deep crustal slicing. Results show that spatially homogeneous serpentinization of the sub-Moho slab mantle leads to complete accretion of oceanic crust within the accretionary wedge. Spatially discontinuous serpentinization of the slab mantle in form of unconnected patches can lead to shallow slicing of the oceanic crust below the accretionary wedge and to its deep slicing at mantle depths depending on the patch length, slab angle, convergence velocity and continental geothermal gradient. P-T paths obtained in this study are compared to natural examples of shallow slicing of the Crescent Terrane below Vancouver Island and deeply sliced crust of the Lago Superiore and Saas-Zermatt units in the Western Alps.

  15. Contraction or expansion of the Moon's crust during magma ocean freezing?

    PubMed

    Elkins-Tanton, Linda T; Bercovici, David

    2014-09-13

    The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Carbon fixation in oceanic crust: Does it happen, and is it important?

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; Sylvan, J. B.; Rogers, D.; Lee, R.; Girguis, P. R.; Carr, S. A.; Jungbluth, S.; Rappe, M. S.

    2014-12-01

    The carbon sources supporting a deep biosphere in igneous oceanic crust, and furthermore the balance of heterotrophy and autotrophy, are poorly understood. When the large reservoir size of oceanic crust is considered, carbon transformations in this environment have the potential to significantly impact the global carbon cycle. Furthermore, igneous oceanic crust is the most massive potential habitat for life on Earth, so understanding the carbon sources for this potential biosphere are important for understanding life on Earth. Geochemical evidence suggests that warm and anoxic upper basement is net heterotrophic, but the balance of these processes in cooler and potentially oxic oceanic crust are poorly known. Here, we present data from stable carbon isotope tracer incubations to examine carbon fixation in basalts collected from the Loihi Seamount, the Juan de Fuca Ridge, and the western flank of the Mid-Atlantic Ridge, to provide a first order constraint on the rates of carbon fixation on basalts. These data will be compared to recently available assessments of carbon cycling rates in fluids from upper basement to synthesize our current state of understanding of the potential for carbon fixation and respiration in oceanic crust. Moreover, we will present new genomic data of carbon fixation genes observed in the basalt enrichments as well as from the subsurface of the Juan de Fuca Ridge flank, enabling identification of the microbes and metabolic pathways involved in carbon fixation in these systems.

  17. Production and recycling of oceanic crust in the early Earth

    NASA Astrophysics Data System (ADS)

    van Thienen, P.; van den Berg, A. P.; Vlaar, N. J.

    2004-08-01

    Because of the strongly different conditions in the mantle of the early Earth regarding temperature and viscosity, present-day geodynamics cannot simply be extrapolated back to the early history of the Earth. We use numerical thermochemical convection models including partial melting and a simple mechanism for melt segregation and oceanic crust production to investigate an alternative suite of dynamics which may have been in operation in the early Earth. Our modelling results show three processes that may have played an important role in the production and recycling of oceanic crust: (1) Small-scale ( x×100 km) convection involving the lower crust and shallow upper mantle. Partial melting and thus crustal production takes place in the upwelling limb and delamination of the eclogitic lower crust in the downwelling limb. (2) Large-scale resurfacing events in which (nearly) the complete crust sinks into the (eventually lower) mantle, thereby forming a stable reservoir enriched in incompatible elements in the deep mantle. New crust is simultaneously formed at the surface from segregating melt. (3) Intrusion of lower mantle diapirs with a high excess temperature (about 250 K) into the upper mantle, causing massive melting and crustal growth. This allows for plumes in the Archean upper mantle with a much higher excess temperature than previously expected from theoretical considerations.

  18. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes

    USGS Publications Warehouse

    Got, J.-L.; Monteiller, V.; Monteux, J.; Hassani, R.; Okubo, P.

    2008-01-01

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process - emission of magma onto the oceanic crust - the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes. ??2008 Nature Publishing Group.

  19. Deformation and rupture of the oceanic crust may control growth of Hawaiian volcanoes.

    PubMed

    Got, Jean-Luc; Monteiller, Vadim; Monteux, Julien; Hassani, Riad; Okubo, Paul

    2008-01-24

    Hawaiian volcanoes are formed by the eruption of large quantities of basaltic magma related to hot-spot activity below the Pacific Plate. Despite the apparent simplicity of the parent process--emission of magma onto the oceanic crust--the resulting edifices display some topographic complexity. Certain features, such as rift zones and large flank slides, are common to all Hawaiian volcanoes, indicating similarities in their genesis; however, the underlying mechanism controlling this process remains unknown. Here we use seismological investigations and finite-element mechanical modelling to show that the load exerted by large Hawaiian volcanoes can be sufficient to rupture the oceanic crust. This intense deformation, combined with the accelerated subsidence of the oceanic crust and the weakness of the volcanic edifice/oceanic crust interface, may control the surface morphology of Hawaiian volcanoes, especially the existence of their giant flank instabilities. Further studies are needed to determine whether such processes occur in other active intraplate volcanoes.

  20. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic

    NASA Astrophysics Data System (ADS)

    Gaina, C.; Torsvik, T. H.; Labails, C.; van Hinsbergen, D.; Werner, S.; Medvedev, S.

    2012-04-01

    Initially part of Gondwana and Pangea, and now surrounded almost entirely by spreading centres, the African plate moved relatively slowly for the last 200 million years. Yet both Africa's cratons and passive margins were affected by tectonic stresses developed at distant plate boundaries. Moreover, the African plate was partly underlain by hot mantle (at least for the last 300 Ma) - either a series of hotspots or a superswell, or both - that contributed to episodic volcanism, basin-swell topography, and consequent sediment deposition, erosion, and structural deformation. A systematic study of the African plate boundaries since the opening of surrounding oceanic basins is presently lacking. This is mainly because geophysical data are sparse and there are still controversies regarding the ages of oceanic crust. The publication of individual geophysical datasets and more recently, global Digital Map of Magnetic Anomalies (WDMAM, EMAG2) prompted us to systematically reconstruct the ages and extent of oceanic crust around Africa for the last 200 Ma. Location of Continent Ocean Boundary/Continent Ocean Transition and older oceanic crust (Jurassic and Cretaceous) are updates in the light of gravity, magnetic and seismic data and models of passive margin formation. Reconstructed NeoTethys oceanic crust is based on a new model of microcontinent and intr-oceanic subduction zone evolution in this area.The new set of oceanic palaeo-age grid models constitutes the basis for estimating the dynamics of oceanic crust through time and will be used as input for quantifying the paleo-ridge push and slab pull that contributed to the African plate palaeo-stresses and had the potential to influence the formation of sedimentary basins.

  1. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance

    USGS Publications Warehouse

    Grimes, Craig B.; John, Barbara E.; Kelemen, P.B.; Mazdab, F.K.; Wooden, J.L.; Cheadle, Michael J.; Hanghoj, K.; Schwartz, J.J.

    2007-01-01

    We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB. ?? 2007 The Geological Society of America.

  2. Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life

    USGS Publications Warehouse

    Kargel, J.S.; Kaye, J.Z.; Head, J. W.; Marion, G.M.; Sassen, R.; Crowley, J.K.; Ballesteros, O.P.; Grant, S.A.; Hogenboom, D.L.

    2000-01-01

    We have considered a wide array of scenarios for Europa's chemical evolution in an attempt to explain the presence of ice and hydrated materials on its surface and to understand the physical and chemical nature of any ocean that may lie below. We postulate that, following formation of the jovian system, the europan evolutionary sequence has as its major links: (a) initial carbonaceous chondrite rock, (b) global primordial aqueous differentiation and formation of an impure primordial hydrous crust, (c) brine evolution and intracrustal differentiation, (d) degassing of Europa's mantle and gas venting, (e) hydrothermal processes, and (f) chemical surface alteration. Our models were developed in the context of constraints provided by Galileo imaging, near infrared reflectance spectroscopy, and gravity and magnetometer data. Low-temperature aqueous differentiation from a carbonaceous CI or CM chondrite precursor, without further chemical processing, would result in a crust/ocean enriched in magnesium sulfate and sodium sulfate, consistent with Galileo spectroscopy. Within the bounds of this simple model, a wide range of possible layered structures may result; the final state depends on the details of intracrustal differentiation. Devolatilization of the rocky mantle and hydrothermal brine reactions could have produced very different ocean/crust compositions, e.g., an ocean/crust of sodium carbonate or sulfuric acid, or a crust containing abundant clathrate hydrates. Realistic chemical-physical evolution scenarios differ greatly in detailed predictions, but they generally call for a highly impure and chemically layered crust. Some of these models could lead also to lateral chemical heterogeneities by diapiric upwellings and/or cryovolcanism. We describe some plausible geological consequences of the physical-chemical structures predicted from these scenarios. These predicted consequences and observed aspects of Europa's geology may serve as a basis for further analys is

  3. Magnetization of the oceanic crust - Thermoremanent magnetization of chemical remanent magnetization?

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Labrecque, J. L.

    1987-01-01

    A model was proposed in which chemical remanent magnetization (CRM) acquired within the first 20 Ma of crustal evolution may account for 80 percent of the bulk natural remanent magnetization (NRM) of older basalts. The CRM of the crust is acquired as the original thermoremanent magnetization (TRM) is lost through low temperature alteration. The CRM intensity and direction are controlled by the post-emplacement polarity history. This model explains several independent observations concerning the magnetization of the oceanic crust. The model accounts for amplitude and skewness dicrepancies observed in both the intermediate wavelength satellite field and the short wavelength sea surface magnetic anomaly pattern. It also explains the decay of magnetization away from the spreading axis, and the enhanced magnetization of the Cretaceous Quiet Zones while predicting other systematic variations with age in the bulk magnetization of the oceanic crust. The model also explains discrepancies in the anomaly skewness parameter observed for anomalies of Cretaceous age. Further studies indicate varying rates of TRM decay in very young crust which depicts the advance of low temperature alteration through the magnetized layer.

  4. Mid-ocean ridges produced thicker crust in the Jurassic than in Recent times

    NASA Astrophysics Data System (ADS)

    Van Avendonk, H. J.; Harding, J.; Davis, J. K.; Lawver, L. A.

    2016-12-01

    We present a compilation of published marine seismic refraction data to show that oceanic crust was 1.7 km thicker on average in the mid-Jurassic (170 Ma) than along the present-day mid-ocean ridge system. Plate reconstructions in a fixed hotspot framework show that the thickness of oceanic crust does not correlate with proximity to mantle hotspots, so it is likely that mid-plate volcanism is not the cause of this global trend. We propose that more melt was extracted from the upper mantle beneath mid-ocean ridges in the Jurassic than in recent times. Numerical studies show that temperature increase of 1 degree C in the mantle can lead to approximately 50-70 m thicker crust, so the upper mantle may have cooled 15-20 degrees C/100 Myr since 170 Ma. This average temperature decrease is larger than the secular cooling rate of the Earth's mantle, which is roughly 10 degrees C/100 Myr since the Archean. Apparently, the present-day configuration and dynamics of continental and oceanic plates removes heat more efficiently from the Earth's mantle than in its earlier history. The increase of ocean crustal thickness with plate age is also stronger in the Indian and Atlantic oceans than in the Pacific Ocean basin. This confirms that thermal insulation by the supercontinent Pangaea raised the temperature of the underlying asthenospheric mantle, which in turn led to more magmatic output at the Jurassic mid-ocean ridges of the Indian and Atlantic oceans.

  5. A comparison of chemical compositions of reported altered oceanic crusts and global MORB data set: implication for isotopic heterogeneity of recycled materials

    NASA Astrophysics Data System (ADS)

    Shimoda, G.; Kogiso, T.

    2017-12-01

    Chemical composition of altered oceanic crust is one of important constraints to delineate chemical heterogeneity of the mantle. Accordingly, many researchers have been studied to determine bulk chemical composition of altered oceanic crust mainly based on chemical compositions of old oceanic crusts at Site 801 and Site 417/418, and young crust at Site 504 (e.g., Staudigel et al., 1996; Bach et al. 2003; Kuo et al., 2016). Their careful estimation provided reliable bulk chemical compositions of these Sites and revealed common geochemical feature of alteration. To assess effect of recycling of altered oceanic crust on chemical evolution of the mantle, it might be meaningful to discuss whether the reported chemical compositions of altered oceanic crusts can represent chemical composition of globally subducted oceanic crusts. Reported chemical compositions of fresh glass or less altered samples from Site 801, 417/418 and 504 were highly depleted compared to that of global MORB reported by Gale et al. (2013), suggesting that there might be sampling bias. Hence, it could be important to consider chemical difference between oceanic crusts of these three Sites and global MORB to discuss effect of recycling of oceanic crust on isotopic heterogeneity of the mantle. It has been suggested that one of controlling factors of chemical variation of oceanic crust is crustal spreading rate because different degree of partial melting affects chemical composition of magmas produced at a mid-ocean ridge. Crustal spreading rate could also affect intensity of alteration. Namely, oceanic crusts produced at slow-spreading ridges may prone to be altered due to existence of larger displacement faults compared to fast spreading ridges which have relatively smooth topography. Thus, it might be significant to evaluate isotopic evolution of oceanic crusts those were produced at different spreading rates. In this presentation, we will provide a possible chemical variation of altered oceanic

  6. Osmium isotope variations in the oceans recorded by Fe-Mn crusts

    USGS Publications Warehouse

    Burton, K.W.; Bourdon, B.; Birck, J.-L.; Allegre, C.J.; Hein, J.R.

    1999-01-01

    This study presents osmium (Os) isotope data for recent growth surfaces of hydrogenetic ferromanganese (Fe-Mn) crusts from the Pacific, Atlantic and Indian Oceans. In general, these data indicate a relatively uniform Os isotopic composition for modern seawater, but suggest that North Atlantic seawater is slightly more radiogenic than that of the Pacific and Indian Oceans. The systematic difference in the Os isotopic composition between the major oceans probably reflects a greater input of old continental material with a high Re/Os ratio in the North Atlantic Ocean, consistent with the distribution of Nd and Pb isotopes. This spatial variation in the Os isotope composition in seawater is consistent with a residence time for Os of between 2 and 60 kyr. Indian Ocean samples show no evidence of a local source of radiogenic Os, which suggests that the present-day riverine input from the Himalaya-Tibet region is not a major source for Os. Recently formed Fe-Mn crusts from the TAG hydrothermal field in the North Atlantic yield an Os isotopic composition close to that of modern seawater, which indicates that, in this area, the input of unradiogenic Os from the hydrothermal alteration of oceanic crust is small. However, some samples from the deep Pacific (???4 km) possess a remarkably unradiogenic Os isotope composition (187Os/186Os ratios as low as 4.3). The compositional control of Os incorporation into the crusts and mixing relationships suggest that this unradiogenic composition is most likely due to the direct incorporation of micrometeoritic or abyssal peridotite particles, rather than indicating the presence of an unradiogenic deep-water mass. Moreover, this unradiogenic signal appears to be temporary, and local, and has had little apparent effect on the overall evolution of seawater. These results confirm that input of continental material through erosion is the dominant source of Os in seawater, but it is not clear whether global Os variations are due to the input

  7. Thin and layered subcontinental crust of the great Basin western north America inherited from Paleozoic marginal ocean basins?

    USGS Publications Warehouse

    Churkin, M.; McKee, E.H.

    1974-01-01

    The seismic profile of the crust of the northern part of the Basin and Range province by its thinness and layering is intermediate between typical continental and oceanic crust and resembles that of marginal ocean basins, especially those with thick sedimentary fill. The geologic history of the Great Basin indicates that it was the site of a succession of marginal ocean basins opening and closing behind volcanic arcs during much of Paleozoic time. A long process of sedimentation and deformation followed throughout the Mesozoic modifying, but possibly not completely transforming the originally oceanic crust to continental crust. In the Cenozoic, after at least 40 m.y. of quiescence and stable conditions, substantial crustal and upper-mantle changes are recorded by elevation of the entire region in isostatic equilibrium, crustal extension resulting in Basin and Range faulting, extensive volcanism, high heat flow and a low-velocity mantle. These phenomena, apparently the result of plate tectonics, are superimposed on the inherited subcontinental crust that developed from an oceanic origin in Paleozoic time and possibly retained some of its thin and layered characteristics. The present anomalous crust in the Great Basin represents an accretion of oceanic geosynclinal material to a Precambrian continental nucleus apparently as an intermediate step in the process of conversion of oceanic crust into a stable continental landmass or craton. ?? 1974.

  8. Evolution of Subducted Oceanic Crust in Dynamic Mantle Models

    NASA Astrophysics Data System (ADS)

    Brandenburg, J.; van Keken, P. E.; Ballentine, C.; Hauri, E.

    2006-12-01

    Isotopic ratios measured in oceanic basalts indicate the persistence of a highly differentiated and ancient mantle component. The provenance and distribution of this component are the subject of much discussion. A number of geodynamic studies have focused on the preservation of a chemically dense layer in the deepest mantle, while a smaller set of studies have explored the possibilities for its generation. We present an evaluation of the hypothesis that such a layer may represent the accumulation of subducted oceanic crust, with critical examination of the role that plate tectonics plays in mantle differentiation. In geodynamic models the treatment of plate tectonics controls crust production, subduction, and modulates the remixing rate. We use two methods for approximating plates in our models; prescription of a velocity boundary condition, and the force-balance method [1]. Emphasis is placed on the force-balance method, in which a numerical solution for the conservation of momentum is constructed by superposition. The force balance method has a minimum of free parameters compared to complex rheological descriptions that yield plate like behavior, and does not have the potential to artificially drive or hinder convection introduced by prescribing velocity boundary conditions. The mixing properties of the various methods are examined by comparison of embedded geochemical models for the isotopic evolution of Pb,U,Sm,Nd,Re,Os, and the noble gases. We find that the incorporation of strong plates leads to a mantle with increased stratification of heterogeneity. Sequestration of old oceanic crust in dense pools in the lowermost mantle is observed. However, the size and longevity of these dense pools decline considerably as realistic convective vigor is approached. Parameter space analysis is used to quantify this variability within the selection of models that reproduce Earth-like heat flow and plate velocities, and for comparison with the work of other authors. The

  9. Physical properties and seismic structure of Izu-Bonin-Mariana fore-arc crust: Results from IODP Expedition 352 and comparison with oceanic crust

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.; Almeev, R. R.; Michibayashi, K.; Sakuyama, T.; Ferré, E. C.; Kurz, W.

    2016-12-01

    Most of the well-preserved ophiolite complexes are believed to form in suprasubduction zone (SSZ) settings. We compare physical properties and seismic structure of SSZ crust at the Izu-Bonin-Mariana (IBM) fore arc with oceanic crust drilled at Holes 504B and 1256D to evaluate the similarities of SSZ and oceanic crust. Expedition 352 basement consists of fore-arc basalt (FAB) and boninite lavas and dikes. P-wave sonic log velocities are substantially lower for the IBM fore arc (mean values 3.1-3.4 km/s) compared to Holes 504B and 1256D (mean values 5.0-5.2 km/s) at depths of 0-300 m below the sediment-basement interface. For similar porosities, lower P-wave sonic log velocities are observed at the IBM fore arc than at Holes 504B and 1256D. We use a theoretical asperity compression model to calculate the fractional area of asperity contact Af across cracks. Af values are 0.021-0.025 at the IBM fore arc and 0.074-0.080 at Holes 504B and 1256D for similar depth intervals (0-300 m within basement). The Af values indicate more open (but not necessarily wider) cracks in the IBM fore arc than for the oceanic crust at Holes 504B and 1256D, which is consistent with observations of fracturing and alteration at the Expedition 352 sites. Seismic refraction data constrain a crustal thickness of 10-15 km along the IBM fore arc. Implications and inferences are that crust-composing ophiolites formed at SSZ settings could be thick and modified after accretion, and these processes should be considered when using ophiolites as an analog for oceanic crust.

  10. Marine Magnetic Anomalies, Oceanic Crust Magnetization, and Geomagnetic Time Variations

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Arkani-Hamed, J.

    2005-12-01

    Since the classic paper of Vine and Matthews (Nature, 1963), marine magnetic anomalies are commonly used to date the ocean floor through comparison with the geomagnetic polarity time scale and proper identification of reversal sequences. As a consequence, the classical model of rectangular prisms bearing a normal / reversed magnetization has been dominant in the literature for more than 40 years. Although the model explains major characteristics of the sea-surface magnetic anomalies, it is contradicted by (1) recent advances on the geophysical and petrologic structure of the slow-spreading oceanic crust, and (2) the observation of short-term geomagnetic time variations, both of which are more complex than assumed in the classical model. Marine magnetic anomalies may also provide information on the magnetization of the oceanic crust as well as short-term temporal fluctuations of the geomagnetic field. The "anomalous skewness", a residual phase once the anomalies have been reduced to the pole, has been interpreted either in terms of geomagnetic field variations or crustal structure. The spreading-rate dependence of anomalous skewness rules out the geomagnetic hypothesis and supports a spreading-rate dependent magnetic structure of the oceanic crust, with a basaltic layer accounting for most of the anomalies at fast spreading rates and an increasing contribution of the deeper layers with decreasing spreading rate. The slow cooling of the lower crust and uppermost mantle and serpentinization, a low temperature alteration process which produces magnetite, are the likely cause of this contribution, also required to account for satellite magnetic anomalies over oceanic areas. Moreover, the "hook shape" of some sea-surface anomalies favors a time lag in the magnetization acquisition processes between upper and lower magnetic layers: extrusive basalt acquires a thermoremanent magnetization as soon as emplaced, whereas the underlying peridotite and olivine gabbro cool slowly

  11. Physical Properties and Seismic Structure of Izu-Bonin-Mariana Fore Arc crust: Results From IODP Expedition 352 and Comparison with Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Christeson, G. L.; Morgan, S.; Kodaira, S.; Yamashita, M.

    2015-12-01

    Most of the well-preserved ophiolite complexes are believed to form in supra-subduction zone settings. One of the goals of IODP Expedition 352 was to test the supra-subduction zone ophiolite model by drilling forearc crust at the northern Izu-Bonin-Mariana (IBM) system. IBM forearc drilling successfully cored 1.22 km of volcanic lavas and underlying dikes at four sites. A surprising observation is that basement compressional velocities measured from downhole logging average ~3.0 km/s, compared to values of 5 km/s at similar basement depths at oceanic crust sites 504B and 1256D. Typically there is an inverse relationship in extrusive lavas between velocity and porosity, but downhole logging shows similar porosities for the IBM and oceanic crust sites, despite the large difference in measured compressional velocities. These observations can be explained by a difference in crack morphologies between IBM forearc and oceanic crust, with a smaller fractional area of asperity contact across cracks at EXP 352 sites than at sites 504B and 1256D. Seismic profiles at the IBM forearc image many faults, which may be related to the crack population.

  12. Helium isotopes in ferromanganese crusts from the central Pacific Ocean

    USGS Publications Warehouse

    Basu, S.; Stuart, F.M.; Klemm, V.; Korschinek, G.; Knie, K.; Hein, J.R.

    2006-01-01

    Helium isotopes have been measured in samples of two ferromanganese crusts (VA13/2 and CD29-2) from the central Pacific Ocean. With the exception of the deepest part of crust CD29-2 the data can be explained by a mixture of implanted solar- and galactic cosmic ray-produced (GCR) He, in extraterrestrial grains, and radiogenic He in wind-borne continental dust grains. 4He concentrations are invariant and require retention of less than 12% of the in situ He produced since crust formation. Loss has occurred by recoil and diffusion. High 4He in CD29-2 samples older than 42 Ma are correlated with phosphatization and can be explained by retention of up to 12% of the in situ-produced 4He. 3He/4He of VA13/2 samples varies from 18.5 to 1852 Ra due almost entirely to variation in the extraterrestrial He contribution. The highest 3He/4He is comparable to the highest values measured in interplanetary dust particles (IDPs) and micrometeorites (MMs). Helium concentrations are orders of magnitude lower than in oceanic sediments reflecting the low trapping efficiency for in-falling terrestrial and extraterrestrial grains of Fe-Mn crusts. The extraterrestrial 3He concentration of the crusts rules out whole, undegassed 4–40 μm diameter IDPs as the host. Instead it requires that the extraterrestrial He inventory is carried by numerous particles with significantly lower He concentrations, and occasional high concentration GCR-He-bearing particles.

  13. Old Continental Crust Underlying Juvenile Oceanic Arc: Evidence From Northern Arabian-Nubian Shield, Egypt

    NASA Astrophysics Data System (ADS)

    Li, Xian-Hua; Abd El-Rahman, Yasser; Abu Anbar, Mohamed; Li, Jiao; Ling, Xiao-Xiao; Wu, Li-Guang; Masoud, Ahmed E.

    2018-04-01

    The Neoproterozoic Arabian-Nubian Shield (ANS) is the best preserved and the largest exposed Neoproterozoic juvenile crust on Earth. While the lithology and early Sr and Nd isotopic data demonstrate that the ANS crust is overwhelmingly juvenile, pre-ANS old zircon crystals have been increasingly recognized in the ANS igneous and sedimentary rocks, casting doubt on the "juvenility" of the ANS crust. In order to understand the origin of the old continental materials in the ANS and its roles in generation of juvenile oceanic arcs, we carry out for the first time an integrated in situ analysis of zircon U-Pb age and Hf-O isotopes for greywacke and felsic volcanic cobble samples from the Atud Formation in the Eastern Desert of northwestern part of the ANS. Our data indicate that the Atud Formation was deposited between ca. 720 and 700 Ma, concurrent with the production of oceanic arcs in the ANS. The Atud greywacke was derived from the erosion of a proximal arc terrane that contains numerous old continental crust materials. We identify for the first time a 755-Ma felsic volcanic cobble from the Atud Formation that is derived from old continental materials during juvenile crust production, suggesting presence of an old continental crust substrate that underlies the ANS. Our work demonstrates that reworking of old continental crust played important roles in generation of oceanic arcs in the northwestern ANS that is likely much less juvenile than previously thought. Thus, the crustal growth rates calculated based on estimates of temporal island arc development need to be revised.

  14. The origin of oceanic crust and metabasic rocks protolith, the Luk Ulo Mélange Complex, Indonesia

    NASA Astrophysics Data System (ADS)

    Permana, H.; Munasri; Mukti, Maruf M.; Nurhidayati, A. U.; Aribowo, S.

    2018-02-01

    The Luk Ulo Mélange Complex (LUMC) is composed of tectonic slices of rocks that surrounded by scaly clay matrix. These rocks consist of serpentinite, gabbro, diabase, and basalt, eclogite, blueschist, amphibolite, schist, gneiss, phylite and slate, granite, chert, red limestone, claystone and sandstone. The LUMC was formed since Paleocene to Eocene, gradually uplifted of HP-UHP metabasic-metapelite (P: 20-27kbar; T: 410-628°C) to near surface mixed with hemipelagic sedimentary rocks. The metamorphic rocks were formed during 101-125 Ma (Early Cretaceous) within 70 to 100 km depth and ∼6°C/km thermal gradient. It took about 50-57 Myr for these rocks to reach the near surface during Paleocene-Eocene, with an uplift rate at ∼1.4-1.8 km/year to form the mélange complex. The low thermal gradient was due to subduction of old and cold oceanic crust. The subducted oceanic crust (MORB) as protolith of Cretaceous metabasic rocks must be older than Cretaceous. The data show that the basalt of oceanic crust is Cretaceous (130-81 Ma) comparable to the age of the cherts (Early to Late Cretaceous). Therefore, we consider that neither oceanic crust exposed in LUMC nor all of part of the old oceanic crust is the protolith of LUMC metabasic subducted beneath the Eurasian Plate. These oceanic rocks possibly originated or part of the edge of micro-continental that merged as a part of the LUMC during the collision with the Eurasian margin.

  15. Seismic structure of oceanic crust at ODP borehole 504B: Investigating anisotropy and layer 2 characteristics

    NASA Astrophysics Data System (ADS)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2015-12-01

    Fracture and fault networks in the upper oceanic crust influence the circulation of hydrothermal fluids and heat transfer between crust and ocean. These fractures form by extensional stresses, with a predominant orientation parallel to the ridge axis, creating porosity- and permeability-derived anisotropy that can be measured in terms of seismic velocity. These properties change as the crust ages and evolves through cooling, alteration and sedimentation. The rate at which these changes occur and their effects on oceanic crustal structure and hydrothermal flow patterns are currently not well constrained. The NERC-funded OSCAR project aims to understand the development of upper oceanic crust, the extent and influence of hydrothermal circulation on the crust, and the behavior of fluids flowing in fractured rock. We show P-wave velocity models centered on DSDP/ODP Hole 504B, located ~200 km south of the Costa Rica Rift, derived from data acquired during a recent integrated geophysics and oceanography survey of the Panama Basin. The data were recorded by 25 four-component OBSs deployed in a grid, that recorded ~10,000 full azimuthal coverage shots fired by a combined high- and low-frequency seismic source. Both reflection and refraction data are integrated to reveal the seismic velocity structure of the crust within the 25 km by 25 km grid. The down-hole geological structure of 6 Ma crust at 504B comprises 571.5 m of extrusive basalts overlying a 209 m transition zone of mixed pillows and dikes containing a clear alteration boundary, which grades to >1050 m of sheeted dikes. Our model results are compared with this lithological structure and other previously published results to better understand the nature of velocity changes within seismic layer 2. The data provide a 3D framework, which together with analysis of the S-wave arrivals and particle motion studies, constrain estimates of the seismic anisotropy and permeability structure of the upper oceanic crust as it

  16. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.

    PubMed

    Walter, M J; Kohn, S C; Araujo, D; Bulanova, G P; Smith, C B; Gaillou, E; Wang, J; Steele, A; Shirey, S B

    2011-10-07

    A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower-mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.

  17. Anaerobic Fungi: A Potential Source of Biological H2 in the Oceanic Crust

    PubMed Central

    Ivarsson, Magnus; Schnürer, Anna; Bengtson, Stefan; Neubeck, Anna

    2016-01-01

    The recent recognition of fungi in the oceanic igneous crust challenges the understanding of this environment as being exclusively prokaryotic and forces reconsiderations of the ecology of the deep biosphere. Anoxic provinces in the igneous crust are abundant and increase with age and depth of the crust. The presence of anaerobic fungi in deep-sea sediments and on the seafloor introduces a type of organism with attributes of geobiological significance not previously accounted for. Anaerobic fungi are best known from the rumen of herbivores where they produce molecular hydrogen, which in turn stimulates the growth of methanogens. The symbiotic cooperation between anaerobic fungi and methanogens in the rumen enhance the metabolic rate and growth of both. Methanogens and other hydrogen-consuming anaerobic archaea are known from subseafloor basalt; however, the abiotic production of hydrogen is questioned to be sufficient to support such communities. Alternatively, biologically produced hydrogen could serve as a continuous source. Here, we propose anaerobic fungi as a source of bioavailable hydrogen in the oceanic crust, and a close interplay between anaerobic fungi and hydrogen-driven prokaryotes. PMID:27433154

  18. 238U-234U-230Th disequilibrium in hydrogenous oceanic Fe-Mn crusts: Palaeoceanographic record or diagenetic alteration?

    USGS Publications Warehouse

    Chabaux, F.; O'Nions, R. K.; Cohen, A.S.; Hein, J.R.

    1997-01-01

    A detailed TIMS study of (234Uexc/238U), (230Th/232Th), and Th/U ratios have been performed on the outermost margin of ten hydrogenous Fe-Mn crusts from the equatorial Pacific Ocean and west-central Indian Ocean. Th/U concentration ratios generally decrease from the crust's surface down to 0.5-1 mm depth and growth rates estimated by uranium and thorium isotope ratios are significantly different in Fe-Mn crusts from the Peru Basin and the west-central Indian Ocean. Fe-Mn crusts from the same geographical area define a single trend in plots of Ln (234Uexc/238U) vs. Ln(230Th/232Th) and Th/U ratios vs. age of the analysed fractions. Results suggest that (1) hydrogenous Fe-Mn crusts remain closed-systems after formation, and consequently (2) the discrepancy observed between the 230Th and 234U chronometers in Fe-Mn crusts, and the variations of the Th/U ratios through the margin of Fe-Mn crusts, are not due to redistribution of uranium and thorium isotopes after oxyhydroxide precipitation, but rather to temporal variations of both Th/U and initial thorium activity ratios recorded by the Fe-Mn layers. Implications of these observations for determination of Fe-Mn crust growth-rates are discussed. Variations of both Th/U and initial Th activity ratios in Fe-Mn crusts might be related to changes in particle input to seawater and/or changes in ocean circulation during the last 150 ka. Copyright ?? 1997 Elsevier Science Ltd.

  19. Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, A.; Müller, R. D.; Wang, X.; O'Callaghan, S.; Cannon, J.; Wright, N. M.

    2017-12-01

    Tracing sedimentation through time on existing and vanished seafloor is imperative for constraining long-term eustasy and for calculating volumes of subducted deep-sea sediments that contribute to global geochemical cycles. We present regression algorithms that incorporate the age of the ocean crust and the mean distance to the nearest passive margin to predict sediment thicknesses and long-term decompacted sedimentation rates since 200 Ma. The mean sediment thickness decreases from ˜220 m at 200 Ma to a minimum of ˜140 m at 130 Ma, reflecting the replacement of old Panthalassic ocean floor with young sediment-poor mid-ocean ridges, followed by an increase to ˜365 m at present-day. This increase reflects the accumulation of sediments on ageing abyssal plains proximal to passive margins, coupled with a decrease in the mean distance of any parcel of ocean crust to the nearest passive margin by over 700 km, and a doubling of the total passive margin length at present-day. Mean long-term sedimentation rates increase from ˜0.5 cm/ky at 160 Ma to over 0.8 cm/ky today, caused by enhanced terrigenous sediment influx along lengthened passive margins, superimposed by the onset of ocean-wide carbonate sedimentation. Our predictive algorithms, coupled to a plate tectonic model, provide a framework for constraining the seafloor sediment-driven eustatic sea-level component, which has grown from ˜80 to 210 m since 120 Ma. This implies a long-term sea-level rise component of 130 m, partly counteracting the contemporaneous increase in ocean basin depth due to progressive crustal ageing.

  20. Constraints on cooling of the lower ocean crust from epidote veins in the Wadi Gideah section, Oman Ophiolite

    NASA Astrophysics Data System (ADS)

    Diehl, Alexander; Bieseler, Bastian; Bach, Wolfgang

    2017-04-01

    Determining the depth, extent, and timing of high-temperature hydrothermal alteration in the ocean crust is key to understanding how the lower oceanic crust is cooled. We report data from 18 epidote veins from the Wadi Gideah section in the Wadi Tayin block, which is a reference section for alteration of the lower crust formed at a fast oceanic spreading center. 87Sr/86Sr ratios feature a narrow range from 0.70429 to 0.70512, while O isotope compositions vary between - 0.7 and +4.9‰ in δ18OSMOW. These compositions indicate uniform water-rock ratios between 1 and 2 and formation temperatures in the range of 300 to 450˚ C. There is no systematic trend in Sr and O isotope compositions down section. Fluid inclusion entrapment temperatures for a subset of four samples linearly increase from 338˚ C to 465˚ C in lowermost 3 km of crust of the Wadi Gideah section. Salinities are uniform throughout and scatter closely around seawater values. We developed a numerical cooling model to assign possible crustal ages to the thermal gradients observed. For pure conductive cooling, these ages range between 4 and 20 Ma. Our thermal model runs with a high Nusselt number (Nu) of 20 down to the base of the crust indicate that the epidote veins may record this near-axial deep circulation in crust of only 0.1 Ma (5-7 km off axis). When off-axis circulation is shut off in the more distal flanks, however, massive conductive reheating of the lower crust by as much as 200˚ C is predicted to take place. But there is no evidence for prograde metamorphic reactions in the samples we studied (or other hydrothermally altered oceanic gabbros). An intermediate model, in which Nu is 20 down to 2 km for the first 0.1 Ma and Nu is then 4 down to 6.5 km depth off axis to 1 Ma, is consistent with the permeability distribution within the ocean crust and predicts a thermal gradient for the lower crust that matches the observed one for ages between 1 and 3 Ma. The most plausible explanation for the

  1. Secular variations of iron isotopes in ferromanganese crusts: evidences for deeply sourced iron in the Pacific Ocean?

    NASA Astrophysics Data System (ADS)

    Rouxel, O. J.; Gueguen, B.

    2016-12-01

    Ferromanganese (Fe-Mn) crusts are potential archive of the Fe isotope composition of deep seawater through time. Here, we report Fe isotope composition of two pairs of Fe-Mn crusts collected on two volcanic seamounts from the Northern Pacific Ocean (Apuupuu Seamount, Hawaii) and the Southern Pacific Ocean (near Rurutu Island, Austral archipelago of French Polynesia). This approach allows (a) a direct comparison of the Fe isotope record in Fe-Mn crusts from the same seamount in order to address local effects, and (b) a comparison of geochemical composition of crusts between North and South Pacific in order to address the effect of more global geochemical processes. The results show that, despite different growth rates, diagenetic history, textures and geochemical patterns, Fe-Mn crusts from both North and South Pacific Oceans have fairly homogenous Fe isotope compositions over the last 17 Ma, yielding average δ56Fe values of -0.22 ± 0.20‰ (1sd, n = 54). The results also show striking correlations between Fe and Pb isotope ratios, indicating that local mixing between water masses is the main factor controlling Fe isotope composition in FeMn crusts. Recently, Horner et al. (2015) reported a range of δ56Fe values from -1.12‰ to 1.54‰ along a 76 Ma-old FeMn crust from the central pacific. However, secular variations of Fe isotopes inferred from other FeMn crusts in the Central North Pacific and Western Pacific (Yang and Rouxel, unpublished) show different patterns over the last 40 Ma, with δ56Fe ranging from -0.07 to -0.61‰ (n=81). Hence, the application of Fe isotopes as paleoceanographic proxies to trace deeply sourced iron at the scale of oceanic basins should be used with caution, prompting for an integrative approach combining diverse yet complimentary geochemical proxies.

  2. Uppermost oceanic crust structure and properties from multichannel seismic data at the Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Becel, A.; Carton, H. D.; Shillington, D. J.

    2017-12-01

    The most heterogeneous, porous and permeable layer within a subducting oceanic crust is the uppermost layer called Layer 2A. This layer, made of extrusive basalts, forms at the ridge axis and persists as a thin ( 600 m) low-velocity cap in old crust. Nearing the trench axis, when oceanic plate bends, normal faults can be formed or reactivated at the outer-rise allowing a more vigorous hydrothermal circulation to resume within this layer. Porosity and heterogeneity within this layer are important to assess because these parameters might have a profound impact on subduction zone processes. However, conventional refraction data quality is rarely good enough to look into detail into the properties of the uppermost oceanic layer. Here we use 2D marine long-offset multi-channel seismic (MCS) reflection data collected offshore of the Alaska Peninsula during the ALEUT Program. The dataset was acquired aboard the R/V Marcus Langseth with a 636-channels, 8-km long streamer. We present initial results from three 140 km long profiles across the 52-56Myr old incoming Pacific oceanic crust formed at fast spreading rate: two perpendicular margin and one parallel margin profiles. Those profiles are located outboard of the Shumagin gaps. Outboard of this subduction zone segment, abundant bending related normal faults are imaged and concentrated within 50-60 km of the trench. Long-offset MCS data exhibit a prominent triplication that includes postcritical reflections and turning waves within the upper crust at offsets larger than 3 km. The triplication suggests the presence of a velocity discontinuity within the upper oceanic crust. We follow a systematic and uniform approach to extract upper crustal post-critical reflections and add them to them to the vertical incidence MCS images. Images reveal small-scale variations in the thickness of the Layer 2A and the strength of its base along the profiles. The second step consists of the downward continuation followed by travel

  3. A deep hydrothermal fault zone in the lower oceanic crust, Samail ophiolite Oman

    NASA Astrophysics Data System (ADS)

    Zihlmann, B.; Mueller, S.; Koepke, J.; Teagle, D. A. H.

    2017-12-01

    Hydrothermal circulation is a key process for the exchange of chemical elements between the oceans and the solid Earth and for the extraction of heat from newly accreted crust at mid-ocean ridges. However, due to a dearth of samples from intact oceanic crust, or continuous samples from ophiolites, there remain major short comings in our understanding of hydrothermal circulation in the oceanic crust, especially in the deeper parts. In particular, it is unknown whether fluid recharge and discharge occurs pervasively or if it is mainly channeled within discrete zones such as faults. Here, we present a description of a hydrothermal fault zone that crops out in Wadi Gideah in the layered gabbro section of the Samail ophiolite of Oman. Field observations reveal a one meter thick chlorite-epidote normal fault with disseminated pyrite and chalcopyrite and heavily altered gabbro clasts at its core. In both, the hanging and the footwall the gabbro is altered and abundantly veined with amphibole, epidote, prehnite and zeolite. Whole rock mass balance calculations show enrichments in Fe, Mn, Sc, V, Co, Cu, Rb, Zr, Nb, Th and U and depletions of Si, Ca, Na, Cr, Zn, Sr, Ba and Pb concentrations in the fault rock compared to fresh layered gabbros. Gabbro clasts within the fault zone as well as altered rock from the hanging wall show enrichments in Na, Sc, V, Co, Rb, Zr, Nb and depletion of Cr, Ni, Cu, Zn, Sr and Pb. Strontium isotope whole rock data of the fault rock yield 87Sr/86Sr ratios of 0.7046, which is considerably more radiogenic than fresh layered gabbro from this locality (87Sr/86Sr = 0.7030 - 0.7034), and similar to black smoker hydrothermal signatures based on epidote, measured elsewhere in the ophiolite. Altered gabbro clasts within the fault zone show similar values with 87Sr/86Sr ratios of 0.7045 - 0.7050, whereas hanging wall and foot wall display values only slightly more radiogenic than fresh layered gabbro.The secondary mineral assemblages and strontium isotope

  4. Stability of hydrous phases in subducting oceanic crust

    USGS Publications Warehouse

    Liu, J.; Bohlen, S.R.; Ernst, W.G.

    1996-01-01

    Experiments in the basalt-H2O system at 600-950??C and 0.8-3.0 GPa, demonstrate that breakdown of amphibole represents the final dehydration of subducting oceanic tholeiite at T ??? 650??C; the dehydration H2O occurs as a free fluid or in silicate melt co-existing with an anhydrous eclogite assemblage. In contrast, about 0.5 wt% of H2O is stored in lawsonite at 600??C, 3.0 GPa. Our results suggest that slab melting occurs at depths shallower than 60 km for subducting young oceanic crust; along a subduction zone with an average thermal gradient higher than 7??C/km, H2O stored in hydrated low-potassium, metabasaltic layers cannot be subducted to depths greater than 100 km, then released to generate arc magma.

  5. Seismic Wave Velocity in the Subducted Oceanic Crust from Autocorrelation of Tectonic Tremor Signals

    NASA Astrophysics Data System (ADS)

    Ducellier, A.; Creager, K.

    2017-12-01

    Hydration and dehydration of minerals in subduction zones play a key role in the geodynamic processes that generate seismicity and that allow tectonic plates to subduct. Detecting the presence of water in the subducted plate is thus crucial to better understand the seismogenesis and the consequent seismic hazard. A landward dipping, low velocity layer has been detected in most subduction zones. In Cascadia, this low velocity zone is characterized by a low S-wave velocity and a very high Poisson's ratio, which has been interpreted as high pore-fluid pressure in the upper half part of the subducted oceanic crust. Most previous studies were based on seismic reflection imaging, receiver function analysis, or body wave tomography, with seismic sources located far from the low velocity zone. In contrast, the sources of the tectonic tremors generated during Episodic Tremor and Slip (ETS) events are located on the plate boundary. As the sources of the tremors are much closer to the low velocity zone, seismic waves recorded during ETS events should illuminate the area with greater precision. Most methods to detect and locate tectonic tremors and low-frequency earthquakes are based on the cross correlation of seismic signals; either signals at the same station for different events, or the same event at different stations. We use the autocorrelation of the seismic signal recorded by eight arrays of stations, located in the Olympic Peninsula, Washington. Each tremor, assumed to be on the plate boundary, generates a direct wave and reflected and converted waves from both the strong shear-wave velocity contrast in the mid-oceanic crust, and from the Moho of the subducted oceanic crust. The time lag between the arrivals of these different waves at a seismic station corresponds to a peak of amplitude on the autocorrelation signals. Using the time lags observed for different locations of the tremor source, we intend to invert for the seismic wave velocity of the subducted oceanic

  6. Dating the growth of oceanic crust at a slow-spreading ridge

    USGS Publications Warehouse

    Schwartz, J.J.; John, Barbara E.; Cheadle, Michael J.; Miranda, E.A.; Grimes, Craig B.; Wooden, J.L.; Dick, H.J.B.

    2005-01-01

    Nineteen uranium-lead zircon ages of lower crustal gabbros from Atlantis Bank, Southwest Indian Ridge, constrain the growth and construction of oceanic crust at this slow-spreading midocean ridge. Approximately 75% of the gabbros accreted within error of the predicted seafloor magnetic age, whereas ???25% are significantly older. These anomalously old samples suggest either spatially varying stochastic intrusion at the ridge axis or, more likely, crystallization of older gabbros at depths of ???5 to 18 kilometers below the base of crust in the cold, axial lithosphere, which were uplifted and intruded by shallow-level magmas during the creation of Atlantis Bank.

  7. Metastable garnet in oceanic crust at the top of the lower mantle.

    PubMed

    Kubo, Tomoaki; Ohtani, Eiji; Kondo, Tadashi; Kato, Takumi; Toma, Motomasa; Hosoya, Tomofumi; Sano, Asami; Kikegawa, Takumi; Nagase, Toshiro

    As oceanic tectonic plates descend into the Earth's lower mantle, garnet (in the basaltic crust) and silicate spinel (in the underlying peridotite layer) each decompose to form silicate perovskite-the 'post-garnet' and 'post-spinel' transformations, respectively. Recent phase equilibrium studies have shown that the post-garnet transformation occurs in the shallow lower mantle in a cold slab, rather than at approximately 800 km depth as earlier studies indicated, with the implication that the subducted basaltic crust is unlikely to become buoyant enough to delaminate as it enters the lower mantle. But here we report results of a kinetic study of the post-garnet transformation, obtained from in situ X-ray observations using sintered diamond anvils, which show that the kinetics of the post-garnet transformation are significantly slower than for the post-spinel transformation. Although metastable spinel quickly breaks down at a temperature of 1,000 K, we estimate that metastable garnet should survive of the order of 10 Myr even at 1,600 K. Accordingly, the expectation of where the subducted oceanic crust would be buoyant spans a much wider depth range at the top of the lower mantle, when transformation kinetics are taken into account.

  8. The record of mantle heterogeneity preserved in Earth's oceanic crust

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Parkinson, I. J.; Schiano, P.; Gannoun, A.; Laubier, M.

    2017-12-01

    Earth's oceanic crust is produced by melting of the upper mantle where it upwells beneath mid-ocean ridges, and provides a geographically widespread elemental and isotopic `sample' of Earth's mantle. The chemistry of mid-ocean ridge basalts (MORB), therefore, holds key information on the compositional diversity of the upper mantle, but the problem remains that mixing and reaction during melt ascent acts to homogenise the chemical variations they acquire. Nearly all isotope and elemental data obtained thus far are for measurements of MORB glass, and this represents the final melt to crystallise, evolving in an open system. However, the crystals that are present are often not in equilibrium with their glass host. Melts trapped in these minerals indicate that they crystallised from primitive magmas that possess diverse compositions compared to the glass. Therefore, these melt inclusions preserve information on the true extent of the mantle that sources MORB, but are rarely amenable to precise isotope measurement. An alternative approach is to measure the isotope composition of the primitive minerals themselves. Our new isotope data indicates that these minerals crystallised from melts with significantly different isotope compositions to their glass host, pointing to a mantle source that has experienced extreme melt depletion. These primitive minerals largely crystallised in the lower oceanic crust, and our preliminary data for lower crustal rocks and minerals shows that they preserve a remarkable range of isotope compositions. Taken together, these results indicate that the upper mantle sampled by MORB is extremely heterogeneous, reflecting depletion and enrichment over much of Earth's geological history.

  9. Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts

    NASA Astrophysics Data System (ADS)

    Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter

    2018-03-01

    Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (<50% and <25% crystallization). Step-like compatible Cr (and co-varying Al) and incompatible Ti, Zr, Y and rare earth elements (REE) decrease from anhedral core1 to overgrown core2, while Mg# and Sr/Sr* ratios increase. We show that partial resorption textures and geochemical zoning result from partial melting of REE-poor lower oceanic crust gabbroic cumulate (protolith) following intrusion by hot primitive mantle-derived melt, and subsequent overgrowth crystallization (refertilization) from a hybrid melt. In addition, towards the outer rims of crystals, Ti, Zr, Y and the REE strongly increase and Al, Cr, Mg#, Eu/Eu* and Sr/Sr* decrease, suggesting crystallization either from late-stage percolating relatively differentiated melt or from in situ trapped melt. Intrusion of primitive hot reactive melt and percolation of interstitial

  10. Origin of dipping structures in fast-spreading oceanic lower crust offshore Alaska imaged by multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Bécel, Anne; Shillington, Donna J.; Nedimović, Mladen R.; Webb, Spahr C.; Kuehn, Harold

    2015-08-01

    Multi-channel seismic (MCS) reflection profiles across the Pacific Plate south of the Alaska Peninsula reveal the internal structure of mature oceanic crust (48-56 Ma) formed at fast to intermediate spreading rates during and after a major plate re-organization. Oceanic crust formed at fast spreading rates (half spreading rate ∼ 74 mm /yr) has smoother basement topography, thinner sediment cover with less faulting, and an igneous section that is at least 1 km thicker than crust formed at intermediate spreading rates (half spreading rate ∼ 28- 34 mm /yr). MCS data across fast-spreading oceanic crust formed during plate re-organization contain abundant bright reflections, mostly confined to the lower crust above a highly reflective Moho transition zone, which has a reflection coefficient (RC) of ∼0.1. The lower crustal events dip predominantly toward the paleo-ridge axis at ∼10-30°. Reflections are also imaged in the uppermost mantle, which primarily dip away from the ridge at ∼10-25°, the opposite direction to those observed in the lower crust. Dipping events in both the lower crust and upper mantle are absent on profiles acquired across the oceanic crust formed at intermediate spreading rates emplaced after plate re-organization, where a Moho reflection is weak or absent. Our preferred interpretation is that the imaged lower crustal dipping reflections within the fast spread crust arise from shear zones that form near the spreading center in the region characterized by interstitial melt. The abundance and reflection amplitude strength of these events (RC ∼ 0.15) can be explained by a combination of solidified melt that was segregated within the shear structures, mylonitization of the shear zones, and crystal alignment, all of which can result in anisotropy and constructive signal interference. Formation of shear zones with this geometry requires differential motion between the crust and upper mantle, where the upper mantle moves away from the ridge

  11. Millennial-scale ocean acidification and late Quaternary decline of cryptic bacterial crusts in tropical reefs.

    PubMed

    Riding, R; Liang, L; Braga, J C

    2014-09-01

    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21,000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thickness over the past 14,000 years with largest reduction occurring 12,000-10,000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects. © 2014 John Wiley & Sons Ltd.

  12. Dismembered Archaean ophiolite in the southeastern Wind River Mountains, Wyoming: Remains of Archaean oceanic crust

    NASA Technical Reports Server (NTRS)

    Harper, G. D.

    1986-01-01

    Archean mafic and ultramafic rocks occur in the southeastern Wind River Mountains near Atlantic City, Wyoming and are interpreted to represent a dismembered ophiolite suite. The ophiolitic rocks occur in a thin belt intruded by the 2.6 Ga Louis Lake Batholith on the northwest. On the southeast they are in fault contact with the Miners Delight Formation comprised primarily of metagraywackes with minor calc-alkaline volcanics. The ophiolitic and associated metasedimentry rocks (Goldman Meadows Formation) have been multiply deformed and metamorphosed. The most prominant structures are a pronounced steeply plunging stretching lineation and steeply dipping foliation. These structural data indicate that the ophiolitic and associated metasedimentary rocks have been deformed by simple shear. The ophiolitic rocks are interpreted as the remains of Archean oceanic crust, probably formed at either a mid-ocean ridge or back-arc basin. All the units of a complete ophiolite are present except for upper mantle periodotities. The absence of upper mantle rocks may be the result of detactment within the crust, rather than within the upper mantle, during emplacement. This could have been the result of a steeper geothermal gradient in the Archean oceanic lithosphere, or may have resulted from a thicker oceanic crust in the Archean.

  13. Pliocene granodioritic knoll with continental crust affinities discovered in the intra-oceanic Izu-Bonin-Mariana Arc: Syntectonic granitic crust formation during back-arc rifting

    NASA Astrophysics Data System (ADS)

    Tani, Kenichiro; Dunkley, Daniel J.; Chang, Qing; Nichols, Alexander R. L.; Shukuno, Hiroshi; Hirahara, Yuka; Ishizuka, Osamu; Arima, Makoto; Tatsumi, Yoshiyuki

    2015-08-01

    A widely held hypothesis is that modern continental crust of an intermediate (i.e. andesitic) bulk composition forms at intra-oceanic arcs through subduction zone magmatism. However, there is a critical paradox in this hypothesis: to date, the dominant granitic rocks discovered in these arcs are tonalite, rocks that are significantly depleted in incompatible (i.e. magma-preferred) elements and do not geochemically and petrographically represent those of the continents. Here we describe the discovery of a submarine knoll, the Daisan-West Sumisu Knoll, situated in the rear-arc region of the intra-oceanic Izu-Bonin-Mariana Arc. Remotely-operated vehicle surveys reveal that this knoll is made up entirely of a 2.6 million year old porphyritic to equigranular granodiorite intrusion with a geochemical signature typical of continental crust. We present a model of granodiorite magma formation that involves partial remelting of enriched mafic rear-arc crust during the initial phase of back-arc rifting, which is supported by the preservation of relic cores inherited from initial rear-arc source rocks within magmatic zircon crystals. The strong extensional tectonic regime at the time of intrusion may have allowed the granodioritic magma to be emplaced at an extremely shallow level, with later erosion of sediment and volcanic covers exposing the internal plutonic body. These findings suggest that rear-arc regions could be the potential sites of continental crust formation in intra-oceanic convergent margins.

  14. Models and Experiments of Melt-Rock Interaction in the Lower Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Orton, W. H., II; Liang, Y.; Sanfilippo, A.

    2017-12-01

    Understanding the processes of melt-rock interaction in the lower oceanic crust isimportant to the interpretation of mid-ocean ridge basalt (MORB) and the petrogenesis of lowercrustal cumulates. Petrologic and geochemical studies of cumulates from the lower crustalregions of oceanic lithosphere have identified a number of textural and chemical features that arepertinent to melt-rock reaction (e.g., high-Mg# clinopyroxene oikocrysts within local gabbroicregions in troctolite bodies). The purpose of the present study is to provide some referenceexamples of MORB melt and cumulate mush interaction under controlled conditions. Suchsimple experiments are useful in sorting out crystallization, dissolution, re-precipitation, anddiffusion processes in the cumulate mush and in developing better models for melt transport andmelt-rock interaction in the lower oceanic crust.We performed piston cylinder experiments at 0.5-0.7 GPa and 1000-1250°C reacting anolivine or olivine + plagioclase cumulate mush and an intruding MORB melt in a graphite-linedmolybdenum capsule. Our experiments consist of two steps: (1) reaction at 1250°C for 10 to 24hours; and (2) reactive crystallization to a lower temperature through controlled cooling overseveral days. Cooling promotes in situ crystallization of interstitial melts, allowing us to bettercharacterize the mineral compositional trends produced and observed by melt-rock reaction andcrystallization. Reaction at 1250°C produced an olivine + melt mush with small rounded crystalscharacteristic of dissolution. Significant crystal settling was also observed at large melt-to- rockratio. Cooling with continued reaction resulted in the formation of a plagioclase matrix withpoikilitic clinopyroxene oikocrysts containing plagioclase and relict olivine as chadacrysts.Clinopyroxenes were in a reaction relationship with both plagioclase and olivine. In somesamples, multiple phases of clinopyroxene and plagioclase were present, each with

  15. Structural Evolution of Transform Fault Zones in Thick Oceanic Crust of Iceland

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Brandsdottir, B.; Horst, A. J.; Farrell, J.

    2017-12-01

    Spreading centers in Iceland are offset from the regional trend of the Mid-Atlantic Ridge by the Tjörnes Fracture Zone (TFZ) in the north and the South Iceland Seismic Zone (SISZ) in the south. Rift propagation away from the center of the Iceland hotspot, has resulted in migration of these transform faults to the N and S, respectively. As they migrate, new transform faults develop in older crust between offset spreading centers. Active transform faults, and abandoned transform structures left in their wakes, show features that reflect different amounts (and durations) of slip that can be viewed as a series of snapshots of different stages of transform fault evolution in thick, oceanic crust. This crust has a highly anisotropic, spreading fabric with pervasive zones of weakness created by spreading-related normal faults, fissures and dike margins oriented parallel to the spreading centers where they formed. These structures have a strong influence on the mechanical properties of the crust. By integrating available data, we suggest a series of stages of transform development: 1) Formation of an oblique rift (or leaky transform) with magmatic centers, linked by bookshelf fault zones (antithetic strike-slip faults at a high angle to the spreading direction) (Grimsey Fault Zone, youngest part of the TFZ); 2) broad zone of conjugate faulting (tens of km) (Hreppar Block N of the SISZ); 3) narrower ( 20 km) zone of bookshelf faulting aligned with the spreading direction (SISZ); 4) mature, narrow ( 1 km) through-going transform fault zone bounded by deformation (bookshelf faulting and block rotations) distributed over 10 km to either side (Húsavík-Flatey Fault Zone in the TFZ). With progressive slip, the transform zone becomes progressively narrower and more closely aligned with the spreading direction. The transform and non-transform (beyond spreading centers) domains may be truncated by renewed propagation and separated by subsequent spreading. This perspective

  16. Inversion of ocean-bottom seismometer (OBS) waveforms for oceanic crust structure: a synthetic study

    NASA Astrophysics Data System (ADS)

    Li, Xueyan; Wang, Yanbin; Chen, Yongshun John

    2016-08-01

    The waveform inversion method is applied—using synthetic ocean-bottom seismometer (OBS) data—to study oceanic crust structure. A niching genetic algorithm (NGA) is used to implement the inversion for the thickness and P-wave velocity of each layer, and to update the model by minimizing the objective function, which consists of the misfit and cross-correlation of observed and synthetic waveforms. The influence of specific NGA method parameters is discussed, and suitable values are presented. The NGA method works well for various observation systems, such as those with irregular and sparse distribution of receivers as well as single receiver systems. A strategy is proposed to accelerate the convergence rate by a factor of five with no increase in computational complexity; this is achieved using a first inversion with several generations to impose a restriction on the preset range of each parameter and then conducting a second inversion with the new range. Despite the successes of this method, its usage is limited. A shallow water layer is not favored because the direct wave in water will suppress the useful reflection signals from the crust. A more precise calculation of the air-gun source signal should be considered in order to better simulate waveforms generated in realistic situations; further studies are required to investigate this issue.

  17. Structures within the oceanic crust of the central South China Sea basin and their implications for oceanic accretionary processes

    NASA Astrophysics Data System (ADS)

    Ding, Weiwei; Sun, Zhen; Dadd, Kelsie; Fang, Yinxia; Li, Jiabiao

    2018-04-01

    Internal structures in mature oceanic crust can elucidate understanding of the processes and mechanism of crustal accretion. In this study, we present two multi-channel seismic (MCS) transects across the northern flank of the South China Sea basin to reveal the internal structures related to Cenozoic tectono-magmatic processes during seafloor spreading. Bright reflectors within the oceanic crust, including the Moho, upper crustal reflectors, and lower crustal reflectors, are clearly imaged in these two transects. The Moho reflection displays varied character in continuity, shape and amplitude from the continental slope area to the abyssal basin, and becomes absent in the central part of the basin where abundant seamounts and seamount chains formed after the cessation of seafloor spreading. Dipping reflectors are distinct in most parts of the MCS data but generally confined to the lower crust above the Moho reflection. These lower crustal reflectors merge downward into the Moho without offsetting it, probably arising from shear zones between the crust and mantle characterized by interstitial melt, although we cannot exclude other possibilities such as brittle faulting or magmatic layering in the local area. A notable feature of these lower crustal reflector events is their opposite inclinations. We suggest the two groups of conjugate lower crustal reflector events observed between magnetic anomalies C11 and C8 were associated with two unusual accretionary processes arising from plate reorganizations with southward ridge jumps.

  18. Dating low-temperature alteration of the upper oceanic crust

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.; Hinton, R. W.; Gillis, K. M.; Dosso, S. E.

    2011-12-01

    Off-axis hydrothermal systems lead to extensive chemical exchange between the oceans and upper oceanic crust but it is unclear when this exchange occurs. We address this using a new dating approach and via the re-evaluation of existing data that contain age information. We have developed a method to directly date adularia, a common alkali-rich phase in old oceanic crust, using the 40K to 40Ca radiogenic decay system. In situ analysis, using the Cameca 1270 ion microprobe at the University of Edinburgh, allows small, replacive, secondary mineral grains to be analyzed. In comparison to previous radiogenic dating of low-temperature secondary minerals, using Rb-Sr and K-Ar approaches on mineral separates, this approach has the advantages that: (i) analysis is not limited to large, void filling, grains; (ii) the initial isotopic ratio is well constrained; (iii) contamination and phase heterogeneity are minimized; and (iv) the daughter isotope is relatively immobile. However, the requirement to analyse doubly charged ions, to reduce molecular interferences and suppress the presence of 40K on 40Ca, leads to low count rates [1]; e.g. single spot ages have uncertainties of 10's of millions of years. Combining all analyses for a given sample gives best fitting instantaneous precipitation "ages" of 102 and 70 Myr for DSDP Holes 417A and 543A (versus crustal ages of 120 and 80 Myr). The scatter in the data are consistent with adularia precipitation over >30 Myr. The timing of carbonate precipitation in the upper oceanic crust can be constrained from comparison of their 87Sr/86Sr to the seawater Sr-isotope curve if the proportion of basaltic Sr in the fluid can be constrained. Modeling such data from 12 drill cores shows that they are best fit by a model in which >90% of carbonate precipitation occurs over ≤20 Myr after crustal formation [2]. Evaluation of published Rb-Sr "isochron" data [3,4] shows that these data can be explained in different ways. The "isochron

  19. The OSCAR experiment: using full-waveform inversion in the analysis of young oceanic crust

    NASA Astrophysics Data System (ADS)

    Silverton, Akela; Morgan, Joanna; Wilson, Dean; Hobbs, Richard

    2017-04-01

    The OSCAR experiment aims to derive an integrated model to better explain the effects of heat loss and alteration by hydrothermal fluids, associated with the cooling of young oceanic crust at an axial ridge. High-resolution seismic imaging of the sediments and basaltic basement can be used to map fluid flow pathways between the oceanic crust and the surrounding ocean. To obtain these high-resolution images, we undertake full-waveform inversion (FWI), an advanced seismic imaging technique capable of resolving velocity heterogeneities at a wide range of length scales, from background trends to fine-scale geological/crustal detail, in a fully data-driven automated manner. This technology is widely used within the petroleum sector due to its potential to obtain high-resolution P-wave velocity models that lead to improvements in migrated seismic images of the subsurface. Here, we use the P-wave velocity model obtained from travel-time tomography as the starting model in the application of acoustic, time-domain FWI to a multichannel streamer field dataset acquired in the east Pacific along a profile between the Costa Rica spreading centre and the Ocean Drilling Program (ODP) borehole 504B, where the crust is approximately six million years old. FWI iteratively improves the velocity model by minimizing the misfit between the predicted data and the field data. It seeks to find a high-fidelity velocity model that is capable of matching individual seismic waveforms of the original raw field dataset, with an initial focus on matching the low-frequency components of the early arriving energy. Quality assurance methods adopted during the inversion ensure convergence in the direction of the global minimum. We demonstrate that FWI is able to recover fine-scale, high-resolution velocity heterogeneities within the young oceanic crust along the profile. The highly resolved FWI velocity model is useful in the identification of the layer 2A/2B interface and low-velocity layers that

  20. Structural evolution of preexisting oceanic crust through intraplate igneous activities in the Marcus-Wake seamount chain

    NASA Astrophysics Data System (ADS)

    Kaneda, Kentaro; Kodaira, Shuichi; Nishizawa, Azusa; Morishita, Taisei; Takahashi, Narumi

    2010-10-01

    Multichannel seismic reflection studies and seismic refraction surveys with ocean bottom seismographs in the Marcus-Wake seamount chain in the northwestern Pacific Ocean reveal P wave velocity structures of hot spot-origin seamounts and adjacent oceanic crust. Inside the seamounts are central high-velocity (>6.5 km/s) structures extending nearly to the top that may indicate intrusive cores. Thick sediment layers (up to 4 km) with P wave velocities of 4-5 km/s have accumulated on seafloor that predates seamount formation. Downward crustal thickening of up to 2 km was documented beneath a large seamount cluster, but thickening was not confirmed below a small seamount cluster. Volume ratios of an intrusive core to a seamount body are 15-20%, indicating that most of the supplied magma was consumed in forming the thick sedimentary and volcaniclastic layer constituting the seamount flanks. Underplating and downward crustal thickening may tend to occur when second or later intrusive cores are formed in a seamount. P wave velocities in the lowest crust and in the uppermost mantle below the seamount chain are 0.1-0.2 km/s higher and 0.3-0.5 km/s lower, respectively, than velocities below oceanic crust. We explain this difference as a result of sill-like intrusion of magma into the lower crust and uppermost mantle. Reflected waves observed at offsets >200 km are from mantle reflectors at depths of 30-45 km and 55-70 km. The shallower reflectors may indicate structures formed by intraplate igneous activities, and the deeper reflectors may correspond to the lithosphere-asthenosphere boundary.

  1. Extent and impact of Cretaceous magmatism on the formation and evolution of Jurassic oceanic crust in the western Pacific

    NASA Astrophysics Data System (ADS)

    Feng, H.; Lizarralde, D.; Tominaga, M.; Hart, L.; Tivey, M.; Swift, S. A.

    2015-12-01

    Multi-channel seismic (MCS) images and wide-angle sonobuoy data acquired during a 2011 cruise on the R/V Thomas G. Thompson (TN272) show widespread emplacement of igneous sills and broadly thickened oceanic Layer 2 through hundreds of kilometers of oceanic crust in one of the oldest ocean basins in the western Pacific, a region known as the Jurassic Quiet Zone (JQZ). Oceanic crust from the JQZ has grown through at least two main magmatic phases: It was formed by mid-ocean ridge processes in the Jurassic (at ~170 Ma), and then it was added to by a substantial Cretaceous magmatic event (at ~75-125 Ma). The scale of Cretaceous magmatism is exemplified by massive seafloor features such as the Ontong Java Plateau, Mid-Pacific Mountains, Marshall-Gilbert Islands, Marcus-Wake Seamount Chain, and numerous guyots, seamounts, and volcaniclastic flows observed throughout the region. We use seismic data to image heavily intruded and modified oceanic crust along an 800-km-long transect through the JQZ in order to examine how processes of secondary crustal growth - including magmatic emplacement, transport, and distribution - are expressed in the structure of modified oceanic crust. We also model gravity anomalies to constrain crustal thickness and depth to the Moho. Our observations suggest that western Pacific crust was modified via the following modes of emplacement: (a) extrusive seafloor flows that may or may not have grown into seamounts, (b) seamounts formed through intrusive diking that pushed older sediments aside during their formation, and (c) igneous sills that intruded sediments at varying depths. Emplacement modes (a) and (b) tend to imply a focused, pipe-like mechanism for melt transport through the lithosphere. Such a mechanism does not explain the observed broadly distributed intrusive emplacement of mode (c) however, which may entail successive sill emplacement between igneous basement and sediments thickening oceanic Layer 2 along ~400 km of our seismic line

  2. Oceanographer transform fault structure compared to that of surrounding oceanic crust: Results from seismic refraction data analysis

    NASA Astrophysics Data System (ADS)

    Ambos, E. L.; Hussong, D. M.

    1986-02-01

    A high quality seismic refraction data set was collected near the intersection of the tranform portion of the Oceanographer Fracture Zone (OFZ) with the adjacent northern limb of the Mid-Atlantic Ridge spreading center (MAR). One seismic line was shot down the axis of the transform valley. Another was shot parallel to the spreading center, crossing from normal oceanic crust into the transform valley, and out again. This latter line was recorded by four Ocean Bottom Seismometers (OBSs) spaced along its length, providing complete reversed coverage over the crucial transform valley zone. Findings indicate that whereas the crust of the transform valley is only slightly thinner (4.5 km) compared to normal oceanic crust (5-8 km), the structure is different. Velocities in the range of 6.9 to 7.7. km/sec, which are characteristics of seismic layer 3B, are absent, although a substantial thickness (approximately 3 km) of 6.1-6.8 km/sec material does appear to be present. The upper crust, some 2 km in thickness, is characterized by a high velocity gradient (1.5 sec -1) in which veloxity increases from 2.7 km/sec at the seafloor to 5.8 km/sec at the base of the section. A centrally-located deep of the transform valley has thinner crust (1-2 km), whereas the crust gradually thickens past the transform valley-spreading center intersection. Analysis of the seismic line crossing sub-perpendicular to the transform valley demonstrates abrupt thinning of the upper crustal section, and thickening of the lower crust outside of the trasform valley. In addition, high-velocity material seems to occur under the valley flanks, particularly the southern flanking ridge. This ridge, which is on the side of the transform opposite to the intersection of spreading ridge and transform, may be an expression of uplifted, partially serpentinized upper mantle rocks.

  3. Subduction of hydrated basalt of the oceanic crust: Implications for recycling of water into the upper mantle and continental growth

    NASA Technical Reports Server (NTRS)

    Rapp, R. P.

    1994-01-01

    Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and

  4. Thorium isotope evidence for melting of the mafic oceanic crust beneath the Izu arc

    NASA Astrophysics Data System (ADS)

    Freymuth, Heye; Ivko, Ben; Gill, James B.; Tamura, Yoshihiko; Elliott, Tim

    2016-08-01

    We address the question of whether melting of the mafic oceanic crust occurs beneath ordinary volcanic arcs using constraints from U-Series (238U/232Th, 230Th/232Th and 226Ra/230Th) measurements. Alteration of the top few hundred meters of the mafic crust leads to strong U enrichment. Via decay of 238U to 230Th, this results in elevated (230Th/232Th) (where brackets indicate activity ratios) over time-scales of ∼350 ka. This process leads to the high (230Th/232Th), between 2.6 and 11.0 in the mafic altered oceanic crust (AOC) sampled at ODP Sites 801 and 1149 near the Izu-Bonin-Mariana arc. Th activity ratios in the Izu arc lavas range from (230Th/232Th) = 1.2-2.0. These values are substantially higher than those in bulk sediment subducting at the Izu trench and also extend to higher values than in mid-ocean ridge basalts and the Mariana arc. We show that the range in Th isotope ratios in the Izu arc lavas is consistent with the presence of a slab melt from a mixed source consisting of AOC and subducted sediments with an AOC mass fraction of up to approximately 80 wt.% in the component added to the arc lava source. The oceanic plate subducting at the Izu arc is comparatively cold which therefore indicates that temperatures high enough for fluid-saturated melting of the AOC are commonly achieved beneath volcanic arcs. The high ratio of AOC/sediments of the slab melt component suggested for the Izu arc lavas requires preferential melting of the AOC. This can be achieved when fluid-saturated melting of the slab is triggered by fluids derived from underlying subducted serpentinites. Dehydration of serpentinites and migration of the fluid into the overlying crust causes melting to start within the AOC. The absence of a significant sediment melt component suggests there was insufficient water to flux both AOC and overlying sediments.

  5. Predictions of hydrothermal alteration within near-ridge oceanic crust from coordinated geochemical and fluid flow models

    USGS Publications Warehouse

    Wetzel, L.R.; Raffensperger, Jeff P.; Shock, E.L.

    2001-01-01

    Coordinated geochemical and hydrological calculations guide our understanding of the composition, fluid flow patterns, and thermal structure of near-ridge oceanic crust. The case study presented here illustrates geochemical and thermal changes taking place as oceanic crust ages from 0.2 to 1.0 Myr. Using a finite element code, we model fluid flow and heat transport through the upper few hundred meters of an abyssal hill created at an intermediate spreading rate. We use a reaction path model with a customized database to calculate equilibrium fluid compositions and mineral assemblages of basalt and seawater at 500 bars and temperatures ranging from 150 to 400??C. In one scenario, reaction path calculations suggest that volume increases on the order of 10% may occur within portions of the basaltic basement. If this change in volume occurred, it would be sufficient to fill all primary porosity in some locations, effectively sealing off portions of the oceanic crust. Thermal profiles resulting from fluid flow simulations indicate that volume changes along this possible reaction path occur primarily within the first 0.4 Myr of crustal aging. ?? 2001 Elsevier Science B.V. All rights reserved.

  6. Chemical composition of ferromanganese crusts in the world ocean: a review and comprehensive database

    USGS Publications Warehouse

    Manheim, Frank T.; Lane-Bostwick, Candice M.

    1989-01-01

    A comprehensive database of chemical and mineralogical properties for ferromanganese crusts collected throughout the Atlantic, Pacific, and Indian Oceans, and has been assembled from published and unpublished sources which provide collection and analytical information for these samples. These crusts, their chemical compositions and natural distribution, have been a topic of interest to scientific research, as well as to industrial and military applications. Unlike abyssal ferromanganese nodules, which form in areas of low disturbance and high sediment accumulation, crusts have been found to contain three to five times more cobalt than these nodules, and can be found on harder, steeper substrates which can be too steep for permanent sediment accumulation. They have also been documented on seamounts and plateaus within the U.S. exclusive economic zone in both Pacific and Atlantic Oceans, and these are therefore of strategic importance to the United States Government, as well as to civilian mining and metallurgical industries. The data tables provided in this report have been digitized and previously uploaded to the National Oceanic and Atmospheric Administration National Geophysical Data Center in 1991 for online distribution, and were provided in plain text format. The 2014 update to the original U.S. Geological Survey open-file report published in 1989 provides these data tables in a slightly reformatted version to make them easier to ingest into geographic information system software, converted to shapefiles, and have completed metadata written and associated with them.

  7. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust

    PubMed Central

    Salas, Everett C.; Bhartia, Rohit; Anderson, Louise; Hug, William F.; Reid, Ray D.; Iturrino, Gerardo; Edwards, Katrina J.

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities. PMID:26617595

  8. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    PubMed

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  9. Deep-sea mud volcanoes - a window to alteration processes in old oceanic crust?

    NASA Astrophysics Data System (ADS)

    Hensen, Christian; Scholz, Florian; Nuzzo, Marianne; Valadares, Vasco; Terrinha, Pedro; Liebetrau, Volker; Kaul, Norbert; Manzoni, Sonia; Schmidt, Mark; Gràcia, Eulàlia

    2013-04-01

    A number of deep sea mud volcanoes (>4700 m water depth) were discovered during a recent expedition with the German research vessel Meteor along a prominent WSW-ENE trending strike-slip fault (SWIM 1; Zitellini et al., 2009) in the western extension of the Gulf of Cadiz (NE Atlantic). Mud volcanism was unambiguously related to tectonic activity along the fault and fluids expelled at these sites show a very distinct geochemical composition that has not been reported from any other mud volcano to date. In previous studies on deep-water mud volcanoes in the Western Gulf of Cadiz accretionary wedge it was hypothesized that the discharge fluids were affected by alteration processes occurring in the old (>140 Ma) and deeply buried (>4 km) oceanic crust (Scholz et al., 2009; Sallarès et al, 2011). This hypothesis is supported by recent findings at the mud volcanoes located to the west of the realm of tectonic deformation driven by the accretionary wedge of the Gulf of Cadiz. Pore water geochemical analyses revealed fluid sources from oceanic crust and oldest sedimentary strata. Regardless of the ultimate source, these findings suggest that large strike-slip faults may play a significant, yet unrecognized role in terms of fluid circulation and element redistribution. To date, hot vents and cold seeps occurring at active spreading centers and forearcs of subduction zones have been pinpointed as hotspots of fluid activity. However, bearing in mind that transform-type plate boundaries are equal in length compared to other types of plate boundaries, fluid exchange at this type of plate boundary may provide a similarly important pathway for water and element exchange between the lithosphere and ocean. Sallarès V., Gailler A., Gutscher M.-A., Graindorge D., Bartolomé R., Gràcia E., Díaz J., Dañobeitia J.J. and Zitellini N. (2011) Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cadiz (SW Iberian margin), Earth and Planetary Science Letters

  10. Porosity, Fracturing and Alteration of Young Oceanic Crust: New Seismic Analyses at Borehole 504B

    NASA Astrophysics Data System (ADS)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2017-12-01

    DSDP/ODP borehole 504B, drilled 2111 m into 6.9 Ma oceanic crust, provides in-situ core and logging measurements of the lithology, fracturing and porosity of crust originally formed at the Costa Rica Rift and its subsequent alteration by hydrothermal fluids. A recent active seismic survey over the borehole and surrounding area reveals wider spatial variations in velocity that can be related to this porosity and fracturing. Over 10,000 airgun shots were fired in a 30 x 30 km grid over the borehole region, using both high-frequency and low-frequency airgun arrays. The shots were recorded on a 4.5 km-long streamer and 24 ocean-bottom seismographs, each equipped with a three-component geophone and an hydrophone. A vertical hydrophone array recorded the downgoing source wavelet, and underway gravity, magnetic field and multibeam bathymetry data were also recorded. This combined dataset enables the most comprehensive geophysical analysis of this area of crust to date, while the ground-truthing provided by 504B enables us to address the questions of what do the seismic oceanic crustal layers represent and what controls their characteristics as the crust ages? Wide-angle seismic modelling with a Monte Carlo based uncertainty analysis reveals new 2D and 3D Vp and Vs models of the area, which show relatively homogeneous crust around borehole 504B, and place the seismic layer 2B/2C, and seismic layer 2/3 boundaries coincident with fracturing and alteration fronts rather than the lithological boundaries between lavas and dykes, and dykes and gabbros, respectively. Analysis of Poisson's ratio, seismic anisotropy and particle motions reveal patterns in fracturing and porosity across the survey area, and locate possible fossilised hydrothermal circulation cells. These cells appear to have influenced the porosity of the crust through alteration and mineralisation processes, with faults inherited from initial crustal accretion influencing basement topographic highs and providing

  11. Sulfide enrichment at an oceanic crust-mantle transition zone: Kane Megamullion (23°N, MAR)

    NASA Astrophysics Data System (ADS)

    Ciazela, Jakub; Koepke, Juergen; Dick, Henry J. B.; Botcharnikov, Roman; Muszynski, Andrzej; Lazarov, Marina; Schuth, Stephan; Pieterek, Bartosz; Kuhn, Thomas

    2018-06-01

    The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30‧N, 45°20‧W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu concentrations in spinel harzburgites is 7-69 ppm, the Cu concentrations are highly elevated in plagioclase harzburgites with a range of 90-209 ppm. The zones of the peridotite-gabbro contacts are even more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1-xS] in polysulfide grains. These chalcopyrites show a primary magmatic δ65Cu signature ranging from -0.04 to +0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature (<300 °C) of circulating fluids chalcophile metals from primary sulfides have not been mobilized and transported away but have been trapped in smaller secondary

  12. Transformation of juvenile Izu-Bonin-Mariana oceanic arc into mature continental crust: An example from the Neogene Izu collision zone granitoid plutons, Central Japan

    NASA Astrophysics Data System (ADS)

    Saito, Satoshi; Tani, Kenichiro

    2017-04-01

    Granitic rocks (sensulato) are major constituents of upper continental crust. Recent reviews reveal that the average composition of Phanerozoic upper continental crust is granodioritic. Although oceanic arcs are regarded as a site producing continental crust material in an oceanic setting, intermediate to felsic igneous rocks occurring in modern oceanic arcs are dominantly tonalitic to trondhjemitic in composition and have lower incompatible element contents than the average upper continental crust. Therefore, juvenile oceanic arcs require additional processes in order to get transformed into mature continental crust enriched in incompatible elements. Neogene granitoid plutons are widely exposed in the Izu Collision Zone in central Japan, where the northern end of the Izu-Bonin-Mariana (IBM) arc (juvenile oceanic arc) has been colliding with the Honshu arc (mature island arc) since Middle Miocene. The plutons in this area are composed of various types of granitoids ranging from tonalite to trondhjemite, granodiorite, monzogranite and granite. Three main granitoid plutons are distributed in this area: Tanzawa plutonic complex, Kofu granitic complex, and Kaikomagatake granitoid pluton. Tanzawa plutonic complex is dominantly composed of tonalite and trondhjemite and characterized by low concentration of incompatible elements and shows geochemical similarity with modern juvenile oceanic arcs. In contrast, Kofu granitic complex and Kaikomagatake granitoid pluton consists mainly of granodiorite, monzogranite and granite and their incompatible element abundances are comparable to the average upper continental crust. Previous petrogenetic studies on these plutons suggested that (1) the Tanzawa plutonic complex formed by lower crustal anatexis of juvenile basaltic rocks occurring in the IBM arc, (2) the Kofu granitic complex formed by anatexis of 'hybrid lower crust' comprising of both basaltic rocks of the IBM arc and metasedimentary rocks of the Honshu arc, and (3) the

  13. Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean

    USGS Publications Warehouse

    Banakar, V.K.; Hein, J.R.

    2000-01-01

    A deep-water ferromanganese crust from a Central Indian Ocean seamount dated previously by 10Be and 230Th(excess) was studied for compositional and textural variations that occurred throughout its growth history. The 10Be/9Be dated interval (upper 32 mm) yields an uniform growth rate of 2.8 ?? 0.1 mm/Ma [Frank, M., O'Nions, R.K., 1998. Sources of Pb for Indian Ocean ferromanganese crusts: a record of Himalayan erosion. Earth Planet. Sci. Lett., 158, pp. 121-130.] which gives an extrapolated age of ~ 26 Ma for the base of the crust at 72 mm and is comparable to the maximum age derived from the Co-model based growth rate estimates. This study shows that Fe-Mn oxyhydroxide precipitation did not occur from the time of emplacement of the seamount during the Eocene (~ 53 Ma) until the late Oligocene (~ 26 Ma). This paucity probably was the result of a nearly overlapping palaeo-CCD and palaeo-depth of crust formation, increased early Eocene productivity, instability and reworking of the surface rocks on the flanks of the seamount, and lack of oxic deep-water in the nascent Indian Ocean. Crust accretion began (older zone) with the formation of isolated cusps of Fe-Mn oxide during a time of high detritus influx, probably due to the early-Miocene intense erosion associated with maximum exhumation of the Himalayas (op. cit.). This cuspate textured zone extends from 72 mm to 42 mm representing the early-Miocene period. Intense polar cooling and increased mixing of deep and intermediate waters at the close of the Oligocene might have led to the increased oxygenation of the bottom-water in the basin. A considerable expansion in the vertical distance between the seafloor depth and the CCD during the early Miocene in addition to the influx of oxygenated bottom-water likely initiated Fe-Mn crust formation. Pillar structure characterises the younger zone, which extends from 40 mm to the surface of the crust, i.e., ~ 15 Ma to Present. This zone is characterised by > 25% higher

  14. Early Permian mafic dikes in the Nagqu area, central Tibet, China, associated with embryonic oceanic crust of the Meso-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Fan, W. M.; Shi, R. D.; Gong, X. H.

    2017-12-01

    During the latest Carboniferous to early Permian, a mantle plume initiated continental rifting along the northern Gondwana margin, which subsequently developed into the Meso-Tethys Ocean. However, the nature and timing of the embryonic oceanic crust of the Meso-Tethys Ocean remains poorly understood. Here, we present for the first time a combined analysis of petrological, geochronological, geochemical, and Sr-Nd isotopic data for mafic rocks from the Nagqu area, central Tibet. Zircons from the mafic rocks yield a concordant age of ca. 277.8±1.8 Ma, which is slightly younger than the age of mantle plume activity (ca. 300-279 Ma), as represented by the large igneous province (LIP) on the northern Gondwana margin. Geochemical features suggest that the Nagqu mafic rocks, which display normal mid ocean ridge basalt (N-MORB) affinities, are different from those of the LIP, which display oceanic island basalt (OIB)-type affinities. The Nagqu mafic rocks result from a relatively high degree of melting of depleted asthenospheric mantle. Combined with observations from previous studies, we suggest that the late early Permian Nagqu magmatism fully records processes of early stage rifting and incipient formation of oceanic crust. Moreover, the patterns of magmatism are consistent with patterns of rift-related sedimentation that records the transition from predominantly continental to marine deposition in the region during the Carboniferous-Permian. We therefore suggest that rifting of the eastern Cimmerian and northern Gondwana continents started at ca. 277.8 Ma, and the rifting culminated in the opening of the Meso-Tethys Ocean.

  15. High-velocity basal sediment package atop oceanic crust, offshore Cascadia: Impacts on plate boundary processes and fluid migration

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Keranen, K. M.

    2017-12-01

    Differences in fluid pressure and mechanical properties at megathrust boundaries in subduction zones have been proposed to create varying seismogenic behavior. In Cascadia, where large ruptures are possible but little seismicity occurs presently, new seismic transects across the deformation front (COAST cruise; Holbrook et al., 2012) image an unusually high-wavespeed sedimentary unit directly overlying oceanic crust. Wavespeed increases before sediments reach the deformation front, and the well-laminated unit, consistently of 1 km thickness, can be traced for 50 km beneath the accretionary prism before imaging quality declines. Wavespeed is modeled via iterative prestack time migration (PSTM) imaging and increases from 3.5 km/sec on the seaward end of the profile to >5.0 km/s near the deformation front. Landward of the deformation front, wavespeed is low along seaward-dipping thrust faults in the Quaternary accretionary prism, indicative of rapid dewatering along faults. The observed wavespeed of 5.5 km/sec just above subducting crust is consistent with porosity <5% (Erickson and Jarrard, 1998), possibly reflecting enhanced consolidation, cementation, and diagenesis as the sediments encounter the deformation front. Beneath the sediment, the compressional wavespeed of uppermost oceanic crust is 3-4 km/sec, likely reduced by alteration and/or fluids, lowest within a propagator wake. The propagator wake intersects the plate boundary at an oblique angle and changes the degree of hydration of the oceanic plate as it subducts within our area. Fluid flow out of oceanic crust is likely impeded by the low-porosity basal sediment package except along the focused thrust faults. Decollements are present at the top of oceanic basement, at the top of the high-wavespeed basal unit, and within sedimentary strata at higher levels; the decollement at the top of oceanic crust is active at the toe of the deformation front. The basal sedimentary unit appears to be mechanically strong

  16. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing.

    PubMed

    Audet, Pascal; Bostock, Michael G; Christensen, Nikolas I; Peacock, Simon M

    2009-01-01

    Water and hydrous minerals play a key part in geodynamic processes at subduction zones by weakening the plate boundary, aiding slip and permitting subduction-and indeed plate tectonics-to occur. The seismological signature of water within the forearc mantle wedge is evident in anomalies with low seismic shear velocity marking serpentinization. However, seismological observations bearing on the presence of water within the subducting plate itself are less well documented. Here we use converted teleseismic waves to obtain observations of anomalously high Poisson's ratios within the subducted oceanic crust from the Cascadia continental margin to its intersection with forearc mantle. On the basis of pressure, temperature and compositional considerations, the elevated Poisson's ratios indicate that water is pervasively present in fluid form at pore pressures near lithostatic values. Combined with observations of a strong negative velocity contrast at the top of the oceanic crust, our results imply that the megathrust is a low-permeability boundary. The transition from a low- to high-permeability plate interface downdip into the mantle wedge is explained by hydrofracturing of the seal by volume changes across the interface caused by the onset of crustal eclogitization and mantle serpentinization. These results may have important implications for our understanding of seismogenesis, subduction zone structure and the mechanism of episodic tremor and slip.

  17. Effects of Canary hotspot volcanism on structure of oceanic crust off Morocco

    NASA Astrophysics Data System (ADS)

    Holik, James S.; Rabinowitz, Philip D.; Austin, James A., Jr.

    1991-07-01

    Analysis of over 6400 km of multichannel seismics (MCS) and 50 sonobuoy reflection and refraction experiments reduced both in the domain of X-T and tau-p shows that a region within the Jurassic Quiet Zone off Morocco underwent dramatic changes as a result of the passage of the lithosphere over the Canary hotspot commencing approximately 60 Ma. A seismic unit (UCF), interpreted as volcanic in origin, is observed within the sediments in a region characterized by a broad bathymetric swell. It shows diffractions from its upper surface and an internally chaotic seismic facies and pinches out between sedimentary units of continuous, subparallel facies. A velocity inversion is noted between the UCF (4.7km/s) and the underlying sediment (3.1 km/s). The UCF is time transgressive; it lies near the Cretaceous/s Tertiary boundary in the northern portion of the study area and is younger to the south. Kinematic studies of the movement of the Canary hotspot relative to Africa show that the hotspot first appeared off NW Africa about 60 Ma and was located beneath oceanic crust in the region where the UCF is observed. Depth-to-basement measurements in areas not effected by the hotspot show a consistent linear trend of increased depth with age. In areas effected by the hotspot the thermal rejuvenation is evident as basement depths shoal with increased proximity to the present hotspot. The reheating of the crust resets the thermal age of the lithosphere with many of the properties of crust of a younger age. Subsidence curves of the reheated crust off Morocco show good correlation to subsidence curves of other reheated crust on a global basis. A zone characterized by high crustal velocities, (7.1-7.4 km/s) and greater crustal thicknesses (by ˜1-2 km) is observed in an area that corresponds to the bathymetric swell, the region of the UCF, and the reelevated basement. The high velocities and increased crustal thickness are interpreted to be the result of underplating and assimilation of

  18. Self-organization of hydrothermal outflow and recharge in young oceanic crust: Constraints from open-top porous convection analog experiments

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, E. L.; Olive, J. A. L.; Barreyre, T.

    2016-12-01

    Hydrothermal circulation at the axis of mid-ocean ridges has a profound effect on chemical and biological processes in the deep ocean, and influences the thermo-mechanical state of young oceanic lithosphere. Yet, the geometry of fluid pathways beneath the seafloor and its relation to spatial gradients in crustal permeability remain enigmatic. Here we present new laboratory models of hydrothermal circulation aimed at constraining the self-organization of porous convection cells in homogeneous as well as highly heterogeneous crust analogs. Oceanic crust analogs of known permeability are constructed using uniform glass spheres and 3-D printed plastics with a network of mutually perpendicular tubes. These materials are saturated with corn syrup-water mixtures and heated at their base by a resistive silicone strip heater to initiate thermal convection. A layer of pure fluid (i.e., an analog ocean) overlies the porous medium and allows an "open-top" boundary condition. Areas of fluid discharge from the crust into the ocean are identified by illuminating microscopic glass particles carried by the fluid, using laser sheets. Using particle image velocimetry, we estimate fluid discharge rates as well as the location and extent of fluid recharge. Thermo-couples distributed throughout the crust provide insights into the geometry of convection cells at depth, and enable estimates of convective heat flux, which can be compared to the heat supplied at the base of the system. Preliminary results indicate that in homogeneous crust, convection is largely confined to the narrow slot overlying the heat source. Regularly spaced discharge zones appear focused while recharge areas appear diffuse, and qualitatively resemble the along-axis distribution of hydrothermal fields at oceanic spreading centers. By varying the permeability of the crustal analogs, the viscosity of the convecting fluid, and the imposed basal temperature, our experiments span Rayleigh numbers between 10 and 10

  19. Evidence for Thin Oceanic Crust on the Extinct Aegir Ridge, Norwegian Basin, N.E. Atlantic Derived from Satellite Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Greenhalgh, E. E.; Kusznir, N. J.

    2006-12-01

    Satellite gravity inversion incorporating a lithosphere thermal gravity correction has been used to map crustal thickness and lithosphere thinning factor for the N.E. Atlantic. The inversion of gravity data to determine crustal thickness incorporates a lithosphere thermal gravity anomaly correction for both oceanic and continental margin lithosphere. Predicted crustal thicknesses in the Norwegian Basin are between 7 and 4 km on the extinct Aegir oceanic ridge which ceased sea-floor spreading in the Oligocene. Crustal thickness estimates do not include a correction for sediment thickness and are upper bounds. Crustal thicknesses determined by gravity inversion for the Aegir Ridge are consistent with recent estimates derived using refraction seismology by Breivik et al. (2006). Failure to incorporate a lithosphere thermal gravity anomaly correction produces an over-estimate of crustal thickness. Oceanic crustal thicknesses within the Norwegian Basin are predicted by the gravity inversion to increase to 9-10 km eastwards towards the Norwegian (Moere) and westwards towards the Jan Mayen micro-continent, consistent with volcanic margin continental breakup at the end of the Palaeocene. The observation (from gravity inversion and seismic refraction studies) of thin oceanic crust produced by the Aegir ocean ridge in the Oligocene has implications for the temporal evolution of asthenosphere temperature under the N.E. Atlantic during the Tertiary. Thin Oligocene oceanic crust may imply cool (normal) asthenosphere temperatures during the Oligocene in contrast to elevated asthenosphere temperatures in the Palaeocene and Miocene-Recent as indicated by volcanic margin formation and the formation of Iceland respectively. Gravity inversion also predicts a region of thin oceanic crust to the west of the northern part of the Jan Mayen micro-continent and to the east of the thicker oceanic crust currently being formed at the Kolbeinsey Ridge. Thicker crust (c.f. ocean basins) is

  20. Igneous Cooling Rate constraints on the Accretion of the lower Oceanic Crust in Mid-ocean Ridges: Insights from a new Thermo-mechanical Model

    NASA Astrophysics Data System (ADS)

    Garrido, C. J.; Machetel, P.

    2005-12-01

    We report the results of a new thermo-mechanical model of crustal flow beneath fast spreading mid-ocean ridges to investigate both the effect of deep, near off-axis hydrothermal convection on the thermal structure of the magma chamber and the role of variable number of melt intrusions on the accretion of the oceanic crust. In our model the melt is injected at the center of the axial magma chamber with a 'needle' with adjustable porosity at different depths allowing the simulation of different arrangements of melt injection and supply within the magma chamber. Conversely to previous models, the shape of the magma chamber -defined as the isotherm where 95% solidification of the melt occurs- is not imposed but computed from the steady state reached by the thermal field considering the heat diffusion and advection and the latent heat of crystallization. The motion equation is solved for a temperature and phase dependent viscosity. The thermal diffusivity is also dependent on temperature and depth, with a higher diffusivity in the upper plutonic crust to account for more efficient hydrothermal cooling at these crustal levels. In agreement with previous non-dynamic thermal models, our results show that near, deep off-axis hydrothermal circulation strongly affects the shape of the axial magma by tightening isotherms in the upper half of the plutonic oceanic crust where hydrothermal cooling is more efficient. Different accretion modes have however little effect on the shape of the magma chamber, but result in variable arrangements of flow lines ranging from tent-shape in a single-lens accretion scenario to sub-horizontal in "sheeted-sill" intrusion models. For different intrusion models, we computed the average Igneous Cooling Rates (ICR) of gabbros by dividing the crystallization temperature interval of gabbros by the integrated time, from the initial intrusion to the point where it crossed the 950 °C isotherm where total solidification of gabbro occurs, along individual

  1. Seismic structure of the crust and uppermost mantle of north America and adjacent oceanic basins: A synthesis

    USGS Publications Warehouse

    Chulick, G.S.; Mooney, W.D.

    2002-01-01

    We present a new set of contour maps of the seismic structure of North America and the surrounding ocean basins. These maps include the crustal thickness, whole-crustal average P-wave and S-wave velocity, and seismic velocity of the uppermost mantle, that is, Pn and Sn. We found the following: (1) The average thickness of the crust under North America is 36.7 km (standard deviation [s.d.] ??8.4 km), which is 2.5 km thinner than the world average of 39.2 km (s.d. ?? 8.5) for continental crust; (2) Histograms of whole-crustal P- and S-wave velocities for the North American crust are bimodal, with the lower peak occurring for crust without a high-velocity (6.9-7.3 km/sec) lower crustal layer; (3) Regions with anomalously high average crustal P-wave velocities correlate with Precambrian and Paleozoic orogens; low average crustal velocities are correlated with modern extensional regimes; (4) The average Pn velocity beneath North America is 8.03 km/sec (s.d. ?? 0.19 km/sec); (5) the well-known thin crust beneath the western United States extends into northwest Canada; (6) the average P-wave velocity of layer 3 of oceanic crust is 6.61 km/ sec (s.d. ?? 0.47 km/sec). However, the average crustal P-wave velocity under the eastern Pacific seafloor is higher than the western Atlantic seafloor due to the thicker sediment layer on the older Atlantic seafloor.

  2. Changes in erosion and ocean circulation recorded in the Hf isotopic compositions of North Atlantic and Indian Ocean ferromanganese crusts

    USGS Publications Warehouse

    Piotrowski, Alexander M.; Lee, Der-Chuen; Christensen, John N.; Burton, Kevin W.; Halliday, Alex N.; Hein, James R.; Günther, Detlef

    2000-01-01

    High-resolution Hf isotopic records are presented for hydrogenetic Fe–Mn crusts from the North Atlantic and Indian Oceans. BM1969 from the western North Atlantic has previously been shown to record systematically decreasing Nd isotopic compositions from about 60 to ∼4 Ma, at which time both show a rapid decrease to unradiogenic Nd composition, thought to be related to the increasing influence of NADW or glaciation in the northern hemisphere. During the Oligocene, North Atlantic Hf became progressively less radiogenic until in the mid-Miocene (∼15 Ma) it reached +1. It then shifted gradually back to an ϵHf value of +3 at 4 Ma, since when it has decreased rapidly to about −1 at the present day. The observed shifts in the Hf isotopic composition were probably caused by variation in intensity of erosion as glaciation progressed in the northern hemisphere. Ferromanganese crusts SS663 and 109D are from about 5500 m depth in the Indian Ocean and are now separated by ∼2300 km across the Mid-Indian Ridge. They display similar trends in Hf isotopic composition from 20 to 5 Ma, with the more northern crust having a composition that is consistently more radiogenic (by ∼2 ϵHf units). Paradoxically, during the last 20 Ma the Hf isotopic compositions of the two crusts have converged despite increased separation and subsidence relative to the ridge. A correlatable negative excursion at ∼5 Ma in the two records may reflect a short-term increase in erosion caused by the activation of the Himalayan main central thrust. Changes to unradiogenic Hf in the central Indian Ocean after 5 Ma may alternatively have been caused by the expanding influence of NADW into the Mid-Indian Basin via circum-Antarctic deep water or a reduction of Pacific flow through the Indonesian gateway. In either case, these results illustrate the utility of the Hf isotope system as a tracer of paleoceanographic changes, capable of responding to subtle changes in erosional regime not readily resolved

  3. Microbial decomposition of marine dissolved organic matter in cool oceanic crust

    NASA Astrophysics Data System (ADS)

    Shah Walter, Sunita R.; Jaekel, Ulrike; Osterholz, Helena; Fisher, Andrew T.; Huber, Julie A.; Pearson, Ann; Dittmar, Thorsten; Girguis, Peter R.

    2018-05-01

    Marine dissolved organic carbon (DOC) is one of the largest active reservoirs of reduced carbon on Earth. In the deep ocean, DOC has been described as biologically recalcitrant and has a radiocarbon age of 4,000 to 6,000 years, which far exceeds the timescale of ocean overturning. However, abiotic removal mechanisms cannot account for the full magnitude of deep-ocean DOC loss. Deep-ocean water circulates at low temperatures through volcanic crust on ridge flanks, but little is known about the associated biogeochemical processes and carbon cycling. Here we present analyses of DOC in fluids from two borehole observatories installed in crustal rocks west of the Mid-Atlantic Ridge, and show that deep-ocean DOC is removed from these cool circulating fluids. The removal mechanism is isotopically selective and causes a shift in specific features of molecular composition, consistent with microbe-mediated oxidation. We suggest organic molecules with an average radiocarbon age of 3,200 years are bioavailable to crustal microbes, and that this removal mechanism may account for at least 5% of the global loss of DOC in the deep ocean. Cool crustal circulation probably contributes to maintaining the deep ocean as a reservoir of `aged' and refractory DOC by discharging the surviving organic carbon constituents that are molecularly degraded and depleted in 14C and 13C into the deep ocean.

  4. Seismic Heterogeneity Caused by Oceanic Crust Differentiation and Segregation in the Convecting Mantle

    NASA Astrophysics Data System (ADS)

    Xie, S.; Tackley, P. J.

    2003-12-01

    This presentation focuses on the seismic signature of mantle heterogeneity associated with crustal differentiation and segregation in the lower mantle. Segregation of subducted oceanic crust above the CMB has often been invoked as a way of explaining the isotopic signature of OIB geochemical endmembers such as HIMU. Here a mantle convection model that includes melting-induced differentiation and plate tectonics is run for billions of years and the resulting thermo-chemical heterogeneity is studied. Statistical diagnostics such as radial correlation functions (Jordan et al., 1993) and spectral heterogeneity maps (Tackley et al., 1994) are used to characterize the observational signature of the thermo-chemical structures and compare them to global seismic tomographic models. In the reference case, crust is denser than the background mantle at the CMB. Due to this density contrast, the crustal material forms a thick and dense layer at the bottom of the mantle, although the layer interface is not sharp as is commonly obtained in models where a layer is inserted a priori. An enormous amount of long-wavelength volumetric heterogeneity is found in the lower mantle. The presence of oceanic crust near the surface also contributes to heterogeneity at the top of the mantle. In cases where the subducted crust is neutrally buoyant or buoyant in the deepest mantle, a large amount of heterogeneity instead exists in the the mid-mantle region, which is not observed in tomographic models of the real Earth. Unlike the reference case with a thick layer at the bottom of the mantle, these cases have heterogeneity right at the CMB, and this strong heterogeneity exists at both short and long wavelength. When comparing to Earth, it appears that models in which dense subducted crust settles into a layer above the CMB are consistent with constraints from seismic tomography; such a layer is therefore a viable location for the storage of geochemical endmembers.

  5. The Atlantis Bank Gabbro Massif, SW Indian Ridge: the Largest Know Exposure of the Lower Crust in the Oceans

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; Kvassnes, A. J.; Kinoshita, H.; MacLeod, C. J.; Robinson, P. T.

    2017-12-01

    Until the discovery of oceanic core complexes little was known and much inferred about the lower ocean crust at slow-spreading ridges. Their study shows the ocean crust isn't simply a uniform layer-cake of pillow lavas, sheeted dikes and gabbros, but is highly variable in thickness, composition and architecture, and even absent over large regions. The 660 km2 Atlantis Bank Gabbro Massif in the rift-mountains of the SW Indian Ridge flanking the Atlantis II Transform is the magmatic end member for ocean core complexes, and best approximates `average' slow-spread crust. Thus it has been a focus for drilling since its discovery in 1986, leading to the current attempt to drill to Moho there (Project SloMo). There are 3 ODP and IODP drill holes on its crest: 1508-m deep Hole 735B, 158-m deep Hole 1105A, and 809.4-m deep Hole U1473. These provide a 200 Kyr view of lower crustal accretion at a slow-spread ocean ridge. Here we extend this view to 2.7 Myr. Mapping and sampling shows the gabbro massif extends nearly the length of a single 2nd order magmatic ridge segment. With numerous inliers of the dike-gabbro transition at numerous locations, and a crust-mantle boundary, traced for 30-km along the transform wall, it would appear to represent a full section of the lower crust. As Moho is at 5.5 ± 1 km mbsf near Hole 735B, and 4.5 km beneath the transform, it is likely a serpentinization front. The crust-mantle boundary was crossed by dives at 4 locations. In each case gabbros at the base of the crust crystallized from melt that had previously fractionated 50% or more from a likely parent. Thus the gabbro massif must be laterally zoned, and the parental mantle melts had to have been emplaced at the center of the paleo-ridge segment, before intruding laterally to the distal end of the complex. Gabbros on a lithospheric flow line down the center of the massif closely resemble those from the drill holes. This shows that while lateral variations in crustal composition and

  6. Structure and Geochemistry of the Continental-Oceanic Crust Boundary of the Red Sea and the Rifted Margin of Western Arabia

    NASA Astrophysics Data System (ADS)

    Dilek, Y.; Furnes, H.; Schoenberg, R.

    2009-12-01

    The continental-oceanic crust boundary and an incipient oceanic crust of the Red Sea opening are exposed within the Arabian plate along a narrow zone of the Tihama Asir coastal plain in SW Saudi Arabia. Dike swarms, layered gabbros, granophyres and basalts of the 22 Ma Tihama Asir (TA) continental margin ophiolite represent products of magmatic differentiation formed during the initial stages of rifting between the African and Arabian plates. Nearly 4-km-wide zone of NW-trending sheeted dikes are the first products of mafic magmatism associated with incipient oceanic crust formation following the initial continental breakup. Gabbro intrusions are composed of cpx-ol-gabbro, cpx-gabbro, and norite/troctolite, and are crosscut by fine-grained basaltic dikes. Granophyre bodies intrude the sheeted dike swarms and are locally intrusive into the gabbros. Regional Bouger gravity anomalies suggest that the Miocene mafic crust represented by the TA complex extends westward beneath the coastal plain sedimentary rocks and the main trough of the Red Sea. The TA complex marks an incipient Red Sea oceanic crust that was accreted to the NE side of the newly formed continental rift in the earliest stages of seafloor spreading. Its basaltic to trachyandesitic lavas and dikes straddle the subalkaline-mildly alkaline boundary. Incompatible trace element relationships (e.g. Zr-Ti, Zr-P) indicate two distinct populations. The REE concentrations show an overall enrichment compared to N-MORB; light REEs are enriched over the heavy ones ((La/Yb)n > 1), pointing to an E-MORB influence. Nd-isotope data show ɛNd values ranging from +4 to +8, supporting an E-MORB melt source. The relatively large variations in ɛNd values also suggest various degrees of involvement of continental crust during ascent and emplacement, or by mixing of another mantle source.

  7. Archaean zircons in Miocene oceanic hotspot rocks establish ancient continental crust beneath Mauritius

    PubMed Central

    Ashwal, Lewis D.; Wiedenbeck, Michael; Torsvik, Trond H.

    2017-01-01

    A fragment of continental crust has been postulated to underlie the young plume-related lavas of the Indian Ocean island of Mauritius based on the recovery of Proterozoic zircons from basaltic beach sands. Here we document the first U–Pb zircon ages recovered directly from 5.7 Ma Mauritian trachytic rocks. We identified concordant Archaean xenocrystic zircons ranging in age between 2.5 and 3.0 Ga within a trachyte plug that crosscuts Older Series plume-related basalts of Mauritius. Our results demonstrate the existence of ancient continental crust beneath Mauritius; based on the entire spectrum of U–Pb ages for old Mauritian zircons, we demonstrate that this ancient crust is of central-east Madagascar affinity, which is presently located ∼700 km west of Mauritius. This makes possible a detailed reconstruction of Mauritius and other Mauritian continental fragments, which once formed part of the ancient nucleus of Madagascar and southern India. PMID:28140395

  8. Triple seismic source, double research ship, single ambitious goal: integrated imaging of young oceanic crust in the Panama Basin

    NASA Astrophysics Data System (ADS)

    Wilson, Dean; Peirce, Christine; Hobbs, Richard; Gregory, Emma

    2016-04-01

    Understanding geothermal heat and mass fluxes through the seafloor is fundamental to the study of the Earth's energy budget. Using geophysical, geological and physical oceanography data we are exploring the interaction between the young oceanic crust and the ocean in the Panama Basin. We acquired a unique geophysical dataset that will allow us to build a comprehensive model of young oceanic crust from the Costa Rica Ridge axis to ODP borehole 504B. Data were collected over two 35 x 35 km2 3D grid areas, one each at the ridge axis and the borehole, and along three 330 km long 2D profiles orientated in the spreading direction, connecting the two grids. In addition to the 4.5 km long multichannel streamer and 75 ocean-bottom seismographs (OBS), we also deployed 12 magnetotelluric (MT) stations and collected underway swath bathymetry, gravity and magnetic data. For the long 2D profiles we used two research vessels operating synchronously. The RRS James Cook towed a high frequency GI-gun array (120 Hz) to image the sediments, and a medium frequency Bolt-gun array (50 Hz) for shallow-to-mid-crustal imaging. The R/V Sonne followed the Cook, 9 km astern and towed a third seismic source; a low frequency, large volume G-gun array (30 Hz) for whole crustal and upper mantle imaging at large offsets. Two bespoke vertical hydrophone arrays recorded real far field signatures that have enabled us to develop inverse source filters and match filters. Here we present the seismic reflection image, forward and inverse velocity-depth models and a density model along the primary 330 km north-south profile, from ridge axis to 6 Ma crust. By incorporating wide-angle streamer data from our two-ship, synthetic aperture acquisition together with traditional wide-angle OBS data we are able to constrain the structure of the upper oceanic crust. The results show a long-wavelength trend of increasing seismic velocity and density with age, and a correlation between velocity structure and basement

  9. Hydrothermal Alteration of the Lower Oceanic Crust: Insight from OmanDP Holes GT1A and GT2A.

    NASA Astrophysics Data System (ADS)

    Harris, M.; Zihlmann, B.; Mock, D.; Akitou, T.; Teagle, D. A. H.; Kondo, K.; Deans, J. R.; Crispini, L.; Takazawa, E.; Coggon, J. A.; Kelemen, P. B.

    2017-12-01

    Hydrothermal circulation is a fundamental Earth process that is responsible for the cooling of newly formed ocean crust at mid ocean ridges and imparts a chemical signature on both the crust and the oceans. Despite decades of study, the critical samples necessary to resolve the role of hydrothermal circulation during the formation of the lower ocean crust have remained poorly sampled in the ocean basins. The Oman Drilling Project successfully cored 3 boreholes into the lower crust of the Semail ophiolite (Holes GT1A layered gabbros, GT2A foliated gabbros and GT3A dike/gabbro transition). These boreholes have exceptionally high recovery ( 100%) compared to rotary coring in the oceans and provide an unrivalled opportunity to quantitatively characterise the hydrothermal system in the lower oceanic crust. Hydrothermal alteration in Holes GT1A and GT2A is ubiquitous and manifests as secondary minerals replacing primary igneous phases and secondary minerals precipitated in hydrothermal veins and hydrothermal fault zones. Hole GT1A is characterised by total alteration intensities between 10 -100%, with a mean alteration intensity of 60%, and shows no overall trend downhole. However, there are discrete depth intervals (on the scale of 30 -100 m) where the total alteration intensity increases with depth. Alteration assemblages are dominated by chlorite + albite + amphibole, with variable abundances of epidote, clinozoisite and quartz. Hole GT1A intersected several hydrothermal fault zones, these range from 2-3 cm up to >1m in size and are associated with more complex secondary mineral assemblages. Hydrothermal veins are abundant throughout Hole GT1A, with a mean density of 37 vein/m. Hole GT2A is characterised by total alteration intensities between 6-100%, with a mean alteration intensity of 45%, and is highly variable downhole. Alteration halos and patches are slightly more abundant than in Hole GT1A. The secondary mineral assemblage is similar to Hole GT1A, but Hole GT2A

  10. First Investigation of the Microbiology of the Deepest Layer of Ocean Crust

    PubMed Central

    Mason, Olivia U.; Nakagawa, Tatsunori; Rosner, Martin; Van Nostrand, Joy D.; Zhou, Jizhong; Maruyama, Akihiko; Fisk, Martin R.; Giovannoni, Stephen J.

    2010-01-01

    The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes (“GeoChip”), producing further evidence of genomic potential for hydrocarbon degradation - genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial

  11. First investigation of the microbiology of the deepest layer of ocean crust.

    PubMed

    Mason, Olivia U; Nakagawa, Tatsunori; Rosner, Martin; Van Nostrand, Joy D; Zhou, Jizhong; Maruyama, Akihiko; Fisk, Martin R; Giovannoni, Stephen J

    2010-11-05

    The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes ("GeoChip"), producing further evidence of genomic potential for hydrocarbon degradation--genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial

  12. Microbiology of the lower ocean crust - Preliminary results from IODP Expedition 360, Atlantis Bank

    NASA Astrophysics Data System (ADS)

    Sylvan, J. B.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Expedition 360 Scientists, I.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. We present here preliminary analysis of microbial communities sampled from Hole U1473A, drilled to 789.7 m below seafloor during Expedition 360. Sub-sampling of core sections was conducted in a newly designed plexiglass enclosure with positive air pressure and HEPA filtered air, providing a clean environment for microbiology sampling aboard the JOIDES Resolution. Adenosine triphosphoate, an indicator of microbial biomass, was quantified above detection in 23 of 66 samples analyzed. We measured exoenzyme activity for alkaline phosphatase (AP), leucine aminopeptidase and arginine aminopeptidase in 16 samples and found AP to be very low but above background for 14 of the samples, with highest activities measured between 10 and 70 m below seafloor (mbsf) and peaks again at 158 and 307 mbsf, while both peptidase enzymes were above detection for only one sample at 715 mbsf. Isolates of fungi obtained from core samples as well as analyses of lipid and DNA biomarkers, and Raman spectra for a few of our rock core samples provide initial insights into microbial communities in the lower oceanic crust. Finally, a new tracer of seawater and drilling mud contamination, perfluoromethyl decaline (PFMD), was tested for the first time and its performance compared with the commonly used tracer perfluoromethylcyclohexane (PMCH). PFMD was run during coring operations for ten samples and was routinely detected in the drilling fluids, usually detected on the outside of uncleaned cores, and rarely above detection on the cleaned outside of cores. It was below detection on the inside of cores, indicating

  13. Hess Deep Interactive Lab: Exploring the Structure and Formation of the Oceanic Crust through Hands-On Models and Online Tools

    NASA Astrophysics Data System (ADS)

    Kurtz, N.; Marks, N.; Cooper, S. K.

    2014-12-01

    Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.

  14. Pito Deep reveals spatial/temporal variability of accretionary processes in the lower oceanic crust at fast-spread MOR

    NASA Astrophysics Data System (ADS)

    John, B. E.; Cheadle, M. J.; Gee, J. S.; Coogan, L. A.; Gillis, K. M.

    2017-12-01

    During January and February 2017, the 42-day RV Atlantis PMaG cruise mapped and sampled in-situ fast spread lower crust for 35 km along a flow line at Pito Deep Rift (northeastern Easter microplate). There, ridge-perpendicular escarpments bound Pito Deep and expose up to 3 km sections of crust parallel to the paleo-spreading direction, providing a unique opportunity to test models for the architecture of fast spread lower ocean crust (the plutonic section). Shipboard operations included a >57,000 km2 multi-beam survey; ten Sentry dives over 70 km2 (nominal m-scale resolution) to facilitate acquisition of detailed magnetic and bathymetric data, and optimize Jason II dive siting for rock sampling and geologic mapping; nine Jason II dives in 4 areas, recovering >400 samples of gabbroic lower crust, of which 80% are approximately oriented. Combined Sentry mapping and Jason II sampling and imaging of one area, provides the most detailed documentation of in situ gabbroic crust (>3 km2 of seafloor, over 1000+m vertical section) ever completed. Significantly, the area exposes distinct lateral variation in rock type: in the west 100m of Fe-Ti oxide rich gabbroic rocks overly gabbro and olivine gabbro; however, to the east, exposures of primitive, layered troctolitic rocks extend to within 100m below the dike-gabbro transition. Equivalent troctolitic rocks are found 13 km to the southeast parallel to a flow line, implying shallow primitive rocks are a characteristic feature of EPR lower crust at this location. The high-level position of troctolitic rocks is best explained by construction in a shallow, near steady-state melt lens at a ridge segment center, with some form of gabbro glacier flow active during formation of at least the uppermost lower ocean crust (Perk et al., 2007). Lateral variation in rock type (adjacent oxide gabbro, gabbro, olivine-rich gabbro and troctolite) over short distances taken with complexity in magmatic fabric orientation (mineral and grain size

  15. Growth and Construction of Oceanic Crust at Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Schwartz, J. J.; John, B. E.; Cheadle, M. J.; Miranda, E. A.; Grimes, C. B.; Wooden, J. L.; Dick, H. J.

    2005-12-01

    Magmatic zircon is a common accessory mineral in oceanic crustal rocks including gabbro, oxide gabbro, diabase and felsic veins. Its presence in these rocks provides an exceptional opportunity to document crustal growth processes at slow-spreading mid-ocean ridges. We present nineteen Pb/U zircon SHRIMP-RG ion probe ages of lower crustal rocks collected by manned submersible, ROV, dredging and ODP drilling from a 20 x 30 km2 area of Atlantis Bank, Southwest Indian Ridge, which allow us to constrain the growth and construction of oceanic crust. Weighted average 206Pb/238U ages of these samples range from 10.7 to 13.9 Ma, with errors of 0.1-0.6 m.y. (<1 - 4%). At least 75% of these gabbros accreted within error of the predicted sea-surface magnetic age, whereas up to 25% are between 700,000 and 2.5 m.y. older. In one sample, we identified zircon with inherited cores as much as 1.5 m.y. older than their corresponding rims. There is no observable correlation between age and lithology, and the anomalously old samples are not from any specific part of Atlantis Bank; they appear to be randomly distributed amongst the non-anomalous age samples and come from various structural depths. We consider two models to explain the presence of these anomalously old rocks: i) a stochastic intrusion model whereby magma was intruded at different spatial locations within the rift valley as the plates spread apart, resulting in the entrapment of older lower crust by subsequent intrusions; and/or ii) a model in which some gabbroic bodies originally crystallized at depths of ~5-18 km below the base of the crust in a thick, cold, axial lithosphere and were subsequently uplifted along flow-lines and intruded by shallow-level magmas during the creation of Atlantis Bank. In this model, the difference in time between the Pb/U zircon crystallization age and the magnetic age is a proxy for the depth at which zircon crystallized (assuming a constant mantle upwelling rate during the construction of

  16. Magnesium Isotope Composition of the Altered Upper Oceanic Crust at ODP Holes 504B and 896A, Costa Rica Rift

    NASA Astrophysics Data System (ADS)

    Beaumais, A.; Teagle, D. A. H.; James, R. H.; Pearce, C. R.; Milton, J. A.; Alt, J.; Coggon, R. M.

    2017-12-01

    Alteration of the oceanic crust is thought to be the principal sink of Mg in seawater, but the effect of this process on the Mg isotope (δ26Mg) composition of the oceans remains unclear. Here we present the first measurements of Mg isotopes in altered oceanic crust from ODP Holes 504B and 896A, located in 5.9 Ma crust, 200 km south of the intermediate spreading rate Costa Rica Rift. Hole 504B penetrates: (i) A volcanic section, consisting of partially altered basalt that was open to seawater circulation under oxic-suboxic conditions at temperatures of <150°C. (ii) A transition zone, characterized by mixing between upwelling hydrothermal fluid and seawater between 100 and 350°C. (iii) A sheeted dike complex consisting of diabase partially altered to greenschist facies minerals. Hole 896A penetrates volcanic rocks altered at low temperature (<100 °C) under oxic-suboxic conditions. The overall range in δ26Mg values is -0.53 to -0.01‰; significantly greater than the range observed in unaltered mid-ocean ridge basalts (MORB: -0.25 ± 0.06‰ [1]). δ26Mg values decrease with depth in the volcanic sections of both Holes 504B and 896A. The highest δ26Mg values are found in saponite-bearing basalts at the top of the volcanic sections of both holes, and are attributed to the preferential incorporation of heavy Mg isotopes into secondary clays (Mg-saponite). Lower δ26Mg values recorded in the deeper part of the volcanic section may be a result of fluid-rock interaction with isotopically lighter evolved seawater. The transition zone is characterised by MORB-like to relatively high δ26Mg values in the chlorite-smectite bearing basalts. The sheeted dike complex yields a narrow range of MORB-like δ26Mg values suggesting that limited fractionation occurs during high-temperature alteration and that the fluids have very low Mg concentrations. Low temperature fluid-rock interactions modify the Mg isotopic composition of the upper part of the oceanic crust. Therefore, this

  17. Sulphide mineral evolution and metal mobility during alteration of the oceanic crust: Insights from ODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Patten, C. G. C.; Pitcairn, I. K.; Teagle, D. A. H.; Harris, M.

    2016-11-01

    Fluxes of metals during the hydrothermal alteration of the oceanic crust have far reaching effects including buffering of the compositions of the ocean and lithosphere, supporting microbial life and the formation of sulphide ore deposits. The mechanisms responsible for metal mobilisation during the evolution of the oceanic crust are complex and are neither fully constrained nor quantified. Investigations into the mineral reactions that release metals, such as sulphide leaching, would generate better understanding of the controls on metal mobility in the oceanic crust. We investigate the sulphide and oxide mineral paragenesis and the extent to which these minerals control the metal budget in samples from Ocean Drilling Program (ODP) Hole 1256D. The ODP Hole 1256D drill core provides a unique sample suite representative of a complete section of a fast-spreading oceanic crust from the volcanic section down to the plutonic complex. The sulphide population at Hole 1256D is divided into five groups based on mineralogical assemblage, lithological location and texture: the magmatic, metasomatised, high temperature hydrothermal, low temperature and patchy sulphides. The initiation of hydrothermal alteration by downward flow of moderate temperature (250-350 °C) hydrothermal fluids under oxidising conditions leads to metasomatism of the magmatic sulphides in the sheeted dyke and plutonic complexes. Subsequent increase in the degree of hydrothermal alteration at temperatures >350 °C under reducing conditions then leads to the leaching of the metasomatised sulphides by rising hydrothermal fluids. Mass balance calculations show that the mobility of Cu, Se and Au occurs through sulphide leaching during high temperature hydrothermal alteration and that the mobility of Zn, As, Sb and Pb is controlled by silicate rather than sulphide alteration. Sulphide leaching is not complete at Hole 1256D and more advanced alteration would mobilise greater masses of metals. Alteration of oxide

  18. Validation of the BASALT model for simulating off-axis hydrothermal circulation in oceanic crust

    NASA Astrophysics Data System (ADS)

    Farahat, Navah X.; Archer, David; Abbot, Dorian S.

    2017-08-01

    Fluid recharge and discharge between the deep ocean and the porous upper layer of off-axis oceanic crust tends to concentrate in small volumes of rock, such as seamounts and fractures, that are unimpeded by low-permeability sediments. Basement structure, sediment burial, heat flow, and other regional characteristics of off-axis hydrothermal systems appear to produce considerable diversity of circulation behaviors. Circulation of seawater and seawater-derived fluids controls the extent of fluid-rock interaction, resulting in significant geochemical impacts. However, the primary regional characteristics that control how seawater is distributed within upper oceanic crust are still poorly understood. In this paper we present the details of the two-dimensional (2-D) BASALT (Basement Activity Simulated At Low Temperatures) numerical model of heat and fluid transport in an off-axis hydrothermal system. This model is designed to simulate a wide range of conditions in order to explore the dominant controls on circulation. We validate the BASALT model's ability to reproduce observations by configuring it to represent a thoroughly studied transect of the Juan de Fuca Ridge eastern flank. The results demonstrate that including series of narrow, ridge-parallel fractures as subgrid features produces a realistic circulation scenario at the validation site. In future projects, a full reactive transport version of the validated BASALT model will be used to explore geochemical fluxes in a variety of off-axis hydrothermal environments.

  19. Deep-ocean ferromanganese crusts and nodules

    USGS Publications Warehouse

    Hein, James R.; Koschinsky, Andrea

    2014-01-01

    Ferromanganese crusts and nodules may provide a future resource for a large variety of metals, including many that are essential for emerging high- and green-technology applications. A brief review of nodules and crusts provides a setting for a discussion on the latest (past 10 years) research related to the geochemistry of sequestration of metals from seawater. Special attention is given to cobalt, nickel, titanium, rare earth elements and yttrium, bismuth, platinum, tungsten, tantalum, hafnium, tellurium, molybdenum, niobium, zirconium, and lithium. Sequestration from seawater by sorption, surface oxidation, substitution, and precipitation of discrete phases is discussed. Mechanisms of metal enrichment reflect modes of formation of the crusts and nodules, such as hydrogenetic (from seawater), diagenetic (from porewaters), and mixed diagenetic–hydrogenetic processes.

  20. Isotopic constraints on the formation of carbonates during low-temperature hydrothermal oceanic crust alteration

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Antonelli, M. A.; Ramos, D. S.; Bender, M. L.; Schrag, D. P.; DePaolo, D. J.; Higgins, J. A.

    2016-12-01

    Low temperature (<100°C) water-rock reactions in oceanic crust have a potentially large influence on seawater chemical compositions and atmospheric pCO2. Quantification of the conditions (e.g., temperature) of oceanic crust alteration is needed to evaluate its importance for global silicate weathering fluxes. The isotopic and chemical compositions of secondary carbonates in oceanic crust reflect the temperature and chemistry of the circulating fluid and thus are used to reconstruct past conditions of crustal alteration. For example, temperatures are calculated via carbonate δ18O thermometry using measured δ18Ocarb vs. assumed δ18Ofluid. δ18Ofluid is usually assumed to be the seawater value at the time of carbonate formation. We present measured clumped-isotope temperatures (Tclump) and δ18O, δ13C, δ44Ca, and 87Sr/86Sr values of Jurassic carbonates from altered oceanic crust (ODP Site 801). Tclump measured at Caltech ranges from 24-51°C. Calculated δ18Ofluid (based on Tclump and δ18Ocarb) ranges from -0.4‰ (±0.4, 1σ) to -3.5‰ (±0.6). Higher temperatures correlate with lower δ18Ofluid (R2 = 0.75). This suggests that at elevated temperatures, δ18Ofluid was modified away from seawater values, likely via the preferential incorporation of 18O vs. 16O into secondary minerals relative to water. This indicates that δ18Ofluid values of circulating fluids are not necessarily identical to seawater δ18O. Tclump measurements are being replicated at Harvard for further verification. Carbonates with δ13C indicating a seawater C source (δ13C > 0‰) have average δ44Ca (relative to modern seawater) of -0.84‰ (±0.08). This is indistinguishable from igneous rock δ44Ca and suggests that carbonate Ca is derived from igneous Ca released during crustal alteration. Carbonates with δ13C indicating an organic C source (δ13C < -2.5‰) have lower δ44Cacarb (< -1‰). Carbonate 87Sr/86Sr ranges from 0.70742 to 0.70656. Based on the seawater 87Sr/86Sr curve, this

  1. Intraterrestrial life in igneous ocean crust: advances, technologies, and the future (Invited)

    NASA Astrophysics Data System (ADS)

    Edwards, K. J.; Wheat, C. G.

    2010-12-01

    The “next frontier” of scientific investigation in the deep sub-seafloor microbial biosphere lies in a realm that has been a completely unexplored until just the past decade: the igneous oceanic crust. Problems that have hampered exploration of the “hard rock” marine deep biosphere have revolved around sample access (hard rock drilling is technologically complex), contamination (a major hurdle), momentum (why take on this challenge when the relatively “easier” marine muds also have been a frontier) and suspicion that microbes in more readily accessed using (simpler) non-drilling technologies - like vents - are truly are endemic of subsurface clades/activities. Since the late 1990’s, however, technologies and resultant studies on microbes in the igneous ocean crust deep biosphere have risen sharply, and offer a new and distinct view on this biome. Moreover, microbiologists are now taking leading roles in technological developments that are critically required to address this biosphere - interfacing and collaborating closely with engineers, genomic biologists, geologists, seismologists, and geochemists to accomplish logistically complex and long-term studies that bring observatory research to this deep realm. The future of this field for the least decade is rich - opportunities abound for microbiologists to play new roles in how we study microbiology in the deep subsurface in an oceanographic and Earth system science perspective.

  2. A Low Viscosity Lunar Magma Ocean Forms a Stratified Anorthitic Flotation Crust With Mafic Poor and Rich Units: Lunar Magma Ocean Viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dygert, Nick; Lin, Jung-Fu; Marshall, Edward W.

    Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22more » $$+0.11\\atop{-0.19}$$to 1.45 $$+0.46\\atop{-0.82}$$ Pa s at experimental conditions (1,300–1,600°C; 0.1–4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.« less

  3. Seismic Velocity Variation and Evolution of the Upper Oceanic Crust across the Mid-Atlantic Ridge at 1.3°S

    NASA Astrophysics Data System (ADS)

    Jian, H.; Singh, S. C.

    2017-12-01

    The oceanic crust that covers >70% of the solid earth is formed at mid-ocean ridges, but get modified as it ages. Understanding the evolution of oceanic crust requires investigations of crustal structures that extend from zero-age on the ridge axis to old crust. In this study, we analyze a part of a 2000-km-long seismic transect that crosses the Mid-Atlantic Ridge segment at 1.3°S, south of the Chain transform fault. The seismic data were acquired using a 12-km-long multi-sensor streamer and dense air-gun shots. Using a combination of downward continuation and seismic tomography methods, we have derived a high-resolution upper crustal velocity structure down to 2-2.5 km depth below the seafloor, from the ridge axis to 3.5 Ma on both sides of the ridge axis. The results demonstrate that velocities increase at all depths in the upper crust as the crust ages, suggesting that hydrothermal precipitations seal the upper crustal pore spaces. This effect is most significant in layer 2A, causing a velocity increase of 0.5-1 km/s after 1-1.5 Ma, beyond which the velocity increase is very small. Furthermore, the results exhibit a significant decrease in both the frequency and amplitude of the low-velocity anomalies associated with faults beyond 1-1.5 Ma, when faults become inactive, suggesting a linkage between the sealing of fault space and the extinction of hydrothermal activity. Besides, the off-axis velocities are systematically higher on the eastern side of the ridge axis compared to on the western side, suggesting that a higher hydrothermal activity should exist on the outside-corner ridge flank than on the inside-corner flank. While the tomography results shown here cover 0-3.5 Ma crust, the ongoing research will further extend the study area to older crust and also incorporating pre-stack migration and full waveform inversion methods to improve the seismic structure.

  4. Metabolic Activity and Biosignatures of Microbes in the Lower Ocean Crust of Atlantis Bank, IODP Expedition 360

    NASA Astrophysics Data System (ADS)

    Wee, S. Y.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Yvon-Lewis, S. A.; Sylvan, J. B.

    2017-12-01

    International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. Recovered cores were primarily gabbro and olivine gabbro, which may potentially host serpentinization reactions and associated microbial life. Our goal was to sample this subseafloor environment and determine quantity, diversity and metabolic capabilities of any resident microbial life. Hole U1473A was drilled during Expedition 360 down to 790 m below seafloor and samples for detection of microbial communities and microbial biosignatures were collected throughout. We present here quantification of microbial biomass via fluorescence microscopy, preliminary analysis of nutrient addition experiments, data from sequencing of microbial 16S rRNA genes, analysis of microbial lipids, and data from Raman spectra of subsurface isolates. We initiated and sampled 12 nutrient addition experiments from 71-745 mbsf by adding sampled rocks to artificial seawater with no additions, added ammonium, added ammonium plus phosphate, and added organic acids. In nearly all of the experiment bottles, methane was detected when samples were collected at six months and again after one year of incubation. Phosphate in the incubations was drawn down, indicating active microbial metabolism, and archaeal lipids from in situ samples indicate the presence of methanogens, corroborating the likelihood of methanogens as the source of detected methane in the nutrient addition incubations. Altogether, the interdisciplinary approach used here provides a peek into life in the subseafloor upper ocean crust.

  5. Thermal diffusion of the lunar magma ocean and the formation of the lunar crust

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Wang, S.

    2010-12-01

    The magma ocean hypothesis is consistent with several lines of evidence including planet formation, core-mantle differentiation and geochemical observations, and it is proved as an inevitable stage in the early evolution of planets. The magma ocean is assumed to be homogeneous in previous models during solidification or crystallization[1]. Based on the recent advance and our new data in experimental igneous petrology[2], we question this assumption and propose that an gabbrotic melt, from which the anorthositic lunar crust crystallized, can be produced by thermal diffusion, rather than by magma fractionation. This novel model can provide explanations for the absence of the advection in lunar magma ocean[3] and the old age of the anorthositic lunar crust[4-5]. 1. Solomatov, V., Magma Oceans and Primordial Mantle Differentiation, in Treatise on Geophysics, S. Gerald, Editor. 2007, Elsevier: Amsterdam. p. 91-119. 2. Huang, F., et al., Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation. Geochimica Et Cosmochimica Acta, 2009. 73(3): p. 729-749. 3. Turcotte, D.L. and L.H. Kellogg, Implications of isotope data for the origin of the Moon, in Origin of the Moon, W.K. Hartmann, R.J. Phillips, and G.J. Taylor, Editors. 1986, Lunar and Planet. Inst.: Houston, TX. p. 311-329. 4. Alibert, C., M.D. Norman, and M.T. McCulloch, An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochimica Et Cosmochimica Acta, 1994. 58(13): p. 2921-2926. 5. Touboul, M., et al., Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean. Icarus, 2009. 199(2): p. 245-249.

  6. Lunar and terrestrial crust formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, D.

    1983-11-15

    Planetary crusts may be accreted, produced in primordial differentiation, or built up piecemeal by serial magmatism. The existence of old, polygenetic, laterally heterogeneous, partial melt rocks in the lunar highlands suggests that the moon produced its early crust by serial magmatism. This view can be reconciled with lunar Eu anomalies, previously thought to support the magma ocean model of crust formation, if complications in the fractionation of mare basalts are reconized. Phase equilibrium and magmatic density information for mare basalts suggest a model in which plagioclase fractionation can occur even though plagioclase is not a near-liquidus phase. The crytic fractionationmore » of clinopryoxene in MORB provides a precedent for this model. The necessity for a lunar magma ocean is questioned, but a role for a terrestrial magma ocean of sorts at depth is suggested.« less

  7. Rocks of the early lunar crust

    NASA Technical Reports Server (NTRS)

    James, O. B.

    1980-01-01

    Data are summarized which suggest a model for the early evolution of the lunar crust. According to the model, during the final stages of accretion, the outer part of the moon melted to form a magma ocean approximately 300 km deep. This ocean fractionated to form mafic and ultramafic cumulates at depth and an overlying anorthositic crust made up of ferroan anorthosites. Subsequent partial melting in the primitive mantle underlying the crystallized magma ocean produced melts which segregated, moved upward, intruded the primordial crust, and crystallized to form layered plutons consisting of Mg-rich plutonic rocks. Intense impact bombardment at the lunar surface mixed and melted the rocks of the two suites to form a thick layer of granulated debris, granulitic breccias, and impact-melt rocks.

  8. Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust.

    PubMed

    Zhang, Junfeng; Green, Harry W; Bozhilov, Krassimir; Jin, Zhenmin

    2004-04-08

    Dehydration embrittlement has been proposed to explain both intermediate- and deep-focus earthquakes in subduction zones. Because such earthquakes primarily occur at shallow depths or within the core of the subducting plate, dehydration at relatively low temperatures has been emphasized. However, recent careful relocation of subduction-zone earthquakes shows that at depths of 100-250 km, earthquakes continue in the uppermost part of the slab (probably the former oceanic crust that has been converted to eclogite) where temperatures are higher. Here we show that at such pressures and temperatures, eclogite lacking hydrous phases but with significant hydroxyl incorporated as defects in pyroxene and garnet develops a faulting instability associated with precipitation of water at grain boundaries and the production of very small amounts of melt. This new faulting mechanism satisfactorily explains high-temperature earthquakes in subducting oceanic crust and could potentially be involved in much deeper earthquakes in connection with similar precipitation of water in the mantle transition zone (400-700 km depth). Of potential importance for all proposed high-pressure earthquake mechanisms is the very small amount of fluid required to trigger this instability.

  9. Structure, porosity and stress regime of the upper oceanic crust: Sonic and ultrasonic logging of DSDP Hole 504B

    USGS Publications Warehouse

    Newmark, R.L.; Anderson, R.N.; Moos, D.; Zoback, M.D.

    1985-01-01

    The layered structure of the oceanic crust is characterized by changes in geophysical gradients rather than by abrupt layer boundaries. Correlation of geophysical logs and cores recovered from DSDP Hole 504B provides some insight into the physical properties which control these gradient changes. Borehole televiewer logging in Hole 504B provides a continuous image of wellbore reflectivity into the oceanic crust, revealing detailed structures not apparent otherwise, due to the low percentage of core recovery. Physical characteristics of the crustal layers 2A, 2B and 2C such as the detailed sonic velocity and lithostratigraphic structure are obtained through analysis of the sonic, borehole televiewer and electrical resistivity logs. A prediction of bulk hydrated mineral content, consistent with comparison to the recovered material, suggests a change in the nature of the alteration with depth. Data from the sonic, borehole televiewer, electrical resistivity and other porosity-sensitive logs are used to calculate the variation of porosity in the crustal layers 2A, 2B and 2C. Several of the well logs which are sensitive to the presence of fractures and open porosity in the formation indicate many zones of intense fracturing. Interpretation of these observations suggests that there may be a fundamental pattern of cooling-induced structure in the oceanic crust. ?? 1985.

  10. Understanding Fracturing and Alteration at ODP Borehole 504B: 3D Seismic Structure and Anisotropy of 5.9 Ma Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.; Zhang, L.

    2016-12-01

    Faults and fracture networks within the oceanic crust influence the pattern of hydrothermal circulation. This circulation changes the primary composition and structure of the crust as it evolves, particularly the upper crust (layer 2), through the secondary alteration of minerals and the infilling and 'sealing' of cracks. Processes influencing the extent and the depth within the crust of these changes are currently not well known. Alteration can be quantified by observing changes in the seismic velocity structure of the crust, and analysis of seismic anisotropy within the upper crust reveals the nature of ridge-parallel aligned faults and fractures. Here we show a 3D P-wave velocity model and anisotropy maps for 5.9 Ma crust at ODP borehole 504B, situated 200 km south of the Costa Rica Rift, derived from an active-source wide-angle seismic survey in the Panama Basin conducted in 2015. The seismic structure reveals relatively homogeneous, 5 km thick oceanic crust with upper crustal velocity boundaries occurring coincident with alteration fronts observed in 504B. Correlations between basement topography, velocity anomaly and anisotropy indicate that a distinct relationship between hydrothermal alteration, basement ridges, fractures, and the velocity structure of layer 2 exists in this location. A significant difference is seen in the velocity and anisotropic structure between regions to the east and west of the borehole, that correlates with patterns in heat flow observations and indicates that: 1) these two regions of crust have inherited differences in crustal fabric during accretion; and/or 2) different regimes of hydrothermal circulation have been active in each part of the crust as they have aged. This research is part of a major, interdisciplinary NERC-funded research collaboration entitled: Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge (OSCAR).

  11. Hydrogenetic Ferromanganese Crusts of the California Continental Margin

    NASA Astrophysics Data System (ADS)

    Conrad, Tracey A.

    Hydrogenetic Ferromanganese (Fe-Mn) crusts grow from seawater and in doing so sequester elements of economic interest and serve as archives of past seawater chemistry. Ferromanganese crusts have been extensively studied in open-ocean environments. However, few studies have examined continent-proximal Fe-Mn crusts especially from the northeast Pacific. This thesis addresses Fe-Mn crusts within the northeast Pacific California continental margin (CCM), which is a dynamic geological and oceanographic environment. In the first of three studies, I analyzed the chemical and mineralogical composition of Fe-Mn crusts and show that continental-proximal processes greatly influence the chemistry and mineralogy of CCM Fe-Mn crusts. When compared to global open-ocean Fe-Mn crusts, CCM crusts have higher concentrations of iron, silica, and thorium with lower concentrations of many elements of economic interest including manganese, cobalt, and tellurium, among other elements. The mineralogy of CCM Fe-Mn crusts is also unique with more birnessite and todorokite present than found in open-ocean samples. Unlike open-ocean Fe-Mn crusts, carbonate-fluorapatite is not present in CCM crusts. This lack of phosphatization makes CCM Fe-Mn crusts excellent candidates for robust paleoceanography records. The second and third studies in this thesis use isotope geochemistry on select CCM Fe-Mn crusts from four seamounts in the CCM to study past terrestrial inputs into the CCM and sources and behavior of Pb and Nd isotopes over the past 7 million years along the northeast Pacific margin. The second study focuses on riverine inputs into the Monterey Submarine Canyon System and sources of the continental material. Osmium isotopes in the crusts are compared to the Cenozoic Os seawater curve to develop an age model for the samples that show the crusts range in age of initiation of crust growth from approximately 20 to 6 Myr. Lead and neodymium isotopes measured in select Fe-Mn crusts show that

  12. Seismic wave velocity of rocks in the Oman ophiolite: constraints for petrological structure of oceanic crust

    NASA Astrophysics Data System (ADS)

    Saito, S.; Ishikawa, M.; Shibata, S.; Akizuki, R.; Arima, M.; Tatsumi, Y.; Arai, S.

    2010-12-01

    Evaluation of rock velocities and comparison with velocity profiles defined by seismic refraction experiments are a crucial approach for understanding the petrological structure of the crust. In this study, we calculated the seismic wave velocities of various types of rocks from the Oman ophiolite in order to constrain a petrological structure of the oceanic crust. Christensen & Smewing (1981, JGR) have reported experimental elastic velocities of rocks from the Oman ophiolite under oceanic crust-mantle conditions (6-430 MPa). However, in their relatively low-pressure experiments, internal pore-spaces might affect the velocity and resulted in lower values than the intrinsic velocity of sample. In this study we calculated the velocities of samples based on their modal proportions and chemical compositions of mineral constituents. Our calculated velocities represent the ‘pore-space-free’ intrinsic velocities of the sample. We calculated seismic velocities of rocks from the Oman ophiolite including pillow lavas, dolerites, plagiogranites, gabbros and peridotites at high-pressure-temperature conditions with an Excel macro (Hacker & Avers 2004, G-cubed). The minerals used for calculations for pillow lavas, dolerites and plagiogranites were Qtz, Pl, Prh, Pmp, Chl, Ep, Act, Hbl, Cpx and Mag. Pl, Hbl, Cpx, Opx and Ol were used for the calculations for gabbros and peridotites. Assuming thermal gradient of 20° C/km and pressure gradient of 25 MPa/km, the velocities were calculated in the ranges from the atmospheric pressure (0° C) to 200 MPa (160° C). The calculation yielded P-wave velocities (Vp) of 6.5-6.7 km/s for the pillow lavas, 6.6-6.8 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6.9-7.5 km/s for the gabbros and 8.1-8.2 km/s for the peridotites. On the other hand, experimental results reported by Christensen & Smewing (1981, JGR) were 4.5-5.9 km/s for the pillow lavas, 5.5-6.3 km/s for the dolerites, 6.1-6.3 km/s for the plagiogranites, 6

  13. Eclogitization of the Subducted Oceanic Crust and Its Implications for the Mechanism of Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Xinyang; Zhao, Dapeng; Suzuki, Haruhiko; Li, Jiabiao; Ruan, Aiguo

    2017-12-01

    The generating mechanism and process of slow earthquakes can help us to better understand the seismogenic process and the petrological evolution of the subduction system, but they are still not very clear. In this work we present robust P and S wave tomography and Poisson's ratio images of the subducting Philippine Sea Plate beneath the Kii peninsula in Southwest Japan. Our results clearly reveal the spatial extent and variation of a low-velocity and high Poisson's ratio layer which is interpreted as the remnant of the subducted oceanic crust. The low-velocity layer disappears at depths >50 km, which is attributed to crustal eclogitization and consumption of fluids. The crustal eclogitization and destruction of the impermeable seal play a key role in the generation of slow earthquakes. The Moho depth of the overlying plate is an important factor affecting the depth range of slow earthquakes in warm subduction zones due to the transition of interface permeability from low to high there. The possible mechanism of the deep slow earthquakes is the dehydrated oceanic crustal rupture and shear slip at the transition zone in response to the crustal eclogitization and the temporal stress/strain field. A potential cause of the slow event gap existing beneath easternmost Shikoku and the Kii channel is the premature rupture of the subducted oceanic crust due to the large tensional force.

  14. Partial separation of halogens during the subduction of oceanic crust

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.

    2014-05-01

    Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep

  15. Variations of Oceanic Crust in the Northeastern Gulf of Mexico From Integrated Geophysical Analysis

    NASA Astrophysics Data System (ADS)

    Liu, M.; Filina, I.

    2017-12-01

    Tectonic history of the Gulf of Mexico remains a subject of debate due to structural complexity of the area and lack of geological constraints. In this study, we focus our investigation on oceanic domain of the northeastern Gulf of Mexico to characterize the crustal distribution and structures. We use published satellite derived potential fields (gravity and magnetics), seismic refraction data (GUMBO3 and GUMBO4) and well logs to build the subsurface models that honor all available datasets. In the previous study, we have applied filters to potential fields grids and mapped the segments of an extinct mid-ocean ridge, ocean-continent boundary (OCB) and several transform faults in our study area. We also developed the 2D potential fields model for seismic profile GUMBO3 (Eddy et al., 2014). The objectives of this study are: 1) to develop a similar model for another seismic profile GUMBO 4 (Christeson, 2014) and derive subsurface properties (densities and magnetic susceptibilities), 2) to compare and contrast the two models, 3) to establish spatial relationship between the two crustal domains. Interpreted seismic velocities for the profiles GUMBO 3 and GUMBO 4 show significant differences, suggesting that these two profiles cross different segments of oceanic crust. The total crustal thickness along GUMBO 3 is much thicker (up to 10 km) than the one for GUMBO 4 (5.7 km). The upper crustal velocity along GUMBO 4 (6.0-6.7 km/s) is significantly higher than the one for GUMBO 3 ( 5.8 km/s). Based our 2D potential fields models along both of the GUMBO lines, we summarize physical properties (seismic velocities, densities and magnetic susceptibilities) for different crustal segments, which are proxies for lithologies. We use our filtered potential fields grids to establish the spatial relationship between these two segments of oceanic crust. The results of our integrated geophysical analysis will be used as additional constraints for the future tectonic reconstruction of

  16. High-Albedo Salt Crusts on the Tropical Ocean of Snowball Earth: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Carns, R.; Light, B.; Warren, S. G.

    2014-12-01

    During a Snowball Earth event, almost all of the ocean surface first freezes as sea ice. As in modern sea ice, trapped inclusions of liquid brine permeate the ice cover. As the ice grows and cools, salt crystals precipitate within the inclusions. At -23C, the most abundant salt in seawater, sodium chloride, begins to precipitate as the dihydrate mineral hydrohalite (NaCl·2H2O). Crystals of hydrohalite within the sea ice scatter light. Measurements of cold, natural sea ice show a broadband albedo increase of 10-20% when salt precipitates. Such snow-free natural sea ice with a surface temperature below -23C is rare on modern Earth, but would have been common in tropical regions of a Snowball Earth where evaporation exceeded precipitation. The persistent cold and lack of summer melt on the Snowball ocean surface, combined with net evaporation, is hypothesized to yield lag deposits of hydrohalite crystals on the ice surface. To investigate this process, we prepared laboratory-grown sea ice in a 1000 liter tank in a walk-in freezer laboratory. The ice was cooled below -23 C and the surface sprayed with a 23% NaCl solution to create a layer of hydrohalite-enriched ice, a proxy for lag deposits that would have formed over long periods of surface sublimation. We have developed a novel technique for measuring the spectral albedo of ice surfaces in the laboratory; this technique was used to monitor the evolution of the surface albedo of our salt crust as the ice matrix sublimated away leaving a layer of fine-grained hydrohalite crystals. Measurements of this hydrohalite surface crust show a very high albedo, comparable to fresh snow at visible wavelengths and significantly larger than fresh snow at near infrared wavelengths. Broadband albedos are 0.55 for bare artificial sea ice at -30C, 0.75 for ice containing 25% hydrohalite by volume, 0.84 after five days of desiccation and 0.93 after 47 days of desiccation. Using our laboratory measurements, along with estimates of

  17. Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins

    USGS Publications Warehouse

    Chulick, Gary S.; Detweiler, Shane; Mooney, Walter D.

    2013-01-01

    We present a new set of contour maps of the seismic structure of South America and the surrounding ocean basins. These maps include new data, helping to constrain crustal thickness, whole-crustal average P-wave and S-wave velocity, and the seismic velocity of the uppermost mantle (Pn and Sn). We find that: (1) The weighted average thickness of the crust under South America is 38.17 km (standard deviation, s.d. ±8.7 km), which is ∼1 km thinner than the global average of 39.2 km (s.d. ±8.5 km) for continental crust. (2) Histograms of whole-crustal P-wave velocities for the South American crust are bi-modal, with the lower peak occurring for crust that appears to be missing a high-velocity (6.9–7.3 km/s) lower crustal layer. (3) The average P-wave velocity of the crystalline crust (Pcc) is 6.47 km/s (s.d. ±0.25 km/s). This is essentially identical to the global average of 6.45 km/s. (4) The average Pn velocity beneath South America is 8.00 km/s (s.d. ±0.23 km/s), slightly lower than the global average of 8.07 km/s. (5) A region across northern Chile and northeast Argentina has anomalously low P- and S-wave velocities in the crust. Geographically, this corresponds to the shallowly-subducted portion of the Nazca plate (the Pampean flat slab first described by Isacks et al., 1968), which is also a region of crustal extension. (6) The thick crust of the Brazilian craton appears to extend into Venezuela and Colombia. (7) The crust in the Amazon basin and along the western edge of the Brazilian craton may be thinned by extension. (8) The average crustal P-wave velocity under the eastern Pacific seafloor is higher than under the western Atlantic seafloor, most likely due to the thicker sediment layer on the older Atlantic seafloor.

  18. Statistical averaging of marine magnetic anomalies and the aging of oceanic crust.

    USGS Publications Warehouse

    Blakely, R.J.

    1983-01-01

    Visual comparison of Mesozoic and Cenozoic magnetic anomalies in the North Pacific suggests that older anomalies contain less short-wavelength information than younger anomalies in this area. To test this observation, magnetic profiles from the North Pacific are examined from crust of three ages: 0-2.1, 29.3-33.1, and 64.9-70.3Ma. For each time period, at least nine profiles were analyzed by 1) calculating the power density spectrum of each profile, 2) averaging the spectra together, and 3) computing a 'recording filter' for each time period by assuming a hypothetical seafloor model. The model assumes that the top of the source is acoustic basement, the source thickness is 0.5km, and the time scale of geomagnetic reversals is according to Ness et al. (1980). The calculated power density spectra of the three recording filters are complex in shape but show an increase of attenuation of short-wavelength information as the crust ages. These results are interpreted using a multilayer model for marine magnetic anomalies in which the upper layer, corresponding to pillow basalt of seismic layer 2A, acts as a source of noise to the magnetic anomalies. As the ocean crust ages, this noisy contribution by the pillow basalts becomes less significant to the anomalies. Consequently, magnetic sources below layer 2A must be faithful recorders of geomagnetic reversals.-AuthorPacific power density spectrum

  19. Continental hyperextension, mantle exhumation, and thin oceanic crust at the continent-ocean transition, West Iberia: New insights from wide-angle seismic

    NASA Astrophysics Data System (ADS)

    Davy, R. G.; Minshull, T. A.; Bayrakci, G.; Bull, J. M.; Klaeschen, D.; Papenberg, C.; Reston, T. J.; Sawyer, D. S.; Zelt, C. A.

    2016-05-01

    Hyperextension of continental crust at the Deep Galicia rifted margin in the North Atlantic has been accommodated by the rotation of continental fault blocks, which are underlain by the S reflector, an interpreted detachment fault, along which exhumed and serpentinized mantle peridotite is observed. West of these features, the enigmatic Peridotite Ridge has been inferred to delimit the western extent of the continent-ocean transition. An outstanding question at this margin is where oceanic crust begins, with little existing data to constrain this boundary and a lack of clear seafloor spreading magnetic anomalies. Here we present results from a 160 km long wide-angle seismic profile (Western Extension 1). Travel time tomography models of the crustal compressional velocity structure reveal highly thinned and rotated crustal blocks separated from the underlying mantle by the S reflector. The S reflector correlates with the 6.0-7.0 km s-1 velocity contours, corresponding to peridotite serpentinization of 60-30%, respectively. West of the Peridotite Ridge, shallow and sparse Moho reflections indicate the earliest formation of an anomalously thin oceanic crustal layer, which increases in thickness from ~0.5 km at ~20 km west of the Peridotite Ridge to ~1.5 km, 35 km further west. P wave velocities increase smoothly and rapidly below top basement, to a depth of 2.8-3.5 km, with an average velocity gradient of 1.0 s-1. Below this, velocities slowly increase toward typical mantle velocities. Such a downward increase into mantle velocities is interpreted as decreasing serpentinization of mantle rock with depth.

  20. Cretaceous evolution of the Indian Plate and consequences for the formation, deformation and obduction of adjacent oceanic crust

    NASA Astrophysics Data System (ADS)

    Gaina, C.; Van Hinsbergen, D. J.; Spakman, W.

    2012-12-01

    As part of the gradual Gondwana dispersion that started in the Jurassic, the Indian tectonic block was rifted away from the Antarctica-Australian margins, probably in the Early-Mid Cretaceous and started its long journey to the north until it collided with Eurasia in the Tertiary. In this contribution first we will revise geophysical and geological evidences for the formation of oceanic crust between India and Antarctica, India and Madagascar, and India and Somali/Arabian margins. This information and possible oceanic basin age interpretation are placed into regional kinematic models. Three important compressional events NW and W of the Indian plate are the result of the opening of the Enderby Basin from 132 to 124 Ma, the first phase of seafloor spreading in the Mascarene basin approximately from 84 to 80 Ma, and the incipient opening of the Arabian Sea and the Seychelles microplate formation around 65 to 60 Ma. Based on retrodeformation of the Afghan-Pakistan part of the India-Asia collision zone and the eastern Oman margin, the ages of regional ophiolite emplacement and crystallization of its oceanic crust, as well as the plate tectonic setting of these ophiolites inferred from its geochemistry, we evaluate possible scenarios for the formation of intra-oceanic subduction zones and their evolution until ophiolite emplacement time. Our kinematic scenarios are constructed for several regional models and are discussed in the light of global tomographic models that may image some of the subducted Cretaceous oceanic lithosphere.

  1. Rift-plume interaction reveals multiple generations of recycled oceanic crust in Azores lavas

    NASA Astrophysics Data System (ADS)

    Béguelin, Paul; Bizimis, Michael; Beier, Christoph; Turner, Simon

    2017-12-01

    We present 176Hf/177Hf isotope ratios on 41 previously well-characterized subaerial and submarine samples from the Azores islands of São Miguel, Terceira, Graciosa, Faial, Pico and the João de Castro seamount (on the Terceira Rift). In εNd-εHf isotope space all Azores lavas fall below the mantle array reference line and do not overlap the proximal Atlantic MORB. Lavas from São Miguel and João de Castro form two distinct and well defined arrays extending below the mantle array, which has not been previously documented in other oceanic magmatic provinces. The Nd-Hf isotope compositions of João de Castro overlap those of HIMU type lavas, yet they lack the characteristically radiogenic Pb isotope ratios of HIMU. The combined Nd-Hf-Pb-Sr isotope systematics of both São Miguel and João de Castro endmembers can be explained by recycling of a single package of heterogeneous oceanic crust ranging from D-MORB to E-MORB in composition, with an age between 2.5 and 3.0 Ga, with no requirement for parent-daughter ratio modification during subduction. In contrast the Nd-Hf-Pb isotope systematics of lavas from São Jorge, Terceira, Graciosa, Pico and Faial are consistent with the presence of younger (<700 Ma) recycled crust that underwent low-temperature alteration and dehydration during subduction. There is no evidence in the erupted lavas for direct mixing between these two generations of recycled material within the plume. These data suggest that old recycling age and absence of sediments along with recycled oceanic crust are both required to develop isotopic compositions below the mantle array in εNd-εHf space. Our modeling shows that the compositional variability of erupted MORB is large enough that, given enough time, they can generate a wide range of isotope compositions such as observed in OIB. Lastly, lava compositions along the Terceira rift can be explained by a westward asthenospheric flux along a tilted lithosphere/asthenosphere boundary, where fertile

  2. Icelandic-type crust

    USGS Publications Warehouse

    Foulger, G.R.; Du, Z.; Julian, B.R.

    2003-01-01

    Numerous seismic studies, in particular using receiver functions and explosion seismology, have provided a detailed picture of the structure and thickness of the crust beneath the Iceland transverse ridge. We review the results and propose a structural model that is consistent with all the observations. The upper crust is typically 7 ?? 1 km thick, heterogeneous and has high velocity gradients. The lower crust is typically 15-30 ?? 5 km thick and begins where the velocity gradient decreases radically. This generally occurs at the V p ??? 6.5 km s-1 level. A low-velocity zone ??? 10 000 km2 in area and up to ??? 15 km thick occupies the lower crust beneath central Iceland, and may represent a submerged, trapped oceanic microplate. The crust-mantle boundary is a transition zone ???5 ?? 3 km thick throughout which V p increases progressively from ???7.2 to ???8.0 km s-1. It may be gradational or a zone of alternating high- and low-velocity layers. There is no seismic evidence for melt or exceptionally high temperatures in or near this zone. Isostasy indicates that the density contrast between the lower crust and the mantle is only ???90 kg m-3 compared with ???300 kg m-3 for normal oceanic crust, indicating compositional anomalies that are as yet not understood. The seismological crust is ???30 km thick beneath the Greenland-Iceland and Iceland-Faeroe ridges, and eastern Iceland, ???20 km beneath western Iceland, and ???40 km thick beneath central Iceland. This pattern is not what is predicted for an eastward-migrating plume. Low attenuation and normal V p/V s ratios in the lower crust beneath central and southwestern Iceland, and normal uppermost mantle velocities in general, suggest that the crust and uppermost mantle are subsolidus and cooler than at equivalent depths beneath the East Pacific Rise. Seismic data from Iceland have historically been interpreted both in terms of thin-hot and thick-cold crust models, both of which have been cited as supporting the plume

  3. Formation of Fe-Mn crusts within a continental margin environment

    USGS Publications Warehouse

    Conrad, Tracey A.; Hein, James R.; Paytan, Adina; Clague, David A.

    2017-01-01

    This study examines Fe-Mn crusts that form on seamounts along the California continental-margin (CCM), within the United States 200 nautical mile exclusive economic zone. The study area extends from approximately 30° to 38° North latitudes and from 117° to 126° West longitudes. The area of study is a tectonically active northeast Pacific plate boundary region and is also part of the North Pacific Subtropical Gyre with currents dominated by the California Current System. Upwelling of nutrient-rich water results in high primary productivity that produces a pronounced oxygen minimum zone. Hydrogenetic Fe-Mn crusts forming along the CCM show distinct chemical and mineral compositions compared to open-ocean crusts. On average, CCM crusts contain more Fe relative to Mn than open-ocean Pacific crusts. The continental shelf and slope release both Fe and Mn under low-oxygen conditions. Silica is also enriched relative to Al compared to open-ocean crusts. This is due to the North Pacific silica plume and enrichment of Si along the path of deep-water circulation, resulting in Si enrichment in bottom and intermediate waters of the eastern Pacific.The CCM Fe-Mn crusts have a higher percentage of birnessite than open-ocean crusts, reflecting lower dissolved seawater oxygen that results from the intense coastal upwelling and proximity to zones of continental slope pore-water anoxia. Carbonate fluorapatite (CFA) is not present and CCM crusts do not show evidence of phosphatization, even in the older sections. The mineralogy indicates a suboxic environment under which birnessite forms, but in which pH is not high enough to facilitate CFA deposition. Growth rates of CCM crusts generally increase with increasing water depth, likely due to deep-water Fe sources mobilized from reduced shelf and slope sediments.Many elements of economic interest including Mn, Co, Ni, Cu, W, and Te have slightly or significantly lower concentrations in CCM crusts relative to crusts from the Pacific

  4. Generation of mantle heterogeneity by oceanic crust recycling: how well can we match geochemical and geophysical observations? (Invited)

    NASA Astrophysics Data System (ADS)

    van Keken, P. E.; Brandenburg, J. P.; Hauri, E. H.; Ballentine, C. J.

    2009-12-01

    The heterogeneity of the Earth's mantle is expressed in complementary geochemical and geophysical signatures, where the geochemistry provides a time-integrated signal and the geophysics tends to see a recent snapshot of the Earth's interior. While the geophysical evidence tends to support a form of whole mantle convection that is moderated by rheological and phase changes below the transition zone, the geochemical observations have been generally used to support the presence of long-lived and isolated reservoirs. Recent dynamical modeling (Brandenburg et al., EPSL, 2008) employed high resolution finite modeling of mantle convection using an energetically consistent simulation of tectonic plates. A suite of models was developed with a dynamic vigor similar to that of the present day earth. The recycling of oceanic crust combined with a two-stage formation of the continental crust leads to a satisfactory match to the observed spread between HIMU-DMM-EM1 in multiple isotope systems without invoking recycling of continental crust. Due to the rheological contrast between upper and lower mantle there is a natural occurrence of a well-mixed upper mantle overlaying a chemically more heterogeneous lower mantle. The pooling of dense oceanic crust provides the formation of dense piles at the base of the mantle. Together with the occurrence of slabs that thicken and/or stagnate at the 670 discontinuity we find reasonable correspondance with the present day tomographic signatures. At present the models fail to explain noble gas systematics, even when taking the suggested high compatibility of helium into account.

  5. Genomic evidence for the Wood-Ljungdahl pathway for carbon fixation in warm basaltic ocean crust

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Fisk, M. R.; Mueller, R.; Colwell, F. S.; Mason, O. U.; Popa, R.

    2016-12-01

    Microbial life in the deep suboceanic aquifer can harness geochemical energy resulting from water-rock reactions and contribute to carbon cycling in the ocean via primary production, or chemosynthesis. Iron-bearing minerals such as olivine in oceanic crust can produce molecular hydrogen, small molecular weight hydrocarbons, and hydrogen sulfide as they react with seawater. Although this generally occurs in serpentinizing systems at very high temperatures deep in the subsurface, it has also been hypothesized to drive the subseafloor microbial ecosystems present in shallower basaltic aquifers. We present genome-based evidence for chemolithoautotrophic microbes present on the surface of olivine incubated in Juan de Fuca Ridge basaltic ocean crust for a 4-year period. These metagenome-derived genomes show dominant taxa capable of using both branches of the Wood-Ljungdahl pathway for carbon fixation and energy generation. This pathway uses molecular hydrogen potentially derived from the olivine surface as it reacts with seawater and CO2 which is inherent to seawater. These taxa were not reported from aquifer fluid samples, but have been found only in association with mineral surfaces in this study location. Most taxa in this simple community are distant relatives of cultured taxa; therefore this genome information is crucial to understanding how the subseafloor aquifer community is structured, how it obtains energy, how it cycles carbon, and gives us keys to help cultivate these organisms in the laboratory. Our findings also support the Subsurface Lithoautotrophic Microbial Ecosystem (SLiME) hypothesis and have implications for understanding life on early Earth and the potential for life in the Martian subsurface.

  6. Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Pringle, Emily A.; Moynier, Frédéric; Savage, Paul S.; Jackson, Matthew G.; Moreira, Manuel; Day, James M. D.

    2016-09-01

    The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (∼several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (∼tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen. Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. On average, δ30Si values for OIB (-0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth (-0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (δ30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.

  7. A Low Viscosity Lunar Magma Ocean Forms a Stratified Anorthitic Flotation Crust With Mafic Poor and Rich Units

    NASA Astrophysics Data System (ADS)

    Dygert, Nick; Lin, Jung-Fu; Marshall, Edward W.; Kono, Yoshio; Gardner, James E.

    2017-11-01

    Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22-0.19+0.11 to 1.45-0.82+0.46 Pa s at experimental conditions (1,300-1,600°C; 0.1-4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.

  8. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust

    PubMed Central

    Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.

    2015-01-01

    The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212

  9. Redox processes in subducting oceanic crust recorded by sulfide-bearing high-pressure rocks and veins (SW Tianshan, China)

    NASA Astrophysics Data System (ADS)

    Li, Ji-Lei; Gao, Jun; Klemd, Reiner; John, Timm; Wang, Xin-Shui

    2016-09-01

    The oxidized nature of the sub-arc mantle and hence arc magmas is generally interpreted as a result of the migration of subduction-related oxidizing fluids or melts from the descending slab into the mantle wedge. This is of particular importance seeing that the oxidization state of sub-arc magmas seems to play a key role in the formations of arc-related ore deposits. However, direct constraints on the redox state of subducted oceanic crust are sparse. Here, we provide a detailed petrological investigation on sulfide- and oxide-bearing eclogites, blueschists, micaschists, eclogite-facies and retrograde veins from the Akeyazi high-pressure (HP) terrane (NW China) in order to gain insight into the redox processes recorded in a subducting oceanic slab. Sulfides in these rocks are mainly pyrite and minor pyrrhotite, chalcopyrite, bornite, molybdenite, sphalerite and chalcocite, including exsolution textures of bornite-chalcopyrite intergrowth. Magnetite, ilmenite and pyrite occur as inclusions in garnet, whereas sulfides are dominant in the matrix. Large pyrite grains in the matrix contain inclusions of garnet, omphacite and other HP index minerals. However, magnetite replacing pyrite textures are commonly observed in the retrograded samples. The eclogite-facies and retrograde veins display two fluid events, which are characterized by an early sulfide-bearing and a later magnetite-bearing mineral assemblage, respectively. Textural and petrological evidences show that the sulfides were mainly formed during HP metamorphism. Mineral assemblage transitions reveal that the relative oxygen fugacity of subducted oceanic crust decreases slightly with increasing depths. However, according to oxygen mass balance calculations, based on the oxygen molar quantities ( nO2), the redox conditions remain constant during HP metamorphism. At shallow levels (<60 km) in the subduction channel, interaction with oxidized fluid seems to have caused an increase of the oxygen fugacity and the

  10. A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Dick, Henry J. B.; Natland, James H.; Alt, Jeffrey C.; Bach, Wolfgang; Bideau, Daniel; Gee, Jeffrey S.; Haggas, Sarah; Hertogen, Jan G. H.; Hirth, Greg; Holm, Paul Martin; Ildefonse, Benoit; Iturrino, Gerardo J.; John, Barbara E.; Kelley, Deborah S.; Kikawa, Eiichi; Kingdon, Andrew; LeRoux, Petrus J.; Maeda, Jinichiro; Meyer, Peter S.; Miller, D. Jay; Naslund, H. Richard; Niu, Yao-Ling; Robinson, Paul T.; Snow, Jonathan; Stephen, Ralph A.; Trimby, Patrick W.; Worm, Horst-Ulrich; Yoshinobu, Aaron

    2000-06-01

    Ocean Drilling Program Leg 176 deepened Hole 735B in gabbroic lower ocean crust by 1 km to 1.5 km. The section has the physical properties of seismic layer 3, and a total magnetization sufficient by itself to account for the overlying lineated sea-surface magnetic anomaly. The rocks from Hole 735B are principally olivine gabbro, with evidence for two principal and many secondary intrusive events. There are innumerable late small ferrogabbro intrusions, often associated with shear zones that cross-cut the olivine gabbros. The ferrogabbros dramatically increase upward in the section. Whereas there are many small patches of ferrogabbro representing late iron- and titanium-rich melt trapped intragranularly in olivine gabbro, most late melt was redistributed prior to complete solidification by compaction and deformation. This, rather than in situ upward differentiation of a large magma body, produced the principal igneous stratigraphy. The computed bulk composition of the hole is too evolved to mass balance mid-ocean ridge basalt back to a primary magma, and there must be a significant mass of missing primitive cumulates. These could lie either below the hole or out of the section. Possibly the gabbros were emplaced by along-axis intrusion of moderately differentiated melts into the near-transform environment. Alteration occurred in three stages. High-temperature granulite- to amphibolite-facies alteration is most important, coinciding with brittle-ductile deformation beneath the ridge. Minor greenschist-facies alteration occurred under largely static conditions, likely during block uplift at the ridge transform intersection. Late post-uplift low-temperature alteration produced locally abundant smectite, often in previously unaltered areas. The most important features of the high- and low-temperature alteration are their respective associations with ductile and cataclastic deformation, and an overall decrease downhole with hydrothermal alteration generally ≤5% in the

  11. Petrology and geochemistry of primitive lower oceanic crust from Pito Deep: Implications for the accretion of the lower crust at the Southern East Pacific Rise

    USGS Publications Warehouse

    Perk, N.W.; Coogan, L.A.; Karson, J.A.; Klein, E.M.; Hanna, H.D.

    2007-01-01

    A suite of samples collected from the uppermost part of the plutonic section of the oceanic crust formed at the southern East Pacific Rise and exposed at the Pito Deep has been examined. These rocks were sampled in situ by ROV and lie beneath a complete upper crustal section providing geological context. This is only the second area (after the Hess Deep) in which a substantial depth into the plutonic complex formed at the East Pacific Rise has been sampled in situ and reveals significant spatial heterogeneity in the plutonic complex. In contrast to the uppermost plutonic rocks at Hess Deep, the rocks studied here are generally primitive with olivine forsterite contents mainly between 85 and 88 and including many troctolites. The melt that the majority of the samples crystallized from was aggregated normal mid-ocean ridge basalt (MORB). Despite this high Mg# clinopyroxene is common despite model predictions that clinopyroxene should not reach the liquidus early during low-pressure crystallization of MORB. Stochastic modeling of melt crystallisation at various levels in the crust suggests that it is unlikely that a significant melt mass crystallized in the deeper crust (for example in sills) because this would lead to more evolved shallow level plutonic rocks. Similar to the upper plutonic section at Hess Deep, and in the Oman ophiolite, many samples show a steeply dipping, axis-parallel, magmatic fabric. This suggests that vertical magmatic flow is an important process in the upper part of the seismic low velocity zone beneath fast-spreading ridges. We suggest that both temporal and spatial (along-axis) variability in the magmatic and hydrothermal systems can explain the differences observed between the Hess Deep and Pito Deep plutonics. ?? Springer-Verlag 2007.

  12. A Crystallization-Temperature Profile Through Paleo-Oceanic Crust (Wadi Gideah Transect, Oman Ophiolite): Application of the REE-in-Plagioclase-Clinopyroxene Partitioning Thermometer

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Hasenclever, J.; Garbe-Schönberg, D.; Koepke, J.; Hoernle, K.

    2017-12-01

    The accretion mechanisms forming oceanic crust at fast spreading ridges are still under controversial discussion. Thermal, petrological, and geochemical observations predict different end-member models, i.e., the gabbro glacier and the sheeted sill model. They all bear implications for heat transport, temperature distribution, mode of crystallization and hydrothermal heat removal over crustal depth. In a typical MOR setting, temperature is the key factor driving partitioning of incompatible elements during crystallization. LA-ICP-MS data for co-genetic plagioclase and clinopyroxene in gabbros along a transect through the plutonic section of paleo-oceanic crust (Wadi Gideah Transect, Oman ophiolite) reveal that REE partitioning coefficients are relatively constant in the layered gabbro section but increase for the overlying foliated gabbros, with an enhanced offset towards HREEs. Along with a systematic enrichment of REE's with crustal height, these trends are consistent with a system dominated by in-situ crystallization for the lower gabbros and a change in crystallization mode for the upper gabbros. Sun and Liang (2017) used experimental REE partitioning data for calibrating a new REE-in-plagioclase-clinopyroxene thermometer that we used here for establishing the first crystallization-temperature depth profile through oceanic crust that facilitates a direct comparison with thermal models of crustal accretion. Our results indicate crystallization temperatures of about 1220±8°C for the layered gabbros and lower temperatures of 1175±8°C for the foliated gabbros and a thermal minimum above the layered-to-foliated gabbro transition. Our findings are consistent with a hybrid accretion model for the oceanic crust. The thermal minimum is assumed to represent a zone where the descending crystal mushes originating from the axial melt lens meet with mushes that have crystallized in situ. These results can be used to verify and test thermal models (e.g., Maclennan et al

  13. Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China: Evidence, provenance and significance

    NASA Astrophysics Data System (ADS)

    Xu, Yi-Gang

    2014-10-01

    Major, trace element and Sr-Nd-Pb isotopic data of basalts emplaced during 90-40 Ma in the North and Northeast China are compiled in this review, with aims of constraining their petrogenesis, and by inference the evolution of the North China Craton during the late Cretaceous and early Cenozoic. Three major components are identified in magma source, including depleted component I and II, and an enriched component. The depleted component I, which is characterized by relatively low 87Sr/86Sr (<0.7030), moderate 206Pb/204Pb (18.2), moderately high εNd (∼4), high Eu/Eu∗ (>1.1) and HIMU-like trace element characteristics, is most likely derived from gabbroic cumulate of the oceanic crust. The depleted component II, which distinguishes itself by its high εNd (∼8) and moderate 87Sr/86Sr (∼0.7038), is probably derived from a sub-lithospheric ambient mantle. The enriched component has low εNd (2-3), high 87Sr/86Sr (>0.7065), low 206Pb/204Pb (17), excess Sr, Rb, Ba and a deficiency of Zr and Hf relative to the REE. This component is likely from the basaltic portion of the oceanic crust, which is variably altered by seawater and contains minor sediments. Comparison with experimental melts and trace element modeling suggest that these recycled oceanic components may be in form of garnet pyroxenite/eclogite. These components are young (<0.5 Ga) and show an Indian-MORB isotopic character. Given the share of this isotopic affinity by the extinct Izanaghi-Pacific plate, currently stagnated within the mantle transition zone, we propose that it ultimately comes from the subducted Pacific slab. Eu/Eu∗ and 87Sr/86Sr of the 90-40 Ma magmas increases and decreases, respectively, with decreasing emplacement age, mirroring a change in magma source from upper to lower parts of subducted oceanic crust. Such secular trends are created by dynamic melting of a heterogeneous mantle containing recycled oceanic crust. Due to different melting temperature of the upper and lower ocean

  14. The contribution of hydrothermally altered ocean crust to the mantle halogen and noble gas cycles

    NASA Astrophysics Data System (ADS)

    Chavrit, Déborah; Burgess, Ray; Sumino, Hirochika; Teagle, Damon A. H.; Droop, Giles; Shimizu, Aya; Ballentine, Chris J.

    2016-06-01

    Recent studies suggest that seawater-derived noble gases and halogens are recycled into the deep mantle by the subduction of oceanic crust. To understand the processes controlling the availability of halogens and noble gases for subduction, we determined the noble gas elemental and isotopic ratios and halogen (Cl, Br, I) concentrations in 28 igneous samples from the altered oceanic crust (AOC) from 5 ODP sites in the Eastern and Western Pacific Ocean. Crushing followed by heating experiments enabled determination of noble gases and halogens in fluid inclusions and mineral phases respectively. Except for He and Ar, Ne, Kr and Xe isotopic ratios were all air-like suggesting that primary MORB signatures have been completely overprinted by air and/or seawater interaction. In contrast, 3He/4He ratios obtained by crushing indicate that a mantle helium component is still preserved, and 40Ar/36Ar values are affected by radiogenic decay in the mineral phases. The 130Xe/36Ar and 84Kr/36Ar ratios are respectively up to 15 times and 5 times higher than those of seawater and the highest ratios are found in samples affected by low temperature alteration (shallower than 800-900 m sub-basement). We consider three possible processes: (i) adsorption onto the clays present in the samples; (ii) fluid inclusions with a marine pore fluid composition; and (iii) fractionation of seawater through phase separation caused by boiling. Ninety percent of the Cl, Br and I were released during the heating experiments, showing that halogens are dominantly held in mineral phases prior to subduction. I/Cl ratios vary by 4 orders of magnitude, from 3 × 10-6 to 2 × 10-2. The mean Br/Cl ratio is 30% lower than in MORB and seawater. I/Cl ratios lower than MORB values are attributed to Cl-rich amphibole formation caused by hydrothermal alteration at depths greater than 800-900 m sub-basement together with different extents of I loss during low and high temperature alteration. At shallower depths, I

  15. Platinum group elements and gold in ferromanganese crusts from Afanasiy-Nikitin seamount, equatorial Indian Ocean: Sources and fractionation

    USGS Publications Warehouse

    Banakar, V.K.; Hein, J.R.; Rajani, R.P.; Chodankar, A.R.

    2007-01-01

    The major element relationships in ferromanganese (Fe-Mn) crusts from Afanasiy-Nikitin seamount (ANS), eastern equatorial Indian Ocean, appear to be atypical. High positive correlations (r = 0.99) between Mn/Co and Fe/Co ratios, and lack of correlation of those ratios with Co, Ce, and Ce/Co, indicate that the ANS Fe-Mn crusts are distinct from Pacific seamount Fe-Mn crusts, and reflect region-specific chemical characteristics. The platinum group elements (PGE: Ir, Ru, Rh, Pt, and Pd) and Au in ANS Fe-Mn crusts are derived from seawater and are mainly of terrestrial origin, with a minor cosmogenic component. The Ru/Rh (0.5-2) and Pt/Ru ratios (7-28) are closely comparable to ratios in continental basalts, whereas Pd/Ir ratios exhibit values ( 0.75) correlations between water depth and Mn/Co, Fe/Co, Ce/Co, Co, and the PGEs. Fractionation of the PGE-Au from seawater during colloidal precipitation of the major-oxide phases is indicated by well-defined linear positive correlations (r > 0.8) of Co and Ce with Ir, Ru, Rh, and Pt; Au/Co with Mn/Co; and by weak or no correlations of Pd with water depth, Co-normalized major-element ratios, and with the other PGE (r < 0.5). The strong enrichment of Pt (up to 1 ppm) relative to the other PGE and its positive correlations with Ce and Co demonstrate a common link for the high concentrations of all three elements, which likely involves an oxidation reaction on the Mn-oxide and Fe-oxyhydroxide surfaces. The documented fractionation of PGE-Au and their positive association with redox sensitive Co and Ce may have applications in reconstructing past-ocean redox conditions and water masses.

  16. Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium

    USGS Publications Warehouse

    Hein, J.R.; Koschinsky, A.; Halliday, A.N.

    2003-01-01

    Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins. The slow-growing (mm/Ma) Fe-Mn crusts concentrate most elements above their mean concentration in the Earth's crust. Tellurium is enriched more than any other element (up to about 50,000 times) relative to its Earth's crustal mean of about 1 ppb, compared with 250 times for the next most enriched element. We analyzed the Te contents for a suite of 105 bulk hydrogenetic crusts and 140 individual crust layers from the global ocean. For comparison, we analyzed 10 hydrothermal stratabound Mn-oxide samples collected from a variety of tectonic environments in the Pacific. In the Fe-Mn crust samples, Te varies from 3 to 205 ppm, with mean contents for Pacific and Atlantic samples of about 50 ppm and a mean of 39 ppm for Indian crust samples. Hydrothermal Mn samples have Te contents that range from 0.06 to 1 ppm. Continental margin Fe-Mn crusts have lower Te contents than open-ocean crusts, which is the result of dilution by detrital phases and differences in growth rates of the hydrogenetic phases. Correlation coefficient matrices show that for hydrothermal deposits, Te has positive correlations with elements characteristic of detrital minerals. In contrast, Te in open-ocean Fe-Mn crusts usually correlates with elements characteristic of the MnO2, carbonate fluorapatite, and residual biogenic phases. In continental margin crusts, Te also correlates with FeOOH associated elements. In addition, Te is negatively correlated with water depth of occurrence and positively correlated with crust thickness. Q-mode factor analyses support these relationships. However, sequential leaching results show that most of the Te is associated with FeOOH in Fe-Mn crusts and ???10% is leached with the MnO2. Thermodynamic calculations indicate that Te occurs

  17. Seismic Reflection Images of Deep Lithospheric Faults and Thin Crust at the Actively Deforming Indo-Australian Plate Boundary in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Carton, H.; Chauhan, A.; Dyment, J.; Cannat, M.; Hananto, N.; Hartoyo, D.; Tapponnier, P.; Davaille, A.

    2007-12-01

    Recently, we acquired deep seismic reflection data using a state-of-the-art technology of Schlumberger having a powerful source (10,000 cubic inch) and a 12 km long streamer along a 250 km long trench parallel line offshore Sumatra in the Indian Ocean deformation zone that provides seismic reflection image down to 40 km depth over the old oceanic lithosphere formed at Wharton spreading centre about 55-57 Ma ago. We observe deep penetrating faults that go down to 37 km depth (~24 km in the oceanic mantle), providing the first direct evidence for full lithospheric-scale deformation in an intra-plate oceanic domain. These faults dip NE and have dips between 25 and 40 degrees. The majority of faults are present in the mantle and are spaced at about 5 km, and do not seem cut through the Moho. We have also imaged active strike-slip fault zones that seem to be associated with the re-activation of ancient fracture zones, which is consistent with previous seismological and seafloor observations. The geometries of the deep penetrating faults neither seem to correspond to faulting associated with the plate bending at the subduction front nor with the re-activation of fracture zone that initiated about 7.5 Ma ago, and therefore, we suggest that these deep mantle faults were formed due to compressive stress at the beginning of the hard collision between India and Eurasia, soon after the cessation of seafloor spreading in the Wharton basin. We also find that the crust generated at the fast Wharton spreading centre 55-57 Ma ago is only 3.5-4.5 km thick, the thinnest crust ever observed in a fast spreading environment. We suggest that this extremely thin crust is due to 40-50°C lower than normal mantle temperature in this part of the Indian Ocean during its formation.

  18. Oceanic crust in the mid-mantle beneath Central-West Pacific subduction zones: Evidence from S-to-P converted waveforms

    NASA Astrophysics Data System (ADS)

    He, X.

    2015-12-01

    The fate of subducted slabs is enigmatic, yet intriguing. We analyze seismic arrivals at ~20-50 s after the direct P wave in an array in northeast China (NECESSArray) recordings of four deep earthquakes occurring beneath the west-central Pacific subduction zones (from the eastern Indonesia to Tonga region). We employ the array analyzing techniques of 4th root vespagram and beam-form analysis to constrain the slowness and back azimuth of later arrivals. Our analyses reveal that these arrivals have a slightly lower slowness value than the direct P wave and the back azimuth deviates slightly from the great-circle direction. Along with calculation of one-dimensional synthetic seismograms, we conclude that the later arrival is corresponding to an energy of S-to-P converted at a scatterer below the sources. Total five scatterers are detected at depths varying from ~700 to 1110 km in the study region. The past subducted oceanic crust most likely accounts for the seismic scatterers trapped in the mid-mantle beneath the west-central subduction zones. Our observation in turn reflects that oceanic crust at least partly separated from subducted oceanic lithosphere and may be trapped substantially in the mid-mantle surrounding subduction zones, in particular in the western Pacific subduction zones.

  19. The effects of post-accretion sedimentation on the magnetization of oceanic crust

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Granot, R.

    2016-12-01

    The presence of marine magnetic anomalies related to seafloor spreading is often considered a key evidence to locate the continent-ocean boundary (COB) at passive margins. Conversely, thermal demagnetization is also advocated to explain the poor shape of such oceanic anomalies under thick sedimentary cover. To investigate the effects of post-accretion sedimentation on marine magnetic anomalies, we focus our study on two conjugate regions of the southern South Atlantic Ocean (Anomalies M4 to M0) that, although formed at the same time and along the same spreading segments, reveal contrasting characters. The anomalies exhibit strong amplitudes (>400 nT) and a well-marked shape off South Africa, where the sediments are less than 3 km-thick, but become weaker ( 200 nT) and much smoother off northern Argentina, where the sedimentary cover is thicker than 5 km. We interpret this observation as reflecting thermal demagnetization of the extrusive layer and its low Curie temperature titanomagnetite. We perform a series of thermo-magnetic models (Dyment and Arkani-Hamed, Geophys. J. Int., 1995, modified to include the sedimentary cover) to simulate the acquisition and loss of remanent magnetization in the oceanic lithosphere. We assume that most of the sediments accumulated shortly after crustal accretion. We investigate a range of possible thermal demagnetization temperatures for the extrusive layer and find that 200°C to 280ºC best explains the observations, in reasonable agreement with Curie temperatures of titanomagnetite, suggesting that most of the extrusive layer may be demagnetized under sediments thicker than 5 km. Thermal demagnetization should therefore be considered while interpreting marine magnetic anomalies for the age and nature of the crust (i.e., continental versus oceanic) in regions with thick sedimentary cover.

  20. A new model of lunar crust: asymmetry in crustal composition and evolution

    NASA Astrophysics Data System (ADS)

    Arai, Tomoko; Takeda, Hiroshi; Yamaguchi, Akira; Ohtake, Makiko

    2008-04-01

    Earlier models of lunar crustal formation as a simple flotation of ferroan anorthosites (FAN) do not account for the diverse crustal composition revealed by feldspathic lunar meteorites and granulites in the Apollo samples. Based on the integrated results of recent studies of lunar meteorites and global chemical and mineralogical maps, we propose a novel asymmetric crust model with a ferroan, noritic, nearside crust and a magnesian, troctolitic farside crust. Asymmetric crystallization of a primordial magma ocean can be one possibility to produce a crust with an asymmetric composition. A post-magma-ocean origin for a portion of the lunar crust is also possible and would account for the positive eNd value for FAN and phase equilibria. The formation of giant basins, such as the South Pole-Aitken (SPA) basin may have significant effects on resurfacing of the early lunar crust. Thus, the observed surface composition of the feldspathic highland terrane (FHT) represents the combined results of magma ocean crystallization, post-magma-ocean magmatism and resurfacing by basin formation. The Mg/(Mg+Fe) ratios, rock types, and mineral compositions of the FHT and the South Pole-Aitken basin Terrane (SPAT) obtained from the KAGUYA mission, coupled with further mineralogical and isotopic studies of lunar meteorites, will facilitate an assessment of the feasibility of the proposed crust model and improve understanding of lunar crustal genesis and evolution.

  1. Effect of surface wave propagation in a four-layered oceanic crust model

    NASA Astrophysics Data System (ADS)

    Paul, Pasupati; Kundu, Santimoy; Mandal, Dinbandhu

    2017-12-01

    Dispersion of Rayleigh type surface wave propagation has been discussed in four-layered oceanic crust. It includes a sandy layer over a crystalline elastic half-space and over it there are two more layers—on the top inhomogeneous liquid layer and under it a liquid-saturated porous layer. Frequency equation is obtained in the form of determinant. The effects of the width of different layers as well as the inhomogeneity of liquid layer, sandiness of sandy layer on surface waves are depicted and shown graphically by considering all possible case of the particular model. Some special cases have been deduced, few special cases give the dispersion equation of Scholte wave and Stoneley wave, some of which have already been discussed elsewhere.

  2. Sorting Out the Ocean Crust Deep Biosphere with Single Cell Omics Approaches

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; D'Angelo, T.; Goordial, J.; Jones, R. M.; Carr, S. A.

    2017-12-01

    Although oceanic crust comprises a large habitat for subsurface life, the structure, function, and dynamics of microbial communities living on rocks in the subsurface are poorly understood. Single cell level approaches can overcome limitations of low biomass in subsurface systems. Coupled with incubation experiments with amino acid orthologs, single cell level sorting can reveal high resolution information about identity, functional potential, and growth. Leveraging collaboration with the Single Cell Genomics Center and the Facility for Aquatic Cytometry at Bigelow Laboratory, we present recent results from single cell level sorting and -omics sequencing from several crustal environments, including the Atlantis Massif and the Juan de Fuca Ridge flank. We will also highlight new experiments conducted with samples recovered from the flank of the Mid-Atlantic Ridge.

  3. The Deep Subsurface Biosphere in Igneous Ocean Crust: Frontier Habitats for Microbiological Exploration

    PubMed Central

    Edwards, Katrina J.; Fisher, Andrew T.; Wheat, C. Geoffrey

    2011-01-01

    We discuss ridge flank environments in the ocean crust as habitats for subseafloor microbial life. Oceanic ridge flanks, areas far from the magmatic and tectonic influence of seafloor spreading, comprise one of the largest and least explored microbial habitats on the planet. We describe the nature of selected ridge flank crustal environments, and present a framework for delineating a continuum of conditions and processes that are likely to be important for defining subseafloor microbial "provinces." The basis for this framework is three governing conditions that help to determine the nature of subseafloor biomes: crustal age, extent of fluid flow, and thermal state. We present a brief overview of subseafloor conditions, within the context of these three characteristics, for five field sites where microbial studies have been done, are underway, or have been proposed. Technical challenges remain and likely will limit progress in studies of microbial ridge flank ecosystems, which is why it is vital to select and design future studies so as to leverage as much general understanding as possible from work focused at a small number of sites. A characterization framework such that as presented in this paper, perhaps including alternative or additional physical or chemical characteristics, is essential for achieving the greatest benefit from multidisciplinary microbial investigations of oceanic ridge flanks. PMID:22347212

  4. Paleomagnetic constraints on deformation of superfast-spread oceanic crust exposed at Pito Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.

    2011-12-01

    The uppermost oceanic crust produced at the superfast spreading (˜142 km Ma-1, full-spreading rate) southern East Pacific Rise (EPR) during the Gauss Chron is exposed in a tectonic window along the northeastern wall of the Pito Deep Rift. Paleomagnetic analysis of fully oriented dike (62) and gabbro (5) samples from two adjacent study areas yield bootstrapped mean remanence directions of 38.9° ± 8.1°, -16.7° ± 15.6°, n = 23 (Area A) and 30.4° ± 8.0°, -25.1° ± 12.9°, n = 44 (Area B), both are significantly distinct from the Geocentric Axial Dipole expected direction at 23° S. Regional tectonics and outcrop-scale structural data combined with bootstrapped remanence directions constrain models that involve a sequence of three rotations that result in dikes restored to subvertical orientations related to (1) inward-tilting of crustal blocks during spreading (Area A = 11°, Area B = 22°), (2) clockwise, vertical-axis rotation of the Easter Microplate (A = 46°, B = 44°), and (3) block tilting at Pito Deep Rift (A = 21°, B = 10°). These data support a structural model for accretion at the southern EPR in which outcrop-scale faulting and block rotation accommodates spreading-related subaxial subsidence that is generally less than that observed in crust generated at a fast spreading rate exposed at Hess Deep Rift. These data also support previous estimates for the clockwise rotation of crust adjacent to the Easter Microplate. Dike sample natural remanent magnetization (NRM) has an arithmetic mean of 5.96 A/m ± 3.76, which suggests that they significantly contribute to observed magnetic anomalies from fast- to superfast-spread crust.

  5. Formation of fast-spreading lower oceanic crust as revealed by a new Mg-REE coupled geospeedometer

    NASA Astrophysics Data System (ADS)

    Sun, Chenguang; Lissenberg, C. Johan

    2018-04-01

    A new geospeedometer is developed based on the differential closures of Mg and rare earth element (REE) bulk-diffusion between coexisting plagioclase and clinopyroxene. By coupling the two elements with distinct bulk closure temperatures, this speedometer can numerically solve the initial temperatures and cooling rates for individual rock samples. As the existing Mg-exchange thermometer was calibrated for a narrow temperature range and strongly relies on model-dependent silica activities, a new thermometer is developed using literature experimental data. When the bulk closure temperatures of Mg and REE are determined, respectively, using this new Mg-exchange thermometer and the existing REE-exchange thermometer, this speedometer can be implemented for a wide range of compositions, mineral modes, and grain sizes. Applications of this new geospeedometer to oceanic gabbros from the fast-spreading East Pacific Rise at Hess Deep reveal that the lower oceanic crust crystallized at temperatures of 998-1353 °C with cooling rates of 0.003-10.2 °C/yr. Stratigraphic variations of the cooling rates and crystallization temperatures support deep hydrothermal circulations and in situ solidification of various replenished magma bodies. Together with existing petrological, geochemical and geophysical evidence, results from this new speedometry suggest that the lower crust formation at fast-spreading mid-ocean ridges involves emplacement of primary mantle melts in the deep section of the crystal mush zone coupled with efficient heat removal by crustal-scale hydrothermal circulations. The replenished melts become chemically and thermally evolved, accumulate as small magma bodies at various depths, feed the shallow axial magma chamber, and may also escape from the mush zone to generate off-axial magma lenses.

  6. A multi-proxy isotope study (δ41K, δ26Mg, 87Sr/86Sr) of low-temperature oceanic crust alteration: the Troodos Ophiolite and Ocean Drilling Program Hole 801C

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Higgins, J. A.

    2017-12-01

    Low-temperature alteration of oceanic crust plays an important role in a number of geochemical cycles, thus modulating the chemical composition of the oceans. In particular, it has been established that low-temperature (<150oC) alteration of basalt is a major sink of seawater potassium. However, little is known about the effects of this process on the potassium isotope composition of seawater, which is 0.5‰ enriched relative to bulk silicate Earth (δ41KBSE=-0.54‰). Here we measure a number of isotope systems (δ41K, δ26Mg, 87Sr/86Sr) in both host rock and vein material from the upper volcanic section of Cretaceous (Troodos Ophiolite) and Jurassic (ODP 801C) oceanic crust using a MC-ICP-MS. The goal is to estimate the K isotopic fractionation associated with basalt alteration in low-temperature conditions, and how it might affect the K isotope enrichment of seawater relative to BSE. We find that marine hydrothermal samples from Troodos and ODP site 801C are enriched in potassium relative to the unaltered glass compositions and have δ41K values both higher and lower than BSE, ranging from -0.45‰ to -0.69‰ (n = 9) and -0.32‰ to -0.71‰ (n = 5), respectively. The low measured δ41K values could represent 1) fractionation (α<1) of K isotopes during uptake from seawater (δ41KSW 0‰), or 2) remobilized mantle-sourced K (δ41KBSE=-0.54‰) from deeper within the ophiolite sequence. Measurements of δ26Mg (n=15) and 87Sr/86Sr (n=12) in these samples yield enriched values relative to bulk silicate Earth, suggesting that alteration of oceanic crust likely happened under high water-to-rock ratios in both Troodos and ODP 801C, and that the added potassium is seawater-sourced. We thus suggest that the isotopically light δ41K values measured in both sites are associated with the formation of secondary clays enriched in the 39K isotope. This light isotope enrichment could be intensified if seawater K sourcing is a diffusion-limited process, as aqueous potassium

  7. Deformation fabrics of natural blueschists and implications for seismic anisotropy in subducting oceanic crust

    NASA Astrophysics Data System (ADS)

    Kim, Daeyeong; Katayama, Ikuo; Michibayashi, Katsuyoshi; Tsujimori, Tatsuki

    2013-09-01

    Investigations of microstructures are crucial if we are to understand the seismic anisotropy of subducting oceanic crust, and here we report on our systematic fabric analyses of glaucophane, lawsonite, and epidote in naturally deformed blueschists from the Diablo Range and Franciscan Complex in California, and the Hida Mountains in Japan. Glaucophanes in the analyzed samples consist of very fine grains that are well aligned along the foliation and have high aspect ratios and strong crystal preferred orientations (CPOs) characterized by a (1 0 0)[0 0 1] pattern. These characteristics, together with a bimodal distribution of grain sizes from some samples, possibly indicate the occurrence of dynamic recrystallization for glaucophane. Although lawsonite and epidote display high aspect ratios and a strong CPO of (0 0 1)[0 1 0], the occurrence of straight grain boundaries and euhedral crystals indicates that rigid body rotation was the dominant deformation mechanism. The P-wave (AVP) and S-wave (AVS) seismic anisotropies of glaucophane (AVP = 20.4%, AVS = 11.5%) and epidote (AVP = 9.0%, AVS = 8.0%) are typical of the crust; consequently, the fastest propagation of P-waves is parallel to the [0 0 1] maxima, and the polarization of S-waves parallel to the foliation can form a trench-parallel seismic anisotropy owing to the slowest VS polarization being normal to the subducting slab. The seismic anisotropy of lawsonite (AVP = 9.6%, AVS = 19.9%) is characterized by the fast propagation of P-waves subnormal to the lawsonite [0 0 1] maxima and polarization of S-waves perpendicular to the foliation and lineation, which can generate a trench-normal anisotropy. The AVS of lawsonite blueschist (5.6-9.2%) is weak compared with that of epidote blueschist (8.4-11.1%). Calculations of the thickness of the anisotropic layer indicate that glaucophane and lawsonite contribute to the trench-parallel and trench-normal seismic anisotropy beneath NE Japan, but not to that beneath the Ryukyu

  8. Evolution of Slow to Intermediate-Spreading Oceanic Crust in the South Atlantic: The Effects of Age, Sediment Thickness, and Spreading Rate on the Heterogeneity of Upper Crustal Velocities

    NASA Astrophysics Data System (ADS)

    Kardell, D. A.; Christeson, G. L.; Reece, R.; Carlson, R. L.

    2017-12-01

    The upper section of oceanic crust (layer 2A) commonly exhibits relatively low seismic velocities due to abundant pore and crack space created by the extrusive emplacement of magma and extensional faulting at the spreading ridge. While this is generally true for all spreading rates, previous studies have shown that slow seafloor spreading can yield much higher levels of upper crustal heterogeneity than observed for faster spreading rates. We use a recent multichannel seismic dataset collected with a 12.5 km streamer during the CREST cruise (Crustal Reflectivity Experiment Southern Transect) to build eleven 60-80 km-long tomographic velocity models. These two-dimensional models include both ridge-normal and ridge-parallel orientations and cover oceanic crust produced at slow to intermediate spreading rates. Crustal ages range between 0 and 70 m.y., spreading rates range between slow-spreading and intermediate-spreading, and sedimentary cover thickness ranges from 0 m close to the spreading center to 500 m proximal to the Rio Grande Rise. Our results show a trend of increasing layer 2A velocities with age out to the midpoint of the seismic transect. There is a rapid increase in velocities from 2.8 km/s near the ridge to 4.3 km/s around 10 Ma, and a slower increase to velocities around 5 km/s in 37 m.y. old crust. While this indicates an ongoing evolution in oceanic crust older than expected, the velocities do level off in the older half of the transect, averaging 5 km/s. Crust covered by a thicker sedimentary section can exhibit velocities up to 1 km/s faster than adjacent non-sedimented crust, accounting for much of the local variations. This is possibly due to the effects of a sealed hydrothermal system. We also observe a more heterogeneous velocity structure parallel to the ridge than in the ridge-normal orientation, and more velocity heterogeneity for slow-spreading crust compared to intermediate-spreading crust.

  9. Effect of bend faulting on the hydration state of oceanic crust: Electromagnetic constraints from the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Naif, S.; Key, K.; Constable, S.; Evans, R. L.

    2017-12-01

    In Northern Central America, the portion of the incoming Cocos oceanic plate formed at the East Pacific Rise has a seafloor spreading fabric that is oriented nearly parallel to the trench axis, whereby flexural bending at the outer rise reactivates a dense network of dormant abyssal hill faults. If bending-induced normal faults behave as fluid pathways they may promote extensive mantle hydration and significantly raise the flux of fluids into the subduction system. Multi-channel seismic reflection data imaged bend faults that extend several kilometers beneath the Moho offshore Nicaragua, coincident with seismic refraction data showing significant P-wave velocity reductions in both the crust and uppermost mantle. Ignoring the effect of fracture porosity, the observed mantle velocity reduction is equivalent to an upper bound of 15-20% serpentinization (or 2.0-2.5 wt% H2O). Yet the impact of bend faulting on porosity structure and crustal hydration are not well known. Here, we present results on the electrical resistivity structure of the incoming Cocos plate offshore Nicaragua, the first controlled-source electromagnetic (CSEM) experiment at a subduction zone. The CSEM data imaged several sub-vertical conductive channels extending beneath fault scarps to 5.5 km below seafloor, providing independent evidence for fluid infiltration into the oceanic crust via bending faults. We applied Archie's Law to estimate porosity from the resistivity observations: the dike and gabbro layers increase from 2.7% and 0.7% porosity at 100 km to 4.8% and 1.7% within 20 km of the trench, respectively. In contrast the resistivity, and hence porosity, remain relatively unchanged at sub-Moho depths. Therefore, either the faults do not provide an additional flux of free water to the mantle or, in light of the reduced seismic velocities, the volumetric expansion resulting from mantle serpentinization rapidly consumes any fault-generated porosity. Since our crustal porosity estimates seaward

  10. Subseafloor processes in mid-ocean ridge hydrothennal systems

    NASA Astrophysics Data System (ADS)

    Alt, Jeffrey C.

    Convective circulation of seawater through oceanic crust at mid-ocean ridges (MOR) and on ridge flanks has wide-ranging effects on heat transport, the chemical and isotopic compositions of ocean crust and seawater, mineralization of the crust, and on the physical properties of oceanic basement. Submarine hydrothermal systems remove about 30% of the heat lost from oceanic crust [Selater et al., 1981; Stein and Stein, 1994], and chemical and isotopic exchange between seawater and basement rocks exerts important controls on the composition of seawater [Edmond et al., 1979a; Thompson, 1983]. The composition of altered crust is also changed and, when subducted, this altered crust can contribute to chemical and isotopic heterogeneities in the mantle [Zindler and Hart, 1986] and may affect the compositions of volcanic rocks in island arcs [Perfit et al., 1980; Tatsumi, 1989]. Mineralization of ocean crust occurs where metals, leached from large volumes of altered crust at depth, are concentrated at or near the surface by hydrothermal circulation [Hannington, 1995]. Hydrothermal alteration of magnetic minerals may affect the source of marine magnetic anomalies [Pariso and Johnson, 1991], and the formation of secondary minerals influences the density, porosity, and seismic velocity structure of the crust [Wilkens et al., 1991; Jacobson, 1992].

  11. Large-scale subduction of continental crust implied by India-Asia mass-balance calculation

    NASA Astrophysics Data System (ADS)

    Ingalls, Miquela; Rowley, David B.; Currie, Brian; Colman, Albert S.

    2016-11-01

    Continental crust is buoyant compared with its oceanic counterpart and resists subduction into the mantle. When two continents collide, the mass balance for the continental crust is therefore assumed to be maintained. Here we use estimates of pre-collisional crustal thickness and convergence history derived from plate kinematic models to calculate the crustal mass balance in the India-Asia collisional system. Using the current best estimates for the timing of the diachronous onset of collision between India and Eurasia, we find that about 50% of the pre-collisional continental crustal mass cannot be accounted for in the crustal reservoir preserved at Earth's surface today--represented by the mass preserved in the thickened crust that makes up the Himalaya, Tibet and much of adjacent Asia, as well as southeast Asian tectonic escape and exported eroded sediments. This implies large-scale subduction of continental crust during the collision, with a mass equivalent to about 15% of the total oceanic crustal subduction flux since 56 million years ago. We suggest that similar contamination of the mantle by direct input of radiogenic continental crustal materials during past continent-continent collisions is reflected in some ocean crust and ocean island basalt geochemistry. The subduction of continental crust may therefore contribute significantly to the evolution of mantle geochemistry.

  12. The nature of the crust under Cayman Trough from gravity

    USGS Publications Warehouse

    ten Brink, Uri S.; Coleman, D.F.; Dillon, William P.

    2002-01-01

    Considerable crustal thickness variations are inferred along Cayman Trough, a slow-spreading ocean basin in the Caribbean Sea, from modeling of the gravity field. The crust to a distance of 50 km from the spreading center is only 2–3 km thick in agreement with dredge and dive results. Crustal thickness increases to ∼5.5 km at distances between 100 and 430 km west of the spreading center and to 3.5–6 km at distances between 60 and 370 km east of the spreading center. The increase in thickness is interpreted to represent serpentinization of the uppermost mantle lithosphere, rather than a true increase in the volume of accreted ocean crust. Serpentinized peridotite rocks have indeed been dredged from the base of escarpments of oceanic crust rocks in Cayman Trough. Laboratory-measured density and P-wave speed of peridotite with 40–50% serpentine are similar to the observed speed in published refraction results and to the inferred density from the model. Crustal thickness gradually increases to 7–8 km at the far ends of the trough partially in areas where sea floor magnetic anomalies were identified. Basement depth becomes gradually shallower starting 250 km west of the rise and 340 km east of the rise, in contrast to the predicted trend of increasing depth to basement from cooling models of the oceanic lithosphere. The gradual increase in apparent crustal thickness and the shallowing trend of basement depth are interpreted to indicate that the deep distal parts of Cayman Trough are underlain by highly attenuated crust, not by a continuously accreted oceanic crust.

  13. Stress Drops for Oceanic Crust and Mantle Intraplate Earthquakes in the Subduction Zone of Northeastern Japan Inferred from the Spectral Inversion Analysis

    NASA Astrophysics Data System (ADS)

    Si, H.; Ishikawa, K.; Arai, T.; Ibrahim, R.

    2017-12-01

    Understanding stress drop related to intraplate earthquakes in the subducting plate is very important for seismic hazard mitigation. In previous studies, Kita et al. (2015) analyzed stress drops for intraplate earthquakes under Hokkaido, Northern Japan, using S-coda wave spectral ratio analysis methods, and found that the stress drop for events occurring more than 10 km beneath the upper surface of the subducting plate (within the oceanic mantle) was larger than the stress drop for events occurring within 10 km of the upper surface of the subducting plate (in the oceanic crust). In this study, we focus on intraplate earthquakes that occur under Tohoku, Northeastern Japan, to determine whether similar stress drop differences may exist between earthquakes occurring within the upper 10 km of the subducting plate (within the oceanic crust) and those occurring deeper than 10 km (within the oceanic mantle), based on spectral inversion analysis of seismic waveforms recorded during the earthquakes. We selected 64 earthquakes with focal depths between 49-76 km and Mw 3.5-5.0 that occurred in the source area of the 2003 Miyagi-ken-oki earthquake (Mw 7.0) (region 1), and 82 earthquakes with focal depths between 49-67 km and Mw 3.5-5.5 in the source area of the 2011 Miyagi- ken-oki earthquake (Mw 7.1) (region 2). Records from the target earthquakes at 24 stations in region 1 and 21 stations in region 2 were used in the analysis. A 5-sec time window following S-wave onset was used for each station record. Borehole records of KiK-net station (MYGH04) was used as a reference station for both regions 1 and 2. We applied the spectral inversion analysis method of Matsunami et al. (2003) separately to regions 1 and 2. Our results show that stress drop generally increases with focal depth and that the stress drop for events occurring deeper than 10 km in the plate (within the oceanic mantle) were larger than the stress drop for events occurring within 10 km of the upper surface of the

  14. Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil

    NASA Astrophysics Data System (ADS)

    Loureiro, A.; Schnürle, P.; Klingelhöfer, F.; Afilhado, A.; Pinheiro, J.; Evain, M.; Gallais, F.; Dias, N. A.; Rabineau, M.; Baltzer, A.; Benabdellouahed, M.; Soares, J.; Fuck, R.; Cupertino, J. A.; Viana, A.; Matias, L.; Moulin, M.; Aslanian, D.; Vinicius Aparecido Gomes de Lima, M.; Morvan, L.; Mazé, J. P.; Pierre, D.; Roudaut-Pitel, M.; Rio, I.; Alves, D.; Barros Junior, P.; Biari, Y.; Corela, C.; Crozon, J.; Duarte, J. L.; Ducatel, C.; Falcão, C.; Fernagu, P.; Le Piver, D.; Mokeddem, Z.; Pelleau, P.; Rigoti, C.; Roest, W.; Roudaut, M.; Salsa Team

    2018-07-01

    Twelve combined wide-angle refraction and coincident multi-channel seismic profiles were acquired in the Jequitinhonha-Camamu-Almada, Jacuípe, and Sergipe-Alagoas basins, NE Brazil, during the SALSA experiment in 2014. Profiles SL11 and SL12 image the Jequitinhonha basin, perpendicularly to the coast, with 15 and 11 four-channel ocean-bottom seismometers, respectively. Profile SL10 runs parallel to the coast, crossing profiles SL11 and SL12, imaging the proximal Jequitinhonha and Almada basins with 17 ocean-bottom seismometers. Forward modelling, combined with pre-stack depth migration to increase the horizontal resolution of the velocity models, indicates that sediment thickness varies between 3.3 km and 6.2 km in the distal basin. Crustal thickness at the western edge of the profiles is of around 20 km, with velocity gradients indicating a continental origin. It decreases to less than 5 km in the distal basin, with high seismic velocities and gradients, not compatible with normal oceanic crust nor exhumed upper mantle. Typical oceanic crust is never imaged along these about 200 km-long profiles and we propose that the transitional crust in the Jequitinhonha basin is a made of exhumed lower continental crust.

  15. High-temperature hydrothermal circulation in the lower oceanic crust at fast spreading ridges: Reconciling geophysical and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Wilcock, W.

    2003-04-01

    Hydrothermal circulation is the dominant mechanism for cooling young oceanic crust and knowledge of its depth, extent and timing is critical for our understanding of crustal accretion. At fast-spreading ridges there is considerable controversy regarding the importance of this process in the lower crust. Geochemical data indicate that high-temperature hydrothermal fluids react with the lower crust but they also suggest that the reactions are limited to a narrow temperature interval and involve relatively small volumes of fluid. As a result many geochemical studies conclude that high-temperature hydrothermal circulation plays a relatively small role in heat transport in the lower crust and occurs in a closed system that is isolated from upper crustal hydrothermal cells. In contrast, seismic observations on the fast spreading East Pacific Rise show that the mid-crustal axial magma chamber is underlain by a low velocity zone which is no more than 5-8 km wide throughout the lower crust and is interpreted as a region of elevated temperatures containing relatively low average melt fractions. Irrespective of the style of lower crustal accretion, simple physical considerations suggest that this structure is only thermally feasible if the lower crust cools by extensive hydrothermal circulation. Modeling studies indicate that this requires the permeability of the lower crust to temporarily reach at least ~10-13 m2. In order to reconcile the geochemical and geophysical data it is important to recognize that the thermal constraints do not require pervasive seawater circulation in the lower crust and can be satisfied by focused flow through narrow permeable zones spaced as far as about 1 km apart. Widely spaced regions of flow might be difficult to find in the field especially if the sampling strategies focus on the freshest outcrops. There is a tendency to overestimate the volume of fluid that must circulate through an open single-pass system. The fluid-rock ratios (0.2 - 1

  16. Fiskenaesset Anorthosite Complex: Stable isotope evidence for shallow emplacement into Archean ocean crust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, W.H.; Valley, J.W.

    1996-06-01

    Oxygen and hydrogen isotope ratios indicate that unusual rocks at the upper contact of the Archean Fiskenaesset Anorthosite Complex at Fiskenaesset Harbor (southwest Greenland) are the products of hydrothermal alteration by seawater at the time of anorthosite intrusion. Subsequent granulite-facies metamorphism of these Ca-poor and Al- and Mg-rich rocks produced sapphirine- and kornerupine-bearing assemblages. Because large amounts of surface waters cannot penetrate to depths of 30 km during granulite-facies metamorphism, the isotopic signature of the contact rocks must have been obtained prior to regional metamorphism. The stable isotope and geochemical characteristics of the contact rocks support a model of shallowmore » emplacement into Archean ocean crust for the Fiskenaesset Anorthosite Complex. 45 refs., 3 figs., 2 tabs.« less

  17. Proterozoic crustal evolution of the Eucla basement, Australia: Implications for destruction of oceanic crust during emergence of Nuna

    NASA Astrophysics Data System (ADS)

    Kirkland, C. L.; Smithies, R. H.; Spaggiari, C. V.; Wingate, M. T. D.; Quentin de Gromard, R.; Clark, C.; Gardiner, N. J.; Belousova, E. A.

    2017-05-01

    younger magmatism; 2) recycled c. 1950 Ma crust reworked in primitive arcs and in intra-plate settings and; 3) minor evolved material representing fragments of hyperextended continent. The observed isotopic evolution pattern is comparable to that of other central Australian Proterozoic provinces, including the Musgrave Province, the northern margin of the Gawler Craton, and components within the Rudall Province. Linking these isotopic signatures defines the Mirning Ocean, and its subducted and underplated equivalents. In a global context we suggest c. 1950 Ma crust production reflects the onset of ordered oceanic spreading centres, which swept juvenile crustal fragments into Nuna.

  18. Oceanic-type accretion may begin before complete continental break-up

    NASA Astrophysics Data System (ADS)

    Geoffroy, L.; Zalan, P. V.; Viana, A. R.

    2011-12-01

    Oceanic accretion is thought to be the process of oceanic crust (and lithosphere) edification through adiabatic melting of shallow convecting mantle at oceanic spreading ridges. It is usually considered as a post-breakup diagnostic process following continents rupturing. However, this is not always correct. The structure of volcanic passive margins (representing more than 50% of passive continental margins) outlines that the continental lithosphere is progressively changed into oceanic-type lithosphere during the stage of continental extension. This is clear at least, at crustal level. The continental crust is 'changed' from the earliest stages of extension into a typical -however thicker- oceanic crust with the typical oceanic magmatic layers (from top to bottom: lava flows/tuffs, sheeted dyke complexes, dominantly (sill-like) mafic intrusions in the lower crust). The Q-rich continental crust is highly extended and increases in volume (due to the magma) during the extensional process. At the continent-ocean transition there is, finally, no seismic difference between this highly transformed continental crust and the oceanic crust. Using a large range of data (including deep seismic reflection profiles), we discuss the mantle mechanisms that governs the process of mantle-assisted continental extension. We outline the large similarity between those mantle processes and those acting at purely-oceanic spreading axis and discuss the effects of the inherited continental lithosphere in the pattern of new mafic crust edification.

  19. Information on stress conditions in the oceanic crust from oval fractures in a deep borehole

    USGS Publications Warehouse

    Morin, R.H.

    1990-01-01

    Oval images etched into the wall of a deep borehole were detected in DSDP Hole 504B, eastern equatorial Pacific Ocean, from analysis of an acoustic televiewer log. A systematic inspection of these ovals has identified intriguing consistencies in appearance that cannot be explained satisfactorily by a random, coincidental distribution of pillow lavas. As an alternative hypothesis, Mohr-Coulomb failure criterion is used to account for the generation and orientation of similarly curved, stress-induced fractures. Consequently, these oval features can be interpreted as fractures and related directly to stress conditions in the oceanic crust at this site. The azimuth of the oval center corresponds to the orientation of maximum horizontal principal stress (SH), and the oval width, which spans approximately 180?? of the borehole, is aligned with the azimuth of minimum horizontal principal stress (Sh). The oval height is controlled by the fracture angle and thus is a function of the coefficient of internal friction of the rock. -from Author

  20. Sulfur geochemistry and microbial sulfate reduction during low-temperature alteration of uplifted lower oceanic crust: Insights from ODP Hole 735B

    USGS Publications Warehouse

    Alford, Susan E.; Alt, Jeffrey C.; Shanks, Wayne C.

    2011-01-01

    Sulfide petrography plus whole rock contents and isotope ratios of sulfur were measured in a 1.5 km section of oceanic gabbros in order to understand the geochemistry of sulfur cycling during low-temperature seawater alteration of the lower oceanic crust, and to test whether microbial effects may be present. Most samples have low SO4/ΣS values (≤ 0.15), have retained igneous globules of pyrrhotite ± chalcopyrite ± pentlandite, and host secondary aggregates of pyrrhotite and pyrite laths in smectite ± iron-oxyhydroxide ± magnetite ± calcite pseudomorphs of olivine and clinopyroxene. Compared to fresh gabbro containing 100–1800 ppm sulfur our data indicate an overall addition of sulfide to the lower crust. Selection of samples altered only at temperatures ≤ 110 °C constrains microbial sulfate reduction as the only viable mechanism for the observed sulfide addition, which may have been enabled by the production of H2 from oxidation of associated olivine and pyroxene. The wide range in δ34Ssulfide values (− 1.5 to + 16.3‰) and variable additions of sulfide are explained by variable εsulfate-sulfide under open system pathways, with a possible progression into closed system pathways. Some samples underwent oxidation related to seawater penetration along permeable fault horizons and have lost sulfur, have high SO4/ΣS (≥ 0.46) and variable δ34Ssulfide (0.7 to 16.9‰). Negative δ34Ssulfate–δ34Ssulfide values for the majority of samples indicate kinetic isotope fractionation during oxidation of sulfide minerals. Depth trends in sulfide–sulfur contents and sulfide mineral assemblages indicate a late-stage downward penetration of seawater into the lower 1 km of Hole 735B. Our results show that under appropriate temperature conditions, a subsurface biosphere can persist in the lower oceanic crust and alter its geochemistry.

  1. Evidence for biogenic processes during formation of ferromanganese crusts from the Pacific Ocean: implications of biologically induced mineralization.

    PubMed

    Wang, Xiao-Hong; Schlossmacher, Ute; Natalio, Filipe; Schröder, Heinz C; Wolf, Stephan E; Tremel, Wolfgang; Müller, Werner E G

    2009-01-01

    Ferromanganese [Fe/Mn] crusts formed on basaltic seamounts, gain considerable economic importance due to their high content of Co, Ni, Cu, Zn and Pt. The deposits are predominantly found in the Pacific Ocean in depths of over 1000m. They are formed in the mixing layer between the upper oxygen-minimum zone and the lower oxygen-rich bottom zone. At present an almost exclusive abiogenic origin of crust formation is considered. We present evidence that the upper layers of the crusts from the Magellan Seamount cluster are very rich in coccoliths/coccolithophores (calcareous phytoplankton) belonging to different taxa. Rarely intact skeletons of these unicellular algae are found, while most of them are disintegrated into their composing prisms or crystals. Studies on the chemical composition of crust samples by high resolution SEM combined with an electron probe microanalyzer (EPMA) revealed that they are built of distinct stacked piles of individual compartments. In the center of such piles Mn is the dominant element, while the rims of the piles are rich in Fe (mineralization aspect). The compartments contain coccospheres usually at the basal part. Energy dispersive X-ray spectroscopy (EDX) analyses showed that those coccospheres contain, as expected, CaCO3 but also Mn-oxide. Detailed analysis displayed on the surface of the coccolithophores a high level of CaCO3 while the concentration of Mn-oxide is relatively small. With increasing distance from the coccolithophores the concentration of Mn-oxide increases on the expense of residual CaCO3. We conclude that coccoliths/coccolithophores are crucial for the seed/nucleation phase of crust formation (biomineralization aspect). Subsequently, after the biologically induced mineralization phase Mn-oxide deposition proceeds "auto"catalytically.

  2. Peculiarities of the tectonic and magma evolution of the southwestern Indian middle-ocean crust within the range of 51°-67° eastern longitude

    NASA Astrophysics Data System (ADS)

    Shreider, A. A.; Kashintsev, G. L.

    2010-02-01

    The comparative estimation of the parameters of the lithosphere of the Mid-Ocean Southwestern Indian range in the areas westwards and eastwards of the Atlantis II transform fault zone shows that, within this zone, an alteration in the basalt composition occurred. Eastwards of this zone, a decrease of the anomaly of the magnetic field occurred and increased average depths of the axial part (4.7 km) and thinning (up to 4-5 km) of the ocean crust with increased rates of seismic waves in the upper mantle were observed. This, first of all, indicates an anomalously cold mantle below the oceanic crust. The changes that occurred in the location of the Euler pole within the last millions of years resulted in slanting spreading in the area of the investigation with rates of opening lower than 1.8 cm/year probably accompanied by the phenomena of transtension in the active parts of the transform faults. The interaction between the Landly and Somali lithosphere plates occurred along the diffusion boundary and was accompanied by problems with tracing the chrones between the neighboring profiles of geomagnetic observations. Consequently, the more detailed investigation of the configuration of the diffusion boundary will contribute to the more accurate reconstruction of the paleogeodynamics of the central part of the Indian Ocean.

  3. Diffusive Transfer of Oxygen From Seamount Basaltic Crust Into Overlying Sediments: an Example From the Clarion-Clipperton Fracture Zone, Equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kasten, S.; Mewes, K.; Mogollón, J.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.

    2015-12-01

    Within the Clarion-Clipperton Fracture Zone (CCFZ) located in the equatorial Pacific Ocean numerous seamounts, with diameters ranging from 3 to 30 km and varying heights above the surrounding seafloor of up to 2500 m, occur throughout the deep-sea plain. There is evidence that these may serve as conduits for low-temperature hydrothermal circulation of seawater through the oceanic crust. During RV SONNE cruise SO205 in April/May 2010 and BIONOD cruise with RV ĹATALANTE in spring 2012 we took piston and gravity cores for geochemical analyses, as well as for high-resolution pore-water oxygen and nutrient measurements. Specifically, we took cores along a transect at three sites, located 400, 700 and 1000 m away from the foot of a 240 m high seamount, called 'Teddy Bare'. At all 3 sites oxygen penetrates the entire sediment column of the organic carbon-poor sediment. More importantly, oxygen concentrations initially decrease with sediment depth but increase again at depths of 3 m and 7 m above the basaltic basement, suggesting an upward diffusion of oxygen from seawater circulating within the seamount crust into the overlying basal sediments. This is the first time this has been shown for the deep subsurface in the Pacific Ocean. Mirroring the oxygen concentrations nitrate concentrations accumulate with sediment depth but decrease towards the basement. Transport-reaction modeling revealed that (1) the diffusive flux of oxygen from the basaltic basement exceeds the oxygen consumption through organic matter oxidation and nitrification in the basal sediments and (2) the nutrient exchange between the sediment and the underlying basaltic crust occurs at orders-of-magnitude lower rates than between the sediment surface and the overlying bottom water. We furthermore show that the upward diffusion of oxygen from the basaltic basement affects the preservation of organic compounds within the oxic sediment column at all 3 sites. Our investigations indicate that an upward

  4. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle

    NASA Astrophysics Data System (ADS)

    Nestola, F.; Korolev, N.; Kopylova, M.; Rotiroti, N.; Pearson, D. G.; Pamato, M. G.; Alvaro, M.; Peruzzo, L.; Gurney, J. J.; Moore, A. E.; Davidson, J.

    2018-03-01

    Laboratory experiments and seismology data have created a clear theoretical picture of the most abundant minerals that comprise the deeper parts of the Earth’s mantle. Discoveries of some of these minerals in ‘super-deep’ diamonds—formed between two hundred and about one thousand kilometres into the lower mantle—have confirmed part of this picture. A notable exception is the high-pressure perovskite-structured polymorph of calcium silicate (CaSiO3). This mineral—expected to be the fourth most abundant in the Earth—has not previously been found in nature. Being the dominant host for calcium and, owing to its accommodating crystal structure, the major sink for heat-producing elements (potassium, uranium and thorium) in the transition zone and lower mantle, it is critical to establish its presence. Here we report the discovery of the perovskite-structured polymorph of CaSiO3 in a diamond from South African Cullinan kimberlite. The mineral is intergrown with about six per cent calcium titanate (CaTiO3). The titanium-rich composition of this inclusion indicates a bulk composition consistent with derivation from basaltic oceanic crust subducted to pressures equivalent to those present at the depths of the uppermost lower mantle. The relatively ‘heavy’ carbon isotopic composition of the surrounding diamond, together with the pristine high-pressure CaSiO3 structure, provides evidence for the recycling of oceanic crust and surficial carbon to lower-mantle depths.

  5. Mars Crust: Made of Basalt

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2009-05-01

    By combining data from several sources, Harry Y. (Hap) McSween (University of Tennessee), G. Jeffrey Taylor (University of Hawaii) and Michael B. Wyatt (Brown University) show that the surface of Mars is composed mostly of basalt not unlike those that make up the Earth's oceanic crust. McSween and his colleagues used data from Martian meteorites, analyses of soils and rocks at robotic landing sites, and chemical and mineralogical information from orbiting spacecraft. The data show that Mars is composed mostly of rocks similar to terrestrial basalts called tholeiites, which make up most oceanic islands, mid-ocean ridges, and the seafloor beneath sediments. The Martian samples differ in some respects that reflect differences in the compositions of the Martian and terrestrial interiors, but in general are a lot like Earth basalts. Cosmochemistst have used the compositions of Martian meteorites to discriminate bulk properties of Mars and Earth, but McSween and coworkers' synthesis shows that the meteorites differ from most of the Martian crust (the meteorites have lower aluminum, for example), calling into question how diagnostic the meteorites are for understanding the Martian interior.

  6. Drilling the Oceanic Lower Crust and Mantle

    DTIC Science & Technology

    1989-11-01

    East Pacific Rise near 21 ...A. Bideau, R.D. and Hekinian, R. 1983, Ultramafics and mafic rocks from the Garret transform fault near 13󈧢’S on the East Pacific Rise : igneous...Science Foundation. older crust formed at the East Pacific Rise . The JOIDES Planning Committee should immediately constitute a Deep Crustal

  7. A Reference Section through the Lower Fast-spreading Oceanic Crust in the Wadi Gideah (Sumail ophiolite, Sultanate Oman): Drill Sites GT1A and GT2A within the ICDP Oman Drilling Project

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Koepke, J.; Garbe-Schoenberg, C. D.; Müller, T.; Mock, D.; Strauss, H.; Schuth, S.; Ildefonse, B.

    2017-12-01

    In the absence of a complete profile through fast-spreading oceanic crust in modern oceans, we established a reference profile through the whole paleocrust of the Sumail Ophiolite (Oman), which is regarded as the best analogue for fast-spreading oceanic crust on land. For establishing a coherent data set, we sampled the Wadi Gideah in the Wadi-Tayin massif from the mantle section up to the pillow basalts and performed different analytical and structural investigations on the same suite of samples (pool sample concept). The whole sample set contains about 400 samples focusing on both primary magmatic rocks and hydrothermal fault zones to characterize initial formation processes and cooling of the crust. The Wadi Gideah hosts the sites GT1A (lower crust) and GT2A (foliated / layered gabbro transition) where 400 m long cores have been drilled in the frame of the ICDP Oman Drilling Project (OmanDP). Thus, the Wadi Gideah crustal transect is well-suited for providing a reference frame for these two drill cores. Major and trace element data on minerals and rocks reveal in-situ crystallization in the deep crust, thus strongly supporting a hybrid accretion model that is characterized by sheeted sill intrusion in the lower part of the plutonic crust and gabbro glacier features in the upper section. This hybrid model is also supported by results on crystallographic preferred orientations (CPO) of the minerals within the gabbros, which call for distinct formation mechanisms in the upper and lower gabbro sections. A requirement for our hybrid model is significant hydrothermal cooling in the lower crust for the consumption of the latent heat of crystallization. This was facilitated by channelled hydrothermal flow zones, preserved today in faulted zones of extensively altered gabbro cutting both layered and foliated gabbros. These gabbros show higher Sr87/Sr86 ratios if compared to the background gabbro, the presence of late stage minerals (amphibole, oxides, orthopyroxene

  8. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Zheng, Yong-Fei

    2017-09-01

    Continental basalts, erupted in either flood or rift mode, usually show oceanic island basalts (OIB)-like geochemical compositions. Although their depletion in Sr-Nd isotope compositions is normally ascribed to contributions from the asthenospheric mantle, their enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) is generally associated with variable enrichments in the Sr-Nd isotope compositions. This indicates significant contributions from crustal components such as igneous oceanic crust, lower continental crust and seafloor sediment. Nevertheless, these crustal components were not incorporated into the mantle sources of continental basalts in the form of solidus rocks. Instead they were processed into metasomatic agents through low-degree partial melting in order to have the geochemical fractionation of the largest extent to achieve the enrichment of LILE and LREE in the metasomatic agents. Therefore, the mantle sources of continental basalts were generated by metasomatic reaction of the depleted mid-ocean ridge basalts (MORB) mantle with hydrous felsic melts. Nevertheless, mass balance considerations indicate differential contributions from the mantle and crustal components to the basalts. While the depleted MORB mantle predominates the budget of major elements, the crustal components predominate the budget of melt-mobile incompatible trace elements and their pertinent radiogenic isotopes. These considerations are verified by model calculations that are composed of four steps in an ancient oceanic subduction channel: (1) dehydration of the subducting crustal rocks at subarc depths, (2) anataxis of the dehydrated rocks at postarc depths, (3) metasomatic reaction of the depleted MORB mantle peridotite with the felsic melts to generate ultramafic metasomatites in the lower part of the mantle wedge, and (4) partial melting of the metasomatites for basaltic magmatism. The composition of metasomatites is quantitatively dictated by

  9. Seismic and thermal evidences for subduction of exhumed mantle oceanic crust beneath the seismically quiet Antigua-St Martin Margin segment in the Northern Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Marcaillou, Boris; Klingelhoefer, Frauke; Laurencin, Muriel; Biari, Youssef; Graindorge, David; Lebrun, Jean-Frederic; Laigle, Mireille; Lallemand, Serge

    2017-04-01

    Wide-angle, multichannel reflection seismic data and heat-flow measurements from the Lesser Antilles subduction zone depict a large patch of atypical oceanic basement in the trench and beneath the outer fore-arc offshore of the Antigua-Saint Martin active margin segment. This segment triggers a very low number of earthquakes compared to the seismicity beneath the Virgin Island Platform to the north or in the Central Antilles (Martinique-Guadeloupe) to the south. Seven along-dip and two along-strike multichannel seismic lines acquired in this region show high amplitude steep reflectors that extend downward to 15-km depth in the downgoing slab. These lines also substantiate the absence of any reflections at Moho depth. Based on the wide-angle velocity model, the oceanic basement consists of a 5-km-thick unique layer with p-wave velocities ranging from 5.2 to 7.4 km/s, which is atypical for an oceanic crust. Heat-flow measurements along a transect perpendicular to the margin indicate a "flat" heat-flow trend from the trench to the fore-arc at 40 ± 15 mW.m-2 (Biari et al., same session). This heat flow profile contrasts with the expected trench-to-forearc decreasing heat-flow and the 50% higher heat-flow values measured in the trench offshore off the central Antilles. Calculated heat-flow for an incoming oceanic plate with a depressed geothermal gradient in the trench and heat source at depth in the subduction zone corresponding with temperatures of 200-250°C fit the measurements. We propose that a large patch of exhumed and serpentinized mantle rocks solidified at the slow-spreading mid-Atlantic Ridge is currently subducting beneath the studied margin segment. The fact that the crust here consists of one single layer and comprises velocities higher than found in igneous rocks (> 7.2 km/s) are consistent with this hypothesis. The plate bending possibly triggers long and deep delamination planes that extend into the mantle beneath the serpentinization front, which has

  10. Archean recycled oceanic crust sampled in Azores lavas

    NASA Astrophysics Data System (ADS)

    Beguelin, P.; Bizimis, M.; Beier, C.; Turner, S.

    2016-12-01

    Azores lava compositions extend below the mantle array in ɛNd-ɛHf space and define the steepest slope of all plume provinces [1], but this pattern is largely controlled by low ɛHf lavas from Eastern São Miguel island (SM). Here we present new Hf isotope data on well-characterized on-land and submarine Azores lavas from several islands, the Terceira Rift and João do Castro seamount (JdC), in order to further constrain this trend. While Azores lavas fall along the mantle array with relatively steep slopes (e.g. São Jorge slope = 2.1), both SM and JdC fall below the mantle array as two distinct steep arrays with slopes of 2.0 and 2.6 respectively, extending to ɛHf = 0 at ɛNd = 2 (SM) and 4 (JdC). This is a unique feature in OIBs. The new Hf-Nd data overlaps the HIMU-type Mangaia and St Helena compositions. However, SM and JdC have distinctly less radiogenic and more variable Pb isotopes (e.g. 206Pb/204Pb = 18.8 to 20.2) than HIMU. Hf-Nd isotope decoupling below the mantle array is therefore not an exclusive HIMU signature. The coupled Hf-Nd-Pb-Sr isotope compositions of the enriched SM and JdC end-members can be modeled by recycled 2.5-3.0 Ga N-MORB, with some E-MORB affinity for SM. Unlike HIMU however, no Pb-loss during subduction is required for recycled MORB to explain their Pb isotopes. The relatively high κ (232Th/238U 4.3) required by the Azores data is also consistent with a high Th/U Archean mantle [2]. Aged, metasomatised mantle lithosphere based on a global peridotite and pyroxenite compilation is too variable and only fortuitously could explain the Azores compositions. Both enriched JdC and SM endmembers can therefore be explained by a recycled Archean oceanic crust that is locally heterogeneous, as presently observed in some MOR segments where N-and E-MORB exist closely [3, 4]. The lack of mixing between SM and JdC end-members some 100 km apart further implies that this recycled crust has retained its distinct signature through mantle convection

  11. Seismic imaging of deep crustal melt sills beneath Costa Rica suggests a method for the formation of the Archean continental crust

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas; Rychert, Catherine A.

    2015-11-01

    Continental crust formed billions of years ago but cannot be explained by a simple evolution of primary mantle magmas. A multi-step process is required that likely includes re-melting of wet metamorphosed basalt at high pressures. Such a process could occur at depth in oceanic crust that has been thickened by a large magmatic event. In Central America, variations in geologically inferred, pre-existing oceanic crustal thickness beneath the arc provides an excellent opportunity to study its effect on magma storage, re-melting of meta-basalts, and the potential for creating continental crust. We use surface waves derived from ambient noise tomography to image 6% radially anisotropic structures in the thickened oceanic plateau crust of Costa Rica that likely represent deep crustal melt sills. In Nicaragua, where the arc is forming on thinner oceanic crust, we do not image these deep crustal melt sills. The presence of these deep sills correlates with more felsic arc outputs from the Costa Rican Arc suggesting pre-existing thickened crust accelerates processing of primary basalts to continental compositions. In the Archean, reprocessing thickened oceanic crust by subsequent hydrated hotspot volcanism or subduction zone volcanism may have similarly enhanced formation of early continental crust. This mechanism may have been particularly important if subduction did not initiate until 3 Ga.

  12. Paleoceanographic conditions on the São Paulo Ridge, SW Atlantic Ocean, for the past 30 million years inferred from Os and Pb isotopes of a hydrogenous ferromanganese crust

    NASA Astrophysics Data System (ADS)

    Goto, Kosuke T.; Nozaki, Tatsuo; Toyofuku, Takashi; Augustin, Adolpho H.; Shimoda, Gen; Chang, Qing; Kimura, Jun-Ichi; Kameo, Koji; Kitazato, Hiroshi; Suzuki, Katsuhiko

    2017-12-01

    Hydrogenous ferromanganese (Fe-Mn) crusts can provide records of long-term environmental changes during the Cenozoic. To understand the paleoceanographic conditions in the southwestern Atlantic Ocean, we investigated depth profiles of major- and trace-element concentrations as well as Os and Pb isotopic compositions in a Fe-Mn crust collected from the southern flank of the São Paulo Ridge in the southwestern Atlantic. Major and trace element data plotted on ternary Mn-Fe-10×(Ni+Co+Cu) and rare-earth element plus yttrium (REY) discrimination diagrams indicate that the analyzed sample is a typical hydrogenous Fe-Mn crust. The obtained 187Os/188Os data were matched to the Cenozoic seawater Os isotope evolution curve reconstructed from pelagic sediments. The result suggests that the Fe-Mn crust has accreted over 30 Myr with growth rates of 0.5-3 mm/Myr, although the sample likely grew in two directions during the early stage of its growth. We found no evidence of growth hiatus in the sample, which may contrast with the growth histories of many Pacific Fe-Mn crusts. Hence, the conditions favorable for the accretion of hydrogenous Fe-Mn crusts were likely to have developed on the São Paulo Ridge over the past 30 Myr. The Pb isotopic compositions show very limited ranges (e.g., 206Pb/204Pb=18.80-18.85), and are similar to those of pre-anthropogenic seawater in the Southern Ocean. As the São Paulo Ridge is located near the Vema Channel, which is presently a major path of Antarctic Bottom Water, we suggest that a strong northward bottom current has continuously swept detrital and biogenic sediments from the ridge, and played a vital role in the Fe-Mn crust formation since 30 Ma.

  13. Does seismic activity control carbon exchanges between transform-faults in old ocean crust and the deep sea? A hypothesis examined by the EU COST network FLOWS

    NASA Astrophysics Data System (ADS)

    Lever, M. A.

    2014-12-01

    The European Cooperation in Science and Technology (COST)-Action FLOWS (http://www.cost.eu/domains_actions/essem/Actions/ES1301) was initiated on the 25th of October 2013. It is a consortium formed by members of currently 14 COST countries and external partners striving to better understand the interplay between earthquakes and fluid flow at transform-faults in old oceanic crust. The recent occurrence of large earthquakes and discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries, and indicates that earthquakes and fluid flow are intrinsically associated. This Action merges the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. National efforts are coordinated through Working Groups (WGs) focused on 1) geophysical and (bio)geochemical data acquisition; 2) modelling of structure and seismicity of faults; 3) engineering of deep-ocean physico-chemical seismic sensors; and 4) integration and dissemination. This poster will illustrate the overarching goals of the FLOWS Group, with special focus to research goals concerning the role of seismic activity in controlling the release of carbon from the old ocean crust into the deep ocean.

  14. Assimilation of sediments embedded in the oceanic arc crust: myth or reality?

    NASA Astrophysics Data System (ADS)

    Bezard, Rachel; Davidson, Jon P.; Turner, Simon; Macpherson, Colin G.; Lindsay, Jan M.; Boyce, Adrian J.

    2014-06-01

    Arc magmas are commonly assumed to form by melting of sub-arc mantle that has been variably enriched by a component from the subducted slab. Although most magmas that reach the surface are not primitive, the impact of assimilation of the arc crust is often ignored with the consequence that trace element and isotopic compositions are commonly attributed only to varying contributions from different components present in the mantle. This jeopardises the integrity of mass balance recycling calculations. Here we use Sr and O isotope data in minerals from a suite of volcanic rocks from St Lucia, Lesser Antilles arc, to show that assimilation of oceanic arc basement can be significant. Analysis of 87Sr/86Sr in single plagioclase phenocrysts from four Soufrière Volcanic Complex (SVC; St Lucia) hand samples with similar composition (87Sr/86Sr = 0.7089-0.7091) reveals crystal isotopic heterogeneity among hand samples ranging from 0.7083 to 0.7094 with up to 0.0008 difference within a single hand sample. δO18 measurements in the SVC crystals show extreme variation beyond the mantle range with +7.5 to +11.1‰ for plagioclase (n=19), +10.6 to +11.8‰ for quartz (n=10), +9.4 to +9.8‰ for amphibole (n=2) and +9 to +9.5‰ for pyroxene (n=3) while older lavas (Pre-Soufriere Volcanic Complex), with less radiogenic whole rock Sr composition (87Sr/86Sr = 0.7041-0.7062) display values closer to mantle range: +6.4 to +7.9‰ for plagioclase (n=4) and +6 to +6.8‰ for pyroxene (n=5). We argue that the 87Sr/86Sr isotope disequilibrium and extreme δO18 values provide compelling evidence for assimilation of material located within the arc crust. Positive correlations between mineral δO18 and whole rock 87Sr/86Sr, 143Nd/144Nd and 206,207,208Pb/204Pb shows that assimilation seems to be responsible not only for the isotopic heterogeneity observed in St Lucia but also in the whole Lesser Antilles since St Lucia encompasses almost the whole-arc range of isotopic compositions. This

  15. Separate zones of sulfate and sulfide release from subducted mafic oceanic crust

    NASA Astrophysics Data System (ADS)

    Tomkins, Andrew G.; Evans, Katy A.

    2015-10-01

    Liberation of fluids during subduction of oceanic crust is thought to transfer sulfur into the overlying sub-arc mantle. However, despite the importance of sulfur cycling through magmatic arcs to climate change, magma oxidation and ore formation, there has been little investigation of the metamorphic reactions responsible for sulfur release from subducting slabs. Here, we investigate the relative stability of anhydrite (CaSO4) and pyrite (FeS2) in subducted basaltic oceanic crust, the largest contributor to the subducted sulfur budget, to place constraints on the processes controlling sulfur release. Our analysis of anhydrite stability at high pressures suggests that this mineral should dominantly dissolve into metamorphic fluids released across the transition from blueschist to eclogite facies (∼450-650 °C), disappearing at lower temperatures on colder geothermal trajectories. In contrast, we suggest that sulfur release via conversion of pyrite to pyrrhotite occurs at temperatures above 750 °C. This higher temperature stability is indicated by the preservation of pyrite-bornite inclusions in coesite-bearing eclogites from the Sulu Belt in China, which reached temperatures of at least 750 °C. Thus, sulfur may be released from subducting slabs in two separate pulses; (1) varying proportions of SO2, HSO4- and H2S are released via anhydrite breakdown at the blueschist-eclogite transition, promoting oxidation of remaining silicates in some domains, and (2) H2S is released via pyrite breakdown well into the eclogite facies, which may in some circumstances coincide with slab melting or supercritical liquid generation driven by influx of serpentinite-derived fluids. These results imply that the metallogenic potential in the sub-arc mantle above the subducting slab varies as a function of subduction depth, having the greatest potential above the blueschist-eclogite transition given the association between oxidised magmas and porphyry Cu(-Au-Mo) deposits. We speculate

  16. S-to-P Conversions from Mid-mantle Slow Scatterers in Slab Regions: Observations of Deep/Stagnated Oceanic Crust?

    NASA Astrophysics Data System (ADS)

    He, Xiaobo; Zheng, Yixian

    2018-02-01

    The fate of a subducted slab is a key ingredient in the context of plate tectonics, yet it remains enigmatic especially in terms of its crustal component. In this study, our efforts are devoted to resolve slab-related structures in the mid-mantle below eastern Indonesia, the Izu-Bonin region, and the Peru area by employing seismic array analysing techniques on high-frequency waveform data from F-net in Japan and the Alaska regional network and the USArray in North America. A pronounced arrival after the direct P wave is observed in the recordings of four deep earthquakes (depths greater than 400 km) from three subduction systems including the Philippines, the Izu-Bonin, and the Peru. This later arrival displays a slightly lower slowness compared to the direct P wave and its back-azimuth deviates somewhat from the great-circle direction. We explain it as an S-to-P conversion at a deep scatterer below the sources in the source region. In total, five scatterers are seen at depths ranging from 930 to 1500 km. Those scatterers appear to be characterised by an 7 km-thick low-velocity layer compared to the ambient mantle. Combined evidence from published mineral physical analysis suggests that past subducted oceanic crust, possibly fragmented, is most likely responsible for these thin-layer compositional heterogeneities trapped in the mid-mantle beneath the study regions. Our observations give a clue to the potential fate of subducted oceanic crust.

  17. Geochemical constraints on the spatial distribution of recycled oceanic crust in the mantle source of late Cenozoic basalts, Vietnam

    NASA Astrophysics Data System (ADS)

    Hoang, Thi Hong Anh; Choi, Sung Hi; Yu, Yongjae; Pham, Trung Hieu; Nguyen, Kim Hoang; Ryu, Jong-Sik

    2018-01-01

    This study presents a comprehensive analysis of the major and trace element, mineral, and Sr, Nd, Pb and Mg isotopic compositions of late Cenozoic intraplate basaltic rocks from central and southern Vietnam. The Sr, Nd, and Pb isotopic compositions of these basalts define a tight linear array between Indian mid-ocean-ridge basalt (MORB)-like mantle and enriched mantle type 2 (EM2) components. These basaltic rocks contain low concentrations of CaO (6.4-9.7 wt%) and have high Fe/Mn ratios (> 60) and FeO/CaO-3MgO/SiO2 values (> 0.54), similar to partial melts derived from pyroxenite/eclogite sources. This similarity is also supported by the composition of olivine within these samples, which contains low concentration of Ca and high concentrations of Ni, and shows high Fe/Mn ratios. The basaltic rocks have elevated Dy/Yb ratios that fall within the range of melts derived from garnet lherzolite material, although their Yb contents are much higher than those of modeled melts derived from only garnet lherzolite material and instead plot near the modeled composition of eclogite-derived melts. The Vietnamese basaltic rocks have lighter δ26Mg values (- 0.38 ± 0.06‰) than is expected for the normal mantle (- 0.25 ± 0.07‰), and these values decrease with decreasing Hf/Hf* and Ti/Ti* ratios, indicating that these basalts were derived from a source containing carbonate material. On primitive mantle-normalized multi-element variation diagrams, the central Vietnamese basalts are characterized by positive Sr, Eu, and Ba anomalies. These basalts also plot within the pelagic sediment field in Pbsbnd Pb isotopic space. This suggests that the mantle source of the basalts contained both garnet peridotite and recycled oceanic crust. A systematic analysis of variations in geochemical composition in basalts from southern to central Vietnam indicates that the recycled oceanic crust (possibly the paleo-Pacific slab) source material contains varying proportions of gabbro, basalt, and

  18. Barium isotope composition of altered oceanic crust from the IODP Site 1256 at the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Nan, X.; Yu, H.; Gao, Y.

    2017-12-01

    To understand the behavior of Ba isotopes in the oceanic crust during seawater alteration, we analyzed Ba isotopes for altered oceanic crust (AOC) from the IODP Site 1256 at the East Pacific Rise (EPR). The samples include 33 basalts, 5 gabbros, and 1 gabbronorite. This drill profile has four sections from top to bottom, including the volcanic section, transition zone, sheeted dyke complex, and plutonic complex. They display various degrees of alteration with obviously variable temperatures and water/rock ratios (Gao et al., 2012). The volcanic section is slightly to moderately altered by seawater at 100 to 250°; the transition zone is a mixing zone between upwelling hydrothermal fluids and downwelling seawater; and the sheeted dyke complex and plutonic complex are highly altered by hydrothermal fluids (˜250°). Ba isotopes were analyzed on a Neptune Plus MC-ICP-MS at the University of Science and Technology of China. The long-term precision of δ137/134Ba is better than 0.04‰ (2SD). The δ137/134Ba of the volcanic section and the top of the transition zone range between -0.01 and 0.30‰, higher than the δ137/134Ba of fresh MORB and upper mantle (0.020 ± 0.021‰, 2SE, Huang et al., 2015). Similarly, the δ137/134Ba of the sheeted dyke complex ranges from 0.05 to 0.28‰. The plutonic section has δ137/134Ba from -0.17 to -0.05‰, which is lower than the upper mantle, with one exception that has δ137/134Ba of 0.19‰. No correlation exists between Ba contents and δ137/134Ba. The weighted average δ137/134Ba of the AOC samples is 0.13±0.04‰ (2SE), significantly higher than that of the upper mantle. In all, our AOC data reveal obvious Ba isotopic fractionation, reflecting alteration of the AOC by hydrothermal fluids and seawater. The obvious difference of Ba isotope composition between the AOC and the upper mantle further indicates that recycling of the AOC could result in Ba isotope heterogeneity of the mantle. References: Gao Y, Vils F, Cooper K M, et

  19. Models of Deformation of Uppermost Oceanic Lithosphere: Comparison of Crustal Flexure in the Blönduós Area, Northern Iceland, and Structure of East Pacific Rise Crust at Hess Deep

    NASA Astrophysics Data System (ADS)

    Horst, A. J.; Karson, J. A.; Varga, R. J.; Gee, J. S.

    2007-12-01

    Models of the internal structure of oceanic crust have been constructed from studies of ophiolites and from more recent observations of tectonic windows into the upper crust. Spreading rate and/or magma supply are the central variables that control ridge processes and the ultimate architecture of ocean crust. In addition to ophiolites, Iceland also provides an important analog to study mid-ocean ridge processes and structure. Flexure zones in Iceland characterize the structure of Tertiary-Recent lava flows, and are areas wherein lavas dip regionally inward toward the axis of one of several ~N/S-trending rift zones. These rift zones are interpreted to represent fossil spreading centers which were abandoned during a series of eastward-directed ridge jumps. In the Hildará area, north-central Iceland, the eastern side of a regional flexure is characterized by westward-dipping lavas, approximately 6-8 Ma, which are cut by east-dipping normal faults and dikes. The upper-crustal structure within this flexure zone from slow spread (~20 mm/yr) crust exhibits remarkable similarities to the structure of the upper crust created at a fast-spreading (110 mm/yr) segment of the East Pacific Rise (EPR) observed at Hess Deep. In this modern ocean setting, ~1 Ma crust is characterized by west-dipping lavas above consistently east-dipping (away from the EPR) dikes and dike-subparallel fault zones. In both locations, paleomagnetic and structural data indicate that west-dipping lavas and east-dipping dikes result from tectonic rotations. In addition, cross-cutting dike relationships demonstrate that dike intrusion occurred both during and after normal fault- related tilting. These data indicate that fault-controlled tilting was initiated within the narrow neovolcanic zone of the ridge and is not associated with off-axis processes. Lavas at magmatically robust ridges commonly flow away from elevated ridge-crests. Measurement of anisotropy of magnetic susceptibility (AMS) of the lavas

  20. Structure of young oceanic crust at 13°N on the East Pacific Rise from expanding spread profiles

    NASA Astrophysics Data System (ADS)

    Harding, A. J.; Orcutt, J. A.; Kappus, M. E.; Vera, E. E.; Mutter, J. C.; Buhl, P.; Detrick, R. S.; Brocher, T. M.

    1989-09-01

    We present the results of the analysis of expanding spread profiles (ESPs) collected on and near the axis of the East Pacific Rise at 13°N. These profiles were collected at 0, 1.1, 2.1, 3.6, and 9.5 km from the rise axis, and all but the most distant profile show a distinct low-velocity zone (LVZ) located within layer 3 of the oceanic crust. At the ridge crest, the top of the magma chamber is at the base of layer 2, while 3.6 km off axis, the roof of the LVZ is 1.1 km below the top of layer 3. The profile farthest from the ridge could possibly have a residual LVZ confined to the lower 1.5 km of the crust. The total width of the LVZ, as determined from the ESP data, is at least 6 km, and possibly much greater. This wide LVZ apparently contradicts multichannel seismic data which show cross-axis reflections from the magma chamber with a width of <5 km. We suggest that a resolution of this apparent contradiction lies in a model of the rise axis with a small and transient central magma chamber of high partial melt fraction surrounded by a much larger and permanent region of hot rock with only isolated pockets of partial melt. The ESP data are sensitive to this larger region, while the reflection data accurately map the presence or absence of the central magma chamber with its high impedance contrast. We identify the presence of a layer at the top of the oceanic crust with initial P wave velocities between 2.35 and 2.6 km/s, while the S wave velocity is estimated as being ≤0.8 km/s. The layer thickness lies between 100 and 200 m. These velocities are consistent with previous estimates for the Pacific and recent results for the Atlantic. The thickness of this layer is consistent with that of layer 2A determined from geophysical measurements at Deep Sea Drilling Project hole 504B.

  1. Models of a partially hydrated Titan interior with clathrate crust

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.; Castillo-Rogez, J.

    2012-04-01

    We present an updated model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan's history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consisted of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the liquid water ocean. The crust of Titan was assumed to be pure water ice I. The model was consistent with the moment of inertia of Titan, but neglected the presence of large amounts of methane in the upper crust invoked to explain methane's persistence at present and through geologic time (Tobie et al. 2006). We have updated our model with such a feature. We have also improved our modeling with a better physical model for the dehydration of antigorite and other hydrated minerals. In particular our modeling now simulates heat advection resulting from water circulation (e.g., Seipold and Schilling 2003), rather than the purely conductive heat transfer regime assumed in the first version of our model. The modeling proceeds as in Castillo-Rogez and Lunine (2010), with the thermal conductivity of the methane clathrate crust rather than that of ice I. The former is several times lower than that of the latter, and the two have rather different temperature dependences (English and Tse, 2009). The crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, with the insulating methane clathrate crust, there must be a liquid water ocean beneath the methane clathrate

  2. Insights into magmatic processes and hydrothermal alteration of in situ superfast spreading ocean crust at ODP/IODP site 1256 from a cluster analysis of rock magnetic properties

    NASA Astrophysics Data System (ADS)

    Dekkers, Mark J.; Heslop, David; Herrero-Bervera, Emilio; Acton, Gary; Krasa, David

    2014-08-01

    We analyze magnetic properties from Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6°44.1' N, 91°56.1' W) on the Cocos Plate in ˜15.2 Ma oceanic crust generated by superfast seafloor spreading, the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Fuzzy c-means cluster analysis and nonlinear mapping are utilized to study down-hole trends in the ratio of the saturation remanent magnetization and the saturation magnetization, the coercive force, the ratio of the remanent coercive force and coercive force, the low-field magnetic susceptibility, and the Curie temperature, to evaluate the effects of magmatic and hydrothermal processes on magnetic properties. A statistically robust five cluster solution separates the data predominantly into three clusters that express increasing hydrothermal alteration of the lavas, which differ from two distinct clusters mainly representing the dikes and gabbros. Extensive alteration can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. Thus, the analysis complements interpretation based on electrofacies analysis. All clusters display rock magnetic characteristics compatible with an ability to retain a stable natural remanent magnetization suggesting that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Paleointensity determination is difficult because of the propensity of oxyexsolution during laboratory heating and/or the presence of intergrowths. The upper part of the extrusive sequence, the granoblastic dikes, and moderately altered gabbros may contain a comparatively uncontaminated thermoremanent magnetization.

  3. Hafnium isotope stratigraphy of ferromanganese crusts

    PubMed

    Lee; Halliday; Hein; Burton; Christensen; Gunther

    1999-08-13

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  4. Iron speciation and redox state of mantle eclogites: Implications for ancient volatile cycles during mantle melting and oceanic crust subduction

    NASA Astrophysics Data System (ADS)

    Aulbach, Sonja; Woodand, Alan; Vasilyev, Prokopiy; Viljoen, Fanus

    2017-04-01

    Kimberlite-borne mantle eclogite xenoliths of Archaean and Palaeoproterozoic age are commonly interpreted as representing former oceanic crust. As such, they may retain a memory of the redox state of the ancient convecting mantle sources that gave rise to their magmatic protoliths and which controls the speciation of volatiles in planetary interiors. Mantle eclogite suites commonly include both cumulate and variably evolved extrusive varieties [1], which may be characterised by initial differences in Fe3+/Fetotal. Recent Fe-based oxybarometry shows mantle eclogites to have fO2 relative to the fayalite-magnetite-quartz buffer (ΔFMQ) of -3 to 0, whereby low fO2 relative to modern MORB may relate to subduction of more reducing Archaean oceanic crust or loss of ferric Fe during partial melt loss [2]. Indeed, using V/Sc as a redox proxy, it was recently shown that Archaean mantle eclogites are more reduced than modern MORB (ΔFMQ-1.3 vs. ΔFMQ -0.4) [3]. However, in the warmer ancient mantle, they were also subject to modification due to partial melt loss upon recycling and, after capture in the cratonic mantle lithosphere, may be overprinted by interaction with metasomatic melts and fluids. In order to help further constrain the redox state of mantle eclogites and unravel the effect of primary and secondary processes, we measured Fe3+/Fetotal by Mössbauer in garnet from mantle eclogites from the Lace kimberlite (Kaapvaal craton), comprising samples with melt- and cumulate-like oceanic crustal protoliths as well as metasomatised samples. Fe3+/ΣFe in garnet shows a strong negative correlation with jadeite content and bulk-rock Li and Cu abundances, suggesting increased partitioning of Fe3+ into jadeite in the presence of monovalent cations with which it can form coupled substitutions. Broad negative correlation with whole-rock Al2O3/TiO2 and positive correlation with ΣREE are interpreted as incompatible behaviour of Fe3+ during olivine-plagioclase accumulation

  5. Subsurface Ocean Tides in Enceladus and Other Icy Moons

    NASA Astrophysics Data System (ADS)

    Beuthe, M.

    2016-12-01

    Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 meters deep. The model is general: it applies to all icy satellites with a thin crust and a shallow or stratified ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.

  6. Investigation of Collisional Styles of the Caribbean Large Igneous Province (CLIP) vs. Normal Oceanic Crust from Seismic Reflection Profiles

    NASA Astrophysics Data System (ADS)

    Mataracioglu, M.; Magnani, M.; DeShon, H. R.; Cox, R. T.

    2011-12-01

    The Caribbean plate subducts beneath the North American and the South American plates at the Muertos Trough and the South Caribbean Deformed Belt (SCDB), respectively. During subduction, large amount of crustal material may enter the subduction zone with the subducting plate or may be incorporated into the accretionary prism. To investigate the changes in collisional style and structures associated with subduction of the Caribbean Large Igneous Province (CLIP) versus normal oceanic crust, we interpret seismic reflection profiles collected around the northern and southern margins of the Venezuelan Basin. We refine the extent of the CLIP in the central and eastern Caribbean by identifying the structural differences at the top of the acoustic basement (Horizon B") on a dataset of 150 multi-channel seismic time stack and migrated marine reflection profiles acquired in eight cruises from 1975 to 2004, as well as some selected Integrated Ocean Drilling Program (IODP) drilling data. We will also attempt to determine whether sedimentary material enters the trench and is recycled back into the mantle, and therefore characterize the northern and southern subduction zones as accretionary or erosive. Our preliminary results show that the CLIP extends spatially to most of the Venezuelan Basin, the western part of the Columbian Basin, and a part of the Beata Ridge, but that it does not extend as far south as suggested by previous interpretations. Furthermore, some portions of the CLIP at the northern and southern boundaries subduct beneath the North and the South American plates at the Muertos Trough and the SCDB, respectively. The change in nature of the subducting plate (CLIP or normal oceanic crust) causes variations in the collisional style (i.e., accretionary versus erosive) and in structures at the accretionary wedge and on the downgoing plate.

  7. New constraints on the sources and behavior of neodymium and hafnium in seawater from Pacific Ocean ferromanganese crusts

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Lee, D.-C.; Halliday, A.N.; Reynolds, B.C.; Hein, J.R.

    2004-01-01

    The behavior of dissolved Hf in the marine environment is not well understood due to the lack of direct seawater measurements of Hf isotopes and the limited number of Hf isotope time-series obtained from ferromanganese crusts. In order to place better constraints on input sources and develop further applications, a combined Nd-Hf isotope time-series study of five Pacific ferromanganese crusts was carried out. The samples cover the past 38 Myr and their locations range from sites at the margin of the ocean to remote areas, sites from previously unstudied North and South Pacific areas, and water depths corresponding to deep and bottom waters. For most of the samples a broad coupling of Nd and Hf isotopes is observed. In the Equatorial Pacific ENd and EHf both decrease with water depth. Similarly, ENd and EHf both increase from the South to the North Pacific. These data indicate that the Hf isotopic composition is, in general terms, a suitable tracer for ocean circulation, since inflow and progressive admixture of bottom water is clearly identifiable. The time-series data indicate that inputs and outputs have been balanced throughout much of the late Cenozoic. A simple box model can constrain the relative importance of potential input sources to the North Pacific. Assuming steady state, the model implies significant contributions of radiogenic Nd and Hf from young circum-Pacific arcs and a subordinate role of dust inputs from the Asian continent for the dissolved Nd and Hf budget of the North Pacific. Some changes in ocean circulation that are clearly recognizable in Nd isotopes do not appear to be reflected by Hf isotopic compositions. At two locations within the Pacific Ocean a decoupling of Nd and Hf isotopes is found, indicating limited potential for Hf isotopes as a stand-alone oceanographic tracer and providing evidence of additional local processes that govern the Hf isotopic composition of deep water masses. In the case of the Southwest Pacific there is

  8. Birth of an oceanic spreading center at a magma-poor rift system.

    PubMed

    Gillard, Morgane; Sauter, Daniel; Tugend, Julie; Tomasi, Simon; Epin, Marie-Eva; Manatschal, Gianreto

    2017-11-08

    Oceanic crust is continuously created at mid-oceanic ridges and seafloor spreading represents one of the main processes of plate tectonics. However, if oceanic crust architecture, composition and formation at present-day oceanic ridges are largely described, the processes governing the birth of a spreading center remain enigmatic. Understanding the transition between inherited continental and new oceanic domains is a prerequisite to constrain one of the last major unsolved problems of plate tectonics, namely the formation of a stable divergent plate boundary. In this paper, we present newly released high-resolution seismic reflection profiles that image the complete transition from unambiguous continental to oceanic crusts in the Gulf of Guinea. Based on these high-resolution seismic sections we show that onset of oceanic seafloor spreading is associated with the formation of a hybrid crust in which thinned continental crust and/or exhumed mantle is sandwiched between magmatic intrusive and extrusive bodies. This crust results from a polyphase evolution showing a gradual transition from tectonic-driven to magmatic-driven processes. The results presented in this paper provide a characterization of the domain in which lithospheric breakup occurs and enable to define the processes controlling formation of a new plate boundary.

  9. The relationship between the age and depth of the oceanic crust in the central South China Sea

    NASA Astrophysics Data System (ADS)

    Peng, Yi-Jui; Hsu, Shu-Kun; Chiao, Ling-Yun

    2016-04-01

    South China Sea (SCS) is the largest marginal basin in the western Pacific. The onset of seafloor spreading in the central part of the SCS was suggested at 32 Ma. After a ridge jump around 25 Ma, the southwestern sub-basin started to open. The spreading of the entire basin ended at ~16 Ma, then a phase of post-magmatic seamount formation occurred (eg., Taylor and Hayes, 1983; Briais et al.,1993; Barckhausen et al., 2014). In this study, we want to find the relationship between the age and depth of the oceanic crust in the central SCS. We will also study a fracture zone trending NW-SE near to Manila trench and to understand how did the fracture zone affect the development of the SCS. We have analyzed five reflection seismic profiles collected by R/V Ocean Researcher 1 during the cruise ORI-1115. We have correlated the age of seismic strata in the central SCS by comparing to the seismic phase of profile MCS1115-7 that has crossed the IODP drilling site U1431. To understand the characteristics of the fracture zone, we have also applied the analytic signal and Euler deconvolution methods to the gravity and magnetic anomalies related to the fracture zone. We suggest that the fraction zone was formed in order to accommodate the spreading in the east sub-basin. However, this fracture zone is somewhat curved concave southwestward. According to the collision-extrusion model of Tapponnier et al. (1982), the formation of Indochina is followed with the constitution of Ailao Shan-Red River Shear Zone. We suppose that the formation of the fracture zone in this study is similar to the Ailao Shan-Red River Shear Zone. The fan-shaped crustal fabric is distinct in the younger portions of the oceanic basin. Both Ailao Shan-Red River Shear Zone and the fracture zone in northeastern SCS may share the same rotation pole. Furthermore, we have tried to find a relationship between oceanic crust depth and age in this area. The preliminary result shows that the relationship between depth and

  10. Origin of the earth's ocean basins

    NASA Technical Reports Server (NTRS)

    Frex, H.

    1977-01-01

    The earth's original ocean basins were mare-type basins produced 4 billion years ago by the flux of asteroid-sized objects responsible for the lunar mare basins. Scaling upwards from the observed number of lunar basins for the greater capture cross-section and impact velocity of the Earth indicates that at least 50 percent of an original global crust would have been converted to basin topography. These basins were flooded by basaltic liquids in times short compared to the isostatic adjustment time for the basin. The modern crustal dichotomy (60 percent oceanic, 40 percent continental crust) was established early in the history of the earth, making possible the later onset of plate tectonic processes. These later processes have subsequently reworked, in several cycles, principally the oceanic parts of the earth's crust, changing the configuration of the continents in the process. Ocean basins (and oceans themselves) may be rare occurrences on planets in other star systems.

  11. Lithium isotope as a proxy for water/rock interaction between hydrothermal fluids and oceanic crust at Milos, Greece

    NASA Astrophysics Data System (ADS)

    Lou, U.-Lat; You, Chen-Feng; Wu, Shein-Fu; Chung, Chuan-Hsiung

    2014-05-01

    Hydrothermal activity at Milos in the Aegean island (Greece) is mainly located at rather shallow depth (about 5 m). It is interesting to compare these chemical compositions and the evolution processes of the hydrothermal fluids at deep sea hydrothermal vents in Mid-ocean Ridge (MOR). Lithium (Li) is a highly mobile element and its isotopic composition varies at different geological settings. Therefore, Li and its isotope could be used as an indicator for many geochemical processes. Since 6Li preferential retained in the mineral phase where 7Li is leached into fluid phase during basalt alteration, the Li isotopic fractionation between the rocks and the fluids reflect sensitively the degree of water-rock interaction. In this study, Bio-Rad AG-50W X8 cation exchange resin was used for purifying the hydrothermal fluids to separate Li from other matrix elements. The Li isotopic composition (δ7Li) was determined by Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) with precision better than 0.2‰ (2σ, n=20). The Li concentration in the hydrothermal fluids falls between 0.02 to 10.31 mM. The δ7Li values vary from +1.9 to +29.7‰, indicating significant seawater contamination have occurred. These hydrothermal fluids fit well with seawater and brine two end-member binary mixing model. During phase separation, lithium, boron, chlorine, iodine, bromine, sodium and potassium were enriched in the brine phase. On the other hand, aluminum, sulphur and iron were enriched in the vapor phase. There is no significant isotope fractionation between the two phases. The water/rock ratio (W/R) calculated is low (about 1.5 to 1.8) for the Milos fluids, restricted seawater recharge into the oceanic crust. Moreover, the oceanic crust in the region becomes less altered since the W/R is low. The δ7Li value of the hydrothermal fluids can be used as a sensitive tool for studying water-rock interaction.

  12. The spectral albedo of sea ice and salt crusts on the tropical ocean of Snowball Earth: 1. Laboratory measurements

    NASA Astrophysics Data System (ADS)

    Light, Bonnie; Carns, Regina C.; Warren, Stephen G.

    2016-07-01

    The ice-albedo feedback mechanism likely contributed to global glaciation during the Snowball Earth events of the Neoproterozoic era (1 Ga to 544 Ma). This feedback results from the albedo contrast between sea ice and open ocean. Little is known about the optical properties of some of the possible surface types that may have been present, including sea ice that is both snow-free and cold enough for salts to precipitate within brine inclusions. A proxy surface for such ice was grown in a freezer laboratory using the single salt NaCl and kept below the eutectic temperature (-21.2°C) of the NaCl-H2O binary system. The resulting ice cover was composed of ice and precipitated hydrohalite crystals (NaCl · 2H2O). As the cold ice sublimated, a thin lag-deposit of salt formed on the surface. To hasten its growth in the laboratory, the deposit was augmented by addition of a salt-enriched surface crust. Measurements of the spectral albedo of this surface were carried out over 90 days as the hydrohalite crust thickened due to sublimation of ice, and subsequently over several hours as the crust warmed and dissolved, finally resulting in a surface with puddled liquid brine. The all-wave solar albedo of the subeutectic crust is 0.93 (in contrast to 0.83 for fresh snow and 0.67 for melting bare sea ice). Incorporation of these processes into a climate model of Snowball Earth will result in a positive salt-albedo feedback operating between -21°C and -36°C.

  13. An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: Evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Gregory, Robert T.; Taylor, Hugh P., Jr.

    1981-04-01

    Isotopic analyses of 75 samples from the Samail ophiolite indicate that pervasive subsolidus hydrothermal exchange with seawater occurred throughout the upper 75% of this 8-km-thick oceanic crustal section; locally, the H2O even penetrated down into the tectonized peridotite. Pillow lavas (δ18O = 10.7 to 12.7) and sheeted dikes (4.9 to 11.3) are typically enriched in 18O, and the gabbros (3.7 to 5.9) are depleted in 18O. In the latter rocks, water/rock ≤ 0.3, and δ18Ocpx ≈ 2.9 + 0.44 δ18Ofeld, indicating pronounced isotopic disequilibrium. The mineral δ18O values approximately follow an exchange (mixing) trajectory which requires that plagioclase must exchange with H2O about 3 to 5 times faster than clinopyroxene. The minimum δ18Ofeld value (3.6) occurs about 2.5 km below the diabase-gabbro contact. Although the gabbro plagioclase appears to be generally petrographically unaltered, its oxygen has been thoroughly exchanged; the absence of hydrous alteration minerals, except for minor talc and/or amphibole, suggests that this exchange occurred at T > 400°-500°C. Plagioclase δ18O values increase up section from their minimum values, becoming coincident with primary magmatic values near the gabbro-sheeted diabase contact and reaching 11.8 in the diabase dikes. These 18O enrichments in greenschist facies diabases are in part due to exchange with strongly 18O-shifted fluids, in addition to retrograde exchange at much lower temperatures. The δ18O data and the geometry of the mid-ocean ridge (MOR) magma chamber require that two decoupled hydrothermal systems must be present during much of the early spreading history of the oceanic crust (approximately the first 106 years); one system is centered over the ridge axis and probably involves several convective cells that circulate downward to the roof of the magma chamber, while the other system operates underneath the wings of the chamber, in the layered gabbros. Upward discharge of 18O-shifted water into the

  14. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia

    NASA Astrophysics Data System (ADS)

    Tissot, François L. H.; Dauphas, Nicolas

    2015-10-01

    The 238U/235U isotopic composition of uranium in seawater can provide important insights into the modern U budget of the oceans. Using the double spike technique and a new data reduction method, we analyzed an array of seawater samples and 41 geostandards covering a broad range of geological settings relevant to low and high temperature geochemistry. Analyses of 18 seawater samples from geographically diverse sites from the Atlantic and Pacific oceans, Mediterranean Sea, Gulf of Mexico, Persian Gulf, and English Channel, together with literature data (n = 17), yield a δ238U value for modern seawater of -0.392 ± 0.005‰ relative to CRM-112a. Measurements of the uranium isotopic compositions of river water, lake water, evaporites, modern coral, shales, and various igneous rocks (n = 64), together with compilations of literature data (n = 380), allow us to estimate the uranium isotopic compositions of the various reservoirs involved in the modern oceanic uranium budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Because the incorporation of U into anoxic/euxinic sediments is accompanied by large isotopic fractionation (ΔAnoxic/Euxinic-SW = +0.6‰), the size of the anoxic/euxinic sink strongly influences the δ238U value of seawater. Keeping all other fluxes constant, the flux of uranium in the anoxic/euxinic sink is constrained to be 7.0 ± 3.1 Mmol/yr (or 14 ± 3% of the total flux out of the ocean). This translates into an areal extent of anoxia into the modern ocean of 0.21 ± 0.09% of the total seafloor. This agrees with independent estimates and rules out a recent uranium budget estimate by Henderson and Anderson (2003). Using the mass fractions and isotopic compositions of various rock types in Earth's crust, we further calculate an average δ238U isotopic composition for the continental crust of -0.29 ± 0.03‰ corresponding to a 238U/235U isotopic ratio of 137.797 ± 0.005. We discuss the implications of

  15. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust

    NASA Astrophysics Data System (ADS)

    Okazaki, Keishi; Hirth, Greg

    2016-02-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.

  16. Os isotope systematics of La Palma, Canary Islands: Evidence for recycled crust in the mantle source of HIMU ocean islands

    NASA Astrophysics Data System (ADS)

    Marcantonio, Franco; Zindler, Alan; Elliott, Tim; Staudigel, Hubert

    1995-07-01

    Sub-aerial lavas from the single ocean island of La Palma, Canary Islands show as large a variation in 187Os/186Os isotope ratios (1.13-1.59) as found across all of French Polynesia [1]. The La Palma lavas, however, display a restricted range of chemical composition and have all been erupted within the last 3.5 Ma. The highest Os isotopic compositions are observed in lavas with low Os concentrations. An uplifted sequence of lavas, that represent the early phase of submarine growth of the island, show extremely heterogeneous 187Os/186Os isotope ratios, from 1.21 to 3.53, with the most radiogenic values found in pillow rinds. Assimilation of these pillow rinds by ascending magma can readily account for highly radiogenic ratios ( 187Os/186Os > 1.3 ) found in lavas with Os concentrations below 30 ppt. Samples with Os concentrations too high to be significantly affected by assimilation still display a range in Os isotope ratios from 1.13 to 1.25. We argue that these radiogenic values reflect a HIMU mantle source that contains ancient recycled oceanic crust. Characteristic incompatible trace element ratios suggest further similarities between the mantle beneath La Palma and other HIMU islands. When potentially contaminated low-Os OIBs are screened from literature data, HIMU islands are found to display the highest Os isotope ratios (up to 1.25). PbOs systematics for uncontaminated OIBs do not define a simple two-component mixing relationship between ambient mantle and recycled oceanic crust of a single composition. We suggest that this is due to variable alteration and subduction-induced perturbation of the U/Pb ratio in the recycled material that forms a component of the HIMU source.

  17. Silicon Isotope Geochemistry of Ocean Island Basalts: Mantle Heterogeneities and Contribution of Recycled Oceanic Crust and Lithosphere

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.

    2015-12-01

    altered oceanic crust and lithosphere in the plume source. References: [1] Ziegler et al., GCA 2005 [2] Savage et al., GCA 2011 [3] Savage et al., EPSL 2010 [4] Day et al., Geology 2009 [5] Huang et al., GCA 2014

  18. From magma-poor Ocean Continent Transitions to steady state oceanic spreading: the balance between tectonic and magmatic processes

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Manatschal, Gianreto; Autin, Julia; Decarlis, Alessandro; Sauter, Daniel

    2016-04-01

    The evolution of magma-poor rifted margins is linked to the development of a transition zone whose basement is neither clearly continental nor oceanic. The development of this Ocean-Continent Transition (OCT) is generally associated to the exhumation of serpentinized mantle along one or several detachment faults. That model is supported by numerous observations (IODP wells, dredges, fossil margins) and by numerical modelling. However, if the initiation of detachment faults in a magma-poor setting tends to be better understood by numerous studies in various area, the transition with the first steady state oceanic crust and the associated processes remain enigmatic and poorly studied. Indeed, this latest stage of evolution appears to be extremely gradual and involves strong interactions between tectonic processes and magmatism. Contrary to the proximal part of the exhumed domain where we can observe magmatic activity linked to the exhumation process (exhumation of gabbros, small amount of basalts above the exhumed mantle), in the most distal part the magmatic system appears to be independent and more active. In particular, we can observe large amounts of extrusive material above a previously exhumed and faulted basement (e.g. Alps, Australia-Antarctica margins). It seems that some faults can play the role of feeder systems for the magma in this area. Magmatic underplating is also important, as suggested by basement uplift and anomalously thick crust (e.g. East Indian margin). It results that the transition with the first steady state oceanic crust is marked by the presence of a hybrid basement, composed by exhumed mantle and magmatic material, whose formation is linked to several tectonic and magmatic events. One could argue that this basement is not clearly different from an oceanic basement. However, we consider that true, steady state oceanic crust only exists, if the entire rock association forming the crust is created during a single event, at a localized

  19. Implications for crustal accretion at fast spreading ridges from observations in Jurassic oceanic crust in the western Pacific

    NASA Astrophysics Data System (ADS)

    Pockalny, Robert A.; Larson, Roger L.

    2003-01-01

    Downhole logging data and basement stratigraphy interpretations are used to determine the spreading environment and crustal accretion history of the ocean basement cored at ODP Hole 801C located in the Jurassic Magnetic Quiet Zone of the western Pacific. High-resolution microresistivity data obtained with the Formation MicroScanner are used to measure the dip of the extrusive layers and indicate a 10°-30° increase in dip down the drill hole with lava flow contacts dipping back toward the original ridge axis. This structural pattern and the high proportion of massive flows relative to pillow units are consistent with prevailing crustal accretion models proposed for faster spreading ridges (e.g., >60 km/m.y., full-rate). A detailed analysis of the age data, basement lithology, related geochemistry, and structural attitudes suggest the shallowest 100 m of the drilled section (e.g., Sequences I-III) were emplaced just off the ridge (Sequence III) or significantly farther off-axis up to 5-15 m.y. later (Sequences I and II). The remainder of the drilled section (e.g., Sequences IV-VIII) has geochemical, lithological and physical trends that are assumed to be representative of crust created at faster spreading ridges. The pattern of dipping lava flow contacts from this deeper section of the drill hole suggests lava flows emanating from the ridge axis are limited to 1-2 km off-axis. Our results suggest ocean crust drilled at Hole 801C was created at faster spreading rates; however, caution should be used when incorporating Sequences I-III into geochemical reference sections for faster spreading ridges.

  20. Continental crust melting induced by subduction initiation of the South Tianshan Ocean: Insight from the Latest Devonian granitic magmatism in the southern Yili Block, NW China

    NASA Astrophysics Data System (ADS)

    Bao, Zihe; Cai, Keda; Sun, Min; Xiao, Wenjiao; Wan, Bo; Wang, Yannan; Wang, Xiangsong; Xia, Xiaoping

    2018-03-01

    The Tianshan belt of the southwestern Central Asian Orogenic Belt was generated by Paleozoic multi-stage subduction and final closure of several extinct oceans, including the South Tianshan Ocean between the Kazakhstan-Yili and Tarim blocks. However, the subduction initiation and polarity of the South Tianshan Ocean remain issues of highly debated. This study presents new zircon U-Pb ages, geochemical compositions and Sr-Nd isotopes, as well as zircon Hf isotopic data of the Latest Devonian to Early Carboniferous granitic rocks in the Wusun Mountain of the Yili Paleozoic convergent margin, which, together with the spatial-temporal distributions of regional magmatic rocks, are applied to elucidate their petrogenesis and tectonic linkage to the northward subduction initiation of the South Tianshan Ocean. Our zircon U-Pb dating results reveal that these granites were emplaced at the time interval of 362.0 ± 1.2-360.3 ± 1.9 Ma, suggesting a marked partial melting event of the continental crust in the Latest Devonian to Early Carboniferous. These granites, based on their mineral compositions and textures, can be categorized as monzogranites and K-feldspar granites. Geochemically, both monzogranites and K-feldspar granites have characters of I-type granites with high K2O contents (4.64-4.83 wt.%), and the K-feldspar granites are highly fractionated I-type granites, while the monzogranites have features of unfractionated I-type granites. Whole-rock Sr-Nd isotopic modeling results suggest that ca. 20-40% mantle-derived magmas may be involved in magma mixing with continental crust partial melts to generate the parental magmas of the granites. The mantle-derived basaltic magmas was inferred not only to be a major component of magma mixture but also as an important heat source to fuse the continental crust in an extensional setting, which is evidenced by the high zircon saturation temperatures (713-727 °C and 760-782 °C) of the studied granites. The Latest Devonian to

  1. Critical Metals In Western Arctic Ocean Ferromanganese Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Hein, J. R.; Spinardi, F.; Conrad, T. A.; Conrad, J. E.; Genetti, J.

    2013-12-01

    Little exploration for minerals has occurred in the Arctic Ocean due to ice cover and the remote location. Small deposits of seafloor massive sulfides that are rich in copper and zinc occur on Gakkel Ridge, which extends from Greenland to the Laptev Sea, and on Kolbeinsey and Mohns ridges, both located between Greenland and mainland Europe. However, rocks were recently collected by dredge along the western margin of the Canada Basin as part of the U.S. Extended Continental Shelf (ECS) program north of Alaska. Sample sites include steep escarpments on the Chukchi Borderland, a newly discovered seamount informally named Healy seamount, the southern part of Alpha-Mendeleev Ridge, and several basement outcrops in Nautilus Basin. These dredge hauls yielded three types of metal-rich mineralized deposits: ferromanganese crusts, ferromanganese nodules, and hydrothermal iron and manganese deposits. Chemical analyses of 43 crust and nodule samples show high contents of many critical metals needed for high-technology, green-technology, and energy and military applications, including cobalt (to 0.3 wt.%), vanadium (to 0.12 wt.%), zirconium (to 459 grams/tonne=ppm), molybdenum (to 453 g/t), the rare-earth elements (including scandium and yttrium; yttrium to 229 g/t), lithium (to 205 g/t), tungsten (to 64 g/t), and gallium (to 26 g/t). The metal contents of these Arctic Ocean crusts and nodules are comparable to those found throughout the global ocean, however, these Arctic Ocean samples are the first that have been found to be enriched in rare metal scandium. The metal contents of these samples indicate a diagenetic component. Crusts typically form by precipitation of metal oxides solely from seawater (hydrogenetic) onto rock surfaces producing a pavement, whereas nodules form by accretion of metal oxides, from both seawater and pore waters (diagenetic), around a nucleus on the surface of soft sediment. The best evidence for this diagenetic input to the crusts is that crusts

  2. Definition of the continent-ocean boundary of India and the surrounding oceanic regions from Magsat data

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Rajaram, Mita; Bapat, V. J.

    1991-06-01

    Magsat studies over the Indian region and adjoining areas show that the continental-oceanic contrasts appear more distinctly in the equivalent magnetization solution than in the anomaly maps. The vertical component ( Z) is found to be more useful for the equatorial regions. It is also noted that, in general, the continental crust has a higher magnetization than the oceanic crust. Further, the continental crust seems to extend into the Arabian Sea across a part of the west coast. A similar continuation is seen in the northern part of the Bay of Bengal. The west coast result is corroborated using land and marine Bouguer gravity anomalies.

  3. Phosphatization Associated Features of Ferromanganese Crusts at Lemkein Seamount, Marshall Islands

    NASA Astrophysics Data System (ADS)

    Choi, J.; Lee, I.; Park, B. K.; Kim, J.

    2014-12-01

    Old layers of ferromanganese crusts, especially in the Pacific Ocean, have been affected by phosphatization. Ferromanganese crusts on Lemkein seamount in Marshall Islands also are phosphatized (3.3 to 4.2 wt % of P concentration). Furthermore, they have characteristic features that are different from other ferromanganese crusts. These features occur near the phosphorite, which were thought to fill the pore spaces of ferromanganese crusts. Inside the features, ferromanganese crusts are botryoidally precipitated from the round-boundary. The features of the phosphatized lower crusts of Lemkein seamount are observed using microscope and SEM. Elemental compositions of the selected samples were analyzed by SEM-EDS. Based on the observation and analysis of samples, three characteristic structures are identified: (1) phosphate-filled circles, (2) tongue-shaped framboidal crust, and (3) massive framboidal crust. The phosphate-filled circles are mostly composed of phosphorite, and they include trace fossils such as foraminifera. Phosphatized ferromanganese crusts exist at the boundary of this structure. The tongue-shaped crust is connected with the lips downward, and ferromanganese crusts inside the tongue show distinct growth rim. The massive framboidal crust is located below the tongue. Ferromanganese crusts in the massive framboidal crust are enveloped by phosphate, and some of the crusts are phosphatized. Around the structures, Mn oxide phase is concentrated as a shape of corona on BSE image. All of the structures are in the phosphatized crusts that show columnar growth of ferromanganese crusts and have sub-parallel lamination. These observation and chemical analysis of the ferromanganese crusts can provide a clue of diagenetic processes during the formation of ferromanganese crusts.

  4. Construction of Continental Crust at the Central American and Philippines Arc Systems

    NASA Astrophysics Data System (ADS)

    Whattam, S. A.; Stern, R. J.

    2016-12-01

    Whether or not magmatic arcs evolve compositionally with time and the processes responsible remain controversial. Resolution of this question requires reconstructing arc geochemical evolution at the level of discrete arc systems, as has been done for IBM, Central America, and the Greater Antilles. Emphasis should be on arcs built on oceanic crust because interaction with continental crust complicates interpretations. The Philippines are a particularly attractive target because this may be the best example where proto-continental crust has been generated and processed in Cretaceous and younger time. Here, we show how this question could be addressed for the Philippines using the well-studied Central American Volcanic Arc System (CAVAS) as an example. For the CAVAS, we avoided the northern arc segment because these are (Guatemala) or maybe (El Salvador) sections built on continental crust. Geochemical and isotopic data were compiled for 1031 samples of lavas and intrusive rocks from the 1100 km-long segment built on thickened, initially plume-derived oceanic crust over its 75 million year lifespan (Panama, Costa Rica, Nicaragua) . The most striking observation is the overall evolution of the CAVAS to more incompatible element enriched and ultimately continental-like compositions with time. Models entailing progressive arc magmatic enrichment are generally supported by the CAVAS record. Progressive enrichment of the oceanic CAVAS with time reflects changes in mantle wedge composition and decreased melting due to arc crust thickening, which was kick-started by the involvement of enriched plume mantle. Progressive crustal thickening and associated changes in the sub-arc thermal regime resulted in decreasing degrees of partial melting over time, which allowed for progressive enrichment of the CAVAS and ultimately the production of continental-like crust in Panama and Costa Rica by 16-10 Ma. Our similar study of the Philippine Arc system is in its infancy but earlier

  5. Decrease in oceanic crustal thickness since the breakup of Pangaea

    NASA Astrophysics Data System (ADS)

    van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.

    2017-01-01

    Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.

  6. A Geochemical View on the Interplay Between Earth's Mantle and Crust

    NASA Astrophysics Data System (ADS)

    Chauvel, C.

    2017-12-01

    Over most of Earth history, oceanic and continental crust was created and destroyed. The formation of both types of crust involves the crystallization and differentiation of magmas producing by mantle melting. Their destruction proceeds by mechanical erosion and weathering above sea level, chemical alteration on the seafloor, and bulk recycling in subduction zones. All these processes enrich of some chemical element and deplete others but each process has its own effect on chemical elements. While the flux of material from mantle to crust is well understood, the return flux is much more complex. In contrast to mantle processes, erosion, weathering, chemical alteration and sedimentary processes strongly decouple elements such as the rare earths and high-field strength elements due to their different solubilities in surface fluids and mineralogical sorting during transport. Soluble elements such as strontium or uranium are quantitatively transported to the ocean by rivers and decoupled from less soluble elements. Over geological time, such decoupling significantly influences the extent to which chemical elements remain at the Earth's surface or find their way back to the mantle through subduction zones. For example, elements like Hf or Nd are retained in heavy minerals on continents whereas U and Sr are transported to the oceans and then in subduction zones to the mantle. The consequence is that different radiogenic isotopic systems give disparate age estimates for the continental crust; e.g, Hf ages could be too old. In subduction zones, chemical elements are also decoupled, due to contrasting behavior during dehydration or melting in subducting slabs. The material sent back into the mantle is generally enriched in non-soluble elements while most fluid-mobile elements return to the crust. This, in turn, affects the relationship between the Rb-Sr, Sm-Nd, Lu-Hf and U-Th-Pb isotopic systems and creates correlations unlike those based on magmatic processes. By

  7. Seismic observation of a sharp post-garnet phase transition within the Farallon crust: Evidence for oceanic plateau subduction

    NASA Astrophysics Data System (ADS)

    Maguire, R.; Ritsema, J.

    2017-12-01

    The tectonic evolution of North America over the past 150 million years was heavily influenced by the complex subduction history of the Farallon plate. In particular, Laramide mountain building may have been triggered by the initiation of flat slab subduction in the late Cretaceous. While it has been proposed that the cause of slab flattening is related to the subduction of an oceanic plateau[1], direct geophysical evidence of a subducted oceanic plateau is lacking. Here, using P-to-S receiver functions, we detect a sharp seismic discontinuity at 720-km depth beneath the southeastern United States and Gulf of Mexico. We interpret this discontinuity as a garnet-to-bridgmanite phase transition occurring within a thickened Farallon crust. Our results are consistent with a subducted oceanic plateau (likely the conjugate half of the Hess rise) which is foundering below the base of the mantle transition zone. Additionally, we find a strong 520-km discontinuity beneath the southeastern United States which may indicate a hydrous transition zone due to the release of H2O from the Farallon slab. These results provide insight into the dynamics of flat slab subduction as well as the tectonic history of North America. [1] Livaccari, R. F., Burke, K., & Şengör, A. M. C. (1981). Was the Laramide orogeny related to subduction of an oceanic plateau? Nature, v. 289, p. 276-278, doi: 10.1038/289276a0

  8. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust.

    NASA Astrophysics Data System (ADS)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.

    2014-12-01

    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination

  9. Crustal control of dissipative ocean tides in Enceladus and other icy moons

    NASA Astrophysics Data System (ADS)

    Beuthe, Mikael

    2016-12-01

    Could tidal dissipation within Enceladus' subsurface ocean account for the observed heat flow? Earthlike models of dynamical tides give no definitive answer because they neglect the influence of the crust. I propose here the first model of dissipative tides in a subsurface ocean, by combining the Laplace Tidal Equations with the membrane approach. For the first time, it is possible to compute tidal dissipation rates within the crust, ocean, and mantle in one go. I show that oceanic dissipation is strongly reduced by the crustal constraint, and thus contributes little to Enceladus' present heat budget. Tidal resonances could have played a role in a forming or freezing ocean less than 100 m deep. The model is general: it applies to all icy satellites with a thin crust and a shallow ocean. Scaling rules relate the resonances and dissipation rate of a subsurface ocean to the ones of a surface ocean. If the ocean has low viscosity, the westward obliquity tide does not move the crust. Therefore, crustal dissipation due to dynamical obliquity tides can differ from the static prediction by up to a factor of two.

  10. Asymmetric Post-Magma Ocean Crust-Building on the Lunar Nearside

    NASA Astrophysics Data System (ADS)

    Elardo, S. M.; Laneuville, M.; McCubbin, F. M.; Shearer, C. K.

    2018-05-01

    Our experiments show that the KREEP reservoir on the lunar nearside reduces the melting temperature of Mg-suite source rocks, leading to asymmetric crust-building magmatism independent of any contribution from radiogenic heating.

  11. Magma Supply of Southwest Indian Ocean: Implication from Crustal Thickness Anomalies

    NASA Astrophysics Data System (ADS)

    Chiheng, L.; Jianghai, L.; Huatian, Z.; Qingkai, F.

    2017-12-01

    The Southwest Indian Ridge (SWIR) is one of the world's slowest spreading ridges with a full spreading rate of 14mm a-1, belonging to ultraslow spreading ridge, which are a novel class of spreading centers symbolized by non-uniform magma supply and crustal accretion. Therefore, the crustal thickness of Southwest Indian Ocean is a way to explore the magmatic and tectonic process of SWIR and the hotspots around it. Our paper uses Residual Mantle Bouguer Anomaly processed with the latest global public data to invert the relative crustal thickness and correct it according to seismic achievements. Gravity-derived crustal thickness model reveals a huge range of crustal thickness in Southwest Indian Ocean from 0.04km to 24km, 7.5km of average crustal thickness, and 3.5km of standard deviation. In addition, statistics data of crustal thickness reveal the frequency has a bimodal mixed skewed distribution, which indicates the crustal accretion by ridge and ridge-plume interaction. Base on the crustal thickness model, we divide three types of crustal thickness in Southwest Indian Ocean. About 20.31% of oceanic crust is <4.8km thick designated as thin crust, and 60.99% is 4.8-9.8km thick as normal crust. The remaining 18.70% is >9.8km thick as thick crust. Furthermore, Prominent thin crust anomalies are associated with the trend of most transform faults, but thick crust anomalies presents to northeast of Andrew Bain transform fault. Cold and depleted mantle are also the key factors to form the thin crust. The thick crust anomalies are constrained by hotspots, which provide abundant heat to the mantle beneath mid-ocean ridge or ocean basin. Finally, we roughly delineate the range of ridge-plume interaction and transform fault effect.

  12. CRUST 5.1: A global crustal model at 5° x 5°

    USGS Publications Warehouse

    Mooney, Walter D.; Laske, Gabi; Masters, T. Guy

    1998-01-01

    We present a new global model for the Earth's crust based on seismic refraction data published in the period 1948–1995 and a detailed compilation of ice and sediment thickness. An extensive compilation of seismic refraction measurements has been used to determine the crustal structure on continents and their margins. Oceanic crust is modeled with both a standard model for normal oceanic crust, and variants for nonstandard regions, such as oceanic plateaus. Our model (CRUST 5.1) consists of 2592 5° × 5° tiles in which the crust and uppermost mantle are described by eight layers: (1) ice, (2) water, (3) soft sediments, (4) hard sediments, (5) crystalline upper, (6) middle, (7) lower crust, and (8) uppermost mantle. Topography and bathymetry are adopted from a standard database (ETOPO-5). Compressional wave velocity in each layer is based on field measurements, and shear wave velocity and density are estimated using recently published empirical Vp- Vs and Vp-density relationships. The crustal model differs from previous models in that (1) the thickness and seismic/density structure of sedimentary basins is accounted for more completely, (2) the velocity structure of unmeasured regions is estimated using statistical averages that are based on a significantly larger database of crustal structure, (3) the compressional wave, shear wave, and density structure have been explicitly specified using newly available constraints from field and laboratory studies. Thus this global crustal model is based on substantially more data than previous models and differs from them in many important respects. A new map of the thickness of the Earth's crust is presented, and we illustrate the application of this model by using it to provide the crustal correction for surface wave phase velocity maps. Love waves at 40 s are dominantly sensitive to crustal structure, and there is a very close correspondence between observed phase velocities at this period and those predicted by CRUST 5

  13. Molybdenum Cycling During Crust Formation and Destruction

    NASA Astrophysics Data System (ADS)

    Greaney, A. T.; Rudnick, R. L.

    2016-12-01

    Molybdenum geochemistry has become an important tool for tracking the redox state of the early atmosphere and oceans as well as the emergence and sustainability of Mo-cofactored enzymes. However, in order for Mo to be enriched in the oceans, it must first be weathered out of the crust. Sulfides that weather in the presence of atmospheric O2have historically been deemed the predominant crustal source of Mo. Here, we test this assumption by determining the mineralogical hosts of Mo in Archean, Proterozoic, and Phanerozoic upper crustal rocks, using LA-ICP-MS. We also investigate Mo behavior during igneous differentiation and continental crust formation. We find that molybdenite, MoS2, is a weatherable sulfide source of Mo, but common igneous sulfides are not because their Mo concentrations are too low. However, molybdenite is uncommon in the upper continental crust. By contrast, volcanic glass is much more abundant and is a significant weatherable source of Mo that readily breaks down to release oxidized, soluble Mo whether or not atmospheric O2is present. Other common crustal mineral hosts of Mo are Ti-bearing phases like titanite, ilmenite, magnetite, and rutile that are resistant to weathering. Significant Mo depletion (relative to Ce and Pr) is observed in nearly every granitic rock analyzed in our study, but is not observed in OIB or MORB (Jenner and O'Neill, 2012). There are two possible reasons for this: 1) Mo is removed from cooling plutons during fluid expulsion, or 2) Mo is fractionated during igneous differentiation. The first scenario is a likely explanation given the solubility of oxidized Mo. However, correlations between Mo/Ce and Nb/La in several plutonic suites suggest a fractionating phase like rutile may sequester Mo in the lower crust. Additionally, a correlation between Mo/Ce and inferred tectonic setting (enrichments observed in rift-related plutons) suggest an overall tectonic influence on the availability of Mo in the upper crust.

  14. Sequestration of volatiles in the martian crust through hydrated minerals

    NASA Astrophysics Data System (ADS)

    Mustard, J. F.; Ehlmann, B. L.; Poulet, F.; Fraeman, A. A.; Carter, J.

    2011-12-01

    The magnitude and history of volatile reservoirs is a key question in understanding Mars' evolution. The volumes of reservoirs for water through time have been estimated on the basis of morphology (e.g. Carr 1996) and modeling while the volume of active identifiable modern reservoirs such as the polar caps, the near-surface cryosphere, and the atmosphere are reasonably well known. One reservoir that has been hypothesized but not examined is the crust where water would be in the form of hydrous minerals. The OMEGA and CRISM experiments on Mars Express and Mars Reconnaissance Orbiter respectively, have shown that phyllosilicate minerals are commonly observed in the Noachian crust of Mars. Modeling has shown that depending on the location the abundance of clays and phyllosilicates can exceed 50% but more typically is less or absent, particularly in the Hesperian and younger terrains (Poulet 2007). Phyllosilicate-bearing outcrops have been observed in the deepest wall exposures of Valles Marineris (8 km below the rim) and in the central peaks of impact craters as large of 100 km. Modeling suggests that the porosity of the crust in maintained to approximate 8-10 km depth permitting the circulation of water to this depth and formation of phyllosilicate and other hydrated minerals. Based on these and other observations it is evident that at least the top 10 km of the crust can be considered to contain hydrated silicate minerals. These observations also show that phyllosilicates are globally present in Noachian crust. We use altered oceanic crust as an analog for the amount of alteration on Mars. Analyses show that the average volume fraction of hydrous phases in the lower oceanic crust is 10%. Simple calculations show this results in a water content of between 1 - 3%. If the upper 10 km of the martian crust is altered to this extent then a global equivalent thickness (GET) of water of 0.3 to 0.9 km is stored in the crust due to alteration minerals. This is comparable to

  15. Evolution of the earth's crust: Evidence from comparative planetology

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.

    1973-01-01

    Geochemical data and orbital photography from Apollo, Mariner, and Venera missions were combined with terrestrial geologic evidence to study the problem of why the earth has two contrasting types of crust (oceanic and continental). The following outline of terrestrial crustal evolution is proposed. A global crust of intermediate to acidic composition, high in aluminum, was formed by igneous processes early in the earth's history; portions survive in some shield areas as granitic and anorthositic gneisses. This crust was fractured by major impacts and tectonic processes, followed by basaltic eruptions analogous to the lunar maria and the smooth plains of the north hemisphere of Mars. Seafloor spreading and subduction ensued, during which portions of the early continental crust and sediments derived therefrom were thrust under the remaining continental crust. The process is exemplified today in regions such as the Andes/Peru-Chile trench system. Underplating may have been roughly concentric, and the higher radioactive element content of the underplated sialic material could thus eventually cause concentric zones of regional metamorphism and magmatism.

  16. Assessing the Nature of Crust in the Central Red Sea Using Potential Fields and Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Shi, W.; Mitchell, N. C.; Kalnins, L. M.; A Y, I.

    2017-12-01

    The Red Sea is considered an important example of a rifted continental shield proceeding to a seafloor spreading stage of development, and the transition of crustal types there from stretched continental to oceanic should mark the onset of significant mantle melting. However, whether the crust in the central Red Sea is continental or oceanic has been controversial. To contribute to this debate, we assessed the geometry of the basement from potential fields and seismic reflection data. Prior interpretations of basement in deep seismic reflection profiles were first verified using Werner deconvolution of marine magnetic data. The seismic depths were then used to reconstruct basement depth corrected for evaporite and other sediment loading. We found that the basement deepening with distance is similar to that of oceanic crust near mantle plumes such as the Reykjanes Ridge. In both cases, the data show a 35-80 km wide axial plateau followed by a steep 0.4-1.7 km deepening over 30-50 km distance. It has also been suggested that the variability of free-air anomalies observed in lines parallel to the axis is due to crossing oceanic short-offset fracture zones. We assessed this idea by inverting the gravity anomalies for basement relief. Using densities appropriate for oceanic crust and a modified slab formula, we found values for root-mean square (RMS) relief that are comparable to those of weakly sedimented regions of the Mid-Atlantic Ridge. Forward calculations using 2D modelling revealed that the errors in RMS basement relief caused by the slab approximation are 30%, leaving true RMS basement relief still within the range of values for oceanic crust. While these observations by themselves do not rule out an extremely extended continental crust interpretation, combined with previous analysis of refraction velocities, which are oceanic-like, they are supportive of an oceanic crustal interpretation. Additionally, the RMS values and the cross-axis basement relief both

  17. Crust and mantle of the gulf of Mexico

    USGS Publications Warehouse

    Moore, G.W.

    1972-01-01

    A SEEMING paradox has puzzled investigators of the crustal structure of the Gulf of Mexico since Ewing et al.1 calculated that a unit area of the rather thick crust in the gulf contains less mass than does a combination of the crust and enough of the upper mantle to make a comparable thickness in the Atlantic Ocean. They also noted that the free-air gravity of the gulf is essentially normal and fails by a large factor to be low enough to reflect the mass difference that they calculated. We propose a solution to this problem. ?? 1972 Nature Publishing Group.

  18. Intermediate crust (IC); its construction at continent edges, distinctive epeirogenic behaviour and identification as sedimentary basins within continents: new light on pre-oceanic plate motions

    NASA Astrophysics Data System (ADS)

    Osmaston, Miles F.

    2014-05-01

    Introduction. The plate tectonics paradigm currently posits that the Earth has only two kinds of crust - continental and oceanic - and that the former may be stretched to form sedimentary basins or the latter may be modified by arc or collision until it looks continental. But global analysis of the dynamics of actual plate motions for the past 150 Ma indicates [1 - 3] that continental tectospheres must be immensely thicker and rheologically stiffer than previously thought; almost certainly too thick to be stretched with the forces available. In the extreme case of cratons, these tectospheric keels evidently extend to 600 km or more [2, 3]. This thick-plate behaviour is attributable, not to cooling but to a petrological 'stiffening' effect, associated with a loss of water-weakening of the mineral crystals, which also applies to the hitherto supposedly mobile LVZ below MORs [4, 5]. The corresponding thick-plate version of the mid-ocean ridge (MOR) process [6 - 8], replacing the divergent mantle flow model, has a deep, narrow wall-accreting axial crack which not only provides the seismic anisotropy beneath the flanks but also brings two outstanding additional benefits:- (i) why, at medium to fast spreading rates, MOR axes become straight and orthogonally segmented [6], (ii) not being driven by body forces, it can achieve the sudden jumps of axis, spreading-rate and direction widely present in the ocean-floor record. Furthermore, as we will illustrate, the crack walls push themselves apart at depth by a thermodynamic mechanism, so the plates are not being pulled apart. So the presence of this process at a continental edge would not imply the application of extensional force to the margin. Intermediate Crust (IC). In seeking to resolve the paradox that superficially extensional structures are often seen at margins we will first consider how this MOR process would be affected by the heavy concurrent sedimentation to be expected when splitting a mature continent. I reason

  19. Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2015-12-01

    Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.

  20. The chemical evolution of Earth's emerged crust inferred from titanium isotopes

    NASA Astrophysics Data System (ADS)

    Greber, N. D.; Dauphas, N.; Bekker, A.; Ptáček, M. P.; Bindeman, I. N.; Hofmann, A.

    2017-12-01

    Earth's earliest crust was ultramafic/mafic in composition. In contrast, modern Earth consists of a mafic oceanic crust and a continental crust dominated by felsic rocks. The Hadean zircon record suggests that at around 4.0 Ga, Earth's crust included some felsic rocks but their proportion relative to mafic rocks has been the subject of much discussion [1]. Several studies have shown evidence that the early Archean continental crust was mostly mafic and transitioned from 3.0 to 2.0 Ga to a modern-like felsic crust. This change in the nature of continental crust was tied to the onset of plate tectonics, arguing that it is difficult to make a large proportion of felsic rocks in a non-subduction setting [2]. Understanding the nature of Earth's early continental crust is also critical as it controls the bio-nutrient supply to the oceans and influences Earth's climate. Most reconstructions of the composition of Earth's emerged crust rely on terrigenous sediments whose composition can be altered relative to source rocks by weathering, sediment transport and metasomatism. We present a novel approach based on the Ti isotopic composition (δ49Ti) of shales to reconstruct the chemical composition of emerged continental crust through time. This proxy is based on the observation that the δ49Ti value of igneous rocks increases with increasing SiO2 concentration. Komatiites and basalts have an identical δ49Ti value to the bulk silicate Earth (around +0.005‰). Rocks with a granitic composition can reach up to a δ49Ti value of +0.55‰ [3]. Therefore, by measuring the δ49Ti values of shales with continental provenance, the SiO2 content of the emerged continental crust can be estimated, providing constraints on the proportion of mafic to felsic rocks. We measured δ49Ti values of shales ranging in age from 3.5 Ga to present. The average δ49Ti value of shales is almost constant over the last 3.5 Ga and always heavier than that of mafic rocks. We applied a three

  1. A combined geodynamical-geochemical modelling approach to investigating the Lu-Hf isotopic evolution of the terrestrial mantle and crust

    NASA Astrophysics Data System (ADS)

    Jones, R.; Van Keken, P. E.; Hauri, E.; Vervoort, J. D.; Ballentine, C. J.

    2017-12-01

    The chemical and isotopic evolution of the Earth's mantle is largely influenced by the formation of oceanic and continental crust at spreading ridges and through arc volcanism, and the subsequent recycling of this crust back into the mantle via subduction. In this study we use a combined geodynamical-geochemical modelling approach to investigate the Lu-Hf isotopic evolution of the terrestrial mantle and crust. We utilise the geodynamic mantle convection model developed by Brandenburg et al., 2008. This model satisfies the geophysical constraints of oceanic heat flow and average plate velocities, as well as geochemical observations such as 40Ar in the atmosphere. It has also been shown to reproduce the observed geochemical distributions in multiple isotope systems (U-Th-Pb, Rb-Sr, Sm-Nd, and Re-Os) that define the DMM, HIMU and EM1 mantle endmembers. We go on to extend this application to investigate the Lu-Hf isotope system, specifically in combination with Sm-Nd. The model has been updated to include a self-consistent reorganisation of the plates with regions of up-/down-wellings. The model is initiated at 4.55 Ga, assumes continental crust is produced from 4 Ga and that a transition from `dry' to `wet' subduction occurs at 3 Ga. The results of the geodynamic model suggest that the ƐHf composition and evolution of the upper mantle can be generated through the extraction and recycling of oceanic crust, which creates an enriched and radiogenic reservoir at the core-mantle boundary. The formation of continental crust, which is extracted at each time-step from the oceanic crust to imitate subduction zone processes, and the recycling of this continental crust as sediments, plays a lesser role. Depending on the selected partition coefficients DMM, FOZO and HIMU mantle endmember compositions are also produced via the simple extraction and recycling of oceanic crust. The formation of continental crust produces spread in the ƐNd vs. ƐHf array and extends the model

  2. Untangling Magmatic Processes and Hydrothermal Alteration of in situ Superfast Spreading Ocean Crust at ODP/IODP Site 1256 with Fuzzy c-means Cluster Analysis of Rock Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Dekkers, M. J.; Heslop, D.; Herrero-Bervera, E.; Acton, G.; Krasa, D.

    2014-12-01

    Ocean Drilling Program (ODP)/Integrated ODP (IODP) Hole 1256D (6.44.1' N, 91.56.1' W) on the Cocos Plate occurs in 15.2 Ma oceanic crust generated by superfast seafloor spreading. Presently, it is the only drill hole that has sampled all three oceanic crust layers in a tectonically undisturbed setting. Here we interpret down-hole trends in several rock-magnetic parameters with fuzzy c-means cluster analysis, a multivariate statistical technique. The parameters include the magnetization ratio, the coercivity ratio, the coercive force, the low-field susceptibility, and the Curie temperature. By their combined, multivariate, analysis the effects of magmatic and hydrothermal processes can be evaluated. The optimal number of clusters - a key point in the analysis because there is no a priori information on this - was determined through a combination of approaches: by calculation of several cluster validity indices, by testing for coherent cluster distributions on non-linear-map plots, and importantly by testing for stability of the cluster solution from all possible starting points. Here, we consider a solution robust if the cluster allocation is independent of the starting configuration. The five-cluster solution appeared to be robust. Three clusters are distinguished in the extrusive segment of the Hole that express increasing hydrothermal alteration of the lavas. The sheeted dike and gabbro portions are characterized by two clusters, both with higher coercivities than in lava samples. Extensive alteration, however, can obliterate magnetic property differences between lavas, dikes, and gabbros. The imprint of thermochemical alteration on the iron-titanium oxides is only partially related to the porosity of the rocks. All clusters display rock magnetic characteristics in line with a stable NRM. This implies that the entire sampled sequence of ocean crust can contribute to marine magnetic anomalies. Determination of the absolute paleointensity with thermal techniques is

  3. Microbial Life of North Pacific Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Schumann, G.; Koos, R.; Manz, W.; Reitner, J.

    2003-12-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed reactions that influence the geophysical properties of these environments. Drilling into 45-Ma oceanic basaltic crust in a deepwater environment during ODP Leg 200 provided a promising opportunity to explore the abundance, diversity and activity of micro-organisms. The combined use of culture-independent molecular phylogenetic analyses and enrichment culture techniques is an advantageous approach in investigating subsurface microbial ecosystems. Enrichment culture methods allow the evaluation of potential activities and functions. Microbiological investigations revealed few aerobic cultivable, in part hitherto unknown, micro-organisms in deep submarine sediments and basaltic lava flows. 16S rDNA sequencing of isolates from sediment revealed the next relatives to be members of the genera Halomonas, Pseudomonas, and Lactobacillus. Within the Pseudomonadaceae the closest relative is Acinetobacter sp., which was isolated from a deep subsurface environment. The next phylogenetical relatives within the Halomonadaceae are bacteria typically isolated from Soda lakes, which are considered as model of early life conditions. Interestingly, not only sediment bacteria could be obtained in pure culture. Aerobic strains could also be successfully isolated from the massive tholeiitic basalt layer at a depth of 76.16 mbsf (46 m below the sediment/basement contact). These particular isolates are gram-positive with low G+C content of DNA, phylogenetically affiliated to the phylum Firmicutes. The closest neighbors are e.g. a marine Bacillus isolated from the Gulf of Mexico and a low G+C gram-positive bacterium, which belongs to the microbial flora in the deepest sea mud of the Mariana Trench, isolated from a depth of 10,897 m. Based on the similarity values, the isolates represent hitherto undescribed species of the deep

  4. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle

    NASA Astrophysics Data System (ADS)

    Herzberg, C.; Cabral, R. A.; Jackson, M. G.; Vidito, C.; Day, J. M. D.; Hauri, E. H.

    2014-06-01

    Lavas from Mangaia in the Cook-Austral island chain, Polynesia, define an HIMU (or high μ, where μ=U238/Pb204) global isotopic end-member among ocean island basalts (OIB) with the highest 206,207,208Pb/204Pb. This geochemical signature is interpreted to reflect a recycled oceanic crust component in the mantle source. Mass independently fractionated (MIF) sulfur isotopes indicate that Mangaia lavas sampled recycled Archean material that was once at the Earth's surface, likely hydrothermally-modified oceanic crust. Recent models have proposed that crust that is subducted and then returned to the surface in a mantle plume is expected to transform to pyroxenite/eclogite during transit through the mantle. Here we examine this hypothesis for Mangaia using high-precision electron microprobe analysis on olivine phenocrysts. Contrary to expectations of a crustal component and, hence pyroxenite, results show a mixed peridotite and pyroxenite source, with peridotite dominating. If the isotopic compositions were inherited from subduction of recycled oceanic crust, our work shows that this source has phantom-like properties in that it can have its lithological identity destroyed while its isotope ratios are preserved. This may occur by partial melting of the pyroxenite and injection of its silicic melts into the surrounding mantle peridotite, yielding a refertilized peridotite. Evidence from one sample reveals that not all pyroxenite in the melting region was destroyed. Identification of source lithology using olivine phenocryst chemistry can be further compromised by magma chamber fractional crystallization, recharge, and mixing. We conclude that the commonly used terms mantle “heterogeneities” and “streaks” are ambiguous, and distinction should be made of its lithological and isotopic properties.

  5. The Impact of Fe-Ti Oxide Concentration on the Structural Rigidity of the Lower Oceanic Crust, Atlantis Bank, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Deans, J. R.; Winkler, D. A.

    2017-12-01

    Fe-Ti oxides are important components of oceanic core complexes (OCC) formed at slow-spreading ridges, since Fe-Ti oxide phases form throughout the crustal column and are weaker than silicate phases. This study investigated the predicted relationship between the presence and concentration of Fe-Ti oxides and the presence/intensity of crystal-plastic deformation in samples from Atlantis Bank, Southwest Indian Ridge (SWIR). Atlantis Bank is an OCC that formed through the exhumation of lower oceanic crust along a detachment shear zone/fault. OCCs form along slow-spreading ridges and are characterized by the complex interactions between magmatism and crustal extension, thus, making them more susceptible to crystal-plastic deformation at higher temperatures and for weaker phases like Fe-Ti oxides to preferentially partition strain. Atlantis Bank has been the focus of many scientific expeditions to various sites including; Ocean Drilling Program (ODP) Holes 735B and 1105A, and the International Oceanic Discovery Program (IODP) Hole U1473A. A total of 589 thin sections from all three holes were analyzed using the software package Fiji to calculate the Fe-Ti oxide concentration within the thin sections. The Fe-Ti oxide percentage was correlated with the crystal-plastic fabric (CPF) intensity, from 0-5 (no foliation - ultramylonite), for each thin section using the statistical software R. All three holes show a positive correlation between the abundance of Fe-Ti oxides and the CPF intensity. Specifically, 76.3% of samples with a concentration of 5% or more Fe-Ti oxides have a corresponding CPF intensity value of 2 or more (porphyroclastic foliation - ultramylonitic). The positive correlation may be explained by the Fe-Ti oxides preferentially partitioning strain, especially at temperatures below where dry plagioclase can recrystallize. This allows for a mechanism of continued slip along the shear zone or form new shear zones at amphibolite grade conditions while the lower

  6. Textures of eclogites and blueschists from Syros island, Greece: Inferences for elastic anisotropy of subducted oceanic crust

    NASA Astrophysics Data System (ADS)

    Keppler, Ruth; Behrmann, Jan H.; Stipp, Michael

    2017-07-01

    Many blueschists and eclogites are inferred to have formed from oceanic basalts in subducted slabs. Knowledge of their elastic behavior is essential for reconstructing the internal structure of subduction zones. The Cycladic blueschist unit, exposed on Syros Island (Greece), contains rocks belonging to an exhumed Tertiary subduction complex. They were possibly part of a subduction channel, a shear zone above the subducting slab in which exhumation is possible during subduction. Intense plastic deformation, forming crystallographic preferred orientations (CPO), accompanied blueschist and eclogite metamorphism. CPO of the constituent minerals in the collected samples was determined by time-of-flight neutron diffraction. Two samples are foliated fine-grained blueschists with strong CPO, rich in glaucophane, zoisite, and phengite. Two coarser-grained eclogite samples rich in omphacite and clinozoisite, or glaucophane, have weaker CPO. Vp and Vs anisotropies were computed from the orientation distribution function and single-crystal elastic constants. All samples show velocity maxima parallel to the mineral lineation, and minima normal to the foliation, providing important constraints on orientations of seismic anisotropy in subduction channels. Vp anisotropies are up to 3 times higher (6.5-12%) in the blueschists than in the eclogites (3-4%), pointing to a potentially important lithological control of elastic anisotropy in subducted oceanic crust.

  7. The magma ocean as an impediment to lunar plate tectonics

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  8. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness <5.2 km (designated as "thin" crust), while 56% of the crustal volume (or 65% of the surface area) is associated with crustal thickness of 5.2-8.6 km thick (designated as "normal" crust). The remaining 39% of the crustal volume (or 26% of the surface area) is associated with crustal thickness >8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic

  9. Osmium isotope stratigraphy of a marine ferromanganese crust

    USGS Publications Warehouse

    Klemm, V.; Levasseur, S.; Frank, M.; Hein, J.R.; Halliday, A.N.

    2005-01-01

    Ferromanganese crusts provide records of long term change in ocean circulation and continental weathering. However, calibrating their age prior to 10 Ma has been entirely based on empirical growth rate models using Co concentrations, which have inherently large uncertainties and fail to detect hiatuses and erosional events. We present a new method for dating these crusts by measuring their osmium (Os) isotope record and matching it to the well-known marine Os isotope evolution of the past 80 Ma. The well-characterised crust CD29-2 from the central Pacific, was believed to define a record of paleooceanographic change from 50 Ma. Previous growth rate estimates based on the Co method are consistent with the new Os isotope stratigraphy but the dating was grossly inaccurate due to long hiatuses that are now detectable. The new chronology shows that it in fact started growing prior to 70 Ma in the late Cretaceous and stopped growing or was eroded between 13.5 and 47 Ma. With this new technique it is now possible to exploit the full potential of the oceanographic and climatic records stored in Fe-Mn crusts. ?? 2005 Elsevier B.V. All rights reserved.

  10. Cyclic growth in Atlantic region continental crust

    NASA Technical Reports Server (NTRS)

    Goodwin, A. M.

    1986-01-01

    Atlantic region continental crust evolved in successive stages under the influence of regular, approximately 400 Ma-long tectonic cycles. Data point to a variety of operative tectonic processes ranging from widespread ocean floor consumption (Wilson cycle) to entirely ensialic (Ampferer-style subduction or simple crustal attenuation-compression). Different processes may have operated concurrently in some or different belts. Resolving this remains the major challenge.

  11. A 3D view of magnetic stripes at Pito Deep: implications for the thermal history of fast-spreading lower oceanic crust

    NASA Astrophysics Data System (ADS)

    Maher, S. M.; Gee, J. S.; Doran, A. K.; Gess, M.; Cheadle, M. J.; Coogan, L. A.; Gillis, K. M.; John, B. E.

    2017-12-01

    There is no consensus on how the lower oceanic crust cools at fast-spreading centers and, correspondingly, how the isotherms change with depth. Sufficient heat extraction above the axial magma lens might result in shallowly dipping fossil isotherms off axis, while significant removal of heat laterally in the lower crust would be accompanied by steeper isotherms. These end-member models and additional intermediate models may be accompanied by distinctive geochemical, mineralogical, and textural changes, but the record of geomagnetic reversals can provide key complementary information on the thermal history of the lower oceanic crust. In particular, the location of a reversal boundary with depth over exposed sections of gabbroic rock should reveal the fossil pattern of cooling below 600°C. Tectonic exposures at Pito Deep reveal cross sections of two magnetic reversals recorded in gabbroic rock formed at the fast-spreading East Pacific Rise during chron C2A (3.58­-2.581 Ma). High quality magnetic anomaly data, using a new miniature total field sensor, were acquired on 11 Sentry dives centered over 2An.2n (3.22­-3.11 Ma) and another over the young end of 2An.3n (3.58­-3.33 Ma). The local bathymetry is complex, so we have constructed several forward models based on isotherms predicted by different end-member models to determine which best fits the magnetic anomaly data. Initial results are difficult to reconcile with models of deep crustal cooling and steep isotherms within a few km of the axis. Instead they favor a model in which gabbroic rocks cool over long time periods, resulting in a polarity offset between the gabbros and the overlying dikes and lavas extending for several km. This difference in polarity is supported by magnetization inversions, calculated for a series of horizontal laminae using the Occam inversion (Constable et al., 1987). Additional confirmation comes from the magnetic remanence of nearly 400 gabbroic samples (most partially or fully

  12. Geophysical and geochemical evolution of the lunar magma ocean

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Drake, M. J.; Sonett, C. P.

    1978-01-01

    There is increasing evidence that at least the outer few hundred kilometers of the moon were melted immediately following accretion. This paper studies the evolution of this lunar magma ocean. The long time scale for solidification leads to the inference that the plagioclase-rich (ANT) lunar crust began forming, perhaps preceded by local accumulations termed 'rockbergs', at the very beginning of the magma ocean epoch. In this view the cooling and solidification of the magma ocean was primarily controlled by the rate at which heat could be conducted across the floating ANT crust. Thus the thickness of the crust was the factor controlling the lunar solidification time. Heat arising from enthalpy of crystallization was transported in the magma by convection. Mixing length theory is used to deduce the principal flow velocity (typically several cm/s) during convection. The magma ocean is deduced to have been turbulent down to a characteristic length scale of the order of 100 m, and to have overturned on a time scale of the order of 1 yr for most of the magma ocean epoch.

  13. Buoyancy-Driven, Rapid Exhumation of Ultrahigh-Pressure Metamorphosed Continental Crust

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.; Maruyama, S.; Wallis, S.

    1997-09-01

    Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90-125 km require unusual conditions. Our subduction model involves underflow of a salient (250 ± 150 km wide, 90-125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2-15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over ≈ 20 million years, rapid (≈ 5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material--otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds.

  14. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust.

    PubMed

    Ernst, W G; Maruyama, S; Wallis, S

    1997-09-02

    Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90-125 km require unusual conditions. Our subduction model involves underflow of a salient (250 +/- 150 km wide, 90-125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2-15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over approximately 20 million years, rapid ( approximately 5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material-otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds.

  15. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2015-01-01

    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  16. Subduction and dehydration of slow-spread oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Paulatto, M.; Laigle, M.; Galve, A.; Charvis, P.

    2016-12-01

    Water transported by subducting slabs affects the dynamics of subduction zones and is a major gateway in the global geochemical water cycle. During subduction much of the water stored in the slab is released via pore fluid escape and through metamorphic reactions that depend on the thermal regime. The most notable are eclogitization of hydrated basalt and gabbro and breakdown of serpentinite. Most constraints to date have been obtained at Pacific subduction zones, and have contributed to a model of slab dehydration applicable to normal fast-spread oceanic lithosphere with a mafic crust. Slow-spread crust however, is heterogeneous in thickness and composition and has a different water distribution than fast-spread crust. We use P-wave traveltimes from several active source seismic experiments and P- and S-wave traveltimes from shallow and intermediate depth (< 160 km) local earthquakes recorded on a vast amphibious array of OBSs and land seismometers to recover the 3D Vp and Vp/Vs structure of the central Lesser Antilles subduction zone from the surface to 160 km depth. This slab was formed by slow accretion at the Mid-Atlantic ridge and represents the global slow accretion rate end-member. We image the dipping low-Vp layer at the top of the slab corresponding to the hydrated slab crust penetrating to about 100 km depth. High Vp/Vs ratio on the slab top and in the forearc crust is interpreted as evidence of elevated fluid content either as free fluids or as bound water in hydrated minerals. A local minimum in Vp is observed on the slab top at 50 km depth, and forms an elongated trench-parallel anomaly. This anomaly is interrupted at the projection of the Marathon fracture zone. We suggest that this is the result of lateral variations in slab crust composition from normal mafic oceanic crust to tectonized oceanic crust consisting to a large extent of serpentinized peridotite near the fracture zone. Slab regions with normal mafic oceanic crust likely undergo

  17. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.

    2004-01-01

    Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic

  18. Anomalous Subsidence at Rifted Continental Margins: Distinguishing Mantle Dynamic Topography from Anomalous Oceanic Crustal Thickness

    NASA Astrophysics Data System (ADS)

    Cowie, L.; Kusznir, N. J.

    2012-12-01

    It has been proposed that some continental rifted margins have anomalous subsidence histories and that at breakup they were elevated at shallower bathymetries than the isostatic response of classical rift models (McKenzie 1978) would predict. The existence of anomalous syn or post breakup subsidence of this form would have important implications for our understanding of the geodynamics of continental breakup and rifted continental margin formation, margin subsidence history and the evolution of syn and post breakup depositional systems. We have investigated three rifted continental margins; the Gulf of Aden, Galicia Bank and the Gulf of Lions, to determine whether the oceanic crust in the ocean-continent transition of these margins has present day anomalous subsidence and if so, whether it is caused by mantle dynamic topography or anomalous oceanic crustal thickness. Residual depth anomalies (RDA) corrected for sediment loading, using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous oceanic bathymetry and subsidence at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average, or from mantle dynamic uplift. Positive RDAs may result from thicker than average oceanic crust or mantle dynamic uplift; negative RDAs may result from thinner than average oceanic crust or mantle dynamic subsidence. Gravity inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic data has been used to determine Moho depth and oceanic crustal basement thickness. The reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. The gravity inversion crustal basement thicknesses

  19. Precambrian U-Pb zircon ages in eclogites and garnet pyroxenites from South Brittany (France): an old oceanic crust in the West European Hercynian belt?

    NASA Astrophysics Data System (ADS)

    Peucat, J. J.; Vidal, Ph.; Godard, G.; Postaire, B.

    1982-08-01

    U-Pb zircon ages have been determined for two eclogites from the Vendée and for two garnet pyroxenites from the Baie d'Audierne. In an episodic Pb loss model, the two discordia would give upper intercept ages around 1300-1250 Ma and lower intercepts ages of 436-384 Ma. Two interpretations are proposed: (1) The 1250-1300 Ma ages may reflect an unspecified upper mantle event or process; the Paleozoic ages correspond to the tectonic emplacement of an eclogitic mantle fragment into the continental crust. (2) The protolith may have been extracted from the upper mantle 1250-1300 Ma ago and stored in a crustal environment until it was metamorphosed under high-pressure conditions around 400 Ma ago. This latter model is favoured by available geologic and isotopic data. Consequently, we propose that a 1300 Ma old oceanic crust was tectonicly incorporated into a sialic basement during the Proterozoic. This mixture was subsequently subducted during the Paleozoic.

  20. Temperature distribution in the crust and mantle

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Morris, S.

    1986-01-01

    In an attempt to understand the temperature distribution in the earth, experimental constraints on the geotherm in the crust and mantle are considered. The basic form of the geotherm is interpreted on the basis of two dominant mechanisms by which heat is transported in the earth: (1) conduction through the rock, and (2) advection by thermal flow. Data reveal that: (1) the temperature distributions through continental lithosphere and through oceanic lithosphere more than 60 million years old are practically indistinguishable, (2) crustal uplift is instrumental in modifying continental geotherms, and (3) the average temperature through the Archean crust and mantle was similar to that at present. It is noted that current limitations in understanding the constitution of the lower mantle can lead to significant uncertainties in the thermal response time of the planetary interior.

  1. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle

    NASA Astrophysics Data System (ADS)

    Niu, Yaoling; O'Hara, Michael J.

    2009-09-01

    We have examined the high quality data of 306 mid-ocean ridge basalt (MORB) glass samples from the East Pacific Rise (EPR), near-EPR seamounts, Pacific Antarctic Ridge (PAR), near-PAR seamounts, Mid-Atlantic Ridge (MAR), and near-MAR seamounts. The data show a correlated variation between Eu/Eu* and Sr/Sr*, and both decrease with decreasing MgO, pointing to the effect of plagioclase crystallization. The observation that samples with MgO > 9.5 wt.% (before plagioclase on the liquidus) show Eu/Eu* > 1 and Sr/Sr* > 1 and that none of the major phases (i.e., olivine, orthopyroxene, clinopyroxene, spinel and garnet) in the sub-ridge mantle melting region can effectively fractionate Eu and Sr from otherwise similarly incompatible elements indicates that the depleted MORB mantle (DMM) possesses excess Sr and Eu, i.e., [Sr/Sr*]DMM > 1 and [Eu/Eu*]DMM > 1. Furthermore, the well-established observation that DNb ≈ DTh, DTa ≈ DU and DTi ≈ DSm during MORB mantle melting, yet primitive MORB melts all have [Nb/Th]PMMORB > 1, [Ta/U]PMMORB > 1 and [Ti/Sm]PMMORB > 1 (where PM indicates primitive mantle normalized), also points to the presence of excess Nb, Ta and Ti in the DMM, i.e., [Nb/Th]PMDMM > 1, [Ta/U]PMDMM > 1 and [Ti/Sm]PMDMM > 1. The excesses of Eu, Sr, Nb, Ta and Ti in the DMM complement the well-known deficiencies of these elements in the bulk continental crust (BCC). These new observations, which support the notion that the DMM and BCC are complementary in terms of the overall abundances of incompatible elements, offer new insights into the crust-mantle differentiation. These observations are best explained by partial melting of amphibolite of MORB protolith during continental collision, which produces andesitic melts with a remarkable compositional (major and trace element abundances as well as key elemental ratios) similarity to the BCC, as revealed by andesites in southern Tibet produced during the India-Asia continental collision. An average amphibolite of MORB

  2. Silicon Isotope Geochemistry of Ocean Island Basalts: Search for Deep Mantle Heterogeneities and Evidence for Recycled Altered Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.; Moynier, F.

    2014-12-01

    recycled altered oceanic crust in the plume source. However, the sampling of a primitive reservoir enriched in the light isotopes of Si, as suggested by [4], cannot be ruled out as a potential source of Si isotope variations in OIBs. References: [1] Ziegler et al., GCA 2005 [2] Savage et al., GCA 2011 [3] Savage et al., EPSL 2010 [4] Huang et al., GCA 2014

  3. Continental crust beneath southeast Iceland.

    PubMed

    Torsvik, Trond H; Amundsen, Hans E F; Trønnes, Reidar G; Doubrovine, Pavel V; Gaina, Carmen; Kusznir, Nick J; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D; Griffin, William L; Werner, Stephanie C; Jamtveit, Bjørn

    2015-04-14

    The magmatic activity (0-16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland--and especially the Öræfajökull volcano--is characterized by a unique enriched-mantle component (EM2-like) with elevated (87)Sr/(86)Sr and (207)Pb/(204)Pb. Here, we demonstrate through modeling of Sr-Nd-Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2-6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume.

  4. Continental crust beneath southeast Iceland

    PubMed Central

    Torsvik, Trond H.; Amundsen, Hans E. F.; Trønnes, Reidar G.; Doubrovine, Pavel V.; Gaina, Carmen; Kusznir, Nick J.; Steinberger, Bernhard; Corfu, Fernando; Ashwal, Lewis D.; Griffin, William L.; Werner, Stephanie C.; Jamtveit, Bjørn

    2015-01-01

    The magmatic activity (0–16 Ma) in Iceland is linked to a deep mantle plume that has been active for the past 62 My. Icelandic and northeast Atlantic basalts contain variable proportions of two enriched components, interpreted as recycled oceanic crust supplied by the plume, and subcontinental lithospheric mantle derived from the nearby continental margins. A restricted area in southeast Iceland—and especially the Öræfajökull volcano—is characterized by a unique enriched-mantle component (EM2-like) with elevated 87Sr/86Sr and 207Pb/204Pb. Here, we demonstrate through modeling of Sr–Nd–Pb abundances and isotope ratios that the primitive Öræfajökull melts could have assimilated 2–6% of underlying continental crust before differentiating to more evolved melts. From inversion of gravity anomaly data (crustal thickness), analysis of regional magnetic data, and plate reconstructions, we propose that continental crust beneath southeast Iceland is part of ∼350-km-long and 70-km-wide extension of the Jan Mayen Microcontinent (JMM). The extended JMM was marginal to East Greenland but detached in the Early Eocene (between 52 and 47 Mya); by the Oligocene (27 Mya), all parts of the JMM permanently became part of the Eurasian plate following a westward ridge jump in the direction of the Iceland plume. PMID:25825769

  5. Continuous Spectrum of Crustal Structures and Spreading Processes from Volcanic Rifted Margins to Mid-Ocean Ridges

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2016-12-01

    Structures generated by seafloor spreading in oceanic crust (and ophiolites) and thick oceanic crust of Iceland show a continuous spectrum of features that formed by similar mechanisms but at different scales. A high magma budget near the Iceland hotspot generates thick (40-25 km) mafic crust in a plate boundary zone about 50 km wide. The upper crust ( 10 km thick) is constructed by the subaxial subsidence and thickening of lavas fed by dense dike swarms over a hot, weak lower crust to produce structures analogous to seaward-dipping reflectors of volcanic rifted margins. Segmented rift zones propagate away from the hotspot creating migrating transform fault zones, microplate-like crustal blocks and rift-parallel strike-slip faults. These structures are decoupled from the underlying lower crustal gabbroic rocks that thin by along-axis flow that reduces the overall crustal thickness and smooths-out local crustal thickness variations. Spreading on mid-ocean ridges with high magma budgets have much thinner crust (10-5 km) generated at a much narrower (few km) plate boundary zone. Subaxial subsidence accommodates the thickening of the upper crust of inward-dipping lavas and outward-dipping dikes about 1-2 km thick over a hot weak lower crust. Along-axis (high-temperature ductile and magmatic) flow of lower crustal material may help account for the relatively uniform seismic thickness of oceanic crust worldwide. Spreading along even slow-spreading mid-ocean ridges near hotspots (e.g., the Reykjanes Ridge) probably have similar features that are transitional between these extremes. In all of these settings, upper crustal and lower crustal structures are decoupled near the plate boundary but eventually welded together as the crust ages and cools. Similar processes are likely to occur along volcanic rifted margins as spreading begins.

  6. Hawaiian submarine manganese-iron oxide crusts - A dating tool?

    USGS Publications Warehouse

    Moore, J.G.; Clague, D.A.

    2004-01-01

    Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae

  7. Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Koepke, Juergen; Kirchner, Clemens; Götze, Niko; Behrens, Harald

    2014-09-01

    Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed ``gabbro glacier'' model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. We estimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-1050°C to 600°C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.

  8. Buoyancy-driven, rapid exhumation of ultrahigh-pressure metamorphosed continental crust

    PubMed Central

    Ernst, W. G.; Maruyama, S.; Wallis, S.

    1997-01-01

    Preservation of ultrahigh-pressure (UHP) minerals formed at depths of 90–125 km require unusual conditions. Our subduction model involves underflow of a salient (250 ± 150 km wide, 90–125 km long) of continental crust embedded in cold, largely oceanic crust-capped lithosphere; loss of leading portions of the high-density oceanic lithosphere by slab break-off, as increasing volumes of microcontinental material enter the subduction zone; buoyancy-driven return toward midcrustal levels of a thin (2–15 km thick), low-density slice; finally, uplift, backfolding, normal faulting, and exposure of the UHP terrane. Sustained over ≈20 million years, rapid (≈5 mm/year) exhumation of the thin-aspect ratio UHP sialic sheet caught between cooler hanging-wall plate and refrigerating, downgoing lithosphere allows withdrawal of heat along both its upper and lower surfaces. The intracratonal position of most UHP complexes reflects consumption of an intervening ocean basin and introduction of a sialic promontory into the subduction zone. UHP metamorphic terranes consist chiefly of transformed, yet relatively low-density continental crust compared with displaced mantle material—otherwise such complexes could not return to shallow depths. Relatively rare metabasaltic, metagabbroic, and metacherty lithologies retain traces of phases characteristic of UHP conditions because they are massive, virtually impervious to fluids, and nearly anhydrous. In contrast, H2O-rich quartzofeldspathic, gneissose/schistose, more permeable metasedimentary and metagranitic units have backreacted thoroughly, so coesite and other UHP silicates are exceedingly rare. Because of the initial presence of biogenic carbon, and its especially sluggish transformation rate, UHP paragneisses contain the most abundantly preserved crustal diamonds. PMID:11038569

  9. Self-Consistent Generation of Continental Crust in Global Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Jain, C.; Rozel, A. B.; Tackley, P.

    2016-12-01

    Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other (Philips and Coltice, JGR 2010; Heron and Lowman, JGR 2014), but the continents are always inserted a priori while basaltic (oceanic) crust is generated self-consistently in such models (Rolf et al., EPSL 2012). We aim to implement self-consistent generation of continental crust in global models of mantle convection using StagYY (Tackley, PEPI 2008). The silica-rich continental crust appears to have been formed by fractional melting and crystallization in episodes of relatively rapid growth from late Archaean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006). It takes several stages of differentiation to generate continental crust. First, the basaltic magma is extracted from the pyrolitic mantle. Second, it goes through eclogitic transformation and then partially melts to form Na-rich Tonalite-Trondhjemite-Granodiorite (TTG) which rise to form proto-continents (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs dominate the grey gneiss complexes which make up most of the continental crust. Based on the melting conditions proposed by Moyen (Lithos, 2011), we parameterize TTG formation and henceforth, the continental crust. Continental crust can also be destroyed by subduction or delamination. We will investigate continental growth and destruction history in the models spanning the age of the Earth.

  10. Self-consistent generation of continental crust in global mantle convection models

    NASA Astrophysics Data System (ADS)

    Jain, Charitra; Rozel, Antoine; Tackley, Paul

    2017-04-01

    Numerical modeling commonly shows that mantle convection and continents have strong feedbacks on each other (Philips and Coltice, JGR 2010; Heron and Lowman, JGR 2014), but the continents are always inserted a priori while basaltic (oceanic) crust is generated self-consistently in such models (Rolf et al., EPSL 2012). We aim to implement self-consistent generation of continental crust in global models of mantle convection using StagYY (Tackley, PEPI 2008). The silica-rich continental crust appears to have been formed by fractional melting and crystallization in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006). It takes several stages of differentiation to generate continental crust. First, the basaltic magma is extracted from the pyrolitic mantle. Second, it goes through eclogitic transformation and then partially melts to form Na-rich Tonalite-Trondhjemite-Granodiorite (TTG) which rise to form proto-continents (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs dominate the grey gneiss complexes which make up most of the continental crust. Based on the melting conditions proposed by Moyen (Lithos, 2011), we parameterize TTG formation and henceforth, the continental crust. Continental crust can also be destroyed by subduction or delamination. We will investigate continental growth and destruction history in the models spanning the age of the Earth.

  11. Magmatic intrusions in the lunar crust

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  12. What governs the enrichment of Pb in the continental crust? An answer from the Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Lagatta, A.; Langmuir, C. H.; Straub, S. M.; Martin-Del-Pozzo, A.

    2009-12-01

    One of Al Hofmann’s many important contributions to our understanding of geochemical cycling in the Earth is the observation that Pb behaves like the light rare earth elements Ce and Nd during melting to form oceanic basalts, but is enriched in the continental crust compared to the LREE by nearly an order of magnitude (Hofmann et al. 1986). This is unusual behavior, and has been called one of the Pb paradoxes, since in most cases, the ratios of elements are effectively the same in the continental crust and oceanic basalts if they show similar mantle melting behavior. One of several mechanisms suggested to mediate this special enrichment is hydrothermal circulation at ocean ridges, which preferentially transports Pb compared to the REE from the interior of the ocean crust to the surface. We confirm the importance of hydrothermal processes at the East Pacific to mediate Pb enrichment at the Trans-Mexican Volcanic Belt (TMVB, through comparison of Pb isotope and Ce/Pb ratios of TMVB lavas with sediments from DSDP Site 487 near the Middle America trench. The lavas of the Trans-Mexican Volcanic Belt include “high Nb” alkali basalts (HNAB), whose trace element patterns lack subduction signatures. The HNAB basalts and hydrothermally affected sediments from DSDP 487, form end-members that bound calcalkaline lavas from volcanoes Colima, Toluca, Popocatépetl, and Malinche in Ce/Pb versus Pb isotope space. The HNAB represent the high Ce/Pb and high Pb-isotope end-member. The hydrothermal sediments have Pb isotopes like Pacific MORB but Ce/Pb ratios typical of the arcs and the continental crust, and an order of magnitude lower than MORB. No analyzed calcalkaline lavas are have compositions outside of the bounds formed by the HNAB and the hydrothermal sediments. The Ce/Pb and Pb isotope ratios show that the calcalkaline lava compositions are inconsistent with contributions from HNAB and EPR MORB, rather the contributions are from HNAB upper mantle and subducted

  13. Interaction of sea water and lava during submarine eruptions at mid-ocean ridges

    USGS Publications Warehouse

    Perfit, M.R.; Cann, J.R.; Fornari, D.J.; Engels, J.; Smith, D.K.; Ridley, W.I.; Edwards, M.H.

    2003-01-01

    Lava erupts into cold sea water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. Interactions between heated sea water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating sea water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the interaction of lava with sea water. Here we present evidence to the contrary, and show that bubbles of vaporized sea water often rise through the base of lava flows and collect beneath the chilled upper crust. These bubbles of steam at magmatic temperatures may interact both chemically and physically with flowing lava, which could influence our understanding of deep-sea volcanic processes and oceanic crustal construction more generally. We infer that vapour formation plays an important role in creating the collapse features that characterize much of the upper oceanic crust and may accordingly contribute to the measured low seismic velocities in this layer.

  14. The Magmatic Structure of Mid-ocean Ridges: Integrating Geophysical and Petrological Observations

    NASA Astrophysics Data System (ADS)

    Maclennan, J.; Singh, S.

    Geophysical surveys, petrological observations and numerical models have all played an important role in the study of magmatic processes at mid-ocean ridges. However, few studies have attempted to integrate the constraints from both geophysical and geochemical observations in order to develop models of mid-ocean ridges. Composi- tional variation within the oceanic crust must be considered when geophysical models are interpreted in terms of variation in temperature or fluid fraction. Modellers com- monly assume that the crust is compositionally homogeneous and that the relationship between temperature and melt fraction does not vary within the crust. However, the compositions of oceanic crustal rocks collected from the Oman ophiolite vary widely and their predicted solidus temperatures vary from 990­1240C and their liquidus temperatures from 1250­1700C. Compositional variation within the solid part of the oceanic crust causes variation in seismic velocities. At fixed temperature and pressure the compositional variation present in crustal rocks can give P-wave velocity variation of 1 km s-1 or more. This has the same effect as a temperature variation of 1500C in the solid or of a variation of 20% in the melt fraction. The importance of this petrolog- ical framework for the interpretation of the seismic structure of mid-ocean ridges and for the development of thermal models of oceanic crustal accretion is demonstrated using an example from the East Pacific Rise near 9N.

  15. Millennial-scale ocean acidification and late Quaternary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riding, Dr Robert E; Liang, Liyuan; Braga, Dr Juan Carlos

    Ocean acidification by atmospheric carbon dioxide has increased almost continuously since the last glacial maximum (LGM), 21 000 years ago. It is expected to impair tropical reef development, but effects on reefs at the present day and in the recent past have proved difficult to evaluate. We present evidence that acidification has already significantly reduced the formation of calcified bacterial crusts in tropical reefs. Unlike major reef builders such as coralline algae and corals that more closely control their calcification, bacterial calcification is very sensitive to ambient changes in carbonate chemistry. Bacterial crusts in reef cavities have declined in thicknessmore » over the past 14 000 years with largest reduction occurring 12 000 10 000 years ago. We interpret this as an early effect of deglacial ocean acidification on reef calcification and infer that similar crusts were likely to have been thicker when seawater carbonate saturation was increased during earlier glacial intervals, and thinner during interglacials. These changes in crust thickness could have substantially affected reef development over glacial cycles, as rigid crusts significantly strengthen framework and their reduction would have increased the susceptibility of reefs to biological and physical erosion. Bacterial crust decline reveals previously unrecognized millennial-scale acidification effects on tropical reefs. This directs attention to the role of crusts in reef formation and the ability of bioinduced calcification to reflect changes in seawater chemistry. It also provides a long-term context for assessing anticipated anthropogenic effects.« less

  16. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago.

    PubMed

    Wilde, S A; Valley, J W; Peck, W H; Graham, C M

    2001-01-11

    No crustal rocks are known to have survived since the time of the intense meteor bombardment that affected Earth between its formation about 4,550 Myr ago and 4,030 Myr, the age of the oldest known components in the Acasta Gneiss of northwestern Canada. But evidence of an even older crust is provided by detrital zircons in metamorphosed sediments at Mt Narryer and Jack Hills in the Narryer Gneiss Terrane, Yilgarn Craton, Western Australia, where grains as old as approximately 4,276 Myr have been found. Here we report, based on a detailed micro-analytical study of Jack Hills zircons, the discovery of a detrital zircon with an age as old as 4,404+/-8 Myr--about 130 million years older than any previously identified on Earth. We found that the zircon is zoned with respect to rare earth elements and oxygen isotope ratios (delta18O values from 7.4 to 5.0%), indicating that it formed from an evolving magmatic source. The evolved chemistry, high delta18O value and micro-inclusions of SiO2 are consistent with growth from a granitic melt with a delta18O value from 8.5 to 9.5%. Magmatic oxygen isotope ratios in this range point toward the involvement of supracrustal material that has undergone low-temperature interaction with a liquid hydrosphere. This zircon thus represents the earliest evidence for continental crust and oceans on the Earth.

  17. The continent-ocean transition on the northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Cameselle, Alejandra L.; Ranero, César R.; Franke, Dieter; Barckhausen, Udo

    2015-04-01

    Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding how rift characteristics vary along strike in the same system and what processes control the final transition to seafloor spreading is the continent-ocean transition (COT). We use four regional multichannel seismic profiles and published magnetic lineations to study the structure and variability of COT on the northwest subbasin (NWSB) of the South China Sea and to discern continental from oceanic domains. The continental domain is characterized by tilted fault blocks overlaid by thick syn-rift sedimentary units and fairly continuous Moho reflections typically at 8-10 s twtt. Thickness of the continental crust changes from ~20-25 km under the uppermost slope to ~9-6 km under the lower slope. The oceanic domain is interpreted where a highly reflective top of basement, little faulting, no syntectonic strata, and fairly constant thickness basement (4-8 km) occur. The COT is imaged as a ~5-10 km wide zone where oceanic-type features abut continental-type structures. The South China margin is deformed by abundant normal faults dissecting the continental crust, whereas the conjugate Macclesfield Bank margin displays comparatively abrupt thinning and little faulting. Seismic profiles show an along-strike variation in the tectonic structure of the continental margin. The NE-most lines display ~20-40 km wide segments of intense faulting under the slope and associated continental-crust thinning. Towards the SW, faulting and thinning of the continental crust occurs across a ~100-110 km wide segment. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading center. We suggest that breakup occurred by spreading center propagation to a larger degree than by

  18. Characterization of the in situ magnetic architecture of oceanic crust (Hess Deep) using near-source vector magnetic data

    NASA Astrophysics Data System (ADS)

    Tominaga, Masako; Tivey, Maurice A.; MacLeod, Christopher J.; Morris, Antony; Lissenberg, C. Johan; Shillington, Donna J.; Ferrini, Vicki

    2016-06-01

    Marine magnetic anomalies are a powerful tool for detecting geomagnetic polarity reversals, lithological boundaries, topographic contrasts, and alteration fronts in the oceanic lithosphere. Our aim here is to detect lithological contacts in fast-spreading lower crust and shallow mantle by characterizing magnetic anomalies and investigating their origins. We conducted a high-resolution, near-bottom, vector magnetic survey of crust exposed in the Hess Deep "tectonic window" using the remotely operated vehicle (ROV) Isis during RRS James Cook cruise JC21 in 2008. Hess Deep is located at the western tip of the propagating rift of the Cocos-Nazca plate boundary near the East Pacific Rise (EPR) (2°15'N, 101°30'W). ROV Isis collected high-resolution bathymetry and near-bottom magnetic data as well as seafloor samples to determine the in situ lithostratigraphy and internal structure of a section of EPR lower crust and mantle exposed on the steep (~20°dipping) south facing slope just north of the Hess Deep nadir. Ten magnetic profiles were collected up the slope using a three-axis fluxgate magnetometer mounted on ROV Isis. We develop and extend the vertical magnetic profile (VMP) approach of Tivey (1996) by incorporating, for the first time, a three-dimensional vector analysis, leading to what we here termed as "vector vertical magnetic profiling" approach. We calculate the source magnetization distribution, the deviation from two dimensionality, and the strike of magnetic boundaries using both the total field Fourier-transform inversion approach and a modified differential vector magnetic analysis. Overall, coherent, long-wavelength total field anomalies are present with a strong magnetization contrast between the upper and lower parts of the slope. The total field anomalies indicate a coherently magnetized source at depth. The upper part of the slope is weakly magnetized and magnetic structure follows the underlying slope morphology, including a "bench" and lobe

  19. Low-Temperature Alteration of the Seafloor: Impacts on Ocean Chemistry

    NASA Astrophysics Data System (ADS)

    Coogan, Laurence A.; Gillis, Kathryn M.

    2018-05-01

    Over 50% of Earth is covered by oceanic crust, the uppermost portion of which is a high-permeability layer of basaltic lavas through which seawater continuously circulates. Fluid flow is driven by heat lost from the oceanic lithosphere; the global fluid flux is dependent on plate creation rates and the thickness and distribution of overlying sediment, which acts as a low-permeability layer impeding seawater access to the crust. Fluid-rock reactions in the crust, and global chemical fluxes, depend on the average temperature in the aquifer, the fluid flux, and the composition of seawater. The average temperature in the aquifer depends largely on bottom water temperature and, to a lesser extent, on the average seafloor sediment thickness. Feedbacks between off-axis chemical fluxes and their controls may play an important role in modulating ocean chemistry and planetary climate on long timescales, but more work is needed to quantify these feedbacks.

  20. Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data

    NASA Astrophysics Data System (ADS)

    Kashubin, Sergey N.; Petrov, Oleg V.; Rybalka, Alexander V.; Milshtein, Evgenia D.; Shokalsky, Sergey P.; Verba, Mark L.; Petrov, Evgeniy O.

    2017-07-01

    Deep seismic studies of the Sea of Okhotsk region started in late 1950s. Since that time, wide-angle reflection and refraction data on more than two dozen profiles were acquired. Only five of those profiles either crossed or entered the deep-water area of the South-Okhotsk Basin (also known as the Kuril Basin or the South-Okhotsk Deep-Water Trough). Only P-waves were used to develop velocity-interface models in all the early research. Thus, all seismic and geodynamic models of the Okhotsk region were based only on the information on compressional waves. Nevertheless, the use of Vp/Vs ratio in addition to P-wave velocity allows discriminating felsic and mafic crustal layers with similar Vp values. In 2007 the Russian seismic service company Sevmorgeo acquired multi-component data with ocean bottom seismometers (OBS) along the 1700-km-long north-south 2-DV-M Profile. Only P-wave information was used previously to develop models for the entire profile. In this study, a multi-wave processing, analysis, and interpretation of the OBS data are presented for the 550-km-long southern segment of this Profile that crosses the deep-water South-Okhotsk Basin. Within this segment 50 seismometers were deployed with nominal OBS station spacing of 10-12 km. Shot point spacing was 250 m. Not only primary P-waves and S-waves but also multiples and P-S, S-P converted waves were analyzed in this study to constrain velocity-interface models by means of travel time forward modeling. In offshore deep seismic studies, thick water layer hinders an estimation of velocities in the sedimentary cover and in the upper consolidated crust. Primarily, this is due to the fact that refracted waves propagating in low-velocity solid upper layers interfere with high-amplitude direct water wave. However, in multi-component measurements with ocean bottom seismometers, it is possible to use converted and multiple waves for velocity estimations in these layers. Consequently, one can obtain P- and S

  1. Sequestration of Tellurium From Seawater by Ferromanganese Crusts: A XANES/EXAFS Perspective

    NASA Astrophysics Data System (ADS)

    Hein, J. R.; Bargar, J.; Koschinsky, A.; Dunham, R.; Halliday, A. N.

    2007-12-01

    Marine iron-oxyhydroxide/manganese-oxide crusts (Fe-Mn crusts) provide the richest known source of tellurium (Te). Te averages about 50 ppm in Fe-Mn crusts distributed globally, with concentrations locally up to 210 ppm. The sorption of Te onto Fe-Mn crusts likely controls the dominant redox species and concentration of Te in the global ocean (Hein et al., 2003). However, little is known about the mechanisms by which Te is sequestered by Fe-Mn crusts and Fe-Mn colloids in the water column, and then stabilized in the Fe/Mn oxyhydroxide/oxide framework. Two primary hypotheses are being tested: (a) Te(IV) is initially the predominant adsorbed species, which is subsequently oxidized on the Fe-oxyhydroxide and/or Mn oxide phases in natural systems and in sorption experiments. (b) Once oxidized, Te(VI) remains tightly bound to the Fe phase in Fe-Mn crusts as adsorbed surface complexes. These hypotheses are being examined by using the Stanford Synchrotron Radiation Laboratory's (SSRL) synchrotron-based XANES (x-ray absorption near-edge structure) spectroscopy to assess Te oxidation state in natural samples and samples in which Te(IV) and Te(VI) were sorbed onto synthetic and natural FeOOH and Mn oxides. EXAFS (extended x-ray absorption fine structure) spectroscopy is being used to resolve the local molecular-scale structure around Te in these same samples. Data have thus far been obtained for six Fe-Mn crusts from a variety of geographic locations and water depths of occurrence, with differing chemical compositions; and two model compounds, Te(IV) sorbed on FeOOH and Te(IV) sorbed on MnO2. XANES data show that for all six Fe-Mn crust samples, 85 to 100 percent of the Te occurs as Te(VI). For the model compounds, about 65 percent of the Te(IV) sorbed onto the MnO2 had oxidized to Te(VI) by the time (one week) the sample was analyzed, whereas Te sorbed onto FeOOH remained at about 100 percent Te(IV). The most striking result from the EXAFS data is that all spectra for the

  2. Magnetic mapping of (carbonated) oceanic crust-mantle boundary: New insights from Linnajavri, northern Norway

    NASA Astrophysics Data System (ADS)

    Tominaga, M.; Beinlich, A.; Tivey, M.; Andrade Lima, E.; Weiss, B. P.

    2012-12-01

    The contribution of lower oceanic crust and upper mantle to marine magnetic anomalies has long been recognized, but the detailed magnetic character of this non-volcanic source layer remains to be fully defined. Here, we report preliminary results of a magnetic survey and source characterization of a "carbonated" oceanic Moho (petrological "Mohorovicic discontinuity") sequence observed at the Linnajavri Serpentinite Complex (LSC), northern Norway. The LSC is located at 67° 36'N and 16° 24'E within the upper Allochthon of the Norwegian Caledonides and represents a dismembered ophiolite. Particularly in the southern ("Ridoalggicohkka") area of the LSC, gabbro, serpentinite and its talc-carbonate (soapstone) and quartz-carbonate (listvenite) altered equivalents are extraordinarily well-exposed [1]. An intact oceanic Moho is exposed here, despite its complex tectonic setting. The small degree of arctic rock weathering (≤ 2 mm weathering surface) allowed for detailed regional-scale surface magnetic mapping across alteration fronts (serpentinite-soapstone; soapstone-listvenite) and lithological contacts (soapstone-gabbro). Magnetic mapping was conducted using a handheld 3-axis magnetometer, surface-towed resistivity meter and Teka surface magnetic susceptometer with sample spacing of 1 m. Geophysical field mapping was combined with petrological observations and scanning SQUID microscopy (SM) mapping conducted on thin sections from rock samples that were drilled along the survey lines. Regional scale magnetic mapping indicates that the total magnetic field across both the "carbonated" Moho and the soapstone-serpentinite interfaces show higher frequency changes in their magnetic anomaly character and amplitudes than the surface-towed resistivity data. SQUID microscopy mapping of both natural remanence magnetization (NRM) and anhysteretic remanence magnetization (ARM) on gabbro, serpentinite, soapstone, and listvenite samples, with a sensor-sample separation of ˜190

  3. Steady State Growth of Continental Crust?

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.; Bauer, A.; Dudas, F. O.; Schoene, B.; McLean, N. M.

    2012-12-01

    More than twenty years since the publication of Armstrong's seminal paper, debate still rages about most aspects of the Earth's first billion years. Although orders of magnitude more data have been generated since then, the arguments remain the same. The debate is largely centered on the isotopic systematics of minerals and whole rocks, the major and trace element geochemistry of continental crust, and various geodynamic models for differentiation of the planet. Most agree that earth, like all the terrestrial planets, differentiated into a crust, mantle and core very early in its history. After that, models of crustal evolution diverge significantly, including the suggestions that modern style plate tectonics did not originate until ca. 2.7 Ga or younger and that plumes have played a major role in the generation of continental crust. Many believe that the preserved rock record and the detrital zircon record are consistent with episodic crustal growth, which in turn has led to geodynamic models of episodic mantle convection driving major crust forming events. High-precision and high-throughput geochronology have led to claims of episodicity even more pronounced than that presented in Gastil's 1960 paper. We believe that Earth history has been dominated by plate tectonics and that continental crust is formed largely by amalgamation of island arcs, seamounts, micro continents, and oceanic plateaus. While there are geochemical differences in the average composition of Archean igneous rocks when compared to younger rocks, the processes responsible for their formation may not have changed a great deal. In this view, the so-called crustal growth curves originated by Hurley are in fact crude approximations of crustal preservation. The most highly cited rationales for the view that little silicic crust formed during Earth's first billion years are the lack of known exposed crust older than 3.5 Ga and the paucity of detrital zircons older than 4.0 Ga in sedimentary rocks of

  4. Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1989-01-01

    A model of the carbonate-silicate geochemical cycle is presented that distinguishes carbonate masses produced by shallow-ocean and deep-ocean carbonate burial and shows that reasonable increases in deep-ocean burial could produce substantial warmings over a few hundred million years. The model includes exchanges between crust and mantle; transients from burial shifts are found to be sensitive to the fraction of nondegassed carbonates subducted into the mantle. Without the habitation of the open ocean by plankton such as foraminifera and coccolithophores, today's climate would be substantially colder.

  5. Crystallization Age and Impact Resetting of Ancient Lunar Crust from the Descartes Terrane

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Borg, L. E.; Nyquist, L. E.; Bogard, D. D.

    2002-01-01

    Lunar ferroan anorthosites (FANs) are relics of an ancient, primary feldspathic crust that is widely believed to have crystallized from a global magma ocean. Compositions and ages of FANs provide fundamental information about the origin and magmatic evolution of the Moon, while the petrology and thermal history of lunar FANs illustrate the structure and impact history of the lunar crust. Here we report petrologic, geochemical, and isotopic (Nd-Sr-Ar) studies of a ferroan noritic anorthosite clast from lunar breccia 67215 to improve our understanding of the composition, age, and thermal history of the Moon.

  6. Geological Structure and History of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Pospelov, Igor; Tolmacheva, Tatiana; Petrov, Eugeny

    2016-04-01

    New data on geological structure of the deep-water part of the Arctic Basin have been integrated in the joint project of Arctic states - the Atlas of maps of the Circumpolar Arctic. Geological (CGS, 2009) and potential field (NGS, 2009) maps were published as part of the Atlas; tectonic (Russia) and mineral resources (Norway) maps are being completed. The Arctic basement map is one of supplements to the tectonic map. It shows the Eurasian basin with oceanic crust and submerged margins of adjacent continents: the Barents-Kara, Amerasian ("Amerasian basin") and the Canada-Greenland. These margins are characterized by strained and thinned crust with the upper crust layer, almost extinct in places (South Barents and Makarov basins). In the Central Arctic elevations, seismic studies and investigation of seabed rock samples resulted in the identification of a craton with the Early Precambrian crust (near-polar part of the Lomonosov Ridge - Alpha-Mendeleev Rise). Its basement presumably consists of gneiss granite (2.6-2.2 Ga), and the cover is composed of Proterozoic quartzite sandstone and dolomite overlain with unconformity and break in sedimentation by Devonian-Triassic limestone with fauna and terrigenous rocks. The old crust is surrounded by accretion belts of Timanides and Grenvillides. Folded belts with the Late Precambrian crust are reworked by Caledonian-Ellesmerian and the Late Mesozoic movements. Structures of the South Anuy - Angayucham ophiolite suture reworked in the Early Cretaceous are separated from Mesozoides proper of the Pacific - Verkhoyansk-Kolyma and Koryak-Kamchatka belts. The complicated modern ensemble of structures of the basement and the continental frame of the Arctic Ocean was formed as a result of the conjugate evolution and interaction of the three major oceans of the Earth: Paleoasian, Paleoatlantic and Paleopacific.

  7. The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions

    NASA Astrophysics Data System (ADS)

    Li, Lu; Stephenson, Randell; Clift, Peter D.

    2016-11-01

    Both the Canada Basin (a sub-basin within the Amerasia Basin) and southwest (SW) South China Sea preserve oceanic spreading centres and adjacent passive continental margins characterized by broad COT zones with hyper-extended continental crust. We have investigated strain accommodation in the regions immediately adjacent to the oceanic spreading centres in these two basins using 2-D backstripping subsidence reconstructions, coupled with forward modelling constrained by estimates of upper crustal extensional faulting. Modelling is better constrained in the SW South China Sea but our results for the Canada Basin are analogous. Depth-dependent extension is required to explain the great depth of both basins because only modest upper crustal faulting is observed. A weak lower crust in the presence of high heat flow and, accordingly, a lower crust that extends far more the upper crust are suggested for both basins. Extension in the COT may have continued even after seafloor spreading has ceased. The analogous results for the two basins considered are discussed in terms of (1) constraining the timing and distribution of crustal thinning along the respective continental margins, (2) defining the processes leading to hyper-extension of continental crust in the respective tectonic settings and (3) illuminating the processes that control hyper-extension in these basins and more generally.

  8. Possible Moonwich of Ice and Oceans on Ganymede Artist Concept

    NASA Image and Video Library

    2014-05-01

    This artist concept of Jupiter moon Ganymede, the largest moon in the solar system, illustrates the club sandwich model of its interior oceans. Scientists suspect Ganymede has a massive ocean under an icy crust.

  9. Structure of the lower crust beneath the Carolina Trough, U.S. Atlantic continental margin

    USGS Publications Warehouse

    Tréhu, Anne M.; Ballard, A.; Dorman, L.M.; Gettrust, J.F.; Klitgord, Kim D.; Schreiner, A.

    1989-01-01

    Data from three large-offset seismic profiles provide information on the crustal structure beneath the Carolina trough. The profiles, obtained by the U.S. Geological Survey, the Naval Oceanographic Research Development Agency, and the Scripps Institution of Oceanography in 1985, were oriented parallel to the trough and were located (1) seaward of the East Coast Magnetic Anomaly (ECMA), which is generally thought to represent the boundary between oceanic and continental crust; (2) along the axis of the trough between the ECMA and the hinge zone, which is thought to reflect the landward limit of highly stretched and altered transitional crust; and (3) along the Carolina platform landward of the basement hinge zone on crust thought to have been thinned only slightly during rifting. These data constrain the velocity structure of the lower crust and provide evidence for a thick lens of high-velocity (>7.1 km/s) lower crustal material that extends beneath the Carolina trough and the adjacent ocean basin. This lens reaches a maximum thickness of about 13 km beneath the deepest part of the trough, thins to about 5 km seaward of the ECMA, and is either very thin or absent landward of the hinge zone. It is interpreted to represent material that was underplated beneath and/or intruded into the crust during the late stage of continental rifting and that led to an anomalously thick plutonic layer during the early seafloor spreading phase. These data thus support the recent conclusions of White et al. (1987b) and Mutter et al. (1988) that the initiation of seafloor spreading is attended in many, if not most, cases by the generation of an anomalously large volume of melt.

  10. Estimating the formation age distribution of continental crust by unmixing zircon ages

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2018-01-01

    Continental crust provides first-order control on Earth's surface environment, enabling the presence of stable dry landmasses surrounded by deep oceans. The evolution of continental crust is important for atmospheric evolution, because continental crust is an essential component of deep carbon cycle and is likely to have played a critical role in the oxygenation of the atmosphere. Geochemical information stored in the mineral zircon, known for its resilience to diagenesis and metamorphism, has been central to ongoing debates on the genesis and evolution of continental crust. However, correction for crustal reworking, which is the most critical step when estimating original formation ages, has been incorrectly formulated, undermining the significance of previous estimates. Here I suggest a simple yet promising approach for reworking correction using the global compilation of zircon data. The present-day distribution of crustal formation age estimated by the new "unmixing" method serves as the lower bound to the true crustal growth, and large deviations from growth models based on mantle depletion imply the important role of crustal recycling through the Earth history.

  11. Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean.

    PubMed

    Purser, Autun; Marcon, Yann; Hoving, Henk-Jan T; Vecchione, Michael; Piatkowski, Uwe; Eason, Deborah; Bluhm, Hartmut; Boetius, Antje

    2016-12-19

    Incirrate octopods (those without fins) are among the larger megafauna inhabiting the benthic environments of all oceans, commonly in water depths down to about 3,000 m. They are known to protect and brood their eggs until the juveniles hatch, but to date there is little published information on octopod deep-sea life cycles and distribution. For this study, three manganese-crust and nodule-abundant regions of the deep Pacific were examined by remote operated-vehicle and towed camera surveys carried out between 2011 and 2016. Here, we report that the depth range of incirrate octopods can now be extended to at least 4,290 m. Octopods (twenty-nine individuals from two distinct species) were observed on the deep Ka'ena and Necker Ridges of the Hawaiian Archipelago, and in a nodule-abundant region of the Peru Basin. Two octopods were observed to be brooding clutches of eggs that were laid on stalks of dead sponges attached to nodules at depths exceeding 4,000 m. This is the first time such a specific mineral-biota association has been observed for incirrate octopods. Both broods consisted of approximately 30 large (2.0-2.7 cm) eggs. Given the low annual water temperature of 1.5 o C, it is likely that egg development, and hence brooding, takes years [1]. Stalked-sponge fauna in the Peru Basin require the presence of manganese nodules as a substrate, and near total collapse of such sponge populations was observed following the experimental removal of nodules within the DISCOL (DISturbance and COLonisation) area of the Peru Basin [2]. Stalked fauna are also abundant on the hard substrates of the Hawaiian archipelago. The brooding behavior of the octopods we observed suggests that, like the sponges, they may also be susceptible to habitat loss following the removal of nodule fields and crusts by commercial exploitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Coupling of Oceanic and Continental Crust During Eocene Eclogite-Facies Metamorphism: Evidence From the Monte Rosa Nappe, Western Alps, Italy

    NASA Astrophysics Data System (ADS)

    Lapen, T. J.; Johnson, C. M.; Baumgartner, L. P.; Skora, S.; Mahlen, N. J.; Beard, B. L.

    2006-12-01

    Subduction of continental crust to HP-UHP metamorphic conditions requires overcoming density contrasts that are unfavorable to deep burial, whereas exhumation of these rocks can be reasonably explained through buoyancy-assisted transport in the subduction channel to more shallow depths. In the western Alps, both continental and oceanic lithosphere has been subducted to eclogite-facies metamorphic conditions. The burial and exhumation histories of these sections of lithosphere bear directly on the dynamics of subduction and the stacking of units within the subduction channel. We address the burial history of the continental crust with high precision U-Pb rutile and Lu-Hf garnet geochronology of the eclogite-facies Monte Rosa nappe (MR), western Alps, Italy. U-Pb rutile ages from quartz-carbonate-white mica-rutile veins that are hosted within eclogite and schist of the MR, Gressoney Valley, Italy, indicate that it was at eclogite-facies metamorphic conditions at 42.6 +/- 0.6 Ma. The sample area (Indren glacier, Furgg zone; Dal Piaz, 2001) consists of eclogite boudins that are surrounded by micaceous schist. Associated with the eclogite and schist are quartz-carbonate-white mica-rutile veins that formed in tension cracks in the eclogite and along the contact between eclogite and surrounding schist. Intrusion of the veins occurred at eclogite-facies metamorphic conditions (480-570°C, >1.3-1.4 GPa) based on textural relations, oxygen isotope thermometry, and geothermobarometry. Lu-Hf geochronology of garnet from a chloritoid-talc-garnet-phengite-quartz-calcite-pyrite - chalcopyrite bearing boudin within talc-chloritoid whiteschists of the MR, Val d'Ayas, Italy (Chopin and Monie, 1984; Pawlig, 2001) yields an age of 40.54 +/- 0.36 Ma. The talc-chloritoid whiteschists from the area record pressures and temperatures of 1.6-2.4 GPa and 500-530°C (Chopin and Monie, 1984; Le Bayon et al., 2006) indicating near UHP metamorphic conditions. Based on the age, P-T, and textural

  13. Ocean bottom characterestics between Iles Rodrigues and Chagos-Maldives Archepelago in western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Longhinos, Biju; Thanu Iyer, Radhakrishnan; Mohan, Karthika

    2014-05-01

    The geological and geophysical complexities in Indian ocean basin, pointed out by many earlier workers remained unresolved. Instead, taking aid from stop gap arguments, the data has been construed to follow plate tectonics format. The concept of large igneous complexes emplaced through crustal drifting ( between the India and Mozambique) during later Mesozoic to Recent fail to address geophysical characteristics exhibited here. The geophysical signatures of the sub crustal part of the ocean here resemble to that of continental regions elsewhere. Granites, greenstones and mylonized gabbro, recovered from the western Indian ocean basin, rather give Late Pre- Cambrian and Paleozoic isotopic dates. Under this light, the present paper looks into the ocean bottom characteristics of a region between iles Rodrigues and Chagos- Maldives archipelago. The region has first order curvilienar fractures, with along which the crust has displaced more than 1000m. The sea-bottom topography of the region has been modeled in Geographical Information System environment using Modified ETOPO5 provided by National Institute of Oceanography. The spatial relationship of topography with gravity and magnetic data area are analysed visually and mathematically. The detail bathymetry, gravity and magnetic data give morphology similar to that of half graben formed on a felsic crust, which later has undergone basification / eclogitization through first order fracture zones.

  14. Starquakes, Heating Anomalies, and Nuclear Reactions in the Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Deibel, Alex Thomas

    When the most massive stars perish, their cores may remain intact in the form of extremely dense and compact stars. These stellar remnants, called neutron stars, are on the cusp of becoming black holes and reach mass densities greater than an atomic nucleus in their centers. Although the interiors of neutron stars were difficult to investigate at the time of their discovery, the advent of modern space-based telescopes (e.g., Chandra X-ray Observatory) has pushed our understanding of the neutron star interior into exciting new realms. It has been shown that the neutron star interior spans an enormous range of densities and contains many phases of matter, and further theoretical progress must rely on numerical calculations of neutron star phenomena built with detailed nuclear physics input. To further investigate the properties of the neutron star interior, this dissertation constructs numerical models of neutron stars, applies models to various observations of neutron star high-energy phenomena, and draws new conclusions about the neutron star interior from these analyses. In particular, we model the neutron star's outermost ? 1 km that encompasses the neutron star's envelope, ocean, and crust. The model must implement detailed nuclear physics to properly simulate the hydrostatic and thermal structure of the neutron star. We then apply our model to phenomena that occur in these layers, such as: thermonuclear bursts in the envelope, g-modes in the ocean, torsional oscillations of the crust, and crust cooling of neutron star transients. A comparison of models to observations provides new insights on the properties of dense matter that are often difficult to probe through terrestrial experiments. For example, models of the quiescent cooling of neutron stars, such as the accreting transient MAXI J0556-332, at late times into quiescence probe the thermal transport properties of the deep neutron star crust. This modeling provides independent data from astronomical

  15. Deep intrusions, lateral magma transport and related uplift at ocean island volcanoes

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Longpré, Marc-Antoine; García-Cañada, Laura; Stix, John

    2015-12-01

    Oceanic intraplate volcanoes grow by accumulation of erupted material as well as by coeval or discrete magmatic intrusions. Dykes and other intrusive bodies within volcanic edifices are comparatively well studied, but intrusive processes deep beneath the volcanoes remain elusive. Although there is geological evidence for deep magmatic intrusions contributing to volcano growth through uplift, this has rarely been demonstrated by real-time monitoring. Here we use geophysical and petrological data from El Hierro, Canary Islands, to show that intrusions from the mantle and subhorizontal transport of magma within the oceanic crust result in rapid endogenous island growth. Seismicity and ground deformation associated with a submarine eruption in 2011-2012 reveal deep subhorizontal intrusive sheets (sills), which have caused island-scale uplift of tens of centimetres. The pre-eruptive intrusions migrated 15-20 km laterally within the lower oceanic crust, opening pathways that were subsequently used by the erupted magmas to ascend from the mantle to the surface. During six post-eruptive episodes between 2012 and 2014, further sill intrusions into the lower crust and upper mantle have caused magma to migrate up to 20 km laterally, resulting in magma accumulation exceeding that of the pre-eruptive phase. A comparison of geobarometric data for the 2011-2012 El Hierro eruption with data for other Atlantic intraplate volcanoes shows similar bimodal pressure distributions, suggesting that eruptive phases are commonly accompanied by deep intrusions of sills and lateral magma transport. These processes add significant material to the oceanic crust, cause uplift, and are thus fundamentally important for the growth and evolution of volcanic islands. We suggest that the development of such a magma accumulation zone in the lower oceanic crust begins early during volcano evolution, and is a consequence of increasing size and complexity of the mantle reservoir system, and potentially

  16. Mapping the extent of thinned continental crust across the Orphan Basin, offshore Newfoundland, Canada, using a combination of vintage and new seismic refraction/wide-angle reflection data

    NASA Astrophysics Data System (ADS)

    Welford, J. Kim; Dehler, Sonya; Funck, Thomas

    2017-04-01

    The SIGNAL (Seismic Investigations off Greenland, Newfoundland and Labrador) 2009 cruise was undertaken by the Geological Survey of Canada (GSC) and the Geological Survey of Denmark and Greenland (GEUS), with scientific contributions from Dalhousie University, to collect refraction/wide-angle reflection (RWAR) profiles as part of each country's continental shelf program under UNCLOS (United Nations Convention on the Law of the Sea) Article 76. Line 1 extended from the Bonavista Platform off Newfoundland, across the Orphan Basin, to Orphan Knoll and beyond into oceanic crust. The line followed the same track as an earlier seismic refraction line and ocean-bottom seismometer (OBS) locations were chosen to complement and to extend the original station coverage. The final crustal velocity model across Orphan Basin shows thinned continental crust (15 to 20 km thick) beneath most of the basin with thinner crust (10 km thick) immediately outboard of the Bonavista Platform, interpreted as a failed rift zone. Seaward of the failed rift, the velocity structure of the thinned continental crust is generally uniform over 250 km toward Orphan Knoll. Immediately outboard of Orphan Knoll, the crust thins to 8 km and exhibits a velocity structure consistent with oceanic crust. The results from modelling of the combined refraction/wide-angle reflection dataset support an extension of Canada's continental shelf beyond the seaward limits of the Orphan Basin.

  17. What Hf isotopes in zircon tell us about crust-mantle evolution

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Itano, Keita; Hibiya, Yuki; Suzuki, Kazue

    2017-03-01

    The 176Lu-176Hf radioactive decay system has been widely used to study planetary crust-mantle differentiation. Of considerable utility in this regard is zircon, a resistant mineral that can be precisely dated by the U-Pb chronometer and record its initial Hf isotope composition due to having low Lu/Hf. Here we review zircon U-Pb age and Hf isotopic data mainly obtained over the last two decades and discuss their contributions to our current understanding of crust-mantle evolution, with emphasis on the Lu-Hf isotope composition of the bulk silicate Earth (BSE), early differentiation of the silicate Earth, and the evolution of the continental crust over geologic history. Meteorite zircon encapsulates the most primitive Hf isotope composition of our solar system, which was used to identify chondritic meteorites best representative of the BSE (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Hadean-Eoarchean detrital zircons yield highly unradiogenic Hf isotope compositions relative to the BSE, providing evidence for the development of a geochemically enriched silicate reservoir as early as 4.5 Ga. By combining the Hf and O isotope systematics, we propose that the early enriched silicate reservoir has resided at depth within the Earth rather than near the surface and may represent a fractionated residuum of a magma ocean underlying the proto-crust, like urKREEP beneath the anorthositic crust on the Moon. Detrital zircons from world major rivers potentially provide the most robust Hf isotope record of the preserved granitoid crust on a continental scale, whereas mafic rocks with various emplacement ages offer an opportunity to trace the Hf isotope evolution of juvenile continental crust (from εHf[4.5 Ga] = 0 to εHf[present] = + 13). The river zircon data as compared to the juvenile crust composition highlight that the supercontinent cycle has controlled the evolution of the continental crust by regulating the rates of crustal generation and intra

  18. The extent of continental crust beneath the Seychelles

    NASA Astrophysics Data System (ADS)

    Hammond, J. O. S.; Kendall, J.-M.; Collier, J. S.; Rümpker, G.

    2013-11-01

    The granitic islands of the Seychelles Plateau have long been recognised to overlie continental crust, isolated from Madagascar and India during the formation of the Indian Ocean. However, to date the extent of continental crust beneath the Seychelles region remains unknown. This is particularly true beneath the Mascarene Basin between the Seychelles Plateau and Madagascar and beneath the Amirante Arc. Constraining the size and shape of the Seychelles continental fragment is needed for accurate plate reconstructions of the breakup of Gondwana and has implications for the processes of continental breakup in general. Here we present new estimates of crustal thickness and VP/VS from H-κ stacking of receiver functions from a year long deployment of seismic stations across the Seychelles covering the topographic plateau, the Amirante Ridge and the northern Mascarene Basin. These results, combined with gravity modelling of historical ship track data, confirm that continental crust is present beneath the Seychelles Plateau. This is ˜30-33 km thick, but with a relatively high velocity lower crustal layer. This layer thins southwards from ˜10 km to ˜1 km over a distance of ˜50 km, which is consistent with the Seychelles being at the edge of the Deccan plume prior to its separation from India. In contrast, the majority of the Seychelles Islands away from the topographic plateau show no direct evidence for continental crust. The exception to this is the island of Desroche on the northern Amirante Ridge, where thicker low density crust, consistent with a block of continental material is present. We suggest that the northern Amirantes are likely continental in nature and that small fragments of continental material are a common feature of plume affected continental breakup.

  19. Ocean Ridges and Oxygen

    NASA Astrophysics Data System (ADS)

    Langmuir, C. H.

    2014-12-01

    The history of oxygen and the fluxes and feedbacks that lead to its evolution through time remain poorly constrained. It is not clear whether oxygen has had discrete steady state levels at different times in Earth's history, or whether oxygen evolution is more progressive, with trigger points that lead to discrete changes in markers such as mass independent sulfur isotopes. Whatever this history may have been, ocean ridges play an important and poorly recognized part in the overall mass balance of oxidants and reductants that contribute to electron mass balance and the oxygen budget. One example is the current steady state O2 in the atmosphere. The carbon isotope data suggest that the fraction of carbon has increased in the Phanerozoic, and CO2 outgassing followed by organic matter burial should continually supply more O2 to the surface reservoirs. Why is O2 not then increasing? A traditional answer to this question would relate to variations in the fraction of burial of organic matter, but this fraction appears to have been relatively high throughout the Phanerozoic. Furthermore, subduction of carbon in the 1/5 organic/carbonate proportions would contribute further to an increasingly oxidized surface. What is needed is a flux of oxidized material out of the system. One solution would be a modern oxidized flux to the mantle. The current outgassing flux of CO2 is ~3.4*1012 moles per year. If 20% of that becomes stored organic carbon, that is a flux of .68*1012 moles per year of reduced carbon. The current flux of oxidized iron in subducting ocean crust is ~2*1012 moles per year of O2 equivalents, based on the Fe3+/Fe2+ ratios in old ocean crust compared to fresh basalts at the ridge axis. This flux more than accounts for the incremental oxidizing power produced by modern life. It also suggests a possible feedback through oxygenation of the ocean. A reduced deep ocean would inhibit oxidation of ocean crust, in which case there would be no subduction flux of oxidized

  20. Anomalous Structure of Oceanic Lithosphere in the North Atlantic and Arctic Oceans: A Preliminary Analysis Based on Bathymetry, Gravity and Crustal Structure

    NASA Astrophysics Data System (ADS)

    Barantsrva, O.

    2014-12-01

    We present a preliminary analysis of the crustal and upper mantle structure for off-shore regions in the North Atlantic and Arctic oceans. These regions have anomalous oceanic lithosphere: the upper mantle of the North Atlantic ocean is affected by the Iceland plume, while the Arctic ocean has some of the slowest spreading rates. Our specific goal is to constrain the density structure of the upper mantle in order to understand the links between the deep lithosphere dynamics, ocean spreading, ocean floor bathymetry, heat flow and structure of the oceanic lithosphere in the regions where classical models of evolution of the oceanic lithosphere may not be valid. The major focus is on the oceanic lithosphere, but the Arctic shelves with a sufficient data coverage are also included into the analysis. Out major interest is the density structure of the upper mantle, and the analysis is based on the interpretation of GOCE satellite gravity data. To separate gravity anomalies caused by subcrustal anomalous masses, the gravitational effect of water, crust and the deep mantle is removed from the observed gravity field. For bathymetry we use the global NOAA database ETOPO1. The crustal correction to gravity is based on two crustal models: (1) global model CRUST1.0 (Laske, 2013) and, for a comparison, (2) a regional seismic model EUNAseis (Artemieva and Thybo, 2013). The crustal density structure required for the crustal correction is constrained from Vp data. Previous studies have shown that a large range of density values corresponds to any Vp value. To overcome this problem and to reduce uncertainty associated with the velocity-density conversion, we account for regional tectonic variations in the Northern Atlantics as constrained by numerous published seismic profiles and potential-field models across the Norwegian off-shore crust (e.g. Breivik et al., 2005, 2007), and apply different Vp-density conversions for different parts of the region. We present preliminary results

  1. CRUST1.0: An Updated Global Model of Earth's Crust

    NASA Astrophysics Data System (ADS)

    Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. E.

    2012-04-01

    We present an updated global model of Earth's crustal structure. The new model, CRUST1.0, serves as starting model in a more comprehensive effort to compile a global model of Earth's crust and lithosphere, LITHO1.0. CRUST1.0 is defined on a 1-degree grid and is based on a new database of crustal thickness data from active source seismic studies as well as from receiver function studies. In areas where such constraints are still missing, for example in Antarctica, crustal thicknesses are estimated using gravity constraints. The compilation of the new crustal model initially follows the philosophy of the widely used crustal model CRUST2.0 (Bassin et al., 2000; http://igppweb.ucsd.edu/~gabi/crust2.html). Crustal types representing properties in the crystalline crust are assigned according to basement age or tectonic setting. The classification of the latter loosely follows that of an updated map by Artemieva and Mooney (2001) (http://www.lithosphere.info). Statistical averages of crustal properties in each of these crustal types are extrapolated to areas with no local seismic or gravity constraint. In each 1-degree cell, boundary depth, compressional and shear velocity as well as density is given for 8 layers: water, ice, 3-layer sediment cover and upper, middle and lower crystalline crust. Topography, bathymetry and ice cover are taken from ETOPO1. The sediment cover is essentially that of our sediment model (Laske and Masters, 1997; http://igppweb.ucsd.edu/~sediment.html), with several near-coastal updates. In the sediment cover and the crystalline crust, updated scaling relationships are used to assign compressional and shear velocity as well as density. In an initial step toward LITHO1.0, the model is then validated against our new global group velocity maps for Rayleigh and Love waves, particularly at frequencies between 30 and 40 mHz. CRUST1.0 is then adjusted in areas of extreme misfit where we suspect deficiencies in the crustal model. These currently include

  2. The Generation of Oceanic Lithosphere in an Embryonic Oceanic Crust : the Example of the Chenaillet Ophiolite in the Western Alps

    NASA Astrophysics Data System (ADS)

    Masini, E.; Manatschal, G.; Muntener, O.

    2007-12-01

    fault. Across the whole Chenaillet Ophiolite, volcanic rocks directly overlie either the detachment fault or the sediments. In several places, N-S trending high-angle normal faults have been mapped. These faults truncate and displace the detachment fault leading to small domino-like structures. The basins, limited by these high-angle faults, are some hundreds to a few kilometres wide and few tens to some hundreds of meters deep. Because these high- angle faults are sealed locally by basalts and obliterated by volcanic structures, we interpret them as oceanic structures being active during the emplacement of the basalts. The alignment of porphyritic basaltic dykes parallel to, and their increasing abundance towards the high-angle faults suggest that they may have served as feeder channels for the overlying volcanic rocks. The complex poly-phase tectonic and magmatic processes observed in the Chenaillet Ophiolite are reminiscent of those reported from slow to ultraslow spreading ridges. The key result from our study is that mantle exhumation along detachment faults is followed by syn-magmatic normal faulting resulting in the emplacement of laterally variable, up to 300 meters thick massive lavas and pillow basalts covering the exhumed detachment fault. This implies that off-axis processes are more important as previously assumed and that large-scale detachment faults may be buried under massive volcanic sequences suggesting that detachment faulting is presumably more common than suggested by dredging or morpho-structural investigations of ultra- to slow- spreading oceanic crust.

  3. Asymmetric Early Crust-Building Magmatism on the Lunar Nearside Due to KREEP-Induced Melting Point Depression

    NASA Technical Reports Server (NTRS)

    Elardo, S. M.; Shearer, C. K.; McCuddin, F. M.

    2018-01-01

    The lunar magnesian-suite, or Mg-suite, is a series of ancient plutonic rocks from the lunar crust with ages and compositions indicating that they represent crust-building magmatism occurring immediately after the end of magma ocean crystallization. Samples of the Mg-suite were found at every Apollo landing site except 11 and ubiquitously have geochemical characteristics indicating the involvement of KREEP in their petrogenesis. This observation has led to the suggestion that the presence of the KREEP reservoir under the lunar nearside was responsible for this episode of crust building. The lack of any readily identifiable Mg-suite rocks in meteoritic regolith breccias sourced from outside the Procellarum KREEP Terrane (PKT) seemingly supports this interpretation.

  4. Thickness of Mercury's crust from MESSENGER gravity and altimetry data

    NASA Astrophysics Data System (ADS)

    Padovan, S.; Wieczorek, M. A.; Margot, J. L.; Tosi, N.; Solomon, S. C.

    2014-12-01

    The major igneous events that form and shape the crust of a rocky body, such as magma ocean solidification and volcanism, affect the interior thermo-chemical evolution through control on the bulk volatile content, partitioning of heat-producing elements, and heat loss. Therefore, characterizing the crust of a body provides information on that object's origin, differentiation, and subsequent geologic evolution. For Mercury, the crust may hold clues in particular to the still poorly understood processes of formation of this planet. Analysis of geoid-to-topography ratios (GTRs) has been previously applied to infer the thickness of the crust of the Moon, Mars, and Venus. We perform a similar analysis for Mercury with the gravity and altimetry data acquired by the MESSENGER spacecraft. We consider only the northern hemisphere, where the gravity field and topography are well constrained. We assume that Airy isostasy is the principal mechanism of support of variations in topography, and we therefore exclude from the analysis regions that might not be compatible with this assumption, such as large expanses of smooth plains and large impact basins. For a conservative range of densities of the crust, we infer a crustal thickness of 35±18 km (one standard deviation). This new mean value is substantially less than earlier estimates that were based on viscous relaxation of topography, on the relation between the low-degree gravity field and equatorial ellipticity, and on the depth of the brittle-ductile transition as constrained by models of thrust faulting and thermal evolution. This relatively thin crust allows for the possibility of excavation of mantle material during the formation of large impact basins (such as Caloris). Such material might be observed with instruments on MESSENGER and the BepiColombo spacecraft now in development.

  5. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago.

    PubMed

    Greber, Nicolas D; Dauphas, Nicolas; Bekker, Andrey; Ptáček, Matouš P; Bindeman, Ilya N; Hofmann, Axel

    2017-09-22

    Earth exhibits a dichotomy in elevation and chemical composition between the continents and ocean floor. Reconstructing when this dichotomy arose is important for understanding when plate tectonics started and how the supply of nutrients to the oceans changed through time. We measured the titanium isotopic composition of shales to constrain the chemical composition of the continental crust exposed to weathering and found that shales of all ages have a uniform isotopic composition. This can only be explained if the emerged crust was predominantly felsic (silica-rich) since 3.5 billion years ago, requiring an early initiation of plate tectonics. We also observed a change in the abundance of biologically important nutrients phosphorus and nickel across the Archean-Proterozoic boundary, which might have helped trigger the rise in atmospheric oxygen. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Mesozoic invasion of crust by MORB-source asthenospheric magmas, U.S. Cordilleran interior

    NASA Astrophysics Data System (ADS)

    Leventhal, Janet A.; Reid, Mary R.; Montana, Art; Holden, Peter

    1995-05-01

    Mafic and ultramafic xenoliths entrained in lavas of the Cima volcanic field have Nd and Sr isotopic ratios indicative of a source similar to that of mid-ocean ridge basalt (MORB). Nd and Sr internal isochrons demonstrate a Late Cretaceous intrusion age. These results, combined with evidence for emplacement in the lower crust and upper mantle, indicate invasion of the lower crust by asthenospheric magmas in the Late Cretaceous. Constituting the first prima facie evidence for depleted-mantle magmatism in the Basin and Range province prior to late Cenozoic volcanism, these results lend key support to models suggesting crustal heating by ascent of asthenosphere in the Mesozoic Cordilleran interior.

  7. A model of ocean basin crustal magnetization appropriate for satellite elevation anomalies

    NASA Technical Reports Server (NTRS)

    Thomas, Herman H.

    1987-01-01

    A model of ocean basin crustal magnetization measured at satellite altitudes is developed which will serve both as background to which anomalous magnetizations can be contrasted and as a beginning point for studies of tectonic modification of normal ocean crust. The model is based on published data concerned with the petrology and magnetization of the ocean crust and consists of viscous magnetization and induced magnetization estimated for individual crustal layers. Thermal remanent magnetization and chemical remanent magnetization are excluded from the model because seafloor spreading anomalies are too short in wavelength to be resolved at satellite altitudes. The exception to this generalization is found at the oceanic magnetic quiet zones where thermal remanent magnetization and chemical remanent magnetization must be considered along with viscous magnetization and induced magnetization.

  8. Lateral Variability of the Lower Ocean Crust at Atlantis Bank, SW Indian Ridge, Results of IODP Expedition 360

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; MacLeod, C. J.; Blum, P.; Scientific Party, E.

    2016-12-01

    IODP Hole U1473A drilled 809.4 m into a 700-m depth wave-cut platform at Atlantis Bank on the SW Indian Ridge. It is an oceanic core complex where massive gabbro was emplaced into the footwall of a single detachment fault for ≥2.7 Myr, with total slip ≥39 km. It was then uplifted to its present position flanking the 6,100 m deep 199-km Atlantis II Transform. The gabbros are back-tilted 20°S, while a sub-horizontal 15 km long mantle peridotite-gabbro contact lies along the transform wall at 4200 m depth 11.5 km west of Hole U1473A. Hole U1473A is 1.4 km north of 158-m deep Hole 1105A and 2.2 km NNE of 1508-m deep Hole 735B. Thus we examine the lateral continuity of the lower ocean crust at ultraslow rates ( 15-16 mm/yr.), and compare it to 1400-m Hole U1309D in the Atlantis Massif MAR core complex (24 mm/yr.) flanking the 63-km Atlantis Transform. The three Atlantis Bank holes are very similar, consisting of a complex series of oxide-rich gabbros and olivine gabbros. Several dikes crosscutting the gabbro sections show that they passed through the dike-gabbro transition after crystallizing and cooling deeper in the crust. They all show extensive high-temperature crystal-plastic deformation predating dike intrusion. A small amount of troctolite was recovered only in Hole 735B. By contrast, gabbro, rather than olivine gabbro was the dominant lithology in Hole U1309D, with intercalations of troctolite and mantle peridotite, and subordinate oxide gabbro. Oxide gabbro is often associated with crystal-plastic deformation. While these are concentrated in the upper 1/3 of Hole 735B, they are more uniformly distributed in Hole U1309D. While one section cannot be traced directly to the other at Atlantis Bank, it appears that they can be correlated based on chemical and structural similarities, with the 1105A and 1473A sections lying some hundreds of meters deeper structurally than Hole 735B, consistent with erosion on the platform. All these sections represent sequential

  9. TIME-DEPENDENT, COMPOSITIONALLY DRIVEN CONVECTION IN THE OCEANS OF ACCRETING NEUTRON STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medin, Zach; Cumming, Andrew, E-mail: zmedin@lanl.gov, E-mail: cumming@physics.mcgill.ca

    2015-03-20

    We discuss the effect of convection driven by chemical separation at the ocean-crust boundary of accreting neutron stars. We extend the steady-state results of Medin and Cumming to transient accretors, by considering the time-dependent cases of heating during accretion outbursts and cooling during quiescence. During accretion outbursts, inward heat transport has only a small effect on the temperature profile in the outer layers until the ocean is strongly enriched in light elements, a process that takes hundreds of years to complete. During quiescence, however, inward heat transport rapidly cools the outer layers of the ocean while keeping the inner layersmore » hot. We find that this leads to a sharp drop in surface emission at around a week followed by a gradual recovery as cooling becomes dominated by the crust. Such a dip should be observable in the light curves of these neutron star transients, if enough data is taken at a few days to a month after the end of accretion. If such a dip is definitively observed, it will provide strong constraints on the chemical composition of the ocean and outer crust.« less

  10. Arctic and N Atlantic Crustal Thickness and Oceanic Lithosphere Distribution from Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy

    2014-05-01

    The ocean basins of the Arctic and N. Atlantic formed during the Mesozoic and Cenozoic as a series of distinct ocean basins, both small and large, leading to a complex distribution of oceanic crust, thinned continental crust and rifted continental margins. The plate tectonic framework of this region was demonstrated by the pioneering work of Peter Ziegler in AAPG Memoir 43 " Evolution of the Arctic-North Atlantic and the Western Tethys" published in 1988. The spatial evolution of Arctic Ocean and N Atlantic ocean basin geometry and bathymetry are critical not only for hydrocarbon exploration but also for understanding regional palaeo-oceanography and ocean gateway connectivity, and its influence on global climate. Mapping crustal thickness and oceanic lithosphere distribution represents a substantial challenge for the Polar Regions. Using gravity anomaly inversion we have produced comprehensive maps of crustal thickness and oceanic lithosphere distribution for the Arctic and N Atlantic region, We determine Moho depth, crustal basement thickness, continental lithosphere thinning and ocean-continent transition location using a 3D spectral domain gravity inversion method, which incorporates a lithosphere thermal gravity anomaly correction (Chappell & Kusznir 2008). Gravity anomaly and bathymetry data used in the gravity inversion are from the NGA (U) Arctic Gravity Project and IBCAO respectively; sediment thickness is from a new regional compilation. The resulting maps of crustal thickness and continental lithosphere thinning factor are used to determine continent-ocean boundary location and the distribution of oceanic lithosphere. Crustal cross-sections using Moho depth from the gravity inversion allow continent-ocean transition structure to be determined and magmatic type (magma poor, "normal" or magma rich). Our gravity inversion predicts thin crust and high continental lithosphere thinning factors in the Eurasia, Canada, Makarov, Podvodnikov and Baffin Basins

  11. Mid-to-Lower-level Plutonic Rocks From Crust of the Southern Mariana Forearc: Implications for Growth of Continental Crust

    NASA Astrophysics Data System (ADS)

    Fryer, P.; Reagan, M.

    2006-12-01

    element composition of the arc crust may be comparable with average continental crust. This is consistent with estimates of the average composition of the Izu arc crust from seismic velocity studies and petrologic studies of exposures of the Izu arc crust in southern Japan's Izu peninsula. These data imply that the island arc that developed along the entire margin of the Philippine Sea plate may have had a generally similar structure and composition. Most components of the IBM arc crust, however, have relatively flat rare-earth patterns and low rare-earth concentrations compared with average continental crust. The averaged composition of the IBM crust, as a whole, differs markedly from that suggested by studies of the velocity structure of the central Aleutian arc. If the continental crust was generated in oceanic island arc settings throughout the history of the Earth, then its sources were significantly more enriched in LREE than the sources for the Cenozoic IBM arcs.

  12. Proposed Perrier Ocean for Enceladus

    NASA Image and Video Library

    2010-10-04

    A graphic laid atop an image of Enceladus jets taken by NASA Cassini imaging cameras shows bubbles in seawater traveling through a passage in the ice crust to feed a geyser. Seawater flows back down to the subsurface ocean through cracks in the ice.

  13. Seismic velocity structures of the transitional crust across the northeastern margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Xiaoli, W.; Li, C. F.

    2017-12-01

    A wide-angle OBS profile (OBS2016-2) was simulated by using forward method, in order to investigate the structures of the transition crust across the northeastern margin of the South China Sea (SCS). Reflection and refraction data recorded at 14 ocean bottom seismometers (OBS) along the NW-SE profile of 320 km long are integrated to image the Cenozoic (1.7-3.3 km/s) sediment and Mesozoic (4.2-5.3 km/s) sediment at northeastern Chaoshan Depression, the upper (5.5 km/s-6.3 km/s) and lower (6.4 km/s-6.9 km/s) crust successfully. The 2-D velocity-depth models are obtained by using the 2-D forward ray-tracing RayInvr software (Zelt and Smith, 1992). The initial model is established based on single channel seismic profile, the seismic phases of the 14 OBSs and the regional geologic and geophysical data. The velocity model reveals that the thickness of sediment (1.2-5.5 km) varies strongly from onshore to offshore due to the seafloor spreading of the SCS. Several relict volcanoes are identified in the upper crust (2.1-8.1 km) by single channel seismic data acquisited along the same profile. The depth of MOHO interface in the velocity model decreases seaward gradually from 26.8 to 10.8 km. Ocean-continent transition zone in the northeastern margin of the SCS is characterized by several volcanoes and igneous rocks in the upper crust.

  14. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts

    NASA Astrophysics Data System (ADS)

    Little, S. H.; Sherman, D. M.; Vance, D.; Hein, J. R.

    2014-06-01

    The isotopic systems of the transition metals are increasingly being developed as oceanic tracers, due to their tendency to be fractionated by biological and/or redox-related processes. However, for many of these promising isotope systems the molecular level controls on their isotopic fractionations are only just beginning to be explored. Here we investigate the relative roles of abiotic and biotic fractionation processes in controlling modern seawater Cu and Zn isotopic compositions. Scavenging to Fe-Mn oxides represents the principal output for Cu and Zn to sediments deposited under normal marine (oxic) conditions. Using Fe-Mn crusts as an analogue for these dispersed phases, we investigate the phase association and crystal chemistry of Cu and Zn in such sediments. We present the results of an EXAFS study that demonstrate unequivocally that Cu and Zn are predominantly associated with the birnessite (δ-MnO2) phase in Fe-Mn crusts, as previously predicted from sequential leaching experiments (e.g., Koschinsky and Hein, 2003). The crystal chemistry of Cu and Zn in the crusts implies a reduction in coordination number in the sorbed phase relative to the free metal ion in seawater. Thus, theory would predict equilibrium fractionations that enrich the heavy isotope in the sorbed phase (e.g., Schauble, 2004). In natural samples, Fe-Mn crusts and nodules are indeed isotopically heavy in Zn isotopes (at ∼1‰) compared to deep seawater (at ∼0.5‰), consistent with the predicted direction of equilibrium isotopic fractionation based on our observations of the coordination environment of sorbed Zn. Further, ∼50% of inorganic Zn‧ is chloro-complexed (the other ∼50% is present as the free Zn2+ ion), and complexation by Cl- is also predicted to favour equilibrium partitioning of light Zn isotopes into the dissolved phase. The heavy Zn isotopic composition of Fe-Mn crusts and nodules relative to seawater can therefore be explained by an inorganic fractionation during

  15. Tectonic escape in the evolution of the continental crust

    NASA Technical Reports Server (NTRS)

    Burke, K.; Sengor, C.

    1986-01-01

    The continental crust originated by processes similar to those operating today and continents consist of material most of which originated long ago in arc-systems that have later been modified, especially at Andean margins and in continental collisions where crustal thickening is common. Collision-related strike-slip motion is a general process in continental evolution. Because buoyant continental (or arc) material generally moves during collision toward a nearby oceanic margin where less buoyant lithosphere crops out, the process of major strike-slip dominated motion toward a 'free-face' is called 'tectonic escape'. Tectonic escape is and has been an element in continental evolution throughout recorded earth-history. It promotes: (1) rifting and the formation of rift-basins with thinning of thickened crust; (2) pervasive strike-slip faulting late in orogenic history which breaks up mountain belts across strike and may juxtapose unrelated sectors in cross-section; (3) localized compressional mountains and related foreland-trough basins.

  16. Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm

    NASA Astrophysics Data System (ADS)

    Anokhin, Vladimir; Kholmianskii, Mikhail

    2014-05-01

    Seismofocal zones and mid-ocean ridges - look outside of the plate paradigm Vladimir M. Anokhin, Mikhail A. Kholmianskii Configuration of the seismofocal zones (SFZ), visible in a real position of the focuses of earthquakes, has a significant step component (jagged) expressed by the presence of several sub-horizontal "seismoplanes", which concentrates focuses of earthquakes (depths 10, 35 km and other). Orientation of seismolines inside of SFZ tends to 4 main directions: 0-5 dgr, 120-145 dgr, 40-55 dgr, 85-90 dgr. These facts suggest significantly block, a terraced structure of the body of Benioff zone. The borders of blocks have orientation according directions regmatic net of the Earth. In accordance with this, SFZ can be presented as the most active segments of the border of the crossing: «continent-ocean», having the following properties: - block (terraced) structure; - in some sites - dive under the continental crust (in present time); - prevailing compression (in present time), perhaps, as the period of the oscillatory cycle; Infinite "subduction" in SFZ is unlikely. One of the areas where there is proof of concept of far "spreading" is the southernmost tip of the mid-oceanic Gakkel ridge in the Laptev sea (Arctic ocean). Here active "spreading" ridge normal approaches to the boundary of the continental crust - the shelf of the Laptev sea. On the shelf there are a number of subparallel NW grabens. NE fault zone Charlie, controlling the continental slope is established stepped fault without shift component. This means that the amount of extending of the offshore grabens does not significantly differ from the scale of spreading in the Gakkel ridge. However, the total spreads grabens (50-100 km) 6-10 times less than the width of the oceanic crust (600 km) in the surrounding area. Conclusion: the oceanic crust in the Laptev sea was formed mainly not due to "spreading". It is very likely that here was sinking and the processing of continental crust in the ocean

  17. Continental crust

    USGS Publications Warehouse

    Pakiser, L.C.

    1964-01-01

    The structure of the Earth’s crust (the outer shell of the earth above the M-discontinuity) has been intensively studied in many places by use of geophysical methods. The velocity of seismic compressional waves in the crust and in the upper mantle varies from place to place in the conterminous United States. The average crust is thick in the eastern two-thirds of the United States, in which the crustal and upper-mantle velocities tend to be high. The average crust is thinner in the western one-third of the United States, in which these velocities tend to be low. The concept of eastern and western superprovinces can be used to classify these differences. Crustal and upper-mantle densities probably vary directly with compressional-wave velocity, leading to the conclusion that isostasy is accomplished by the variation in densities of crustal and upper-mantle rocks as well as in crustal thickness, and that there is no single, generally valid isostatic model. The nature of the M-discontinuity is still speculative.

  18. Generation of felsic crust in the Archean: a geodynamic modeling perspective

    NASA Astrophysics Data System (ADS)

    Sizova, Elena; Gerya, Taras; Stüwe, Kurt; Brown, Michael

    2015-04-01

    The relevance of contemporary tectonics to the formation of the Archean terrains is a matter of vigorous debate. Higher mantle temperatures and higher radiogenic heat production in the past would have impacted on the thickness and composition of the oceanic and continental crust. As a consequence of secular cooling, there is generally no modern analog to assist in understanding the tectonic style that may have operated in the Archean. For this reason, well-constrained numerical modeling, based on the fragmentary evidence preserved in the geological record, is the most appropriate tool to evaluate hypotheses of Archean crust formation. The main lithology of Archean terrains is the sodic tonalite-trondhjemite-granodiorite (TTG) suite. Melting of hydrated basalt at garnet-amphibolite to eclogite facies conditions is considered to be the dominant process for the generation of the Archean TTG crust. Taking into account geochemical signatures of possible mantle contributions to some TTGs, models proposed for the formation of Archean crust include subduction, melting at the bottom of thickened continental crust and fractional crystallization of mantle-derived melts under water-saturated conditions. We evaluated these hypotheses using a 2D coupled petrological-thermomechanical numerical model with initial conditions appropriate to the Eoarchean-Mesoarchean. As a result, we identified three tectonic settings in which intermediate to felsic melts are generated by melting of hydrated primitive basaltic crust: 1) delamination and dripping of the lower primitive basaltic crust into the mantle; 2) local thickening of the primitive basaltic crust; and, 3) small-scale crustal overturns. In addition, we consider remelting of the fractionated products derived from underplated dry basalts as an alternative mechanism for the formation of some Archean granitoids. In the context of a stagnant lid tectonic regime which is intermittently terminated by short-lived subduction, we identified

  19. Shallow Moho with aseismic upper crust and deep Moho with seismic lower crust beneath the Japanese Islands obtained by seismic tomography using data from dense seismic network

    NASA Astrophysics Data System (ADS)

    Matsubara, Makoto; Obara, Kazushige

    2015-04-01

    P-wave seismic velocity is well known to be up to 7.0 km/s and over 7.5 km/s in the lower crust and in the mantle, respectively. A large velocity gradient is the definition of the Moho discontinuity between the crust and mantle. In this paper, we investigates the configuration of Moho discontinuity defined as an isovelocity plane with large velocity gradient derived from our fine-scale three-dimensional seismic velocity structure beneath Japanese Islands using data obtained by dense seismic network with the tomographic method (Matsubara and Obara, 2011). Japanese Islands are mainly on the Eurasian and North American plates. The Philippine Sea and Pacific plates are subducting beneath these continental plates. We focus on the Moho discontinuity at the continental side. We calculate the P-wave velocity gradients between the vertical grid nodes since the grid inversion as our tomographic method does not produce velocity discontinuity. The largest velocity gradient is 0.078 (km/s)/km at velocities of 7.2 and 7.3 km/s. We define the iso-velocity plane of 7.2 km/s as the Moho discontinuity. We discuss the Moho discontinuity above the upper boundary of the subducting oceanic plates with consideration of configuration of plate boundaries of prior studies (Shiomi et al., 2008; Kita et al., 2010; Hirata et al, 2012) since the Moho depth derived from the iso-velocity plane denotes the oceanic Moho at the contact zones of the overriding continental plates and the subducting oceanic plates. The Moho discontinuity shallower than 30 km depth is distributed within the tension region like northern Kyushu and coastal line of the Pacific Ocean in the northeastern Japan and the tension region at the Cretaceous as the northeastern Kanto district. These regions have low seismicity within the upper crust. Positive Bouguer anomaly beneath the northeastern Kanto district indicates the ductile material with large density in lower crust at the shallower portion and the aseismic upper crust

  20. The Taitao Granites: I-type granites formed by subduction of the Chile Ridge and its implication in growth of continental crusts

    NASA Astrophysics Data System (ADS)

    Anma, Ryo

    2016-04-01

    Late Miocene to Early Pliocene granite plutons are exposed at the tip of the Taitao peninsula, the westernmost promontory of the Chilean coast, together with a contemporaneous ophiolite with a Penrose-type stratigraphy. Namely, the Taitao granites and the Taitao ohiolite, respectively, are located at ~30 km southeast of the Chile triple junction, where a spreading center of the Chile ridge system is subducting underneath the South America plate. This unique tectonic setting provides an excellent opportunity to study the generation processes of granitic magmas at a ridge subduction environment, and the complex magmatic interactions between the subducting ridge, overlying crust and sediments, and mantle. This paper reviews previous studies on the Taitao ophiolite/granite complex and use geochemical data and U-Pb age distributions of zircons separated from igneous and sedimentary rocks from the area to discuss the mechanism that formed juvenile magma of calc-alkaline I-type granites during ridge subduction. Our model implies that the magmas of the Taitao granites formed mainly due to partial melting of hot oceanic crust adjacent to the subducting mid-oceanic ridge that has been under influence of deep crustal contamination and/or metasomatized sub-arc mantle through slab window. The partial melting took place under garnet-free-amphibolite conditions. The juvenile magmas then incorporated a different amount of subducted sediments to form the I-type granites with various compositions. The Taitao granites provide an ideal case study field that shows the processes to develop continental crusts out of oceanic crusts through ridge subduction.

  1. Biological Soil Crust Web Site

    Science.gov Websites

    www.soilcrust.org Crust 101 Advanced Gallery References CCERS site Links Biological Soil Crusts Textbook Corrections Level of Development Index Biological soil crusts are the community of organisms , mosses, liverworts and lichens. A Field Guide to Biological Soil Crusts of Western U.S. Drylands: Common

  2. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts

    USGS Publications Warehouse

    Von Blanckenburg, F.; O'Nions, R. K.; Belshaw, N.S.; Gibb, A.; Hein, J.R.

    1996-01-01

    The direct measurement of the ratio of cosmogenic 10Be (T1/2 = 1.5 Ma) to stable terrigenously sourced 9Be in deep seawater or marine deposits can be used to trace water mass movements and to quantify the incorporation of trace metals into the deep sea. In this study a SIMS-based technique has been used to determine the 10Be/9Be ratios of the outermost millimetre of hydrogenetic ferromanganese crusts from the worlds oceans. 10Be/9Be ratios, time-corrected for radioactive decay of cosmogenic 10Be using 234U/ 238U, are in good agreement with AMS measurements of modern deep seawater. Ratios are relatively low in the North and equatorial Atlantic samples (0.4-0.5 ?? 10-7). In the Southwest Atlantic ratios increase up to 1 ?? 10-7, they vary between 0.7 and 1.0 ?? 10-7 in Indian Ocean samples, and have a near constant value of 1.1 ?? 0.2 ?? 10-7 for all Pacific samples. If the residence time of 10Be (??10Be) in deep water is constant globally, then the observed variations in 10Be/9Be ratios could be caused by accumulation of 10Be in deep water as it flows and ages along the conveyor, following a transient depletion upon its formation in the Northern Atlantic. In this view both 10Be and 9Be reach local steady-state concentration in Pacific deep water and the global ??10Be ??? 600 a. An alternative possibility is that the Be isotope abundances are controlled by local scavenging. For this scenario ??10Be would vary according to local particle concentration and would ??? 600 a in the central Pacific, but ??10Be ??? 230 a in the Atlantic. Mass balance considerations indicate that hydrothermal additions of 9Be to the oceans are negligible and that the dissolved riverine source is also small. Furthermore, aeolian dust input of 9Be appears insufficient to provide the dissolved Be inventory. The dissolution of only a small proportion (2%) of river-derived particulates could in principle supply the observed seawater Be content. If true, ocean margins would be the sites for 9Be

  3. Biological Soil Crust Technical Reference

    Science.gov Websites

    Technical Reference Our understanding of the biology, ecology and physiology of biological soil crusts has published studies on soil crusts. The attached PDF file is a 90-page report that summarizes our current state of knowledge about biological soil crusts, with emphasis on crusts found in the western United

  4. Towards Solving the Conundrum of Fast-Spread Ocean Crust Formation: Insights from Textural Analysis of Gabbroic Rocks from Pito Deep and Hess Deep, East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Brown, T. C.; Cheadle, M. J.; John, B. E.; Coogan, L. A.; Gee, J. S.; Karson, J. A.; Meyer, R.; Ceuleneer, G.; Swapp, S.

    2014-12-01

    Few examples of in situ fast-spread lower ocean crust exist for sampling. Here we present detailed textural analyses of two sample sets that formed at the East Pacific Rise, collected from tectonic windows at Pito (PD) and Hess (HD) deeps. PD samples (collected by ROV) span the upper ~900 m of lower crust. HD samples (collected by seafloor drilling during IODP Exp. 345) come from >1500 m below the sheeted dike gabbro transition (mbsd). PD gabbroic rock textures are consistent with a gabbro glacier flow model generating the uppermost plutonic crust. Shallow samples (41-72 mbsd) likely formed at the distal edge of the magma lens, analogous to similar rocks from Oman. These gabbros are relatively evolved (cpx Mg#75-77, An53-61 and 1-4% Fe-Ti oxides), and have elongate plagioclase grains (aspect ratios up to 1:2:10) exhibiting a strong shape preferred orientation (SPO) with <40% of grains showing dislocation creep textures. Deeper samples (177-876 mbsd) likely began crystallizing in the magma lens then subsided and 'flowed' through the underlying mush zone. These gabbros are more primitive below 386 mbsd (Fo83-88, cpx Mg# 85-89 and An70-82), and plagioclase grains have more equilibrated morphologies (aspect ratios < 1:2:6) that define ~vertical SPOs which increase in strength with depth. Plagioclase exhibits magmatic crystal-lattice preferred orientations (CPOs) which are also vertical. Significantly, the proportion of grains showing dislocation creep textures increases with depth, and plagioclase grain size distributions show a smaller range of sizes at depth; observations that perhaps reflect the effect of increasing strain with depth. IODP Hole U1415I at HD recovered gabbros and troctolitic gabbros from the mid lower crust that show distinctive cm-dm scale modal layering. Strong plagioclase SPOs parallel layering and magmatic CPOs vary dramatically in strength over just 4.5 m of core. Plagioclase grains are relatively equant (aspect ratios < 1:2:4), wrap around

  5. The potential hydrothermal systems unexplored in the Southwest Indian Ocean

    NASA Astrophysics Data System (ADS)

    Suo, Yanhui; Li, Sanzhong; Li, Xiyao; Zhang, Zhen; Ding, Dong

    2017-06-01

    Deep-sea hydrothermal vents possess complex ecosystems and abundant metallic mineral deposits valuable to human being. On-axial vents along tectonic plate boundaries have achieved prominent results and obtained huge resources, while nearly 90% of the global mid-ocean ridge and the majority of the off-axial vents buried by thick oceanic sediments within plates remain as relatively undiscovered domains. Based on previous detailed investigations, hydrothermal vents have been mapped along five sections along the Southwest Indian Ridge (SWIR) with different bathymetry, spreading rates, and gravity features, two at the western end (10°-16°E Section B and 16°-25°E Section C) and three at the eastern end (49°-52°E Section D, 52°-61°E Section E and 61°-70°E Section F). Hydrothermal vents along the Sections B, C, E and F with thin oceanic crust are hosted by ultramafic rocks under tectonic-controlled magmatic-starved settings, and hydrothermal vents along the Section D are associated with exceed magmatism. Limited coverage of investigations is provided along the 35°-47°E SWIR (between Marion and Indomed fracture zones) and a lot of research has been done around the Bouvet Island, while no hydrothermal vents has been reported. Analyzing bathymetry, gravity and geochemical data, magmatism settings are favourable for the occurrence of hydrothermal systems along these two sections. An off-axial hydrothermal system in the southern flank of the SWIR that exhibits ultra-thin oceanic crust associated with an oceanic continental transition is postulated to exist along the 100-Ma slow-spreading isochron in the Enderby Basin. A discrete, denser enriched or less depleted mantle beneath the Antarctic Plate is an alternative explanation for the large scale thin oceanic crust concentrated on the southern flank of the SWIR.

  6. Biogenesis and early life on Earth and Europa: favored by an alkaline ocean?

    PubMed

    Kempe, Stephan; Kazmierczak, Jozef

    2002-01-01

    Recent discoveries about Europa--the probable existence of a sizeable ocean below its ice crust; the detection of hydrated sodium carbonates, among other salts; and the calculation of a net loss of sodium from the subsurface--suggest the existence of an alkaline ocean. Alkaline oceans (nicknamed "soda oceans" in analogy to terrestrial soda lakes) have been hypothesized also for early Earth and Mars on the basis of mass balance considerations involving total amounts of acids available for weathering and the composition of the early crust. Such an environment could be favorable to biogenesis since it may have provided for very low Ca2+ concentrations mandatory for the biochemical function of proteins. A rapid loss of CO2 from Europa's atmosphere may have led to freezing oceans. Alkaline brine bubbles embedded in ice in freezing and impact-thawing oceans could have provided a suitable environment for protocell formation and the large number of trials needed for biogenesis. Understanding these processes could be central to assessing the probability of life on Europa.

  7. Magnetic Properties and Absolute Paleointensity of Upper Oceanic Crust Generated by Superfast Seafloor Spreading, ODP Leg 209.

    NASA Astrophysics Data System (ADS)

    Herrero-Bervera, E.; Acton, G.

    2005-12-01

    We investigate the magnetic mineralogy and absolute paleointensity of oceanic basalt samples from Hole 1256D, cored during Ocean Drilling Program (ODP) Leg 206. Hole 1256D is located on the Cocos Plate about 5 km east of the transition zone between marine magnetic anomalies 5Bn.2n and 5Br (~15 Ma). During Leg 206, the hole penetrated 502 m into basalts of the upper oceanic crust that was generated by superfast seafloor spreading (>200 mm/yr) along the East Pacific Rise. Rock magnetic investigations included continuous low field (k-T) thermomagnetic analyses, alternating field (AF) and thermal demagnetization, optical microscopy, saturation isothermal remanent magnetization (SIRM), and magnetic grain size analyses. Following the removal of a drilling overprint, AF and thermal demagnetization paths for most samples decay linearly to the origin on orthogonal vector end point diagrams, suggesting that a stable characteristic remanent magnetization component can be resolved. Optical microscopy and k-T (Curie points) identified titanomagnetites and titanomaghemites as the main magnetic carriers and grain size studies indicate that the carriers are either single domain (SD) and/or pseudosingle domain (PSD) in nature. Using the modified Thellier-Coe double heating method, we determined absolute paleointensity determinations for 51 specimens sampled from different ``stratigraphic'' levels of the core. pTRM checks were performed systematically one temperature step down the last pTRM acquisition in order to document magnetomineralogical changes during heating. The temperature was incremented by steps of 50°C between room temperature and 500°C and every 25-30°C for higher temperatures. The paleointensity determinations were obtained from the slope of the Arai diagrams. Special care was taken to interpret the Arai diagrams within the same range of temperatures lower than 300°C unless a clear and unique slope was present over a higher range of temperatures. Only about 10

  8. Models of a partially hydrated Titan interior with a clathrate crust

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.; Castillo-Rogez, J. C.; Choukroun, M.; Sotin, C.

    2012-04-01

    We present a model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan’s history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consists of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the perched liquid water ocean. The most recent version of our model accounts for the likely presence of large amounts of methane in the upper crust invoked to explain methane’s persistence at present and through geologic time (Tobie et al. 2006). The methane-rich crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, the insulating effect of the methane clathrate crust could have delayed the formation of the high-pressure layer, resulting in the interaction of liquid water with the silicate core for extended periods of time. Although a high-pressure ice layer is likely in place today, it is thin enough that plumes of hot water from the dehydrating core probably breach that layer. The implications of such a deep hydrothermal system for the later stages of the evolution of Titan’s interior and surface will be discussed. Part of this work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Government sponsorship acknowledged. References: Castillo-Rogez, J., Lunine, J.: “Evolution of Titan’s rocky core constrained by Cassini observations”. GRL, Vol. 37, L20205, 2010. Iess, L., et al.:

  9. Are the Element Budget and the Occurrence of Polymetallic Nodules influenced by Fluids Circulating through the Oceanic Crust or/and Sediments?

    NASA Astrophysics Data System (ADS)

    Heller, C.; Kuhn, T.

    2016-12-01

    Hydrothermal fluids can extract significant amounts of heat from oceanic lithosphere by lateral fluid flow through permeable basaltic crust of an age of up to 65 Ma. Fluid recharge and discharge occur at basement outcrops in between impermeable pelagic sediments. Recharge of oxic seawater causes upward oxygen diffusion into sediments overlying the permeable basalt in areas proximal to recharge sites. It is suggested that this oxygen have a strong impact on sediments and Mn nodules during fluid exposure time. The aim of this study is to investigate if and how fluid flow through oceanic crust influence the distribution and element budget of the Mn nodules. For that purpose, Mn nodules were examined which were collected during the research cruise SO240 in the equatorial NE Pacific at sites with and without faults in the upper basement and overlying sediments. Faults are thought to be preferred fluid pathways. Nodules were found on the sediment surface as well as in the sediment and consist of different nm- to µm-thick, dense and porous layers. The geochemical composition of bulk nodules and single nodule layers were determined by XRF, ICP-MS/OES and by high resolution analyses with EMPA and LA-ICP-MS. Dense layers have low Mn/Fe ratios (<4) and high concentrations of Co, Zr and REY, while porous layers are characterized by high Mn/Fe ratios (> 10) and high Ni+Cu and Li concentrations (Koschinsky et al., 2010; Kuhn et al., 2010). The different compositions depends on different formation processes of the layers. Dense layers are formed by element precipitation from oxygen rich seawater and/or pore water and are called hydrogenetic, while porous layers were formed by precipitation from almost oxygen-free (suboxic) pore water (Burns & Burns, 1978; Glasby, 2006) and are called diagenetic (Halbach et al., 1988). Preliminary results show that there are significant differences between the geochemical composition of nodules grown at sediment surface and those found within

  10. High-Silica Hadean Crust

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Bell, E. A.; Stephan, T.; Trappitsch, R.; Keller, C. B.; Pardo, O. S.; Davis, A. M.; Harrison, M.; Pellin, M. J.

    2017-12-01

    Understanding Hadean (>4 Ga) Earth requires knowledge of its crust. The composition of the crust and volatiles migrating through it directly influence the makeup of the atmosphere, the composition of seawater, and nutrient availability. Despite its importance, there is little known and less agreed upon regarding the nature of the Hadean crust. For example, compilations of whole-rock elemental abundances suggest to some a dominantly mafic crust, while the geochemistry and inclusions in Hadean zircons suggest the existence of felsic crust and possibly even life. We address this question by analyzing the 87Sr/86Sr ratio of apatite inclusions in Archean zircons from Nuvvuagittuq, Canada, using the Chicago Instrument for Laser Ionization (CHILI). Our results show that the protolith of the Nuvvuagittuq zircons had formed a reservoir with a high (>1) Rb/Sr ratio by 4.4 Ga. The Rb/Sr ratio of this reservoir is too high to be explained by only a mafic crust or a terrestrial "KREEP" layer. Indeed, high Rb/Sr ratios only occur in high SiO2 rocks, and our data suggests that the 4.4 Ga Nuvvuagittuq source was felsic rather than mafic. Specifically, our results suggest that the 4.4 Ga Nuvvuagittuq protolith was of rhyolitic compositions. This finding implies that the early crust had a broad range of igneous rocks, extending from mafic to highly silicic compositions.

  11. Crustal accretion along the global mid-ocean ridge system based on basaltic glass and olivine-hosted melt inclusion compositions

    NASA Astrophysics Data System (ADS)

    Wanless, V. D.; Behn, M. D.

    2015-12-01

    The depth and distribution of crystallization at mid-ocean ridges controls the overall architecture of the oceanic crust, influences hydrothermal circulation, and determines geothermal gradients in the crust and uppermost mantle. Despite this, there is no overall consensus on how crystallization is distributed within the crust/upper mantle or how this varies with spreading rate. Here, we examine crustal accretion at mid-ocean ridges by combining crystallization pressures calculated from major element barometers on mid-ocean ridge basalt (MORB) glasses with vapor-saturation pressures from melt inclusions to produce a detailed map of crystallization depths and distributions along the global ridge system. We calculate pressures of crystallization from >11,500 MORB glasses from the global ridge system using two established major element barometers (1,2). Additionally, we use vapor-saturation pressures from >400 olivine-hosted melt inclusions from five ridges with variable spreading rates to constrain pressures and distributions of crystallization along the global ridge system. We show that (i) crystallization depths from MORB glasses increase and become less focused with decreasing spreading rate, (ii) maximum glass pressures are greater than the maximum melt inclusion pressure, which indicates that the melt inclusions do not record the deepest crystallization at mid-ocean ridges, and (iii) crystallization occurs in the lower crust/upper mantle at all ridges, indicating accretion is distributed throughout the crust at all spreading rates, including those with a steady-state magma lens. Finally, we suggest that the remarkably similar maximum vapor-saturation pressures (~ 3000 bars) in melt inclusion from all spreading rates reflects the CO2 content of the depleted upper mantle feeding the global mid-ocean ridge system. (1) Michael, P. & W. Cornell (1998), Journal of Geophysical Research, 103(B8), 18325-18356; (2) Herzberg, C. (2004), Journal of Petrology, 45(12), 2389.

  12. Evidence from Ocean Drilling Program Leg 149 mafic igneous rocks for oceanic crust in the Iberia Abyssal Plain ocean-continent transition zone

    NASA Astrophysics Data System (ADS)

    Seifert, Karl E.; Chang, Cheng-Wen; Brunotte, Dale A.

    1997-04-01

    Leg 149 of the Ocean Drilling Program explored the ocean-continent transition (OCT) on the Iberia Abyssal Plain and its role in the opening of the Atlantic Ocean approximately 130 Ma. Mafic igneous rocks recovered from Holes 899B and 900A have Mid-Ocean Ridge Basalt (MORB) trace element and isotopic characteristics indicating that a spreading center was active during the opening of the Iberia Abyssal Plain OCT. The Hole 899B weathered basalt and diabase clasts have transitional to enriched MORB rare earth element characteristics, and the Hole 900A metamorphosed gabbros have MORB initial epsilon Nd values between +6 and +11. During the opening event the Iberia Abyssal Plain OCT is envisioned to have resembled the central and northern parts of the present Red Sea with localized spreading centers and magma chambers producing localized patches of MORB mafic rocks. The lack of a normal ocean floor magnetic anomaly pattern in the Iberia Abyssal Plain means that a continuous spreading center similar to that observed in the present southern Red Sea was not formed before spreading ceased in the Iberia Abyssal Plain OCT and jumped to the present Mid-Atlantic Ridge.

  13. How Much Ocean Is Left Between Libya and Crete

    NASA Astrophysics Data System (ADS)

    Makris, J.; Yegorova, T.

    The intense deformation of the Hellenides is due to crustal shortening and the collision between the European and African Plates. This processes creates the Mediterranean accretionary wedge known as Mediterranean Ridge, which is composed of thick sedi- mentary sequences exceeding 10 km in thickness. The stage of this collision has been under dispute for many years. We performed wide aperture seismic soundings between Crete and Libya along 5 seismic lines. The results were used to constrain gravity mod- elling and develop density models in 2D and 3D between Libya and the Cretan Sea. We identified the limits of the European continental crust extending south of Crete for more than 100 km and building the backstop of the sediment accumulation . The African continental crust extends to the north for about 80 to 100 km, so that the remaining space floored by the oceanic Thethian basement is at its narrowest point not more than 100 to 120 km wide. By modelling in 3D the gravity field of the sedi- ments, crust and uppermost mantle we identified significant variations of the density distribution of the upper mantle. The young intensely deforming area of the Aegean domain is floored by low density upper mantle due to the mobilization of magma and the activation of the thermal regime. The subducted cold oceanic slab sinks below the Cretan crust in NE orientation and is decupled from the continental crust between central Crete and the southeastern edge of the Peloponnese. The deformation of the sediments controlled by the compressional processes have their maximum accumu- lation at the limits of the backstop. Here the transition of the deep trough to the flat and nearly undeformed sedimentary sequence is very abrupt and the transition oc- curs along vertical displacements of 6 to 8 km near vertical throw. Near the southern transition of the oceanic crust to the African continental domain obducted ophiolites extend over large areas explaining gravity highs and also observed

  14. Self-Consistent Generation of Primordial Continental Crust in Global Mantle Convection Models

    NASA Astrophysics Data System (ADS)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2017-12-01

    We present the generation of primordial continental crust (TTG rocks) using self-consistent and evolutionary thermochemical mantle convection models (Tackley, PEPI 2008). Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other. However in most studies, continents are inserted a priori while basaltic (oceanic) crust is generated self-consistently in some models (Lourenco et al., EPSL 2016). Formation of primordial continental crust happened by fractional melting and crystallisation in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006) and it has also been linked to the onset of plate tectonics around 3 Ga. It takes several stages of differentiation to generate Tonalite-Trondhjemite-Granodiorite (TTG) rocks or proto-continents. First, the basaltic magma is extracted from the pyrolitic mantle which is both erupted at the surface and intruded at the base of the crust. Second, it goes through eclogitic transformation and then partially melts to form TTGs (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs account for the majority of the Archean continental crust. Based on the melting conditions proposed by Moyen (Lithos 2011), the feasibility of generating TTG rocks in numerical simulations has already been demonstrated by Rozel et al. (Nature, 2017). Here, we have developed the code further by parameterising TTG formation. We vary the ratio of intrusive (plutonic) and extrusive (volcanic) magmatism (Crisp, Volcanol. Geotherm. 1984) to study the relative volumes of three petrological TTG compositions as reported from field data (Moyen, Lithos 2011). Furthermore, we systematically vary parameters such as friction coefficient, initial core temperature and composition-dependent viscosity to investigate the global tectonic regime of early Earth. Continental crust can also be destroyed by subduction or delamination. We will investigate

  15. New Estimates of Rhenium in the Crust: Implications for Mantle Re-Os Budgets

    NASA Astrophysics Data System (ADS)

    Bennett, V. C.; Sun, W.

    2002-12-01

    The 187Re-187Os isotopic system has provided a new probe of mantle chemical structure with, for example, now numerous studies balancing estimates of the Os isotopic compositions of the upper modern mantle with sizes and ages of proposed conjugate reservoirs stored within the deep mantle. This style of modeling is dependent upon estimates of the parent Re in the various reservoirs including total crust, upper mantle, MORB and ocean island basalts. New laser ICP-MS in situ and ID whole rock results from OIB, arc and back-arc basalts suggest Re concentrations in oceanic and crustal domains may have been greatly underestimated. For example Hawaiian OIBs show a clear distinction between subaerial and submarine erupted samples with the latter having Re much closer to the higher MORB estimates (1) than to previous OIB estimates. This difference has been attributed to Re volatility and loss during syn- and post-eruption degassing of subaerial samples. Recent work has produced similar results for submarine arc samples using both dredged glasses and melt inclusions in olivines from primitive basalts. Both have much higher average Re (ca. 1.5 and 3.4 ppb; 2,3) than literature values for arcs (ca. 0.30ppb) determined largely from sub-aerial samples, or for average crust estimated from loess (0.2 ppb; 4). If the undegassed arc samples are representative, then the total crust may have more than 5 times the Re previously estimated. Re lost during arc eruptions may ultimately be concentrated in anoxic seafloor sediments. Prior under-estimates may be linked to the extremely heterogeneous concentration (> 5 orders of magnitude) of the chalcophile, redox sensitive Re in crustal environments. If the residence time of high Re in the crust is long (>1 Ga) then, 1) much smaller reservoirs of stored Re in the deep mantle are required to balance Re depletions in the upper mantle, and 2) significant portions of the upper mantle are likely Re depleted. Alternatively Re may be rapidly

  16. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts

    USGS Publications Warehouse

    Ling, H.F.; Burton, K.W.; O'Nions, R. K.; Kamber, B.S.; Von Blanckenburg, F.; Gibb, A.J.; Hein, J.R.

    1997-01-01

    Hydrogenetic ferromanganese crusts incorporate elements from ambient seawater during their growth on seamounts. By analysing Nd, Pb and Be isotope profiles within crusts it is possible to reconstruct seawater tracer histories. Depth profiles of 10Be/9Be ratios in three Pacific ferromanganese crusts have been used to obtain growth rates which are between 1.4 and 3.8 mm/Ma. Nd and Pb isotopes provide intact records of isotopic variations in Pacific seawater over the last 20 Ma or more. There were only small changes in Pb isotope composition in the last 20 Ma. This indicates a constant Pb composition for the erosional sources and suggests further that erosional Nd inputs may have been uniform too. ??ND values vary considerably with time and most probably reflect changes in ocean circulation. The ??ND values of the crusts not only vary as a function of age but also as a function of water depth. From 25 to 0 Ma, crust VA13/2 from 4.8 km water depth has a similar pattern of ??ND variation to the two shallower crusts from 1.8 and 2.3 km, but about 1.0 to 1.5 units more negative. This suggests that ??ND stratification in Pacific seawater, as demonstrated for the present day, has been maintained for at least 20 Ma. Each crust shows a decrease in ??ND from 3-5 Ma to the present, which is interpreted in terms of an increase in the NADW component present in the Pacific. From 10 to 3-5 Ma ago the crusts show an increase in ??ND. This suggests a decreasing role for a deep water source with ??ND less than circum-Pacific sources. In this regard the Panamanian gateway restriction from ???10 Ma with final closure at 3-5 Ma may have played an important role in reducing access of Atlantic-derived Nd to the Pacific.

  17. Gravity anomalies and associated tectonic features over the Indian Peninsular Shield and adjoining ocean basins

    NASA Astrophysics Data System (ADS)

    Mishra, D. C.; Arora, K.; Tiwari, V. M.

    2004-02-01

    A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW-SE, NE-SW and N-S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35-40 km under the continent, which reduces to 22/20-24 km under the Bay of Bengal with thick sediments of 8-10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m 3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150-200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5-6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m 3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent-ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge

  18. Rifting-to-drifting transition of the South China Sea: Moho reflection characteristics in continental-ocean transition zone

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Li, C.

    2017-12-01

    Dispute remains on the process of continental rifting to subsequent seafloor spreading in the South China Sea (SCS). Several crust-scale multi-channel seismic reflection profiles acquired in the continent-ocean transition zone (COT) of the SCS provide a detailed overview of Moho and deep crustal reflectors and give key information on rifting-to-drifting transition of the area. Moho has strong but discontinuous seismic reflection in COT. These discontinuities are mainly located in the landward side of continent-ocean boundary (COB), and may own to upwelling of lower crustal materials during initial continental extension, leading to numerous volcanic edifices and volcanic ridges. The continental crust in COT shows discontinuous Moho reflections at 11-8.5 s in two-way travel time (twtt), and thins from 18-20.5 km under the uppermost slope to 6-7 km under the lower slope, assuming an average crustal velocity of 6.0 km/s. The oceanic crust has Moho reflections of moderate to high continuity mostly at 1.8-2.2 s twtt below the top of the igneous basement, which means that the crustal thickness excluding sediment layer in COT is 5.4-6.6 km. Subhorizontal Moho reflections are often abruptly interrupted by large seaward dipping normal faults in southern COT but are more continuous compared with the fluctuant and very discontinuous Moho reflections in northern COT. The thickness of thinned continental crust (4.2-4.8 km) is smaller than that of oceanic crust (5.4-6.0 km) near southern COB, indicating that the continental crust has experienced a long period of rifting before seafloor spreading started. The smaller width of northern COT (0-40 km) than in southern COT (0-60 km), and thinner continental crust in southern COT, all indicate that the continental margin rifting and extension was asymmetric. The COT width in the SCS is narrower than that found in other magma-poor continental margins, indicating a swift transition from the final stage of rifting to the inception of

  19. Seismic Imaging of the Deep Crust in the Pull-Apart Basin off Maranhão-Barreirinhas-Ceará Margin, NW Brazil

    NASA Astrophysics Data System (ADS)

    Afilhado, Alexandra; Gallais, Flora; Moulin, Maryline; Schnürle, Philippe; Afonso Dias, Nuno; Soares, José; Loureiro, Afonso; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Matias, Luis; Evain, Mikael; Aslanian, Daniel

    2017-04-01

    Five profiles, with coincident multi-chanel and wide-angle seismic, were acquired during the MAGIC (Margins of brAsil, Ganha and Ivory Coast) cruise, in order to image the Maranhão-Barreirinhas-Ceará segment of the Brazilian Margins. The seismic experiment was conducted by Ifremer (Institut Français de Recherche pour l'Exploration de la Mer), UnB (University of Brasilia), FCUL (Faculdade de Ciencias da Universidade de Lisboa) and Petrobras. The main objective of the experiment is to understand the fundamental processes which lead to the thinning and breakup of the continental crust in a specific context of a pull-apart system, limited by two strike-slip borders. We present the main results evidenced by two of these profiles, MC3 and MC4, oriented in the directions of flow lines (E-W) and margin segmentation (SW-NE), respectively. The profile MC3 spans from the continental crust, near Sao Luis Craton, to the oceanic basin, north of Ceara. 31 Ocean Bottom Seismometers (OBS) from the Ifremer pool and 8 small arrays of 6 RefTek Land Seismic Stations (LSS) from the Brazilian pool were deployed in this profile, jointly with 400 km multi channel seismic acquisition. The profile MC4 spans from the Parnaiba and Barreirinhas Basins onshore to the oceanic basin, South of the Northern Brazilian Ridge. The MC4 seismic data includes 225 km multi channel seismic data and wide-angle data acquired in 19 OBS and 21 arrays of 3 LSS each, totaling a maximum source-receiver offset of 400 km. The analysis of these profiles evidence a NW-SE segmentation of the margin following the opening direction of this pull-apart basin, from unthinned continental crust (about 40 km thick) to thin oceanic crust. The width of the necking zone increases from about 50 km in the direction of flow-lines (MC3-Ilha da Santana margin), to more than 125 km in the direction of segmentation (MC4-Barreirinhas margin), at the corner of the pull-apart system, with two steps first in the upper crust then in

  20. Raising the continental crust

    NASA Astrophysics Data System (ADS)

    Campbell, Ian H.; Davies, D. Rhodri

    2017-02-01

    The changes that occur at the boundary between the Archean and Proterozoic eons are arguably the most fundamental to affect the evolution of Earth's continental crust. The principal component of Archean continental crust is Granite-Greenstone Terranes (GGTs), with granites always dominant. The greenstones consist of a lower sequence of submarine komatiites and basalts, which erupted onto a pre-existing Tonalite-Trondhjemite-Granodiorite (TTG) crust. These basaltic rocks pass upwards initially into evolved volcanic rocks, such as andesites and dacites and, subsequently, into reworked felsic pyroclastic material and immature sediments. This transition coincides with widespread emplacement of granitoids, which stabilised (cratonised) the continental crust. Proterozoic supra-crustal rocks, on the other hand, are dominated by extensive flat-lying platform sequences of mature sediments, which were deposited on stable cratonic basements, with basaltic rocks appreciably less abundant. The siliceous TTGs cannot be produced by direct melting of the mantle, with most hypotheses for their origin requiring them to be underlain by a complimentary dense amphibole-garnet-pyroxenite root, which we suggest acted as ballast to the early continents. Ubiquitous continental pillow basalts in Archean lower greenstone sequences require the early continental crust to have been sub-marine, whereas the appearance of abundant clastic sediments, at higher stratigraphic levels, shows that it had emerged above sea level by the time of sedimentation. We hypothesise that the production of komatiites and associated basalts, the rise of the continental crust, widespread melting of the continental crust, the onset of sedimentation and subsequent cratonisation form a continuum that is the direct result of removal of the continent's dense amphibole-garnet-pyroxenite roots, triggered at a regional scale by the arrival of a mantle plume at the base of the lithosphere. Our idealised calculations suggest

  1. Arctic Deep Water Ferromanganese-Oxide Deposits Reflect the Unique Characteristics of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe J.; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah R.; Till, Claire P.

    2017-11-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, and HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits. The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ˜15 Myr ago.

  2. Arctic deep-water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean

    USGS Publications Warehouse

    Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.

    2017-01-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.

  3. Opening of the Central Atlantic Ocean: Implications for Geometric Rifting and Asymmetric Initial Seafloor Spreading after Continental Breakup

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Biari, Y.; Sahabi, M.; Funck, T.; Benabdellouahed, M.; Schnabel, M.; Reichert, C. J.; Gutscher, M. A.; Bronner, A.; Austin, J. A., Jr.

    2017-12-01

    The structure of conjugate passive margins provides information about rifting styles, the initial phases of the opening of an ocean and the formation of its associated sedimentary basins. The study of the deep structure of conjugate passive continental margins combined with precise plate kinematic reconstructions can provide constraints on the mechanisms of rifting and formation of initial oceanic crust. In this study the Central Atlantic conjugate margins are compared, based on compilation of wide-angle seismic profiles from the NW-Africa Nova Scotian and US passive margins. Plate cinematic reconstructions were used to place the profiles in the position at opening and at the M25 magnetic anomaly. The patterns of volcanism, crustal thickness, geometry, and seismic velocities in the transition zone. suggest symmetric rifting followed by asymmetric oceanic crustal accretion. Conjugate profiles in the southern Central Atlantic image differences in the continental crustal thickness. While profiles on the eastern US margin are characterized by thick layers of magmatic underplating, no such underplate was imaged along the NW-African continental margin. It has been proposed that these volcanic products form part of the CAMP (Central Atlantic Magmatic Province). In the north, two wide-angle seismic profiles acquired in exactly conjugate positions show that the crustal geometry of the unthinned continental crust and the necking zone are nearly symmetric. A region including seismic velocities too high to be explained by either continental or oceanic crust is imaged along the Nova Scotia margin off Eastern Canada, corresponding on the African side to an oceanic crust with slightly elevated velocities. These might result from asymmetric spreading creating seafloor by faulting the existing lithosphere on the Canadian side and the emplacement of magmatic oceanic crust including pockets of serpentinite on the Moroccan margin. A slightly elevated crustal thickness along the

  4. Experimental Fractional Crystallization of the Lunar Magma Ocean

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2012-01-01

    The current paradigm for lunar evolution is of crystallization of a global scale magma ocean, giving rise to the anorthositic crust and mafic cumulate interior. It is thought that all other lunar rocks have arisen from this differentiated interior. However, until recently this paradigm has remained untested experimentally. Presented here are the first experimental results of fractional crystallization of a Lunar Magma Ocean (LMO) using the Taylor Whole Moon (TWM) bulk lunar composition [1].

  5. Christmas Island, Line Island Group, Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Christmas Island (2.0N,158.0W), mid central Pacific Ocean, is considered to be the largest atoll in the world, about 25 km in diameter, and is part of the Line Island Group, a northwest-southeast trending chain of volcanic islands on some of the oldest ocean crust in the Pacific. The lagoon is nearly filled with reef growth leaving only a narrow entrance from the sea and large cocoanut groves are found along the fringes of the lagoon.

  6. Oxygen isotopes in garnet and accessory minerals to constrain fluids in subducted crust

    NASA Astrophysics Data System (ADS)

    Rubatto, Daniela; Gauthiez-Putallaz, Laure; Regis, Daniele; Rosa Scicchitano, Maria; Vho, Alice; Williams, Morgan

    2017-04-01

    Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. Garnet and U-Pb accessory minerals constitute some of the most robust and ubiquitous minerals in subducted crust and can preserve multiple growth zones that track the metamorphic evolution of the sample they are hosted in. Microbeam investigation of the chemical (major and trace elements) and isotopic composition (oxygen and U-Pb) of garnet and accessory minerals is used to track significant fluid-rock interaction at different stages of the subduction system. This approach requires consideration of the diffusivity of oxygen isotopes particularly in garnet, which has been investigated experimentally. The nature of the protolith and ocean floor alteration is preserved in relict accessory phases within eclogites that have been fully modified at HP conditions (e.g. Monviso and Dora Maira units in the Western Alps). Minerals in the lawsonite-blueschists of the Tavsanli zone in Turkey record pervasive fluid exchange between mafic and sedimentary blocks at the early stage of subduction. High pressure shear zones and lithological boundaries show evidence of intense fluid metasomatism at depth along discontinuities in Monviso and Corsica. In the UHP oceanic crust of the Zermatt-Saas Zone, garnet oxygen isotopes and tourmaline boron isotopes indicate multistage fluid infiltration during prograde metamorphism. Localized exchanges of aqueous fluids are also observed in the subducted continental crust of the Sesia-Lanzo Zone. In most cases analyses of distinct mineral zones enable identification of multiple pulses of fluids during the rock evolution.

  7. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities.

    PubMed

    Müller, R Dietmar; Dutkiewicz, Adriana

    2018-02-01

    Atmospheric carbon dioxide (CO 2 ) data for the last 420 million years (My) show long-term fluctuations related to supercontinent cycles as well as shorter cycles at 26 to 32 My whose origin is unknown. Periodicities of 26 to 30 My occur in diverse geological phenomena including mass extinctions, flood basalt volcanism, ocean anoxic events, deposition of massive evaporites, sequence boundaries, and orogenic events and have previously been linked to an extraterrestrial mechanism. The vast oceanic crustal carbon reservoir is an alternative potential driving force of climate fluctuations at these time scales, with hydrothermal crustal carbon uptake occurring mostly in young crust with a strong dependence on ocean bottom water temperature. We combine a global plate model and oceanic paleo-age grids with estimates of paleo-ocean bottom water temperatures to track the evolution of the oceanic crustal carbon reservoir over the past 230 My. We show that seafloor spreading rates as well as the storage, subduction, and emission of oceanic crustal and mantle CO 2 fluctuate with a period of 26 My. A connection with seafloor spreading rates and equivalent cycles in subduction zone rollback suggests that these periodicities are driven by the dynamics of subduction zone migration. The oceanic crust-mantle carbon cycle is thus a previously overlooked mechanism that connects plate tectonic pulsing with fluctuations in atmospheric carbon and surface environments.

  8. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities

    PubMed Central

    Müller, R. Dietmar; Dutkiewicz, Adriana

    2018-01-01

    Atmospheric carbon dioxide (CO2) data for the last 420 million years (My) show long-term fluctuations related to supercontinent cycles as well as shorter cycles at 26 to 32 My whose origin is unknown. Periodicities of 26 to 30 My occur in diverse geological phenomena including mass extinctions, flood basalt volcanism, ocean anoxic events, deposition of massive evaporites, sequence boundaries, and orogenic events and have previously been linked to an extraterrestrial mechanism. The vast oceanic crustal carbon reservoir is an alternative potential driving force of climate fluctuations at these time scales, with hydrothermal crustal carbon uptake occurring mostly in young crust with a strong dependence on ocean bottom water temperature. We combine a global plate model and oceanic paleo-age grids with estimates of paleo-ocean bottom water temperatures to track the evolution of the oceanic crustal carbon reservoir over the past 230 My. We show that seafloor spreading rates as well as the storage, subduction, and emission of oceanic crustal and mantle CO2 fluctuate with a period of 26 My. A connection with seafloor spreading rates and equivalent cycles in subduction zone rollback suggests that these periodicities are driven by the dynamics of subduction zone migration. The oceanic crust-mantle carbon cycle is thus a previously overlooked mechanism that connects plate tectonic pulsing with fluctuations in atmospheric carbon and surface environments. PMID:29457135

  9. The Megafaunal Communities of Mn-crusted Guyots in the Central and Western Pacific

    NASA Astrophysics Data System (ADS)

    Kelley, C.; France, S.; Gerringer, M.; Pomponi, S. A.; Amon, D.; Mundy, B.; Molodtsova, T.; Matsumoto, A. K.; Watling, L.; Baco-Taylor, A.

    2016-12-01

    The NOAA Office of Ocean Exploration and Research (OER) recently completed the second year of its 3 year CAPSTONE initiative to explore the deep waters of the U.S Pacific Monuments. At the preparation of this abstract, six ROV cruises were completed in the Papahanaumokuakea Marine National Monument (PMNM), the Mariana Trench Marine National Monument (MTMNM) and the Johnston Atoll unit of the Pacific Remote Islands Marine National Monument (PRIMNM). A seventh ROV cruise is scheduled for July 27 through August 9 in the Wake unit of PRIMNM. Manganese (Mn)-crusted guyots have been one of the priorities of these cruises. Sixteen guyots have been surveyed to date with 11 more targeted for the dives around Wake. A major science objective has been to gain a better understanding of the megafaunal communities on this type of seamount because interest is building in mining manganese crusts in the Central and Western Pacific, an area referred to as the Prime Crust Zone (PCZ). These surveys revealed the presence of unique animals and in some locations, high density communities of deepwater corals and sponges living on Mn crusts that could be severely impacted by deep sea mining operations. This presentation will summarize the initial findings from the surveys on all 27 guyots and will hopefully raise awareness of the need for cautious and responsible development of the deep sea mining industry.

  10. Basin Excavation, Lower Crust, Composition, and Bulk Moon Mass balance in Light of a Thin Crust

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Korotev, R. L.; Ziegler, R. A.

    2013-01-01

    New lunar gravity results from GRAIL have been interpreted to reflect an overall thin and low-density lunar crust. Accordingly, crustal thickness has been modeled as ranging from 0 to 60 km, with thinnest crust at the locations of Crisium and Moscoviense basins and thickest crust in the central farside highlands. The thin crust has cosmochemical significance, namely in terms of implications for the Moon s bulk composition, especially refractory lithophile elements that are strongly concentrated in the crust. Wieczorek et al. concluded that the bulk Moon need not be enriched compared to Earth in refractory lithophile elements such as Al. Less Al in the crust means less Al has been extracted from the mantle, permitting relatively low bulk lunar mantle Al contents and low pre- and post-crust-extraction values for the mantle (or the upper mantle if only the upper mantle underwent LMO melting). Simple mass-balance calculations using the method of [4] suggests that the same conclusion might hold for Th and the entire suite of refractory lithophile elements that are incompatible in olivine and pyroxene, including the KREEP elements, that are likewise concentrated in the crust.

  11. Crustal rifting and magmatic underplating in the Izu-Ogasawara (Bonin) intra-oceanic arc detected by active source seismic studies

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kodaira, S.; Yamashita, M.; Miura, S.; Sato, T.; No, T.; Tatsumi, Y.; Kaneda, Y.

    2009-12-01

    Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic experiments using a multichannel reflection system and ocean bottom seismographs (OBSs) in the Izu-Ogasawara (Bonin)-Mariana (IBM) arc region since 2002 to understand growth process of continental crust. The source was an airgun array with a total capacity of 12,000 cubic inches and the OBSs as the receiver were deployed with an interval of 5 km for all seismic refraction experiments. As the results, we obtained crustal structures across the whole IBM arc with an interval of 50 km and detected the structural characteristics showing the crustal growth process. The IBM arc is one of typical oceanic island arc, which crustal growth started from subduction of an oceanic crust beneath the other oceanic crust. The arc crust has developed through repeatedly magmatic accretion from subduction slab and backarc opening. The volcanism has activated in Eocene, Oligocene, Miocene and Quaternary (e.g., Taylor, 1992), however, these detailed locations of past volcanic arc has been remained as one of unknown issues. In addition, a role of crustal rifting for the crustal growth has also been still unknown issue yet. Our seismic structures show three rows of past volcanic arc crusts except current arc. A rear arc and a forearc side have one and two, respectively. The first one, which was already reported by Kodaira et al. (2008), distributes in northern side from 27 N of the rear arc region. The second one, which develops in the forearc region next to the recent volcanic front, distributes in whole of the Izu-Ogasawara arc having crustal variation along arc direction. Ones of them sometimes have thicker crust than that beneath current volcanic front and no clear topographic high. Last one in the forearc connects to the Ogasawara Ridge. However, thickest crust is not always located beneath these volcanic arcs. The initial rifting region like the northern end of the Mariana Trough and the Sumisu

  12. Introduction to Biological Soil Crusts

    Science.gov Websites

    Introduction to Biological Soil Crusts In more arid regions, vegetative cover is generally sparse. Open spaces are usually covered by biological soil crusts, a highly specialized community of cyanobacteria, mosses , and lichens (Figure 1). Biological soil crusts are commonly found in semiarid and arid environments

  13. El Hierro's floating stones as messengers of crust-magma interaction at depth

    NASA Astrophysics Data System (ADS)

    Burchardt, S.; Troll, V. R.; Schmeling, H.; Koyi, H.; Blythe, L. S.; Longpré, M. A.; Deegan, F. M.

    2012-04-01

    During the early stages of the submarine eruption that started on October 10 2011 south of El Hierro, Canary Islands, Spain, peculiar eruption products were found floating on the sea surface. These centimetre- to decimetre-sized "bombs" have been termed "restingolites" after the nearby village La Restinga and consist of a basaltic rind and a white to light grey core that resembles pumice in texture. According to Troll et al. (2011; see also Troll et al. EGU 2012 Abstracts), this material consists of a glassy matrix hosting extensive vesicle networks, which results in extremely low densities allowing these rocks to float on sea water. Mineralogical and geochemical analyses reveal that the "restingolites" originate from the sedimentary rocks (sand-, silt-, and mudstones) that form layer 1 of the oceanic crust beneath El Hierro. During the onset and early stages of the eruption, magma ponded at the base of this sedimentary sequence, breaking its way through the sedimentary rocks to the ocean floor. The textures of the "restingolites" reveal that crust-magma interaction during fragmentation and transport of the xenoliths involved rapid partial melting and volatile exsolution. Xenoliths strikingly similar to those from El Hierro are known from eruptions on other Canary Islands (e.g. La Palma, Gran Canaria, and Lanzarote). In fact, they resemble in texture xenoliths of various protoliths from volcanic areas worldwide (e.g. Krakatao, Indonesia, Cerro Quemado, Guatemala, Laacher See, Germany). This indicates that the process of partial melting and volatile exsolution, which the "restingolites" bear witness of, is probably occurring frequently during shallow crustal magma emplacement. Thermomechanical numerical models of the effect of the density decrease associated with the formation of vesicle networks in partially molten xenoliths show that xenoliths of crustal rocks initially sink in a magma chamber, but may start to float to the chamber roof once they start to heat up

  14. Crust and uppermost mantle structure of the Kyushu-Palau Ridge, remnant arc on the Philippine Sea plate

    NASA Astrophysics Data System (ADS)

    Nishizawa, Azusa; Kaneda, Kentaro; Oikawa, Mitsuhiro

    2016-02-01

    We acquired 27 wide-angle seismic profiles to investigate variation in crustal structure along the Kyushu-Palau Ridge (KPR), a 2600-km-long remnant island arc in the center of the Philippine Sea plate; 26 lines were shot across the strike of the KPR at 13°-31°N, and one was shot along the northernmost KPR. The derived P-wave velocity (Vp) models show that the KPR has a crustal thickness of 8-23 km, which is thicker than the neighboring backarc basin oceanic crusts of the West Philippine Basin to the west and the Shikoku and Parece Vela Basins to the east. While the KPR crust consists mainly of lower crusts with a Vp of 6.8-7.2 km/s, the thicker crust contains a thick middle crust with Vp of 6.0-6.8 km/s. In general, the KPR crust is thicker in the north than in the south. The uppermost mantle velocities just below the KPR bathymetric highs are lower than 8.0 km/s and are commonly associated with a slightly high Vp of 7.2 km/s at the base of the crust. Large amplitude reflection signals are sometimes observed at far offsets on several lines suggesting the existence of several reflectors at depths of 23-40 km in the mantle beneath the KPR. The characteristics of these reflections are similar to these observed beneath the Izu-Ogasawara (Bonin) island arc, the tectonically conjugate arc of the KPR before backarc basin spreading. Very thin crust and high Pn velocities characterize the transition between the KPR and the eastern basins, which is probably a relic of the initial stage of the rifting. West of the KPR, the crust varies in structure from north to south as a result of the different tectonic settings in which it evolved.

  15. Collisional stripping of planetary crusts

    NASA Astrophysics Data System (ADS)

    Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Stewart, Sarah T.; Walter, Michael J.

    2018-02-01

    Geochemical studies of planetary accretion and evolution have invoked various degrees of collisional erosion to explain differences in bulk composition between planets and chondrites. Here we undertake a full, dynamical evaluation of 'crustal stripping' during accretion and its key geochemical consequences. Crusts are expected to contain a significant fraction of planetary budgets of incompatible elements, which include the major heat producing nuclides. We present smoothed particle hydrodynamics simulations of collisions between differentiated rocky planetesimals and planetary embryos. We find that the crust is preferentially lost relative to the mantle during impacts, and we have developed a scaling law based on these simulations that approximates the mass of crust that remains in the largest remnant. Using this scaling law and a recent set of N-body simulations of terrestrial planet formation, we have estimated the maximum effect of crustal stripping on incompatible element abundances during the accretion of planetary embryos. We find that on average approximately one third of the initial crust is stripped from embryos as they accrete, which leads to a reduction of ∼20% in the budgets of the heat producing elements if the stripped crust does not reaccrete. Erosion of crusts can lead to non-chondritic ratios of incompatible elements, but the magnitude of this effect depends sensitively on the details of the crust-forming melting process on the planetesimals. The Lu/Hf system is fractionated for a wide range of crustal formation scenarios. Using eucrites (the products of planetesimal silicate melting, thought to represent the crust of Vesta) as a guide to the Lu/Hf of planetesimal crust partially lost during accretion, we predict the Earth could evolve to a superchondritic 176Hf/177Hf (3-5 parts per ten thousand) at present day. Such values are in keeping with compositional estimates of the bulk Earth. Stripping of planetary crusts during accretion can lead to

  16. Platinum stable isotopes in ferromanganese crust and nodules

    NASA Astrophysics Data System (ADS)

    Corcoran, Loretta; Seward, Terry; Handler, Monica R.

    2015-04-01

    Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (< ±1) in the stable isotopic composition of marine platinum, raising the potential of adding platinum to the growing arsenal of paleoceanographic tracers. A method has been developed to measure the platinum isotopic composition using double spike MC-ICPMS analysis [2]and applied to a global suite of modern Fe-Mn crust and nodules. Combining synchrotron XAFS analyses of platinum adsorbed onto Fe-Mn oxide and oxyhydroxide surfaces to determine oxidation state and bonding environment, with platinum stable isotopic measurements allowing us to evaluate both platinum incorporation onto these sediments and the associated degree of platinum isotopic fractionation. Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.

  17. Consequences of the low density of the lunar primary crust on its magmatic history (Invited)

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Thorey, C.

    2013-12-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick. This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Here, we provide evidence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Furthermore, at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by impact. The pressure release due to material removal by impact is significant over a depth equivalent to the crater radius. Because many of these floor-fractured craters are relatively small, i.e. less than 20 to 30 km in radius, this observation suggests that the magma at the origin of the intrusion was already stored within or just below the crust, in deeper intrusions. Thus, a large fraction of the mantle melt might have stored at depth below or within the light primary crust before reaching shallower layers. And hence, magma intrusions must have had a large influence on the thermal and geological evolution of the

  18. Weathering crusts on peridotite

    NASA Astrophysics Data System (ADS)

    Bucher, Kurt; Stober, Ingrid; Müller-Sigmund, Hiltrud

    2015-05-01

    Chemical weathering of dark-green massive peridotite, including partly serpentinized peridotite, produces a distinct and remarkable brown weathering rind when exposed to the atmosphere long enough. The structure and mineral composition of crusts on rocks from the Ronda peridotite, Spain, have been studied in some detail. The generic overall weathering reaction serpentinized peridotite + rainwater = weathering rind + runoff water describes the crust-forming process. This hydration reaction depends on water supply from the outcrop surface to the reaction front separating green peridotite from the brown crust. The reaction pauses after drying and resumes at the front after wetting. The overall net reaction transforms olivine to serpentine in a volume-conserving replacement reaction. The crust formation can be viewed as secondary serpentinization of peridotite that has been strongly altered by primary hydrothermal serpentinization. The reaction stoichiometry of the crust-related serpentinization is preserved and reflected by the composition of runoff waters in the peridotite massif. The brown color of the rind is caused by amorphous Fe(III) hydroxide, a side product from the oxidation of Fe(II) released by the dissolution of fayalite component in olivine.

  19. Modeling crust-mantle evolution using radiogenic Sr, Nd, and Pb isotope systematics

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti

    2015-04-01

    The present-day elemental and isotopic composition of Earth's terrestrial reservoirs can be used as geochemical constraints to study evolution of the crust-mantle system. A flexible open system evolutionary model of the Earth, comprising continental crust (CC), upper depleted mantle (UM) -source of mid-ocean ridge basalts (MORB), and lower mantle (LM) reservoir with a D" layer -source of ocean island basalts (OIB), and incorporating key radioactive isotope systematics (Rb-Sr, Sm-Nd, and U-Th-Pb), is solved numerically at 1 Ma time step for 4.55 Ga, the age of the Earth. The best possible solution is the one that produces the present-day concentrations as well as isotopic ratios in terrestrial reservoirs, compiled from published data. Different crustal growth scenarios (exponential, episodic, early and late growth), proposed in earlier studies, and its effect on the evolution of isotope systematics of terrestrial reservoirs is studied. Model simulations strongly favor a layered mantle structure satisfying majority of the isotopic constraints. In the successful model, which is similar to that proposed by Kellogg et al. (1999), the present-day UM comprises of 60% of mantle mass and extends to a depth 1600 km, whereas the LM becomes non-primitive and more enriched than the bulk silicate Earth, mainly due to addition of recycled crustal material. Modeling suggest that isotopic evolution of reservoirs is affected by the mode of crustal growth. Only two scenarios satisfied majority of the Rb-Sr and Sm-Nd isotopic constraints but failed to reproduce the present-day Pb-isotope systematics; exponential growth of crust (mean age, tc=2.3 Ga) and delayed and episodic growth (no growth for initial 900 Ma, tc=2.05 Ga) proposed by Patchett and Arndt (1986). However, assuming a slightly young Earth (4.45 Ga) better satisfies the Pb-isotope systematics. Although, the delayed crustal growth model satisfied Sr-Nd isotopic constraints, presence of early Hadean crust (4.03 and 4.4 Ga

  20. Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results

    NASA Astrophysics Data System (ADS)

    Gans, Christine R.; Beck, Susan L.; Zandt, George; Gilbert, Hersh; Alvarado, Patricia; Anderson, Megan; Linkimer, Lepolt

    2011-07-01

    The Pampean flat slab of central Chile and Argentina (30°-32°S) has strongly influenced Cenozoic tectonics in western Argentina, which contains both the thick-skinned, basement-cored uplifts of the Sierras Pampeanas and the thin-skinned Andean Precordillera fold and thrust belt. In this region of South America, the Nazca Plate is subducting nearly horizontally beneath the South American Plate at ˜100 km depth. To gain a better understanding of the deeper structure of this region, including the transition from flat to 'normal' subduction to the south, three IRIS-PASSCAL arrays of broad-band seismic stations have been deployed in central Argentina. Using the dense SIEMBRA array, combined with the broader CHARGE and ESP arrays, the flat slab is imaged for the first time in 3-D detail using receiver function (RF) analysis. A distinct pair of RF arrivals consisting of a negative pulse that marks the top of the oceanic crust, followed by a positive pulse, which indicates the base of the oceanic crust, can be used to map the slab's structure. Depths to Moho and oceanic crustal thicknesses estimated from RF results provide new, more detailed regional maps. An improved depth to continental Moho map shows depths of more than 70 km in the main Cordillera and ˜50 km in the western Sierras Pampeanas, that shallow to ˜35 km in the eastern Sierras Pampeanas. Depth to Moho contours roughly follow terrane boundaries. Offshore, the hotspot seamount chain of the Juan Fernández Ridge (JFR) is thought to create overthickened oceanic crust, providing a mechanism for flat slab subduction. By comparing synthetic RFs, based on various structures, to the observed RF signal we determine that the thickness of the oceanic crust at the top of the slab averages at least ˜13-19 km, supporting the idea of a moderately overthickened crust to provide the additional buoyancy for the slab to remain flat. The overthickened region is broader than the area directly aligned with the path of the JFR

  1. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean

    USGS Publications Warehouse

    Hein, James; Conrad, Tracey A.; Mizell, Kira; Banakar, Virupaxa K.; Frey, Frederick A.; Sager, William W.

    2016-01-01

    The southern third of NER has Fe-Mn crusts with the highest Co (0.91%), Ni (0.43%), ΣREY (0.33%), Cu (0.22%), Te (146 ppm), Pt (1.5 ppm), Ru (52 ppb), and Rh (99 ppb) contents. These are among the highest Pt, Ru, and Rh concentrations measured in marine Fe-Mn deposits. Because of these high metal concentrations, exploration is warranted for the southern sector of the NER, especially at shallower-water sites where the platinum group elements (PGE) and Co are likely to be even more enriched.

  2. Preliminary Results from Downhole Osmotic Samplers in a Gas Tracer Injection Experiment in the Upper Oceanic Crust on the Eastern Flank of the Juan de Fuca Ridge.

    NASA Astrophysics Data System (ADS)

    de Jong, M. T.; Clark, J. F.; Neira, N. M.; Fisher, A. T.; Wheat, C. G.

    2015-12-01

    We present results from a gas tracer injection experiment in the ocean crust on the eastern flank of the Juan de Fuca Ridge, in an area of hydrothermal circulation. Sulfur hexafluoride (SF6) tracer was injected in Hole 1362B in 2010, during IODP Expedition 327. Fluid samples were subsequently collected from a borehole observatory (CORK) installed in this hole and similar CORKs in three additional holes (1026B, 1362A, and 1301A), located 300 to 500 m away. This array of holes is located on 3.5 My old seafloor, as an array oriented subparallel to the Endeavor Segment of Juan de Fuca Ridge. Borehole fluid samples were collected in copper coils using osmotic pumps. In addition to pumps at seafloor wellheads, downhole sampling pumps were installed in the perforated casing in the upper ocean crust. These downhole samplers were intended to produce a high-resolution continuous record of tracer concentrations, including records from the first year after tracer injection in Holes 1362A and 1362B. In contrast, wellhead samplers were not installed on these CORKs holes until 2011, and wellhead records from all CORKs have a record gap of up to one year, because of a delayed expedition in 2012. The downhole samples were recovered with the submersible Alvin in August 2014. SF6 concentrations in downhole samples recovered in 2014 are generally consistent with data obtained from wellhead samples. Of particular interest are the results from Hole 1362B, where a seafloor valve was opened and closed during various recovery expeditions. High resolution tracer curves produced from the 1362B downhole samples confirm that these operations produced an SF6 breakthrough curve corresponding to a classic push-pull test used to evaluate contaminant field locations in terrestrial setting. Complete analyses of downhole samples from these CORKs are expected to produce high-resolution breakthrough curves that will allow more precise analysis and modeling of hydrothermal flow in the study area.

  3. Density Sorting During the Evolution of Continental Crust

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Behn, M. D.; Hacker, B. R.

    2015-12-01

    We consider two settings - in addition to "delamination" of arc lower crust - in which dense, mafic eclogites founder into the convecting mantle while buoyant, felsic lithologies accumulate at the base of evolving continental crust. Arc processes play a central role in generating continental crust, but it remains uncertain how basaltic arc crust is transformed to andesitic continental crust. Dense, SiO2-poor products of fractionation may founder from the base of arc crust by "delamination", but lower arc crust after delamination has significantly different trace elements compared to lower continental crust (LCC). In an alternative model, buoyant magmatic rocks generated at arcs are first subducted, mainly via subduction erosion. Upon heating, these buoyant lithologies ascend through the mantle wedge or along a subduction channel, and are "relaminated" at
the base of overlying crust (e.g., Hacker et al EPSL 11, AREPS 15). Average buoyant lavas and plutons
for the Aleutians, Izu-Bonin-Marianas, Kohistan and Talkeetna arcs fall within the range of estimated LCC major and trace elements. Relamination is more efficient in generating continental crust than delamination. Himalayan cross-sections show Indian crust thrust beneath Tibetan crust, with no intervening mantle. There is a horizontal Moho at ca 80 km depth, extending from thickened Indian crust, across the region where Tibetan crust overlies Indian crust, into thickened Tibetan crust. About half the subducted Indian crust is present, whereas the other half is missing. Data (Vp/Vs; Miocene lavas formed by interaction of continental crust with mantle; xenolith thermometry) indicate 1000°C or more from ca 50 km depth to the Moho since the Miocene. We build on earlier studies (LePichon et al Tectonics 92, T'phys 97; Schulte-Pelkum et al Nature 05; Monsalve et al JGR 08) to advance the hypothesis that rapid growth of garnet occurs at 70-80 km and 1000°C within subducting Indian crust. Dense eclogites founder

  4. Magmatic Diversity of the Wehrlitic Intrusions in the Oceanic Lower Crust of the Northern Oman Ophiolite

    NASA Astrophysics Data System (ADS)

    Kaneko, R.; Adachi, Y.; Miyashita, S.

    2014-12-01

    The Oman ophiolite extends along the east coast of Oman, and is the world's largest and best-preserved slice of obducted oceanic lithosphere. The magmatic history of this ophiolite is complex and is generally regarded as having occurred in three stages (MOR magmatism, subduction magmatism and intraplate magmatism). Wehrlitic intrusions constitute an important element of oceanic lower crust of the ophiolite, and numerous intrusions cut gabbro units in the northern Salahi block of this ophiolite. In this study area, we identified two different types of wehrlitic intrusions. One type of the intrusions mainly consists of dunite, plagioclase (Pl) wehrlite and mela-olivine (Ol) gabbro, in which the crystallization sequence is Ol followed by the contemporaneous crystallization of Pl and clinopyroxene (Cpx). This type is called "ordinary" wehrlitic intrusions and has similar mineral compositions to host gabbros (Adachi and Miyashita 2003; Kaneko et al. 2014). Another type of the intrusions is a single intrusion that crops out in an area 250 m × 150 m along Wadi Salahi. This intrusion consists of Pl-free "true" wehrlite, in which the crystallization sequence is Ol and then Cpx. The forsterite contents (Fo%) of Ol from the "ordinary" wehrlitic intrusions and "true" wehrlitic intrusions have ranges of 90.8-87.0 (NiO = 0.36-0.13 wt%) and 84.7 (NiO = 0.31 wt%), respectively. Cr numbers (Cr#) of Cr-spinel from the "true" wehrlitic intrusions show higher Cr# value of 0.85 than those of the "ordinary" wehrlitic intrusions (0.48-0.64). But the former is characterized by very high Fe3+ values (YFe3+ = 0.49-0.68). Kaneko et al. (2014) showed that the "ordinary" ubiquitous type has similar features to MOR magmatism and the depleted type in the Fizh block (Adachi and Miyashita 2003) links to subduction magmatism. These types are distinguished by their mineral chemistries (TiO2 and Na2O contents of Cpx). The TiO2 and Na2O contents of Cpx from the "true" wehrlitic intrusions have 0

  5. Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros

    NASA Astrophysics Data System (ADS)

    Grimes, Craig B.; Ushikubo, Takayuki; John, Barbara E.; Valley, John W.

    2011-01-01

    Lower ocean crust is primarily gabbroic, although 1-2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater-rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform δ18O with an average value of 5.2 ± 0.5‰ (2SD). The average δ18O(Zrc) would be in magmatic equilibrium with unaltered MORB [δ18O(WR) ~ 5.6-5.7‰], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured δ18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like δ18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water-rock interactions that alter the protolith δ18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal

  6. Galactic-cosmic-ray-produced 3He in a ferromanganese crust: any supernova 60Fe excess on earth?

    PubMed

    Basu, S; Stuart, F M; Schnabel, C; Klemm, V

    2007-04-06

    An excess of 60Fe in 2.4-3.2 x 10(6) year old ferromanganese crust (237 KD) from the deep Pacific Ocean has been considered as evidence for the delivery of debris from a nearby supernova explosion to Earth. Extremely high ;{3}He/;{4}He (up to 6.12 x 10(-3)) and 3He concentrations (up to 8 x 10(9) atoms/g) measured in 237 KD cannot be supernova-derived. The helium is produced by galactic cosmic rays (GCR) and delivered in micrometeorites that have survived atmospheric entry to be trapped by the crust. 60Fe is produced by GCR reactions on Ni in extraterrestrial material. The maximum (3)He/(60)Fe of 237 KD (80-850) is comparable to the GCR (3)He/(60)Fe production ratio (400-500) predicted for Ni-bearing minerals in iron meteorites. The excess 60Fe can be plausibly explained by the presence of micrometeorites trapped by the crust, rather than injection from a supernova source.

  7. Evidence for a Slow Spreading Ocean Ridge in the Southern Rockall Trough From Satellite Gravity Inversion and Seismic Data

    NASA Astrophysics Data System (ADS)

    Chappell, A. R.; Kusznir, N. J.

    2005-12-01

    The southern Rockall Trough, located to the west of Ireland and the UK in the NE Atlantic, has been interpreted as both a Mesozoic intra-continental rift basin (O'Reilly 1995) and a mid Cretaceous ocean basin (e.g. Roberts et al. 1980). The continental rift hypothesis (O'Reilly 1995) requires differential stretching of the upper and lower crust and syn-tectonic cooling to mechanically explain the formation of 5-6km thick continental crust and allow serpentinisation of the upper mantle. In this model serpentinisation of the upper mantle is needed to explain low upper mantle seismic velocities. The serpentinisation has also been required to fit gravity modelling of seismic transects to the observed gravity (e.g. Shannon 1999). We use satellite gravity inversion to map Moho depth and crustal thickness (Chappell & Kusznir 2005) for the Rockall Trough area. The satellite gravity inversion is a 3D spectral method incorporating a correction for the residual lithosphere thermal gravity anomaly present in continental rifted margin lithosphere and oceanic lithosphere. The gravity inversion predicts Moho depth and geometry in agreement with wide-angle seismic estimates without invoking the extensive serpentinisation of the upper-mantle needed by the intra-continental rift hypothesis (O'Reilly 1995). Recent seismic modelling (Morewood 2005) suggests that the thin crust in the southern Rockall Trough does not have the seismic layering associated with oceanic crust formed at intermediate or fast spreading rates. Also, wide-angle seismic data shows low upper mantle seismic velocities are present and spatially associated with the thin 5-6km crust (Shannon 1999). These observations are consistent with models and observations of oceanic crust formed at slow spreading ocean ridges (Cannat 1996, Jokat 2003). Such models are based on a proportion of melt being retained in the upper mantle, producing low seismic velocities, and a reduced supply of melt to the crust, resulting in thin

  8. Geophysics of an Oceanic Ice Shell on Snowball Earth

    NASA Technical Reports Server (NTRS)

    Gaidos, E. J.

    2000-01-01

    Kirschvink proposed Precambrian low-latitude glaciation could result in an albedo-driven catastrophic runaway to a "Snowball Earth" state in which pack ice up to 1 km thick covered the world ocean. The geophysical state of an ice crust on a Snowball Earth is examined.

  9. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust

    NASA Astrophysics Data System (ADS)

    Stern, R. J.; Mooney, W. D.

    2011-12-01

    We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (<30 ma) lava fields in Arabia (harrats) extend over 2500 km, from Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (<0.5%) and Na2O (1-3%). Both groups show tholeiitic affinities, unrelated to their alkali basalt hosts. Mean pyroxene-rich and plagioclase-rich suites show distinct mean MgO contents (11% vs. 7%), Mg# (67 vs. 55), and contents of compatible elements Ni (169 vs. 66 ppm

  10. Serpentinization and carbonation of pristine continental ultramafic rocks and applications to the oceanic crust; H2O-CO2 alteration of dunites and re-distribution of Ni-Cu-PGE in sulphide deposits

    NASA Astrophysics Data System (ADS)

    Grant, Thomas; McEnroe, Suzanne; Eske Sørensen, Bjørn; Larsen, Rune; Pastore, Zeudia; Rune Grannes, Kim; Nikolaisen, Even

    2017-04-01

    Here, we document carbonation and serpentinization within a suite of ultramafic rocks from a continental setting. These ultramafic rocks vary from pristine dunites to varying degrees of serpentinization which locally penetrates the ultramafic complex. Hence, it allows us to observe a number of delicate serpentinization and carbonation reactions, otherwise lost during more extensive alteration or tectonic events. We use a multi-disciplinary approach using petrographic, EPMA, thermodynamic modelling and geophysical data to reveal how the initial stages of serpentization and carbonation in dunites affects the distribution of economic to sub-economic deposits of Ni-Cu and PGE. The data can then be applied to oceanic crust. The samples are dunites and poikilitic wehrlites from the Reinfjord Ultramafic complex, Seiland Igneous Province Northern Norway. The complex formed through crystallization of picritic melts in the lower continental crust. The dunites contain small amounts of interstitial clinopyroxene, sulphides and spinel, with local enrichments in Ni, Cu and PGE. Late magmatic CO2-H2O-S fluids reacted with the dunite forming clots of amphibole + dolomite + sulphides + enstatite, reaction rims of enstatite + dolomite, and inclusions trails of dolomite + enstatite + magnetite + CO2 fluid. Thermodynamic modelling reveals that these textures formed at pressures of >12 kbar and temperatures 850-950 °C, which would be consistent with the late magmatic history of the Reinfjord complex. The clots and reactions have local association with enrichments in gold-rich PGMs. A second stage of alteration involved H2O-dominated fluids. These formed predominantly lizardite serpentinization, as is often concentrated within highly localized fracture zones. Thermodynamic modelling shows that these formed <400°C, after the complex had been exhumed towards the surface of the crust. Local and more pervasive serpentinization interacted with the earlier formed carbonate bearing

  11. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2012-08-01

    Crustal growth at convergent margins can occur by the accretion of future allochthonous terranes (FATs), such as island arcs, oceanic plateaus, submarine ridges, and continental fragments. Using geodynamic numerical experiments, we demonstrate how crustal properties of FATs impact the amount of FAT crust that is accreted or subducted, the type of accretionary process, and the style of deformation on the overriding plate. Our results show that (1) accretion of crustal units occurs when there is a weak detachment layer within the FAT, (2) the depth of detachment controls the amount of crust accreted onto the overriding plate, and (3) lithospheric buoyancy does not prevent FAT subduction during constant convergence. Island arcs, oceanic plateaus, and continental fragments will completely subduct, despite having buoyant lithospheric densities, if they have rheologically strong crusts. Weak basal layers, representing pre-existing weaknesses or detachment layers, will either lead to underplating of faulted blocks of FAT crust to the overriding plate or collision and suturing of an unbroken FAT crust. Our experiments show that the weak, ultramafic layer found at the base of island arcs and oceanic plateaus plays a significant role in terrane accretion. The different types of accretionary processes also affect deformation and uplift patterns in the overriding plate, trench migration and jumping, and the dip of the plate interface. The resulting accreted terranes produced from our numerical experiments resemble observed accreted terranes, such as the Wrangellia Terrane and Klamath Mountain terranes in the North American Cordilleran Belt.

  12. Two stage melt-rock interaction in the lower oceanic crust of the Parece Vela basin (Philippine sea), evidence from the primitive troctolites from the Godzilla Megamullion

    NASA Astrophysics Data System (ADS)

    Sanfilippo, A.; Dick, H. J.; Ohara, Y.

    2011-12-01

    Godzilla Megamullion is a giant oceanic core complex exposed in an extinct slow- to intermediate-spreading segment of the Parece Vela Basin (Philippine sea) [1; 2]. It exposes lower crust and mantle rocks on the sea-floor, offering a unique opportunity to unravel the architecture and the composition of the lower oceanic lithosphere of an extinct back arc basin. Here we present data on primitive troctolites and associated olivine-gabbros from the breakaway area of the Godzilla Megamullion. On the basis of the olivine/plagioclase volume ratio, the troctolites are subdivided into Ol-troctolites (Ol/Pl >1) and Pl-troctolites (Ol/Pl<1), which show evident textural differences. Ol-troctolites have rounded to polygonal olivine, subhedral plagioclase, and poikilitic clinopyroxene. This texture suggests chemical disequilibrium between the olivine and a melt crystallizing plagioclase and clinopyroxene. We interpret these rocks as reaction products of a dunite matrix with transient basaltic melts [e.g. 3; 4]. Pl-troctolites have euhedral plagioclase and poikilitic olivine and clinopyroxene. Irregular shapes and inverse zoning of the plagioclase chadacrysts within the olivine indicate disequilibrium between existing plagioclase and an olivine-clinopyroxene saturated melt. The occurrence of plagioclase chadacrysts within clinopyroxene ranging from irregular to euhedral in shape suggests crystallization of new lower-Na plagioclase with the clinopyroxene. Olivine oikocrysts in the Pl-troctolites have low-NiO olivine in equilibrium with a high-MgO melt. The Pl-troctolites, then, may be the product of reaction between a plagioclase cumulate and a basaltic melt produced by mixing the high-MgO melt residual to the formation of the Ol-troctolites with new magma. The effect of melt-rock reaction in the Pl- and Ol- troctolites explains the sharp decrease in plagioclase An with respect to Mg# in clinopyroxene and olivine. Furthermore, the melt is shifted towards lower Na, which is

  13. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Liu, Yongsheng; Wang, Xiaohong; Zong, Keqing; Hu, Zhaochu; Chen, Haihong; Zhou, Lian

    2017-03-01

    It has been advocated that the stagnant Pacific slab within the mantle transition zone played a critical role in the genesis of the Cenozoic basalts in the eastern part of the North China Craton (NCC); however, it is not clear whether this recycled oceanic crust contributed to the chemical makeup of the Cenozoic basalts in the Trans-North China Orogen (TNCO, the central zone of the NCC). Here, we show that Cenozoic basalts from the TNCO are featured by low CaO contents, high TiO2 and FeOT contents and high Fe/Mn and Zn/Fe ratios, indicating a mantle source of pyroxenite. Temporally, these basalts evolved from alkali basalts of Late Eocene-Oligocene age to coexisting alkali and tholeiitic basalts of Late Miocene-Quaternary age. Spatially, their isotopic and chemical compositions vary symmetrically from the center to both the north and the south sides along the TNCO, i.e., SiO2 contents and 87Sr/86Sr ratios increase, FeOT contents and 143Nd/144Nd, Sm/Yb and Ce/Pb ratios decrease. The estimated average melting pressure of the TNCO tholeiitic basalts ( 3 GPa) agrees well with the present lithosphere thickness beneath the north region of the TNCO ( 90-120 km). The temporal and spatial chemical variations of Cenozoic basalts in the TNCO suggest that the recycled oceanic crust in the mantle of the TNCO is mainly related to the southward subduction of the Paleo-Asian oceanic plate and the northward subduction of the Tethyan ocean plate. The westward subduction of Pacific slab may not have contributed much than previously thought.

  14. Oceanic Remnants In The Caribbean Plate: Origin And Loss Of Related LIPs.

    NASA Astrophysics Data System (ADS)

    Giunta, G.

    2005-12-01

    The modern Caribbean Plate is an independent lithospheric entity, occupying more than 4 Mkm2 and consisting of the remnants of little deformed Cretaceous oceanic plateau of the Colombia and Venezuela Basins (almost 1 Mkm2) and the Palaeozoic-Mesozoic Chortis continental block (about 700,000 km2), both bounded by deformed marginal belts. The northern (Guatemala and Greater Antilles) and the southern (northern Venezuela) plate margins are marked by collisional zones, whereas the western (Central America Isthmus) and the eastern (Lesser Antilles) margins are represented by convergent boundaries and their magmatic arcs, all involving ophiolitic terranes. The evolutionary history of the Caribbean Plate since the Jurassic-Early Cretaceous encompasses plume, accretionary, and collisional tectonics, the evidence of which has been recorded in the oceanic remnants of lost LIPs, as revealed in: i) the MORB to OIB thickened crust of the oceanic plateau, including its un-deformed or little deformed main portion, and scattered deformed tectonic units; ii) ophiolitic tectonic units of MORB affinity and the rock blocks in ophiolitic melanges; iii) intra-oceanic, supra subduction magmatic sequences with IAT and CA affinities. The Mesozoic oceanic LIPs, from which the remnants of the Caribbean Plate have been derived, have been poorly preserved during various episodes of the intra-oceanic convergence, either those related to the original proto-Caribbean oceanic realm or those connected with two eo-Caribbean stages of subduction. The trapped oceanic plateau of the Colombia and Venezuela Basins is likely to be an unknown portion of a bigger crustal element of a LIP, similar to the Ontong-Java plateau. The Jurassic-Early Cretaceous proto-Caribbean oceanic domain consists of oceanic crust generated at multiple spreading centres; during the Cretaceous, part of this crust was thickened to form an oceanic plateau with MORB and OIB affinities. At the same time, both South and North American

  15. GEOPHYSICAL INVESTIGATIONS OF THE STRUCTURE OF THE EARTH’S CRUST IN THE ATLANTIC OCEAN REGION,

    DTIC Science & Technology

    50--100 mgal and then increase to +50--70mgal. The Bouguer isoanomaly lines are denser in the transition zone and a considerable gravity gradient...data has also become more abundent. Investigations to determine relation between Bouguer gravity anomalies and the thickness of the earth’s crust

  16. Simulations of the Neutron Star Crust

    NASA Astrophysics Data System (ADS)

    Schramm, Stefan; Nandi, Rana

    The properties of the neutron star crust are crucially important for many physical processes occurring in the star. For instance, the crustal transport coefficients define the temperature evolution of accreting stars after bursts, which can be compared to observation. Furthermore, the structure of the inner crust can modify the neutrino transport through the matter considerably, significantly impacting the dynamics of supernova explosions. Therefore, we perform numerical studies of the inner crust, and among other aspects, investigate the dependence of the pasta phase on the isospin properties of the nuclear interactions. To this end we developed an efficient computer code to simulate the inner and outer crust using molecular dynamics techniques. First results of the simulations and insights into the crust-core transition are presented.

  17. Relic magma chamber structures preserved within the Mesozoic North Atlantic crust?

    USGS Publications Warehouse

    McCarthy, J.; Mutter, J.C.; Morton, J.L.; Sleep, Norman H.; Thompson, G.A.

    1988-01-01

    The North Atlantic Transect seismic reflection data, collected southwest of Bermuda, have been reinterpreted following post-stack migration and reveal two major intracrustal reflections. The shallower of these two events, located ~1 s below the igneous basement, is a subhorizontal, undulating surface that in some places is continuous for as much as 10 km. This upper crustal reflection corresponds to the intermittently sharp contact between the sheeted dikes and the underlying isotropic gabbro. A second set of lower crustal reflections, dipping ~20??-40?? eastward, is also prominent on the migrated profile and terminates downdip against the subhorizontal reflection Moho. Their presence may be ascribed to mafic-ultramafic cumulate layers frozen into the oceanic crust at the time of formation at the paleo-spreading center. The gradual thinning in the crust approaching the fracture zones is shown to be more complex than was originally inferred. An intepretation advocating crustal thickening in this narrow zone is proposed as an alternative to the crustal-thinning model of Mutter and others. -from Authors

  18. Chapter 50: Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Hart, P.E.; Childers, V.A.

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean-continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72??N, 165 Wabout 145.5-140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha-Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89-75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin. ?? 2011 The Geological Society of London.

  19. Extensional crustal tectonics and crust-mantle coupling, a view from the geological record

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Menant, Armel; Clerc, Camille; Sternai, Pietro; Ringenbach, Jean-Claude; Bellahsen, Nicolas; Leroy, Sylvie; Faccenna, Claudio; Gorini, Christian

    2017-04-01

    In passive margins or back-arc regions, extensional deformation is often asymmetric, i.e. normal faults or extensional ductile shear zones dip in the same direction over large distances. We examine a number of geological examples in convergent or divergent contexts suggesting that this asymmetry results from a coupling between asthenospheric flow and crustal deformation. This is the case of the Mediterranean back-arc basins, such as the Aegean Sea, the northern Tyrrhenian Sea, the Alboran domain or the Gulf of Lion passive margin. Similar types of observation can be made on some of the Atlantic volcanic passive margins and the Afar region, which were all formed above a mantle plume. We discuss these contexts and search for the main controlling parameters for this asymmetric distributed deformation that imply a simple shear component at the scale of the lithosphere. The different geodynamic settings and tectonic histories of these different examples provide natural case-studies of the different controlling parameters, including a pre-existing heterogeneity of the crust and lithosphere (tectonic heritage) and the possible contribution of the underlying asthenospheric flow through basal drag or basal push. We show that mantle flow can induce deformation in the overlying crust in case of high heat flow and thin lithosphere. In back-arc regions, the cause of asymmetry resides in the relative motion between the asthenosphere below the overriding plate and the crust. When convergence and slab retreat work concurrently the asthenosphere flows faster than the crust toward the trench and the sense of shear is toward the upper plate. When slab retreat is the only cause of subduction, the sense of shear is opposite. In both cases, mantle flow is mostly the consequence of slab retreat and convergence. Mantle flow can however result also from larger-scale convection, controlling rifting dynamics prior to the formation of oceanic crust. In volcanic passive margins, in most cases

  20. High-pressure phase relation of KREEP basalts: A clue for finding the lost Hadean crust?

    NASA Astrophysics Data System (ADS)

    Gréaux, Steeve; Nishi, Masayuki; Tateno, Shigehiko; Kuwayama, Yasuhiro; Hirao, Naohisa; Kawai, Kenji; Maruyama, Shigenori; Irifune, Tetsuo

    2018-01-01

    The phase relations, mineral chemistry and density of KREEP basalt were investigated at pressures of 12-125 GPa and temperatures up to 2810 K by a combination of large volume multi-anvil press experiments and in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. Our results showed that grossular-rich majorite garnet, liebermannite and Al-bearing stishovite are dominant in the upper-to-middle part of the upper mantle while in the lowermost transition zone a dense Ti-rich CaSiO3 perovskite exsoluted from the garnet, which becomes more pyropic with increasing pressure. At lower mantle conditions, these minerals transform into an assemblage of bridgmanite, Ca-perovskite, Al-stishovite, the new aluminium-rich (NAL) phase and the calcium-ferrite type (CF) phase. At pressures higher than 50 GPa, NAL phase completely dissolved into the CF phase, which becomes the main deposit of alkali metals in the lower mantle. The density of KREEP estimated from phase compositions obtained by energy dispersive X-ray spectroscopy (EDS) in scanning (SEM) and transmission (TEM) electron microscopes, was found substantially denser than pyrolite suggesting that the Earth primordial crust likely subducted deep into the Earth's mantle after or slightly before the final solidification of magma ocean at 4.53 Ga. Radiogenic elements U, Th and 40K which were abundant in the final residue of magma ocean were brought down along the subduction of the primordial crust and generate heat by decay after the settlement of the primordial crust on top of the CMB, suggesting the non-homogeneous distribution of radiogenic elements in the Hadean mantle with implications for the thermal history of the Earth.

  1. Imaging the seismic structure beneath oceanic spreading centers using ocean bottom geophysical techniques

    NASA Astrophysics Data System (ADS)

    Zha, Yang

    with the abrupt transition in crustal composition and ridge morphology. Therefore these results confirm a previous prediction that the changing interaction between the arc and back-arc magmatic systems is responsible for the abrupt change in crustal properties along the ELSC. I further investigate the crustal structure along and across the ELSC using seafloor compliance. Compliance measurements are inverted for local crustal shear velocity structure as well as sediment thickness at 30 OBS locations using a Monte Carlo method. Sediment increases asymmetrically with seafloor age, with much a higher rate to the east of the ridge. Along the ELSC, upper crustal velocities increase from south to north as the ridge migrates away from the volcanic arc front, consistent with a less porous upper crust with possibly less subduction input. Furthermore, average upper crust shear velocities for crust produced at past ELSC when it was near the volcanic arc are considerably slower than crust produced at present day northern ELSC. I show that the implications of previous active seismic studies in the axial ELSC can be extended much farther off-axis and back in time. I also address a challenge of ocean bottom seismology and develop a new method for determining OBS horizontal orientations using multi-component ambient noise correlation. I demonstrate that the OBS orientations can be robustly estimated through maximizing the correlation between the diagonal and cross terms of the noise correlation function. This method is applied to the ELSC OBS experiment dataset and the obtained orientations are consistent with results from a conventional teleseismic method. The new method is promising for a wide range of applications.

  2. Numerical investigation of deep-crust behavior under lithospheric extension

    NASA Astrophysics Data System (ADS)

    Korchinski, Megan; Rey, Patrice F.; Mondy, Luke; Teyssier, Christian; Whitney, Donna L.

    2018-02-01

    What are the conditions under which lithospheric extension drives exhumation of the deep orogenic crust during the formation of gneiss domes? The mechanical link between extension of shallow crust and flow of deep crust is investigated using two-dimensional numerical experiments of lithospheric extension in which the crust is 60 km thick and the deep-crust viscosity and density parameter space is explored. Results indicate that the style of extension of the shallow crust and the path, magnitude, and rate of flow of deep crust are dynamically linked through the deep-crust viscosity, with density playing an important role in experiments with a high-viscosity deep crust. Three main groups of domes are defined based on their mechanisms of exhumation across the viscosity-density parameter space. In the first group (low-viscosity, low-density deep crust), domes develop by lateral and upward flow of the deep crust at km m.y-1 velocity rates (i.e. rate of experiment boundary extension). In this case, extension in the shallow crust is localized on a single interface, and the deep crust traverses the entire thickness of the crust to the Earth's near-surface in 5 m.y. This high exhuming power relies on the dynamic feedback between the flow of deep crust and the localization of extension in the shallow crust. The second group (intermediate-viscosity, low-density deep crust) has less exhuming power because the stronger deep crust flows less readily and instead accommodates more uniform extension, which imparts distributed extension to the shallow crust. The third group represents the upper limits of viscosity and density for the deep crust; in this case the low buoyancy of the deep crust results in localized thinning of the crust with large upward motion of the Moho and lithosphere-asthenosphere boundary. These numerical experiments test the exhuming power of the deep crust in the formation of extensional gneiss domes.

  3. N-MORB crust beneath Fuerteventura in the easternmost part of the Canary Islands: evidence from gabbroic xenoliths

    NASA Astrophysics Data System (ADS)

    Neumann, Else-Ragnhild; Vannucci, Riccardo; Tiepolo, Massimo

    2005-09-01

    Gabbro xenoliths reported in this paper were collected in northern Fuerteventura, the Canary Island located closest to the coast of Africa. The xenoliths are very fresh and consist of Ti-Al-poor clinopyroxene + plagioclase (An87-67) + olivine (Fo72-86) ± orthopyroxene. Clinopyroxene and orthopyroxene are constantly and markedly depleted in light rare earth elements (LREE) relative to heavy REE (HREE), as expected for cumulus minerals formed from highly refractory N-MORB-type melts. In contrast, whole-rock Primordial Mantle-normalized trace element patterns range from mildly S-shaped (mildly depleted in Pr-Sm relative to both the strongly incompatible elements Rb-La and the HREE) to enriched. Estimates show that the trace element compositions of the rocks and their minerals are compatible with formation as N-MORB gabbro cumulates, which have been infiltrated at various extents (≤1% to >5%) by enriched alkali basaltic melts. The enriched material is mainly concentrated along grain boundaries and cracks through mineral grains, suggesting that the infiltration is relatively recent, and is thus associated with the Canary Islands magmatism. Our data contradict the hypothesis that a mantle plume was present in this area during the opening of the Atlantic Ocean. No evidence of continental material that might reflect attenuated continental crust in the area has been found. Gabbro xenoliths with REE and trace element compositions similar to those exhibited by the Fuerteventura gabbros are also found among gabbro xenoliths from the islands of La Palma (western Canary Islands) and Lanzarote. The compositions of the most depleted samples from these islands are closely similar, implying that there was no significant change in chemistry during the early stages of formation of the Atlantic oceanic crust in this area. Strongly depleted gabbros similar to those collected in Fuerteventura have also been retrieved in the MARK area along the central Mid-Atlantic Ridge. The presence

  4. Transport rates of radiolytic substances into Europa's ocean: implications for the potential origin and maintenance of life.

    PubMed

    Greenberg, Richard

    2010-04-01

    Abstract Bombardment of the surface of Europa produces oxidants and other biologically useful substances, but they can only contribute to the habitability of the ocean if they are delivered down through the icy crust. Previous estimates of the thickness of the oxygenated layer of ice assumed that impact gardening is the dominant factor and concluded that the ocean may be habitable if the oxidant delivery time, via undefined mechanisms, is sufficiently short. Consideration of the types of processes that continually resurface Europa suggests that the oxygenated layer is thicker than approximately 300 m, far greater than the few meters indicated by impact gardening alone, and possibly includes the entire ice crust. The estimated delivery rate to the ocean is such that the oxygen levels could now be high enough to support macrofauna; and, at approximately 3 x 10(11) mol/yr of oxygen, it could maintain 3 million tons of macrofauna, assuming respiration rates similar to terrestrial marine organisms. These values are independent of any additional contributions due to possible photosynthesis. Initial formation of life would be difficult with so much oxygen, but the start of oxidant delivery into the ocean would have been delayed by 1-2 billion years while the crust became loaded with oxidants. In the ocean, this delay would have allowed time for prebiotic assemblages and anaerobic biological development prior to the increasing oxidant concentration to otherwise toxic levels.

  5. Marine ferromanganese encrustations: Archives of changing oceans

    USGS Publications Warehouse

    Koschinsky, Andrea; Hein, James

    2017-01-01

    Marine iron–manganese oxide coatings occur in many shallow and deep-water areas of the global ocean and can form in three ways: 1) Fe–Mn crusts can precipitate from seawater onto rocks on seamounts; 2) Fe–Mn nodules can form on the sediment surface around a nucleus by diagenetic processes in sediment pore water; 3) encrustations can precipitate from hydrothermal fluids. These oxide coatings have been growing for thousands to tens of millions of years. They represent a vast archive of how oceans have changed, including variations of climate, ocean currents, geological activity, erosion processes on land, and even anthropogenic impact. A growing toolbox of age-dating methods and element and isotopic signatures are being used to exploit these archives.

  6. Oceanic slab melting and mantle metasomatism.

    PubMed

    Scaillet, B; Prouteau, G

    2001-01-01

    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (< 50 Ma) subducted plates. Slab melts are silicic and strongly sodic (trondhjemitic). They are produced at low temperatures (< 1000 degrees C) and under water excess conditions. Their interaction with mantle peridotite produces hydrous metasomatic phases such as amphibole and phlogopite that can be more or less sodium rich. Upon interaction the slab melt becomes less silicic (dacitic to andesitic), and Mg, Ni and Cr richer. Virtually all exposed slab melts display geochemical evidence of ingestion of mantle material. Modern slab melts are thus unlike Archean Trondhjemite-Tonalite-Granodiorite rocks (TTG), which suggests that both types of magmas were generated via different petrogenetic pathways which may imply an Archean tectonic model of crust production different from that of the present-day, subduction-related, one.

  7. The Imaging and Evolution of Seismic Layer 2A Thickness from a 0-70 Ma Oceanic Crustal Transect in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Estep, J. D.; Reece, R.; Kardell, D. A.; Christeson, G. L.; Carlson, R. L.

    2017-12-01

    Seismic layer 2A, the uppermost igneous portion of oceanic crust, is commonly used to refer to the seismic velocities of upper crust that are bounded below by a steep vertical velocity gradient. Layer 2A velocities are known to increase with crustal age, from 2.5 km/s in crust <1 Ma to 4.5-5 km/s in crust >15 Ma. Thickness of layer 2A has been shown to increase by a factor of 2 within 1 Ma at fast spreading ridges and then remain relatively constant, while layer 2A maintains a fairly consistent thickness, irrespective of age, at slow-intermediate spreading ridges. Layer 2A thickness and velocity evolution studies to date have been largely focused on young oceanic crust very proximal to a spreading center with little investigation of changes (or lack thereof) that occur at crustal ages >10 Ma. We utilize a multichannel seismic dataset collected at 30° S in the western South Atlantic that continuously images 0 - 70 Ma oceanic crust along a single flowline generated at the slow-intermediate spreading Mid-Atlantic Ridge. We follow the methods of previous studies by processing the data to image the layer 2A event, which is then used for calculating thickness. 1D travel time forward modeling at regularly spaced age intervals across the transect provides for the conversion of time to depth thickness, and for determining the evolution of velocities with age. Our results show layer 2A in 20 Ma crust is roughly double the thickness of that in crust 0-5 Ma (830 vs. 440 m), but thickness does not appear to change beyond 20 Ma. The layer 2A event is readily observable in crust 0-50 Ma, is nearly completely absent in crust 50-65 Ma, and then reappears with anomalously high amplitude and lateral continuity in crust 65-70 Ma. Our results suggest that layer 2A thickens with age at the slow-intermediate spreading southern Mid-Atlantic Ridge, and that layer 2A either continues to evolve at the older crustal ages, well beyond the expected 10-15 Ma "mature age", or that external

  8. Heterogeneity of the North Atlantic oceanic lithosphere based on integrated analysis of GOCE satellite gravity and geological data

    NASA Astrophysics Data System (ADS)

    Barantseva, Olga; Artemieva, Irina; Thybo, Hans; Herceg, Matija

    2015-04-01

    We present the results from modelling the gravity and density structure of the upper mantle for the off-shore area of the North Atlantic region. The crust and upper mantle of the region is expected to be anomalous: Part of the region affected by the Icelandic plume has an anomalously shallow bathymetry, whereas the northern part of the region is characterized by ultraslow spreading. In order to understand the links between deep geodynamical processes that control the spreading rate, on one hand, and their manifestations such as oceanic floor bathymetry and heat flow, on the other hand, we model the gravity and density structure of the upper mantle from satellite gravity data. The calculations are based on interpretation of GOCE gravity satellite data for the North Atlantics. To separate the gravity signal responsible for density anomalies within the crust and upper mantle, we subtract the lower harmonics caused by deep density structure of the Earth (the core and the lower mantle). The gravity effect of the upper mantle is calculated by subtracting the gravity effect of the crust for two crustal models. We use a recent regional seismic model for the crustal structure (Artemieva and Thybo, 2013) based om seismic data together with borehole data for sediments. For comparison, similar results are presented for the global CRUST 1.0 model as well (Laske, 2013). The conversion of seismic velocity data for the crustal structure to crustal density structure is crucial for the final results. We use a combination of Vp-to-density conversion based on published laboratory measurements for the crystalline basement (Ludwig, Nafe, Drake, 1970; Christensen and Mooney, 1995) and for oceanic sediments and oceanic crust based on laboratory measurements for serpentinites and gabbros from the Mid-Atlantic Ridge (Kelemen et al., 2004). Also, to overcome the high degree of uncertainty in Vp-to-density conversion, we account for regional tectonic variations in the Northern Atlantics as

  9. CHIC - Coupling Habitability, Interior and Crust

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Labbe, Francois; Boiveau, Thomas; Rivoldini, Attilio; Van Hoolst, Tim

    2014-05-01

    We present a new code developed for simulating convection in terrestrial planets and icy moons. The code CHIC is written in Fortran and employs the finite volume method and finite difference method for solving energy, mass and momentum equations in either silicate or icy mantles. The code uses either Cartesian (2D and 3D box) or spherical coordinates (2D cylinder or annulus). It furthermore contains a 1D parametrised model to obtain temperature profiles in specific regions, for example in the iron core or in the silicate mantle (solving only the energy equation). The 2D/3D convection model uses the same input parameters as the 1D model, which allows for comparison of the different models and adaptation of the 1D model, if needed. The code has already been benchmarked for the following aspects: - viscosity-dependent rheology (Blankenbach et al., 1989) - pseudo-plastic deformation (Tosi et al., in preparation phase) - subduction mechanism and plastic deformation (Quinquis et al., in preparation phase) New features that are currently developed and benchmarked include: - compressibility (following King et al., 2009 and Leng and Zhong, 2008) - different melt modules (Plesa et al., in preparation phase) - freezing of an inner core (comparison with GAIA code, Huettig and Stemmer, 2008) - build-up of oceanic and continental crust (Noack et al., in preparation phase) The code represents a useful tool to couple the interior with the surface of a planet (e.g. via build-up and erosion of crust) and it's atmosphere (via outgassing on the one hand and subduction of hydrated crust and carbonates back into the mantle). It will be applied to investigate several factors that might influence the habitability of a terrestrial planet, and will also be used to simulate icy bodies with high-pressure ice phases. References: Blankenbach et al. (1989). A benchmark comparison for mantle convection codes. GJI 98, 23-38. Huettig and Stemmer (2008). Finite volume discretization for dynamic

  10. Channelized lava flows at the East Pacific Rise crest 9°-10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust

    USGS Publications Warehouse

    Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Tivey, M.A.; Ridley, W.I.; Schouten, Hans

    2005-01-01

     Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east

  11. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust

    NASA Astrophysics Data System (ADS)

    Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N.

    2014-02-01

    The composition of the lunar crust provides clues about the processes that formed it and hence contains information on the origin and evolution of the Moon. Current understanding of lunar evolution is built on the Lunar Magma Ocean hypothesis that early in its history, the Moon was wholly or mostly molten. This hypothesis is based on analyses of Apollo samples of ferroan anorthosites (>90% plagioclase; molar Mg/(Mg+Fe)=Mg#<75) and the assumption that they are globally distributed. However, new results from lunar meteorites, which are random samples of the Moon's surface, and remote sensing data, show that ferroan anorthosites are not globally distributed and that the Apollo highland samples, used as a basis for the model, are influenced by ejecta from the Imbrium basin. In this study we evaluate anorthosites from all currently available adequately described lunar highland meteorites, representing a more widespread sampling of the lunar highlands than Apollo samples alone, and find that ∼80% of them are significantly more magnesian than Apollo ferroan anorthosites. Interestingly, Luna mission anorthosites, collected outside the continuous Imbrium ejecta, are also highly magnesian. If the lunar highland crust consists dominantly of magnesian anorthosites, as suggested by their abundance in samples sourced outside Imbrium ejecta, a reevaluation of the Lunar Magma Ocean model is a sensible step forward in the endeavor to understand lunar evolution. Our results demonstrate that lunar anorthosites are more similar in their chemical trends and mineral abundance to terrestrial massif anorthosites than to anorthosites predicted in a Lunar Magma Ocean. This analysis does not invalidate the idea of a Lunar Magma Ocean, which seems a necessity under the giant impact hypothesis for the origin of the moon. However, it does indicate that most rocks now seen at the Moon's surface are not primary products of a magma ocean alone, but are products of more complex crustal processes.

  12. Earthquakes in Stable Continental Crust.

    ERIC Educational Resources Information Center

    Johnston, Arch C.; Kanter, Lisa R.

    1990-01-01

    Discussed are some of the reasons for earthquakes which occur in stable crust away from familiar zones at the ends of tectonic plates. Crust stability and the reactivation of old faults are described using examples from India and Australia. (CW)

  13. Oceanic crust within the paleozoic Granjeno Schist, northeastern Mexico. Remnants of the Rheic and paleo-Pacific Ocean.

    NASA Astrophysics Data System (ADS)

    Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Torres Sanchez, Dario; Aleman Gallardo, Eduardo; Abratis, Michael

    2015-04-01

    Late Paleozoic metamorphic rocks in Mexico are related to the Laurentia-Gondwana collision in Carboniferous time, during Pangaea amalgamation. Vestiges of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental. Field work and petrographic analysis reveal that the Granjeno Schist comprises metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and igneous (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as 40Ar/39Ar ages on metavolcanic and metaultramafic rocks indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C with 2.5 kbar during Carboniferous time (330±30 Ma). The presence of metabasalt, metacumulate, serpentinite and talc bodies suggests an oceanic tectonic setting for the evolution of the Granjeno Schist. Serpetinite rocks have mesh, granular and ribbon textures which indicate recrystallization and metasomatic events. The serpentinite rocks are enriched in the very large incompatible elements Cs, U, and Zr and depleted in Ba, Sr, Pb, Zr and Ce. Normalized REE patterns (LaN/YbN = 0.51 - 19.95 and LaN/SmN = 0.72 - 9.08) of the serpentinite and talc/soapstone are characteristic of peridotite from both suprasubduction and mid-ocean ridge zones. Serpentinite from the Granjeno Schist have spinel content which can reveal different stages of evolution in host serpentinite. The composition of chromite indicates that they belong to podiform chromite that may have crystallized from mid-ocean ridge magma. Al-chromite in the serpentinite is characterized by #Cr 0.48 to 0.55, which indicates a depleted mantle source affected by 17 to 18% of partial melting. The ferritchromite has #Cr values of 0.93 to 1.00 which indicates a metamorphic origin. Our study

  14. Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge: Quantification through intra-plagioclase diffusion revealed by IODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Koepke, J.; Kirchner, C.; Götze, N.; Behrens, H.

    2014-12-01

    At fast-spreading mid-ocean ridges the axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed "gabbro glacier" model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, resulting in partly crystallization and leading to crystal-melt mush which may subside down to form the lower crust. These processes are believed to be controlled dominantly by periodical magma supply and hydrothermal circulation above melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes overlying the uppermost gabbros, which are part of the dike-gabbro transition zone drilled in Hole 1256D in the Eastern equatorial Pacific by the Integrated Ocean Drilling Program, where for the first time the dike-gabbro transition zone of an intact oceanic crust was penetrated and sampled. The measured zoning patterns are supposed to be a combined result of diffusion during both on-ridge and off-ridge cooling. We estimate the on-ridge cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that the recrystallized sheeted dikes have been cooled from the peak thermal overprint at 1000-1050 °C to 600 °C within about 5-30 years as a result of hydrothermal circulation above a melt lens during a period of magma starvation, corresponding to a cooling rate of 30±15 °C/yr. Heat balance calculation also approves that in order to balance the heat output of a melt lens at a fast-spreading mid-ocean ridge similar to the case of IODP Hole 1256D, the cooling rate above the melt lens is required to be around 30 °C/yr. The estimated rapid hydrothermal cooling rate coincides with the observed annual to decal episodes of melt lens fluctuation and lava eruption, which favors the "gabbro glacier" model and

  15. Subduction or obduction of continental crust in the northern Norwegian Caledonides? An example from the Nordmannvik Nappe

    NASA Astrophysics Data System (ADS)

    Faber, Carly; Stünitz, Holger; Jeřábek, Petr; Gasser, Deta; Konopásek, Jiří; Kraus, Katrin

    2017-04-01

    The debate about how and why continental crust is subducted is ongoing (Ingalls et al., 2016). This work uses the tectonmetamorphic history of a the Nordmannvik nappe in the northern Scandinavian Caledonides to discuss mid- to lower-crustal processes involved in the subduction of continental crust during the Caledonian Orogeny. The Nordmannvik Nappe, together with the underlying Kåfjord and Vaddas nappes, constitutes the Reisa Nappe Complex (RNC). The RNC overlies continental rocks of the Kalak Nappe Complex (KNC), and a clear oceanic suture between Baltican basement, the KNC and the RNC is missing. The RNC consists mainly of paragneisses of mostly unknown depositional age. Rare fossils in the Vaddas Nappe indicate that it at least partly consists of Ordovician-Silurian (>460 Ma) metasediments (Binns and Gayer, 1980). Both the Nordmannvik and Vaddas Nappes were intruded by gabbroic melt around 439 Ma at 9 kbar (c. 30 km) (Getsinger et al., 2013). Therefore, the host and intrusive rocks were already buried to positions far deeper than oceanic crust prior to nappe stacking. Nordmannvik nappe rocks show at least two distinct metamorphic fabrics; 1) an early high-grade kyanite-present migmatitic fabric and 2) a pervasive mylonitic fabric. Based on microstructural observations and pseudosection modeling these two fabrics are estimated to have formed at 770-800 °C and 9.4-11 kbar and 580-630 °C and 8-9.8 kbar, respectively. The presence of sillimanite in garnet cores (confirmed by Raman spectra) and garnet core compositions also suggest that an earlier, less well constrained, history exists with metamorphism around 815 °C and 8.7 kbar, similar to that recognized in the KNC, where it is dated to be pre-Caledonian. The lack of ocean floor rocks between the Nordmannvik Nappe and the Baltica basement suggests that the Nordmannvik Nappe and nappe units below were fairly proximal to Baltica prior to the Caledonian Orogeny. Their position below the Lyngen Nappe (Iapetus

  16. Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards

    NASA Astrophysics Data System (ADS)

    Shulgin, A.; Kopp, H.; Mueller, C.; Planert, L.; Lueschen, E.; Flueh, E. R.; Djajadihardja, Y.

    2011-01-01

    The region offshore Eastern Java represents one of the few places where the early stage of oceanic plateau subduction is occurring. We study the little investigated Roo Rise oceanic plateau on the Indian plate, subducting beneath Eurasia. The presence of the abnormal bathymetric features entering the trench has a strong effect on the evolution of the subduction system, and causes additional challenges on the assessment of geohazard risks. We present integrated results of a refraction/wide-angle reflection tomography, gravity modelling, and multichannel reflection seismic imaging using data acquired in 2006 south of Java near 113°E. The composite structural model reveals the previously unresolved deep geometry of the oceanic plateau and the subduction zone. The oceanic plateau crust is on average 15 km thick and covers an area of about 100 000 km2. Within our profile the Roo Rise crustal thickness ranges between 18 and 12 km. The upper oceanic crust shows high degree of fracturing, suggesting heavy faulting. The forearc crust has an average thickness of 14 km, with a sharp increase to 33 km towards Java, as revealed by gravity modelling. The complex geometry of the backstop suggests two possible models for the structural formation within this segment of the margin: either accumulation of the Roo Rise crustal fragments above the backstop or alternatively uplift of the backstop caused by basal accumulation of crustal fragments. The subducting plateau is affecting the stress field within the accretionary complex and the backstop edge, which favours the initiation of large, potentially tsunamogenic earthquakes such as the 1994 Mw= 7.8 tsunamogenic event.

  17. From a collage of microplates to stable continental crust - an example from Precambrian Europe

    NASA Astrophysics Data System (ADS)

    Korja, Annakaisa

    2013-04-01

    of spreading. Close to the original ocean-continent plate boundary, in the core of the Svecofennian orogen, the thickened accretionary crust carries pervasive stretching lineations at surface and seismic vp-velocity anisotropy in the crust. The direction of spreading and crustal flow seems to be diverted by shapes of the pre-existing boundaries. It is concluded that lateral spreading and midcrustal flow not only rearrange the bedrock architecture but also stabilize the young accreted continental crust in emerging internal orogenic systems. Pre-existing microplate/terrane boundaries will affect the final architecture of the orogenic belt.

  18. Building Archean cratons from Hadean mafic crust

    NASA Astrophysics Data System (ADS)

    O'Neil, Jonathan; Carlson, Richard W.

    2017-03-01

    Geologic processing of Earth’s surface has removed most of the evidence concerning the nature of Earth’s first crust. One region of ancient crust is the Hudson Bay terrane of northeastern Canada, which is mainly composed of Neoarchean felsic crust and forms the nucleus of the Northeastern Superior Province. New data show these ~2.7-billion-year-old rocks to be the youngest to yield variability in neodymium-142 (142Nd), the decay product of short-lived samarium-146 (146Sm). Combined 146-147Sm-142-143Nd data reveal that this large block of Archean crust formed by reworking of much older (>4.2 billion-year-old) mafic crust over a 1.5-billion-year interval of early Earth history. Thus, unlike on modern Earth, mafic crust apparently could survive for more than 1 billion years to form an important source rock for Archean crustal genesis.

  19. Incipient boninitic arc crust built on denudated mantle: the Khantaishir ophiolite (western Mongolia)

    NASA Astrophysics Data System (ADS)

    Gianola, Omar; Schmidt, Max W.; Jagoutz, Oliver; Sambuu, Oyungerel

    2017-12-01

    The 570 Ma old Khantaishir ophiolite is built by up to 4 km harzburgitic mantle with abundant pyroxenites and dunites followed by 2 km of hornblende-gabbros and gabbronorites and by a 2.5 km thick volcanic unit composed of a dyke + sill complex capped by pillow lavas and some volcanoclastics. The volcanics are mainly basaltic andesites and andesites (or boninites) with an average of 58.2 ± 1.0 wt% SiO2, X Mg = 0.61 ± 0.03 ( X Mg = molar MgO/(MgO + FeOtot), TiO2 = 0.4 ± 0.1 wt% and CaO = 7.5 ± 0.6 wt% (errors as 2 σ). Normalized trace element patterns show positive anomalies for Pb and Sr, a negative Nb-anomaly, large ion lithophile elements (LILE) concentrations between N- and E-MORB and distinctly depleted HREE. These characteristics indicate that the Khantaishir volcanics were derived from a refractory mantle source modified by a moderate slab-component, similar to boninites erupted along the Izu-Bonin-Mariana subduction system and to the Troodos and Betts Cove ophiolites. Most strikingly and despite almost complete outcrops over 260 km2, there is no remnant of any pre-existing MORB crust, suggesting that the magmatic suite of this ophiolite formed on completely denudated mantle, most likely upon subduction initiation. The architecture of this 4-5 km thick early arc crust resembles oceanic crust formed at mid ocean ridges, but lacks a sheeted dyke complex; volcanic edifices are not observed. Nevertheless, low melting pressures combined with moderate H2O-contents resulted in high-Si primitive melts, in abundant hornblende-gabbros and in a fast enrichment in bulk SiO2. Fractional crystallization modeling starting from the observed primitive melts (56.6 wt% SiO2) suggests that 25 wt% pyroxene + plagioclase fractionation is sufficient to form the average Khantaishir volcanic crust. Most of the fractionation happened in the mantle, the observed pyroxenite lenses and layers in and at the top of the harzburgites account for the required cumulate volumes. Finally

  20. Alteration and mineralization of an oceanic forearc and the ophiolite-ocean crust analogy

    USGS Publications Warehouse

    Alt, J.C.; Teagle, D.A.H.; Brewer, T.; Shanks, Wayne C.; Halliday, A.

    1998-01-01

    Mineralogical, chemical, and isotopic (O, C, S, and Sr) analyses were performed on minerals and bulk rocks from a forearc basement section to understand alteration processes and compare with mid-ocean ridges (MOR) and ophiolites. Ocean Drilling Program Hole 786B in the Izu-Bonin forearc penetrates 103 m of sediment and 725 m into volcanic flows, breccias, and basal dikes. The rocks comprise boninites and andesites to rhyolites. Most of the section was affected by low-temperature (<100??C) seawater alteration, with temperatures increasing downward. The rocks are partly (5-25%) altered to smectite, Fe-oxyhydroxide, calcite, and phillipsite, and exhibit gains of K, Rb, and P, loss of Ca, variable changes in Si, Na, Mg, Fe, Sr, and Y, and elevated ??18O and 87Sr/86Sr. Higher temperatures (???150??C) in the basal dikes below 750 m led to more intense alteration and formation of chlorite-smectite, corrensite, albite, K-feldspar, and quartz (??chlorite). A 5 m thick hydrothermally altered and pyritized zone at 815 m in the basal dikes reacted with mixtures of seawater and hydrothermal fluids to Mg-chlorite, albite, and pyrite, and gained Mg and S and lost Si and Ca. Focused flow of hydrothermal fluids produced sericitization halos (Na-K sericite, quartz, pyrophyllite, K-feldspar, and pyrite) along quartz veins at temperatures of 200??-250??C. High 87Sr/86Sr ratios of chloritized (???0.7055) and sericitized (???0.7065) rocks indicate involvement of seawater via mixing with hydrothermal fluids. Low ??34S of sulfide (???2 to -5.5???) and sulfate (12.5???) are consistent with input of magmatic SO2 into hydrothermal fluids and disproportionation to sulfide and sulfate. Alteration processes were generally similar to those at MORs, but the arc section is more intensively altered, in part because of the presence of abundant glassy rocks and mafic phases. The increase in alteration grade below 750 m and the mineralization in the basal dikes are analogous to changes that occur near

  1. Seismic velocity structure of the crust in NW Namibia: Impact of rifting and mantle plume activity

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Heit, B.; Muksin, U.; Yuan, X.

    2017-12-01

    The continental crust in northwestern Namibiamainly was formed during to the Neoproterozoic assembly of Gondwana. The collision of old African and South American cratonic coressuch as the Congo, Kalahari and Rio de la Plata cratons led tothe development of the Pan-African Damara orogen. The fold systemconsists of an intracratonic branch in northern central Namibia (named Damara Belt), and two coast-parallel branches, the Kaoko Belt in northern Namibia and the Gariep Belt in the border region between Namibia and theRepublic of South Africa. During the Early Cretaceous opening of the South Atlantic ocean, the crust in NW Namibia was prominently affected by the Tristan da Cunha mantle plume, as evidenced by the emplacement of the Etendeka continental flood basalts.A local earthquake tomography was carried out in NW Namibia to investigateif and to what degree the deeper continental crust was modified by the magmaticactivity during rifting and the impingement of the Tristan da Cunhamantle plume. We analyzed data from 28 onshore stations of the temporaryWALPASS seismic network. Stations were covering the continental marginaround the landfall of the Walvis Ridge, parts of the Kaoko Belt and Damara Belt,and marginally the southwestern edges of the Congo craton.First arrivals of P and S waves were identified and travel times werepicked manually. 1D inversion was carried out with VELEST to derivestarting models and the initial seismicity distribution, and SIMUL2000was used for the subsequent 3D tomographic inversion. The resultingseismicity distribution mainly follows the structures of the Pan-Africanorogenic belts. The majority of events was localized in the upper crust,but additional seismicity was also found in the deeper crust.An anomaly of increased P velocities is revealed in the deep crust under the Etendekaflood basalt province. Increased P velocities can be explained by mafic and ultra-maficmaterial which intruded in the lower crust. The anomaly appears to be rather

  2. Massive Hydrothermal Flows of Fluids and Heat: Earth Constraints and Ocean World Considerations

    NASA Astrophysics Data System (ADS)

    Fisher, A. T.

    2018-05-01

    This presentation reviews the hydrogeologic nature of Earth's ocean crust and evidence for massive flows of low-temperature (≤70°C), seafloor hydrothermal circulation through ridge flanks, including the influence of crustal relief and crustal faults.

  3. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate

    NASA Astrophysics Data System (ADS)

    Hoernle, Kaj; Tilton, George; Le Bas, Mike; Duggen, Svend; Garbe-Schönberg, Dieter

    Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9 Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of 1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ∂13C and ∂18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Δ7/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e

  4. Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate

    NASA Astrophysics Data System (ADS)

    Hoernle, Kaj; Tilton, George; Le Bas, Mike; Duggen, Svend; Garbe-Schönberg, Dieter

    2001-11-01

    Major and trace element and Sr-Nd-Pb-O-C isotopic compositions are presented for carbonatites from the Cape Verde (Brava, Fogo, Sáo Tiago, Maio and Sáo Vicente) and Canary (Fuerteventura) Islands. Carbonatites show pronounced enrichment in Ba, Th, REE, Sr and Pb in comparison to most silicate volcanic rocks and relative depletion in Ti, Zr, Hf, K and Rb. Calcio (calcitic)-carbonatites have primary (mantle-like) stable isotopic compositions and radiogenic isotopic compositions similar to HIMU-type ocean island basalts. Cape Verde carbonatites, however, have more radiogenic Pb isotope ratios (e.g. 206Pb/204Pb=19.3-20.4) than reported for silicate volcanic rocks from these islands (18.7-19.9 Gerlach et al. 1988; Kokfelt 1998). We interpret calcio-carbonatites to be derived from the melting of recycled carbonated oceanic crust (eclogite) with a recycling age of 1.6 Ga. Because of the degree of recrystallization, replacement of calcite by secondary dolomite and elevated ∂13C and ∂18O, the major and trace element compositions of the magnesio (dolomitic)-carbonatites are likely to reflect secondary processes. Compared with Cape Verde calcio-carbonatites, the less radiogenic Nd and Pb isotopic ratios and the negative Δ7/4 of the magnesio-carbonatites (also observed in silicate volcanic rocks from the Canary and Cape Verde Islands) cannot be explained through secondary processes or through the assimilation of Cape Verde crust. These isotopic characteristics require the involvement of a mantle component that has thus far only been found in the Smoky Butte lamproites from Montana, which are believed to be derived from subcontinental lithospheric sources. Continental carbonatites show much greater variation in radiogenic isotopic composition than oceanic carbonatites, requiring a HIMU-like component similar to that observed in the oceanic carbonatites and enriched components. We interpret the enriched components to be Phanerozoic through Proterozoic marine carbonate (e

  5. Oceanization starts from below during continental rupturing in the northern Red Sea

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Ligi, M.; Bonatti, E.; Bosworth, W.; Cipriani, A.; Palmiotto, C.; Rasul, N. M.; Ronca, S.; Sanfilippo, A.; Seyler, M.; Nomani, S.; AlQutub, A. S.

    2015-12-01

    The role of magmatism in continental rupturing and in the birth of a new ocean is not well understood. Continental rupture can take place with intense and voluminous volcanism, as in the Southern Red Sea or in a relatively amagmatic mode, as in the Northern Red Sea. Mantle upwelling and melting may be affected by the south to north decreasing opening rate of the Red Sea and by the influence of the Afar plume, also decreasing from south to north. The tholeiitic basalts of the Red Sea spreading system contrast with the extensive Cenozoic basaltic lava fields of the western part of the Arabian peninsula that form one of the largest alkali basalt provinces in the world. In order to establish possible relationship between the Red Sea rift evolution and the western Saudi Arabia intraplate alkali volcanism, field work was carried out on Lunayyir, Ishara, al Kura and Khaybar volcanic fields. Collected samples cover a wide range of chemical diversity (from olivine basalt to trachyte) and span over a 20 Ma interval. We attempt a comparison of the geochemistry of igneous rocks from western Arabia dykes and volcanic fields with those from the Red Sea axis and from the islands of Zabargad and Brothers in the northern Red Sea, that represent basaltic melts injected into the thinned continental crust before continental rupturing and initiation of seafloor spreading. Gabbros drilled in the western Red Sea and exposed on the Brothers islands suggest that continental break up in the northern Red Sea, a relatively non-volcanic rift, is preceded by intrusion of oceanic-type basaltic melts that crystallize at progressively shallower crustal depths as rifting progresses towards continental break-up. A seismic reflection profile running across the central part of the southern Thetis basin shows a ~5 km wide reflector that marks the roof of a magma chamber located ~3.5 km below seafloor. The presence of a few kilometers deep subrift magma chamber soon after the initiation of oceanic

  6. Influence of substrate rocks on Fe Mn crust composition

    NASA Astrophysics Data System (ADS)

    Hein, James R.; Morgan, Charles L.

    1999-05-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  7. Influence of substrate rocks on Fe-Mn crust composition

    USGS Publications Warehouse

    Hein, J.R.; Morgan, C.L.

    1999-01-01

    Principal Component and other statistical analyses of chemical and mineralogical data of Fe-Mn oxyhydroxide crusts and their underlying rock substrates in the central Pacific indicate that substrate rocks do not influence crust composition. Two ridges near Johnston Atoll were dredged repetitively and up to seven substrate rock types were recovered from small areas of similar water depths. Crusts were analyzed mineralogically and chemically for 24 elements, and substrates were analyzed mineralogically and chemically for the 10 major oxides. Compositions of crusts on phosphatized substrates are distinctly different from crusts on substrates containing no phosphorite. However, that relationship only indicates that the episodes of phosphatization that mineralized the substrate rocks also mineralized the crusts that grew on them. A two-fold increase in copper contents in crusts that grew on phosphatized clastic substrate rocks, relative to crusts on other substrate rock types, is also associated with phosphatization and must have resulted from chemical reorganization during diagenesis. Phosphatized crusts show increases in Sr, Zn, Ca, Ba, Cu, Ce, V, and Mo contents and decreases in Fe, Si, and As contents relative to non-phosphatized crusts. Our statistical results support previous studies which show that crust compositions reflect predominantly direct precipitation from seawater (hydrogenetic), and to lesser extents reflect detrital input and diagenetic replacement of parts of the older crust generation by carbonate fluorapatite.

  8. Investigation of antarctic crust and upper mantle using MAGSAT and other geophysical data. M.S. Thesis. Final Report, Sep. 1979 - Aug. 1983

    NASA Technical Reports Server (NTRS)

    Bentley, C. R.; Ritzwoller, M. H.

    1983-01-01

    Data selection and reduction procedures are described by which scalar and vector magnetic anomaly maps are constructed. The scalar and vertical magnetic anomalies are believed to be generated mainly in the Earth's crust. The horizontal anomalies are believed to be mainly due to short-period field-aligned currents. The correlation of scalar magnetic anomalies with known oceanic structure is remarkable -- magnetic highs are associated with oceanic ridges and magnetic lows with abyssal plains. The correlation between anomalies and continental geology is not so clear.

  9. Isotope composition and volume of Earth's early oceans.

    PubMed

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  10. Building Archean Cratons From Hadean Crust

    NASA Astrophysics Data System (ADS)

    O'Neil, J.; Carlson, R.

    2016-12-01

    Geologic processing of Earth's surface has removed most of the evidence concerning the nature of Earth's first crust. The largest volumes of ancient crust, the so-called Archean cratons, are dominated by felsic Tonalite-Trondhjemite-Granodiorite (TTG) rocks. These felsic rocks, however, are most likely derived by melting of an older mafic precursor. Although in part dictated by survivability, the scarcity of Hadean zircons also suggests that felsic rocks may have not been a prominent component of the earliest crust. Both points raise questions about the nature of the primordial crust and how, or if, it was involved in the formation of stable Archean cratons. The Hudson Bay Terrane of the Northeastern Superior Province is one of such Archean cratons, mainly composed of 2.88 to 2.69 Ga TTG. New data show these Neoarchean granitoids to be the youngest to yield significantly low 142Nd/144Nd, down to 15 ppm lower than that of the terrestrial Nd standard. 142Nd is the decay product of short-lived radioactive 146Sm and because of the short 103 Ma half-life of 146Sm, deviations in 142Nd/144Nd ratio can only be produced by Sm-Nd fractionation prior to 4 Ga. The variability in 142Nd/144Nd ratios in 2.7 Ga felsic rocks from the Hudson Bay Terrane shows conclusively that this large block of Archean crust was formed by reworking of much older > 4.2 Ga crust over a 1.5 billion year interval of early Earth history. Reworking of pre-existing crust likely is an important mechanism contributing to the stabilization of Earth's first continents.

  11. Large scale obduction of preserved oceanic crust: linking the Lesser Caucasus and NE Anatolian ophiolites and implications for the formation of the Lesser Caucasus-Pontides Arc

    NASA Astrophysics Data System (ADS)

    Hassig, Marc; Rolland, Yann; Sosson, Marc; Galoyan, Ghazar; Sahakyan, Lilit; Topuz, Gultelin; Farouk Çelik, Omer; Avagyan, Ara; Muller, Carla

    2014-05-01

    During the Mesozoic, the Southern margin of the Eurasian continent was involved in the closure of the Paleotethys and opening Neotethys Ocean. Later, from the Jurassic to the Eocene, subductions, obductions, micro-plate accretions, and finally continent-continent collision occurred between Eurasia and Arabia, and resulted in the closure of Neotethys. In the Lesser Caucasus and NE Anatolia three main domains are distinguished from South to North: (1) the South Armenian Block (SAB) and the Tauride-Anatolide Platform (TAP), Gondwanian-derived continental terranes; (2) scattered outcrops of ophiolite bodies, coming up against the Sevan-Akera and Ankara-Erzincan suture zones; and (3) the Eurasian plate, represented by the Eastern Pontides margin and the Somkheto-Karabagh Arc. The slivers of ophiolites are preserved non-metamorphic relics of the now disappeared Northern Neotethys oceanic domain overthrusting onto the continental South Armenian Block (SAB) as well as on the Tauride-Anatolide plateform from the north to the south. It is important to point out that the major part of this oceanic lithosphere disappeared by subduction under the Eurasian Margin to the north. In the Lesser Caucasus, works using geochemical whole-rock analyses, 40Ar/39Ar dating of basalts and gabbro amphiboles and paleontological dating have shown that the obducted oceanic domain originates from a back-arc setting formed throughout Middle Jurassic times. The comprehension of the geodynamic evolution of the Lesser Caucasus supports the presence of two north dipping subduction zones: (1) a subduction under the Eurasian margin and to the south by (2) an intra-oceanic subduction allowing the continental domain to subduct under the oceanic lithosphere, thus leading to ophiolite emplacement. To the West, the NE Anatolian ophiolites have been intensely studied with the aim to characterize the type of oceanic crust which they originated from. Geochemical analyses have shown similar rock types as in

  12. Early lunar petrogenesis, oceanic and extraoceanic

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Wasson, J. T.

    1980-01-01

    An attempt is made to ascertain which (if any) pristine nonmare rocks, other than KREEPy ones, are not cumulates from the magma ocean. It is noted that the only pristine rocks having bulk densities low enough to have formed by floating above the magma ocean are the ferroan anorthosites, which are easily recognizable as a discrete subset of pristine rocks in general, on the basis of mineral composition relationships. The other class of pristine nonmare rocks, the Mg-rich rocks, did not form from the same magma that produced the ferroan anorthosites. It is suggested that they were formed in layered noritic-troctolitic plutons. These plutons, it is noted, were apparently intruded at, or slightly above, the boundary between the floated ferroan anorthosite crust and the underlying complementary mafic cumulates. It is thought that the parental magmas of the plutons may have arisen by partial melting of either deep mafic cumulates from the magma ocean or a still deeper, undifferentiated primordial layer that was not molten during the magma ocean period.

  13. Magnetic effects of maghemitization of oceanic crust

    USGS Publications Warehouse

    Prevot, M.; Lecaille, A.; Mankinen, Edward A.

    1981-01-01

    Both theoretical considerations and available experimental results indicate that magnetic effects of maghemitization are strongly dependent on the grain size of the originally unoxidized titanomagnetite. Maghemitization of single‐domain titanomagnetite results in a decrease in coercivity, an increase in susceptibility, and a large decrease in Q ratio. Maghemitization of multidomain titanomagnetite results in an increase in coercivity, a decrease in susceptibility, and no large changes in Q ratio. Single‐domain titanomagnetite is probably resistant to the development of a chemical remanent magnetization (CRM), whereas multidomain titanomagnetite can acquire a CRM during maghemitization. The behavior of pseudo‐single‐domain titanomagnetite, which is the main carrier of remanence in submarine extrusive rocks, is investigated by comparing the magnetic properties of the French‐American Mid‐Ocean Undersea Study (FAMOUS) (less than 0.1 m.y. old) and the Leg 37 (3.5 m.y. old) pillow basalts recovered from the Mid‐Atlantic Ridge near 37°N. Combining electron microprobe analyses, Curie temperature measurements, and cell edge determinations, we find that the FAMOUS rocks are already oxidized (z = 0.38), possibly as a result of some high‐temperature maghemitization during cooling of the magma. Comparison with the more highly oxidized (z = 0.7) Leg 37 pillow basalts indicates that low‐temperature maghemitization of such rocks does not result in appreciable changes of coercivity and susceptibility, although the Q ratio does decrease and CRM seems to be acquired. Such a CRM could account for the anomalously low magnetic inclinations observed at most of the Leg 37 sites.

  14. Viscosity and Structure of a Late Lunar Magma Ocean Liquid: Implications for the Purity of Ferroan Anorthosites and the Dynamics of a Crystallizing Magma Ocean

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Lin, J. F.; Marshall, E. W., IV; Kono, Y.; Gardner, J. E.

    2016-12-01

    The current paradigm argues the Moon formed after a giant impact that produced a deep lunar magma ocean (LMO). After a period of turbulent convection, the LMO experienced fractional crystallization, causing the initially peridotitic liquid to evolve to a plagioclase-saturated ferrobasalt. The lunar crust, much of which comprises 93-98% pure anorthosite [1,2], formed by flotation of positively buoyant plagioclase on the residual liquid. A flotation crust would contain some trapped melt; compaction of the melt out of the crust before solidification may be necessary to generate a very pure anorthitic crust. The efficiency of this process depends on the previously unmeasured viscosity of the residual liquid [3]. To characterize the viscosity and thermal equation of state of a late LMO liquid, we conducted experiments at the Advanced Photon Source, Beamline 16-BM-B, Argonne National Laboratory on a nominally anhydrous Ti-rich ferrobasalt [4]. X-ray radiography and diffuse scattering experiments were conducted in a Paris-Edinburgh apparatus in graphite-lined BN capsules, allowing in-situ observation of viscosity and derivation of thermal EoS at P-T conditions relevant to the Moon (1300-1600°C, 0.1-4.4GPa). We calculated viscosities of 0.23-1.45 Pa·s for the melt; based on 11 observations, we find that viscosity is pressure insensitive under the conditions explored. Viscosity can be modeled by an Arrhenius relation with an activation enthalpy of 66 kJ/mol. Composition-dependent predictive models [5] overestimate our observations by roughly a factor of 2. Preliminary analysis suggests no pressure-dependent structural transition over the conditions explored. Late LMO liquids brought to the lunar core-mantle boundary by cumulate mantle overturn may be positively buoyant, implying the seismically attenuating layer around the lunar core contains a denser, higher-Ti melt. Our results suggest that efficient phase segregation in the lunar magma ocean and compaction in the

  15. Can high-temperature, high-heat flux hydrothermal vent fields be explained by thermal convection in the lower crust along fast-spreading Mid-Ocean Ridges?

    NASA Astrophysics Data System (ADS)

    Fontaine, Fabrice J.; Rabinowicz, M.; Cannat, M.

    2017-05-01

    We present numerical models to explore possible couplings along the axis of fast-spreading ridges, between hydrothermal convection in the upper crust and magmatic flow in the lower crust. In an end-member category of models corresponding to effective viscosities μM lower than 1013 Pa.s in a melt-rich lower crustal along-axis corridor and permeability k not exceeding ˜10-16 m2 in the upper crust, the hot, melt-rich, gabbroic lower crust convects as a viscous fluid, with convection rolls parallel to the ridge axis. In these models, we show that the magmatic-hydrothermal interface settles at realistic depths for fast ridges, i.e., 1-2 km below seafloor. Convection cells in both horizons are strongly coupled and kilometer-wide hydrothermal upflows/plumes, spaced by 8-10 km, arise on top of the magmatic upflows. Such magmatic-hydrothermal convective couplings may explain the distribution of vent fields along the East (EPR) and South-East Pacific Rise (SEPR). The lower crustal plumes deliver melt locally at the top of the magmatic horizon possibly explaining the observed distribution of melt-rich regions/pockets in the axial melt lenses of EPR and SEPR. Crystallization of this melt provides the necessary latent heat to sustain permanent ˜100 MW vents fields. Our models also contribute to current discussions on how the lower crust forms at fast ridges: they provide a possible mechanism for focused transport of melt-rich crystal mushes from moho level to the axial melt lens where they further crystallize, feed eruptions, and are transported both along and off-axis to produce the lower crust.

  16. OESbathy version 1.0: a method for reconstructing ocean bathymetry with realistic continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-04-01

    We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  17. Earth's Constant Mean Elevation: Implication for Long-Term Sea Level and Controlled by Ocean Lithosphere Dynamics in a Pitman World

    NASA Astrophysics Data System (ADS)

    Rowley, David

    2017-04-01

    On a spherical Earth, the mean elevation ( -2440m) would be everywhere at a mean Earth radius from the center. This directly links an elevation at the surface to physical dimensions of the Earth, including surface area and volume that are at most very slowly evolving components of the Earth system. Earth's mean elevation thus provides a framework within which to consider changes in heights of Earth's solid surface as a function of time. In this paper the focus will be on long-term, non-glacially controlled sea level. Long-term sea level has long been argued to be largely controlled by changes in ocean basin volume related to changes in area-age distribution of oceanic lithosphere. As generally modeled by Pitman (1978) and subsequent workers, the age-depth relationship of oceanic lithosphere, including both the ridge depth and coefficients describing the age-depth relationship are assumed constant. This paper examines the consequences of adhering to these assumptions when placed within the larger framework of maintaining a constant mean radius of the Earth. Self-consistent estimates of long-term sea level height and changes in mean depth of the oceanic crust are derived from the assumption that the mean elevation and corresponding mean radius are unchanging aspects of Earth's shorter-term evolution. Within this context, changes in mean depth of the oceanic crust, corresponding with changes in mean age of the oceanic lithosphere, acting over the area of the oceanic crust represent a volume change that is required to be balanced by a compensating equal but opposite volume change under the area of the continental crust. Models of paleo-cumulative hypsometry derived from a starting glacial isostatic adjustment (GIA)-corrected ice-free hypsometry that conserve mean elevation provide a basis for understanding how these compensating changes impact global hypsometry and particularly estimates of global mean shoreline height. Paleo-shoreline height and areal extent of

  18. Eclogite formation beneath the northern Slave craton constrained by diamond inclusions: Oceanic lithosphere origin without a crustal signature

    NASA Astrophysics Data System (ADS)

    Smart, Katie A.; Chacko, Thomas; Stachel, Thomas; Tappe, Sebastian; Stern, Richard A.; Ickert, Ryan B.; EIMF

    2012-02-01

    We report the geochemical and oxygen isotope compositions for eclogitic mineral inclusions in diamonds hosted by high-MgO eclogite xenoliths from the Jericho kimberlite, Canada. These data are used to constrain the nature and evolution of the eclogite protolith. The garnet and clinopyroxene diamond inclusions (DIs) are compositionally different than their host eclogite counterparts. In particular, garnet DIs have much lower Mg-numbers (54 vs. 82) and Cr2O3 contents (0.1 vs. 0.6 wt.%) and higher CaO contents (7.6 vs. 4.3 wt.%) than host eclogite garnet. DI and host eclogite clinopyroxenes are more similar but differences include lower Mg-numbers (78-81 vs. 93) and higher Na2O contents (2.3 vs. 1.8 wt.%) in the DIs. The DIs lack typical shallow oceanic crust signatures such as strong positive Eu and Sr anomalies, and oxygen isotope compositions that deviate significantly from the pristine mantle average. On the contrary, both the Jericho DIs and host eclogite garnets have small negative Eu and Sr anomalies, fractionated HREE patterns ((LuN/GdN) ~ 3-5) and pristine mantle-like δ18O values of 5.2-6.0‰, indicating that shallow, plagioclase-rich oceanic crust protoliths are unlikely. The eclogitic DI trace-element characteristics require that both garnet and plagioclase were present in the protolith, which likely crystallized in the shallow upper mantle. DI-based reconstructed whole-rock eclogite compositions have higher Mg-numbers and lower Al2O3 contents than found in typical basaltic or gabbroic oceanic crust, and are similar to pyroxenitic veins found in orogenic peridotite massifs. Due to the lack of clear oceanic crust signatures and the mantle-like δ18O values of the studied DIs, we propose that the Jericho diamond eclogites originally crystallized as pyroxenite cumulates that formed veins within the oceanic mantle lithosphere. Following partial melt extraction, the eclogite protoliths were subducted into the diamond stability field beneath the evolving Slave

  19. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Frey, F. A.; Coffin, M. F.; Wallace, P. J.; Weis, D.; Zhao, X.; Wise, S. W.; Wähnert, V.; Teagle, D. A. H.; Saccocia, P. J.; Reusch, D. N.; Pringle, M. S.; Nicolaysen, K. E.; Neal, C. R.; Müller, R. D.; Moore, C. L.; Mahoney, J. J.; Keszthelyi, L.; Inokuchi, H.; Duncan, R. A.; Delius, H.; Damuth, J. E.; Damasceno, D.; Coxall, H. K.; Borre, M. K.; Boehm, F.; Barling, J.; Arndt, N. T.; Antretter, M.

    2000-02-01

    Oceanic plateaus form by mantle processes distinct from those forming oceanic crust at divergent plate boundaries. Eleven drillsites into igneous basement of Kerguelen Plateau and Broken Ridge, including seven from the recent Ocean Drilling Program Leg 183 (1998-99) and four from Legs 119 and 120 (1987-88), show that the dominant rocks are basalts with geochemical characteristics distinct from those of mid-ocean ridge basalts. Moreover, the physical characteristics of the lava flows and the presence of wood fragments, charcoal, pollen, spores and seeds in the shallow water sediments overlying the igneous basement show that the growth rate of the plateau was sufficient to form subaerial landmasses. Most of the southern Kerguelen Plateau formed at ˜110 Ma, but the uppermost submarine lavas in the northern Kerguelen Plateau erupted during Cenozoic time. These results are consistent with derivation of the plateau by partial melting of the Kerguelen plume. Leg 183 provided two new major observations about the final growth stages of the Kerguelen Plateau. 1: At several locations, volcanism ended with explosive eruptions of volatile-rich, felsic magmas; although the total volume of felsic volcanic rocks is poorly constrained, the explosive nature of the eruptions may have resulted in globally significant effects on climate and atmospheric chemistry during the late-stage, subaerial growth of the Kerguelen Plateau. 2: At one drillsite, clasts of garnet-biotite gneiss, a continental rock, occur in a fluvial conglomerate intercalated within basaltic flows. Previously, geochemical and geophysical evidence has been used to infer continental lithospheric components within this large igneous province. A continental geochemical signature in an oceanic setting may represent deeply recycled crust incorporated into the Kerguelen plume or continental fragments dispersed during initial formation of the Indian Ocean during breakup of Gondwana. The clasts of garnet-biotite gneiss are

  20. Enceladus's crust as a non-uniform thin shell: I tidal deformations

    NASA Astrophysics Data System (ADS)

    Beuthe, Mikael

    2018-03-01

    The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should take into account the lateral variations of shell structure. I construct here the theory of non-uniform viscoelastic thin shells, allowing for depth-dependent rheology and large lateral variations of shell thickness and rheology. Coupling to tides yields two 2D linear partial differential equations of the fourth order on the sphere which take into account self-gravity, density stratification below the shell, and core viscoelasticity. If the shell is laterally uniform, the solution agrees with analytical formulas for tidal Love numbers; errors on displacements and stresses are less than 5% and 15%, respectively, if the thickness is less than 10% of the radius. If the shell is non-uniform, the tidal thin shell equations are solved as a system of coupled linear equations in a spherical harmonic basis. Compared to finite element models, thin shell predictions are similar for the deformations due to Enceladus's pressurized ocean, but differ for the tides of Ganymede. If Enceladus's shell is conductive with isostatic thickness variations, surface stresses are approximately inversely proportional to the local shell thickness. The radial tide is only moderately enhanced at the south pole. The combination of crustal thinning and convection below the poles can amplify south polar stresses by a factor of 10, but it cannot explain the apparent time lag between the maximum plume brightness and the opening of tiger stripes. In a second paper, I will study the impact of a non-uniform crust on tidal dissipation.

  1. Transdomes sampling of lower and middle crust

    NASA Astrophysics Data System (ADS)

    Teyssier, C. P.; Whitney, D. L.; Roger, F.; Rey, P. F.

    2015-12-01

    Migmatite transdomes are formed by lateral and upward flow of partially molten crust in transtension zones (pull-apart structures). In order to understand the flow leading to this type of domes, 3D numerical models were set-up to simulate the general case of an extensional domain located between two strike-slip faults (pull-apart or dilational bridge). Results show that upper crust extension induces flow of the deep, low-viscosity crust, with rapid upward movement of transdome material when extension becomes localized. At this point a rolling hinge detachment allows rapid removal of upper crust. The internal structure of transdomes includes a subvertical high strain zone located beneath the zone of localized upper crust extension; this shear zone separates two elongate subdomes of foliation that show refolded/sheath folds. Lineation tends to be oriented dominantly subhorizontal when the amount of strike-slip motion is greater than the amount of upward flow of dome rocks. Models also predict nearly isothermal decompression of transdome material and rapid transfer of ~50 km deep rocks to the near surface. These model results are compared to the structural and metamorphic history of several transdomes, and in particular the Variscan Montagne Noire dome (French Massif Central) that consists of two domes separated by a complex high strain zone. The Montagne Noire dome contains ~315 Ma eclogite bodies (U-Pb zircon age) that record 1.4 GPa peak pressure. The eclogite bodies are wrapped in highly sheared migmatite that yield 314-310 Ma monazite ages interpreted as the metamorphism and deformation age. Based on these relations we conclude that the Montagne Noire transdome developed a channel of partially molten crust that likely entrained eclogite bodies from the deep crust (~50 km) before ascending to the near-surface. One implication of this work is that the flowing crust was deeply seated in the orogen although it remained a poor recorder of peak pressure of metamorphism

  2. Magnetically-driven oceans on Jovian satellites

    NASA Astrophysics Data System (ADS)

    Gissinger, C.; Petitdemange, L.

    2017-12-01

    During the last decade, data from Galileo space missions have added strong support for the existence of subsurface liquid oceans on several moons of Jupiter. For instance, it is now commonly accepted that an electrically conducting fluid beneath the icy crust of Europa's surface may explain the variations of the induced field measured near the satellite. These observations have raised many questions regarding the size and the salinity of such subsurface ocean, or how and why the water remains liquid. In addition, the hydrodynamics of such oceans is mostly unknown. These questions are of primary importance since Europa is often considered as a good candidate for the presence of life beyond the Earth. Here, we present the first numerical modeling of the rapidly-rotating magnetohydrodynamic (MHD) flow generated in Europa's interior: due to Jupiter's rotation with respect to Europa, we show that the Lorentz force induced by the time-varying Jovian magnetic field is able to generate an oceanic flow of a few km/h. Our results are understood in the framework of a simple theoretical model and we obtain a scaling law for the prediction of the mean oceanic velocity and the total heating generated inside the ocean of Europa. Finally, by comparing our simulations to Galileo observations, we make predictions on both the thickness and the electrical conductivity of the ocean of different Jovian's satellites.

  3. Structural variation of the oceanic Moho in the Pacific plate revealed by active-source seismic data

    NASA Astrophysics Data System (ADS)

    Ohira, Akane; Kodaira, Shuichi; Nakamura, Yasuyuki; Fujie, Gou; Arai, Ryuta; Miura, Seiichi

    2017-10-01

    The characteristics of the oceanic Moho are known to depend on various factors, such as seafloor spreading rate, crustal age, and accretionary processes at a ridge. However, the effect of local magmatic activities on the seismic signature of the Moho is poorly understood. Here an active-source reflection and refraction survey is used to investigate crustal structure and Moho characteristics along a >1000-km-long profile southeast of the Shatsky Rise in a Pacific Ocean basin formed from the Late Jurassic to Early Cretaceous and spanning the onset of Shatsky Rise volcanism. Although the seismic velocity structure estimated from the refraction data showed typical characteristics of the oceanic crust of the old Pacific plate, the appearance of the Moho reflections was spatially variable. We observed clear Moho reflections such as those to be expected where the spreading rate is fast to intermediate only at the southwestern end of the profile, whereas Moho reflections were diffuse, weak, or absent along other parts of the profile. The poor Moho reflections can be explained by the presence of a thick crust-mantle transition layer, which is temporally coincident with the formation of the Shatsky Rise. We inferred that the crust-mantle transition layer was formed by changes in on-axis accretion process or modification of the primary Moho by off-axis magmatism, induced by magmatic activity of the Shatsky Rise.

  4. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology.

    PubMed

    Keenan, Timothy E; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P Benjamin

    2016-11-22

    Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence.

  5. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology

    PubMed Central

    Keenan, Timothy E.; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P. Benjamin

    2016-01-01

    Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence. PMID:27821756

  6. OESbathy version 1.0: a method for reconstructing ocean bathymetry with generalized continental shelf-slope-rise structures

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.

    2015-09-01

    We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.

  7. Physics of Neutron Star Crusts.

    PubMed

    Chamel, Nicolas; Haensel, Pawel

    2008-01-01

    The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  8. Biological Soil Crusts: Webs of Life in the Desert

    USGS Publications Warehouse

    Belnap, Jayne

    2001-01-01

    Although the soil surface may look like dirt to you, it is full of living organisms that are a vital part of desert ecosystems. This veneer of life is called a biological soil crust. These crusts are found throughout the world, from hot deserts to polar regions. Crusts generally cover all soil spaces not occupied by green plants. In many areas, they comprise over 70% of the living ground cover and are key in reducing erosion, increasing water retention, and increasing soil fertility. In most dry regions, these crusts are dominated by cyanobacteria (previously called blue-green algae), which are one of the oldest known life forms. Communities of soil crusts also include lichens, mosses, microfungi, bacteria, and green algae. These living organisms and their by-products create a continuous crust on the soil surface. The general color, surface appearance, and amount of coverage of these crusts vary depending on climate and disturbance patterns. Immature crusts are generally flat and the color of the soil, which makes them difficult to distinguish from bare ground. Mature crusts, in contrast, are usually bumpy and dark-colored due to the presence of lichens, mosses, and high densities of cyanobacteria and other organisms.

  9. USArray Imaging of North American Continental Crust

    NASA Astrophysics Data System (ADS)

    Ma, Xiaofei

    The layered structure and bulk composition of continental crust contains important clues about its history of mountain-building, about its magmatic evolution, and about dynamical processes that continue to happen now. Geophysical and geological features such as gravity anomalies, surface topography, lithospheric strength and the deformation that drives the earthquake cycle are all directly related to deep crustal chemistry and the movement of materials through the crust that alter that chemistry. The North American continental crust records billions of years of history of tectonic and dynamical changes. The western U.S. is currently experiencing a diverse array of dynamical processes including modification by the Yellowstone hotspot, shortening and extension related to Pacific coast subduction and transform boundary shear, and plate interior seismicity driven by flow of the lower crust and upper mantle. The midcontinent and eastern U.S. is mostly stable but records a history of ancient continental collision and rifting. EarthScope's USArray seismic deployment has collected massive amounts of data across the entire United States that illuminates the deep continental crust, lithosphere and deeper mantle. This study uses EarthScope data to investigate the thickness and composition of the continental crust, including properties of its upper and lower layers. One-layer and two-layer models of crustal properties exhibit interesting relationships to the history of North American continental formation and recent tectonic activities that promise to significantly improve our understanding of the deep processes that shape the Earth's surface. Model results show that seismic velocity ratios are unusually low in the lower crust under the western U.S. Cordillera. Further modeling of how chemistry affects the seismic velocity ratio at temperatures and pressures found in the lower crust suggests that low seismic velocity ratios occur when water is mixed into the mineral matrix

  10. Coesite Assemblages in Deep Continental Lithosphere: Additional Evidence for a Protolith from Subduction of Oceanic Crust

    NASA Astrophysics Data System (ADS)

    Sobolev, N.

    2005-12-01

    subduction of oceanic crust.

  11. Composition of the crust beneath the Kenya rift

    USGS Publications Warehouse

    Mooney, W.D.; Christensen, N.I.

    1994-01-01

    We infer the composition of the crust beneath and on the flanks of the Kenya rift based on a comparison of the KRISP-90 crustal velocity structure with laboratory measurements of compressional-wave velocities of rock samples from Kenya. The rock samples studied, which are representative of the major lithologies exposed in Kenya, include volcanic tuffs and flows (primarily basalts and phonolites), and felsic to intermediate composition gneisses. This comparison indicates that the upper crust (5-12 km depth) consists primarily of quartzo-feldspathic gneisses and schists similar to rocks exposed on the flanks of the rift, whereas the middle crust (12-22 km depth) consists of more mafic, hornblende-rich metamorphic rocks, probably intruded by mafic rocks beneath the rift axis. The lower crust on the flanks of the rift may consist of mafic granulite facies rocks. Along the rift axis, the lower crust varies in thickness from 9 km in the southern rift to only 2-3 km in the north, and has a seismic velocity substantially higher than the samples investigated in this study. The lower crust of the rift probably consists of a crust/mantle mix of high-grade metamorphic rocks, mafic intrusives, and an igneous mafic residuum accreted to the base of the crust during differentiation of a melt derived from the upper mantle. ?? 1994.

  12. Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean

    NASA Astrophysics Data System (ADS)

    Lin, Yanhao; Tronche, Elodie J.; Steenstra, Edgar S.; van Westrenen, Wim

    2017-01-01

    The Moon is thought to have been covered initially by a deep magma ocean, its gradual solidification leading to the formation of the plagioclase-rich highland crust. We performed a high-pressure, high-temperature experimental study of lunar mineralogical and geochemical evolution during magma ocean solidification that yields constraints on the presence of water in the earliest lunar interior. In the experiments, a deep layer containing both olivine and pyroxene is formed in the first ~50% of crystallization, β-quartz forms towards the end of crystallization, and the last per cent of magma remaining is extremely iron rich. In dry experiments, plagioclase appears after 68 vol.% solidification and yields a floatation crust with a thickness of ~68 km, far above the observed average of 34-43 km based on lunar gravity. The volume of plagioclase formed during crystallization is significantly less in water-bearing experiments. Using the relationship between magma water content and the resulting crustal thickness in the experiments, and considering uncertainties in initial lunar magma ocean depth, we estimate that the Moon may have contained at least 270 to 1,650 ppm water at the time of magma ocean crystallization, suggesting the Earth-Moon system was water-rich from the start.

  13. Nuclear Reactions in the Crusts of Accreting Neutron Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Rita; Beard, Mary; Gupta, Sanjib S.

    X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density ismore » $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$ using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. As a result, this work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.« less

  14. Nuclear Reactions in the Crusts of Accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Lau, R.; Beard, M.; Gupta, S. S.; Schatz, H.; Afanasjev, A. V.; Brown, E. F.; Deibel, A.; Gasques, L. R.; Hitt, G. W.; Hix, W. R.; Keek, L.; Möller, P.; Shternin, P. S.; Steiner, A. W.; Wiescher, M.; Xu, Y.

    2018-05-01

    X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density is ρ =2× {10}12 {{g}} {cm}}-3 using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond ρ =2× {10}12 {{g}} {cm}}-3. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. This work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.

  15. Nuclear Reactions in the Crusts of Accreting Neutron Stars

    DOE PAGES

    Lau, Rita; Beard, Mary; Gupta, Sanjib S.; ...

    2018-05-24

    X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density ismore » $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$ using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. As a result, this work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.« less

  16. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    NASA Astrophysics Data System (ADS)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of

  17. Oceans, Ice Shells, and Life on Europa

    NASA Technical Reports Server (NTRS)

    Schenk, Paul

    2002-01-01

    The four large satellites of Jupiter are famous for their planet-like diversity and complexity, but none more so than ice-covered Europa. Since the provocative Voyager images of Europa in 1979, evidence has been mounting that a vast liquid water ocean may lurk beneath the moon's icy surface. Europa has since been the target of increasing and sometimes reckless speculation regarding the possibility that giant squid and other creatures may be swimming its purported cold, dark ocean. No wonder Europa tops everyone's list for future exploration in the outer solar system (after the very first reconnaissance of Pluto and the Kuiper belt, of course). Europa may be the smallest of the Galilean moons (so-called because they were discovered by Galileo Galilei in the early 17th century) but more than makes up for its diminutive size with a crazed, alien landscape. The surface is covered with ridges hundreds of meters high, domes tens of kilometers across, and large areas of broken and disrupted crust called chaos. Some of the geologic features seen on Europa resemble ice rafts floating in polar seas here on Earth-reinforcing the idea that an ice shell is floating over an ocean on this Moon-size satellite. However, such features do not prove that an ocean exists or ever did. Warm ice is unusually soft and will flow under its own weight. If the ice shell is thick enough, the warm bottom of the shell will flow, as do terrestrial glaciers. This could produce all the observed surface features on Europa through a variety of processes, the most important of which is convection. (Convection is the vertical overturn of a layer due to heating or density differences-think of porridge or sauce boiling on the stove.) Rising blobs from the base of the crust would then create the oval domes dotting Europa's surface. The strongest evidence for a hidden ocean beneath Europa's surface comes from the Galileo spacecraft's onboard magnetometer, which detected fluctuations in Jupiter's magnetic

  18. Deep Crustal Melting and the Survival of Continental Crust

    NASA Astrophysics Data System (ADS)

    Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.

    2017-12-01

    Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in <10 million years. This cycle of burial, partial melting, rapid ascent, and crystallization/cooling preserves the continents from being recycled into the mantle by convergent tectonic processes over geologic time. Migmatite domes commonly preserve a record of high-T - low-P metamorphism. Domes may also contain rocks or minerals that record high-T - high-P conditions, including high-P metamorphism broadly coeval with host migmatite, evidence for the deep crustal origin of migmatite. There exists a spectrum of domes, from entirely deep-sourced to mixtures of deep and shallow sources. Controlling factors in deep vs. shallow sources are relative densities of crustal layers and rate of extension: fast extension (cm/yr) promotes efficient

  19. The Architecture of A Variscan Collisional Crust, As Revealed By The Iberseis Seismic Reflection Profile In Southwest Iberia

    NASA Astrophysics Data System (ADS)

    Simancas, F.; Carbonell, R.; Gonzalez-Lodeiro, F.; Perez-Estaun, A.; Ayarza, P.; Juhlin, C.; Azor, A.; Saez, R.; Martinez-Poyatos, D.; Pascual, E.

    The recently acquired IBERSEIS Seismic Reflection Profile runs across major do- mains of the Variscan Orogen in SW Iberia. Geological studies indicate that the seis- mically surveyed region has been built up from three terranes, namely the South Por- tuguese Zone (SPZ), the Ossa-Morena Zone (OMZ) and the Central Iberian Zone (CIZ). These terranes became sutured after a complex, mainly transpressive (left- lateral), collisional history in Devonian-Carboniferous time. The deep seismic reflec- tion profile IBERSEIS has successfully imaged the sutures between these terranes as well as the structure of their crust. The following main features emerge from the pre- liminary integration of seismic and geological data: 1) The suture between the SPZ and OMZ terranes, marked by oceanic amphibolites, appears at present as a north- dipping left-lateral thrust merging in a mid-crustal detachment; the continuity of this suture-contact in the lower crust is not well defined in the seismic image. 2) The OMZ/CIZ suture, a shear zone with eclogites, is clearly imaged in the upper crust as a band of reflectivity dipping to the NE which, after a flat geometry in the middle crust, may continue downwards to the Moho as NE-dipping lower crustal reflections. 3) The SPZ upper crust has an imbricate structure merging into a mid-crustal detachment at constant depth in the surveyed profile. 4) The structure of the OMZ upper crust is dominated by large-scale recumbent folds affected by late upright folds, as fore- seen by geology and fully confirmed by the seismic image. 5) A general mid-crustal detachment exists in the whole surveyed area, whose geometry varies from a sharp detachment-level in the SPZ to a pinching and swelling horizontal band of reflectivity -a melting layer?- in the OMZ; in any case, a strong decoupling between upper and lower crust characterizes this transect of the Variscan orogen. 6) The lower crust of the SPZ has an intense seismic fabric, in accordance with the

  20. Incorporation of crust at the Lesser Antilles arc

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.; Bezard, R. C.

    2012-12-01

    Most convergent margin magmas exhibit geochemical characteristics of continental crust, incorporated via subduction of continental sediment into the arc source (mantle wedge) or via assimilation of continental crust by arc magmas en route to surface. Resolving which of these processes dominate at a given arc is important in avoiding the circularity of the question of the origin of the continental crust. The Lesser Antilles is built on oceanic lithosphere so in principle any crustal signature has been introduced via sediment subduction. Geochemical variations in magmas along the arc have been matched with the variations displayed in sediments outboard of the trench 1 . At about the same time, similarly comprehensive data sets were produced from along the Lesser Antilles, arguing that much of the geochemical diversity reflected crustal contamination rather than source contamination 2. These claims were based on; 1) correlations between isotopic ratios and indices of differentiation, 2) high delta18O, which argues for extensive interaction with material that has interacted with water at low T and finally the observation that the highest Pb isotope ratios in the lavas actually exceed the highest seen in the sediments. The latter problem has now been solved since a wider range of sediments have now been examined, with a section of black shales exhibiting remarkably radiogenic Pb isotopes 3 . We have re-examined the origin of geochemical variations by comparing two specific volcanoes, Mt Pelee in the centre of the arc and The Quill in the north 4. The idea is to explore differentiation trends at a given volcano, and back project them to reasonable primitive magma compositions. In that way we can account for geochemical effects resulting from differentiation, and focus on source variations (contributions from slab to wedge along the Antilles). From this we conclude that 1) both suites differentiate largely by amphibole-plag fractionation, along with contamination by the

  1. Seismic Structure of the Oceanic Plate Entering the Central Part of the Japan Trench Obtained from Ocean-Bottom Seismic Data

    NASA Astrophysics Data System (ADS)

    Ohira, A.; Kodaira, S.; Fujie, G.; No, T.; Nakamura, Y.; Miura, S.

    2017-12-01

    In trench-outer rise regions, the normal faults develop due to the bending of the incoming plate, which cause numerous normal-faulting earthquakes and systematic structural variations toward trenches. In addition to the effects on the bend-related normal fault, structural variations which are interpreted to be attributed to pseudofaults, a fracture zone, and petit-spot volcanic activities are observed in the oceanic plate entering the central part of the Japan Trench, off Miyagi. In May-June 2017, to understand detail structural variations and systematic structural changes of the oceanic plate toward the trench, we conducted an active-source seismic survey off Miyagi using R/V Kaimei, a new research vessel of JAMSTEC. Along a 100 km-long seismic profile which is approximately perpendicular to the trench axis, we deployed 40 ocean-bottom seismometers at intervals of 2 km and fired a large airgun array (total volume 10,600 cubic inches) with 100 m shooting intervals. Multi-channel seismic reflection data were also collected along the profile. On OBS records we observed refractions from the sedimentary layer and the oceanic crust (Pg), wide-angle reflections from the crust-mantle boundary (PmP), and refractions from the uppermost mantle (Pn). Pg is typically observed clearly at near offsets (approximately 20 km) but it highly attenuates at far offsets (> 20 km). A triplication of Pg-PmP-Pn with strong amplitudes is observed at ranges from 30 km to 60 km offsets. Pn is typically weak and its apparent velocity is approximately 8 km/sec. High attenuation of Pg and weak Pn may indicate the complex crustal structure related to petit-spot volcanic activities and/or a fracture zone, which are recognized in bathymetry data around the profile.

  2. Sulfur and Metal Fertilization of the Lower Continental Crust

    NASA Technical Reports Server (NTRS)

    Locmelis, Marek; Fiorentini, Marco L.; Rushmer, Tracy; Arevalo, Ricardo, Jr.; Adam, John; Denyszyn, Steven W.

    2015-01-01

    Mantle-derived melts and metasomatic fluids are considered to be important in the transport and distribution of trace elements in the subcontinental lithospheric mantle. However, the mechanisms that facilitate sulfur and metal transfer from the upper mantle into the lower continental crust are poorly constrained. This study addresses this knowledge gap by examining a series of sulfide- and hydrous mineral-rich alkaline mafic-ultramafic pipes that intruded the lower continental crust of the Ivrea-Verbano Zone in the Italian Western Alps. The pipes are relatively small (<300 m diameter) and primarily composed of a matrix of subhedral to anhedral amphibole (pargasite), phlogopite and orthopyroxene that enclose sub-centimeter-sized grains of olivine. The 1 to 5 m wide rim portions of the pipes locally contain significant blebby and disseminated Fe-Ni-Cu-PGE sulfide mineralization.Stratigraphic relationships, mineral chemistry, geochemical modeling and phase equilibria suggest that the pipes represent open-ended conduits within a large magmatic plumbing system. The earliest formed pipe rocks were olivine-rich cumulates that reacted with hydrous melts to produce orthopyroxene, amphibole and phlogopite.Sulfides precipitated as immiscible liquid droplets that were retained within a matrix of silicate crystals and scavenged metals from the percolating hydrous melt. New high-precision chemical abrasion TIMS-UPb dating of zircons from one of the pipes indicates that these pipes were emplaced at 249.1+/-0.2 Ma, following partial melting of lithospheric mantle pods that were metasomatized during the Eo-Variscan oceanic to continental subduction (approx. 420-310 Ma). The thermal energy required to generate partial melting of the metasomatized mantle was most likely derived from crustal extension, lithospheric decompression and subsequent asthenospheric rise during the orogenic collapse of the Variscan belt (<300 Ma). Unlike previous models, outcomes from this study suggest a

  3. Tectonic analysis and paleo-stress determination of the upper lava section at ODP/IODP site 1256 (East Pacific Ocean)

    NASA Astrophysics Data System (ADS)

    Fontana, Emanuele

    2015-09-01

    Research on the deep sea is of great importance for a better understanding of the mechanism of magma emplacement and the tectonic evolution of oceanic crust. However, details of the internal structure in the upper levels of the oceanic crust are much less complete than that of the more fully studied sub-aerial areas. For the first time, this study proposes a dynamic analysis using the inversion method on core data derived from the drilled basement of the present-day intact oceanic crust at ODP/IODP Site 1256 in the Cocos plate. The research is based on an innovative core reorientation process and combines different stress hypothesis approaches for the analysis of heterogeneous failure-slip data via exploitation of two distinct techniques. From the analysis of the failure-slip data, both techniques produce 5 distinct subsystem datasets. All calculated subsystems are mechanically and geometrically admissible. Interpretation of the results allows the researchers to note a complex local and regional tectonic evolution deriving from the interplay of (1) the ridge push and rotation of both the East Pacific Rise and the Cocos-Nazca Spreading Center, (2) the effect of the slab pull of the Middle America Trench, (3) the influence of lava emplacement mechanisms, and (4) intra-plate deformation.

  4. Microbial community structure in three deep-sea carbonate crusts.

    PubMed

    Heijs, S K; Aloisi, G; Bouloubassi, I; Pancost, R D; Pierre, C; Sinninghe Damsté, J S; Gottschal, J C; van Elsas, J D; Forney, L J

    2006-10-01

    Carbonate crusts in marine environments can act as sinks for carbon dioxide. Therefore, understanding carbonate crust formation could be important for understanding global warming. In the present study, the microbial communities of three carbonate crust samples from deep-sea mud volcanoes in the eastern Mediterranean were characterized by sequencing 16S ribosomal RNA (rRNA) genes amplified from DNA directly retrieved from the samples. In combination with the mineralogical composition of the crusts and lipid analyses, sequence data were used to assess the possible role of prokaryotes in crust formation. Collectively, the obtained data showed the presence of highly diverse communities, which were distinct in each of the carbonate crusts studied. Bacterial 16S rRNA gene sequences were found in all crusts and the majority was classified as alpha-, gamma-, and delta- Proteobacteria. Interestingly, sequences of Proteobacteria related to Halomonas and Halovibrio sp., which can play an active role in carbonate mineral formation, were present in all crusts. Archaeal 16S rRNA gene sequences were retrieved from two of the crusts studied. Several of those were closely related to archaeal sequences of organisms that have previously been linked to the anaerobic oxidation of methane (AOM). However, the majority of archaeal sequences were not related to sequences of organisms known to be involved in AOM. In combination with the strongly negative delta 13C values of archaeal lipids, these results open the possibility that organisms with a role in AOM may be more diverse within the Archaea than previously suggested. Different communities found in the crusts could carry out similar processes that might play a role in carbonate crust formation.

  5. Crustal Thickness Mapping of the Rifted Margin Ocean-Continent Transition using Satellite Gravity Inversion Incorporating a Lithosphere Thermal Correction

    NASA Astrophysics Data System (ADS)

    Hurst, N. W.; Kusznir, N. J.

    2005-05-01

    A new method of inverting satellite gravity at rifted continental margins to give crustal thickness, incorporating a lithosphere thermal correction, has been developed which does not use a priori information about the location of the ocean-continent transition (OCT) and provides an independent prediction of OCT location. Satellite derived gravity anomaly data (Sandwell and Smith 1997) and bathymetry data (Gebco 2003) are used to derive the mantle residual gravity anomaly which is inverted in 3D in the spectral domain to give Moho depth. Oceanic lithosphere and stretched continental margin lithosphere produce a large negative residual thermal gravity anomaly (up to -380 mgal), which must be corrected for in order to determine Moho depth. This thermal gravity correction may be determined for oceanic lithosphere using oceanic isochron data, and for the thinned continental margin lithosphere using margin rift age and beta stretching estimates iteratively derived from crustal basement thickness determined from the gravity inversion. The gravity inversion using the thermal gravity correction predicts oceanic crustal thicknesses consistent with seismic observations, while that without the thermal correction predicts much too great oceanic crustal thicknesses. Predicted Moho depth and crustal thinning across the Hatton and Faroes rifted margins, using the gravity inversion with embedded thermal correction, compare well with those produced by wide-angle seismology. A new gravity inversion method has been developed in which no isochrons are used to define the thermal gravity correction. The new method assumes all lithosphere to be initially continental and a uniform lithosphere stretching age is used corresponding to the time of continental breakup. The thinning factor produced by the gravity inversion is used to predict the thickness of oceanic crust. This new modified form of gravity inversion with embedded thermal correction provides an improved estimate of rifted

  6. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2014-07-01

    Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate during subduction by accretionary processes. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm-3, and have 3 distinct crustal units overlying a crust-mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm-3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm-3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. In addition many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. And other times we find evidence of collision leaving behind accreted terranes 25 to 40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT crust to

  7. Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments

    NASA Astrophysics Data System (ADS)

    Tetreault, J. L.; Buiter, S. J. H.

    2014-12-01

    Allochthonous accreted terranes are exotic geologic units that originated from anomalous crustal regions on a subducting oceanic plate and were transferred to the overriding plate by accretionary processes during subduction. The geographical regions that eventually become accreted allochthonous terranes include island arcs, oceanic plateaus, submarine ridges, seamounts, continental fragments, and microcontinents. These future allochthonous terranes (FATs) contribute to continental crustal growth, subduction dynamics, and crustal recycling in the mantle. We present a review of modern FATs and their accreted counterparts based on available geological, seismic, and gravity studies and discuss their crustal structure, geological origin, and bulk crustal density. Island arcs have an average crustal thickness of 26 km, average bulk crustal density of 2.79 g cm-3, and three distinct crustal units overlying a crust-mantle transition zone. Oceanic plateaus and submarine ridges have an average crustal thickness of 21 km and average bulk crustal density of 2.84 g cm-3. Continental fragments presently on the ocean floor have an average crustal thickness of 25 km and bulk crustal density of 2.81 g cm-3. Accreted allochthonous terranes can be compared to these crustal compilations to better understand which units of crust are accreted or subducted. In general, most accreted terranes are thin crustal units sheared off of FATs and added onto the accretionary prism, with thicknesses on the order of hundreds of meters to a few kilometers. However, many island arcs, oceanic plateaus, and submarine ridges were sheared off in the subduction interface and underplated onto the overlying continent. Other times we find evidence of terrane-continent collision leaving behind accreted terranes 25-40 km thick. We posit that rheologically weak crustal layers or shear zones that were formed when the FATs were produced can be activated as detachments during subduction, allowing parts of the FAT

  8. Staging Life in an Early Warm ‘Seltzer’ Ocean

    DOE PAGES

    Schoonen, Martin; Smirnov, Alexander

    2016-12-01

    A period as short as 20 million years within the first 100 million years after the formation of the Moon may have set the stage for the origin of life. This atmosphere contained more carbon dioxide than any other period afterwards. The carbon dioxide sustained greenhouse conditions, accelerated the weathering of a primitive crust and may have led to conditions conducive to the formation of the building blocks of life. The conversion of CO 2 as well as N 2 may have been facilitated by clays, zeolites, sulfides and metal alloys formed as the crust reacted with a warm ‘seltzer’more » ocean. We used geochemical modeling to constrain the conditions favorable for the formation of these potential mineral catalysts.« less

  9. Staging Life in an Early Warm ‘Seltzer’ Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonen, Martin; Smirnov, Alexander

    A period as short as 20 million years within the first 100 million years after the formation of the Moon may have set the stage for the origin of life. This atmosphere contained more carbon dioxide than any other period afterwards. The carbon dioxide sustained greenhouse conditions, accelerated the weathering of a primitive crust and may have led to conditions conducive to the formation of the building blocks of life. The conversion of CO 2 as well as N 2 may have been facilitated by clays, zeolites, sulfides and metal alloys formed as the crust reacted with a warm ‘seltzer’more » ocean. We used geochemical modeling to constrain the conditions favorable for the formation of these potential mineral catalysts.« less

  10. A Seafloor Microbial Biome Hosted within Incipient Ferromanganese Crusts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, Alexis S.; Knowles, A. S.; Eldridge, D. L.

    2009-11-15

    Unsedimented volcanic rocks exposed on the seafloor at ridge systems and Seamounts host complex, abundant and diverse microbial communities that are relatively cosmopolitan in distribution (Lysnes, Thorseth et al. 2004; Mason, Stingl et al. 2007; Santelli, Orcutt et al. 2008). The most commonly held hypothesis is that the energy released by the hydration, dissolution and oxidative alteration of volcanic glasses in seawater drives the formation of an ocean crust biosphere (Thorseth, Furnes et al. 1992; Fisk, Giovannoni et al. 1998; Furnes and Staudigel 1999). The combined thermodynamically favorable weathering reactions could theoretically support anywhere from 105 to 109 cells/gram ofmore » rock depending upon the metabolisms utilized and cellular growth rates and turnover (Bach and Edwards 2003; Santelli, Orcutt et al. 2008). Yet microbially-mediated basalt alteration and energy conservation has not been directly demonstrated on the seafloor. By using synchrotron-based x-ray microprobe mapping, x-ray absorption spectroscopy and high-resolution scanning and transmission electron microscopy observations of young volcanic glasses recovered from the outer flanks of Loihi Seamount, we intended to identify the initial rates and mechanisms of microbial basalt colonization and bioalteration. Instead, here we show that microbial biofilms are intimately associated with ferromanganese crusts precipitating onto basalt surfaces from cold seawater. Thus we hypothesize that microbial communities colonizing seafloor rocks are established and sustained by external inputs of potential energy sources, such as dissolved and particulate Fe(II), Mn(II) and organic matter, rather than rock dissolution.« less

  11. Lunar Magma Ocean Bedrock Anorthosites Detected at Orientale Basin by M3

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.; Boardman, J. W.; Burratti, B.; Cheek, L.; Clark, R. N.; Combe, J.; Green, R. O.; Head, J. W.; Hicks, M.; Isaacson, P.; Klima, R.; Kramer, G. Y.; Lundeen, S.; Malaret, E.; McCord, T. B.; Mustard, J. F.; Nettles, J. W.; Petro, N. E.; Runyon, C. J.; Staid, M.; Sunshine, J. M.; Taylor, L. A.; Tompkins, S.; Varanasi, P.

    2009-12-01

    The lunar crust is thought to have formed as a result of global melting of the outer parts of the Moon in its earliest history, a lunar magma ocean (LMO). Crystallization of this magma ocean set the stage for the ensuing history of the planet. Models for the formation of the lunar crust and the evolution of the LMO were derived from individual Apollo samples that could not be placed directly in the context of crustal bedrock with remote sensing data that was available. Data from modern sensors, such as the Moon Mineralogy Mapper (M3) on Chandrayaan-1, now allow such bedrock issues to be addressed. The ~930 km diameter Orientale multi-ringed impact basin in the western highlands provides an opportunity to evaluate the mineralogy of the in situ crust of the Moon in the search for LMO mineralogy and structure. Orientale is the youngest large basin on the Moon, and the basin deposits and ring structures expose progressively deeper bedrock layering that can be used to determine lunar crustal structure and test the LMO model. With its high spatial and spectral resolution, M3 data show that the ejecta of the basin is composed of mixed assemblages of processed feldspathic breccias with small amounts of low-Ca pyroxene comprising the upper kilometers-thick mega-regolith layer of the crust. Exposures in the outermost (Cordillera) ring reveal less processed examples of this material. The M3 data show that the next interior ring (Outer Rook), representing deeper material, is characterized by distinctly more crystalline blocks of impact-shocked anorthosite and noritic anorthosite. Most importantly, M3 data reveal that the mountains of the closest ring toward the basin interior (Inner Rook) consist of pure anorthosite, including outcrops of the unshocked crystalline form. This massive exposure of anorthosite across the entire mountain range provides validation for the LMO hypothesis. These mountains are believed to have originated in the upper crust below the impact fragmented

  12. A relatively reduced Hadean continental crust

    NASA Astrophysics Data System (ADS)

    Yang, Xiaozhi; Gaillard, Fabrice; Scaillet, Bruno

    2014-05-01

    Among the physical and chemical parameters used to characterize the Earth, oxidation state, as reflected by its prevailing oxygen fugacity (fO2), is a particularly important one. It controls many physicochemical properties and geological processes of the Earth's different reservoirs, and affects the partitioning of elements between coexisting phases and the speciation of degassed volatiles in melts. In the past decades, numerous studies have been conducted to document the evolution of mantle and atmospheric oxidation state with time and in particular the possible transition from an early reduced state to the present oxidized conditions. So far, it has been established that the oxidation state of the uppermost mantle is within ±2 log units of the quartz-fayalite-magnetite (QFM) buffer, probably back to ~4.4 billion years ago (Ga) based on trace-elements studies of mantle-derived komatiites, kimberlites, basalts, volcanics and zircons, and that the O2 levels of atmosphere were initially low and rose markedly ~2.3 Ga known as the Great Oxidation Event (GOE), progressively reaching its present oxidation state of ~10 log units above QFM. In contrast, the secular evolution of oxidation state of the continental crust, an important boundary separating the underlying upper mantle from the surrounding atmosphere and buffering the exchanges and interactions between the Earth's interior and exterior, has rarely been addressed, although the presence of evolved crustal materials on the Earth can be traced back to ~4.4 Ga, e.g. by detrital zircons. Zircon is a common accessory mineral in nature, occurring in a wide variety of igneous, sedimentary and metamorphic rocks, and is almost ubiquitous in crustal rocks. The physical and chemical durability of zircons makes them widely used in geochemical studies in terms of trace-elements, isotopes, ages and melt/mineral inclusions; in particular, zircons are persistent under most crustal conditions and can survive many secondary

  13. Who cares about Mid-Ocean Ridge Earthquakes? And Why?

    NASA Astrophysics Data System (ADS)

    Tolstoy, M.

    2004-12-01

    Every day the surface of our planet is being slowly ripped apart by the forces of plate tectonics. Much of this activity occurs underwater and goes unnoticed except for by a few marine seismologists who avidly follow the creaks and groans of the ocean floor in an attempt to understand the spreading and formation of oceanic crust. Are marine seismologists really the only ones that care? As it turns out, deep beneath the ocean surface, earthquakes play a fundamental role in a myriad of activity centered on mid-ocean ridges where new crust forms and breaks on a regular basis. This activity takes the form of exotic geological structures hosting roasting hot fluids and bizarre chemosynthetic life forms. One of the fundamental drivers for this other world on the seafloor is earthquakes. Earthquakes provide cracks that allow seawater to penetrate the rocks, heat up, and resurface as hydrothermal vent fluids, thus providing chemicals to feed a thriving biological community. Earthquakes can cause pressure changes along cracks that can fundamentally alter fluid flow rates and paths. Thus earthquakes can both cut off existing communities from their nutrient source and provide new oases on the seafloor around which life can thrive. This poster will present some of the fundamental physical principals of how earthquakes can impact fluid flow, and hence life on the seafloor. Using these other-wordly landscapes and alien-like life forms to woe the unsuspecting passerby, we will sneak geophysics into the picture and tell the story of why earthquakes are so fundamental to life on the seafloor, and perhaps life elsewhere in the universe.

  14. Identification of hyper-extended crust east of Davie Ridge in the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    Klimke, Jennifer; Franke, Dieter

    2015-04-01

    Davie Ridge is a ~1200 km wide, N-S trending bathymetrical high in the Mozambique Channel. Today, it is widely accepted that Davie Ridge is located along a fossil transform fault that was active during the Middle Jurassic and Early Cretaceous (~165-120 Ma). This transform fault results from the breakup of Gondwana, when Madagascar (together with India and Antarctica) drifted from its northerly position in the Gondwana Supercontinent (adjacent to the coasts of Tanzania, Somalia and Kenya) to its present position (e.g. Coffin and Rabinowitz, 1987; Rabinowitz et al., 1983; Segoufin and Patriat, 1980). The southward motion of Madagascar relative to Africa is constrained by the interpretation of magnetic anomalies in the Western Somali Basin, located north of Madagascar (e.g. Rabinowitz et al., 1983). According to Bird (2001), sheared margins share typical characteristics and a common evolution: 1. The transition from continental to oceanic crust is relatively abrupt (~ 50-80 km). 2. Along the continental side of the margin, complex rift basins form that display a wide range of faults. 3. Prominent marginal ridges form along the sheared margin that probably originate from the propagation of the oceanic spreading center along the plate boundary (Bird, 2001). In February and March 2014, a dense geophysical dataset (multichannel seismic, magnetics, gravimetry and bathymetry) with a total of 4300 profile km along the sheared margin was acquired with the R/V Sonne by the Federal Institute for Geosciences and Natural Resources (BGR). A special objective of the project, amongst others, is the characterization and interpretation of the continent-ocean transition seaward of Davie Ridge in the Mozambique Channel. Seismic profiles located east of Davie Ridge in the Western Somali Basin reveal a wide sequence of half-grabens bounded by listric normal faults. We tentatively suggest that this crust is of continental origin and results from rifting between Africa and Madagascar during

  15. Three-dimensional imaging of the S-velocity structure for the crust and the upper mantle beneath the Arabian Sea from Rayleigh wave analysis

    NASA Astrophysics Data System (ADS)

    Corchete, V.

    2017-04-01

    A 3D imaging of S-velocity for the Arabian Sea crust and upper mantle structure is presented in this paper, determined by means of Rayleigh wave analysis, for depths ranging from zero to 300 km. The crust and upper mantle structure of this region of the earth never has been the subject of a surface wave tomography survey. The Moho map performed in the present study is a new result, in which a crustal thickening beneath the Arabian Fan sediments can be observed. This crustal thickening can be interpreted as a quasi-continental oceanic transitional structure. A crustal thickness of up to 20 km also can be observed for the Murray Ridge system in this Moho map. This crustal thickening can be due to that the Murray Ridge System consists of Indian continental crust. This continental crust is extremely thinned to the southwest of this region, as shown in this Moho map. This area can be interpreted as oceanic in origin. In the depth range from 30 to 60 km, the S-velocity presents its lower values at the Carlsberg Ridge region, because it is the younger region of the study area. In the depth range from 60 to 105 km of depth, the S-velocity pattern is very similar to that shown for the previous depth range, except for the regions in which the asthenosphere is reached, for these regions appear a low S-velocity pattern. The lithosphere-asthenosphere boundary (LAB), or equivalently the lithosphere thickness, determined in the present study is also a new result, in which the lithosphere thickness for the Arabian Fan can be estimated in 60-70 km. The lower lithospheric thickness observed in the LAB map, for the Arabian Fan, shows that this region may be in the transition zone between continental and oceanic structure. Finally, a low-velocity zone (LVZ) has been determined, for the whole study area, located between the LAB and the boundary of the asthenosphere base (or equivalently the lithosphere-asthenosphere system thickness). The asthenosphere-base map calculated in the

  16. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation

    USGS Publications Warehouse

    Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E.

    2010-01-01

    Whereas the majority of eruptions at oceanic spreading centers produce lavas with relatively homogeneous mid-ocean ridge basalt (MORB) compositions, the formation of tholeiitic andesites and dacites at mid-ocean ridges (MORs) is a petrological enigma. Eruptions of MOR high-silica lavas are typically associated with ridge discontinuities and have produced regionally significant volumes of lava. Andesites and dacites have been observed and sampled at several locations along the global MOR system; these include propagating ridge tips at ridge-transform intersections on the Juan de Fuca Ridge and eastern Gal??pagos spreading center, and at the 9??N overlapping spreading center on the East Pacific Rise. Despite the formation of these lavas at various ridges, MOR dacites show remarkably similar major element trends and incompatible trace element enrichments, suggesting that similar processes are controlling their chemistry. Although most geochemical variability in MOR basalts is consistent with low-pressure fractional crystallization of various mantle-derived parental melts, our geochemical data for MOR dacitic glasses suggest that contamination from a seawater-altered component is important in their petrogenesis. MOR dacites are characterized by elevated U, Th, Zr, and Hf, low Nb and Ta concentrations relative to rare earth elements (REE), and Al2O3, K2O, and Cl concentrations that are higher than expected from low-pressure fractional crystallization alone. Petrological modeling of MOR dacites suggests that partial melting and assimilation are both integral to their petrogenesis. Extensive fractional crystallization of a MORB parent combined with partial melting and assimilation of amphibole-bearing altered crust produces a magma with a geochemical signature similar to a MOR dacite. This supports the hypothesis that crustal assimilation is an important process in the formation of highly evolved MOR lavas and may be significant in the generation of evolved MORB in

  17. Nitrogen fixation in biological soil crusts from southeast Utah, USA

    USGS Publications Warehouse

    Belnap, Jayne

    2002-01-01

    Biological soil crusts can be the dominant source of N for arid land ecosystems. We measured potential N fixation rates biweekly for 2 years, using three types of soil crusts: (1) crusts whose directly counted cells were >98% Microcoleus vaginatus (light crusts); (2) crusts dominated by M. vaginatus, but with 20% or more of the directly counted cells represented by Nostoc commune and Scytonema myochrous (dark crusts); and (3) the soil lichen Collema sp. At all observation times, Collema had higher nitrogenase activity (NA) than dark crusts, which had higher NA than light crusts, indicating that species composition is critical when estimating N inputs. In addition, all three types of crusts generally responded in a similar fashion to climate conditions. Without precipitation within a week of collection, no NA was recorded, regardless of other conditions being favorable. Low (<1°C) and high (>26°C) temperatures precluded NA, even if soils were moist. If rain or snow melt had occurred 3 or less days before collection, NA levels were highly correlated with daily average temperatures of the previous 3 days (r2=0.93 for Collema crusts; r2=0.86 for dark crusts and r2=0.83 for light crusts) for temperatures between 1°C and 26°C. If a precipitation event followed a long dry period, NA levels were lower than if collection followed a time when soils were wet for extended periods (e.g., winter). Using a combination of data from a recording weather datalogger, time-domain reflectometry, manual dry-down curves, and N fixation rates at different temperatures, annual N input from the different crust types was estimated. Annual N input from dark crusts found at relatively undisturbed sites was estimated at 9 kg ha–1 year–1. With 20% cover of the N-fixing soil lichen Collema, inputs are estimated at 13 kg ha–1 year–1. N input from light crusts, generally indicating soil surface disturbance, was estimated at 1.4 kg ha–1 year–1. The rates in light crusts are

  18. The ``Perrier Oceans'' Of Europa And Enceladus (Invited)

    NASA Astrophysics Data System (ADS)

    Matson, D.; Johnson, T. V.; Lunine, J. I.; Castillo, J. C.

    2010-12-01

    Icy satellites of the outer solar system can have subsurface oceans that contain significant amounts of dissolved gases. Crawford and Stevenson in their 1988 study of Europa introduced the term “Perrier Ocean” as a descriptive appellation for such situations. When pressure is reduced, for example as a consequence of faulting, over water from a Perrier ocean, gas comes out of solution in the form of bubbles. The density of the liquid is immediately reduced, and if the bubble volume is sufficient the fluid can become buoyant with respect to the icy crust. If so, the seawater-bubble mixture can rise to the surface or very near to the surface. Europa and Enceladus may represent the end-member examples of Perrier oceans. Today, Europa appears passive whereas Enceladus is erupting. Some characteristics seen at Enceladus that may be indicative of an active Perrier ocean are eruptive plumes and localized, relatively warm (“hot-spot”) thermal anomalies of significantly high heat flow (i.e., >15 GW of integrated power over Enceladus’ South Polar Region). Since Enceladus is smaller than Europa it is easier for it to erupt because less work has to be done against gravity to bring water to the surface. Crawford and Stevenson found that under today’s conditions eruptions at Europa would be difficult but not necessarily impossible. However, in the past, when the icy crust was thinner, the interior warmer, eruption of liquid to the surface regions could have been easier. Morphological evidence for past eruptions from a Perrier ocean is not necessarily unambiguous in that it may admit alternate interpretations. However, the best evidence for relatively recent activity may be some sort of thermal signature. Such anomalies may be observable to depths of tens of meters in relatively clean ice by space-borne high-precision microwave radiometry and ground-penetrating radar. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under

  19. Crust And Upper Mantle Structure Of The Bengal Basin And Bay Of Bengal From Surface Wave Group Velocity Dispersion Studies

    NASA Astrophysics Data System (ADS)

    Dhali, K. K.; Majhi, S.; Mitra, S.; Priestley, K.

    2007-12-01

    Fundamental mode Rayleigh and Love wave group velocity dispersion for paths crossing the Bay of Bengal have been calculated for earthquakes in the Indo-Burman arc and the Andaman-Sumatra subduction zone recorded at seismographs in the eastern part of Peninsula India and Sri Lanka. The ray-path coverage in this study provides a better spatial sampling than any previous studies of the region. The individual dispersion curves range from 12 to 70~s and have been clustered in four spatial groups to form average dispersion curves representative of the Bengal basin, northern, central and southern Bay of Bengal. These average dispersion curves for Rayleigh and Love waves are jointly inverted to obtain shear wave velocity structure of the lithosphere. The higher frequencies/shorter periods (12--30~s) used in the inversion constrains the sediment shear wave speed and thickness while the longer periods provide information of the upper mantle structure. The results show a remarkable increase in the sediments thickness along the Bengal Fan from south to north ranging from 6 km, around the southern tip of India, to 23 km beneath the Bengal basin. The shear wave velocity models reveal a sediment saturation beyond 7-10 km of burial leading to metamorphism and eventual increase in velocity to continent like material with depth. The average crustal thickness (loose sediments overlying consolidated sediments followed by metasediments and oceanic crust) is anomalously continental (~20-36 km) rather than being simply oceanic crust overlain by sediments. The average shear wave velocity is about 3.5-3.8 km/s which is more representative of continental crusts. Finally the low velocity zone in the uppermost mantle is possibly an effect of the expected increase in temperature due to blanketing of the fan sediments over the Bay of Bengal crust. The misfits to parts of the dispersion data using a 1D isotropic model provides an indication of the presence of polarization anisotropy in the

  20. Ocean Drilling Program Contributions to the Understanding of the Deep Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Fisk, M. R.

    2003-12-01

    Tantalizing evidence for microbes in oceanic basalts has been reported for a few decades, but it was from rocks cored on Ocean Drilling Program (ODP) Leg 148 in 1993 that the first clear-cut evidence of microbial invasion of ocean basalts was obtained. (Work on ODP legs, starting with Leg 112 in 1986, had already revealed the presence of significant microbial biomass in sediments.) In 1997 ODP created the Deep Biosphere Program Planning Group to promote the investigation of the microbiology of the ocean crust. In 1999 ODP built a microbiology lab on the JOIDES Resolution, and used the lab that year (Legs 185 and 187) to test the amount of microbial contamination introduced into rocks during drilling and to establish cultures from cored basalts. These experiments have been repeated on several legs since then. The development of CORKs has permitted long-term sampling of subseafloor fluids, and microorganisms have been recovered from CORKed holes. Thus, ODP made it possible for the scientific community to address major questions about the biology of the igneous crust, such as, (1) What microbes are present? (2) How abundant are they? (3) How are they distributed? DNA from basalts and subseafloor fluids reveal what types of organisms are present. Cell abundance and biomass have been estimated based on cell counts and on organic content of basalts. Surveys of basalts in DSDP/ODP repositories indicate that microorganisms are ubiquitous in the igneous crust. Microorganisms are found in rocks that are close to 100° C. They are found as deep as 1500 m below the sea floor, and in rocks as young as a few years and as old as 170 million years. Because of the vast size of the habitat, microorganism, even if present in small numbers, could be a significant fraction of the Earth's biomass. In a short time ODP contributed to advances in our understanding of the oceanic subsurface biosphere. Answers to other significant questions such as: (1) How do the microorganisms live?, (2

  1. Oceanic crustal velocities from laboratory and logging measurements of Integrated Ocean Drilling Program Hole 1256D

    NASA Astrophysics Data System (ADS)

    Gilbert, Lisa A.; Salisbury, Matthew H.

    2011-09-01

    Drilling and logging of Integrated Ocean Drilling Program (IODP) Hole 1256D have provided a unique opportunity for systematically studying a fundamental problem in marine geophysics: What influences the seismic structure of oceanic crust, porosity or composition? Compressional wave velocities (Vp) logged in open hole or from regional refraction measurements integrate both the host rock and cracks in the crust. To determine the influence of cracks on Vp at several scales, we first need an accurate ground truth in the form of laboratory Vp on crack-free, or nearly crack-free samples. We measured Vp on 46 water-saturated samples at in situ pressures to determine the baseline velocities of the host rock. These new results match or exceed Vp logs throughout most of the hole, especially in the lower dikes and gabbros, where porosities are low. In contrast, samples measured at sea under ambient laboratory conditions, had consistently lower Vp than the Vp logs, even after correction to in situ pressures. Crack-free Vp calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are controlled by porosity. In particular, the models demonstrate significant large-scale porosity in the lavas, especially in the sections identified as fractured flows and breccias. However, crustal velocities in the lower dikes and gabbros are increasingly controlled by petrology as the layer 2-3 boundary is approached.

  2. Chapter 50 Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean

    USGS Publications Warehouse

    Grantz, Arthur; Hart, Patrick E.; Childers, Vicki A

    2011-01-01

    Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean–continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72°N, 165 W about 145.5–140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha–Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89–75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin.

  3. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    USGS Publications Warehouse

    von Huene, Roland E.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is

  4. A Preliminary Teleseismic Investigation of the Crust and Mantle Lithosphere Obtained from BISN in the Western Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Snyder, D. B.; Cairns, S.; Elliot, B.; Audet, P.; Esteve, C.; Murray-Bergquist, L.; Falck, H.

    2016-12-01

    The tectonic evolution of the Beaufort Sea continental margin has contributed to the maturation of these rocks into a major petroleum reservoir. Recent shallow offshore seismic reflection data suggest that Banks Island represents thin crust along a rifted margin established during the opening of the Arctic Ocean. In this case, rifting of the margin caused Banks Island to subside and accumulate sediments rich in petroleum source material. The cooling history and further subsidence of these sediments is important for understanding the thermal maturation of petroleum products. Recently published surface-wave velocity models of North America indicate seismic velocities at 100-150 km depths similar to those beneath Canada's diamond mines in the central Slave craton north of Yellowknife. These results imply that Banks Island is part of the Canadian Shield and that any kimberlites found thereon might contain diamonds. However, the fast velocities are inconsistent with this being a tectonically disrupted and thinned lithosphere along the Arctic margin of the Canada Basin. The problem is therefore to reconcile mantle structure typical of the Canadian Shield with crust typical of a rifted passive margin. Possibly related seismicity beneath the Mackenize River Delta and offshore in the Beaufort Sea has been observed for decades but its origin remains unknown, although has been suggested as due to incipient subduction of oceanic lithosphere beneath the North American craton. Resolving these questions requires high-resolution 3-D seismic models obtained from an array of broadband seismograph stations. Here we present preliminary results on the structure of the crust and uppermost mantle underlying the western Canadian Arctic. These results are generated using new data from the Banks Island Seismograph Network (BISN), three stations installed over the summer of 2014 and 2015; augmented with several USArray Transportable Array stations and older POLARIS and CNSN stations on

  5. How does continental lithosphere break-apart? A 3D seismic view on the transition from magma-poor rifted margin to magmatic oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Emmanuel, M.; Lescanne, M.; Picazo, S.; Tomasi, S.

    2017-12-01

    In the last decade, high-quality seismic data and drilling results drastically challenged our ideas about how continents break apart. New models address their observed variability and are presently redefining basics of rifting as well as exploration potential along deepwater rifted margins. Seafloor spreading is even more constrained by decades of scientific exploration along Mid Oceanic Ridges. By contrast, the transition between rifting and drifting remains a debated subject. This lithospheric breakup "event" is geologically recorded along Ocean-Continent Transitions (OCT) at the most distal part of margins before indubitable oceanic crust. Often lying along ultra-deepwater margin domains and buried beneath a thick sedimentary pile, high-quality images of these domains are rare but mandatory to get strong insights on the processes responsible for lithospheric break up and what are the consequences for the overlying basins. We intend to answer these questions by studying a world-class 3D seismic survey in a segment of a rifted margin exposed in the Atlantic. Through these data, we can show in details the OCT architecture between a magma-poor hyper-extended margin (with exhumed mantle) and a classical layered oceanic crust. It is characterized by 1- the development of out-of-sequence detachment systems with a landward-dipping geometry and 2- the increasing magmatic additions oceanwards (intrusives and extrusives). Geometry of these faults suggests that they may be decoupled at a mantle brittle-ductile interface what may be an indicator on thermicity. Furthermore, magmatism increases as deformation migrates to the future first indubitable oceanic crust what controls a progressive magmatic crustal thickening below, above and across a tapering rest of margin. As the magmatic budget increases oceanwards, full-rate divergence is less and less accommodated by faulting. Magmatic-sedimentary architectures of OCT is therefore changing from supra-detachment to magmatic

  6. Black manganese-rich crusts on a Gothic cathedral

    NASA Astrophysics Data System (ADS)

    Macholdt, Dorothea S.; Herrmann, Siegfried; Jochum, Klaus Peter; Kilcoyne, A. L. David; Laubscher, Thomas; Pfisterer, Jonas H. K.; Pöhlker, Christopher; Schwager, Beate; Weber, Bettina; Weigand, Markus; Domke, Katrin F.; Andreae, Meinrat O.

    2017-12-01

    Black manganese-rich crusts are found worldwide on the façades of historical buildings. In this study, they were studied exemplarily on the façade of the Freiburger Münster (Freiburg Minster), Germany, and measured in-situ by portable X-ray fluorescence (XRF). The XRF was calibrated to allow the conversion from apparent mass fractions to Mn surface density (Mn mass per area), to compensate for the fact that portable XRF mass fraction measurements from thin layers violate the assumption of a homogeneous measurement volume. Additionally, 200-nm femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS) measurements, scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS), Raman spectroscopy, and imaging by light microscopy were conducted to obtain further insight into the crust material, such as potential biogenic contributions, element distributions, trace element compositions, and organic functional groups. While black crusts of various types are present at many places on the minster's facade, crusts rich in Mn (with a Mn surface density >150 μg cm-2) are restricted to a maximum height of about 7 m. The only exceptions are those developed on the Renaissance-Vorhalle (Renaissance Portico) at a height of about 8 m. This part of the façade had been cleaned and treated with a silicon resin as recently as 2003. These crusts thus accumulated over a period of only 12 years. Yet, they are exceptionally Mn-rich with a surface density of 1200 μg cm-2, and therefore require an accumulation rate of about 100 μg cm-2 Mn per year. Trace element analyses support the theory that vehicle emissions are responsible for most of the Mn supply. Lead, barium, and zinc correlate with manganese, indicating that tire material, brake pads, and resuspended road dust are likely to be the element sources. Microscopic investigations show no organisms on or in the Mn-rich crusts. In contrast, Mn-free black

  7. Microbial communities at the borehole observatory on the Costa Rica Rift flank (Ocean Drilling Program Hole 896A).

    PubMed

    Nigro, Lisa M; Harris, Kate; Orcutt, Beth N; Hyde, Andrew; Clayton-Luce, Samuel; Becker, Keir; Teske, Andreas

    2012-01-01

    The microbiology of subsurface, hydrothermally influenced basaltic crust flanking mid-ocean ridges has remained understudied, due to the difficulty in accessing the subsurface environment. The instrumented boreholes resulting from scientific ocean drilling offer access to samples of the formation fluids circulating through oceanic crust. We analyzed the phylogenetic diversity of bacterial communities of fluid and microbial mat samples collected in situ from the observatory at Ocean Drilling Program Hole 896A, drilled into ~6.5 million-year-old basaltic crust on the flank of the Costa Rica Rift in the equatorial Pacific Ocean. Bacterial 16S rRNA gene sequences recovered from borehole fluid and from a microbial mat coating the outer surface of the fluid port revealed both unique and shared phylotypes. The dominant bacterial clones from both samples were related to the autotrophic, sulfur-oxidizing genus Thiomicrospira. Both samples yielded diverse gamma- and alphaproteobacterial phylotypes, as well as members of the Bacteroidetes, Planctomycetes, and Verrucomicrobia. Analysis of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL and cbbM) from the sampling port mat and from the borehole fluid demonstrated autotrophic carbon assimilation potential for in situ microbial communities; most cbbL genes were related to those of the sulfur-oxidizing genera Thioalkalivibrio and Thiomicrospira, and cbbM genes were affiliated with uncultured phylotypes from hydrothermal vent plumes and marine sediments. Several 16S rRNA gene phylotypes from the 896A observatory grouped with phylotypes recovered from seawater-exposed basalts and sulfide deposits at inactive hydrothermal vents, but there is little overlap with hydrothermally influenced basaltic boreholes 1026B and U1301A on the Juan de Fuca Ridge flank, suggesting that site-specific characteristics of Hole 896A (i.e., seawater mixing into borehole fluids) affect the microbial community composition.

  8. What controls the distribution and tectono-magmatic features of oceanic hot spot volcanoes

    NASA Astrophysics Data System (ADS)

    Acocella, Valerio; Vezzoli, Luigina

    2016-04-01

    Hot spot oceanic volcanoes worldwide show significant deviations from the classic Hawaiian reference model; these mainly concern the distribution of edifices and overall tectono-magmatic features, as the development of the volcanic rift zones and extent of flank instability. Here we try to explain these deviations investigating and comparing the best-known hot spot oceanic volcanoes. At a general scale, these volcanoes show an age-distance progression ranging from focused to scattered. This is here explained as due to several independent factors, as the thermal or mechanical weakening of the plate (due to the lithosphere thickness or regional structures, respectively), or the plume structure. At a more detailed scale, hot spot volcanoes show recurrent features, including mafic shield edifices with summit caldera and volcanic rift zones, often at the head of an unstable flank. However, despite this recurrence, a widespread tectono-magmatic variability is often found. Here we show how this variability depends upon the magma supply and age of the oceanic crust (influencing the thickness of the overlying pelagic sediments). Well-developed rift zones and larger collapses are found on hot spot volcanoes with higher supply rate and older crust, as Hawaii and Canary Islands. Poorly-developed rift zones and limited collapses occur on hot spot volcanoes with lower supply rate and younger crust, as Easter Island and Ascension. Transitional features are observed at hot spots with intermediate productivity (Cape Verde, Reunion, Society Islands and, to a minor extent, the Azores), whereas the scarcity or absence of pelagic sediments may explain the lack of collapses and developed rift zones in the productive Galapagos hot spot.

  9. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere.

    PubMed

    Schlindwein, Vera; Schmid, Florian

    2016-07-14

    Along ultraslow-spreading ridges, where oceanic tectonic plates drift very slowly apart, conductive cooling is thought to limit mantle melting and melt production has been inferred to be highly discontinuous. Along such spreading centres, long ridge sections without any igneous crust alternate with magmatic sections that host massive volcanoes capable of strong earthquakes. Hence melt supply, lithospheric composition and tectonic structure seem to vary considerably along the axis of the slowest-spreading ridges. However, owing to the lack of seismic data, the lithospheric structure of ultraslow ridges is poorly constrained. Here we describe the structure and accretion modes of two end-member types of oceanic lithosphere using a detailed seismicity survey along 390 kilometres of ultraslow-spreading ridge axis. We observe that amagmatic sections lack shallow seismicity in the upper 15 kilometres of the lithosphere, but unusually contain earthquakes down to depths of 35 kilometres. This observation implies a cold, thick lithosphere, with an upper aseismic zone that probably reflects substantial serpentinization. We find that regions of magmatic lithosphere thin dramatically under volcanic centres, and infer that the resulting topography of the lithosphere-asthenosphere boundary could allow along-axis melt flow, explaining the uneven crustal production at ultraslow-spreading ridges. The seismicity data indicate that alteration in ocean lithosphere may reach far deeper than previously thought, with important implications towards seafloor deformation and fluid circulation.

  10. Crusted scabies-associated immune reconstitution inflammatory syndrome

    PubMed Central

    2012-01-01

    Background Despite the widely accepted association between crusted scabies and human immunodeficiency virus (HIV)-infection, crusted scabies has not been included in the spectrum of infections associated with immune reconstitution inflammatory syndrome in HIV-infected patients initiating antiretroviral therapy. Case presentation We report a case of a 28-year-old Mexican individual with late HIV-infection, who had no apparent skin lesions but soon after initiation of antiretroviral therapy, he developed an aggressive form of crusted scabies with rapid progression of lesions. Severe infestation by Sarcoptes scabiei was confirmed by microscopic examination of the scale and skin biopsy. Due to the atypical presentation of scabies in a patient responding to antiretroviral therapy, preceded by no apparent skin lesions at initiation of antiretroviral therapy, the episode was interpreted for the first time as “unmasking crusted scabies-associated immune reconstitution inflammatory syndrome”. Conclusion This case illustrates that when crusted scabies is observed in HIV-infected patients responding to antiretroviral therapy, it might as well be considered as a possible manifestation of immune reconstitution inflammatory syndrome. Patient context should be considered for adequate diagnosis and treatment of conditions exacerbated by antiretroviral therapy-induced immune reconstitution. PMID:23181485

  11. Water-Rock Differentiation on Ceres as Derived From Numerical Studies: Late Water Separation and Thick Undifferentiated Crust

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir Otto; Breuer, Doris; Spohn, Tilman

    2016-10-01

    Water-rock separation is a major factor in discriminating between models of Ceres' present-day state. We calculate differentiation models of Ceres to investigate how water-rock separation and convection influence its evolution. We expand on the presence of liquids and the possibility of cryovolcanism in order to explain surface features observed by Dawn[1,2].The model[3] includes accretion, reduction of the dust porosity, latent heat of ice melting, compaction driven water-rock separation, accretional heating, hydrothermal circulation, solid-state convection of ice, and convection in a water ocean.Accretion times considered cover 1-10 Ma rel. to CAIs. Compaction of the dust pores starts with ice at T≈180-240 K and proceeds with rock minerals at temperatures of up to 730 K. Sub-surface remains too cold to close these pores. The water-rock separation proceeds by water percolation in a rock matrix. Differentiation timing depends on the matrix deformation and no differentiation occurs in layers with leftover dust porosity. Compaction takes several hundred million years due to a slow temperature increase. The differentiation is extended according to this time scale even though liquid water is produced early. While the radionuclides are concentrated in the core no heat is produced in the ocean. If convection is neglected, the ocean is heated by the core and cooled through the crust, and remains totally liquid until the present day. Convection keeps the ocean cold and results in a colder present-day crust. Only a thin basal part of the ocean remains liquid, while the upper part freezes.In our models, a water ocean starts forming within 10 Ma after CAIs, but its completion is retarded relative to the melting of ice by up to O(0.1 Ga). The differentiation is partial and a porous outer layer is retained. Present-day temperatures calculated indicate that hydrated salts can be mobile at a depth of ≥1.5-5 km implying buoyancy of ice and salt-enriched crustal reservoirs. The

  12. Using Deep-Sea Scientific Drilling to Enhance Ocean Science Literacy

    NASA Astrophysics Data System (ADS)

    Passow, Michael; Cooper, Sharon; Kurtz, Nicole; Burgio, Marion; Cicconi, Alessia

    2017-04-01

    International Ocean Discovery Program continues to offer annual School of Rock professional development workshops to which educators can apply for participation. During these all-expense paid experiences, they learn about IODP science and develop new activities for their audiences. Cicconi and Passow will describe their experiences during some of these programs. European teachers have also participated in "teacher-at-sea" programs sponsored by ECORD aboard the JOIDES Resolution. Burgio participated in Expedition 360 from December 2015 to the end of January 2016 (http://joidesresolution.org/node/4253). This cruise focused on the global effort to drill to the Moho through the Southwest Indian Ridge. As they drilled down to the Moho, scientists obtained new discoveries about life in the crust, interactions between water and rocks, and magmatic processes that build the oceanic crust at very slow spreading ridges. The Education Officers team used a panel of strategies to communicate during the efforts during their two months onboard. She used social media and live-streaming to share the last discoveries about the oceanic crust with students all over the world. Additional materials have been created by teachers and other non-science participants from many countries across the globe. Educational outreach programs associated with scientific ocean drilling provide effective opportunities to enhance Ocean Science Literacy.

  13. Scaly scalp associated with crusted scabies: case series.

    PubMed

    Anbar, T S; El-Domyati, M B; Mansour, H A; Ahmad, H M

    2007-07-13

    The diagnosis of crusted scabies is becoming more relevant due to the increase in number of immunocompromised patients. To date, more than 200 cases have been reported in the literature. However, crusted scabies seems to be under-diagnosed because of its unusual presentations. In this case series we present history, clinical manifestations, KOH smear, and histopathological findings of a series of four patients with crusted scabies. Scaly scalp was a prominent feature of the disease in all cases. Examination of and treatment of the scalp of patients with suspected crusted scabies should not be neglected. A KOH smear from the scalp offers a simple and reliable technique for diagnosis.

  14. Comparison of elemental accumulation rates between ferromanganese deposits and sediments in the South Pacific Ocean

    USGS Publications Warehouse

    Kraemer, T.; Schornick, J.C.

    1974-01-01

    Rates of accumulation of Fe and Mn, as well as Cu, Ni, Co, Pb, Zn, Hg, U and Th have been determined for five ferromanganese deposits from four localities in the South Pacific Ocean. Manganese is accumulating in nodules and crusts at a rate roughly equivalent to that found to be accumulating in sediments in the same area. Iron shows a deficiency in accumulation in nodules and crusts with respect to sediments, especially near the continents, but also in the central and south-central Pacific. Copper is accumulating in nodules and crusts at a rate one order of magnitude less than the surrounding sediments. This is interpreted as meaning that most of the Mn is supplied as an authigenic phase to both sediments and nodules while Fe is supplied mostly by ferromanganese micro-nodules and by detrital and adsorbed components of sediments; and Cu is enriched in sediments relative to nodules and crusts most probably through biological activity. ?? 1974.

  15. The Indian Ocean gravity low - Evidence for an isostatically uncompensated depression in the upper mantle

    NASA Technical Reports Server (NTRS)

    Ihnen, S. M.; Whitcomb, J. H.

    1983-01-01

    The broad gravity low in the equatorial Indian Ocean south of Sri Lanka is the largest and most striking feature in the gravitational field of the earth. The most negative long-wavelength free-air gravity anomalies are found there and the sea surface (geoid) lies more than 100 meters below the best fitting ellipsoid. A model of the lithosphere and upper mantle is proposed which accurately predicts the observed free-air gravity and geoid elevation. This model is consistent with bathymetry and sediment thickness data and suggests that the crust south of India currently floats as much as 600 meters lower than would be expected if the region were isostatically compensated. This residual depression of the crust is apparently confirmed by observations of ocean depth. An uncompensated depression is consistent with the presence of a mechanical wake left in the upper mantle behind India as it traveled toward Asia.

  16. Ferromanganese crusts as indicators for paleoceanographic events in the NE Atlantic

    NASA Astrophysics Data System (ADS)

    Koschinsky, A.; Halbach, P.; Hein, J. R.; Mangini, A.

    Hydrogenetic ferromanganese crusts reflect the chemical conditions of the seawater from which they formed. Fine-scale geochemical analysis of crust layers in combination with age determinations can therefore be used to investigate paleoceanographic changes which are recorded in geochemical gradients in the crusts. At Tropic seamount (off northwest Africa), uniform crust growth influenced by terrigenous input from the African continent occurred during approximately the past 12Ma. Phosphatization of these crusts is minor. In contrast, crusts from Lion seamount, located between Madeira and the Portuguese coast, display a much more variable growth history. A pronounced increase in Ni, Cu, and Zn is observed in some intervals of the crusts, which probably reflects increased surface productivity. A thick older phosphatized generation occurs in many samples. Hydrographic profiles indicate that Mediterranean outflow water (MOW) may play an important role in the composition of these crusts. 10Be dating of one sample confirms that the interruption of the MOW during the Messinian salinity crisis (6.2-5Ma ago) resulted in changes in element composition. Sr-isotope dating of the apatite phase of the old crust generation has been carried out to obtain a minimum age for the older generation of Atlantic crusts and to determine whether crust phosphatization in the Atlantic can be related to phosphatization episodes recorded in Pacific crusts. The preliminary data show that the old phosphatized crust generation might be as old as approximately 30-40Ma.

  17. Ferromanganese crusts as indicators for paleoceanographic events in the NE Atlantic

    USGS Publications Warehouse

    Koschinsky, A.; Halbach, P.; Hein, J.R.; Mangini, A.

    1996-01-01

    Hydrogenetic ferromanganese crusts reflect the chemical conditions of the seawater from which they formed. Fine-scale geochemical analysis of crust layers in combination with age determinations can therefore be used to investigate paleoceanographic changes which are recorded in geochemical gradients in the crusts. At Tropic seamount (off northwest Africa), uniform crust growth influenced by terrigenous input from the African continent occurred during approximately the past 12 Ma. Phosphatization of these crusts is minor. In contrast, crusts from Lion seamount, located between Madeira and the Portuguese coast, display a much more variable growth history. A pronounced increase in Ni, Cu, and Zn is observed in some intervals of the crusts, which probably reflects increased surface productivity. A thick older phosphatized generation occurs in many samples. Hydrographic profiles indicate that Mediterranean outflow water (MOW) may play an important role in the composition of these crusts. 10Be dating of one sample confirms that the interruption of the MOW during the Messinian salinity crisis (6.2-5 Ma ago) resulted in changes in element composition. Sr-isotope dating of the apatite phase of the old crust generation has been carried out to obtain a minimum age for the older generation of Atlantic crusts and to determine whether crust phosphatization in the Atlantic can be related to phosphatization episodes recorded in Pacific crusts. The preliminary data show that the old phosphatized crust generation might be as old as approximately 30-40 Ma.

  18. Sedimentary masses and concepts about tectonic processes at underthrust ocean margins ( subduction).

    USGS Publications Warehouse

    Scholl, D. W.; von Huene, Roland E.; Vallier, T.L.; Howell, D.G.

    1980-01-01

    Tectonic processes associated with subduction of oceanic crust, but unrelated to the collision of thick crustal masses or microplates, are presumed by many geologists to significantly affect the formation and deformation of large sedimentary bodies at underthrust ocean margins. More geologists are familiar with the concept of subduction accretion than with other noncollision processes - for example, sediment subduction, subduction erosion, and subduction kneading. In our opinion, no single subduction-related tectonic process is the dominant or typical one that forges the geologic framework of modern underthrust ocean margins. It is likely, therefore, that the rock records of ancient underthrust margins are preserved in a multitude of structural and stratigraphic forms.-from Authors

  19. Magnetic field effects on the crust structure of neutron stars

    NASA Astrophysics Data System (ADS)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  20. Isotope composition and volume of Earth’s early oceans

    PubMed Central

    Pope, Emily C.; Bird, Dennis K.; Rosing, Minik T.

    2012-01-01

    Oxygen and hydrogen isotope compositions of Earth’s seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen’s was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth’s oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH4 and CO2 concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth. PMID:22392985

  1. Spreading of the ocean floor: Undeformed sediments in the peru-chile trench

    USGS Publications Warehouse

    Scholl, D. W.; von Huene, Roland E.; Ridlon, J.B.

    1968-01-01

    None of the expected stratigraphic and structural effects of a spreading sea floor have been imposed on the sedimentary fill of the Peru-Chile Trench. During at least the last several million years, and perhaps during much of the Cenozoic, the trench has not been affected by an oceanic crust thrusting under the continent.

  2. The potential roles of biological soil crusts in dryland hydrologic cycles

    USGS Publications Warehouse

    Belnap, J.

    2006-01-01

    Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in and regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike

  3. The potential roles of biological soil crusts in dryland hydrologic cycles

    NASA Astrophysics Data System (ADS)

    Belnap, Jayne

    2006-10-01

    Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in arid regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure

  4. Net Reaction Rate and Neutrino Cooling Rate for the Urca Process in Departure from Chemical Equilibrium in the Crust of Fast-accreting Neutron Stars

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping

    We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.

  5. Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans

    2009-01-01

    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.

  6. Elemental composition of the Martian crust.

    PubMed

    McSween, Harry Y; Taylor, G Jeffrey; Wyatt, Michael B

    2009-05-08

    The composition of Mars' crust records the planet's integrated geologic history and provides clues to its differentiation. Spacecraft and meteorite data now provide a global view of the chemistry of the igneous crust that can be used to assess this history. Surface rocks on Mars are dominantly tholeiitic basalts formed by extensive partial melting and are not highly weathered. Siliceous or calc-alkaline rocks produced by melting and/or fractional crystallization of hydrated, recycled mantle sources, and silica-poor rocks produced by limited melting of alkali-rich mantle sources, are uncommon or absent. Spacecraft data suggest that martian meteorites are not representative of older, more voluminous crust and prompt questions about their use in defining diagnostic geochemical characteristics and in constraining mantle compositional models for Mars.

  7. Deep seismic structure of the northeastern South China Sea: Origin of a high-velocity layer in the lower crust

    NASA Astrophysics Data System (ADS)

    Wan, Kuiyuan; Xia, Shaohong; Cao, Jinghe; Sun, Jinlong; Xu, Huilong

    2017-04-01

    We present a 2-D seismic tomographic image of the crustal structure along the OBS2012 profile, which delineates the Moho morphology and magmatic features of the northeastern South China Sea margin. The image was created by forward modeling (RayInvr) and traveltime tomographic inversion (Tomo2D). Overall, the continental crust thins seaward from 27 km to 21 km within the continental shelf across the Zhu I Depression and Dongsha Rise, with slight local thickening beneath the Dongsha Rise accompanying the increase in the Moho depth. The Dongsha Rise is also characterized by 4-7 km thick high-velocity layer (HVL) ( 7.0-7.6 km/s) in the lower crust and exhibits a relatively high velocity ( 5.5-6.4 km/s) in the upper crust with a velocity gradient lower than those of the Zhu I Depression and Tainan Basin. Across the continental slope and continent-ocean transition (COT), which contain the Tainan Basin, the crust sharply thins from 20 km to 10 km seaward and a 2-3 km thick HVL is imaged in the lower crust. We observed that volcanoes are located only within the COT, but none exist in the continental shelf; the Dongsha Rise exhibits a high magnetic anomaly zone and different geochemical characteristics from the COT. Based on those observations, we conclude that the HVL underlying the COT is probably extension related resulting from the decompression melting in the Cenozoic, whereas the HVL beneath the Dongsha Rise is probably arc related and associated with the subduction of the paleo-Pacific plate. These findings are inconsistent with those of some previous studies.

  8. Tilted geostrophic convection in icy world oceans caused by the horizontal component of the planetary rotation vector

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2012-12-01

    The Coriolis force provides dominant control over the motion of atmospheres and oceans, both on Earth and on many other worlds. At any point on a planet's surface, the planetary rotation vector has both a vertical component and a horizontal (north-south) component. We typically ignore the horizontal component, which is justified if vertical motions are hydrostatic and the fluid is relatively shallow. Neither of these conditions is true for hydrothermal convection within the thick ocean layers of Europa and other icy worlds. Using the MITGCM ocean model, we explore the behavior of buoyant hydrothermal plumes in a deep unstratified ocean, including both components of the planetary rotation vector. We find that warm water does not rise vertically: instead, it spirals along the axis of planetary rotation. Eddies form which are tilted with respect to the local vertical, but parallel to the rotation axis: turbulent exchange of heat between these canted eddies carries the warm water toward the surface. This is not an entirely new idea: however, the implications for icy worlds have not been previously discussed. We observe that when these tilted plumes heat the ice layer above the ocean, the heating "footprint" of these tilted plumes will be more circular near the pole, more ellipsoidal in the tropics. If surface features of the ice crust were created by plume heating, their shapes ought to show consistent latitude trends. Also, we observe that if warm fluid were totally constrained to move along the planetary rotation axis, geothermal heat generated in the icy world's interior could never reach the ice crust near the equator. (For Europa, the "forbidden zone" could extend as far as +/- 20-25° latitude.) In practice, we find that turbulent eddies do allow heat to move perpendicular to the rotation vector, so the "forbidden zone" is not a tight constraint; still, it may affect the overall heating pattern of icy world crusts. Snapshot of ascent of buoyant hydrothermal plume

  9. Temporal Evolution of the Upper Continental Crust: Implications for the Mode of Crustal Growth and the Evolution of the Hydrosphere

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Gaschnig, R. M.; Li, S.; Tang, M.; Qiu, L.; Valley, J. W.; Zurkowski, C.; McDonough, W. F.

    2014-12-01

    The upper continental crust (UCC), the interface between the atmosphere and solid Earth, is the site of weathering that produces sedimentary rocks, influences ocean chemistry through runoff of soluble elements, and affects climate through CO2 draw-down. The UCC also contains more than 50% of the crust's highly incompatible element budget (including K, Th, and U). Therefore, understanding its composition and evolution provides insight into how continents have formed, evolved, and interacted with the hydrosphere. New major and trace element compositions of >100 glacial diamictites and >100 Archean shales, plus δ7Li and δ18O for a subset of these samples, combined with data from the literature, show that the average composition of the UCC has changed through time, reflecting both the rise of atmospheric oxygen and its attendant effects on weathering, as well as the mode of crust formation and differentiation. Some changes that occur as a step function near the Archean/Proterozoic boundary (increased Th/U, decreased Mo/Pr, V/Lu) reflect the rise of oxygen at the great oxidation event (GOE) and its influence on chemical weathering signatures in the UCC. Other changes are more gradual with time (e.g., higher Th/Sc and δ18O, lower Ni/Co, La/Nb, Eu/Eu* and transition metal abundances) and reflect an UCC that has transitioned from a more mafic to a more felsic bulk composition, and which experienced increased interaction with the hydrosphere with time. The gradual nature of these compositional changes likely reflects the waning heat production of the Earth, rather than an abrupt change in tectonics or style of crust formation. These more gradual changes in crust composition, which contrast with the abrupt changes associated with the GOE, suggest that a fundamental change in the nature of crust differentiation is unlikely to be responsible for the rise of atmospheric oxygen (cf. Keller and Schoene, 2012). Indeed, it appears that the opposite may be true: that the rise of

  10. Estimation of seismic velocity in the subducting crust of the Pacific slab beneath Hokkaido, northern Japan by using guided waves

    NASA Astrophysics Data System (ADS)

    Shiina, T.; Nakajima, J.; Toyokuni, G.; Kita, S.; Matsuzawa, T.

    2014-12-01

    A subducting crust contains a large amount of water as a form of hydrous minerals (e.g., Hacker et al., 2003), and the crust plays important roles for water transportation and seismogenesis in subduction zones at intermediate depths (e.g., Kirby et al., 1996; Iwamori, 2007). Therefore, the investigation of seismic structure in the crust is important to understand ongoing physical processes with subduction of oceanic lithosphere. A guided wave which propagates in the subducting crust is recorded in seismograms at Hokkaido, northern Japan (Shiina et al., 2014). Here, we estimated P- and S-wave velocity in the crust with guided waves, and obtained P-wave velocity of 6.6-7.3 km/s and S-wave velocity of 3.6-4.2 km/s at depths of 50-90 km. Moreover, Vp/Vs ratio in the crust is calculated to be 1.80-1.85 in that depth range. The obtained P-wave velocity about 6.6km/s at depths of 50-70 km is consistent with those estimated in Tohoku, northeast Japan (Shiina et al., 2013), and this the P-wave velocity is lower than those expected from models of subducting crustal compositions, such as metamorphosed MORB model (Hacker et al., 2003). In contrast, at greater depths (>80 km), the P-wave velocity marks higher velocity than the case of NE Japan and the velocity is roughly comparable to those of the MORB model. The obtained S-wave velocity distribution also shows characteristics similar to P waves. This regional variation may be caused by a small variation in thermal regime of the Pacific slab beneath the two regions as a result of the normal subduction in Tohoku and oblique subduction in Hokkaido. In addition, the effect of seismic anisotropy in the subducting crust would not be ruled out because rays used in the analysis in Hokkaido propagate mostly in the trench-parallel direction, while those in Tohoku are sufficiently criss-crossed.

  11. Bimodal tholeiitic-dacitic magmatism and the Early Precambrian crust

    USGS Publications Warehouse

    Barker, F.; Peterman, Z.E.

    1974-01-01

    Interlayered plagioclase-quartz gneisses and amphibolites from 2.7 to more than 3.6 b.y. old form much of the basement underlying Precambrian greenstone belts of the world; they are especially well-developed and preserved in the Transvaal and Rhodesian cratons. We postulate that these basement rocks are largely a metamorphosed, volcanic, bimodal suite of tholeiite and high-silica low-potash dacite-compositionally similar to the 1.8-b.y.-old Twilight Gneiss - and partly intrusive equivalents injected into the lower parts of such volcanic piles. We speculate that magmatism in the Early Precambrian involved higher heat flow and more hydrous conditions than in the Phanerozoic. Specifically, we suggest that the early degassing of the Earth produced a basaltic crust and pyrolitic upper mantle that contained much amphibole, serpentine, and other hydrous minerals. Dehydration of the lower parts of a downgoing slab of such hydrous crust and upper mantle would release sufficient water to prohibit formation of andesitic liquid in the upper part of the slab. Instead, a dacitic liquid and a residuum of amphibole and other silica-poor phases would form, according to Green and Ringwood's experimental results. Higher temperatures farther down the slab would cause total melting of basalt and generation of the tholeiitic member of the suite. This type of magma generation and volcanism persisted until the early hydrous lithosphere was consumed. An implication of this hypothesis is that about half the present volume of the oceans formed before about 2.6 b.y. ago. ?? 1974.

  12. Magnetic Remanence and Anisotropy of Magnetic Susceptibility of Dikes From Super-Fast Spread Crust Exposed At Pito Deep Rift

    NASA Astrophysics Data System (ADS)

    Horst, A.; Varga, R. J.; Gee, J. S.; Karson, J. A.

    2006-12-01

    The tectonic window at the Pito Deep Rift exposes super-fast spread (>140mm/yr) oceanic crust created at the East Pacific Rise (EPR). Observations and investigations of well-exposed cross sections into modern ocean crust, such as Pito Deep, provide essential insights into ridge crest dynamics. Paleomagnetic analysis provides a quantitative means for assessing both magnitude and style of structural rotations of oceanic crust. The Pito Cruise 2005 collected 69 fully oriented samples [67 dikes, 2 gabbros] during several ALVIN and JASON II dives. These samples were all oriented in situ using the Geocompass. Along the escarpment of Pito Deep, dike orientations have consistant NE strikes and SE dips. These dikes are all formed roughly 3 million years ago at the EPR located to the west of their present position. We determined magnetic remanence for a subset of 34 oriented blocks. A majority of dikes in this subset have normal polarity and many are clockwise rotated from expected orientations. To assess possible orientation errors during collection, we sampled multiple dikes from relatively small areas. On ALVIN dive 4081, for example, we collected 14 samples from a well-exposed, subparallel series of dikes. These dikes provide stable and consistently oriented remanence directions suggesting that errors in the collection process are small. Remanence data collected to date verify tectonic models that suggest clockwise rotation of the Easter microplate, consistent with current models. In addition to magnetic remanence, we determined the anisotropy of magnetic susceptibility (AMS) of the 34 dike samples. AMS studies have proven their utility in a wide range of geological studies and have been shown to determine flow direction within dikes in a variety of settings. In most Pito Deep samples, two of three AMS eigenvectors lie close to dike plane orientations. Kmin generally lies perpendicular to dike planes while, in most samples, Kmax is shallow indicating dominantly

  13. The Contribution of Recycled Crust to Mantle Inventories of Trace elements, Hydrogen, and Carbon

    NASA Astrophysics Data System (ADS)

    Hirschmann, M. M.

    2008-12-01

    It is clear that crustal recycling has had a profound impact on the non-volatile trace element budget of the mantle, but its impact on mantle carbon and hydrogen are less well-understood. If an active crust recycling mechanism such as plate tectonics has operated since early in Earth history, and if magmatic production has diminished through time according to the decay in heat production, then the mass of recycled crust may dominate the mantle inventory of many trace elements. For example, Earth evolution models suggest time- integrated crust production equal to 7-15% of the mantle, and this accounts for ~25 to >100% of the mantle inventory of LREE and HFSE elements, depending on the mean concentration of these elements in the average crust produced. A key question is the role of recycling in the budgets of H and C. Consideration of the near-surface reservoirs and fluxes of C and H indicates that these principal volatiles have residence times of billions of years, and so they may be grouped with continental crust as a single long-lived near-surface geochemical reservoir (NSGR) that results from extraction from the mantle by melting combined with selective return to the mantle by subduction. The primitive mantle-normalized mass concentrations of H and C and the NSGR are equal to 90-200 and 1.5-18, respectively, with the primitive mantle inventories of H and C as the chief uncertainty. When the NSGR is plotted on a compatibility diagram, H and C form extreme positive and negative anomalies relative to their mineral/melt partition coefficients, meaning that there is much more H and much less C in the NSGR than would be predicted based solely on their magmatic flux from the mantle. The most straightforward interpretation is that H subduction is highly inefficient, but that recycled C amounts to at least half and possibly dominates the mantle C budget. This interpretation is supported by H/C mass ratios of the mantle sources inferred from undegassed oceanic basalts (H

  14. The magma ocean concept and lunar evolution

    NASA Technical Reports Server (NTRS)

    Warren, P. H.

    1985-01-01

    The model of lunar evolution in which the anorthositic plagioclase-rich oldest crust of the moon is formed over a period of 300 Myr or less by crystallization as it floats on a global ocean of magma tens or hundreds of km thick is examined in a review of petrological and theoretical studies. Consideration is given to the classification of lunar rocks, the evidence for primordial deep global differentiation, constraints on the depth of the molten zone, the effects of pressure on mineral stability relationships, mainly-liquid vs mainly-magmifer ocean models, and the evidence for multiple ancient differentiation episodes. A synthesis of the model of primordial differentiation and its aftereffects is presented, and the generalization of the model to the earth and to Mars, Mercury, Venus, and the asteroids is discussed.

  15. Microbial life in cold, hydrologically active oceanic crustal fluids

    NASA Astrophysics Data System (ADS)

    Meyer, J. L.; Jaekel, U.; Girguis, P. R.; Glazer, B. T.; Huber, J. A.

    2012-12-01

    It is estimated that at least half of Earth's microbial biomass is found in the deep subsurface, yet very little is known about the diversity and functional roles of these microbial communities due to the limited accessibility of subseafloor samples. Ocean crustal fluids, which may have a profound impact on global nutrient cycles given the large volumes of water moving through the crustal aquifer, are particularly difficult to sample. Access to uncontaminated ocean crustal fluids is possible with CORK (Circulation Obviation Retrofit Kit) observatories, installed through the Integrated Ocean Drilling Program (IODP). Here we present the first microbiological characterization of the formation fluids from cold, oxygenated igneous crust at North Pond on the western flank of the Mid Atlantic Ridge. Fluids were collected from two CORKs installed at IODP boreholes 1382A and 1383C and include fluids from three different depth horizons within oceanic crust. Collection of borehole fluids was monitored in situ using an oxygen optode and solid-state voltammetric electrodes. In addition, discrete samples were analyzed on deck using a comparable lab-based system as well as a membrane-inlet mass spectrometer to quantify all dissolved volatiles up to 200 daltons. The instruments were operated in parallel and both in situ and shipboard geochemical measurements point to a highly oxidized fluid, revealing an apparent slight depletion of oxygen in subsurface fluids (~215μM) relative to bottom seawater (~245μM). We were unable to detect reduced hydrocarbons, e.g. methane. Cell counts indicated the presence of roughly 2 x 10^4 cells per ml in all fluid samples, and DNA was extracted and amplified for the identification of both bacterial and archaeal community members. The utilization of ammonia, nitrate, dissolved inorganic carbon, and acetate was measured using stable isotopes, and oxygen consumption was monitored to provide an estimate of the rate of respiration per cell per day

  16. Seismic Wave Propagation in Icy Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Stähler, Simon C.; Panning, Mark P.; Vance, Steven D.; Lorenz, Ralph D.; van Driel, Martin; Nissen-Meyer, Tarje; Kedar, Sharon

    2018-01-01

    Seismology was developed on Earth and shaped our model of the Earth's interior over the twentieth century. With the exception of the Philae lander, all in situ extraterrestrial seismological effort to date was limited to other terrestrial planets. All have in common a rigid crust above a solid mantle. The coming years may see the installation of seismometers on Europa, Titan, and Enceladus, so it is necessary to adapt seismological concepts to the setting of worlds with global oceans covered in ice. Here we use waveform analyses to identify and classify wave types, developing a lexicon for icy ocean world seismology intended to be useful to both seismologists and planetary scientists. We use results from spectral-element simulations of broadband seismic wavefields to adapt seismological concepts to icy ocean worlds. We present a concise naming scheme for seismic waves and an overview of the features of the seismic wavefield on Europa, Titan, Ganymede, and Enceladus. In close connection with geophysical interior models, we analyze simulated seismic measurements of Europa and Titan that might be used to constrain geochemical parameters governing the habitability of a sub-ice ocean.

  17. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    NASA Technical Reports Server (NTRS)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  18. Investigation of thallium fluxes from subaerial volcanism-Implications for the present and past mass balance of thallium in the oceans

    USGS Publications Warehouse

    Baker, R.G.A.; Rehkamper, M.; Hinkley, T.K.; Nielsen, S.G.; Toutain, J.P.

    2009-01-01

    A suite of 34 volcanic gas condensates and particulates from Kilauea (Hawaii), Mt. Etna and Vulcano (Italy), Mt. Merapi (Indonesia), White Island and Mt. Nguaruhoe (New Zealand) were analysed for both Tl isotope compositions and Tl/Pb ratios. When considered together with published Tl-Pb abundance data, the measurements provide globally representative best estimates of Tl/Pb = 0.46 ?? 0.25 and ??205Tl = -1.7 ?? 2.0 for the emissions of subaerial volcanism to the atmosphere and oceans (??205Tl is the deviation of the 205Tl/203Tl isotope ratio from NIST SRM 997 isotope standard in parts per 10,000). Compared to igneous rocks of the crust and mantle, volcanic gases were found to have (i) Tl/Pb ratios that are typically about an order of magnitude higher, and (ii) significantly more variable Tl isotope compositions but a mean ??205Tl value that is indistinguishable from estimates for the Earth's mantle and continental crust. The first observation can be explained by the more volatile nature of Tl compared to Pb during the production of volcanic gases, whilst the second reflects the contrasting and approximately balanced isotope fractionation effects that are generated by partial evaporation of Tl during magma degassing and partial Tl condensation as a result of the cooling and differentiation of volcanic gases. Mass balance calculations, based on results from this and other recent Tl isotope studies, were carried out to investigate whether temporal changes in the volcanic Tl fluxes could be responsible for the dramatic shift in the ??205Tl value of the oceans at ???55 Ma, which has been inferred from Tl isotope time series data for ferromanganese crusts. The calculations demonstrate that even large changes in the marine Tl input fluxes from volcanism and other sources are unable to significantly alter the Tl isotope composition of the oceans. Based on modelling, it is shown that the large inferred change in the ??205Tl value of seawater is best explained if the oceans

  19. Flow of material under compression in weak lower continental crust can cause post-rift uplift of passive continental margins

    NASA Astrophysics Data System (ADS)

    Chalmers, James

    2014-05-01

    There are mountain ranges up to more than 2 km high along many passive continental margins (e.g. Norway, eastern Australia, eastern Brazil, SE and SW Africa, east and west Greenland etc.), dubbed Elevated Passive Continental Margins (EPCMs). EPCMs contain several features in common and observations indicate that uplift of these margins took place after continental break-up. There are many explanations for their formation but none that satisfy all the observations. Lack of a geodynamical mechanism has meant that there has been difficulty in getting the community to accept the observational evidence. Formation of a passive continental margin must take place under conditions of tension. After rifting ceases, however, the margin can come under compression from forces originating elsewhere on or below its plate, e.g. orogeny elsewhere in the plate or sub-lithospheric drag. The World Stress Map (www.world-stress-mp.org) shows that, where data exists, all EPCMs are currently under compression. Under sufficient compression, crust and/or lithosphere can fold, and Cloetingh & Burov (2010) showed that many continental areas may have folded in this way. The wavelengths of folding observed by Cloetingh & Burov (2010) imply that the lower crust is likely to be of intermediate composition; granitic lower crust would fold with a shorter wavelength and basic lower crust would mean that the whole lithosphere would have to fold as a unit resulting in a much longer wavelength. Continental crust more than 20 km thick would be separated from the mantle by a weak layer. However, crust less thick than that would contain no weak layers would become effectively annealed to the underlying strong mantle. Under sufficient horizontal compression stress, material can flow in the lower weak layer towards a continental margin from the continental side. The annealed extended crust and mantle under the rift means, however, that flow cannot continue towards the ocean. Mid- and lower crustal material

  20. Chronological evidence that the Moon is either young or did not have a global magma ocean.

    PubMed

    Borg, Lars E; Connelly, James N; Boyet, Maud; Carlson, Richard W

    2011-08-17

    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360 ± 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  1. Chronological evidence that the Moon is either young or did not have a global magma ocean

    NASA Astrophysics Data System (ADS)

    Borg, Lars E.; Connelly, James N.; Boyet, Maud; Carlson, Richard W.

    2011-09-01

    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the 207Pb-206Pb, 147Sm-143Nd and 146Sm-142Nd isotopic systems to be 4,360+/-3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  2. Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle

    NASA Astrophysics Data System (ADS)

    Campbell, Ian H.

    2002-05-01

    The Nb/U and Th/U of the primitive mantle are 34 and 4.04 respectively, which compare with 9.7 and 3.96 for the continental crust. Extraction of continental crust from the mantle therefore has a profound influence on its Nb/U but little influence on its Th/U. Conversely, extraction of midocean ridge-type basalts lowers the Th/U of the mantle residue but has little influence on its Nb/U. As a consequence, variations in Th/U and Nb/U with Sm/Nd can be used to evaluate the relative importance of continental and basaltic crust extraction in the formation of the depleted (Sm/Nd enriched) mantle reservoir. This study evaluates Nb/U, Th/U, and Sm/Nd variations in suites of komatiites, picrites, and their associated basalts, of various ages, to determine whether basalt and/or continental crust have been extracted from their source region. Emphasis is placed on komatiites and picrites because they formed at high degrees of partial melting and are expected to have Nb/U, Th/U, and Sm/Nd that are essentially the same as the mantle that melted to produce them. The results show that all of the studied suites, with the exception of the Barberton, have had both continental crust and basaltic crust extracted from their mantle source region. The high Sm/Nd of the Gorgona and Munro komatiites require the elevated ratios seen in these suites to be due primarily to extraction of basaltic crust from their source regions, whereas basaltic and continental crust extraction are of subequal importance in the source regions of the Yilgarn and Belingwe komatiites. The Sm/Nd of modern midocean ridge basalts lies above the crustal extraction curve on a plot of Sm/Nd against Nb/U, which requires the upper mantle to have had both basaltic and continental crust extracted from it. It is suggested that the extraction of the basaltic reservoir from the mantle occurs at midocean ridges and that the basaltic crust, together with its complementary depleted mantle residue, is subducted to the core

  3. The behavior of iron and zinc stable isotopes accompanying the subduction of mafic oceanic crust: A case study from Western Alpine ophiolites

    NASA Astrophysics Data System (ADS)

    Inglis, Edward C.; Debret, Baptiste; Burton, Kevin W.; Millet, Marc-Alban; Pons, Marie-Laure; Dale, Christopher W.; Bouilhol, Pierre; Cooper, Matthew; Nowell, Geoff M.; McCoy-West, Alex J.; Williams, Helen M.

    2017-07-01

    Arc lavas display elevated Fe3+/ΣFe ratios relative to MORB. One mechanism to explain this is the mobilization and transfer of oxidized or oxidizing components from the subducting slab to the mantle wedge. Here we use iron and zinc isotopes, which are fractionated upon complexation by sulfide, chloride, and carbonate ligands, to remark on the chemistry and oxidation state of fluids released during prograde metamorphism of subducted oceanic crust. We present data for metagabbros and metabasalts from the Chenaillet massif, Queyras complex, and the Zermatt-Saas ophiolite (Western European Alps), which have been metamorphosed at typical subduction zone P-T conditions and preserve their prograde metamorphic history. There is no systematic, detectable fractionation of either Fe or Zn isotopes across metamorphic facies, rather the isotope composition of the eclogites overlaps with published data for MORB. The lack of resolvable Fe isotope fractionation with increasing prograde metamorphism likely reflects the mass balance of the system, and in this scenario Fe mobility is not traceable with Fe isotopes. Given that Zn isotopes are fractionated by S-bearing and C-bearing fluids, this suggests that relatively small amounts of Zn are mobilized from the mafic lithologies in within these types of dehydration fluids. Conversely, metagabbros from the Queyras that are in proximity to metasediments display a significant Fe isotope fractionation. The covariation of δ56Fe of these samples with selected fluid mobile elements suggests the infiltration of sediment derived fluids with an isotopically light signature during subduction.

  4. Accretionary nature of the crust of Central and East Java (Indonesia) revealed by local earthquake travel-time tomography

    NASA Astrophysics Data System (ADS)

    Haberland, Christian; Bohm, Mirjam; Asch, Günter

    2014-12-01

    Reassessment of travel time data from an exceptionally dense, amphibious, temporary seismic network on- and offshore Central and Eastern Java (MERAMEX) confirms the accretionary nature of the crust in this segment of the Sunda subduction zone (109.5-111.5E). Traveltime data of P- and S-waves of 244 local earthquakes were tomographically inverted, following a staggered inversion approach. The resolution of the inversion was inspected by utilizing synthetic recovery tests and analyzing the model resolution matrix. The resulting images show a highly asymmetrical crustal structure. The images can be interpreted to show a continental fragment of presumably Gondwana origin in the coastal area (east of 110E), which has been accreted to the Sundaland margin. An interlaced anomaly of high seismic velocities indicating mafic material can be interpreted to be the mantle part of the continental fragment, or part of obducted oceanic lithosphere. Lower than average crustal velocities of the Java crust are likely to reflect ophiolitic and metamorphic rocks of a subduction melange.

  5. Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas

    NASA Technical Reports Server (NTRS)

    Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.

    1988-01-01

    Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.

  6. Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas

    NASA Astrophysics Data System (ADS)

    Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.

    Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.

  7. Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred From Contemporaneous Melting of the Mantle and Crust

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Xu, Jifeng; Zeng, Yunchuan; Chen, Jianlin; Wang, Baodi; Yu, Hongxia; Chen, Ling; Huang, Wenlong; Tan, Rongyu

    2017-11-01

    Oceanic slab breakoff significantly affects the thermal regime of the lithosphere during continental collision. This often triggers extension-related mafic magmatism and crustal melting. It is generally accepted that the Neo-Tethyan lithosphere subducted beneath the southern Lhasa Subterrane, resulting in the formation of the Gangdese magmatic arc. However, the timing of slab breakoff is still disputed, due to a lack of evidence for extension-related mafic magmatism. In this study, we provide comprehensive age, element and Sr-Nd-Hf isotopic data of mafic dikes, felsic intrusions, and enclaves from the Daju area, southern Lhasa Subterrane. The timing of mafic dikes and granitoids are contemporaneous at circa 57 Ma. The mafic dikes are characterized by high Th/U, and Zr/Y ratios, their geochemistry indicates an intraplate affinity rather than arc magmas. Furthermore, the mafic dikes show strongly variable igneous zircon ɛHf(t), and lower whole-rock ɛNd(t) than granitoids. This evidence suggests that the mafic dikes represent asthenosphere-derived melts contaminated by various degrees of ancient lithosphere. However, the granitoids were directly derived from the juvenile lower crust. Given the abrupt decrease in the convergence rate between India and Asia, and the surface uplift and sedimentation cessation in the southern Lhasa Subterrane in the early Cenozoic, the occurrence of synchronous mafic dikes and granitoids is best explained by a slab breakoff model. The occurrence of intraplate-type magmas likely corresponds to the magmatic expression of the initial stage of Neo-Tethyan slab breakoff. The slab breakoff concept also explains the onset of the magmatic "flare-up" and crustal growth after 57 Ma.

  8. Continental crustal formation and recycling: Evidence from oceanic basalts

    NASA Technical Reports Server (NTRS)

    Saunders, A. D.; Tarney, J.; Norry, M. J.

    1988-01-01

    Despite the wealth of geochemical data for subduction-related magma types, and the clear importance of such magmas in the creation of continental crust, there is still no concensus about the relative magnitudes of crustal creation versus crustal destruction (i.e., recycling of crust into the mantle). The role of subducted sediment in the formation of the arc magmas is now well documented; but what proportion of sediment is taken into the deeper mantle? Integrated isotopic and trace element studies of magmas erupted far from presently active subduction zones, in particular basaltic rocks erupted in the ocean basins, are providing important information about the role of crustal recycling. By identifying potential chemical tracers, it is impossible to monitor the effects of crustal recycling, and produce models predicting the mass of material recycled into the mantle throughout long periods of geological time.

  9. Differentiation of magma oceans and the thickness of the depleted layer on Venus

    NASA Technical Reports Server (NTRS)

    Solomatov, V. S.; Stevenson, D. J.

    1993-01-01

    Various arguments suggest that Venus probably has no asthenosphere, and it is likely that beneath the crust there is a highly depleted and highly viscous mantle layer which was probably formed in the early history of the planet when it was partially or completely molten. Models of crystallization of magma oceans suggest that just after crystallization of a hypothetical magma ocean, the internal structure of Venus consists of a crust up to about 70 km thickness, a depleted layer up to about 500 km, and an enriched lower layer which probably consists of an undepleted 'lower mantle' and heavy enriched accumulates near the core-mantle boundary. Partial or even complete melting of Venus due to large impacts during the formation period eventually results in differentiation. However, the final result of such a differentiation can vary from a completely differentiated mantle to an almost completely preserved homogeneous mantle depending on competition between convection and differentiation: between low viscosity ('liquid') convection and crystal settling at small crystal fractions, or between high viscosity ('solid') convection and percolation at large crystal fractions.

  10. Psoriasis or crusted scabies.

    PubMed

    Goyal, N N; Wong, G A

    2008-03-01

    We describe a case of a 67-year-old woman with a 1-year history of nail thickening and a non-itchy erythematous scaly eruption on the fingertips. She was diagnosed with psoriasis and started on methotrexate after having had no response to topical calcipotriol. The diagnosis was reviewed after it was revealed by another consultant that the patient's husband had been attending dermatology clinics for several years with chronic pruritus, which had been repeatedly thought to be due to scabies. Our patient was found to have crusted scabies after a positive skin scraping showed numerous mites. She was treated with topical permethrin, keratolytics and oral ivermectin. We also review the literature on crusted scabies and its management, with recommendations.

  11. Changes in Ocean Circulation with an Ice-Free Arctic: Reconstructing Early Holocene Arctic Ocean Circulation Using Geochemical Signals from Individual Neogloboquadrina pachyderma (sinistral) Shells

    NASA Astrophysics Data System (ADS)

    Livsey, C.; Spero, H. J.; Kozdon, R.

    2016-12-01

    The impacts of sea ice decrease and consequent hydrologic changes in the Arctic Ocean will be experienced globally as ocean and atmospheric temperatures continue to rise, though it is not evident to what extent. Understanding the structure of the Arctic water column during the early/mid Holocene sea ice minimum ( 6-10 kya), a post-glacial analogue of a seasonally ice-free Arctic, will help us to predict what the changes we can expect as the Earth warms over the next century. Neogloboquadrina pachyderma (sinistral; Nps) is a species of planktonic foraminifera that dominates assemblages in the polar oceans. This species grows its chambers (ontogenetic calcite) in the surface waters and subsequently descends through the water column to below the mixed layer where it quickly adds a thick crust of calcite (Kohfeld et al., 1996). Therefore, geochemical signals from both the surface waters and sub-mixed layer depths are captured within single Nps shells. We were able to target <5 μm - sized domains for δ18O using secondary ion mass spectrometry (SIMS), therefore capturing signals from both the ontogenetic and crust calcite in single Nps shells. This data was combined with laser ablation- inductively coupled mass spectrometry (LA-ICPMS) Mg/Ca profiles of trace metals through the two layers of calcite of the same shells, to determine the thermal structure of the water column. Combining δ18O, temperature, and salinity gradients from locations across the Arctic basin allow us to reconstruct the hydrography of the early Holocene Arctic sea ice minimum. These results will be compared with modern Arctic water column characteristics in order to develop a conceptual model of Arctic Ocean oceanographic change due to global warming. Kohfeld, K.E., Fairbanks, R.G., Smith, S.L., Walsh, I.D., 1996. Neogloboquadrina pachyderma(sinistral coiling) as paleoceanographic tracers in polar oceans: Evidence from northeast water polynya plankton tows, sediment traps, and surface sediments

  12. The Origin of Silicic Arc Crust - Insights from the Northern Pacific Volcanic Arcs through Space and Time

    NASA Astrophysics Data System (ADS)

    Straub, S. M.; Kelemen, P. B.

    2016-12-01

    The remarkable compositional similarities of andesitic crust at modern convergent margins and the continental crust has long evoked the hypothesis of similar origins. Key to understanding either genesis is understanding the mode of silica enrichment. Silicic crust cannot be directly extracted from the upper mantle. Hence, in modern arcs, numerous studies - observant of the pervasive and irrefutable evidence of melt mixing - proposed that arc andesites formed by mixing of mantle-derived basaltic melts and fusible silicic material from the overlying crust. Mass balance requires the amount of silicic crust in such hybrid andesites to be on the order to tens of percent, implying that their composition to be perceptibly influenced by the various crustal basements. In order to test this hypothesis, major and trace element compositions of mafic and silicic arc magmas with arc-typical low Ce/Pb< 10 of Northern Pacific arcs (Marianas through Mexico) were combined with Pb isotope ratios. Pb isotope ratios are considered highly sensitive to crustal contamination, and hence should reflect the variable composition of the oceanic and continental basement on which these arcs are constructed. In particular, in thick-crust continental arcs where the basement is isotopically different from the mantle and crustal assimilation thought to be most prevalent, silicic magmas must be expected to be distinct from those of the associated mafic melts. However, in a given arc, the Pb isotope ratios are constant with increasing melt silica regardless of the nature of the basement. This observation argues against a melt origin of silicic melts from the crustal basement and suggest them to be controlled by the same slab flux as their co-eval mafic counterparts. This inference is validated by the spatial and temporal pattern of arc Pb isotope ratios along the Northern Pacific margins and throughout the 50 million years of Cenozoic evolution of the Izu Bonin Mariana arc/trench system that are can

  13. The End of Monterey Submarine Canyon Incision and Potential River Source Areas-Os, Nd, and Pb Isotope Constraints from Hydrogenetic Fe-Mn Crusts

    NASA Astrophysics Data System (ADS)

    Conrad, T. A.; Nielsen, S.; Ehrenbrink, B. P. E.; Blusztajn, J.; Hein, J. R.; Paytan, A.

    2015-12-01

    The Monterey Canyon off central California is the largest submarine canyon off North America and is comparable in scale to the Grand Canyon. The age and history of the Monterey Canyon are poorly constrained due to thick sediment cover and sediment disruption from turbidity currents. To address this deficit we analyzed isotopic proxies (Os, Pb, Nd) from hydrogenetic ferromanganese (Fe-Mn) crusts, which grow over millions of years on elevated rock surfaces by precipitation of metals from seawater. Fe-Mn crusts were studied from Davidson Seamount near the base of the Monterey submarine fan, the Taney Seamount Chain, and from Hoss Seamount, which serves as a regional control (Fig.). Fe-Mn crusts were dated using Os isotope ratios compared to those that define the Cenozoic Os isotope seawater curve. Four Fe-Mn crust samples from Davidson and Taney Seamounts deviate from the Os isotopic seawater curve towards radiogenic values after 4.5±1 Ma. Osmium is well mixed in the global ocean and is not subject to significant diffusive reequilibration in Fe-Mn crusts. We therefore attribute deviations from the Os isotope seawater curve to large-scale terrestrial input that ended about 4.5±1 Ma. The two Davidson samples also show more radiogenic Nd isotope values from about 4.5±1 Ma. Lead isotopes in one Davidson Seamount crust, measured by LA-ICPMS, deviate from regional values after 4.5±1 Ma for about 500 ka towards terrestrial sources. The Taney Seamount Fe-Mn crust does not deviate from regional Nd nor Pb isotope values due to its greater distance from Monterey Canyon and the shorter marine residence times of Nd and Pb. Isotope plots of our crust data and compiled data for potential source rocks indicate that the river that carved Monterey Canyon carried sediment with values closer to the Sierra Nevada than to a Colorado Plateau source, with cessation of major riverine input occurring approximately 4.5±1 Ma, an age that we interpret as the end of the Monterey Canyon

  14. Incorporation of seawater into mid-ocean ridge lava flows during emplacement

    USGS Publications Warehouse

    Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Ridley, W.I.; Reed, M.H.; Cann, J.R.

    2006-01-01

    Evidence for the interaction between seawater and lava during emplacement on the deep seafloor can be observed in solidified flows at a variety of scales including rapid quenching of their outer crusts and the formation of lava pillars through the body of the flow. Recently, an additional interaction, incorporation of heated seawater (vapor) into the body of a flow, has been proposed. Large voids and vesicles beneath the surface crusts of mid-ocean ridge crest lobate and sheet lava flows and lava drips found within those cavities have been cited as evidence for this interaction. The voids resulting from this interaction contribute to the high porosity of the shallow ocean crust and play an important role in crustal permeability and hydrothermal circulation at mid-ocean ridges, and thus it is important to understand their origin. We analyze lava samples from the fast-spreading East Pacific Rise and intermediate-spreading Galapagos Spreading Center to characterize this process, identify the source of the vapor, and investigate the implications this would have on submarine lava flow dynamics. We find that lava samples that have interacted with a vapor have a zone of increased vesicularity on the underside of the lava crust and a coating of precipitate minerals (i.e., crystal fringe) that are distinct in form and composition from those crystallized from the melt. We use thermochemical modeling to simulate the reaction between the lava and a vapor and find that only with seawater can we reproduce the phase assemblage we observe within the crystal fringes present in the samples. Model results suggest that large-scale contamination of the lava by mass exchange with the vapor is unlikely, but we observe local enrichment of the lava in Cl resulting from the incorporation of a brine phase separated from the seawater. We suggest that high eruption rates are necessary for seawater incorporation to occur, but the mechanism by which seawater enters the flow has yet to be

  15. Kinetics of the crust thickness development of bread during baking.

    PubMed

    Soleimani Pour-Damanab, Alireza; Jafary, A; Rafiee, Sh

    2014-11-01

    The development of crust thickness of bread during baking is an important aspect of bread quality and shelf-life. Computer vision system was used for measuring the crust thickness via colorimetric properties of bread surface during baking process. Crust thickness had a negative and positive relationship with Lightness (L (*) ) and total color change (E (*) ) of bread surface, respectively. A linear negative trend was found between crust thickness and moisture ratio of bread samples. A simple mathematical model was proposed to predict the development of crust thickness of bread during baking, where the crust thickness was depended on moisture ratio that was described by the Page moisture losing model. The independent variables of the model were baking conditions, i.e. oven temperature and air velocity, and baking time. Consequently, the proposed model had well prediction ability, as the mean absolute estimation error of the model was 7.93 %.

  16. Nonradial oscillation modes of compact stars with a crust

    NASA Astrophysics Data System (ADS)

    Flores, Cesar Vásquez; Hall, Zack B.; Jaikumar, Prashanth

    2017-12-01

    Oscillation modes of isolated compact stars can, in principle, be a fingerprint of the equation of state (EoS) of dense matter. We study the non-radial high-frequency l =2 spheroidal modes of neutron stars and strange quark stars, adopting a two-component model (core and crust) for these two types of stars. Using perturbed fluid equations in the relativistic Cowling approximation, we explore the effect of a strangelet or hadronic crust on the oscillation modes of strange stars. The results differ from the case of neutron stars with a crust. In comparison to fluid-only configurations, we find that a solid crust on top of a neutron star increases the p -mode frequency slightly with little effect on the f -mode frequency, whereas for strange stars, a strangelet crust on top of a quark core significantly increases the f -mode frequency with little effect on the p -mode frequency.

  17. Deep and bottom water export from the Southern Ocean to the Pacific over the past 38 million years

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2004-01-01

    The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, "Nova," 7219 m water depth) and southwest Pacific deep water (63KD, "Tasman," 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway. Copyright 2004 by the American Geophysical Union.

  18. Global Mapping of Oceanic and Continental Shelf Crustal Thickness and Ocean-Continent Transition Structure

    NASA Astrophysics Data System (ADS)

    Kusznir, Nick; Alvey, Andy; Roberts, Alan

    2017-04-01

    The 3D mapping of crustal thickness for continental shelves and oceanic crust, and the determination of ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, represents a substantial challenge. Geophysical inversion of satellite derived free-air gravity anomaly data incorporating a lithosphere thermal anomaly correction (Chappell & Kusznir, 2008) now provides a useful and reliable methodology for mapping crustal thickness in the marine domain. Using this we have produced the first comprehensive maps of global crustal thickness for oceanic and continental shelf regions. Maps of crustal thickness and continental lithosphere thinning factor from gravity inversion may be used to determine the distribution of oceanic lithosphere, micro-continents and oceanic plateaux including for the inaccessible polar regions (e.g. Arctic Ocean, Alvey et al.,2008). The gravity inversion method provides a prediction of continent-ocean boundary location which is independent of ocean magnetic anomaly and isochron interpretation. Using crustal thickness and continental lithosphere thinning factor maps with superimposed shaded-relief free-air gravity anomaly, we can improve the determination of pre-breakup rifted margin conjugacy and sea-floor spreading trajectory during ocean basin formation. By restoring crustal thickness & continental lithosphere thinning to their initial post-breakup configuration we show the geometry and segmentation of the rifted continental margins at their time of breakup, together with the location of highly-stretched failed breakup basins and rifted micro-continents. For detailed analysis to constrain OCT structure, margin type (i.e. magma poor, "normal" or magma rich) and COB location, a suite of quantitative analytical methods may be used which include: (i) Crustal cross-sections showing Moho depth and crustal basement thickness from gravity inversion. (ii) Residual depth anomaly (RDA) analysis which is used to investigate OCT

  19. Timing the oxidation of Earth's crust: Evidence from big data records of manganese mineralization

    NASA Astrophysics Data System (ADS)

    Hummer, D. R.; Golden, J. J.; Hystad, G.; Downs, R. T.; Eleish, A.; Liu, C.; Ralph, J.; Morrison, S.; Meyer, M.; Hazen, R. M.

    2017-12-01

    A great deal of work has focused on unravelling the oxygenation of Earth's early atmosphere and oceans, which took place during and after the Great Oxidation Event (1). Recently, field and experimental methods have also been used to examine the timing of mantle oxidation, especially near subduction zones (2). However, very little information is available on the timing of crustal oxidation. To examine the oxidation of Earth's shallow crust, we analyzed records of manganese (Mn) mineral occurrences across geologic time from a database of 2666 mineral-locality data pairs (mindat.org as of 20 Nov. 2015) that had associated geologic ages in the literature. Manganese is a redox-sensitive transition element with oxidation states of +2, +3, and +4, whose average oxidation state in the geologic record can be used as a proxy for the oxygenation of the shallow crust, where Mn mineralization typically occurs. Analysis revealed that Mn mineralization older than 600 Ma contained mostly Mn2+ mineral species, with isolated localities containing Mn3+ and Mn4+ species. During the Phanerozoic, the average oxidation state of Mn follows the same trend as reconstructions of atmospheric oxygen (3), but on a 66+1 Myr delay (as calculated using a least squares fitting procedure). This contrasts with a delay of hundreds of millions of years for the oxidation of molybdenum, which forms much deeper in the crust (4). We interpret these time lags as the time necessary to equilibrate various crustal depths to atmospheric oxygen fugacity through infiltration of oxidizing fluids and tectonic mixing processes. Analysis of other redox-sensitive transition metals (such as Cr, V, and Fe) using big data techniques may reveal a strategy for timing the oxidation of different portions of Earth's crust. (1) T.W. Lyons, C.T. Reinhard, N.J. Planavsky, Nature 506, 307-315 (2014). (2) M. Brounce, et al. Geology 43, 775-778 (2015). (3) N.M. Bergman, T.M. Lenton, A.J. Watson, Am. J. Sci. 304, 397-437 (2004). (4

  20. Variations in the Crust-Mantle Transition Beneath the Andean Cordillera and Implications for Orogenic Processes.

    NASA Astrophysics Data System (ADS)

    Koch, C.; Isaacs, D.; Delph, J. R.; Beck, S. L.

    2017-12-01

    The South American Andes, generated along an active oceanic-continental convergent margin between the Nazca and South American plates, make up the world's longest arc and encompass the second highest orogenic plateau on Earth. Along-strike variations in shortening, slab subduction angle, and volcanism, along with other tectonic processes, have created extraordinarily complex topography, crustal thickness, and compositional variations reflected in the seismic characteristics of the region. Ps receiver functions (PRFs) have been widely used to investigate the Andes, and these studies provide a wealth of information regarding the structure of the Andean crust and the continental Moho beneath the orogen. However, these studies have focused largely on individual networks or latitudinal segments of the Andes, and a regional-scale model that combines all available data has yet to be analyzed, hence it is hard to compare the amplitudes of conversions at the major discontinuities. This study compiles and analyzes all available data from permanent and temporary seismic networks from (1989-2017) to create a continuous, high spatial resolution common conversion point (CCP) volume for the Andes. In total, receiver functions were calculated for over 1500 seismic stations in the Andes, enabling us to obtain high-resolution, regional-scale CCP images of the continental Moho beneath the Andes from Colombia to southern Chile. The resulting CCP volume shows strong lateral variations in P-to-S conversion amplitudes at the base of the crust, indicating a complex and variable crust-mantle transition. In some places, the back-arc of the central Andes is characterized by relatively thick crust (60 - 75 km) and a broad, low amplitude Moho conversion indicative of a gradational Moho possibly due to the eclogitization of the lower crust. Combined with other geophysical data, this may suggest these are sites of ongoing delamination in the central Andes. Additionally, in the central Andes